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Minimization of a partially separable function of many discrete variables is
ubiquitous in machine learning and computer vision, in tasks like maximum
a posteriori (MAP) inference in graphical models, or structured prediction.
Among successful approaches to this problem is linear programming (LP)
relaxation. We discuss this LP relaxation from two aspects. First, we review
recent results which characterize languages (classes of functions permitted to
form the objective function) for which the problem is solved by the relaxation
exactly. Second, we show that solving the LP relaxation is not easier than
solving any linear program, which makes a discovery of an efficient algorithm
for the LP relaxation unlikely.

The topic of this chapter is the problem of minimizing a partially separa-
ble function of many discrete variables. That is, given a set of variables, we
minimize the sum of functions each depending only on a subset of the vari-
ables. This NP-hard combinatorial optimization problem frequently arises in
machine learning and computer vision, in tasks like MAP inference in graph-
ical models (Lauritzen, 1996; Koller and Friedman, 2009; Wainwright and
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Jordan, 2008) and structured prediction (Nowozin and Lampert, 2011). It is
also known as discrete energy minimization or valued constraint satisfaction.
The problem is formally defined in Section 1.1.

The problem has a natural linear programming (LP) relaxation, proposed
independently by a number of authors (Shlezinger, 1976; Koster et al., 1998;
Chekuri et al., 2005), that is defined in Section 1.2. Algorithms based on
LP relaxation are among most successful ones for tackling the problem in
practice (Szeliski et al., 2008).

In this chapter, we discuss the power of the relaxation from two aspects.
In the first part of the chapter, Section 1.3, we focus on the question of
what languages are exactly solved by the LP relaxation. This means, we
consider subclasses of the problem in which the structure (hypergraph)
is arbitrary but the functions belong to a given subset (language) of all
possible functions. For instance, it is well-known that if all the functions
are submodular then the problem is tractable, no matter what its structure
is. In this case, the LP relaxation is tight. We review the recent results by
Thapper and Živný (2013, 2012); Kolmogorov et al. (2013); Kolmogorov and
Živný (2013), which characterize all languages solved by the LP relaxation.
This is accompanied by a number of concrete examples of such languages.

Given the (widely accepted) usefulness of the LP relaxation, many authors
have proposed algorithms to solve this linear program efficiently. In the
second part of the chapter, Section 1.4, we review the result by Pr̊uša and
Werner (2013) which states that solving the LP relaxation is not easier than
solving any linear program. This result is negative, showing that finding a
very efficient algorithm for the LP relaxation is as hard as improving the
complexity of the best known algorithm for general LP.

In the sequel, we denote sets by {· · ·} and ordered tuples by 〈· · ·〉. The set
of all subsets of a set A is denoted by 2A and the set of all k-element subsets
of A by

(
A
k

)
. For a tuple x, we denote by xi its ith component.

1.1 Valued Constraint Satisfaction Problem

Let V be a finite set of variables. Each variable i ∈ V can take states xi ∈ D,
where the domain D is the same for each variable. Let Q = Q∪{∞} denote
the set of extended rational numbers. A function Φ: DV → Q is partially
separable if it can be written as

Φ(x) =
∑
S∈H

φS(xS) (1.1)
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where H ⊆ 2V is a collection of subsets of V (so that 〈V,H〉 is a hypergraph)
and each variable subset S ∈ H is assigned a function φS : D|S| → Q. Here,
xS = 〈xi | i ∈ S 〉 ∈ DS denotes the restriction of the assignment x =
〈xi | i ∈ V 〉 ∈ DV to variables S, where the order of elements of the tuple xS
is given by some fixed total order on V .

Example 1.1. For V = {1, 2, 3, 4} and H = {{2, 3, 4}, {1, 2}, {2, 3}, {1}},
we have (where we abbreviated φ{2,3,4} by φ234, etc.)

Φ(x1, x2, x3, x4) = φ234(x2, x3, x4) + φ12(x1, x2) + φ23(x2, x3) + φ1(x1).

Our aim is to minimize function (1.1) over all assignments x ∈ DV . In this
chapter, we assume that the domain D has a finite size (that is, the variables
are discrete). This problem is known under many names, such as MAP
inference in graphical models (or Markov random fields), discrete energy
minimization, or min-sum problem. In constraint programming (Rossi et al.,
2006), it has been studied under the name valued (or weighted) constraint
satisfaction problem (VCSP) (Schiex et al., 1995; Cohen et al., 2006b). We
will follow this terminology. Here, each function φS is called a constraint1

with scope S and arity |S|. The arity of the problem is maxS∈H |S|. The
values of the functions φS are called costs.

