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Abstract
Given a (multi)graph G which contains a bipartite subgraph with ρ edges, what is the largest
triangle-free subgraph of G that can be found efficiently? We present an SDP-based algorithm
that finds one with at least 0.8823ρ edges, thus improving on the subgraph with 0.878ρ edges
obtained by the classic Max-Cut algorithm of Goemans and Williamson. On the other hand, by a
reduction from Håstad’s 3-bit PCP we show that it is NP-hard to find a triangle-free subgraph with
(25/26 + ε)ρ ≈ (0.961 + ε)ρ edges.

As an application, we classify the Maximum Promise Constraint Satisfaction Problem, denoted
byMaxPCSP(G, H), for all bipartite G: Given an input (multi)graph X which admits a G-colouring
satisfying ρ edges, find an H-colouring of X that satisfies ρ edges. This problem is solvable in
polynomial time, apart from trivial cases, if H contains a triangle, and is NP-hard otherwise.
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1 Introduction

Given an undirected (multi)graph G, what is the bipartite subgraph of G with the most edges?
This problem, known as the maximum cut problem — or Max-Cut for short — is one of the
most fundamental problems in computer science. Max-Cut was among the 21 problems shown
to be NP-hard by Karp [22]. Papadimitriou and Yannakakis showed that Max-Cut is APX-
hard [28] and thus does not admit a polynomial-time approximation scheme, unless P = NP.
However, there are several simple 0.5-approximation algorithms. Goemans and Williamson
used semidefinite programming and randomised rounding to design a 0.878-approximation
algorithm [19]. Khot, Kindler, Mossel, O’Donnell, and Oleszkiewicz established the optimality
of this algorithm [24, 26] under Khot’s Unique Games Conjecture [23].

What if the task is merely finding a large triangle-free subgraph (rather than a bipartite one)?

While the Goemans-Williamson algorithm can still be used, as our main result we design
an algorithm with a better approximation guarantee: If G contains a bipartite subgraph with
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17:2 Maximum Bipartite vs. Triangle-Free Subgraph

ρ edges, our algorithm efficiently finds a triangle-free subgraph of G with 0.8823ρ edges.1
Our algorithm is a randomised combination of the Goemans-Williamson original “random
hyperplane algorithm”, and an algorithm that first selects “long edges” (meaning edges for
which the angle between the corresponding vectors from the SDP solution is above a certain
threshold) and then applies a random hyperplane rounding, selecting “shorter edges” (still
longer than some other threshold). The probability of the biased coin that selects one of the
two algorithms depends on certain geometric quantities which guarantee that the resulting
subgraph is indeed triangle-free. We complement our tractability result by showing that it is
NP-hard to find a triangle-free subgraph with (25/26 + ε)ρ ≈ (0.961 + ε)ρ edges. This result
is obtained by a reduction from Håstad’s 3-bit PCP [20].

Our work falls within the broad framework of constraint satisfaction problems. A constraint
satisfaction problem (CSP) is a problem like Max-Cut, i.e., a problem about finding an
assignment of values to the given variables subject to the given constraints. In Max-Cut,
the variables correspond to the vertices of the input graph, the values are just 0 and
1 (corresponding to the two sides of a cut), and the constraints are binary disequalities
associated with the edges of the graph. Given a CSP, the computational task could be to
find a solution maximising the number of satisfied constraints as in Max-Cut, or finding a
(perfect) solution satisfying all constraints as in (hyper)graph colouring problems. A promise
CSP (PCSP) is a CSP in which each constraint comes in two forms, a strong one and a
weak one. The promise is that a solution exists using the strong versions of the constraints,
while the (possibly easier) task is to find a solution using the weak constraints. A recent
line of work by Austrin, Guruswami, and Håstad [2], Brakensiek and Guruswami [12], and
Barto, Bulín, Krokhin, and Opršal [3] initiated a systematic study of PCSPs with perfect
completeness, i.e., finding a solution satisfying all weak constraints given the promise that a
solution satisfying all strong constraints exists. Canonical examples include approximate
graph [18] and hypergraph [15, 1] colouring problems, e.g., finding a 6-colouring of a given
3-colourable graph.

