Advanced Structured Prediction

Editors:

Sebastian Nowozin Sebastian.Nowozin®@microsoft.com
Microsoft Research
Cambridge, CB1 2FB, United Kingdom

Peter V. Gehler pgehler@tuebingen.mpg.de
Mazx Planck Insitute for Intelligent Systems
72076 Tibingen, Germany

Jeremy Jancsary jermyj@microsoft.com
Microsoft Research
Cambridge, CB1 2FB, United Kingdom

Christoph Lampert chl@ist.ac.at
IST Austria
A-8400 Klosterneuburg, Austria

This is a draft version of the author chapter.

The MIT Press
Cambridge, Massachusetts
London, England

1 The Power of LP Relaxation for MAP
Inference

Stanislav Zivny standa@cs.ox.ac.uk
Department of Computer Science
University of Ozford

Ozford, UK
Tomas Werner wernerQcmp.felk.cvut.cz
Daniel Prisa prusapal@cmp.felk.cvut.cz

Center for Machine Perception
Faculty of Electrical Engineering
Czech Technical University
Prague, Czech Republic

Minimization of a partially separable function of many discrete variables is
ubiquitous in machine learning and computer vision, in tasks like maximum
a posteriori (MAP) inference in graphical models, or structured prediction.
Among successful approaches to this problem is linear programming (LP)
relaxation. We discuss this LP relaxation from two aspects. First, we review
recent results which characterize languages (classes of functions permitted to
form the objective function) for which the problem is solved by the relazation
exactly. Second, we show that solving the LP relaxation is not easier than
solving any linear program, which makes a discovery of an efficient algorithm
for the LP relaxation unlikely.

The topic of this chapter is the problem of minimizing a partially separa-
ble function of many discrete variables. That is, given a set of variables, we
minimize the sum of functions each depending only on a subset of the vari-
ables. This NP-hard combinatorial optimization problem frequently arises in
machine learning and computer vision, in tasks like MAP inference in graph-
ical models (Lauritzen, 1996; Koller and Friedman, 2009; Wainwright and

2 The Power of LP Relazxation for MAP Inference

Jordan, 2008) and structured prediction (Nowozin and Lampert, 2011). It is
also known as discrete energy minimization or valued constraint satisfaction.
The problem is formally defined in Section 1.1.

The problem has a natural linear programming (LP) relaxation, proposed
independently by a number of authors (Shlezinger, 1976; Koster et al., 1998;
Chekuri et al., 2005), that is defined in Section 1.2. Algorithms based on
LP relaxation are among most successful ones for tackling the problem in
practice (Szeliski et al., 2008).

In this chapter, we discuss the power of the relaxation from two aspects.
In the first part of the chapter, Section 1.3, we focus on the question of
what languages are exactly solved by the LP relaxation. This means, we
consider subclasses of the problem in which the structure (hypergraph)
is arbitrary but the functions belong to a given subset (language) of all
possible functions. For instance, it is well-known that if all the functions
are submodular then the problem is tractable, no matter what its structure
is. In this case, the LP relaxation is tight. We review the recent results by
Thapper and Zivny (2013, 2012); Kolmogorov et al. (2013); Kolmogorov and
Zivny (2013), which characterize all languages solved by the LP relaxation.
This is accompanied by a number of concrete examples of such languages.

Given the (widely accepted) usefulness of the LP relaxation, many authors
have proposed algorithms to solve this linear program efficiently. In the
second part of the chapter, Section 1.4, we review the result by Prusa and
Werner (2013) which states that solving the LP relaxation is not easier than
solving any linear program. This result is negative, showing that finding a
very efficient algorithm for the LP relaxation is as hard as improving the
complexity of the best known algorithm for general LP.

In the sequel, we denote sets by {---} and ordered tuples by (---). The set
of all subsets of a set A is denoted by 24 and the set of all k-element subsets
of A by (‘,3) For a tuple x, we denote by z; its ith component.

1.1 Valued Constraint Satisfaction Problem

Let V be a finite set of variables. Each variable i € V' can take states x; € D,
where the domain D is the same for each variable. Let Q = QU {oo} denote
the set of extended rational numbers. A function ®: DV — Q is partially
separable if it can be written as

O(x) = > ds(xs) (1.1)

SeH

1.1

Valued Constraint Satisfaction Problem 3

where H C 2V is a collection of subsets of V' (so that (V, H) is a hypergraph)
and each variable subset S € H is assigned a function ¢g: DISl — Q. Here,
xg = (x;|i€S) € DY denotes the restriction of the assignment x =
(z;|i€ V) € DV tovariables S, where the order of elements of the tuple x5
is given by some fixed total order on V.

Example 1.1. For V = {1,2,3,4} and H = {{2,3,4},{1,2},{2,3},{1}},
we have (where we abbreviated ¢y3 34} by ¢234, ete.)

O (21,72, 03, 24) = P234(T2, 23, %4) + P12(21, T2) + P23(72, 23) + P1(21).

Our aim is to minimize function (1.1) over all assignments x € D"". In this
chapter, we assume that the domain D has a finite size (that is, the variables
are discrete). This problem is known under many names, such as MAP
inference in graphical models (or Markov random fields), discrete energy
minimization, or min-sum problem. In constraint programming (Rossi et al.,
2006), it has been studied under the name valued (or weighted) constraint
satisfaction problem (VCSP) (Schiex et al., 1995; Cohen et al., 2006b). We
will follow this terminology. Here, each function ¢g is called a constraint!
with scope S and arity |S|. The arity of the problem is maxgey |S|. The
values of the functions ¢g are called costs.

Problems involving only functions with costs from {0,00} (so-called
hard or crisp constraints) are known as constraint satisfaction problems
(CSPs) (Cohen and Jeavons, 2006); these are decision problems asking for
the existence of a zero-cost labelling. This type of problems has the longest
history, started by the pioneering work of Montanari (1974). Problems in-
volving functions with arbitrary costs from Q are known as valued CSPs
(VCSPs). Valued CSPs are sometimes called general-valued, to emphasize
the fact that the costs can be both finite (from Q) and infinite. The following
two subclasses of valued CPSs have been studied intensively in the litera-
ture. Problems involving only functions with costs from {0, 1} are known as
maximum constraint satisfaction problems (Max-CSPs). Problems involving
only functions with costs from Q (so-called soft constraints) are known as
finite-valued CSPs.2

1. For historical reasons, costs are often required to be non-negative in the constraint
community.

2. In the approximation community, Max-CSPs are referred to as CSPs and finite-valued
CSPs are referred to as generalized CSPs.

