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Abstract

Submodular constraints play an important role both in theory and
practice of valued constraint satisfaction problems (VCSPs). It has pre-
viously been shown, using results from the theory of combinatorial op-
timisation, that instances of VCSPs with submodular constraints can
be minimised in polynomial time. However, the general algorithm is of
order O(n6) and hence rather impractical. In this paper, by using re-
sults from the theory of pseudo-Boolean optimisation, we identify several
broad classes of submodular constraints over a Boolean domain which are
expressible using binary submodular constraints, and hence can be min-
imised in cubic time. Furthermore, we describe how our results translate
to certain optimisation problems arising in computer vision.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a general framework
which can be used to model many different problems [12, 13, 31, 37]. How-
ever, the CSP model considers only the feasibility of satisfying a collection of
simultaneous requirements (so-called hard constraints).

Various extensions have been proposed to this model to allow it to deal with
different kinds of optimisation criteria, or preferences, between different feasible
solutions (so-called soft constraints). Two very general extended frameworks
that have been proposed are the SCSP (semi-ring CSP) framework and the
VCSP (valued CSP) framework [2]. The SCSP framework is slightly more
general (the main difference is that costs in VCSPs represent violation levels
and have to be totally ordered, whereas costs in SCSPs represent preferences
and might be ordered only partially), but the VCSP framework is sufficiently
powerful to model a wide range of optimisation problems [2, 37, 40].

Informally, in the Valued Constraint Satisfaction Problem (VCSP)
framework, an instance consists of a set of variables, a set of possible values, and
a set of (soft) constraints. Each constraint has an associated cost function which
assigns a cost (or a degree of violation) to every possible tuple of values for the
variables in the scope of the constraint. The goal is to find an assignment of
values to all of the variables which has the minimum total cost. We remark that

∗A preliminary version of this paper appeared in Proceedings of the 14th International
Conference on Principles and Practice of Constraint Programming (CP), 2008, pp. 112–127.
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infinite costs can be used to indicate infeasible assignments (hard constraints),
and hence the VCSP framework includes the standard CSP framework as a
special case and is equivalent to the Constraint Optimisation Problem
(COP) framework [37], which is widely used in practice.

One significant line of research on the VCSP is to identify restrictions which
ensure that instances are solvable in polynomial time. There are two main types
of restrictions that have been studied in the literature. Firstly, we can limit the
structure of the instances. We will not deal with this approach in this paper.

Secondly, we can restrict the forms of the valued constraints which are al-
lowed in the problem, giving rise to so-called language restrictions. Several
language restrictions which ensure tractability have been identified in the liter-
ature [8, 12].

One important and well-studied restriction on valued constraints is submodu-
larity. The class of valued constraints with submodular cost functions is the only
non-trivial tractable class of optimisation problems in the dichotomy classifica-
tion of Boolean VCSPs [8], and the only tractable class in the dichotomy classi-
fication of Max-CSPs for both 3-element domains [25] and arbitrary finite do-
mains allowing constant constraints, also known as fixed-value constraints [14].
Submodularity also plays a crucial role in the Digraph Min-Cost Homomor-
phism problem [20], which is a special case of the VCSP framework.

The notion of submodularity originally comes from combinatorial optimi-
sation where submodular functions are defined on subsets of a given base
set [22, 32, 42]. The time complexity of the fastest known general strongly
polynomial algorithm for the problem of Submodular Function Minimisa-
tion (SFM) is O(n6 + n5L), where L is the look-up time (needed to evaluate
the cost of an assignment to all variables), and n is the number of variables of
the function to be minimised [33], see also [23]. This general algorithm works in
the so-called oracle-valued model, where the function to be minimised is given
by an oracle.

An important and well-studied sub-problem of the SFM is the minimisation
of locally-defined submodular functions [10], or submodular functions with suc-
cinct representation [15]. We will call this problem Bounded Submodular
Function Minimisation, SFMb. In this scenario the submodular function
to be minimised is defined as the sum of a collection of functions which each
depend only on a bounded number of variables. Locally-defined optimisation
problems occur in a variety of contexts:

• In the context of Pseudo-Boolean Optimisation, such problems in-
volve the minimisation of Boolean polynomials of bounded degree [3].

• In the context of computer vision, such problems are often formulated
as Gibbs Energy Minimisation problems [18] or Markov Random
Fields (also Conditional Random Fields) [30]. (More on this can be
found in Section 6.)

• In the context of artificial intelligence, they have been studied as Valued
Constraint Satisfaction problems [37] with constraints of bounded
arity.

Our primary focus in this paper is on solving submodular VCSP instances
efficiently. (Note that we are considering only exact algorithms. See [7] for ap-
proximation algorithms for the Max-CSP, which is a special case of the VCSP,
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and [15] for approximation algorithms for the SFM.) However, as submodular
VCSPs are equivalent to SFMb, and SFMb has been studied in several other
areas of computer science, we will use techniques from a number of different
fields. In particular, we will use techniques from pseudo-Boolean optimisation
to identify new classes of submodular VCSPs which can be solved efficiently.

Our results have direct consequences for the other formalisms and frame-
works in which the SFMb problem has been studied. For example, many of
the problems that arise in computer vision can be expressed in terms of energy
minimisation [28]. The problem of energy minimisation is NP-hard in general,
and therefore a lot of research has been devoted to identifying instances which
can be solved more efficiently. Kolmogorov and Zabih identified classes of in-
stances for which the energy minimisation problem can be solved efficiently [28],
and which are applicable to a wide variety of vision problems, including image
restoration, stereo vision and motion tracking, image synthesis, image segmen-
tation, multi-camera scene reconstruction and medical imaging. The so-called
regularity condition, which specifies the efficiently solvable classes in [28], is
equivalent to submodularity. We discuss this application further in Section 6.

Cohen et al. have shown that VCSPs with submodular constraints over
an arbitrary finite domain can be reduced to the SFM problem over a spe-
cial family of sets known as a ring family [8]. This problem is equivalent to
the general SFM problem [41], thus giving an algorithm of order O(n6 + n5L),
where L is the look-up time (needed to evaluate the cost of an assignment to
all variables), for any VCSP instance with n variables and with submodular
constraints. This tractability result has since been generalised to a wider class
of valued constraints over arbitrary finite domains known as tournament-pair
constraints [6]. An alternative approach to solving VCSP instances with sub-
modular constraints, based on linear programming, can be found in [10].

A general algorithm for SFM can always be used for the more restricted
SFMb, but the special features of this more restricted problem sometimes allow
more efficient special-purpose algorithms to be used. Hence some classes of
SFMb are known to be solvable more efficiently than the general SFM, see [3]
for a survey.

In this paper we focus on submodular constraints over a Boolean domain
{0, 1}, which correspond precisely to submodular set functions [8]. We describe
an algorithm based on graph cuts which can be used to solve certain VCSPs
with submodular constraints over a Boolean domain much more efficiently than
the general case. Some of our results are closely related to known efficient cases
of SFMb, and other previous results from different areas of computer science,
but we present them here in a unified and constraints-based framework which
allows us to make the proofs more consistent and often simpler. Moreover,
we identify novel classes of VCSP instances with submodular constraints of
arbitrary arities that can be solved efficiently.

