
A note on some collapse results of valued constraints

Bruno Zanuttini a,1

aGREYC, Université de Caen Basse-Normandie, Boulevard du Maréchal Juin, 14 032 Caen Cedex, France

Stanislav Živný b,2,∗
bComputing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract

Valued constraint satisfaction problem (VCSP) is an optimisation framework originally coming from Artificial Intelligence and
generalising the classical constraint satisfaction problem (CSP). The VCSP is powerful enough to describe many important classes
of problems. In order to investigate the complexity and expressive power of valued constraints, a number of algebraic tools have
been developed in the literature. In this note we present alternative proofs of some known results without using the algebraic
approach, but by representing valued constraints explicitly by combinations of other valued constraints.

Key words:

Valued constraint satisfaction problems, Expressive power, Max-closed constraints, Theory of computation

1. Introduction

The Valued Constraint Satisfaction Problem
(VCSP) [18] is a general framework to model various op-
timisation problems [1,17], which generalises the classical
constraint satisfaction problem (CSP) [15,7,8,17].

Informally, in the VCSP framework, an instance consists
of a set of variables, a set of possible values, and a set of
(soft) constraints. Each constraint has an associated cost
function which assigns a cost (or a degree of violation) to
every possible tuple of values for the variables in the scope of
the constraint. The goal is to find an assignment of values to
all of the variables which has the minimum total cost. The
set of cost functions used in the description of the problem
is called the valued constraint language. Infinite costs can
be used to indicate infeasible solutions, and if the range of
all cost functions is {0,∞} (so-called hard constraints), we
get the standard CSP framework as a special case.

An important problem is determining which additional
constraints can be expressed by a given valued constraint
language. The notion of expressibility has been a key com-

∗ Corresponding author.
Email addresses: bruno.zanuttini@info.unicaen.fr (Bruno

Zanuttini), stanislav.zivny@comlab.ox.ac.uk (Stanislav Živný).
1 This work was supported by ANR grant CANAR (ANR-06-BLAN-

0383-02).
2 This work was supported by EPSRC grant EP/F01161X/1.

ponent in the analysis of complexity for the classical CSP
model [12,2]. It was also a major tool in the complexity
analysis of a wide variety of Boolean constraint problems
carried out by Creignou et al. [7], where it was referred to
as implementation. Expressibility is a particular form of
problem reduction: if a constraint can be polynomially ex-
pressed in a given constraint language, then it can be added
to the language without changing the computational com-
plexity of the associated class of problems. Hence deter-
mining what can be expressed in a given valued constraint
language is a fundamental step in the complexity analysis
of valued constraint problems.

A number of algebraic tools have been developed to un-
derstand the complexity and expressive power of constraint
languages [12,4,3]. Using the algebraic approach, Cohen et
al. showed [5] that some valued constraint languages, in-
cluding the set of all monotonic valued constraints, can
be expressed using only valued constraints of a fixed fi-
nite arity. They also showed some other classes of valued
constraints, including the set of all monotonic valued con-
straints with finite cost values, which cannot be expressed
by a subset of any fixed finite arity, and hence form an in-
finite hierarchy [5].

In this paper we consider the class of monotonic, so-called
max-closed valued constraints. Our main contributions are
new proofs of certain recent results on the expressive power
of max-closed valued constraints [5]. The proofs presented

Preprint submitted to Information Processing Letters February 6, 2009

here use a very different approach: they do not rely on the
algebraic approach, but are based on an explicit represen-
tation of valued constraints. Although some of the proofs
presented here are simple and considered folklore, we also
present new and more involved proofs, thus providing a
logical approach to the expressive power of VCSP.

VCSP instances with max-closed valued constraints are
well known to be solvable in polynomial time (generalising
the tractable language for the standard Satisfiability
problem consisting of Horn clauses) [13,4], but much less
is known about their expressive power. The new proofs
presented here have a number of interesting new features:

First, the alternative proofs are simpler, not requiring the
machinery of the algebraic approach. Moreover, they are
constructive and thus give new techniques for studying val-
ued constraint satisfaction problems from the logical point
of view, as has proven useful in the propositional case [7].

Second, recent progress on the expressive power of sub-
modular valued constraint has shown that both the alge-
braic approach and the non-algebraic approach, presented
in this paper, can play important roles in investigating the
expressive power of valued constraints. In particular, a com-
bination of these two approaches has proved particularly
effective.

