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Abstract
A celebrated result of Håstad established that, for any constant ε > 0, it is NP-hard to find an
assignment satisfying a (1/|G| + ε)-fraction of the constraints of a given 3-LIN instance over an
Abelian group G even if one is promised that an assignment satisfying a (1 − ε)-fraction of the
constraints exists. Engebretsen, Holmerin, and Russell showed the same result for 3-LIN instances
over any finite (not necessarily Abelian) group. In other words, for almost-satisfiable instances of
3-LIN the random assignment achieves an optimal approximation guarantee. We prove that the
random assignment algorithm is still best possible under a stronger promise that the 3-LIN instance
is almost satisfiable over an arbitrarily more restrictive group.
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1 Introduction

The PCP theorem [3, 2, 20] is one of the jewels of computational complexity and theoretical
computer science more broadly [1]. One of its equivalent statements is as follows: The
maximum number of simultaneously satisfiable constraints of a Constraint Satisfaction
Problem, or CSP for short, is NP-hard to approximate within some constant factor. That
is, while NP-hardness of CSPs means that it is NP-hard to distinguish instances that are
satisfiable from those that are unsatisfiable, the PCP theorem shows that there is an absolute
constant α < 1 such that it is NP-hard to distinguish satisfiable CSP instances from those
in which strictly fewer than an α-fraction of the constraints can be simultaneously satisfied.
Thus it is NP-hard to find an assignment that satisfies an α-fraction of the constraints even
if one is promised that a satisfying assignment exists. For some CSPs, as we shall see shortly,
the optimal value of α is known.

A classic example of a CSP is 3-SAT, the satisfiability problem of CNF-formulas in which
each clause contains 3 literals. The random assignment gives a method to find an assignment
that satisfies a 7/8-fraction of the clauses. Håstad famously showed that this is optimal in
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13:2 Optimal Inapproximability of Promise Equations over Finite Groups

the following sense: For any constant ε > 0, it is NP-hard to find an assignment satisfying a
(7/8 + ε)-fraction of the clauses of a 3-SAT instance even if one is promised that a satisfying
assignment exists [25].

Another classic CSP is 3-LIN, the problem of solving linear equations in 3 variables over
the Boolean domain {0, 1}. If all equations can be satisfied simultaneously then a satisfying
assignment can be found in polynomial time by Gaussian elimination. What can be done
if no satisfying assignment exists? As for 3-SAT, the random assignment gives a method
to find a somewhat satisfying assignment, namely one that satisfies a 1/2-fraction of the
constraints. As it turns out, this is best possible even for instances of 3-LIN that are almost
satisfiable. In detail, Håstad showed that for any constant ε > 0, it is NP-hard to find an
assignment satisfying a (1/2 + ε)-fraction of the constraints of a 3-LIN instance even if one
is promised that an assignment satisfying a (1 − ε)-fraction of the constraints exists. In fact,
Håstad established optimal inapproximability results for 3-LIN over any finite Abelian group,
not just {0, 1}. This result was later extended by Engebretsen, Holmerin, and Russell to all
finite groups [23]. Since these foundational works, Guruswami and Raghavendra [24] showed
NP-hardness of finding a barely satisfying assignment for a 3-LIN instance over the reals
(and thus also over the integers) even if a nearly satisfying assignment is promised to exist
over the integers. The same result was later established for 2-LIN for large enough cyclic
groups [35]. Khot and Moshkovitz [28] studied inapproximability of 3-LIN over the reals.

In this work, we strengthen the optimal inapproximability results for 3-LIN over finite
groups by establishing NP-hardness of beating the random assignment threshold even if
the instance is almost satisfiable in an arbitrarily more restrictive setting. Formally, this is
captured by fixing (not one but) two groups and a homomorphism between them, following
the framework of promise CSPs [5, 8]. In detail, (decision) promise CSPs [8] can be seen as
a qualitative form of approximation: Each constraint comes in two forms, a strong one and
a weak one. The promise is that there is a solution satisfying all constraints in the strong
form while the (potentially easier) goal is to find a solution satisfying all constraints in the
weak form. An example of a strong vs. weak constraint on the same, say Boolean, domain is
1-in-3 vs NAE, where the former is

{(0, 0, 1), (0, 1, 0), (1, 0, 0)}

and the latter is

{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

NAE is weaker as the relation contains more tuples. While these two constraint relations
capture the well-known NP-hard problems of 1-in-3-SAT and Not-All-Equal-SAT respect-
ively [38], finding an NAE-assignment turns out to be doable in polynomial time under the
promise that a 1-in-3-assignment exists [15]!1

For constraints on different domains, the notion of strong vs. weak constraint is captured
by a homomorphism between the (sets of all) constraint relations; in the example above, the
homomorphism is just the identity function. The exact solvability of 3-LIN in the promise
setting was resolved in [32].