The paper is organised as follows. In Section 2, we define the VCSP frame-
work and submodular constraints, and note that submodular constraints over a
Boolean domain can be represented by polynomials. In Section 3, we show that
the standard (s, t)-Min-Cut problem can be expressed in the VCSP framework
with a restricted constraint language Γcut, and that any instance of VCSP(Γcut)
is solvable in cubic time. Moreover, we show that Γcut can express all bi-
nary submodular constraints. In Section 4, we reestablish known results that
any instance of the VCSP with constraints whose corresponding polynomials
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have only negative coefficients for terms of degree ≥ 2 can be expressed in
VCSP(Γcut). We show the same for all {0, 1}-valued submodular constraints,
and also for all ternary submodular constraints. In Section 5, we present a
necessary condition for a quartic polynomial to be submodular. Moreover, for
every k ≥ 4, we identify new classes of k-ary submodular constraints which can
be expressed over VCSP(Γcut), and thus solved efficiently. Section 6 relates our
results to applications in computer vision. Finally, in Section 7, we summarise
our results and discuss related work.

2 Background

2.1 Valued constraint satisfaction and expressibility

In this section we define the valued constraint satisfaction problem
(VCSP). In the original definition of this problem, given in [40], costs were
allowed to lie in any positive totally ordered monoid called a valuation struc-
ture. For our purposes, it is sufficient to consider costs which lie in the set Q+

consisting of all non-negative rational numbers together with infinity1.
Given a fixed set D, a function from Dk to Q+ will be called a cost function.

If the range of φ is {0,∞}, then φ is called a crisp cost function. Note that
crisp cost functions correspond precisely to relations, so we shall use these terms
interchangeably. If the range of φ lies entirely within Q+, the set of non-negative
rationals, then φ is called a finite-valued cost function.

Definition 2.1. An instance P of VCSP is a triple 〈V,D, C〉, where V is a
finite set of variables, which are to be assigned values from the set D, and C is
a set of valued constraints. Each c ∈ C is a pair c = 〈σ, φ〉, where σ is a tuple
of variables of length |σ|, called the scope of c, and φ : D|σ| → Q+ is a cost
function. An assignment for the instance P is a mapping s from V to D. The
cost of an assignment s is defined as follows:

CostP(s) =
∑

〈〈v1,v2,...,vm〉,φ〉∈C

φ(〈s(v1), s(v2), . . . , s(vm)〉).

A solution to P is an assignment with minimum cost.

Any set Γ of cost functions is called a valued constraint language. The
class VCSP(Γ) is defined to be the class of all VCSP instances where the cost
functions of all valued constraints lie in Γ.

Example 2.2. Let D = {0, 1}. We define two unary cost functions as follows:

µ2(x) =

{
0 if x = 0,
5 if x = 1,

µ5(x) =

{
4 if x = 0,
2 if x = 1.

We also define six binary cost functions by the following table:

1See [9] for a discussion of why limiting ourselves to the Q+ valuation structure is not a
severe restriction.
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φ12 φ14 φ23 φ34 φ35 φ45

00 3 0 0 9 3 4
01 2 4 1 7 5 3
10 3 2 0 8 4 2
11 1 5 0 1 4 1

The set Γ = {µ2, µ5, φ12, φ14, φ23, φ34, φ35, φ45} is an example of a valued
constraint language. We will now give an example of a VCSP(Γ) instance. Let
V = {x1, x2, x3, x4, x5} be a set of variables, and let C be a set of constraints,
defined as:

C = {〈〈x1, x2〉, φ12〉, 〈〈x1, x4〉, φ14〉, 〈〈x2, x3〉, φ23〉,
〈〈x3, x4〉, φ34〉, 〈〈x3, x5〉, φ35〉, 〈〈x4, x5〉, φ45〉, 〈〈x2〉, µ2〉, 〈〈x5〉, µ5〉}.

Then P = 〈V,D, C〉 is a VCSP(Γ) instance, illustrated in Figure 1.

x1 x2

µ2

x3

x4 x5 µ5

φ12 φ23

φ35

φ45

φ14 φ34

Figure 1: The instance P from Example 2.2.

In any VCSP instance, the variables listed in the scope of each valued con-
straint are explicitly constrained, in the sense that each possible combination of
values for those variables is associated with a given cost. Moreover, if we choose
any subset of the variables, then their values are constrained implicitly in the
same way, due to the combined effect of the valued constraints. This motivates
the concept of expressibility for cost functions, which is defined as follows:

Definition 2.3 ([8]). For any VCSP instance I = 〈V,D, C〉, and any list of
variables of I, l = 〈v1, . . . , vm〉, the projection of I onto l, denoted πl(I), is the
m-ary cost function defined as follows:

πl(I)(x1, . . . , xm) = min
{s:V→D|〈s(v1),...,s(vm)〉=〈x1,...,xm〉}

CostI(s).

We say that a cost function φ is expressible over a valued constraint language Γ
if there exists an instance I ∈ VCSP(Γ) and a list l of variables of I such that
πl(I) = φ. We call the pair 〈I, l〉 a gadget for expressing φ over Γ. Variables
from V \ l are called extra or hidden variables.
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x1

x2

x3

x4

6=3

6=3

6=3

6=3

6=3

=3

Figure 2: The gadget expressing =3 over {6=3}, from Example 2.4.

Note that in the special case of relations (crisp cost functions) this notion
of expressibility corresponds to the standard notion of expressibility using con-
junction and existential quantification (primitive positive formulas) [4].

We denote by 〈Γ〉 the expressive power of Γ which is the set of all cost
functions expressible over Γ up to additive and multiplicative constants in Q+.

Example 2.4. Let D be a finite set of size d. Consider a valued constraint
language Γ = {6=d} over D which consists of a binary disequality relation, 6=d,
given by

6=d = {〈a, b〉 ∈ D2 | a 6= b}.

Consider an instance P = {V,D, C} of VCSP(Γ), where V = {x1, . . . , xn+1},
n = d, and

C = {〈〈xi, xj〉, 6=d〉 | i 6= j ∈ {1, . . . , n}} ∪ {〈〈xi, xn+1〉, 6=d〉 | i ∈ {2, . . . , n}}.

In order to satisfy all the constraints from C, variables x1, . . . , xn have to
be assigned different values. Moreover, the value of the variable xn+1 has to be
different from the values of the variables x2, . . . , xn. Hence, the only remaining
value that can be assigned to the variable xn+1 is the value which is assigned to
the variable x1. Therefore, every solution s to P with minimum total cost (in
this case zero) satisfies s(x1) = s(xn+1). Therefore, 〈P, {x1, xn+1}〉 is a gadget
for the equality relation, =d, given by

=d = {〈a, b〉 ∈ D2 | a = b}.

In other words, the equality relation can be expressed using the disequality
relation. An example of this construction for |D| = 3 is shown in Figure 2.