The approximation of promise CSPs includes interesting computational problems, as
discussed in the recent work of Barto, Butti, Kazda, Viola, and Živný [4]. One example is
the following. Given a graph G that admits a 2-colouring of the vertices with a ρ-fraction of
the edges coloured properly, find a 3-colouring of G with an αρ-fraction of the edges coloured
properly, where 0 < α ≤ 1 is the approximation factor. As a side result, we show that there
is a 1-approximation algorithm; i.e., given a graph with a 2-colouring with ρ-fraction of
non-monochromatic edges, one can efficiently find a 3-colouring of the graph with the same
fraction of non-monochromatic edges. Our algorithm solves the Goemans-Williamson SDP
for Max-Cut [19] and then rounds like Frieze and Jerrum for Max-3-Cut [17], cf. the full
version [27] for details.

As can be easily shown (cf. Section 3), this implies that the following problem is also
solvable efficiently. Fix a bipartite graph G with at least one edge and another graph H

that contains a triangle and has a homomorphism from G.2 Then, given an input graph X,
finding a partial homomorphism from X to H3 is solvable efficiently given the promise that
such a partial homomorphism exists from X to G. Our hardness result immediately implies
that this problem is NP-hard if H is triangle-free.

1 We note that our algorithm is easy to extend to the case where edges have positive weights.
2 I.e. there is an edge preserving map from V (G) to V (H).
3 I.e. a map from V (X) to V (H) preserving ρ of the edges of X. When ρ = |E(X)|, such a map is known

as an H-colouring [21].



T-V. Nakajima and S. Živný 17:3

In other words, we obtain a computational complexity dichotomy for the problem
MaxPCSP(G,H) with a bipartite G (cf. Section 3 for all formal definitions and the precise
statement of our result). This should be compared with the conjecture of Brakensiek and
Guruswami [12] on the decision version of the approximate graph homomorphism problem; in
their conjecture the “bipartite G” case is (trivially) tractable but the maximisation version,
which we settle in the present paper, was open. (The precise statement of their conjecture
and the relationship with our work can be found in Section 3.)

Related work

Bhangale and Khot gave an optimal inapproximability result for Max-3-LIN over non-Abelian
groups [6]. The series of works by Bhangale, Khot, and Minzer [7, 8, 9, 10] established,
among other things, hardness of approximation of certain perfectly satisfiable CSPs. We
already mentioned in passing the very recent work of Barto et al. [4], which extends the
algebraic approach from [3] to approximability of PCSPs.

The notion of Max-PCSPs is a natural generalisation of the well-studied notion of
Max-CSPs. For finite-domain Max-CSPs, it is know that a certain rounding of the basic
SDP relaxation gives, up to some ε, the UGC-optimal approximation ratio (in time doubly
exponential in 1/ε) [29, 30]. Recent work of Brakensiek et al. [13] states that parts of this
hardness result are verbatim applicable to approximating certain Max-PCSPs. However, the
Raghavendra-Steurer algorithm does not immediately give a 1-approximation algorithm due
to the above-mentioned ε, even for Max-CSPs. Moreover, that result is established only for
finite-domain Max-CSPs. Furthermore, the hardness results are conditional on the UGC. Our
results (i) give approximation ratio 1, for MaxPCSP(K2,K3), (ii) give algorithms for infinite-
domain structures, for MaxPCSP(K2,G3), and (iii) involve unconditional NP-hardness, for
the hardness of MaxPCSP(K2,G3).

If one removes the promise of a large cut in G, then the problem of simply finding the
largest triangle-free subgraph of G is NP-hard [33].