Recent work of Barto et al. [9] considered (quantitative) approximation of promise CSPs.
In the context of 3-LIN, here are two simple examples captured by this framework. First,

1 The algorithm involves solving an instance of 3-LIN over the integers and rounding positive integers to
1 and non-positive integers to 0, demonstrating the importance of 3-LIN among promise CSPs.
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let G be a group and H be a subgroup of G. Given an almost-satisfiable system over the
subgroup H, maximise the number of satisfied equations over G. Our results imply that
beating the random assignment over H is NP-hard. In the second example, consider a group
G, a normal subgroup H, and an almost-satisfiable system over G. The goal this time is
to maximise the number of satisfied equations in the system over the quotient G/H. Our
results show that doing better than the random assignment over G/H is NP-hard. More
generally, going beyond subgroups and quotients of a given group, we fix two groups G1 and
G2 and a group homomorphism φ from a subgroup H1 of G1 to a subgroup H2 of G2 with the
property that φ extends to a group homomorphism from G1 to G2. Given an almost-satisfiable
system of equations over G1 with constants in H1, the goal is to maximise the number of
satisfied equations over G2 where the constants are interpreted in H2 via φ. Our main result
establishes that doing better than the random assignment over H2 is NP-hard, cf. Theorem 3.
Thus we give an optimal inapproximability result for a natural and fundamental fragment of
promise CSPs, systems of linear equations.

Other fragments of promise CSPs whose quantitative approximation has been studied
includes almost approximate graph colouring [22, 21, 29, 26], approximate colouring [33],
and approximate graph homomorphism [34]. Recent work of Brakensiek, Guruswami, and
Sandeep [16] studied robust approximation of promise CSPs; in particular, they observed that
Raghavendra’s celebrated theorem on approximate CSPs [36] applies to promise CSPs, which
in combination with the work of Brown-Cohen and Raghavendra [17] gives an alternative
framework for studying quantitative approximation of promise CSPs.

The general approach for establishing inapproximability of systems of equations, going
back to [25, 23], can be seen as a reduction from another CSP that is hard to approximate.
In this reduction, one initially transforms an instance of the original CSP to a system of
equations of the form xyz = 1. To guarantee the soundness of this reduction, one needs
to show that any assignment that beats the random assignment in the target system of
equations can be transformed into a “good” assignment of the original instance. To do this
it is necessary to rule out vacuous assignments (e.g., the assignment that sends all variables
to the group identity) through a procedure called folding, which introduces constants in the
system of equations. Afterwards, the soundness bounds are shown by performing Fourier
analysis on certain functions derived from the system. Our proof follows this general approach.
The main obstacle to applying the techniques of [23] directly is the fact that in our setting the
constants lie in a proper subgroup of the ambient group, which precludes us from applying
classical folding over groups. Instead, we use a weaker notion of folding. This, however,
implies that in the soundness analysis we have to take care of functions whose Fourier
expansion has non-zero value for the trivial term. To tackle this issue, we consider the
behaviour of irreducible group representations when they are restricted to the subgroup
of constants via Frobenius Reciprocity. We note that, as in the non-promise setting, the
proof in the Abelian case is much simpler, particularly using that the set of characters of an
Abelian group corresponds to its Pontryagin dual. Thus, much of the complicated machinery
in the paper is to obtain the main result for all groups.

Before formal description of our results, we mention other related work. First, extending
the work from [25], Austrin, Brown-Cohen, and Håstad established optimal inapproximability
of 3-LIN over Abelian groups with a universal factor graph [4]. Similarly, Bhangale and
Stankovic established optimal inapproximability of 3-LIN over non-Abelian groups with a
universal factor graph [14]. Second, unlike over Abelian groups, for 3-LIN over non-Abelian
groups finding a satisfying assignment is NP-hard even under the promise that one exists.
There is a folklore randomised algorithm for satisfiable 3-LIN instances over non-Abelian

ICALP 2025
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groups (whose approximation factor depends on the group G and is 1/|G| if G is a so-called
perfect group but can beat the naive random assignment for non-perfect groups). Bhangale
and Khot showed that this algorithm is optimal [10], spawning a number of follow-up works
going beyond 3-LIN, e.g. [11, 12, 13]. Third, going beyond 3-LIN, building on a long line of
work Chan established optimal (up to a constant factor) NP-hardness for CSPs [19]. There
are other works on various inapproximability notions for CSPs, e.g., [6, 30, 31]. We note that
As in the non-promise setting, the proof in the Abelian case is much simpler, particularly
using that the set of characters of an Abelian group corresponds to its Pontryagin dual.
Thus, much of the complicated machinery in the paper could be avoided. Finally, we mention
that Khot’s influential Unique Games Conjecture [27] postulates, in one of its equivalent
forms, NP-hardness of finding a barely satisfying solution to a 2-LIN instance given that an
almost-satisfying assignment exists (for a large enough domain size).

1.1 Preliminaries and notation
We use J·K to denote the Iverson bracket; i.e., JP K is 1 if P is true and 0 otherwise. As usual,
[n] denotes the set {1, 2, . . . , n}.