4 The Power of LP Relazxation for MAP Inference

1.2 Basic LP Relaxation

The LP relaxation of VCSP reads

Z Z ¢s(x) ps(x) — min (1.2a)

SeH xeD3
Z ps(y) = pi(z), ieSeH zeD (1.2b)
yeD? |y;=x
> wi(x) =1, ieV (1.2¢)
rzeD
s (x) >0, SecH, xeD’ (1.2d)
wi(x) >0, 1eV,zeD (1.2e)

We minimize over functions pug: DISl S R, S € H, and wi: D —R, i€V,
These functions can be seen as probability distributions on D® and D,
respectively. The marginalization constraint (1.2b) imposes that pu; is the
marginal of ug, for every i € S € H. In (1.2a) we define that co -0 = 0.
Thus, if the LP is feasible then ¢s(xg) = oo implies pug(xg) = 0.

An LP relaxation of VCSP, similar or closely related to (1.2), has been
proposed independently by many authors (Shlezinger, 1976; Koster et al.,
1998; Chekuri et al., 2005; Wainwright et al., 2005; Kingsford et al., 2005;
Cooper, 2008; Cooper et al., 2010a; Kun et al., 2012). Equivalently, it can
be understood as dual decomposition (or Lagrangian relaxation) of VCSP
(Johnson et al., 2007; Komodakis et al., 2011; Sontag et al., 2011).

We refer to (1.2) as the basic LP relaxation (BLP) of VCSP. It is the
first level in the hierarchy of Sherali and Adams (1990), which provides
successively tighter LP relaxations of an integer LP. Several authors pro-
posed finer-grained hierarchies of LP relaxations of VCSP (Wainwright and
Jordan, 2008; Johnson et al., 2007; Werner, 2010; Franc et al., 2012).

1.3 Languages Solved by the Basic LP

In this section we will be interested in the question of which VCSPs are
exactly (as opposed to, for instance, approximately) solved by BLP. Prior
to this, we focus on a more general question of which classes of VCSPs can
be solved in polynomial time. Such classes are called tractable.

Tractability of CSPs. Since CSPs are NP-hard in general, it is natural
to study restrictions on the general framework that guarantee tractability.

1.8 Languages Solved by the Basic LP 5

The most studied are so-called language restrictions that impose restrictions
on the types of constraints allowed in the instance. The computational
complexity of language-restricted CSPs is known for problems over 2-element
domains (Schaefer, 1978), 3-element domains (Bulatov, 2006), conservative
CSPs (class of CSPs containing all unary functions) (Bulatov, 2011), and
a few others (Barto et al., 2009). Most results rely heavily on algebraic
methods (Jeavons et al., 1997; Bulatov et al., 2005).

Structural restrictions on CSPs do not impose any condition on the type
of constraints (functions) but restrict how the constraints interact, that is,
the hypergraph (Gottlob et al., 2000). Complete complexity classifications
are known for structurally-restricted bounded-arity CSPs (Dalmau et al.,
2002; Grohe, 2007) and unbounded-arity CSPs (Marx, 2010). Some results
are also known for so-called hybrid CSPs, which combine structural and
language restrictions; see, for instance, the work of Cooper et al. (2010b).

Tractability of Valued CSPs. The study of structural restrictions for val-
ued CSPs has not led to essentially new results as hardness results for CSPs
immediately apply to (more general) valued CSPs, and all known tractable
(bounded-arity) structural classes for CSPs extend easily to valued CSPs,
see (Dechter, 2003). There are not many results on hybrid restrictions for
VCSPs (Cooper and Zivny, 2011, 2012), including the permuted submodular
VCSPs (Schlesinger, 2007) and planar max-cut (Hadlock, 1975).

The main topic of Section 1.3 is the tractability of language-restricted
VCSPs. By a language, we mean a set I' of functions ¢: D" — Q, possibly
of different arities r. For a language I', we denote by VCSP(I") the set of all
VCSP instances with constraints from I' (that is, ¢g € T for every S € H)
and an arbitrary hypergraph (V, H). We call a language I" tractable if for
every finite subset IV C T, any instance from VCSP(I”) can be solved in
polynomial time. A language I is called intractable if for some finite subset
I C T, the class VCSP(IV) is NP-hard.

1.3.1 Examples of Languages

In this section, we give examples of languages and review tractability results
for them that were obtained in the past.

As a motivation, we start with the well-known concept of submodularity
(Schrijver, 2003; Fujishige, 2005). Let the set D be totally ordered. An r-ary
function ¢: D" — Q is submodular if and only if, for every x,y € D",

¢(x) +¢(y) > ¢(min(x,y)) + d(max(x,y)). (1.3)

Here, min and max returns the component-wise minimum and maximum,

The Power of LP Relazxation for MAP Inference

respectively, of its two arguments, with respect to the total order on D.
The definition of submodularity can be straightforwardly generalized as

follows. A binary operation is a mapping f: D?> — D. For r-tuples x,y € D",

we denote by f(x,y) the result of applying f on x and y component-wise,

that is, f(x,y) = (f(z1,91),..., f(zr,yr)) € D".

Definition 1.1 (Binary multimorphism (Cohen et al., 2006b)). Let f,g: D* —
D be binary operations. We say that an r-ary function ¢: D" — Q admits
(f,9) as a multimorphism if for all x,y € D" it holds that

o(x) +o(y) > o(f(x,y)) +d(9(x,y))- (1.4)

We say that a language I' admits (f,g) as a multimorphism if every
function ¢ € T' admits (f, g) as a multimorphism.

Example 1.2 (Submodularity). Let T' be the set of functions ¢: D" — Q
(with D totally ordered and r > 1) that admit (min, max) as a multimor-
phism. Using a polynomial-time algorithm for minimizing submodular set
functions (Schrijver, 2000; Iwata et al., 2001), Cohen et al. (2006b) have
shown that the language I' is tractable. For Q-valued functions, this also
immediately follows from the result by Schlesinger and Flach (2006).

Example 1.3 (Bisubmodularity). Let D = {0, 1,2}. We define two binary
operations ming and maxg by

{o if0£x#y#£0

ming(x =
o(@y) min(z,y) otherwise

0 f0#£xz#y+#0

max(x,y) otherwise

maxo(x,y) = {

Let I' be the set of functions admitting (ming, maxp) as a multimorphism.
These functions are known as bisubmodular functions. The language I' has
been shown tractable for Q-valued functions (even if given by oracles)
by Fujishige and Iwata (2005).

Example 1.4 (k-submodularity). Let I' be the set of functions, called
k-submodular, with D = {0,1,...,d} for some d > 2 and admitting
(ming, maxg), defined in Example 1.3, as a multimorphism. The tractability
of this language for d > 3 was left open in the work of Huber and Kolmogorov
(2012).