Problems involving only functions with costs from {0,∞} (so-called
hard or crisp constraints) are known as constraint satisfaction problems
(CSPs) (Cohen and Jeavons, 2006); these are decision problems asking for
the existence of a zero-cost labelling. This type of problems has the longest
history, started by the pioneering work of Montanari (1974). Problems in-
volving functions with arbitrary costs from Q are known as valued CSPs
(VCSPs). Valued CSPs are sometimes called general-valued, to emphasize
the fact that the costs can be both finite (from Q) and infinite. The following
two subclasses of valued CPSs have been studied intensively in the litera-
ture. Problems involving only functions with costs from {0, 1} are known as
maximum constraint satisfaction problems (Max-CSPs). Problems involving
only functions with costs from Q (so-called soft constraints) are known as
finite-valued CSPs.2

1. For historical reasons, costs are often required to be non-negative in the constraint
community.
2. In the approximation community, Max-CSPs are referred to as CSPs and finite-valued
CSPs are referred to as generalized CSPs.
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1.2 Basic LP Relaxation

The LP relaxation of VCSP reads∑
S∈H

∑
x∈DS

φS(x)µS(x)→ min (1.2a)∑
y∈DS | yi=x

µS(y) = µi(x), i ∈ S ∈ H, x ∈ D (1.2b)

∑
x∈D

µi(x) = 1, i ∈ V (1.2c)

µS(x) ≥ 0, S ∈ H, x ∈ DS (1.2d)

µi(x) ≥ 0, i ∈ V, x ∈ D (1.2e)

We minimize over functions µS : D|S| → R, S ∈ H, and µi: D → R, i ∈ V .
These functions can be seen as probability distributions on DS and D,
respectively. The marginalization constraint (1.2b) imposes that µi is the
marginal of µS , for every i ∈ S ∈ H. In (1.2a) we define that ∞ · 0 = 0.
Thus, if the LP is feasible then φS(xS) =∞ implies µS(xS) = 0.

An LP relaxation of VCSP, similar or closely related to (1.2), has been
proposed independently by many authors (Shlezinger, 1976; Koster et al.,
1998; Chekuri et al., 2005; Wainwright et al., 2005; Kingsford et al., 2005;
Cooper, 2008; Cooper et al., 2010a; Kun et al., 2012). Equivalently, it can
be understood as dual decomposition (or Lagrangian relaxation) of VCSP
(Johnson et al., 2007; Komodakis et al., 2011; Sontag et al., 2011).

We refer to (1.2) as the basic LP relaxation (BLP) of VCSP. It is the
first level in the hierarchy of Sherali and Adams (1990), which provides
successively tighter LP relaxations of an integer LP. Several authors pro-
posed finer-grained hierarchies of LP relaxations of VCSP (Wainwright and
Jordan, 2008; Johnson et al., 2007; Werner, 2010; Franc et al., 2012).

1.3 Languages Solved by the Basic LP

In this section we will be interested in the question of which VCSPs are
exactly (as opposed to, for instance, approximately) solved by BLP. Prior
to this, we focus on a more general question of which classes of VCSPs can
be solved in polynomial time. Such classes are called tractable.

Tractability of CSPs. Since CSPs are NP-hard in general, it is natural
to study restrictions on the general framework that guarantee tractability.
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The most studied are so-called language restrictions that impose restrictions
on the types of constraints allowed in the instance. The computational
complexity of language-restricted CSPs is known for problems over 2-element
domains (Schaefer, 1978), 3-element domains (Bulatov, 2006), conservative
CSPs (class of CSPs containing all unary functions) (Bulatov, 2011), and
a few others (Barto et al., 2009). Most results rely heavily on algebraic
methods (Jeavons et al., 1997; Bulatov et al., 2005).

Structural restrictions on CSPs do not impose any condition on the type
of constraints (functions) but restrict how the constraints interact, that is,
the hypergraph (Gottlob et al., 2000). Complete complexity classifications
are known for structurally-restricted bounded-arity CSPs (Dalmau et al.,
2002; Grohe, 2007) and unbounded-arity CSPs (Marx, 2010). Some results
are also known for so-called hybrid CSPs, which combine structural and
language restrictions; see, for instance, the work of Cooper et al. (2010b).

Tractability of Valued CSPs. The study of structural restrictions for val-
ued CSPs has not led to essentially new results as hardness results for CSPs
immediately apply to (more general) valued CSPs, and all known tractable
(bounded-arity) structural classes for CSPs extend easily to valued CSPs,
see (Dechter, 2003). There are not many results on hybrid restrictions for
VCSPs (Cooper and Živný, 2011, 2012), including the permuted submodular
VCSPs (Schlesinger, 2007) and planar max-cut (Hadlock, 1975).

The main topic of Section 1.3 is the tractability of language-restricted
VCSPs. By a language, we mean a set Γ of functions φ: Dr → Q, possibly
of different arities r. For a language Γ, we denote by VCSP(Γ) the set of all
VCSP instances with constraints from Γ (that is, φS ∈ Γ for every S ∈ H)
and an arbitrary hypergraph 〈V,H〉. We call a language Γ tractable if for
every finite subset Γ′ ⊆ Γ, any instance from VCSP(Γ′) can be solved in
polynomial time. A language Γ is called intractable if for some finite subset
Γ′ ⊆ Γ, the class VCSP(Γ′) is NP-hard.

1.3.1 Examples of Languages

In this section, we give examples of languages and review tractability results
for them that were obtained in the past.