Submodular constraints are a key concept in operational
research and combinatorial optimisation, see for exam-
ple [16,20,19]. As submodular valued constraints can be
characterised as min-max-closed valued constraints [4],
understanding the expressive power of max-closed valued
constraints is a natural first step towards complete un-
derstanding of the expressive power of submodular valued
constraints.

Moreover, the techniques presented in this paper have
been recently used successfully. First, using explicit rep-
resentations of submodular valued constraints, Živný and
Jeavons showed [23] a new class of submodular valued con-
straints of arbitrary arities expressible by binary submodu-
lar valued constraints, thus describing a new class of VCSP
instances which can be solved efficiently using Min-Cut.
This class was independently discovered in [21]. Next, us-
ing a combination of the explicit representation of sub-
modular valued constraints and certain algebraic results,
Živný et al. showed [22] a novel class of submodular val-
ued constraints which can be solved efficiently using Min-
Cut. Furthermore, they also showed that there are sub-
modular valued constraints which cannot be expressed by
binary submodular valued constraints [22], thus answering
an open problem which has been considered within several
different contexts in computer science, including computer
vision, artificial intelligence, and pseudo-Boolean optimi-
sation. This provides an example how important it is to
understand various aspects of the expressive power of val-
ued constraints. We believe that understanding both the
algebraic and non-algebraic aspects of the expressive power
of valued constraints can contribute to the development of
better algorithms for discrete optimisation problems.

2. Background

In the original definition of the valued constraint
satisfaction problem (VCSP) given in [18], costs were
allowed to lie in any positive totally ordered monoid called
a valuation structure. For our purposes it is sufficient to
consider costs which lie in the set N consisting of all natural
numbers (including zero) together with infinity 3 .

Given some fixed set D, a function from Dk to N will be
called a cost function. If the range of φ lies within {0,∞},
then φ is called a crisp cost function. Note that crisp cost
functions correspond precisely to relations. If the range of
φ lies entirely within N, then φ is called a finite-valued cost
function. Finally, if φ takes both finite and infinite values,
then φ is called a general cost function.
Definition 1 An instance I of VCSP is a triple 〈V,D, C〉,
where V is a finite set of variables, which are to be assigned
values from the set D, and C is a set of valued constraints.
Each c ∈ C is a pair c = 〈v, φ〉, where v is a tuple of variables
of length m, called the scope of c, and φ : Dm → N is a cost
function. An assignment for the instance I is a mapping s
from V to D. We extend s to a mapping from V k to Dk on
tuples of variables by applying s component-wise. We denote
by A the set of all assignments. The cost of an assignment
s is defined as follows:

CostI(s) =
∑
〈v,φ〉∈C

φ(s(v)).

A solution to I is an assignment with minimum cost.
The VCSP is a very general framework which allows us

to describe many optimisation problems, including many
NP-hard problems [7,14,8,17]. Various restrictions which
give rise to classes of problems solvable in polynomial time
have been studied in the literature [4,11].

In any VCSP instance, the variables listed in the scope
of each valued constraint are explicitly constrained, in the
sense that each possible combination of values for those
variables is associated with a given cost. Moreover, if we
choose any subset of the variables, then their values are
constrained implicitly in the same way, due to the com-
bined effect of the valued constraints. This motivates the
concept of expressibility for cost functions, which is defined
as follows:
Definition 2 For any VCSP instance I = 〈V,D, C〉, and
any tuple v of m variables of I, the projection of I onto v,
denoted πv(I), is them-ary cost function defined as follows:

πv(I)(x) = min{CostI(s) | s ∈ A, s(v) = x}.

We say that a cost function φ is expressible over a valued
constraint language Γ if there exists an instance I ∈ VCSP
such that all cost functions in I are from Γ and a tuple v of

3 See [6] for a discussion of why limiting ourselves to the N valuation

structure is not a severe restriction.

2

variables of I such that πv(I) = φ. We call the pair 〈I,v〉
a representation of φ by Γ. 4

Example 3 Let φ be the ternary cost function which re-
turns the sum of its arguments. For instance, the assign-
ment defined by s(v1) = 1, s(v2) = 2, s(v3) = 2 has cost
φ(〈1, 2, 2〉) = 1 + 2 + 2 = 5. Now let I = 〈V,D, C〉 with
V = {v1, v2, v3}, D = {1, 2, 3} and C contains the con-
straint 〈〈v1, v2, v3〉, φ〉 and the (crisp) constraint v1 6= v3.
The projection of I onto v = 〈v1, v2〉 is the binary cost func-
tion such that πv(I)(x1, x2) = x1 + x2 + 1 if x1 6= 1, and
πv(I)(1, x2) = x2 + 3. The intuition is that if x1 6= 1, then
the assignment to v1, v2 can be completed with v3 = 1, and
otherwise it can be completed with v3 = 2 (since 1 violates
v1 6= v3 and thus yields an infinite cost, which is bigger than
the finite cost obtained by assigning v3 = 2).