As a final remark, we note that the ultimate goal of our work is to understand the
precise approximation factor for all promise CSPs, and thus identify where the transition
from tractability to intractability occurs. This is an ambitious, long-term goal that would
encompass many existing fundamental results. Theorem 2 gives an improved algorithmic
and hardness result for the very concrete CSP from the title, i.e., finding a large triangle-free
subgraph of a given graph (as measured with respect to the size of a largest bipartite
subgraph). Theorem 3, together with Theorem 2, makes a substantial progress on the special
case of the general goal, namely for which promise graph problems 1-approximation is possible
(stated below as Corollary 4, cf. also Conjecture 6).

2 Preliminaries

For two nonzero vectors x,y ∈ RN , we denote by ∠(x,y) the angle between x and y in
radians; i.e., ∠(x,y) = arccos

(
x·y

||x||||y||

)
. The following useful fact is well-known, cf. [16,

Book xi, Proposition 21].

▶ Lemma 1. For any three nonzero vectors x1,x2,x3 ∈ RN , we have ∠(x1,x2) +∠(x2,x3) +
∠(x3,x1) ≤ 2π.

ICALP 2025
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Graphs and (partial) homomorphisms

All graphs will be undirected but with possibly multiple edges. Fix two graphs G = (V,E),
H = (U,F ), and ρ ∈ N. We say that there exists a partial homomorphism of weight ρ from
G to H, and write G ρ−→ H, if there exists a mapping h : V → U such that for ρ edges
(x, y) ∈ E we have (h(x), h(y)) ∈ F . If G |E|−−→ H, we say that there exists a homomorphism
from G to H and write G → H. (Note that for any G,H, I, if G ρ−→ H → I then G

ρ−→ I.)
We denote by K2 a clique on two vertices. A partial homomorphism h : G ρ−→ K2

represents a cut of weight ρ, namely the edges (x, y) with h(x) ̸= h(y). Equivalently, it
represents a bipartite subgraph of G with weight ρ. We now introduce a graph that similarly
captures triangle-free subgraphs. Let G3 be the direct sum of all finite triangle-free graphs.
In other words, for every finite triangle-free graph G = (V,E), the graph G3 contains vertices
xG for x ∈ V , and edges (xG, yG) for (x, y) ∈ E. Then, for finite G, a partial homomorphism
h : G ρ−→ G3 represents a triangle-free subgraph of G with weight ρ: all the edges that connect
vertices that are mapped by h to neighbouring vertices in G3 form a triangle-free subgraph
of G.

Maximum PCSPs

Fix two (possibly infinite) graphs G → H. Then the maximum promise constraint satisfaction
problem (MaxPCSP) for undirected graphs, denoted by MaxPCSP(G,H), is defined as follows.
In the search version of the problem, we are given a (multi)graph X such that X ρ−→ G, and
must find h : X ρ−→ H; this problem can be approximated with the approximation ratio α if
we can find h : X ⌈αρ⌉−−−→ H. In the decision version, we are given a (multi)graph X and a
number ρ ∈ N and must output Yes if X ρ−→ G, and No if not even X

ρ−→ H. This problem
can be approximated with approximation ratio α if we can decide between X

ρ−→ G and not
even X

⌈αρ⌉−−−→ H. (In all cases, ρ is not part of the input.)
In particular, approximating the problem MaxPCSP(K2,G3) with approximation ratio

α means the following. In the search version: given a graph G that contains a cut of weight
ρ, find a triangle-free subgraph of weight αρ. In the decision version: given a graph G and
a number ρ ∈ N, output Yes if it has a cut of weight ρ, and No if it has no triangle-free
subgraph of weight αρ.

We define the problem PCSP(G,H) identically to MaxPCSP(G,H), except that it is
guaranteed that ρ is the number of edges of G. Thus observe that PCSP(G,H) reduces
to MaxPCSP(G,H) trivially, in the sense that there is a polynomial-time reduction from
PCSP(G,H) to MaxPCSP(G,H) that does not change the input.