As a motivation, we start with the well-known concept of submodularity
(Schrijver, 2003; Fujishige, 2005). Let the set D be totally ordered. An r-ary
function φ: Dr → Q is submodular if and only if, for every x,y ∈ Dr,

φ(x) + φ(y) ≥ φ(min(x,y)) + φ(max(x,y)). (1.3)

Here, min and max returns the component-wise minimum and maximum,
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respectively, of its two arguments, with respect to the total order on D.
The definition of submodularity can be straightforwardly generalized as

follows. A binary operation is a mapping f : D2 → D. For r-tuples x,y ∈ Dr,
we denote by f(x,y) the result of applying f on x and y component-wise,
that is, f(x,y) = (f(x1, y1), . . . , f(xr, yr)) ∈ Dr.

Definition 1.1 (Binary multimorphism (Cohen et al., 2006b)). Let f, g: D2 →
D be binary operations. We say that an r-ary function φ: Dr → Q admits
〈f, g〉 as a multimorphism if for all x,y ∈ Dr it holds that

φ(x) + φ(y) ≥ φ(f(x,y)) + φ(g(x,y)). (1.4)

We say that a language Γ admits 〈f, g〉 as a multimorphism if every
function φ ∈ Γ admits 〈f, g〉 as a multimorphism.

Example 1.2 (Submodularity). Let Γ be the set of functions φ: Dr → Q
(with D totally ordered and r ≥ 1) that admit 〈min,max〉 as a multimor-
phism. Using a polynomial-time algorithm for minimizing submodular set
functions (Schrijver, 2000; Iwata et al., 2001), Cohen et al. (2006b) have
shown that the language Γ is tractable. For Q-valued functions, this also
immediately follows from the result by Schlesinger and Flach (2006).

Example 1.3 (Bisubmodularity). Let D = {0, 1, 2}. We define two binary
operations min0 and max0 by

min0(x, y) =

{
0 if 0 6= x 6= y 6= 0

min(x, y) otherwise
,

max0(x, y) =

{
0 if 0 6= x 6= y 6= 0

max(x, y) otherwise
.

Let Γ be the set of functions admitting 〈min0,max0〉 as a multimorphism.
These functions are known as bisubmodular functions. The language Γ has
been shown tractable for Q-valued functions (even if given by oracles)
by Fujishige and Iwata (2005).

Example 1.4 (k-submodularity). Let Γ be the set of functions, called
k-submodular, with D = {0, 1, . . . , d} for some d ≥ 2 and admitting
〈min0,max0〉, defined in Example 1.3, as a multimorphism. The tractability
of this language for d ≥ 3 was left open in the work of Huber and Kolmogorov
(2012).

Example 1.5 ((Symmetric) tournament pair). A tournament operation
is a binary operation f : D2 → D such that (i) f is commutative (that
is, f(x, y) = f(y, x) for all x, y ∈ D) and (ii) f is conservative (that is,
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f(x, y) ∈ {x, y} for all x, y ∈ D). The dual of a tournament operation is
the unique tournament operation g satisfying x 6= y ⇒ f(x, y) 6= g(x, y). A
tournament pair is a pair 〈f, g〉 where f and g are tournament operations.
A tournament pair 〈f, g〉 is symmetric if g is the dual of f .

Let Γ be a Q-valued language that admits a symmetric tournament pair
(STP) multimorphism. Cohen et al. (2008) have shown, by a reduction to
the minimization problem for submodular functions (see Example 1.2), that
any such Γ is tractable.

Let Γ be an arbitrary Q-valued language that admits any tournament
pair multimorphism. Cohen et al. (2008) have shown, by a reduction to the
symmetric tournament pair case, that any such Γ is also tractable.

Example 1.6 (Strong tree-submodularity). Let the elements of D be
arranged into a tree, T . Given a, b ∈ T , let Pab denote the unique path in T
between a and b of length (number of edges) d(a, b), and let Pab[i] denote the
ith vertex on Pab, where 0 ≤ i ≤ d(a, b) and Pab[0] = a. Define the binary
operations f(a, b) = Pab[bd(a, b)/2c] and g(a, b) = Pab[dd(a, b)/2e].

A function (or language) admitting 〈f, g〉 as a multimorphism has been
called strongly tree-submodular. The tractability of Q-valued strongly tree-
submodular languages on binary trees has been shown by Kolmogorov (2011)
but the tractability of strongly tree-submodular languages on non-binary
trees was left open.

Example 1.7 (Weak tree-submodularity). Assume that the elements of D
form a rooted tree T . For a, b ∈ T , let f(a, b) be defined as the highest
common ancestor of a and b in T , that is, the unique node on the path Pab
that is an ancestor of both a and b. Let g(a, b) be the unique node on the
path Pab such that the distance between a and g(a, b) is the same as the
distance between b and f(a, b).

A function (or language) admitting 〈f, g〉 as a multimorphism has been
called weakly tree-submodular, since it can be shown that tree-submodularity
implies weak tree-submodularity. The tractability of Q-valued weakly tree-
submodular languages on chains3 and forks4 has been shown by Kolmogorov
(2011) and left open for all other trees.

Note that k-submodular functions are a special case of weakly tree-
submodular functions, obtained for D = {0, 1, . . . , d} and T consisting of
the root node 0 and d children.