Example 2.5. Consider the VCSP instance P from Example 2.2. The projec-
tion of P onto 〈x2, x4〉, denoted by π(P)〈x2,x4〉 is a binary cost function defined
by minimising over the remaining variables. The following table, which enumer-
ates all assignments s in which x2 and x4 are both assigned 0, together with the
cost of these assignments, shows that π(P)〈x2,x4〉(0, 0) = 21.
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x2 x4 x1 x3 x5 CostP(s)
0 0 0 0 0 23
0 0 0 0 1 22
0 0 0 1 0 24
0 0 0 1 1 21
0 0 1 0 0 25
0 0 1 0 1 24
0 0 1 1 0 26
0 0 1 1 1 23

Similarly, it is straightforward to check that

π(P)〈x2,x4〉(x, y) =


21 if x = 0 and y = 0,
16 if x = 0 and y = 1,
24 if x = 1 and y = 0,
19 if x = 1 and y = 1.

Hence this cost function can be expressed over the valued constraint language
Γ defined in Example 2.2.

Example 2.6. Consider a ternary finite-valued cost function φ over D =
{0, 1, 2} whose value on any input is the square of the number of zeros in that
input. We show a gadget for expressing φ using only binary crisp cost functions
and finite-valued unary cost functions.

Define three binary crisp cost functions as follows:

φ0(x, y) =


∞ if x = 0 and y = 1,
∞ if x = 0 and y = 2,
0 otherwise,

φ1(x, y) =

{
∞ if x = 0 and y = 1,
0 otherwise,

and

φ2(x, y) =

{
∞ if x = 0 and y = 2,
0 otherwise.

For c ∈ {1, 3, 5}, let µc be a unary finite-valued cost function defined as

µc(x) =

{
c if x = 0,
0 otherwise.

Let P = 〈V,D, C〉 where V = {x, y, z, u1, u2, u3, v1, v2, v3, v4, v5, v6, w} and
the set of constraints C is shown in Figure 3.

We claim that 〈P, 〈x, y, z〉〉 is a gadget for expressing φ.
If all x, y and z are non-zero, then there is an assignment of the other

variables with values one and two such that the total cost is 0.
If any of x, y, z is zero, then in any solution either u1 or u2 is assigned zero,

and for the same reason u3 is assigned zero.

7



x

y

z

u1

u2

u3

µ1

v1

v2

v3

v4

v5

v6
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w

µ5
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φ1
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φ1

φ1

φ2

φ0

φ0

φ0

φ1

φ0

φ2

φ0

φ0

Figure 3: The gadget expressing φ = (#0)2 from Example 2.6.

If at least two of x, y, z are zero, then in any solution at least one of the
variables v1, v2, v3 is assigned zero, and consequently at least one of v4, v5 is
assigned zero, and hence v6 is assigned 0.

If all x, y and z are zero, then both v2 and v3 are assigned zero and conse-
quently w is assigned zero.

Note that a similar gadget can be constructed for bigger domains.

2.2 Submodular functions and polynomials

A function ψ : 2V → Q defined on subsets of a set V is called a submodular
function [32] if, for all subsets S and T of V , ψ(S∩T )+ψ(S∪T ) ≤ ψ(S)+ψ(T ).
The problem of Submodular Function Minimisation (SFM) consists in
finding a subset S of V for which the value of ψ(S) is minimal.

For any lattice-ordered set D, a cost function φ : Dk → Q+ is called sub-
modular if for every u, v ∈ Dk, φ(min(u, v))+φ(max(u, v)) ≤ φ(u)+φ(v) where
both min and max are applied coordinate-wise on tuples u and v. Note that
expressibility preserves submodularity [8]: if every φ ∈ Γ is submodular, and
φ′ ∈ 〈Γ〉, then φ′ is also submodular.

In this paper, we restrict our attention to finite-valued submodular cost
functions. (We discuss general submodular cost functions in Section 7.)

We also focus on problems over Boolean domains. We denote by Γsub,k

the set of all finite-valued submodular cost functions of arity at most k on a
Boolean domain D = {0, 1}, and we set Γsub =

⋃
k Γsub,k. We will show below

that VCSP(Γsub,2) can be solved in cubic time, and hence we will be concerned
with what other cost functions are expressible over Γsub,2, and so can also be
solved efficiently.

Example 2.7. Consider the valued constraint language Γ from Example 2.2.
It is straightforward to check that all of the cost functions in Γ are submodular:
unary cost functions are submodular by definition; each binary φ ∈ Γ satisfies
φ(0, 0) + φ(1, 1) ≤ φ(0, 1) + φ(1, 0). Hence the instance P from Example 2.2 is
an instance of VCSP(Γsub,2).
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A cost function of arity k can be represented as a table of values of size
Dk. Alternatively, a (finite-valued) cost function φ : Dk → Q+ on a Boolean
domain D = {0, 1} can be represented as a polynomial in k (Boolean) variables
with coefficients from Q [3] (such functions are sometimes called pseudo-Boolean
functions). Over a Boolean domain we have x2 = x, so the degree of any variable
in any term can be restricted to 0 or 1, and this polynomial representation is
then unique. Hence, in what follows, we will often represent a finite-valued cost
function on a Boolean domain by a polynomial.

Note that if Γ is a set of finite-valued cost functions on a Boolean domain,
with arity at most k, then any instance of VCSP(Γ) with n variables can be
uniquely represented as a polynomial p in n Boolean variables, of degree at most
k. Conversely, any such polynomial represents an n-ary cost function which can
be expressed over a set of cost functions on a Boolean domain, with arity at
most k. As mentioned above, over a Boolean domain it holds that x2 = x.
Hence p has at most 2n terms, which correspond to subsets of variables.

Example 2.8. A unary cost function φ on a Boolean domain can be expressed
as the polynomial p(x1) = φ(0) + (φ(1) − φ(0))x1. Similarly, a binary cost
function φ can be expressed as

p(x1, x2) = φ(0, 0)
+ (φ(1, 0)− φ(0, 0))x1

+ (φ(0, 1)− φ(0, 0))x2

+ (φ(1, 1)− φ(0, 1)− φ(1, 0) + φ(0, 0))x1x2.

Consider the instance P from Example 2.2. The corresponding polynomial is

p(x1, . . . , x5) = 3 + 0x1 − x2 − x1x2

+ 0 + 2x1 + 4x4 − x1x4

+ 0 + 0x2 + x3 − x2x3

+ 9− x3 − 2x4 − 5x3x4

+ 3 + x3 + 2x5 − 2x3x5

+ 4− 2x4 − x5 + 0x4x5

+ 0 + 5x2

+ 4− 2x5,

which can be simplified as

p(x1, . . . , x5) = 23 + 2x1 + 4x2 + x3 − x5

− x1x2 − x1x4 − x2x3 − 5x3x4 − 2x3x5.

A general construction for finding the polynomial representation is given in [3].

For polynomials over Boolean variables there is a standard way to define
derivatives of each order (see [3]). For example, the second-order derivative of a
polynomial p, with respect to the first two indices, denoted δ12(x), is defined as
p(1, 1,x)−p(1, 0,x)−p(0, 1,x)+p(0, 0,x). Derivatives for other pairs of indices
are defined analogously.