Suppose G → G′ → H ′ → H. Then, it follows that PCSP(G,H) polynomial-time reduces
to PCSP(G′, H ′) and MaxPCSP(G,H) polynomial-time reduces to MaxPCSP(G′, H ′) (and
the same holds for α-approximation). Furthermore, the decision version of PCSP(G,H)
and MaxPCSP(G,H) polynomial-time reduces to the search version of PCSP(G,H) and
MaxPCSP(G,H), respectively. In other words, the decision version is no harder than the
search version. Hence by proving our tractability results for the search version, and our
hardness results for the decision version, we prove them for both versions of the problems.

SDP

For the Max-Cut problem, which is just MaxPCSP(K2,K2), the basic SDP relaxation for a
graph G = (V,E) with n vertices, which can be solved within additive error ε in polynomial
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time with respect to the size of G and log(1/ε),4 is as follows:

max
∑

(u,v)∈E

1 − xu · xv

2

s.t. xu · xu = 1,
xu ∈ Rn.

(1)

Goemans and Williamson [19] gave a rounding algorithm for the SDP (1) with approxim-
ation ratio

αGW =
(

max
0≤τ≤π

π

2
1 − cos τ

τ

)−1
= 0.878 · · · ,

thus beating the trivial approximation ratio of 1/2 obtained by, e.g., a random cut. Their
algorithm solves the SDP (1), selects a uniformly random hyperplane in RN , and returns the
cut induced by the hyperplane.

3 Results

Our main result is the following.

▶ Theorem 2. MaxPCSP(K2,G3) is 0.8823-approximable (in the search version) in polyno-
mial time, and it is NP-hard to (25/26 + ε)-approximate (even in the decision version) for
any fixed ε > 0.

Note that crucially 0.8823 > 0.878 . . ., thus our algorithm beats the Goemans-Williamson
algorithm.

We prove this result in two parts: the tractability side in Section 4 and the hardness side
in Section 5. We quickly give an intuitive explanation of why such an algorithm is possible.
Define

τGW = arg max
0≤τ≤π

π

2
1 − cos τ

τ
≈ 0.742π.

The function τ 7→ (π/2)(1 − cos τ)/τ , depicted in Figure 1, is increasing up to τGW , then de-
creasing. Why would MaxPCSP(K2,G3) be easier to approximate than MaxPCSP(K2,K2)?
Consider the Goemans-Williamson algorithm for MaxPCSP(K2,K2); the worst-case perform-
ance of this algorithm appears in a graph where the embedding into RN given by solving the
SDP (1) gives all edges an angle of approximately τGW . Observe that τGW > 2π/3 — so
immediately (cf. Lemma 1) this instance is triangle-free. So, for this instance an algorithm
for MaxPCSP(K2,G3) could just return the entire graph! Indeed, in order to create an
instance that contains triangles one needs to introduce shorter edges. This suggests that a
hybrid algorithm, that either selects “long edges” or some appropriate selection of “shorter
edges” (still longer than some threshold), should have better performance.

Our next result is a combination of the Goemans-Williamson SDP for Max-Cut [19] and
a rounding scheme due to Frieze and Jerrum for Max-3-Cut [17], cf. [27] for details.

▶ Theorem 3. MaxPCSP(K2,K3) is solvable in polynomial time (in the search version).

4 Throughout we will ignore issues of real precision.

ICALP 2025
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Figure 1 Function giving rise to αGW , τGW .

This algorithm is somewhat similar to the Goemans-Williams algorithm, except that
rather than selecting a uniformly random hyperplane, it selects three normally distributed
vectors, and partitions the vertices according to which vector they are closest to (where
closeness is measured in terms of inner products). Thus, while this algorithm solves the same
SDP as the algorithm from Theorem 2, it rounds the solution differently.