3. A chain is a binary tree in which all nodes except leaves have exactly one child.
4. A fork is a binary tree in which all nodes except leaves and one special node have
exactly one child. The special node has exactly two children.
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Example 1.8 (1-defect). Let b and c be two distinct elements of D and
let � be a partial order on D which relates all pairs of elements except for b
and c. We call 〈f, g〉, where f, g: D2 → D are binary operations, a 1-defect
if f and g are both commutative and satisfy the following conditions:

If {x, y} 6= {b, c} then f(x, y) = min(x, y) and g(x, y) = max(x, y).

If {x, y} = {b, c} then {f(x, y), g(x, y)} ∩ {x, y} = ∅ and f(x, y) � g(x, y).

The tractability of Q-valued languages that admit a 1-defect multimor-
phism has been shown by Jonsson et al. (2011). This result generalizes the
tractability result for weakly tree-submodular languages on chains and forks,
but is incomparable with the tractability result for strongly tree-submodular
languages on binary trees.

Example 1.9 (Submodularity on lattices). Let the set D, endowed with
a partial order, form a lattice, with the meet operation ∧ and the join
operation ∨. Let Γ be the language admitting 〈∧,∨〉 as a multimorphism.

If the lattice is a chain (that is, the order on D is total), we obtain the
language of submodular functions (Example 1.2). For distributive lattices,
the tractability of Γ has been established by Schrijver (2000). Until recently,
the tractability of Γ for non-distributive lattices was widely open and only
partial results were known (Krokhin and Larose, 2008; Kuivinen, 2011), but
the work of Thapper and Živný (2012), which we will discuss in Sections 1.3.2
and 1.3.3, settled this question.

Example 1.10 (Conservative languages). A language that contains all
unary functions (and possibly some other functions) is called conservative.
Kolmogorov and Živný (2013) have shown that a Q-valued conservative
language can be only tractable if it admits an STP multimorphism (see
Example 1.5). (Kolmogorov and Živný, 2013, Theorem 3.5) have given a
precise condition under which a Q-valued conservative language is tractable.
This condition is somewhat technical so we will not state it here but
we mention that it involves a pair of complementary multimorphisms,
one of which is an STP multimorphism and the other one is a ternary5

multimorphism involving two majority and one minority operations. The
algorithm involves a preprocessing step, after which the resulting instance
admits an STP multimorphism.

Example 1.11 (Potts model). Let Γ contain all unary functions and a

5. In order to state the property precisely one needs to generalize Definition 1.1 to a triple
of ternary operations, see (Kolmogorov and Živný, 2013) for more details.
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single binary function φPotts: D2 → Q defined by

φPotts(x, y) =

{
0 if x = y

1 if x 6= y
.

This conservative language is known in statistical mechanics as the Potts
model with external field (Mezard and Montanari, 2009) and is frequently
used for image segmentation (Rother et al., 2004). For |D| = 2, φPotts is
submodular and hence Γ is tractable. For |D| > 2, Γ is intractable.

Example 1.12 (Max-Cut). Let Γ contain a single function φmc: D2 → Q
defined by

φmc(x, y) =

{
1 if x = y

0 if x 6= y
.

This language models the well-known Max-Cut problem (Garey and John-
son, 1979) and thus Γ is intractable for any |D| ≥ 2.

1.3.2 Power of BLP for Finite-Valued Languages

Given the long list of examples from Section 1.3.1, one might expect that
perhaps multimorphism could define all tractable languages. It turns out
that this is not the case and in order to capture more tractable languages
one needs to consider a more general notion. We start with an example.

Example 1.13 (Skew bisubmodularity). We extend the notion of bisub-
modularity (Example 1.3) to skew bisubmodularity introduced by Huber
et al. (2013). Let D = {0, 1, 2}. Recall the definition of operations min0 and
max0 from Example 1.3. We define

max1(x, y) =

{
1 if 0 6= x 6= y 6= 0

max(x, y) otherwise
.

A function φ: Dr → Q is called α-bisubmodular, for some real 0 < α ≤ 1, if
for every x,y ∈ Dr,

φ(x) +φ(y) ≥ φ(min0(x,y)) +αφ(max0(x,y)) + (1−α)f(max1(x,y)).

Note that 1-bisubmodular functions are (ordinary) bisubmodular functions.

The previous example suggests that it is not enough to consider only two
operations with equal weight. In fact it is necessary to consider probability
distributions over all binary operations. We denote by Ω(2)

D the set of all
binary operations f : D2 → D.



10 The Power of LP Relaxation for MAP Inference

Definition 1.2 (Binary fractional polymorphism (Cohen et al., 2006a)). Let
ω be a probability distribution on Ω(2)

D . We say that ω is a binary fractional
polymorphism of an r-ary function φ: Dr → Q if, for every x,y ∈ Dr,

1
2

(φ(x) + φ(y)) ≥
∑
f∈Ω

(2)
D

ω(f)φ(f(x,y)). (1.5)

One can see the LHS of (1.5) as the average of φ(x) and φ(y) and
the RHS as the expectation of φ(f(x,y)) with respect to the probability
distribution ω. We define the support of ω to be the set

supp(ω) = { f | ω(f) 6= 0 } (1.6)

of operations that get nonzero probability.
Note that a binary multimorphism 〈f, g〉 is a fractional polymorphism ω

defined by ω(f) = ω(g) = 1
2 and ω(h) = 0 for all h /∈ {f, g}. In this case, we

have supp(ω) = {f, g} and inequality (1.5) simplifies to (1.4).
A binary fractional polymorphism ω defined on D is called symmetric if

every function from the support of ω is symmetric, that is, every f ∈ supp(ω)
satisfies f(x, y) = f(y, x) for every x, y ∈ D. The following result is a
consequence of the work of Thapper and Živný (2012) and Kolmogorov
(2013), see also (Kolmogorov et al., 2013).