Proposition 2.9 ([3]). A polynomial p(x1, . . . , xn) over Boolean variables
x1, . . . , xn represents a submodular cost function if, and only if, its second-order
derivatives δij(x) are non-positive for all 1 ≤ i < j ≤ n and all x ∈ Dn−2.
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Corollary 2.10. A quadratic polynomial a0 +
∑n
i=1 aixi +

∑
1≤i<j≤n aijxixj

over Boolean variables x1, . . . , xk, represents a submodular cost function if, and
only if, aij ≤ 0 for every 1 ≤ i < j ≤ n.

Example 2.11. Notice that the polynomial p from Example 2.8 has all
quadratic coefficients non-positive, and hence it is submodular. This confirms
that the instance P from Example 2.2 is an instance of VCSP(Γsub,2), as shown
in Example 2.7.

3 Binary submodular constraints

In this section we show that a constraint language Γcut, consisting of certain
simple binary and unary cost functions over a Boolean domain, has cubic time
complexity. We also show that Γcut can express any binary submodular cost
function over a Boolean domain, that is, Γsub,2 ⊆ 〈Γcut〉. It follows that any
instance of VCSP(Γsub,2) can also be solved in cubic time.

For any w ∈ Q+, we define the binary cost function χw as follows:

χw(x, y) =

{
w if x = 0 and y = 1,
0 otherwise.

For any d ∈ D and c ∈ Q+, we define the unary cost function µcd as follows:

µcd =

{
c if x 6= d,
0 if x = d.

It is straightforward to check that all functions χw and µcd are submodular.
We define the constraint language Γcut to be the set of all cost functions χw

and µcd over a Boolean domain, for c, w ∈ Q+ and d ∈ {0, 1}.

Theorem 3.1. The problems (s, t)-Min-Cut and VCSP(Γcut) are linear-time
equivalent.

Proof. Consider any instance of (s, t)-Min-Cut with (directed) graph G =
〈V,E〉 and weight function w : E → Q+. Define a corresponding instance I
of VCSP(Γcut) as follows:

I = 〈V, {0, 1}, {〈〈i, j〉, χw(i,j)〉 | 〈i, j〉 ∈ E} ∪ {〈s, µ∞0 〉, 〈t, µ∞1 〉}〉.

Note that in any solution to I the source and target nodes, s and t, must
take the values 0 and 1, respectively. Moreover, the weight of any cut containing
s and not containing t is equal to the cost of the corresponding assignment to
I. Hence we have shown that (s, t)-Min-Cut can be reduced to VCSP(Γcut)
in linear time.

On the other hand, given an instance I = 〈V,D, C〉 of VCSP(Γcut), construct
a graph on V ∪ {s, t} as follows: any unary constraint on variable v with cost
function µc0 (respectively µc1) is represented by an edge of weight c from the
source node s to node v (respectively, from node v to the target node t). Any
binary constraint on variables 〈v1, v2〉 with cost function χw is represented by
an edge of weight w from node v1 to v2. It is straightforward to check that a
solution to I corresponds to a minimum (s, t)-cut of this graph.
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Corollary 3.2. VCSP(Γcut) can be solved in O(n3) time, where n is the number
of variables.

Proof. By Theorem 3.1, VCSP(Γcut) has the same time complexity as (s, t)-
Min-Cut, which is known to be solvable in cubic time [19].

Using a standard reduction [21], see also [3], we now show that all binary
submodular cost functions over a Boolean domain can be expressed over Γcut.

Theorem 3.3. Γsub,2 ⊆ 〈Γcut〉.

Proof. By Corollary 2.10, any cost function from Γsub,2 can be represented by
a quadratic Boolean polynomial p(x1, x2) = a0 + a1x1 + a2x2 + a12x1x2 where
a12 ≤ 0. This can then be re-written as

p(x1, x2) = a′0 +
∑
i∈P

a′ixi +
∑
j∈N

a′j(1− xj) + a′12(1− x1)x2,

where P ∩ N = ∅, P ∪ N = {1, 2}, a′12 = −a12, and a′i, a
′
j , a
′
12 ≥ 0. (This is

known as the posiform representation [3].)
Hence p can be expressed over Γcut (up to the constant a′0) by the gadget

〈I, 〈x1, x2〉〉, where I is the instance 〈{x1, x2, s, t}, {0, 1}, C〉 of VCSP(Γcut) and

C = {〈〈s, xi〉, χa
′
i〉 | i ∈ P} ∪ {〈〈xj , t〉, χa

′
j 〉 | j ∈ N}

∪ {〈〈s〉, µ∞0 〉, 〈〈t〉, µ∞1 〉, 〈〈x1, x2〉, χa
′
12〉}.

Corollary 3.4. VCSP(Γsub,2) can be solved in O(n3) time, where n is the
number of variables.

Proof. By Theorem 3.3, any instance of VCSP(Γsub,2) can be reduced to
VCSP(Γcut) in linear time by replacing each constraint with a suitable gad-
get of fixed size. The result then follows from Corollary 3.2. (Note that we can
use the same vertices s and t for all constraints.)

Example 3.5. Consider the polynomial p from Example 2.8,

p(x1, . . . , x5) = 23 + 2x1 + 4x2 + x3 − x5

− x1x2 − x1x4 − x2x3 − 5x3x4 − 2x3x5,

which represents the instance P from Example 2.2. We can rewrite p as in the
proof of Theorem 3.1 as follows:

p(x1, . . . , x5) = 23 + 2x1 + 4x2 + x3 − x5

+ (1− x1)x2 − x2 + (1− x1)x4 − x4 + (1− x2)x3 − x3

+ 5(1− x3)x4 − 5x4 + 2(1− x3)x5 − 2x5

= 23 + 2x1 + 3x2 − 6x4 − 3x5

+ (1− x1)x2 + (1− x1)x4 + (1− x2)x3 + 5(1− x3)x4 + 2(1− x3)x5

= 14 + 2x1 + 3x2 + 6(1− x4) + 3(1− x5)
+ (1− x1)x2 + (1− x1)x4 + (1− x2)x3 + 5(1− x3)x4 + 2(1− x3)x5.
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Figure 4: Graph G corresponding to polynomial p from Example 2.8

We can now build a graph G with 5 vertices corresponding to variables
x1 through x5 and two extra vertices s and t and add edges accordingly, see
Figure 4.

Now for every assignment o of values 0 and 1 to variables x1 through x5,
p(o(x1), . . . , o(x5)) is equal to the size of the (s, t)-cut in G given by o plus 14
(for the constant term in the posiform representation of p). The minimum cut
in G, with value 2, is the set {s, x1, x2}. Therefore, the assignment x1 = x2 = 0
and x3 = x4 = x5 = 1 minimises the polynomial p with the total value 16.