Combining Theorem 3 with (the hardness part of) Theorem 2, we obtain a complexity
classification:

▶ Corollary 4. Let G be bipartite graph with at least one edge. Then, MaxPCSP(G,H) is
solvable in polynomial time if H has a loop or contains a triangle (in the search version),
and is NP-hard to solve if H is triangle-free (in the decision version).5

Proof. If H contains a triangle then G → K2 → K3 → H, so MaxPCSP(G,H) reduces to
MaxPCSP(K2,K3), which can be solved in polynomial time by Theorem 3. Conversely, if H
is triangle-free then K2 → G → H → G3, so MaxPCSP(K2,G3) reduces to MaxPCSP(G,H).
Hence, by Theorem 2, it is NP-hard even to approximate MaxPCSP(G,H) with approxim-
ation ratio 25/26 + ε (in the decision version), and thus in particular MaxPCSP(G,H) is
NP-hard (in the decision version). ◀

Brakensiek and Guruswami conjectured the tractability boundary of promise CSPs on
undirected graphs.

▶ Conjecture 5 ([12]). If G,H are undirected graphs, then PCSP(G,H) is tractable if G is
bipartite or H has a loop; and is NP-hard otherwise.

As PCSP(G,H) reduces to MaxPCSP(G,H), we can see that it follows from Conjecture 5
that MaxPCSP(G,H) is NP-hard whenever G is non-bipartite and H is loopless. Since we
already classified the case when G is bipartite but not edgeless, we conjecture that the
tractability boundary for maximum PCSPs on undirected graphs is the following:

▶ Conjecture 6. If G,H are undirected graphs, then MaxPCSP(G,H) is tractable if (i) G
has no edges, or (ii) H has a loop, or (iii) G is bipartite and H contains a triangle; and is
NP-hard otherwise.

5 Note that if G has no edges or H has a loop then MaxPCSP(G, H) is trivially tractable.
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Resolving Conjecture 6 should be easier than resolving Conjecture 5, similarly to how
the complexity of finite-valued CSPs [31] was resolved before the complexity of decision
CSPs [14, 34]

We note that our hardness result depends in an essential way on the fact that the
input graph can have multiple edges; we equivalently could have allowed non-negative
integer weights on the edges. This variant of the problem is most natural when looking
at it as a constraint satisfaction problem. It is interesting to ask what the complexity of
MaxPCSP(K2,G3) is if the input graph is both weightless and without multiple edges.

4 Tractability

Our tractability result is based on the following lemma.

▶ Lemma 7. There exist α, P,Q, τ ∈ R with P + Q = 1, P ≥ 0, Q ≥ 0, τ ∈ [2π/3, τGW ],
such that the following hold

P
θ

π
+Q ≥ α

1 − cos θ
2 θ ∈ [τ, π] (2)

P
φ

π
+Q

φ

π
≥ α

1 − cosφ
2 φ ∈ [π − τ/2, τ ] (3)

P
ψ

π
≥ α

1 − cosψ
2 ψ ∈ [0, π − τ/2]. (4)

In particular, we can take α ≥ 0.88232, τ = 2.18746, Q = 1 − P and

P = απ

2

(
1 − cos(π − τ/2)

π − τ/2

)
≈ 0.987535.

Proof. Firstly (4) is most tight when ψ = π − τ/2, so it reduces to

P ≥ απ

2

(
1 − cos(π − τ/2)

π − τ/2

)
︸ ︷︷ ︸

X(τ)

.

Next, (3) is actually independent of P,Q, since P +Q = 1 and thus the left-hand side is
just φ/π. Since we will take τ ≤ τGW , it is also most tight when φ = τ (cf. Figure 1), so it
becomes

α ≤ 2
π

τ

1 − cos τ .

For (2) we see that it becomes easier to satisfy if P is smaller and Q is larger, so we will
choose P to be the minimum value it could have vis-à-vis (3) and (4), namely

P = απ

2 X(τ).

Hence, as P +Q = 1, the first constraint becomes

αθ

2 X(τ) + 1 − απ

2 X(τ) ≥ α
1 − cos θ

2 .