Theorem 1.1. Let Γ be a Q-valued language with a finite domain D. BLP
solves all instance from VCSP(Γ) if and only if Γ admits a binary symmetric
fractional polymorphism.

Note that Theorem 1.1 proves tractability of all Q-valued languages
defined in Examples 1.2–1.10 as well as the skew bisubmodular languages
defined in Example 1.13.

The following surprising result, due to Thapper and Živný (2013), shows
that languages defined by binary symmetric fractional polymorphisms are
the only tractable languages.

Theorem 1.2. Let Γ be a Q-valued language with a finite domain D. Either
Γ admits a binary symmetric fractional polymorphism or VCSP(Γ) can be
reduced to Max-Cut and thus is NP-hard.

We remark that the reduction to Max-Cut mentioned in Theorem 1.2 is
not just a polynomial-time reduction but a so-called expressibility reduc-
tion (Živný, 2012). Moreover, for a finite language Γ one can test for the
existence of a binary symmetric fractional polymorphism of Γ via a linear
program that has polynomial size in |Γ| and double-exponential size in |D|.
More details can be found in (Thapper and Živný, 2013).
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1.3.3 Power of BLP for General-Valued Languages

In Section 1.3.2 we have given a complete characterization of tractable Q-
valued languages and have shown that BLP solves them all. In this section
we will deal with Q-valued languages.

First, we will be interested in the question of which Q-valued languages
are solvable by BLP. In order to do so, we need to extend the definition of
binary fractional polymorphisms in two ways: firstly, to Q-valued functions
and secondly, to fractional polymorphisms of arbitrary arities.

A k-ary operation is a mapping f : Dk → D. We denote by Ω(k)
D the set of

all k-ary operations on D.

Definition 1.3 (Fractional polymorphism (Cohen et al., 2006a)). Let ω
be a probability distribution on Ω(k)

D . We say that ω is a k-ary fractional
polymorphism of an r-ary function φ: Dr → Q if, for every x1, . . . ,xk ∈ Dr,

1
k

k∑
i=1

φ(xi) ≥
∑
f∈Ω

(k)
D

ω(f)φ(f(x1, . . . ,xk)), (1.7)

where we define 0 · ∞ = 0 on the RHS of (1.7).

The support of ω is defined by (1.6). A k-ary fractional polymorphism ω is
symmetric if every f ∈ supp(ω) satisfies f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k))
for every x1, . . . , xk ∈ D and every permutation π on {1, . . . , k}.

The following characterization of the power of BLP for general-valued
languages is due to Thapper and Živný (2012), see also (Kolmogorov et al.,
2013).

Theorem 1.3. Let Γ be a Q-valued language with a finite domain D. BLP
solves all instances from VCSP(Γ) if and only if Γ admits a k-ary symmetric
fractional polymorphism of every arity k ≥ 2.

Note that unlike in the Q-valued case (Theorem 1.1), it is not clear
whether the characterization given in Theorem 1.3 is decidable. Nevertheless,
Thapper and Živný (2012) have also given a sufficient condition on Γ for BLP
to solve all instances from VCSP(Γ). We state this condition in Theorem 1.4.

A k-ary projection (on the ith coordinate) is the operation e
(k)
i : Dk → D

defined by e(k)
i (x1, . . . , xk) = xi. A set O of operations defined on D generates

an operation f if f can be obtained by composition from projections (of
arbitrary arities) and operations from O.

Theorem 1.4. Let Γ be a Q-valued language with a finite domain D. Sup-
pose that Γ admits a k-ary fractional polymorphism ω such that supp(ω)
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generates an m-ary symmetric operation. Then Γ admits an m-ary symmet-
ric fractional polymorphism.

Corollary 1.5. Let Γ be a Q-valued language with a finite domain D.
Suppose that for every k ≥ 2, Γ admits a (not necessarily k-ary) fractional
polymorphisms ω so that supp(ω) generates a k-ary symmetric operation.
Then BLP solves any instance from VCSP(Γ).

Note that the condition (of admitting symmetric fractional polymorphisms
of all arities) from Theorem 1.3 trivially implies the condition from Corol-
lary 1.5, thus showing that the condition from Corollary 1.5 is a characteri-
zation of the power of BLP.

A binary operation f : D2 → D is called a semi-lattice operation if f is
associative, commutative, and idempotent. Since any semi-lattice operation
trivially generates symmetric operations of all arities, Corollary 1.5 shows
that most Q-valued languages defined in Examples 1.2–1.10 as well as the
skew bisubmodular languages from Example 1.13 are tractable. In the case
of 1-defect languages from Example 1.8, a bit more work is needed to show
the existence of symmetric operations of all arities, see (Thapper and Živný,
2012) for details. The Q-valued languages defined in Example 1.5 can be
reduced, via a preprocessing described by Cohen et al. (2008), to an instance
that is submodular and thus solvable by BLP as described in Example 1.2.
The Q-valued languages defined in Example 1.10 can be reduced, via a
preprocessing described by Kolmogorov and Živný (2013), to an instance
that is submodular and thus solvable by BLP (see Example 1.2).