We consider matrices whose sets of indices are arbitrary finite sets. Given two finite sets
N and M , an N ×M complex matrix A consists of a family of complex numbers Ai,j indexed
by pairs i ∈ N , j ∈ M . Algebraic notions such as matrix product, trace, and transpose
are defined in the natural way. Given an N1 × N2 complex matrix A, and an M1 × M2
complex matrix B, the tensor product A ⊗ B is an (N1 × M1) × (N2 × M2) matrix, where
(A ⊗ B)(i,s)(j,t) = Ai,jBs,t for each i ∈ N1, j ∈ N2, s ∈ M1, t ∈ M2. The group of invertible
N × N complex matrices (equipped with matrix multiplication and matrix inversion) is
denoted by GL(N), and the set of N × M complex matrices is denoted by CN×M .

Let X and Y be sets. We identify tuples y ∈ Y X with functions y : X → Y , where the
xth component of y is given by y(x). Composition is defined from left to right in a natural
way, i.e., if y ∈ Y X and z ∈ ZY , then z ◦ y ∈ XZ (also denoted just by zy when there is no
ambiguity) is defined by (z ◦ y)(x) = z(y(x)) for each x ∈ X.

A subset H ⊆ G of a group G is called a subgroup of G, denoted by H ≤ G, if H equipped
with the group operation of G forms a group. Given a group G, a subgroup H of G, and an
element g ∈ G, the right coset of H in G by g is the set Hg := {hg | h ∈ H}. The set of
right cosets of H in G is denoted by H\G. Let N be a finite set. The N th direct power of
G, denoted by GN , is the group whose elements are N -tuples g ∈ GN of elements from G,
and where the group operation is taken component-wise, i.e., g · h(n) = g(n) · h(n) for each
n ∈ N . If H ≤ G, we define (h · g)(n) = h · g(n) for each h ∈ H and g ∈ GN . With this
notation, the notion of coset extends to include the right cosets of H in GN in a natural way.

A homomorphism from a group G1 to a group G2 is a map φ : G1 → G2 which satisfies
that φ(g · h) = φ(g) · φ(h) for every g, h ∈ G1. The domain and image of φ are denoted
Dom(φ) and Im(φ) respectively. Let N be a finite set, Gi groups, i ∈ [2], Hi ≤ Gi, and
φ : H1 → H2 be a homomorphism. We say that a function f : GN

1 → G2 is folded over φ if
f(hg) = φ(h)f(g) for all h ∈ H1 and g ∈ GN

1 . Given an arbitrary function f : GN
1 → G2 and

a homomorphism between subgroups, there is a natural way to construct a folded function
that resembles f . Fix an arbitrary representative from each right coset of H1 in GN

1 . For each
g ∈ GN , denote by g† the representative of H1g, and let hg ∈ H1 be such that g† = hgg.
Then the folding of f over φ (with respect to this choice of representatives) is the map
fφ : GN

1 → G2 given by fφ(g) = φ(h−1
g )f(g†).

Fix a pair of disjoint finite sets D, E, called the label sets, and a subset Π ⊆ ED of
labeling functions. An instance of the Label Cover problem is a bipartite graph with vertex
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set U ⊔ V and a labeling function πuv ∈ Π for each edge {u, v} in the graph. The task is to
decide whether there is a pair of assignments hD : U → D, hE : V → E that satisfies all the
constraints, i.e., such that πuv(hD(u)) = hE(v) for each edge {u, v}.

Given additionally a pair of rational constants 0 < s ≤ c ≤ 1, the gap version of this
problem, known as the Gap Label Cover problem with completeness c and soundness s and
denoted GLCD,E(c, s), is the problem of distinguishing instances where a c-fraction of the
constraints can be satisfied from instances where not even an s-fraction of the constraints
can be satisfied.

The hardness of Gap Label Cover with perfect completeness stated below is a consequence
of the PCP theorem [2, 3] and the Parallel Repetition Theorem [37].

▶ Theorem 1. For every α > 0 there exist finite sets D, E such that GLCD,E(1, α) is
NP-hard.

Fourier Analysis

We follow closely [39] for our main definitions and preliminary results. A representation
of a group G is a group homomorphism γ : G → GL(Nγ) for some finite set Nγ . We call
|Nγ | the dimension of γ and write dimγ = |Nγ |. Given a pair of indices i, j ∈ N2

γ , γi,j

denotes the (i, j)-th entry of γ. The character of a representation γ, denoted by χγ , is its
trace. The trivial representation, denoted 1, maps all group elements to the number one (i.e.,
the one-dimensional identity matrix). A representation γ is said to be unitary if its image
contains only unitary matrices.