Simplifying, we get

α
θ − π

2 X(τ) + 1 ≥ α
1 − cos θ

2 .

ICALP 2025



17:8 Maximum Bipartite vs. Triangle-Free Subgraph

2.1 2.16 2.22 2.28

0.8750

0.8800

0.8850

0.8900

0.8950

0.9000

2.19

0.8823
Optimum

τ

α
Bound (5)
Bound (6)

Figure 2 Bounds from Lemma 7

This is equivalent to

α ≤ 2
(π − θ)X(τ) − cos θ + 1

Separating out α, we have

α ≤ min
θ

2
(π − θ)X(τ) − cos θ + 1 = 2

(
max

θ
(π − θ)X(τ) − cos θ + 1

)−1

Now we can observe that 0.75 > X(τ) > 0.6 for 2π/3 ≤ τ ≤ π numerically. The derivative
of the function we are maximising is −X(τ) + sin θ — this is necessarily positive at θ = 2π/3
and negative for θ = π, because of the approximation of X(τ) above. So the maximum is hit
at π − arcsinX(τ), as this is the solution to the equation within the bound for θ. Thus the
bound is

α ≤ 2
X(τ) arcsinX(τ) + cos arcsinX(τ) + 1

So we now want to find τ that maximises α such that

α ≤ 2
X(τ) arcsinX(τ) + cos arcsinX(τ) + 1 (5)

α ≤ 2
π

τ

1 − cos τ (6)

We can see this situation in Figure 2. Numerically we compute that if we choose
τ = 2.18746, then we get α ≥ 0.88232. ◀

We now prove our tractability result.6

6 We remark in passing that no SDP-based algorithm can have performance greater than 8/9 = 0.888 . . .,
since for the triangle K3 the SDP value is 9/4, yet the largest triangle-free subgraph has weight 2 (and
2/(9/4) = 8/9).
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▶ Theorem 8. MaxPCSP(K2,G3) can be 0.8823-approximated in polynomial time.

Proof. Take α, P,Q, τ as in Lemma 7. Consider the following randomised algorithm.

1. Input: a graph G = (V,E), which admits a cut of weight ρ ≥ |E|/2.
2. Solving SDP (1) to within error ε, we get a set of vectors xv for v ∈ V , with ||xv||2 = 1

and ∑
(u,v)∈E

1 − xu · xv

2 ≥ ρ− ε.

3. Flip a biased coin, randomly choosing from the following two cases.

(i) With probability P , sample a uniformly random hyperplane H, and compute the set
of edges (u, v) with xu on the opposite side of H as xv. Return this set of edges.

(ii) With probability Q, return all the edges (u, v) with ∠(xu,xv) > τ , then sample a
uniformly random hyperplane H and additionally return all the edges (u, v) with
∠(xu,xv) ≥ π − τ/2 and with xu,xv on opposite sides of H.

First, let us verify that our algorithm returns a triangle-free subgraph. First, in Case (i), we
return a bipartite subgraph, so we certainly return a triangle-free subgraph. The reasoning
for Case (ii) is more geometric. Consider any three edges returned in this case. If the three
edges are of angle between π − τ/2 and τ , then they cannot form a triangle, since the edges
of this kind that we return form a bipartite graph (determined by H). Conversely, suppose
that at least one edge has angle greater than τ , and the other two have angle at least π− τ/2.
Then the sum of the angles of the edges are > 2π, and hence by Lemma 1, they cannot form
a triangle.

Now, let us compute the expected performance of our algorithm. Recall that for a
uniformly random hyperplane H, two unit vectors x,y are on opposite sides of H with
probability ∠(x,y)/π [19]. Consider any edge (u, v) in our graph. We will show that
the probability that the edge is included in the cut is at least α(1 − xu · xv)/2 = α(1 −
cos∠(xu,xv))/2; there are three cases depending on ∠(xu,xv).