4 Known classes of expressible constraints

In this section, using results from pseudo-Boolean optimisation, we extend the
results from Section 3 to three further classes of constraints over a Boolean do-
main: submodular constraints whose corresponding polynomials have negative
coefficients for all terms of degree ≥ 2; {0, 1}-valued submodular constraints;
and ternary submodular constraints. We show that the cost functions for these
three classes of submodular constraints can all be expressed over Γsub,2, and
hence can be minimised in cubic time in the number of variables plus the num-
ber of higher-order (non-binary) constraints.

Define Γneg,k to be the set of all cost functions over a Boolean domain, of
arity at most k, whose corresponding polynomials have negative coefficients for
all terms of degree greater than or equal to 2. It is not hard to show that
these cost functions, sometimes called negative-positive, are submodular as any
second-order derivative of the corresponding polynomial contains only terms
with negative coefficients. Set Γneg =

⋃
k Γneg,k. The minimisation of cost

functions chosen from Γneg using min-cuts was first studied in [36].

Theorem 4.1 ([36]). Γneg ⊆ 〈Γsub,2〉.

Proof. Consider the following polynomial:

p0(x1, . . . , xn) = min
y∈{0,1}

{−y + y
∑
i∈A

(1− xi)}.

12



It is straightforward to check that for a given A ⊆ {1, . . . , n}, p0(x) = −1 if
A ⊆ x and p0(x) = 0 otherwise (where A ⊆ x means ∀i ∈ A, xi = 1).

Given any polynomial p representing a cost function from Γneg, we can re-
place each term −axi1 . . . xik of p of degree k, where a > 0, with the gadget
given above for p0 and get a quadratic polynomial with negative quadratic co-
efficients, introducing a new variable y for every term of degree ≥ 3. Such a
quadratic polynomial can be expressed over Γsub,2, by Corollary 2.10.

Corollary 4.2. For any fixed k, VCSP(Γneg,k) can be solved in O((n + r)3)
time, where n is the number of variables and r is the number of constraints of
arity 3 or greater.

Proof. By Theorem 4.1, any instance of VCSP(Γneg,k) can be reduced to
VCSP(Γsub,2) in linear time by replacing each constraint with a suitable gad-
get. For any fixed k, the number of terms in the corresponding polynomial, and
hence the number of new variables introduced by these gadgets is bounded by
a constant. The result then follows from Corollary 3.4.

Next we consider the class of submodular constraints over a Boolean domain
which take only the cost values 0 and 1. (Such constraints can be used to model
optimisation problems such as Max-CSP, see [7].) Define Γ{0,1},k to be the set
of all {0, 1}-valued submodular cost functions over a Boolean domain, of arity
at most k, and set Γ{0,1} =

⋃
k Γ{0,1},k. The minimisation of submodular cost

functions from Γ{0,1} was studied in [12], where they were called 2-monotone
functions. The equivalence of 2-monotone and submodular cost functions and
a generalisation of 2-monotone functions to non-Boolean domains was shown
in [7].

Definition 4.3. A cost function φ is called 2-monotone if there exist two sets
A,B ⊆ {1, . . . , n} such that φ(x) = 0 if A ⊆ x or x ⊆ B and φ(x) = 1 otherwise
(where A ⊆ x means ∀i ∈ A, xi = 1 and x ⊆ B means ∀i 6∈ B, xi = 0).

Theorem 4.4 ([12]). Γ{0,1} ⊆ 〈Γsub,2〉.

Proof. Any 2-monotone cost function φ can be expressed over Γsub,2 using 2
extra variables, y1, y2:

φ(x) = min
y1,y2∈{0,1}

{(1− y1)y2 + y1
∑
i∈A

(1− xi) + (1− y2)
∑
i6∈B

xi}.

Corollary 4.5. VCSP(Γ{0,1}) can be solved in O((n + r)3) time, where n is
the number of variables and r is the number of constraints of arity 3 or greater.

Finally, we consider the class Γsub,3 of ternary submodular cost functions
over a Boolean domain. This class was studied in [1], from where we obtain the
following useful characterisation of cubic submodular polynomials.
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Lemma 4.6 ([1]). A cubic polynomial p(x1, . . . , xn) over Boolean variables rep-
resents a submodular cost function if, and only if, it can be written as

p(x1, . . . , xn) = a0 +
∑
{i}∈C+

1

aixi −
∑
{i}∈C−1

aixi −
∑

{i,j}∈C2

aijxixj

+
∑

{i,j,k}∈C+
3

aijkxixjxk −
∑

{i,j,k}∈C−3

aijkxixjxk,

where C2 denotes the set of quadratic terms, and C+
i (C−i ) denotes the set of

terms of degree i with positive (negative) coefficients, for i = 1, 3, and

1. ai, aij , aijk ≥ 0 ({i} ∈ C+
1 ∪ C

−
1 , {i, j} ∈ C2, {i, j, k} ∈ C+

3 ∪ C
−
3 ),

2. ∀{i, j} ∈ C2, aij +
∑
k|{i,j,k}∈C+

3
aijk ≤ 0.

Theorem 4.7 ([1]). Γsub,3 ⊆ 〈Γsub,2〉.

Proof. Let p be a polynomial representing an arbitrary cost function in Γsub,3.
By Lemma 4.6, the quadratic terms in p are non-positive. We already know
how to express a negative cubic term using a gadget over Γsub,2 (Theorem 4.1).
To express a positive cubic term, consider the following identity:

xixjxk − xixj − xixk − xjxk = min
y∈{0,1}

{(1− xi − xj − xk)y}.

We can replace a positive cubic term aijkxixjxk in p with

min
y∈{0,1}

{aijk(1− xi − xj − xk)y + aijk(xixj + xixk + xjxk)}.

It remains to check that all quadratic coefficients of the resulting polynomial are
non-positive. However, this is ensured by the second condition from Lemma 4.6.

Corollary 4.8. VCSP(Γsub,3) can be solved in O((n+r)3) time, where n is the
number of variables and r is the number of ternary constraints .

We remark that the proof of Corollary 4.8 given in [1] was obtained using
a different approach based on the so-called conflict graphs of a supermodular
polynomial (see [3]). Such graphs have been shown to be bipartite, and therefore
the problem of finding a maximum weight stable set can be reduced to a flow
problem. However, the resulting time complexity is the same.

5 New classes of expressible constraints

In this section we investigate the question of which submodular constraints
of arity 4 or higher can be expressed by binary submodular constraints. We
derive a necessary condition for a 4-ary constraint over a Boolean domain to
be submodular. We also present some sufficient conditions, which give rise to
new classes of submodular constraints which can be expressed over Γsub,2, and
hence minimised efficiently. We prove the sufficient conditions first for 4-ary
submodular cost functions and then generalise them to k-ary submodular cost
functions for every k ≥ 4.
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5.1 4-ary constraints

One might hope to obtain a simple characterisation of 4-ary submodular cost
functions over a Boolean domain similar to Lemma 4.6. However, it has been
shown that testing whether a given quartic Boolean polynomial is submodular
is co-NP-complete [11, 17]. Hence, one is unlikely to find a polynomial-time
checkable characterisation, as this would prove that P=NP. However, we obtain
the following necessary condition.