We say that two representations α and β of some group G are equivalent, written α ≃ β,
if there is an invertible Nβ × Nα complex matrix T such that α(g) = T −1β(g)T for all g ∈ G.
In particular, dimα = dimβ . Similarly, the representation β is said to be a sub-representation
of α if there is an invertible matrix T , such that T −1α(g)T can be written as(

β(g) ∗
0 ∗

)
for all g ∈ G. The representation β is said to be irreducible if all its sub-representations are
equivalent to itself. If β is irreducible, its multiplicity in α is the non-negative integer n

satisfying that α is equivalent to a block diagonal representation with two diagonal blocks
α1, α2, where (1) α1 is another block-diagonal representation consisting of n diagonal blocks
equal to β, and (2) α2 does not have β as a sub-representation.

Given a group G, we use Ĝ to denote some arbitrary and fixed complete set of inequivalent
irreducible unitary representations of G; such a set exists by, e.g., [39, Proposition 1].

The space L2(G) is the vector space of complex-valued functions over G, equipped with
the following inner product:2

⟨F, H⟩ = 1
|G|

∑
g∈G

F (g)H(g).

Let G be a group, and let F : G → C be a complex-valued function. Given γ ∈ Ĝ and
i, j ∈ Nγ , the Fourier coefficient F̂ (γi,j) is defined as the product ⟨F, γi,j⟩. The matrix
entries of the representations γ ∈ Ĝ form an orthogonal basis of L2(G), and allow us to
perform Fourier analysis on this space, as stated in the following theorem [39, Theorem 2].

2 Note the additional normalising factor of 1
|G| compared to [39].

ICALP 2025



13:6 Optimal Inapproximability of Promise Equations over Finite Groups

▶ Theorem 2. Let G be a finite group. Then the set

{γi,j | γ ∈ Ĝ, i, j ∈ Nγ}

is an orthogonal basis of L2(G), and dimγ∥γi,j∥2 = 1 for all γi,j. Moreover, the following
hold:
1. Plancherel’s Theorem: Given F ∈ L2(G),

∥F∥2 =
∑

γ∈Ĝ,i,j∈Nγ

dimγ |F̂ (γi,j)|2.

2. Fourier Inversion: Given F ∈ L2(G),

F (g) =
∑

γ∈Ĝ,i,j∈Nγ

dimγ F̂ (γi,j)γi,j(g) for all g ∈ G.

We also consider Fourier transforms of matrix-valued functions F : G → CNF ×NF . Given
γ ∈ Ĝ and indices i, j ∈ Nγ , we define the NF × NF matrix F̂ (γi,j) as the one whose (s, t)-th
entry is F̂s,t(γi,j) for each s, t ∈ NF . In other words,

F̂ (γi,j) = 1
|G|

∑
g∈G

F (g)γi,j(g).

Let N be a finite set. Given a pair of functions function F, H : G → CN×N , we define
their convolution F ∗ H by

(F ∗ H)(g) := 1
|G|

∑
h∈G

F (h)H(h−1g).

We will also need to perform Fourier analysis over powers of the form GD for a given
group G and finite set D. It is possible to identify ĜD with (Ĝ)D [39]. This way, an element
ρ ∈ ĜD is given by a tuple (ρd)d∈D where ρd ∈ Ĝ for each d ∈ D in such a way that

ρ(g) =
⊗
d∈D

ρd(g(d))

for all g ∈ GD. Observe we use superscripts for the “components” of the representation ρ on
the power group GD, rather than subscripts, which we utilise to denote matrix entries. The
degree of ρ, written |ρ|, is the number of indices d ∈ D for which ρd is non-trivial.3

1.2 Results
Let G1,G2 be two groups and φ a group homomorphism with domain Dom(φ) ≤ G1 and
image Im(φ) ≤ G2 that extends to a full homomorphism from G1 to G2. We shall refer to
triples (G1,G2, φ) of this kind as templates. Further, let 0 < s ≤ c ≤ 1 be rational constants.
We consider the problem 3-LIN(G1,G2, φ, c, s) which asks, given a weighted system of linear
equations with exactly three variables in each equation and constants in Dom(φ) that is
c-satisfiable in G1, to decide whether there exists an s-approximation in G2, where the
constants are interpreted through φ.

3 This quantity is called “weight” in [23, 14].
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To be more precise, an instance to 3-LIN(G1,G2, φ, c, s) over a set of variables X is a
weighted systems of linear equations where each equation is of the form

xiyjzk = g

for some x, y, z ∈ X, g ∈ Dom(φ), i, j, k ∈ {−1, 1}, and each equation has a non-negative
rational weight. Without loss of generality, we assume that the weights are normalised, i.e.,
sum up to 1. For t ∈ [2], an assignment f : X → Gt satisfies an equation xiyjzk = g in Gt if
f(x)if(y)jf(z)k = g for t = 1, and f(x)if(y)jf(z)k = φ(g) for t = 2. The task then is to
accept if there is an assignment that satisfies a c-fraction (i.e., a fraction of total weight c)
of equations in G1, and to reject if there is no assignment that satisfies an s-fraction of the
equations in G2. It is easy to verify that, if (G1,G2, φ) is a template and s ≤ c, then the sets
of accept and reject instances are, in fact, disjoint.4

3-LIN(G1,G2, φ, c, s) is trivially tractable when Im(φ) = {1}, so we focus on the case
where |Im(φ)| ≥ 2. The main result of this paper is that 3-LIN(G1,G2, φ, 1 − ϵ, 1/|Im(φ)| + δ)
is NP-hard for all ϵ, δ > 0 for which the problem is well-defined. This is achieved by a
reduction from the Gap Label Cover problem with perfect completeness and soundness
α = δ2/(4κ|G1|κ|G2|4), where κ = ⌈(log2 δ − 2)/(log2(1 − ϵ))⌉.