Example 1.5 ((Symmetric) tournament pair). A tournament operation
is a binary operation f: D? — D such that (i) f is commutative (that
is, f(z,y) = f(y,x) for all x,y € D) and (ii) f is conservative (that is,

1.8 Languages Solved by the Basic LP 7

f(z,y) € {z,y} for all z,y € D). The dual of a tournament operation is
the unique tournament operation g satisfying = # y = f(x,y) # g(z,y). A
tournament pair is a pair (f,g) where f and g are tournament operations.
A tournament pair (f,g) is symmetric if g is the dual of f.

Let T’ be a Q-valued language that admits a symmetric tournament pair
(STP) multimorphism. Cohen et al. (2008) have shown, by a reduction to
the minimization problem for submodular functions (see Example 1.2), that
any such I is tractable.

Let T be an arbitrary Q-valued language that admits any tournament
pair multimorphism. Cohen et al. (2008) have shown, by a reduction to the
symmetric tournament pair case, that any such I' is also tractable.

Example 1.6 (Strong tree-submodularity). Let the elements of D be
arranged into a tree, T. Given a,b € T', let P, denote the unique path in T’
between a and b of length (number of edges) d(a,b), and let P,;[i] denote the
ith vertex on Py, where 0 < i < d(a,b) and P,[0] = a. Define the binary
operations f(a,b) = Py[|d(a,b)/2]] and g(a,b) = Py[[d(a,b)/2]].

A function (or language) admitting (f, g) as a multimorphism has been
called strongly tree-submodular. The tractability of Q-valued strongly tree-
submodular languages on binary trees has been shown by Kolmogorov (2011)
but the tractability of strongly tree-submodular languages on non-binary
trees was left open.

Example 1.7 (Weak tree-submodularity). Assume that the elements of D
form a rooted tree T. For a,b € T, let f(a,b) be defined as the highest
common ancestor of ¢ and b in 7', that is, the unique node on the path P,
that is an ancestor of both a and b. Let g(a,b) be the unique node on the
path P, such that the distance between a and g(a,b) is the same as the
distance between b and f(a,b).

A function (or language) admitting (f,g) as a multimorphism has been
called weakly tree-submodular, since it can be shown that tree-submodularity
implies weak tree-submodularity. The tractability of Q-valued weakly tree-
submodular languages on chains® and forks? has been shown by Kolmogorov
(2011) and left open for all other trees.

Note that k-submodular functions are a special case of weakly tree-
submodular functions, obtained for D = {0,1,...,d} and T consisting of
the root node 0 and d children.

3. A chain is a binary tree in which all nodes except leaves have exactly one child.
4. A fork is a binary tree in which all nodes except leaves and one special node have
exactly one child. The special node has exactly two children.

The Power of LP Relazxation for MAP Inference

Example 1.8 (1-defect). Let b and ¢ be two distinct elements of D and
let < be a partial order on D which relates all pairs of elements except for b
and c. We call (f,g), where f,g: D> — D are binary operations, a I-defect
if f and g are both commutative and satisfy the following conditions:

w If {z,y} # {b,c} then f(z,y) = min(x,y) and g(z,y) = max(z,y).
= If {2, y} = {b,c} then {f(2,y),9(z,y)} N{z,y} =0 and f(z,y) = g(z,y).

The tractability of Q-valued languages that admit a 1-defect multimor-
phism has been shown by Jonsson et al. (2011). This result generalizes the
tractability result for weakly tree-submodular languages on chains and forks,
but is incomparable with the tractability result for strongly tree-submodular
languages on binary trees.

Example 1.9 (Submodularity on lattices). Let the set D, endowed with
a partial order, form a lattice, with the meet operation A and the join
operation V. Let I' be the language admitting (A, V) as a multimorphism.

If the lattice is a chain (that is, the order on D is total), we obtain the
language of submodular functions (Example 1.2). For distributive lattices,
the tractability of I has been established by Schrijver (2000). Until recently,
the tractability of I' for non-distributive lattices was widely open and only
partial results were known (Krokhin and Larose, 2008; Kuivinen, 2011), but
the work of Thapper and Zivny (2012), which we will discuss in Sections 1.3.2
and 1.3.3, settled this question.

Example 1.10 (Conservative languages). A language that contains all
unary functions (and possibly some other functions) is called conservative.
Kolmogorov and Zivny (2013) have shown that a Q-valued conservative
language can be only tractable if it admits an STP multimorphism (see
Example 1.5). (Kolmogorov and Zivny, 2013, Theorem 3.5) have given a
precise condition under which a Q-valued conservative language is tractable.
This condition is somewhat technical so we will not state it here but
we mention that it involves a pair of complementary multimorphisms,
one of which is an STP multimorphism and the other one is a ternary®
multimorphism involving two majority and one minority operations. The
algorithm involves a preprocessing step, after which the resulting instance
admits an STP multimorphism.

Example 1.11 (Potts model). Let I" contain all unary functions and a

5. In order to state the property precisely one needs to generalize Definition 1.1 to a triple
of ternary operations, see (Kolmogorov and Zivny, 2013) for more details.

1.8 Languages Solved by the Basic LP 9

single binary function ¢potts: D? — Q defined by

0 ifz=y
1 ifx#y

This conservative language is known in statistical mechanics as the Potts
model with external field (Mezard and Montanari, 2009) and is frequently
used for image segmentation (Rother et al., 2004). For |D| = 2, ¢potts is

¢Potts(xa y) = {

submodular and hence I' is tractable. For |D| > 2, T is intractable.

Example 1.12 (Max-Cut). Let T' contain a single function ¢me: D? — Q
defined by

1 ifx=y
0 ifz#y

This language models the well-known Max-Cut problem (Garey and John-
son, 1979) and thus I' is intractable for any |D| > 2.

¢mc(337 y) = {

1.3.2 Power of BLP for Finite-Valued Languages

Given the long list of examples from Section 1.3.1, one might expect that
perhaps multimorphism could define all tractable languages. It turns out
that this is not the case and in order to capture more tractable languages
one needs to consider a more general notion. We start with an example.

Example 1.13 (Skew bisubmodularity). We extend the notion of bisub-
modularity (Example 1.3) to skew bisubmodularity introduced by Huber
et al. (2013). Let D = {0, 1,2}. Recall the definition of operations ming and
maxg from Example 1.3. We define

1 if0#x#y#0

max(x,y) otherwise

maxi(z,y) = {

A function ¢: D" — Q is called a-bisubmodular, for some real 0 < o < 1, if
for every x,y € D",

P(x) +o(y) = ¢(ming(x,y)) + ag(maxe(x,y)) + (1 — @) f (max; (x, y)).
Note that 1-bisubmodular functions are (ordinary) bisubmodular functions.

The previous example suggests that it is not enough to consider only two
operations with equal weight. In fact it is necessary to consider probability
distributions over all binary operations. We denote by Q(DQ) the set of all
binary operations f: D? — D.