We finish this section with mentioning that obtaining a full complexity
classification of all general-valued languages is extremely challenging. In-
deed, even a classification of {0,∞}-valued languages is not known. The
so-called Feder-Vardi Conjecture (Feder and Vardi, 1998) states that every
{0,∞}-valued language is either tractable or intractable (note that assum-
ing P 6= NP , Ladner (1975) showed that there are problems of intermediate
complexity). However, there are some interesting results in this area. First,
general-valued languages on 2-element domains have been classified by Co-
hen et al. (2006b). Second, an algebraic theory providing a powerful tool
for analyzing the complexity of general-valued languages has been estab-
lished by Cohen et al. (2011, 2013) and already used for simplifying the
hardness part of the classification of general-valued languages on 2-element
domains (Creed and Živný, 2011). Finally, conservative general-valued lan-
guages (see Example 1.10) have been completely classified by Kolmogorov
and Živný (2013).
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1.4 Universality of the Basic LP

We have seen that the basic LP relaxation solves many VCSP languages.
Moreover, it has been empirically observed (Wainwright et al., 2005; Kol-
mogorov, 2006; Werner, 2007; Szeliski et al., 2008; Kappes et al., 2013)
that it is tight for many VCSP instances that do not belong to any known
tractable class. For other instances, it yields lower bounds which can be
used, for instance, in exact search algorithms. For all these reasons, solving
the BLP is of great practical interest.

The popular simplex and interior point methods are, due to their quadratic
space complexity, applicable in practice only to small BLP instances. For
larger instances, BLP can be solved efficiently for binary VCSPs with do-
main size |D| = 2, because in this case BLP can be reduced in linear time
to the max-flow problem (Boros and Hammer, 2002; Rother et al., 2007).
A lot of effort has been invested to develop efficient algorithms to exactly
solve the BLP of more general VCSPs. Among the proposed algorithms are
those based on subgradient methods (Schlesinger and Giginjak, 2007; Ko-
modakis et al., 2011), smoothing methods (Weiss et al., 2007; Johnson et al.,
2007; Ravikumar et al., 2008; Savchynskyy et al., 2011), and augmented La-
grangian methods (Martins et al., 2011; Schmidt et al., 2011; Meshi and
Globerson, 2011).

In this section, we show that solving linear program (1.2) is not easier
than solving an arbitrary linear program, in the following sense.

Theorem 1.6 (Pr̊uša and Werner (2013)). Every linear program can be
reduced in linear time to the basic LP relaxation (1.2) of a binary Q-valued
VCSP with domain size |D| = 3.

This result suggests that trying to find a very efficient algorithm to exactly
solve the BLP may be futile because it might mean improving the complexity
of the best known algorithm for general LP, which is unlikely.

In the rest of this section, we prove Theorem 1.6 by giving an algorithm
that, for an arbitrary input LP, constructs a binary Q-valued VCSP with
|D| = 3 whose basic LP relaxation solves the input LP.

1.4.1 The input linear program

The input linear program minimizes c · x over the polyhedron

P = {x = 〈x1, . . . , xn〉 ∈ Rn | Ax = b, x ≥ 0 }, (1.8)
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where A = [aij ] ∈ Zm×n, b = 〈b1, . . . , bm〉 ∈ Zm, c = 〈c1, . . . , cn〉 ∈ Zn, and
m ≤ n. Any LP representable by a finite number of bits can be described
this way.

Before encoding, the system Ax = b is rewritten as follows. Each equation

ai1x1 + · · ·+ ainxn = bi (1.9)

is rewritten as

a+
i1x1 + · · ·+ a+

inxn = a−i1x1 + · · ·+ a−inxn + bi (1.10)

where bi ≥ 0, a+
ij ≥ 0, a−ij ≥ 0, and aij = a+

ij − a−ij . Moreover, it is
assumed without loss of generality that neither side of (1.10) vanishes for
any feasible x.

The following lemmas are not surprising, their proofs can be found in
(Pr̊uša and Werner, 2013).

Lemma 1.7. Let x = 〈x1, . . . , xn〉 be a vertex of the polyhedron P . Each
component xj of x satisfies either xj = 0 or M−1 ≤ xj ≤M , where

M = mm/2(B1 × · · · ×Bn+1)

Bj = max(1, |a1j |, . . . , |amj |), j = 1, . . . , n

Bn+1 = max(1, |b1|, . . . |bm|).

Lemma 1.8. Let P be bounded. Then for any x ∈ P , each component of
A+x and A−x + b is not greater than N = M(B1 + · · ·+Bn+1).

The last lemma shows that we can restrict ourselves to input LPs with a
bounded polyhedron P .

Lemma 1.9. Every linear program can be reduced in linear time to a linear
program over a bounded polyhedron.