▶ Theorem 3 (Main). Let ϵ, δ be positive constants satisfying 1 − ϵ ≥ 1/|Im(φ)| + δ. Then,
3-LIN(G1,G2, φ, 1 − ϵ, 1/|Im(φ)| + δ) is NP-hard.
The hardness result in Theorem 3 is tight for many, but perhaps surprisingly not all, templates.
We call a template (G1,G2, φ) cubic if for every h ∈ Im(φ) there is an element g ∈ G2 satisfying
g3 = h. Theorem 3 is tight for cubic templates. Indeed, for these templates, the random
assignment over Im(φ) achieves a 1/|Im(φ)| expected fraction of satisfied equations (and this
can be derandomised, e.g., by the method of conditional expectations).

▶ Theorem 4. Let (G1,G2, φ) be a cubic template and 0 < s ≤ c < 1. Then the following
holds: 3-LIN(G1,G2, φ, c, s) is tractable if s ≤ 1/|Im(φ)| and NP-hard otherwise.

Let us now turn to non-cubic templates. An equation is unsatisfiable if it is of the form
x3 = h or x−3 = h for some h ∈ Dom(φ) such that g3 ̸= φ(h) for all g ∈ G2.5 Note that
a template has unsatisfiable equations if and only if it is non-cubic. Note that the naive
random assignment cannot achieve a positive approximation factor in systems of equations
over non-cubic templates since the system could consist exclusively of unsatisfiable equations.
However, there is a simple algorithm for 3-LIN(G1,G2, φ, c, c/|Im(φ)|) that works even for
non-cubic templates, which we describe next.

Given a weighted system of equations over (G1,G2, φ), consider its set of unsatisfiable
equations. Since φ extends to a full homomorphism, if the total weight of the set of
unsatisfiable equations is more than 1 − c, then the instance cannot be c-satisfiable in G1,
hence, reject. Otherwise, the random assignment over Im(φ) satisfies at least a 1/|Im(φ)|-
fraction of the satisfiable equations over G2, which is at least a c/|Im(φ)|-fraction of the
entire system. It is a simple corollary of Theorem 3 that this algorithm is optimal for
non-cubic groups, leading to the following result. Details are deferred to the full version of
this paper [18].

▶ Theorem 5. Let (G1,G2, φ) be a non-cubic template and 0 < s ≤ c < 1. Then,
3-LIN(G1,G2, φ, c, s) is tractable if s/c ≤ 1/|Im(φ)| and NP-hard otherwise.

4 3-LIN can be alternatively phrased as a promise constraint satisfaction problem, cf. [18] for details.
5 Note that, since φ extends to a homomorphism from G1 to G2, this also implies that g3 ≠ h for all

g ∈ G1.

ICALP 2025



13:8 Optimal Inapproximability of Promise Equations over Finite Groups

The structure of the paper is as follows. The rest of this section gives a sketch of the main
proof: In Section 1.3 we present the reduction from Gap Label Cover to 3-LIN(G1,G2, φ, 1 −
ϵ, 1/|Im(φ)|+δ), and in Section 1.4 we give an overview of the techniques used in the analysis of
this reduction and of the main challenges that arise in extending previous work to the promise
setting. The rest of the paper then gives the main ideas of the technical details. All details
are deferred to the full version of this paper [18], which also relates our results to a recent
theory of Barto et al. [9], who developed a systematic approach to study (in)approximability
of promise CSPs, which includes approximability of promise linear equations, from the
viewpoint of universal algebra. In particular, we show in [18] that the proof of Theorem 3
implies that the collection of symmetries6 of 3-LIN(G1,G2, φ, 1 − ϵ, 1/|Im(φ)| + δ) can be
mapped homomorphically to the collection of symmetries of Gap Label Cover, a condition
that, based on the algebraic theory from [9], is known to guarantee NP-hardness of the
former problem.

1.3 Reduction
For the rest of the section we outline the proof of our main result, Theorem 3. From now on
we fix a template (G1,G2, φ), and positive constants δ, ϵ > 0 with 1/|Im(φ)| + δ ≤ 1 − ϵ. We
define H1 = Dom(φ) ≤ G1 and H2 = Im(φ) ≤ G2.