10

The Power of LP Relazxation for MAP Inference

Definition 1.2 (Binary fractional polymorphism (Cohen et al., 2006a)). Let
w be a probability distribution on Qg). We say that w is a binary fractional
polymorphism of an r-ary function ¢: D™ — Q if, for every x,y € D",

Lo +o) = 3wl élfxy)). (1.5)

2
feq®

One can see the LHS of (1.5) as the average of ¢(x) and ¢(y) and
the RHS as the expectation of ¢(f(x,y)) with respect to the probability
distribution w. We define the support of w to be the set

supp(w) = { f |w(f) #0} (1.6)

of operations that get nonzero probability.

Note that a binary multimorphism (f, g) is a fractional polymorphism w
defined by w(f) = w(g) = 3 and w(h) = 0 for all h ¢ {f, g}. In this case, we
have supp(w) = {f, ¢} and inequality (1.5) simplifies to (1.4).

A binary fractional polymorphism w defined on D is called symmetric if
every function from the support of w is symmetric, that is, every f € supp(w)
satisfies f(x,y) = f(y,z) for every x,y € D. The following result is a
consequence of the work of Thapper and Zivny (2012) and Kolmogorov
(2013), see also (Kolmogorov et al., 2013).

Theorem 1.1. Let I' be a Q-valued language with a finite domain D. BLP
solves all instance from VCSP(T") if and only if T’ admits a binary symmetric
fractional polymorphism.

Note that Theorem 1.1 proves tractability of all Q-valued languages
defined in Examples 1.2-1.10 as well as the skew bisubmodular languages
defined in Example 1.13.

The following surprising result, due to Thapper and Zivny (2013), shows
that languages defined by binary symmetric fractional polymorphisms are
the only tractable languages.

Theorem 1.2. Let I’ be a Q-valued language with a finite domain D. Either
I' admits a binary symmetric fractional polymorphism or VCSP(I') can be
reduced to Maz-Cut and thus is NP-hard.

We remark that the reduction to Max-Cut mentioned in Theorem 1.2 is
not just a polynomial-time reduction but a so-called expressibility reduc-
tion (Zivny, 2012). Moreover, for a finite language T' one can test for the
existence of a binary symmetric fractional polymorphism of I' via a linear
program that has polynomial size in |I'| and double-exponential size in |D].
More details can be found in (Thapper and Zivny, 2013).

1.8 Languages Solved by the Basic LP 11

1.3.3 Power of BLP for General-Valued Languages

In Section 1.3.2 we have given a complete characterization of tractable Q-
valued languages and have shown that BLP solves them all. In this section
we will deal with Q-valued languages.

First, we will be interested in the question of which Q-valued languages
are solvable by BLP. In order to do so, we need to extend the definition of
binary fractional polymorphisms in two ways: firstly, to Q-valued functions
and secondly, to fractional polymorphisms of arbitrary arities.

A k-ary operation is a mapping f: D¥ — D. We denote by Qg) the set of
all k-ary operations on D.

Definition 1.3 (Fractional polymorphism (Cohen et al., 2006a)). Let w
be a probability distribution on Qg . We say that w is a k-ary fractional
polymorphism of an r-ary function ¢: D" — Q if, for everyx',...,x* € D",

k
%Zgb(xi) > 3 w(f)e(fx...,xh), (1.7)
i=1

feq
where we define 0- 00 =0 on the RHS of (1.7).

The support of w is defined by (1.6). A k-ary fractional polymorphism w is
symmetric if every f € supp(w) satisfies f(x1,...,7k) = f(Tz1), > Tr(k))
for every x1,...,x € D and every permutation 7 on {1,...,k}.

The following characterization of the power of BLP for general-valued
languages is due to Thapper and Zivny (2012), see also (Kolmogorov et al.,
2013).

Theorem 1.3. Let I' be a Q-valued language with a finite domain D. BLP
solves all instances from VCSP(T') if and only if I' admits a k-ary symmetric
fractional polymorphism of every arity k > 2.

Note that unlike in the Q-valued case (Theorem 1.1), it is not clear
whether the characterization given in Theorem 1.3 is decidable. Nevertheless,
Thapper and Zivny (2012) have also given a sufficient condition on I" for BLP
to solve all instances from VCSP(T"). We state this condition in Theorem 1.4.

A k-ary projection (on the ith coordinate) is the operation egk): D¥ = D
defined by egk) (z1,...,2K) = x;. A set O of operations defined on D generates
an operation f if f can be obtained by composition from projections (of
arbitrary arities) and operations from O.

Theorem 1.4. Let I' be a Q-valued language with a finite domain D. Sup-
pose that T’ admits a k-ary fractional polymorphism w such that supp(w)

12

The Power of LP Relazxation for MAP Inference

generates an m-ary symmetric operation. Then I' admits an m-ary symmet-
ric fractional polymorphism.

Corollary 1.5. Let I be a Q-valued language with a finite domain D.
Suppose that for every k > 2, T' admits a (not necessarily k-ary) fractional
polymorphisms w so that supp(w) generates a k-ary symmetric operation.
Then BLP solves any instance from VCSP(T').

Note that the condition (of admitting symmetric fractional polymorphisms
of all arities) from Theorem 1.3 trivially implies the condition from Corol-
lary 1.5, thus showing that the condition from Corollary 1.5 is a characteri-
zation of the power of BLP.

A binary operation f: D?> — D is called a semi-lattice operation if f is
associative, commutative, and idempotent. Since any semi-lattice operation
trivially generates symmetric operations of all arities, Corollary 1.5 shows
that most Q-valued languages defined in Examples 1.2-1.10 as well as the
skew bisubmodular languages from Example 1.13 are tractable. In the case
of 1-defect languages from Example 1.8, a bit more work is needed to show
the existence of symmetric operations of all arities, see (Thapper and Zivny,
2012) for details. The Q-valued languages defined in Example 1.5 can be
reduced, via a preprocessing described by Cohen et al. (2008), to an instance
that is submodular and thus solvable by BLP as described in Example 1.2.
The Q-valued languages defined in Example 1.10 can be reduced, via a
preprocessing described by Kolmogorov and Zivny (2013), to an instance
that is submodular and thus solvable by BLP (see Example 1.2).

We finish this section with mentioning that obtaining a full complexity
classification of all general-valued languages is extremely challenging. In-
deed, even a classification of {0, co}-valued languages is not known. The
so-called Feder-Vardi Congjecture (Feder and Vardi, 1998) states that every
{0, co}-valued language is either tractable or intractable (note that assum-
ing P # NP, Ladner (1975) showed that there are problems of intermediate
complexity). However, there are some interesting results in this area. First,
general-valued languages on 2-element domains have been classified by Co-
hen et al. (2006b). Second, an algebraic theory providing a powerful tool
for analyzing the complexity of general-valued languages has been estab-
lished by Cohen et al. (2011, 2013) and already used for simplifying the
hardness part of the classification of general-valued languages on 2-element
domains (Creed and Zivny, 2011). Finally, conservative general-valued lan-
guages (see Example 1.10) have been completely classified by Kolmogorov
and Zivny (2013).