Note that the notion of expressibility for crisp cost func-
tions (=relations) corresponds to the standard notion of
expressibility using conjunction and existential quantifica-
tion (primitive positive formulas) [2]. We denote by 〈Γ〉 the
expressive power of Γ which is the set of all cost functions
expressible over Γ up to additive and multiplicative con-
stants. 5

From now on, we assume D is totally ordered with some
relation <, and we use < to define a partial order on tuples
component-wise. We also use the function max component-
wise on tuples.
Definition 4 A cost function φ : Dk → N is called max-
closed if for every u, v ∈ Dk, 2φ(max(u, v)) ≤ φ(u) +φ(v).

The class of max-closed relations was first introduced
in [13] and shown to be tractable. In other words, any
VCSP instance with max-closed relations over a finite set
was shown to be polynomial-time solvable. The class of gen-
eral and finite-valued max-closed cost functions was intro-
duced and shown to be tractable in [4].
Lemma 5 ([4, Lemma 6.14]) If φ is max-closed, then
φ is finitely antitone, that is, for all tuples u, v with
φ(u), φ(v) <∞, u ≤ v implies φ(u) ≥ φ(v).
Definition 6 For every d ≥ 2, we define the following:
– Rd,m denotes the set of all relations of arity at most m

over a domain of size d, and Rd = ∪m≥0 Rd,m;
– Rmax

d,m denotes the set of all max-closed relations of ar-
ity at most m over an ordered domain of size d, and
Rmax
d = ∪m≥0 Rmax

d,m ;
– Fd,m denotes the set of all finite-valued cost functions of

arity at most m over a domain of size d, and Fd = ∪m≥0

Fd,m;
– Fmax

d,m denotes the set of all finite-valued max-closed cost
functions of arity at most m over an ordered domain of
size d, and Fmax

d = ∪m≥0 Fmax
d,m .

– Gd,m denotes the set of all general cost functions of arity
at mostm over a domain of size d, and Gd = ∪m≥0Gd,m;

4 The pair 〈I,v〉 is also known as a gadget for expressing φ over

Γ [5], or a constraint network [8], or an implementation [7].
5 This is only due to technical reasons, but it does not change the

complexity of the language, that is, L and 〈L〉 remain polynomial-
time equivalent to each other whether additive and multiplicative

constants are allowed or not [3].

– Gmax
d,m denotes the set of all general max-closed cost func-

tions of arity at most m over an ordered domain of size
d, and Gmax

d = ∪m≥0 Gmax
d,m .

3. Results

Theorem 7 ([5], alternative proof) For every d ≥ 3,
(i) R2 = 〈R2,3〉;

(ii) Rmax
2 = 〈Rmax

2,3 〉;
(iii) Rd = 〈Rd,2〉;
(iv) Rmax

d = 〈Rmax
d,2 〉;

(v) Gmax
d ⊆ 〈Rmax

d,2 ∪ Fmax
d,1 〉;

(vi) Gmax
2 ⊆ 〈Rmax

2,3 ∪ Fmax
2,1 〉.

Theorem 7 was originally proved in [5] using algebraic
properties of cost functions: in the case of relations using
so-called polymorphisms [2] and in the case of general cost
functions using so-called fractional polymorphisms [3]. Here
we give a different proof using explicit representations of
cost functions which does not rely on these algebraic prop-
erties.

PROOF.
(i) It is well known that any relation R ∈ R2 can be

expressed as a propositional formula ψ in conjunctive
normal form: simply a conjunction of clauses which
disallow tuples not in R . By the standard SAT to 3-
SAT reduction [9], which replaces a clause (l1 ∨ l2 ∨
. . . ∨ lk) with

(l1∨ l2∨¬y1)∧ (y1∨ l3∨¬y2)∧ . . .∧ (yk−3∨ lk−1∨ lk)

using new variables y1, . . . , yk−3, ψ is equivalent to
∃y1, . . . , yk−3ψ

′ where ψ′ consists of clauses of length
at most three. Hence 〈ψ′, 〈l1, . . . , lk〉〉 is a representa-
tion of ψ by R2,3.