Our proof follows from a reduction from GLCD,E(1, α) where

α = δ2

4κ|G1|κ|G2|4
, κ =

⌈
log2 δ − 2
log2(1 − ϵ)

⌉
,

and D, E are chosen to be large enough so that GLCD,E(1, α) is NP-hard by the PCP
theorem [2, 3, 37] (cf. Theorem 1). This reduction constructs an instance ΦΣ of 3-LIN(G1,G2,

φ, 1 − ϵ, 1/|H2| + δ) for any given instance Σ of Gap Label Cover as described below.
Let U ⊔ V be the underlying vertex set of Σ, D, E be the disjoint sets of labels, and

πuv be the labeling functions. We fix representatives from each right coset in H1\GD
1 and

H1\GE
1 . Given a tuple x in either GD

1 or GE
1 we write x† for the representative of the coset

H1x. Let X = {ub |u ∈ U, b ∈ GD
1 } ⊔ {va |v ∈ V, a ∈ GE

1 }. Then ΦΣ is the weighted system
of equations over X that contains the equation

va†us1
bs1 us2

cs2 = ga (1)

for each edge {u, v} of Σ, a ∈ GE
1 , b ∈ GD

1 , s1, s2 ∈ {−1, 1}, where c stands for b−1(a◦πuv)−1ν

and ν ∈ GD
1 is a small perturbation factor. The element ga is chosen so that a† = gaa. The

weight of this equation in ΦΣ is the joint probability of the independent events described
in Figure 1.

Let us describe assignments of ΦΣ over Gi for i = 1, 2. Formally, an assignment of ΦΣ
over Gi is a map h : X → Gi. Such an assignment can be described by two families of maps
A = (Av)v∈V from GE

1 to Gi and B = (Bu)u∈U from GD
1 to Gi by letting Av(a) = h(va) for

all v ∈ V, a ∈ GE
1 , and Bu(b) = h(ub) for all u ∈ U, b ∈ GD

1 . It will be more convenient
to talk about the pair (A, B) rather than the map h itself, so we will write ΦGi

Σ (A, B) to
refer to the proportion of equations satisfied by the assignment h. Let us give a more useful
expression for ΦGi

Σ (A, B). When i = 1, we can write

ΦG1
Σ (A, B) = Euv,a,b,

ν,s1,s2

[
JAv(a†)Bu(bs1)s1Bu((b−1(a ◦ πuv)−1ν)s2)s2 = gaK

]
,

6 called the valued minion of plurimorphisms in [9].
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(1) The edge {u, v} is chosen uniformly at random among all edges of Σ.
(2) The elements a and b are chosen uniformly at random from GE

1 and GD
1 respectively.

(3) The element ν ∈ GD
1 is chosen so that for each d ∈ D, independently, ν(d) = 1G1 with

probability 1 − ϵ, and ν(d) is selected uniformly at random from G1 with probability ϵ.
(4) The signs s1, s2 are chosen uniformly at random from {−1, 1}.

Figure 1 The sampling procedure for ΦΣ.

where the expectation is taken over the probabilities described in Figure 1, and we use uv

as a shorthand for an edge {u, v}. Folding the assignments Av over the identity on H1 and
using the fact that (Av)idH1

(a) = g−1
a Av(a†), we obtain

ΦG1
Σ (A, B) = (2)

Euv,a,b,
ν,s1,s2

[
J(Av)idH1

(a)Bu(bs1)s1Bu((b−1(a ◦ πuv)−1ν)s2)s2 = 1G1K
]

.

Analogously, when i = 2 and Av, Bu are families of maps to G2, we obtain a similar expression
for ΦG2

Σ (A, B):

ΦG2
Σ (A, B) = (3)

Euv,a,b,
ν,s1,s2

[
J(Av)φ(a)Bu(bs1)s1Bu((b−1(a ◦ πuv)−1ν)s2)s2 = 1G2K

]
.

That is, a pair of assignments (A, B) satisfies an equation in ΦΣ if and only if the
corresponding pair of assignments obtained by folding A (over idH1 and φ respectively) maps
the equation to the group identity (respectively, in G1 and G2). Thus, folding allows us to
focus exclusively on the identity terms in these expectations, which will be useful in the
analysis of the reduction.

Theorem 3 follows from our completeness and soundness bounds for ΦΣ, stated in the next
results, using the fact that by Theorem 1, there are finite sets D, E such that GLCD,E(1, α)
is NP-hard for the value of α chosen in Theorem 7 below. The proofs of the completeness
and soundness bounds can be found in the full version [18].

▶ Theorem 6 (Completeness). Let Σ be a Gap Label Cover instance and ΦΣ be the system
defined in (1). Suppose that Σ is 1-satisfiable. Then ΦΣ is (1 − ϵ)-satisfiable in G1.

▶ Theorem 7 (Soundness). Let Σ be a Gap Label Cover instance and ΦΣ be the system
defined in (1). Suppose that ΦΣ is (1/|H2| + δ)-satisfiable in G2. Then Σ is α-satisfiable,
where α = δ2/(4κ|G1|κ|G2|4) and κ = ⌈(log2 δ − 2)/(log2(1 − ϵ)⌉.