Lemma 5.1. If a quartic polynomial p(x1, . . . , xn) over Boolean variables rep-
resents a submodular cost function, then it can be written such that, for all
{i, j} ∈ C2:

1. aij ≤ 0, and

2. aij +
∑
k|{i,j,k}∈C+

3
aijk +

∑
k,l|{i,j,k,l}∈C+

4
aijkl + Fij ≤ 0, where

Fij =
∑

k|{i,j,k}∈C−3 ∧{i,j,k,.}∈C
+
4

aijk +
∑

k,l|{i,j,k,l}∈C−4 ∧{i,j,k,.},{i,j,l,.}∈C
+
4

aijkl,

C2 denotes the set of quadratic terms, and C+
i (C−i ) denotes the set of terms of

degree i with positive (negative) coefficients, for i = 3, 4.

Proof. Let p be a quartic submodular polynomial and let i and j be given, then
δij(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn), the second-order derivative of p
with respect to the ith and jth variable, is equal to

δij = aij +
∑

k|{i,j,k}∈C+
3

aijkxk +
∑

k,l|{i,j,k,l}∈C+
4

aijklxkxl

−
∑

k|{i,j,k}∈C−3

aijkxk −
∑

k,l|{i,j,k,l}∈C−4

aijklxkxl.

Consider an assignment which sets xk = 1 if k = i or k = j, and xk = 0
otherwise. By Proposition 2.9, aij ≤ 0, which proves the first condition. By
setting xk = 1 for all k such that {i, j, k} ∈ C+

3 and xk = xl = 1 for all k, l
such that {i, j, k, l} ∈ C+

4 , we get the second condition. We set to 1 all variables
which occur in some positive cubic or quartic term. The second condition then
says that the sum of all these positive coefficients minus those which are forced,
by our setting of variables, to be 1 (Fij), is at most 0. (Note that this also
proves Lemma 4.6.)

Next we show a useful example of a 4-ary submodular cost function which
can be expressed over the binary submodular cost functions using one extra
variable.

Example 5.2. Let φ be the 4-ary cost function defined as follows: φ(x) =
min{2k, 5}, where k is the number of 0s in x ∈ {0, 1}4. The corresponding
quartic polynomial representing φ is

p(x1, x2, x3, x4) = 5 + x1x2x3x4 − x1x2 − x1x3 − x1x4 − x2x3 − x2x4 − x3x4.

By considering second-order derivatives of p, it can be checked that p is sub-
modular. For instance, δ12(x3, x4), the second-order derivative of p with respect
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to the first two variables, is equal to x1x2x3x4 − 1. Clearly, δ12(x3, x4) ≤ 0. It
can be shown by simple case analysis that p cannot be expressed as a quadratic
polynomial with non-positive quadratic coefficients (from the definition of p, the
polynomial would have to be 5−x1x2−x1x3−x1x4−x2x3−x2x4−x3x4 which
is not equal to p on x1 = x2 = x3 = x4 = 1).

However, p can be expressed over Γsub,2 using just one extra variable, via
the following gadget:

p(x1, x2, x3, x4) = min
y∈{0,1}

{5 + (3− 2x1 − 2x2 − 2x3 − 2x4)y}.

Using the same notation as in Lemma 5.1, define Γsuff,4 to be the set of all
4-ary submodular cost functions over a Boolean domain whose corresponding
quartic polynomials satisfy, for every i < j,

aij +
∑

k|{i,j,k}∈C+
3

aijk +
∑

k,l|{i,j,k,l}∈C+
4

aijkl ≤ 0. (1)

Theorem 5.3. Γsuff,4 ⊆ 〈Γsub,2〉.

Proof. Let φ ∈ Γsuff,4 and let p be the corresponding polynomial which repre-
sents φ. First, replace all negative cubic and quartic terms using the construc-
tion in Theorem 4.1. As in the proof of Theorem 4.7, replace every positive
cubic term aijkxixjxk in p with

min
y∈{0,1}

{aijk(1− xi − xj − xk)y + aijk(xixj + xixk + xjxk)}.

Using the same construction as in Example 5.2, replace every positive quartic
term aijklxixjxkxl with

min
y∈{0,1}

{aijkl(3− 2xi − 2xj − 2xk − 2xl)y

+ aijkl(xixj + xixk + xixl + xjxk + xjxl + xkxl)}.

It only remains to check that all quadratic coefficients in the resulting polyno-
mial are non-positive. However, this is ensured by the definition of Γsuff,4 and
by the choice of the gadgets.

Corollary 5.4. VCSP(Γsuff,4) can be solved in O((n + r)3) time, where n is
the number of variables and r is the number of constraints of arity 3 or greater.

5.2 The general case

We now generalise the result from the previous section to subclasses of sub-
modular constraints of arbitrary arities. For every k ≥ 4, we define Γsuff,k to
be the set of all k-ary submodular cost functions over a Boolean domain whose
corresponding polynomials satisfy, for every 1 ≤ i < j ≤ k,

aij +
k−2∑
s=1

∑
{i,j,i1,...,is}∈C+

s+2

ai,j,i1,...,is ≤ 0,
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where C+
i denotes the set of terms of degree i with positive coefficients. In other

words, for any 1 ≤ i < j ≤ k, the sum of aij and all positive coefficients of cubic
and higher-degree terms which include xi and xj is non-positive.

We then set Γsuff =
⋃
k Γsuff,k.

Theorem 5.5. Γsuff ⊆ 〈Γsub,2〉.

Proof. First we show how to uniformly generate gadgets over Γsub,2 for polyno-
mials of the following type:

pk(x1, . . . , xk) =
k∏
i=1

xi −
∑

1≤i<j≤k

xixj .

Note that pk(x) = −
(
m
2

)
, where m is the number of 1s in x, and

(
0
2

)
=
(
1
2

)
= 0,

unless m = k (x consists of 1s only), in which case pk(x) = −
(
m
2

)
+ 1.

We claim, that for any k ≥ 4, the following, denoted by Pk, is a gadget for
pk:

pk(x1, . . . , xk) = min
y0,...,yk−4∈{0,1}

{y0(3− 2
k∑
i=1

xi) +
k−4∑
j=1

yj(2 + j −
k∑
i=1

xi)}.

Notice that in the case of k = 4, the gadget corresponds to the gadget used in
the proof of Theorem 5.3, and therefore the base case is proved. We proceed by
induction on k. Assume that Pi is a gadget for pi for every i ≤ k. We prove
that Pk+1 is a gadget for pk+1.

Firstly, take the gadget Pk for pk, and replace every sum
∑k
i=1 xi with∑k+1

i=1 xi. We denote the new gadget P ′. By the inductive hypothesis, it is not
difficult to see that P ′ is a valid gadget for pk+1 on all assignments with at
most k− 1 1s. Also, on any assignment with exactly k 1s, P ′ returns −

(
k
2

)
+ 1.