(ii) It is known [13,10] that a relation is max-closed if
and only if it can be represented by a conjunction of
anti-Horn clauses, that is, clauses of the form (x1 ≥
a1∨· · ·∨xk ≥ ak) or (x1 ≥ a1∨· · ·∨xk ≥ ak∨y ≤ b),
where a1, . . . , ak, b are domain values. In the Boolean
domain this corresponds to the condition that every
clause has at most one negated literal. It is easy to
verify that the standard SAT to 3-SAT reduction in
the proof of (i) preserves the anti-Horn form of clauses
(consider the possibly one negated variable as the last
literal). Therefore, the proof of (i) proves (ii) as well.

(iii) Because every relation is logically equivalent to some
conjunction of clauses [13,10], the proof of (i) gives
a weaker result that Rd ⊆ 〈Rd,3〉. We need to show
how to express a clauseC of length 3 (over the domain
D, where d = |D| ≥ 3) as a conjunction of clauses
of length 2. Let D = {1, . . . , d} and C = (U1(x1) ∨
U2(x2) ∨ U3(x3)) for some literals (unary relations)
Ui, 1 ≤ i ≤ 3. We claim that C is equivalent to
∃yC ′ = (U1(x1)∨N1(y))∧(U2(x2)∨N2(y))∧(U3(x3)∨
N3(y)) where y is a new variable andN1(y) = D\{1}
(“not 1”), N2(y) = D \ {2} and N3(y) = {1, 2}. It

3

is not difficult to see that a satisfying assignment of
C can be extended to a satisfying assignment of C ′

and conversely, a satisfying assignment of C ′ gives a
satisfying assignment of C.

(iv) It is enough to show that any clause of the form (x1 ≥
a1 ∨ · · · ∨ xk ≥ ak) or (x1 ≥ a1 ∨ · · · ∨ xk ≥ ak ∨
y ≤ b), where a1, . . . , ak, b are domain values, can be
expressed by a conjunction of anti-Horn clauses over
at most two variables.

Let C be a clause in Rmax
d :

C = (x1 ≥ a1 ∨ x2 ≥ a2 ∨ · · · ∨ xk ≥ ak ∨ y ≤ b)

(the case without the y literal is even easier and can
be handled similarly).

For all i = 1, . . . , k−1, let yi be a fresh variable with
d values, so at least three values, say 1, 2, 3 with the
natural order. We define the following conjunction of
clauses ψ, where yi ∈ {1, 3} is used as a shorthand for
yi ≥ 3∨ yi ≤ 1 (possible values less than 1 or greater
than 3 do not matter) as follows:

ψ = (x1 ≥ a1 ∨ y1 ∈ {1, 3})

∧ (y1 ≤ 2 ∨ x2 ≥ a2) ∧

∧
k−1∧
i=2

 (yi−1 ≥ 2 ∨ yi ∈ {1, 3})

∧ (yi ≤ 2 ∨ xi+1 ≥ ai+1)

∧ (yk−1 ≥ 2 ∨ y ≤ b).

The intuition is given by reading the second clause
as (y1 ≥ 3 → x2 ≥ a2) and the third one as (y1 ≤
1 → y2 ∈ {1, 3}). Since the first clause reads “either
x1 ≥ a1 or y1 ≥ 3 or y1 ≤ 1”, together with the above
implications this gives “either x1 ≥ a1 or x2 ≥ a2

or y2 ∈ {1, 3}”. Iterating this reasoning, one can see
intuitively why the construction works.

More formally, we show that C is logically equiva-
lent to ∃y1 . . . yk−1ψ. First, let t be a tuple satisfying
ψ. Then if t satisfies x1 ≥ a1, we are done. Other-
wise, because of the first clause in ψ, t must satisfy
(1) y1 ≥ 3 or (2) y1 ≤ 1. In case (1), because of the
second clause in ψ, t must satisfy x2 ≥ a2 and we are
done. In case (2), because of the third clause in ψ,
t must satisfy y2 ≥ 3 ∨ y2 ≤ 1, and we proceed by
induction.

Conversely, let t be a tuple satisfying C. We show
that t can be completed into a model of ψ by assign-
ments to the yi’s.