1.4 Universality of the Basic LP 13

1.4 Universality of the Basic LP

We have seen that the basic LP relaxation solves many VCSP languages.
Moreover, it has been empirically observed (Wainwright et al., 2005; Kol-
mogorov, 2006; Werner, 2007; Szeliski et al., 2008; Kappes et al., 2013)
that it is tight for many VCSP instances that do not belong to any known
tractable class. For other instances, it yields lower bounds which can be
used, for instance, in exact search algorithms. For all these reasons, solving
the BLP is of great practical interest.

The popular simplex and interior point methods are, due to their quadratic
space complexity, applicable in practice only to small BLP instances. For
larger instances, BLP can be solved efficiently for binary VCSPs with do-
main size |D| = 2, because in this case BLP can be reduced in linear time
to the max-flow problem (Boros and Hammer, 2002; Rother et al., 2007).
A lot of effort has been invested to develop efficient algorithms to exactly
solve the BLP of more general VCSPs. Among the proposed algorithms are
those based on subgradient methods (Schlesinger and Giginjak, 2007; Ko-
modakis et al., 2011), smoothing methods (Weiss et al., 2007; Johnson et al.,
2007; Ravikumar et al., 2008; Savchynskyy et al., 2011), and augmented La-
grangian methods (Martins et al., 2011; Schmidt et al., 2011; Meshi and
Globerson, 2011).

In this section, we show that solving linear program (1.2) is not easier
than solving an arbitrary linear program, in the following sense.

Theorem 1.6 (Prusa and Werner (2013)). Every linear program can be
reduced in linear time to the basic LP relazation (1.2) of a binary Q-valued
VCSP with domain size |D| = 3.

This result suggests that trying to find a very efficient algorithm to exactly
solve the BLP may be futile because it might mean improving the complexity
of the best known algorithm for general LP, which is unlikely.

In the rest of this section, we prove Theorem 1.6 by giving an algorithm
that, for an arbitrary input LP, constructs a binary Q-valued VCSP with
|D| = 3 whose basic LP relaxation solves the input LP.

1.4.1 The input linear program

The input linear program minimizes c - x over the polyhedron

P={x=(z1,...,2n) eR"| Ax=Db, x>0}, (1.8)

14

The Power of LP Relazxation for MAP Inference

where A = [a;;] € Z™*", b= (b1,...,bm) € Z™, c = (c1,...,¢q) € Z", and
m < n. Any LP representable by a finite number of bits can be described
this way.

Before encoding, the system Ax = b is rewritten as follows. Each equation

ani + -+ aipxn = b; (1.9)

is rewritten as

afiri 4 talr, =ajx -+ ag b (1.10)
where b; > 0, ajj > 0, a; =0, and a;; = a;; — a;;. Moreover, it is

assumed without loss of generality that neither side of (1.10) vanishes for
any feasible x.

The following lemmas are not surprising, their proofs can be found in
(Prusa and Werner, 2013).

Lemma 1.7. Let x = (x1,...,xy,) be a vertex of the polyhedron P. Each
component x; of x satisfies either x; =0 or Mt < x; < M, where

M =m™?(B; X -+ x Bpy1)
Bj = max(1, |ai;|,...,|lamjl), j=1,...,n
Bpt+1 = max(1, b1, ... |bm]).

Lemma 1.8. Let P be bounded. Then for any x € P, each component of
A"x and A"x + b is not greater than N = M(By + -+ + Bpy1).

The last lemma shows that we can restrict ourselves to input LPs with a
bounded polyhedron P.

Lemma 1.9. FEvery linear program can be reduced in linear time to a linear
program over a bounded polyhedron.

1.4.2 Elementary constructions

The output of the reduction will be a VCSP with domain size |D| = 3 and
hypergraph H = (‘1/) UFE where EF C (‘2/) (that is, there is a unary constraint
for each variable and binary constraints for a subset of variable pairs). We
denote the binary constraints ¢g for S = {i,j} € E by ¢;;. Following
Wainwright and Jordan (2008), we refer to the values of the functions y;
and p;; as unary and binary pseudomarginals, respectively.

We will depict binary VCSPs by diagrams, commonly used in the con-
straint programming literature. Figure 1.1 illustrates the meaning of condi-
tions (1.2b) and (1.2c) of the BLP in these diagrams.

1.4 Universality of the Basic LP 15

Figure 1.1: A pair of variables {i, j} € E with |D| = 3. Each variable is depicted
as a box, its state z € D as a circle, and each state pair (x,y) € D? of two variables
as an edge. Each circle is assigned a unary pseudomarginal u;(z) and each edge
is assigned a binary pseudomarginal p;;(z,y). One normalization condition (1.2c)
imposes for unary pseudomarginals a, b, ¢ that a 4+ b + ¢ = 1. One marginalization
condition (1.2b) imposes for pairwise pseudomarginals p, ¢, r that a = p+ q + .

[©=0 O] [Q O O]

[©=0 O] [@=Q O]

(a) Copy O
(c) EQuALITY | @=Q C) | | QQZQ O |

[©=0C O] [©=0 O]

(b) ADDITION (d) shorthand of EQUALITY (e) POWERS (f) NEGPOWERS

Figure 1.2: Elementary constructions. The visible edges have costs ¢;;(z,y) = 0
and the invisible edges have costs ¢;;(x,y) = co. Different line styles of the visible
edges distinguish different elementary constructions.

Figure 1.3: Construction of a unary pseudomarginal with value g. The example

can be generalized in an obvious way to construct the value 279k for any d, k € N
such that 2% < 1. If more than two values are added, intermediate results are
stored in auxiliary variables using COPY.

16

The Power of LP Relazxation for MAP Inference

The encoding algorithm uses several elementary constructions as its build-
ing blocks. Each construction is a standalone VCSP with crisp binary con-
straints, ¢;;: D? — {0,00}, that imposes a certain simple constraint on
feasible unary pseudomarginals. Note that for any feasible pseudomarginals,
¢ij(x,y) = oo implies p;;j(x,y) = 0. Each construction is defined by a dia-
gram, in which visible edges have cost ¢;;(z,y) = 0 and the invisible edges
have cost ¢;;(z,y) = co. The elementary constructions are as follows:

Cory, Figure 1.2(a), enforces equality of two unary pseudomarginals a,d
in two variables {7, j} € E while imposing no other constraints on b, c,e, f.
Precisely, if a,b,c,d,e, f >0and a+b+c=1=d+ e+ f, then there exist
pairwise pseudomarginals feasible to (1.2) if and only if a = d.