1.4.2 Elementary constructions

The output of the reduction will be a VCSP with domain size |D| = 3 and
hypergraph H =

(
V
1

)
∪E where E ⊆

(
V
2

)
(that is, there is a unary constraint

for each variable and binary constraints for a subset of variable pairs). We
denote the binary constraints φS for S = {i, j} ∈ E by φij . Following
Wainwright and Jordan (2008), we refer to the values of the functions µi
and µij as unary and binary pseudomarginals, respectively.

We will depict binary VCSPs by diagrams, commonly used in the con-
straint programming literature. Figure 1.1 illustrates the meaning of condi-
tions (1.2b) and (1.2c) of the BLP in these diagrams.
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a b c

p q r

Figure 1.1: A pair of variables {i, j} ∈ E with |D| = 3. Each variable is depicted
as a box, its state x ∈ D as a circle, and each state pair 〈x, y〉 ∈ D2 of two variables
as an edge. Each circle is assigned a unary pseudomarginal µi(x) and each edge
is assigned a binary pseudomarginal µij(x, y). One normalization condition (1.2c)
imposes for unary pseudomarginals a, b, c that a + b + c = 1. One marginalization
condition (1.2b) imposes for pairwise pseudomarginals p, q, r that a = p+ q + r.

a b c

d e f

(a) Copy

a

c

b

a b

(c) Equality

=a b

a =

=

=

=

2a

4a

8a

1

=

=

=

1/2

1/4

1/8

(b) Addition (d) shorthand of Equality (e) Powers (f) NegPowers

Figure 1.2: Elementary constructions. The visible edges have costs φij(x, y) = 0
and the invisible edges have costs φij(x, y) =∞. Different line styles of the visible
edges distinguish different elementary constructions.

1

=

=

=

1/2

1/4

1/8

5/8

1/8 1/2

Figure 1.3: Construction of a unary pseudomarginal with value 5
8 . The example

can be generalized in an obvious way to construct the value 2−dk for any d, k ∈ N
such that 2−dk ≤ 1. If more than two values are added, intermediate results are
stored in auxiliary variables using Copy.
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The encoding algorithm uses several elementary constructions as its build-
ing blocks. Each construction is a standalone VCSP with crisp binary con-
straints, φij : D2 → {0,∞}, that imposes a certain simple constraint on
feasible unary pseudomarginals. Note that for any feasible pseudomarginals,
φij(x, y) = ∞ implies µij(x, y) = 0. Each construction is defined by a dia-
gram, in which visible edges have cost φij(x, y) = 0 and the invisible edges
have cost φij(x, y) =∞. The elementary constructions are as follows:

Copy, Figure 1.2(a), enforces equality of two unary pseudomarginals a, d
in two variables {i, j} ∈ E while imposing no other constraints on b, c, e, f .
Precisely, if a, b, c, d, e, f ≥ 0 and a+ b+ c = 1 = d+ e+ f , then there exist
pairwise pseudomarginals feasible to (1.2) if and only if a = d.

Addition, Figure 1.2(b), adds two unary pseudomarginals a, b in one vari-
able and represents the result as a unary pseudomarginal c = a+b in another
variable. No other constraints are imposed on the remaining unary pseudo-
marginals.

Equality, Figure 1.2(c), enforces equality of two unary pseudomarginals
a, b in a single variable, introducing two auxiliary variables. No other con-
straints are imposed on the remaining unary pseudomarginals. In the sequel,
this construction will be abbreviated by omitting the two auxiliary variables
and writing the equality sign between the two circles, as in Figure 1.2(d).

Powers, Figure 1.2(e), creates the sequence of unary pseudomarginals with
values 2ia for i = 0, . . . , d, each in a separate variable. We will call d the
depth of the pyramid.

NegPowers, Figure 1.2(f), is similar to Powers but constructs values 2−i

for i = 0, . . . , d.

Figure 1.3 shows an example of how the elementary constructions can be
combined.

1.4.3 Encoding

Now we will formulate the encoding algorithm. The variables of the output
VCSP and their states will be numbered by integers, D = {1, 2, 3} and
V = {1, . . . , |V |}.

The algorithm is initialized as follows:

1.1. For each variable xj in the input LP, introduce a new variable j into V
and set φj(1) = cj . Pseudomarginal µj(1) will represent variable xj . After
this step, we have V = {1, . . . , n}.
1.2. For each variable j ∈ V , build Powers with the depth dj = blog2Bjc
based on state 1. This yields the sequence of numbers 2iµj(1), i = 0, . . . , dj .
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1.3. Build NegPowers with the depth d = dlog2Ne. By Lemma 1.8, the
choice of d ensures that all values represented by pseudomarginals will be
bounded by 1.

After initialization, the algorithm proceeds by encoding each equa-
tion (1.10) in turn. The ith equation (1.10) is encoded as follows:

2.1. Construct pseudomarginals with values a+
ijxj , a

−
ijxj , j = 1, . . . , n, by

summing selected values from Powers built in Step 1.2, similarly as in
Figure 1.3.

2.2. Construct a pseudomarginal with value 2−dbi by summing selected
values from the NegPowers built in Step 1.3, similarly as in Figure 1.3.
The value 2−dbi represents bi, which sets the scale between the input and
output polyhedron to 2−d.