Assume first that t satisfies x1 ≥ a1. Then com-
pleting t with t(yi) = 2 for all i = 1, . . . , k − 1 yields
a model of ψ whatever the values assigned by t to
x2, . . . , xk, y. This can be seen by examining each
clause in ψ.

Now assume that t satisfies xi0 ≥ ai0 for some i0 ∈
{2, . . . , k}. Then completing t with t(yi) = 1 for all
i = 1, . . . , i0 − 2, t(yi0−1) = 3 and t(yi) = 2 for all
i = i0, . . . , k − 1 again yields a model of ψ.

Finally, assume that t satisfies y ≤ b. Then com-
pleting t with t(yi) = 1 for all i = 1, . . . , k − 1 yields
a model of ψ, which finishes the proof.

Note that this proof makes clear why the same ar-
gument does not work for d = 2. Indeed, the “hole”
in literal yi ∈ {1, 3} is necessary, since otherwise this
literal would be tautologous and thus, so would every
second clause be in ψ. We showed in (ii) that in the
Boolean case, ternary relations are sufficient and it is
well known (see [5]) that they are indeed necessary.

(v) Let φ be an m-ary general max-closed cost function,
and write x1, . . . , xm for the variables. Let y1, . . . , yK
be variables (with d values, say 1, . . . , d), and let K =
max{φ(x) | φ(x) < ∞} be the biggest finite cost in
the range of φ. Intuitively, a cost of k for a tuple will
be encoded by y1, . . . , yk assigned a cost of 1 (and the
others 0).

We first encode infinite costs. Let φR be the rela-
tion {u | φ(u) < ∞}, that is, the crisp cost function
assigning a cost of 0 to exactly these tuples assigned a
finite cost by φ (and∞ to the others). It turns out that
this relation is max-closed. Indeed, for all u, v ∈ φR
we have φ(u), φ(v) < ∞ by definition of φR. Since φ
is max-closed we have 2φ(max(u, v)) ≤ φ(u)+φ(v) <
∞, so φ(max(u, v)) < ∞ and thus, max(u, v) ∈ φR.
So φR is max-closed, that is, φR ∈ Rmax

d .
We now encode finite costs. For an m-tuple t with

φ(t) <∞, write kt for φ(t). We letψt be the anti-Horn
formula

∧kt

j=1((
∨m
i=1 xi > t[i])∨yj ≤ 1). Observe that

this formula reads x ≤ t→ y1 ≤ 1 ∧ · · · ∧ ykt ≤ 1.
Finally, we define the anti-Horn formula ψ to be

ψR ∧
∧
t∈Dm ψt, where ψR is an anti-Horn formula

equivalent to φR. By (iv), this formula can be ex-
pressed over Rmax

d,2 .
The formula ψ encodes the cost of every tuple as

a number of yj ’s assigned 1. We thus add, to every
variable yj , j = 1, . . . ,K, the cost function µ defined
by µ(1) = 1 and µ(2) = · · · = µ(d) = 0. Clearly, this
function is max-closed and therefore in Fmax

d,1 .
We now show that 〈ψ, 〈x1, . . . , xm〉〉 is a represen-

tation of φ. Let t be anm-ary tuple. Assume first that
kt = φ(t) is finite. Then ψ contains the subformula

kt∧
j=1

((
m∨
i=1

xi > t[i]) ∨ yj ≤ 1).

Since obviously t[i] > t[i] holds for no i, every assign-
ment which satisfies ψ sets variables y1, . . . , ykt

to 1
and thus, has a cost of at least kt. Now let st be the
assignment which is equal to t over x1, . . . , xm and
which assigns 1 to y1, . . . , ykt

and 2 to yk+1, . . . , yK .
We show that st satisfies ψ, which gives an assign-
ment of cost at most kt.

First let ψt′ ∈ ψ, and recall that ψt′ reads x ≤
t′ → y1 ≤ 1 ∧ · · · ∧ yφ(t′) ≤ 1. If t ≤ t′, then since
φ is max-closed and both costs are finite (by defini-
tion of ψt′), we have φ(t) ≥ φ(t′) by Lemma 5. It

4

follows {y1, . . . , yφ(t′)} ⊆ {y1, . . . , ykt
}, so st assigns

1 to y1, . . . , yφ(t′) and thus satisfies ψt′ . Otherwise, if
t 6≤ t′, then t[i] > t′[i] for some i and thus st satis-
fies ψt′ (it does not satisfy its premises). Finally, st
satisfies ψt′ for all t′.