ADDITION, Figure 1.2(b), adds two unary pseudomarginals a,b in one vari-
able and represents the result as a unary pseudomarginal ¢ = a+b in another
variable. No other constraints are imposed on the remaining unary pseudo-
marginals.

EQuALITY, Figure 1.2(c), enforces equality of two unary pseudomarginals
a,b in a single variable, introducing two auxiliary variables. No other con-
straints are imposed on the remaining unary pseudomarginals. In the sequel,
this construction will be abbreviated by omitting the two auxiliary variables
and writing the equality sign between the two circles, as in Figure 1.2(d).

PowERs, Figure 1.2(e), creates the sequence of unary pseudomarginals with
values 2%a for i = 0,...,d, each in a separate variable. We will call d the
depth of the pyramid.

NEGPOWERS, Figure 1.2(f), is similar to POWERS but constructs values 27
fori=0,...,d.

Figure 1.3 shows an example of how the elementary constructions can be
combined.

1.4.3 Encoding

Now we will formulate the encoding algorithm. The variables of the output
VCSP and their states will be numbered by integers, D = {1,2,3} and
V=A_1...,|V|}.

The algorithm is initialized as follows:

1.1. For each variable x; in the input LP, introduce a new variable j into V'
and set ¢j(1) = ¢j. Pseudomarginal p;(1) will represent variable x;. After
this step, we have V = {1,...,n}.

1.2. For each variable j € V, build POWERS with the depth d; = |log, B;]|
based on state 1. This yields the sequence of numbers 2¢p;(1), i =0, ..., d;.

1.4 Universality of the Basic LP 17

1.3. Build NEGPOWERS with the depth d = [logy N]. By Lemma 1.8, the
choice of d ensures that all values represented by pseudomarginals will be
bounded by 1.

After initialization, the algorithm proceeds by encoding each equa-
tion (1.10) in turn. The ith equation (1.10) is encoded as follows:

2.1. Construct pseudomarginals with values a;;mj, a;; Ty, 7 =1,...,n, by
summing selected values from POWERS built in Step 1.2, similarly as in

Figure 1.3.

2.2. Construct a pseudomarginal with value 27%; by summing selected
values from the NEGPOWERS built in Step 1.3, similarly as in Figure 1.3.
The value 2-%; represents b;, which sets the scale between the input and
output polyhedron to 27¢.

2.3. Represent each side of the equation by summing all its terms by
repetitively applying ADDITION and COPY.

2.4. Apply Copry to enforce equality of the two sides of the equation.

Finally, set ¢;(x) =0 for all i > n or = € {2,3}.
Figure 1.4 shows the output VCSP for an example input LP.

1.4.4 The length of the encoding

Here we finalize the proof of Theorem 1.6 by showing that the encoding
time is linear. Since the encoding of vector c is clearly done in linear time,
it suffices to show that the encoding time is linear in the length L of the
binary representation of matrix A and vector b. Since this time is obviously
linearS in |E|, it suffices to show that |E| = O(L).

Variable pairs are created only when a variable is created and the number
of variable pairs added with one variable is always bounded by a constant.
Therefore |E| = O(|V]).

We clearly have the inequality L > max(mn, logy By + -+ + logs Bpy1).
The algorithm creates Y7, (d; +1) variables in Step 1.2 and d+ 1 variables
in Step 1.3. By comparison with the above inequality, both of these numbers
are O(L).

Finally, encoding one equality (1.10) adds at most as many variables
as there are bits in the binary representation of all its coefficients. The

6. The only thing that may not be obvious is how to multiply large integers a, b in linear
time. But this issue can be avoided by instead computing p(a,b) = fogz al+Tlogs b1 yhich
can be done in linear time using bitwise operations. Since ab < p(a,b) < (2a)(2b), the
bounds like M become larger but this does not affect the overall complexity.

18 The Power of LP Relazxation for MAP Inference

YOI 4012 sy+1/2]
1/2%
2 . |
N ylo;;?;m Z'O;O /m
2y d: . O_
Qy.. 1 .
W N
2y+22 3/2° 128 \ 0=0Q O
W2 = s . @
’ o7 e - 2
I 7T e 1/29 1/29 O:

x+2y+2z

Figure 1.4: The VCSP whose basic LP relaxation solves the linear program
min{2x —5y+z|x+2y+2:=3; =3y +1; z,y,2 >0}.

cumulative sum is thus O(L).

1.5 Conclusions

LP relaxation is a sucessfull approach to the problem of minimizing a
partially separable function of many discrete variables, which is also known
as the valued constraint satisfaction problem (VCSP). In this chapter, we
have presented two types of theoretial results on the basic LP relaxation
of VCSP: in Section 1.3, we characterized languages solves exactly by BLP
and, in Section 1.4, we showed that solving BLP is as hard as solving an
arbitrary LP.

These results suggest a number of questions. The first class of questions
concerns the fact that rather than finding a global optimum of the LP re-
laxation, it is easier to find its local dual optimum with respect to block-
coordinate moves. The latter in fact means reparameterizing the problem

1.6 References 19

such that the locally minimal tuples are arc consistent (Shlezinger, 1976;
Werner, 2007), which has been called wirtual arc consistency by Cooper
et al. (2010a). Virtual arc consistency is enforced by the popular message-
passing algorithms such as min-sum diffusion (Kovalevsky and Koval, ap-
prox. 1975; Werner, 2007, 2010), TRW-S (Kolmogorov, 2006) (see its gen-
eralization to VCSPs of any arity in Chapter ??) and MPLP (Globerson
and Jaakkola, 2008; Sontag et al., 2011), as well as by the algorithms (Koval
and Schlesinger, 1976; Cooper et al., 2010a). Regarding Section 1.3, one can
ask which languages are solved by enforcing virtual arc consistency. For in-
stance, it is known that enforcing virtual arc consistency solves submodular
languages of any arity (Werner, 2010; Cooper et al., 2010a) but for other
languages the question is open. Regarding Section 1.4, one can ask whether
enforcing virtual arc consistency is easier than solving the BLP exactly.

Recall that one can construct, in a number of ways, a hierarchy of
increasingly tighter LP relaxations of VCSP (Sherali and Adams, 1990;
Wainwright and Jordan, 2008; Johnson et al., 2007; Werner, 2010; Franc
et al., 2012). BLP (1.2) is only one level of this hierarchy. As the second
question, one can ask how much power these higher-order relaxations add
to BLP. Theorems 1.1 and 1.2 imply the surprising fact that all tractable
finite-valued languages are solved by BLP, hence higher-order relaxations
do not allow us to solve any more languages. However, could BLP and more
generally higher-order relaxations be useful for interesting, not necessarily
language-restricted, classes of VCSPs?