On the assignment with k + 1 1s, P ′ returns: −
(
k
2

)
+ 1 − 2 − 1(k − 4). This

can be simplified as follows: −
(
k
2

)
+ 1 − 2 − k + 4 = −

(
k
2

)
+ 1 − k + 2 =

−(
(
k
2

)
+
(
k
1

)
) + 1 + 2 = −

(
k+1
2

)
+ 1 + 2. Hence P ′ is almost a gadget for

pk+1: we only need to subtract 1 on an assignment which has exactly k 1s,
and subtract 2 on the assignment consisting of 1s only. But this is exactly what
minyk−3∈{0,1}{yk−3(2+(k−3)−

∑k+1
i=1 xi)} does. Therefore, we have established

that Pk+1 is a gadget for pk+1 over Γsub,2 with k − 3 extra variables.
Given a cost function φ ∈ Γsuff,k, let p be the corresponding polynomial which

represents φ. By the construction in Theorem 4.1, we can replace all negative
terms of degree ≥ 3. By the constructions in Theorem 4.7 and Theorem 5.3,
we can replace all positive cubic and quartic terms. Now for any positive term
of degree d, 5 ≤ d ≤ k, we replace the term with the gadget Pd and add∑

1≤i<j≤k xixj back in. This construction works if all quadratic coefficients
of the resulting polynomial are non-positive. However, this is ensured by the
definition of Γsuff,k and by the choice of the gadgets.

Corollary 5.6. For any fixed k ≥ 4, VCSP(Γsuff,k) can be solved in O((n+r)3)
time, where n is the number of variables and r is the number of constraints of
arity 3 or greater.
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6 Applications to Computer Vision

In this section we relate our results to certain optimisation problems arising in
computer vision. In fact, certain optimisation problems studied in computer
vision are equivalent to problems described in the VCSP framework.

In computer vision, many problems can be naturally formulated in terms of
energy minimisation where the energy function, over a set of variables {xv}v∈V ,
has the following form:

E(x) = c0 +
∑
v∈V

cv(xv) +
∑

〈u,v〉∈V×V

cuv(xu, xv) + . . .

Set V usually corresponds to pixels, xv denotes the label of pixel v ∈ V which
must belong to a finite domain D. The constant term of the energy is c0, the
unary terms cv(·) encode data penalty functions, the pairwise terms cuv(·, ·) are
interaction potentials, and so on. Functions of arity 3 and above are known
as higher-order energy functions, or higher-order cliques. This energy is often
derived in the context of Markov Random Fields (also Conditional Ran-
dom Fields) [18]: a minimum of E corresponds to a maximum a-posteriori
(MAP) labelling x [30].

As discussed in Section 2.2, there is a direct translation between polynomials
over Boolean variables and VCSP instances. Hence it is clear that this frame-
work of energy minimisation is equivalent to VCSP. (See [43] for a survey on
the connection between computer vision and constraint satisfaction problems,
although with a strong emphasis on a linear programming approach.) Therefore,
for energy minimisation over Boolean variables we get the following:

Corollary 6.1 (of Theorem 5.5). Energy minimisation, where the energy func-
tion can be expressed as a sum of functions from Γsuff,k, for some fixed k, is
solvable in O((n+ r)3) time, where n is the number of variables (pixels), and r
is the number of functions in this sum of arity 3 or greater.

Corollary 6.1 generalises results of Kolmogorov and Zabih, who provided
alternative proofs of results on Γsub,3 [28], and results of Freedman and Drineas,
who provided alternative proofs of results on Γsub,3 and Γneg [16]. Corollary 6.1
provides a strictly larger class of higher-order energy functions which can be
minimised efficiently.

Higher-order energy functions have the ability to encode high level structural
dependencies between pixels, which have been shown to be extremely power-
ful for image labeling problems. They have long been used to model image
textures [29, 34, 38], image denoising and restoration [38], and texture seg-
mentation [26]. Their use, however, is severely hampered in practice by the
intractable complexity of representing and minimising such functions [39]. Our
results enlarge the class of higher-order energy functions which can be (exactly)
minimised efficiently using graphs cuts. Hence functions from Γsuff,k could be
used, for instance, in image processing for efficient recognition of images or
Bayesian estimation.

Many applications in computer vision deal with non-Boolean domains. It is
clear that any variable over a non-Boolean domain D = {0, 1, . . . , d− 1} of size
d can be encoded by d−1 Boolean variables. This process is known as Booleani-
sation. One such encoding is the following: en(i) = 0d−i−11i. We replace each
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variable with d− 1 new Boolean variables and impose a (submodular) relation
on these new variables which ensures that they only take values in the range
of the encoding function en. Note that en(max(a, b)) = max(en(a), en(b)) and
en(min(a, b)) = min(en(a), en(b)), so this encoding preserves submodularity.

Is is easy to observe that in any submodularity-preserving encoding of a non-
Boolean variable by Boolean variables each variable over a d-element domain
needs to be replaced with at least d variables. However, for practical pur-
poses, subclasses of non-Boolean submodular functions which can be encoded
by Boolean submodular functions with fewer variables have been studied [35]
as well as approximation algorithms for these problems [27]. Moreover, certain
higher-order functions contained in Γsuff,k have been used for the single view
reconstruction problem in [35].

7 Conclusion and related work

Conclusion In this paper we first considered binary submodular constraints
over a Boolean domain, and showed that they can be minimised in cubic time
via a reduction to the minimum cut problem for graphs. We then investigated
which other submodular constraints are expressible using binary submodular
constraints over a Boolean domain, and hence can also be minimised efficiently
using minimum cuts.

Using known results from combinatorial optimisation, we identified several
such classes of constraints, including all ternary submodular constraints, and
all {0, 1}-valued submodular constraints of any arity. By constructing suitable
gadgets, we identified certain new classes of k-ary submodular constraints, where
k ≥ 4, which can also be expressed by binary submodular constraints.

Using results from [8] and [42], it can be shown that any (general) submodu-
lar cost function φ can be expressed as the sum of a finite-valued submodular cost
function φfin, and a submodular relation φrel, that is, φ = φfin + φrel. More-
over, it is known that all submodular relations are binary decomposable [24],
and hence expressible using only binary submodular relations.2 Hence, our ex-
pressibility results for certain finite-valued submodular cost functions can be
combined with expressibility results for crisp submodular cost functions to ob-
tain expressibility results for general submodular cost functions taking both
finite and infinite values.

Related work In the proof of Theorem 5.5, we proved that, for any k ≥ 4
and φ ∈ Γsuff,k, φ can be expressed over Γsub,2 with k − 3 extra variables per
term. Independently of our work, Zalesky has shown that φ can be expressed
over Γsub,2 with bk−1

2 c extra variables per term (see the manuscript [44]). This
result yields asymptotically the same cubic time complexity for VCSP(Γsuff,k).

The class Γsuff is very general; for example, it properly extends the class
Γneg. However, our next example shows that it does not include all submodular
functions which are expressible by binary submodular functions.