Now st satisfies ψR by definition of φR, since st
equals t over x1, . . . , xm and φ(t) <∞ by assumption.
We finally have that for all t with finite cost under φ,
st satisfies ψ and thus, the projection of ψ assigns a
cost of at most kt to t. Since the cost is at least kt as
shown above, we have the result.

Now if t has infinite cost under φ, then by definition
of φR we have that t does not satisfy ψ and thus,
has infinite cost under the projection of ψ as well, as
desired.

(vi) The same as the proof of (v). In this case ψ is a re-
lation over the Boolean domain, and therefore ψ can
be expressed, by (ii), over Rmax

2,3 .

Acknowledgements The authors would like to thank
the anonymous reviewers for useful comments on an earlier
draft of this paper. Stanislav Živný would like to thank
Peter Jeavons for many helpful discussions and ongoing
support and encouragement.

References

[1] Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex,

T., Verfaillie, G.: Semiring-based CSPs and valued CSPs:
Frameworks, properties, and comparison. Constraints 4 (1999)

199–240

[2] Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the complexity
of constraints using finite algebras. SIAM Journal on Computing

34(3) (2005) 720–742

[3] Cohen, D., Cooper, M., Jeavons, P.: An algebraic
characterisation of complexity for valued constraints. In:

Proceedings of the 12th International Conference on Principles

and Practise of Constraint Programming (CP’06). Volume 4204
of LNCS. (2006) 107–121

[4] Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: The complexity

of soft constraint satisfaction. Artificial Intelligence 170 (2006)
983–1016

[5] Cohen, D.A., Jeavons, P.G., Živný, S.: The expressive power

of valued constraints: Hierarchies and collapses. Theoretical
Computer Science 409(1) (2008) 137–153

[6] Cooper, M.: High-order consistency in valued constraint

satisfaction. Constraints 10 (2005) 283–305

[7] Creignou, N., Khanna, S., Sudan, M.: Complexity Classification
of Boolean Constraint Satisfaction Problems. Volume 7 of SIAM
Monographs on Discrete Mathematics and Applications. SIAM
(2001)

[8] Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)

[9] Garey, M., Johnson, D.: Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, San Francisco,
CA. (1979)

[10] Gil, A., Hermann, M., Salzer, G., Zanuttini, B.: Efficient
algorithms for description problems over finite totally ordered

domains. SIAM Journal on Computing 38(3) (2008) 922–945

[11] Grohe, M.: The complexity of homomorphism and constraint
satisfaction problems seen from the other side. Journal of the
ACM 54(1) (2007)

[12] Jeavons, P.: On the algebraic structure of combinatorial
problems. Theoretical Computer Science 200 (1998) 185–204

[13] Jeavons, P., Cooper, M.: Tractable constraints on ordered

domains. Artificial Intelligence 79(2) (1995) 327–339
[14] Khanna, S., Sudan, M., Trevisan, L., Williamson, D.: The

approximability of constraint satisfaction problems. SIAM J. on
Computing 30(6) (2001) 1863–1920

[15] Montanari, U.: Networks of constraints: Fundamental properties

and applications to picture processing. Information Sciences 7
(1974) 95–132

[16] Nemhauser, G., Wolsey, L.: Integer and Combinatorial

Optimization. John Wiley & Sons (1988)
[17] Rossi, F., van Beek, P., Walsh, T., eds.: The Handbook of

Constraint Programming. Elsevier (2006)

[18] Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint
satisfaction problems: hard and easy problems. In: Proceedings

of the 14th International Joint Conference on Artificial

Intelligence (IJCAI’95). (1995)
[19] Schrijver, A.: Combinatorial Optimization: Polyhedra and

Efficiency. Volume 24 of Algorithms and Combinatorics.

Springer-Verlag (2003)
[20] Topkis, D.: Supermodularity and Complementarity. Princeton

University Press (1998)
[21] Zalesky, B.: Efficient determination of Gibbs estimators with

submodular energy functions. arXiv:math/0304041v1 (February

2008)
[22] Živný, S., Cohen, D.A., Jeavons, P.G.: The Expressive Power

of Binary Submodular Functions. Technical report (November

2008) arXiv:0811.1885v1 [cs.DM], Submitted for publication.
[23] Živný, S., Jeavons, P.G.: Classes of Submodular Constraints

Expressible by Graph Cuts. In: Proceedings of the

14th International Conference on Principles and Practice of
Constraint Programming (CP’08). Volume 5202 of LNCS. (2008)

112–127

5