Acknowledgment

D.Prisa and T.Werner have been supported by the Grant Agency of the
Czech Republic project P202/12/2071. Besides, D.Prusa has been supported
by the EC project FP7-ICT-247525 and T.Werner by the EC project FP7-
ICT-270138. S.Zivny has been supported by a Royal Society University
Research Fellowship.

1.6 References

L. Barto, M. Kozik, and T. Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and
Hell). SIAM Journal on Computing, 38(5):1782-1802, 2009.

E. Boros and P. L. Hammer. Pseudo-Boolean optimization. Discrete Applied
Mathematics, 123(1-3):155-225, 2002.

A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-

20

The Power of LP Relazxation for MAP Inference

element set. Journal of the ACM, 53(1):66-120, 2006.

A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Transactions on Computational Logic, 12(4), 2011. Article 24.

A. Bulatov, A. Krokhin, and P. Jeavons. Classifying the Complexity of Constraints
using Finite Algebras. STAM Journal on Computing, 34(3):720-742, 2005.

C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear programming formulation
and approximation algorithms for the metric labeling problem. SIAM Journal
on Discrete Mathematics, 18(3):608-625, 2005.

D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi,
P. van Beek, and T. Walsh, editors, The Handbook of Constraint Programming.
Elsevier, 2006.

D. A. Cohen, M. C. Cooper, and P. G. Jeavons. An Algebraic Characterisation of
Complexity for Valued Constraints. In Intl. Conf. on Principles and Practice of
Constraint Programming (CP), pages 107-121. Springer, 2006a.

D. A. Cohen, M. C. Cooper, P. G. Jeavons, and A. A. Krokhin. The Complexity
of Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983-1016, 2006b.

D. A. Cohen, M. C. Cooper, and P. G. Jeavons. Generalising submodularity
and Horn clauses: Tractable optimization problems defined by tournament pair
multimorphisms. Theoretical Computer Science, 401(1-3):36-51, 2008.

D. A. Cohen, P. Creed, P. G. Jeavons, and S. Zivny. An algebraic theory of
complexity for valued constraints: Establishing a Galois connection. In Intl.
Symp. on Mathematical Foundations of Computer Science (MFCS), pages 231—
242. Springer, 2011.

D. A. Cohen, M. C. Cooper, P. Creed, P. Jeavons, and S. Zivny. An algebraic
theory of complexity for discrete optimisation. SIAM Journal on Computing,
2013. To appear.

M. C. Cooper. Minimization of Locally Defined Submodular Functions by Optimal
Soft Arc Consistency. Constraints, 13(4):437-458, 2008.

M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner.
Soft arc consistency revisited. Artificial Intelligence, 174(7-8):449-478, 2010a.
M. C. Cooper, P. G. Jeavons, and A. Z. Salamon. Generalizing constraint satisfac-
tion on trees: Hybrid tractability and variable elimination. Artificial Intelligence,
174(9-10):570-584, 2010b.

M. C. Cooper and S. Zivny. Hybrid tractability of valued constraint problems.
Artificial Intelligence, 175(9-10):1555-1569, 2011.

M. C. Cooper and S. Zivny. Tractable triangles and cross-free convexity in discrete
optimisation. Journal of Artificial Intelligence Research, 44:455-490, 2012.

P. Creed and S. Zivny. On minimal weighted clones. In Intl. Conf. on Principles
and Practice of Constraint Programming (CP), pages 210-224. Springer, 2011.

V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraint Satisfaction, Bounded
Treewidth, and Finite-Variable Logics. In Intl. Conf. on Principles and Practice
of Constraint Programming (CP), pages 310-326. Springer, 2002.

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

T. Feder and M. Y. Vardi. The Computational Structure of Monotone Monadic
SNP and Constraint Satisfaction: A Study through Datalog and Group Theory.
SIAM Journal on Computing, 28(1):57-104, 1998.

V. Franc, S. Sonnenburg, and T. Werner. Cutting plane methods in machine

1.6 References

21

learning. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for
Machine Learning. MIT Press, 2012.

S. Fujishige. Submodular Functions and Optimization. North-Holland, 2005.

S. Fujishige and S. Iwata. Bisubmodular Function Minimization. SIAM Journal
on Discrete Mathematics, 19(4):1065-1073, 2005.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, 1979.

A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing
algorithms for MAP LP-relaxations. In Conf. on Neural Information Processing
Systems (NIPS), pages 553-560, 2008.

G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decompo-
sition methods. Artificial Intelligence, 124(2):243-282, 2000.

M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54(1):1-24, 2007.

F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. STAM
Journal on Computing, 4(3):221-5, 1975.

A. Huber and V. Kolmogorov. Towards Minimizing k-Submodular Functions. In
Intl. Symp. on Combinatorial Optimization (ISCO), pages 451-462. Springer,
2012.

A. Huber, A. Krokhin, and R. Powell. Skew Bisubmodularity and Valued CSPs.
In ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1296-1305. STAM,
2013.

S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM, 48(4):
761-777, 2001.

P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure Properties of Constraints.
Journal of the ACM, 44(4):527-548, 1997.

J. K. Johnson, D. M. Malioutov, and A. S. Willsky. Lagrangian relaxation for MAP
estimation in graphical models. In Allerton Conf. on Communication, Control
and Computing, pages 64-73, 2007.

P. Jonsson, F. Kuivinen, and J. Thapper. Min CSP on Four Elements: Moving
Beyond Submodularity. In Intl. Conf. on Principles and Practice of Constraint
Programming (CP), pages 438-453. Springer, 2011.

J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnérr, S. Nowozin, D. Batra,
S. Kim, B. X. Kausler, J. Lellmann, N. Komodakis, and C. Rother. A comparative

study of modern inference techniques for discrete energy minimization problem.
In Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE, 2013.

C. L. Kingsford, B. Chazelle, and M. Singh. Solving and analyzing side-chain
positioning problems using linear and integer programming. Bioinformatics, 21
(7):1028-1039, 2005.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):
1568-1583, 2006.

V. Kolmogorov. Submodularity on a tree: Unifying L*-convex and bisubmodular
functions. In Intl. Symp. on Mathematical Foundations of Computer Science

22

The Power of LP Relazxation for MAP Inference

(MFCS), pages 400-411. Springer, 2011.

V. Kolmogorov. The power of linear programming for finite-valued CSPs: a con-
structive characterization. In Intl. Coll. on Automata, Languages and Program-
ming (ICALP), pages 625-636. Springer, 2013.

V. Kolmogorov, J. Thapper, and S. Zivny. The power of linear programming for
general-valued CSPs. 2013. Submitted for publication.