1.4 Proof Outline
The main difficulty in proving the correctness of our reduction lies in showing the soundness
bound (Theorem 7). The completeness result (Theorem 6) is relatively straightforward
and follows as in [23]. In summary, suppose the Gap Label Cover instance Σ is satisfied
by a pair of assignments hD : U → D, hE : V → E. Then we find families A, B such
that ΦG1

Σ (A, B) ≥ 1 − ϵ by letting Av be the hE(v)-th projection and Bu be the hD(u)-th
projection for each v ∈ V, u ∈ U . As usual, the noise introduced by the perturbation factor
ν is what forces us to give up perfect completeness.

The idea behind our soundness analysis has appeared many times in the literature (e.g.,
[25, 23, 10]), but the approach taken in [23] is the most similar to ours. Suppose that there

ICALP 2025
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are assignments A, B, satisfying

ΦG2
Σ (A, B) ≥ 1

|H2|
+ δ. (4)

In view of (3), this inequality can be understood as a lower bound for the success prob-
ability of the following 3-query dictatorship test: Sample all parameters according to
the distribution shown in Figure 1, and then query the values (Av)φ(a), Bu(bs1)s1 , and
Bu((b−1(a ◦ πuv)−1ν)s2)s2 . The test is passed if the product of the three values is the group
identity, and failed otherwise. The soundness proof consists in showing that (4) implies that
the functions (Av)φ : GE

1 → G2 and Bu : GD
1 → G2 are “close” to dictators (i.e., projections)

for each v ∈ V , u ∈ U . Then, this fact allows us to find a good solution to the starting
Gap Label Cover instance Σ. Indeed, suppose that for each v ∈ V the map (Av)φ is the
projection on the ev-th coordinate, and for each u ∈ U , the map Bu is the projection on the
du-th coordinate. Then the assignment mapping v to ev and u to du for each v ∈ V, u ∈ U is
a good solution for Σ. However, it is not clear how to extend this simple idea to the case
where the maps (Av)φ, Bu are not projections.

In order to find a good solution for Σ in this general case, we first find suitable maps
γ1, γ2 : G2 → C and analyse γ1 ◦ (Av)φ, γ2 ◦ Bu. Now, using the fact that (Av)φ and Bu are
close to projections, we can prove that choosing the labels e, d for the vertices v, u according
to the “low-degree influence" of the e-th coordinate in γ1 ◦ (Av)φ and the d-th coordinate in
γ2 ◦ Bu yields a good randomised assignment of Σ.

This overview so far also applies to the soundness analysis of [23]. Let us give more
detail and highlight the main differences that sets our work apart. The first important
difference has to do with the choice of γ1, γ2. We define γ1 = ωx,y, and γ2 = ωy,z, where ω

is some irreducible representation of G2, and x, y, z are suitable indices in Nω. In [23], the
representation ω is a non-trivial representation chosen so that∣∣E [

χω

(
(Av)φ(a)Bu(bs1)s1Bu((b−1(a ◦ π)−1ν)s2)s2

)]∣∣ ≥ dimω δ.

Here the expectation is taken over the probability space described in Figure 1, and the
dependence of π on the edge {u, v} is left implicit. In our case, rather than using the Fourier
characters for choosing ω, we consider “penalized characters” χ̃ω. We define χ̃ω : G2 → C as
the map χω − ηω, where the penalty ηω is the multiplicity of the trivial representation in
the restriction ω|H2 . This way, we pick ω ∈ Ĝ2 so that the previous inequality holds after
replacing χω with χ̃ω. Equivalently, we find ω satisfying∣∣E [

χω

(
(Av)φ(a)Bu(bs1)s1Bu((b−1(a ◦ π)−1ν)s2)s2

)]∣∣ ≥ dimω δ + ηω. (5)

The fact that such ω exists is a consequence of (4) together with∑
ω∈Ĝ2

dimω ηω = |G2|/|H2|,

which follows from the Frobenius Reciprocity Theorem, as shown in detail in [18]. This
additional factor of ηω is crucial to our soundness analysis, as we will see.

Define the map A = ω ◦ (Av)φ and the map B : GD
1 → G2 given by B(b) = Es∈{−1,1}ω ◦

Bu(bs)s, where s ∈ {−1, 1} is distributed uniformly.7 To show the soundness bound we
consider the Fourier expansions of A and B ∗ B in the expression∣∣trE [

A(a)(B ∗ B)((a ◦ π)−1ν)
]∣∣ ,

7 Observe that the maps A and B depend on the hidden parameters v and u respectively.
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which is just a rearrangement of the left-hand-side in the previous inequality. More precisely,
we look at the equivalent expression∣∣∣∣∣∣∣trE


 ∑

τ∈ĜE ,s,t∈Nτ

dimτ Â(τs,t)τs,t(a)

 (6)

×

 ∑
ρ∈ĜD,i,j∈Nρ

dimρ
̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1ν)




∣∣∣∣∣∣∣ .