2If a relation R is submodular, then R admits both Min and Max as polymorphisms.
This implies that R also admits Median as a polymorphism. As Median is a ternary near
unanimity operation, it follows from [24] that R is binary decomposable.
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Example 7.1. Define a 4-ary submodular cost function φ as follows: φ(x) =
min(3k, 7) + 2y + z, where k is the number of 0s in x ∈ {0, 1}4, y = 1 if
x = 〈1, 1, 1, 0〉 (and 0 otherwise), and z = 1 if x = 〈1, 1, 0, 0〉 (and 0 otherwise).
The corresponding polynomial representing φ is

p(x1, x2, x3, x4) = 7 + 2x1x2x3x4 − 2x1x2x4 − x1x3x4 − x2x3x4

− x1x3 − x1x4 − x2x3 − x2x4 − x3x4.

By considering the second-order derivatives of p, it can easily be checked that
φ is submodular. However, φ 6∈ Γsuff,4: for i = 1 and j = 2, the expression in
Equation 1 on page 16 gives 2. Hence Theorem 5.3 does not apply to φ.

By a case analysis (system of equations), it can be shown that φ cannot be
expressed over Γsub,2 without extra variables or with just one extra variable.
However, the following gadget shows that φ is in fact expressible over Γsub,2

using just two extra variables:

p(x1, x2, x3, x4) = 7− x1x4 − x2x4 − x3x4

+ min
y1,y2∈{0,1}

{2y1 + 3y2 − y1y2 − y1(x1 + x2 + 2x3)− y2(x1 + x2 + 2x4)}.

The main open problem in this area when we started this investigation was
whether all bounded-arity submodular constraints over a Boolean domain can
be expressed by binary submodular constraints, and hence solved in cubic time.
In terms of polynomials, this is equivalent to the following problem: can any
polynomial over Boolean variables with non-positive second-order derivatives
be expressed as the projection of a quadratic polynomial with non-positive
quadratic coefficients?

In recent work, we have shown that the answer to this question is nega-
tive; that is, there are submodular constraints which cannot be expressed using
binary submodular constraints [45]. In fact, we have obtained a precise classifi-
cation of all 4-ary submodular constraints with respect to this question [45].

Open problems There are still several interesting open questions regarding
expressibility. We denote by 〈Γsub,2〉m the set of all (submodular) cost functions
expressible over Γsub,2 with at most m extra variables. Clearly, 〈Γsub,2〉m ⊆
〈Γsub,2〉m+1 for every m ≥ 0. We have seen in Section 5 that 〈Γsub,2〉1 is strictly
larger than 〈Γsub,2〉0 (see Example 5.2). In other words, allowing a single hidden
variable strictly increases the expressive power of Γsub,2.

Also, as mentioned in Example 7.1, we know that 〈Γsub,2〉1 ( 〈Γsub,2〉2. On
the other hand, we do not know whether in general allowing further hidden
variables increases the expressive power any further. In other words, it is an
open question whether 〈Γsub,2〉m ( 〈Γsub,2〉m+1 for any m ≥ 2. However, we do
know that there is a limit to the additional expressive power that can be gained
by allowing an arbitrary number of hidden variables. This is a consequence
of the following result, which is a general result about expressibility, and not
specific to submodular constraints or Boolean domains.

Proposition 7.2 ([5]). If a cost function φ : Dk → Q+ is expressible over Γ,
then φ is expressible over Γ using at most |D||D|k hidden variables.

Hence, if a k-ary Boolean submodular constraint is expressible over Γsub,2,
then it is also expressible over 〈Γsub,2〉m, where m = 22k

. In the case of 4-ary
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submodular constraints, we know that any 4-ary submodular cost function φ
is either expressible with fewer than m variables, or not expressible at all [45].
Hence the theoretical upper bound 216 on the number of extra variables is not
obtained. We do not know whether the upper bound on the number of extra
variables can be improved, or whether it is necessary for certain submodular
constraints.

Acknowledgements The authors would like to thank Dave Cohen and Mar-
tin Cooper for fruitful discussions on submodular constraints, Chris Jefferson for
help with using the constraint-solver MINION,3 which was useful for simplify-
ing some of the gadgets presented in this paper, and the anonymous reviewers for
useful comments on an earlier version of this paper. Stanislav Živný gratefully
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[27] P. Kohli, L. Ladický, P. Torr, Robust Higher Order Potentials for Enforcing
Label Consistency, International Journal of Computer Vision 82 (3) (2009)
302–324.

[28] V. Kolmogorov, R. Zabih, What Energy Functions Can Be Minimized via
Graph Cuts?, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 26 (2) (2004) 147–159.

[29] X. Lan, S. Roth, D. P. Huttenlocher, M. J. Black, Efficient Belief Propaga-
tion with Learned Higher-Order Markov Random Fields, in: Proceedings
of the 9th European Conference on Computer Vision (ECCV), Part II, vol.
3952 of Lecture Notes in Computer Science, Springer, 2006.

[30] S. L. Lauritzen, Graphical Models, Oxford University Press, 1996.

[31] U. Montanari, Networks of Constraints: Fundamental properties and ap-
plications to picture processing, Information Sciences 7 (1974) 95–132.

[32] G. Nemhauser, L. Wolsey, Integer and Combinatorial Optimization, John
Wiley & Sons, 1988.

[33] J. B. Orlin, A faster strongly polynomial time algorithm for submodular
function minimization., Mathematical Programming 118 (2009) 237–251.

[34] R. Paget, I. D. Longstaff, Texture synthesis via a noncausal nonparametric
multiscale Markov random field, IEEE Transactions on Image Processing
7 (6) (1998) 925–931.

[35] S. Ramalingam, P. Kohli, K. Alahari, P. Torr, Exact Inference in Multi-
label CRFs with Higher Order Cliques, in: IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR), IEEE Com-
puter Society, 2008.

[36] J. Rhys, A selection problem of shared fixed costs and network flows, Man-
agement Science 17 (3) (1970) 200–207.

[37] F. Rossi, P. van Beek, T. Walsh (eds.), The Handbook of Constraint Pro-
gramming, Elsevier, 2006.

[38] S. Roth, M. J. Black, Fields of experts: A framework for learning image
priors, in: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE Computer Society, 2005.

[39] C. Rother, P. Kohli, W. Feng, J. Jia, Minimizing Sparse Higher Order
Energy Functions of Discrete Variables, in: IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR), IEEE Com-
puter Society, 2009.

23



[40] T. Schiex, H. Fargier, G. Verfaillie, Valued Constraint Satisfaction Prob-
lems: Hard and Easy Problems, in: Proceedings of the 14th International
Joint Conference on Artificial Intelligence (IJCAI), 1995.

[41] A. Schrijver, A Combinatorial Algorithm Minimizing Submodular Func-
tions in Strongly Polynomial Time, Journal of Combinatorial Theory, Series
B 80 (2000) 346–355.

[42] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, vol. 24
of Algorithms and Combinatorics, Springer, 2003.

[43] T. Werner, A Linear Programming Approach to Max-Sum Problem: A
Review, IEEE Transactions on Pattern Analysis and Machine Intelligence
29 (7) (2007) 1165–1179.

[44] B. Zalesky, Efficient Determination of Gibbs Estimators with Submodular
Energy Functions, arXiv:math/0304041v1 (2003), version February 2008.
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