V. Kolmogorov and S. Zivny. The complexity of conservative valued CSPs. Journal
of the ACM, 60(2), 2013.

N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond
via dual decomposition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(3):531-552, 2011.

A. Koster, S. van Hoesel, and A. Kolen. The partial constraint satisfaction problem:
Facets and lifting theorems. Operations Research Letters, 23(3-5):89-97, 1998.

V. K. Koval and M. 1. Schlesinger. Dvumernoe programmirovanie v zadachakh anal-
iza izobrazheniy (Two-dimensional programming in image analysis problems).
Automatics and Telemechanics, 8:149-168, 1976. In Russian.

V. A. Kovalevsky and V. K. Koval. A diffusion algorithm for decreasing the energy
of the max-sum labeling problem. Glushkov Institute of Cybernetics, Kiev, USSR.
Unpublished, approx. 1975.

A. Krokhin and B. Larose. Maximizing Supermodular Functions on Product
Lattices, with Application to Maximum Constraint Satisfaction. SIAM Journal
on Discrete Mathematics, 22(1):312-328, 2008.

F. Kuivinen. On the complexity of submodular function minimisation on diamonds.
Discrete Optimization, 8(3):459-477, 2011.

G. Kun, R. O’Donnell, S. Tamaki, Y. Yoshida, and Y. Zhou. Linear programming,
width-1 CSPs, and robust satisfaction. In Innovations in Theoretical Computer
Science (ITCS) Conf., pages 484-495. ACM, 2012.

R. Ladner. On the Structure of Polynomial Time Reducibility. Journal of the ACM,
22:155-171, 1975.

S. Lauritzen. Graphical Models. Oxford University Press, 1996.

A. L. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P. Xing.
An augmented Lagrangian approach to constrained MAP inference. In Intl. Conf.
on Machine Learning (ICML), pages 169-176. Omnipress, 2011.

D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunc-
tive queries. In ACM Symp. on Theory of Computing (STOC), pages 735-744.
ACM, 2010.

O. Meshi and A. Globerson. An alternating direction method for dual MAP LP
relaxation. In Conf. on Machine Learning and Knowledge Discovery in Databases
(ECML PKDD), 2011.

M. Mezard and A. Montanari. Information, Physics, and Computation. Oxford
University Press, 2009.

U. Montanari. Networks of Constraints: Fundamental properties and applications
to picture processing. Information Sciences, 7:95-132, 1974.

S. Nowozin and C. H. Lampert. Structured learning and prediction in computer
vision. Foundations and Trends in Computer Graphics and Vision, 6(3-4):185—
365, 2011.

D. Prasa and T. Werner. Universality of the local marginal polytope. In Conf. on

1.6 References

23

Computer Vision and Pattern Recognition (CVPR). IEEE, 2013.

P. Ravikumar, A. Agarwal, and M. J. Wainwright. Message-passing for graph-
structured linear programs: proximal projections, convergence and rounding
schemes. In Intl. Conf. on Machine Learning (ICML), pages 800-807. ACM,
2008.

F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Elsevier, 2006.

C. Rother, V. Kolmogorov, and A. Blake. ”GrabCut”: interactive foreground
extraction using iterated graph cuts. In SIGGRAPH, pages 309-314. ACM Press,
2004.

C. Rother, V. Kolmogorov, V. S. Lempitsky, and M. Szummer. Optimizing binary
MRFs via extended roof duality. In Conf. on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2007.

B. Savchynskyy, J. Kappes, S. Schmidt, and C. Schnérr. A study of Nesterov’s
scheme for Lagrangian decomposition and MAP labeling. In Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 1817-1823. IEEE, 2011.

T. J. Schaefer. The Complexity of Satisfiability Problems. In ACM Symp. on
Theory of Computing (STOC), pages 216-226. ACM, 1978.

T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Intl. Joint Conf. on Artificial Intelligence (IJCAI),
pages 631-637, 1995.

D. Schlesinger. Exact solution of permuted submodular MinSum problems. In Conf.
on Energy Minimization Methods in Computer Vision and Pattern Recognition
(EMMCVPR), pages 28-38. Springer, 2007.

D. Schlesinger and B. Flach. Transforming an arbitrary MinSum problem into a
binary one. Technical Report TUD-FI06-01, Dresden University of Technology,
Germany, 2006.

M. I. Schlesinger and V. V. Giginjak. Solving (max,+) problems of structural
pattern recognition using equivalent transformations. Upravilyayushchie Sistemy
i Mashiny (Control Systems and Machines), Kiev, Naukova Dumka, 1 and 2,
2007. ISSN 0130-5395. In Russian, English translation available on www.

S. Schmidt, B. Savchynskyy, J. H. Kappes, and C. Schnérr. Evaluation of a first-
order primal-dual algorithm for MRF energy minimization. In Conf. on Energy
Minimization Methods in Computer Vision and Pattern Recognition, pages 89—
103. Springer, 2011.

A. Schrijver. A Combinatorial Algorithm Minimizing Submodular Functions in
Strongly Polynomial Time. Journal of Combinatorial Theory, Series B, 80(2):
346-355, 2000.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer, 2003.

H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM
Journal of Discrete Mathematics, 3(3):411-430, 1990.

M. I. Shlezinger. Syntactic analysis of two-dimensional visual signals in noisy
conditions. Cybernetics and Systems Analysis, 12(4):612-628, 1976. Translation
from Russian.

D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decomposition
for inference. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for

24

The Power of LP Relazxation for MAP Inference

Machine Learning. MIT Press, 2011.

R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala,
M. Tappen, and C. Rother. A comparative study of energy minimization methods
for markov random fields with smoothness-based priors. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30(6):1068-1080, 2008.

J. Thapper and S. Zivny. The power of linear programming for valued CSPs.
In IEEE Symp. on Foundations of Computer Science (FOCS), pages 669-678.
IEEE, 2012.

J. Thapper and S. Zivny. The complexity of finite-valued CSPs. In ACM Symp.
on the Theory of Computing (STOC), pages 695-704. ACM, 2013.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement
on trees: message passing and linear programming. IEEE Transactions on
Information Theory, 51(11):3697-3717, 2005.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-
305, 2008.

Y. Weiss, C. Yanover, and T. Meltzer. MAP estimation, linear programming and
belief propagation with convex free energies. In Conf. on Uncertainty in Artificial
Intelligence (UAI), 2007.

T. Werner. A linear programming approach to max-sum problem: A review. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 29(7):1165-1179,
2007.

T. Werner. Revisiting the linear programming relaxation approach to Gibbs
energy minimization and weighted constraint satisfaction. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32(8):1474-1488, 2010.

S. Zivny. The complexity of valued constraint satisfaction problems. Cognitive
Technologies. Springer, 2012.