Our goal is to find a bound κ, independent of |D|, |E|, satisfying that the contribution to
this expression of non-trivial representations τ, ρ of degree less than κ is at least dimω δ/2.
This is achieved by controlling the contribution of the trivial term and the contribution of
high-degree terms. The second main difference of our soundness analysis compared to [23] is
our handling of the trivial term. In the full version [18] we prove that∣∣∣∣∣∣∣trE

Â(1)

 ∑
ρ∈ĜD,i,j∈Nρ

dimρ
̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1ν)




∣∣∣∣∣∣∣ ≤ ηω.

In the non-promise setting, this bound is not necessary. Roughly, under the stronger
notion of folding used in [23], it is possible to show that Â(1) vanishes. Our weaker notion of
folding does not allow us to prove the same result, but we are still able to leverage folding to
obtain the above bound. This mismatch with [23] is the reason why the extra ηω term was
required in (5). The key insight in the proof of the inequality above is that if F : GE

1 → G2 is
folded over φ, then the trace of ̂(ω ◦ F )(1) is at most ηω in absolute value.

Our analysis of high-degree terms is in the same spirit as previous works that show
hardness of approximation in the imperfect completeness setting. In [18] we prove that∣∣∣∣∣∣∣trE


 ∑

τ∈ĜE
1 ,τ ̸=1

∑
s,t∈Nτ

dimτ Â(τs,t)τs,t(a)

 ×

 ∑
ρ∈ĜD

1 ,|ρ|≥κ

∑
i,j∈Nρ

dimρ
̂(B ∗ B)(ρi,j)ρi,j((a ◦ π)−1ν)




∣∣∣∣∣∣∣ ≤ (dimω δ)/2

for all κ ≥ (log2 δ − 2)/ log2(1 − ϵ). The essential idea is that the “noise vector” ν has a
smoothing effect that limits the contribution of high-degree terms in (6).

Finally, having established that the contribution of non-trivial terms of degree less than
κ in (6) is at least dimω δ/2, in [18] we give a good randomised strategy to solve Σ. This
strategy assigns the label e ∈ E to v ∈ V and the label d ∈ D to u ∈ U with probabilities

Pr(v 7→ e) =
∑

τ∈ĜE
1 ,τe ̸=1

∑
s,t∈Nτ

dimτ

∣∣∣Âx,y(τs,t)
∣∣∣2

|τ |

and

Pr(u 7→ d) =
∑

ρ∈ĜD
1 ,ρd ̸=1

∑
i,j∈Nρ

dimρ

∣∣∣B̂y,z(ρi,j)
∣∣∣2

|ρ|
,
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where x, y, z ∈ Nω are suitable indices [18]. These probabilities are supposed to capture the
influence of the e-th and d-th coordinates on Ax,y = ωx,y ◦ (Av)φ and By,z = ωy,z ◦EsBu( ·s)s

respectively.8 (At this point it may be helpful to recall that Bu is a function from GD
1 to G2

and s is a sign sampled uniformly from {−1, 1}. Thus, Bu( ·s)s takes an element b ∈ GD
1 and

returns (Bu(bs))s.) This turns out to be a good randomised assignment for Σ. That is,

Euv

[∑
d∈D

Pr(v 7→ πuv(d)) Pr(u 7→ d)
]

≥ α, (7)

where the expectation is taken uniformly over the edges {u, v} of Σ, and α is the soundness
constant appearing in Theorem 7. We are being informal with the usage of the word
“probability” here: the quantities Pr(v 7→ e) and Pr(u 7→ d) may add up to less than 1,
but this is easily fixed by normalising, or by letting our strategy default to the uniform
assignment with some positive probability.

Let us give some more detail. More precisely, in the full version [18] we show that
truncating our assignment probabilities to terms of degree less than κ is enough to satisfy
this last inequality. Let ℓ ≥ 0. The probabilities Pr<ℓ(v 7→ e), Pr<ℓ(u 7→ d) are defined the
same way as Pr(v 7→ e) and Pr(u 7→ d) but considering only representations τ, ρ of degree
less than ℓ. These modified probabilities can be understood as the “low-degree influences” of
each coordinate in Ax,y and By,z. With this notation, in [18] we prove that (7) holds after
replacing each assignment probability Pr with its truncated variant Pr<κ. In other words,
we prove that

Euv


∑
d∈D

∑
ρ∈ĜD

1 ,ρd ̸=1
|ρ|<κ, i,j∈Nρ

∑
τ∈ĜE

1 ,τπuv(d) ̸=1
|τ |<κ, s,t∈Nτ

dimτ

∣∣∣Âx,y(τs,t)
∣∣∣2

|τ |

dimρ

∣∣∣B̂y,z(ρi,j)
∣∣∣2

|ρ|

 ≥ α.

This shows that our proposed strategy produces a good randomised assignment for Σ and
completes the soundness proof.
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