2.3. Represent each side of the equation by summing all its terms by
repetitively applying Addition and Copy.

2.4. Apply Copy to enforce equality of the two sides of the equation.

Finally, set φi(x) = 0 for all i > n or x ∈ {2, 3}.
Figure 1.4 shows the output VCSP for an example input LP.

1.4.4 The length of the encoding

Here we finalize the proof of Theorem 1.6 by showing that the encoding
time is linear. Since the encoding of vector c is clearly done in linear time,
it suffices to show that the encoding time is linear in the length L of the
binary representation of matrix A and vector b. Since this time is obviously
linear6 in |E|, it suffices to show that |E| = O(L).

Variable pairs are created only when a variable is created and the number
of variable pairs added with one variable is always bounded by a constant.
Therefore |E| = O(|V |).

We clearly have the inequality L ≥ max(mn, log2B1 + · · · + log2Bn+1).
The algorithm creates

∑n
j=1(dj +1) variables in Step 1.2 and d+1 variables

in Step 1.3. By comparison with the above inequality, both of these numbers
are O(L).

Finally, encoding one equality (1.10) adds at most as many variables
as there are bits in the binary representation of all its coefficients. The

6. The only thing that may not be obvious is how to multiply large integers a, b in linear
time. But this issue can be avoided by instead computing p(a, b) = 2dlog2 ae+dlog2 be, which
can be done in linear time using bitwise operations. Since ab ≤ p(a, b) ≤ (2a)(2b), the
bounds like M become larger but this does not affect the overall complexity.
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Figure 1.4: The VCSP whose basic LP relaxation solves the linear program
min{ 2x− 5y + z | x+ 2y + 2z = 3; x = 3y + 1; x, y, z ≥ 0 }.

cumulative sum is thus O(L).

1.5 Conclusions

LP relaxation is a sucessfull approach to the problem of minimizing a
partially separable function of many discrete variables, which is also known
as the valued constraint satisfaction problem (VCSP). In this chapter, we
have presented two types of theoretial results on the basic LP relaxation
of VCSP: in Section 1.3, we characterized languages solves exactly by BLP
and, in Section 1.4, we showed that solving BLP is as hard as solving an
arbitrary LP.

These results suggest a number of questions. The first class of questions
concerns the fact that rather than finding a global optimum of the LP re-
laxation, it is easier to find its local dual optimum with respect to block-
coordinate moves. The latter in fact means reparameterizing the problem
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such that the locally minimal tuples are arc consistent (Shlezinger, 1976;
Werner, 2007), which has been called virtual arc consistency by Cooper
et al. (2010a). Virtual arc consistency is enforced by the popular message-
passing algorithms such as min-sum diffusion (Kovalevsky and Koval, ap-
prox. 1975; Werner, 2007, 2010), TRW-S (Kolmogorov, 2006) (see its gen-
eralization to VCSPs of any arity in Chapter ??) and MPLP (Globerson
and Jaakkola, 2008; Sontag et al., 2011), as well as by the algorithms (Koval
and Schlesinger, 1976; Cooper et al., 2010a). Regarding Section 1.3, one can
ask which languages are solved by enforcing virtual arc consistency. For in-
stance, it is known that enforcing virtual arc consistency solves submodular
languages of any arity (Werner, 2010; Cooper et al., 2010a) but for other
languages the question is open. Regarding Section 1.4, one can ask whether
enforcing virtual arc consistency is easier than solving the BLP exactly.

Recall that one can construct, in a number of ways, a hierarchy of
increasingly tighter LP relaxations of VCSP (Sherali and Adams, 1990;
Wainwright and Jordan, 2008; Johnson et al., 2007; Werner, 2010; Franc
et al., 2012). BLP (1.2) is only one level of this hierarchy. As the second
question, one can ask how much power these higher-order relaxations add
to BLP. Theorems 1.1 and 1.2 imply the surprising fact that all tractable
finite-valued languages are solved by BLP, hence higher-order relaxations
do not allow us to solve any more languages. However, could BLP and more
generally higher-order relaxations be useful for interesting, not necessarily
language-restricted, classes of VCSPs?
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scheme for Lagrangian decomposition and MAP labeling. In Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 1817–1823. IEEE, 2011.

T. J. Schaefer. The Complexity of Satisfiability Problems. In ACM Symp. on
Theory of Computing (STOC), pages 216–226. ACM, 1978.

T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Intl. Joint Conf. on Artificial Intelligence (IJCAI),
pages 631–637, 1995.

D. Schlesinger. Exact solution of permuted submodular MinSum problems. In Conf.
on Energy Minimization Methods in Computer Vision and Pattern Recognition
(EMMCVPR), pages 28–38. Springer, 2007.

D. Schlesinger and B. Flach. Transforming an arbitrary MinSum problem into a
binary one. Technical Report TUD-FI06-01, Dresden University of Technology,
Germany, 2006.

M. I. Schlesinger and V. V. Giginjak. Solving (max,+) problems of structural
pattern recognition using equivalent transformations. Upravlyayushchie Sistemy
i Mashiny (Control Systems and Machines), Kiev, Naukova Dumka, 1 and 2,
2007. ISSN 0130-5395. In Russian, English translation available on www.

S. Schmidt, B. Savchynskyy, J. H. Kappes, and C. Schnörr. Evaluation of a first-
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