∠∠∠(xu, xv) ∈ (τ, π] In this case, the edge is included with probability ∠(xu,xv)/π in Case (i),
and with probability 1 in Case (ii). Thus, and by applying (2) from Lemma 7, we find
that the edge is included with probability

P
∠(xu,xv)

π
+Q ≥ α

1 − cos∠(xu,xv)
2 .

∠∠∠(xu, xv) ∈ [π − τ/2, τ ] In this case, the edge is included with probability ∠(xu,xv)/π
both in Case (i) and in Case (ii). Thus, by (3) from Lemma 7, the edge is included with
probability

P
∠(xu,xv)

π
+Q

∠(xu,xv)
π

≥ α
1 − cos∠(xu,xv)

2 .

∠∠∠(xu, xv) ∈ [0, π − τ/2) In this case, the edge is included with probability ∠(xu,xv)/π
in Case (i) and never included in Case (ii). Thus, by (4) from Lemma 7, the edge is
included with probability

P
∠(xu,xv)

π
≥ α

1 − cos∠(xu,xv)
2 .

ICALP 2025
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Hence overall we include an edge (u, v) with probability at least α(1 − xu · xv)/2. Since∑
(u,v)∈E

1 − xu · xv

2 ≥ ρ− ε,

it follows that we return a triangle-free subgraph with expected weight α(ρ− ε).
Now, we derandomise our algorithm. First, note that rather than randomly choosing

between Case (i) and Case (ii), we can just run both cases and return the better of the
two solutions. Secondly, using the techniques of [25] (or, more efficiently [11]), we can
derandomise the choice of random hyperplane in polynomial time, at the cost of losing ε′

potential value, in polynomial time in log(1/ε′). Hence, in polynomial time in the size of the
graph and ε, ε′ we return a triangle-free subgraph with weight α(ρ− ε) − ε′ ≥ αρ− (ε+ ε′).

To complete the proof, note that we take α ≥ 0.88232, but we only advertise an
approximation ratio of 0.8823. Hence, the subgraph we return has weight 0.8823ρ + 2 ·
10−5ρ− (ε+ ε′), and since ρ ≥ |E|/2 ≥ 1/2 (since if |E| = 0 the problem is trivial), this is at
least 0.8823ρ+ (10−5 − ε− ε′). Hence it is sufficient to choose ε+ ε′ = 10−5. The algorithm
then runs in polynomial time in the size of G, and finds a triangle-free subgraph with weight
0.8823ρ, as required. ◀

5 Hardness results

Our general strategy will be to gadget reduce from the 3-bit PCP of Håstad [20], similarly
to [32] or [5]. The main difficulty comes in from the fact that it is not possible to “negate”
variables in an obvious way, since “negation” is not globally preserved by the property of
being triangle-free, as opposed to that of being bipartite. Some mild complications will be
forced by this. Recall first the definition of exactly-3 linear equations.

▶ Definition 9. In the problem E3Linδ, one is given a system of mod-2 linear equations with
exactly 3 variables per equation; i.e. x + y + z ≡ 0 mod 2 or x + y + z ≡ 1 mod 2. If it is
possible to simultaneously solve a 1 − δ fraction of all the equations, one must answer Yes;
otherwise, if it is not even possible to simultaneously solve a 1

2 + δ fraction of the equations,
one must answer No.

▶ Theorem 10 ([20]). For every small enough δ, the problem E3Linδ is NP-hard.

To deal with our negation problems, we will need a “balanced” version of this problem.

▶ Definition 11. In the problem BalancedE3Linδ, one is given a system of mod-2 linear
equations with exactly 3 variables per equation; i.e. x+y+z ≡ 0 mod 2 or x+y+z ≡ 1 mod 2.
Furthermore, the number of equations of the two types is equal. A balanced solution to such a
system of equations is one that satisfies exactly as many equations of form x+y+z ≡ 0 mod 2
as those of form x+ y + z ≡ 1 mod 2.

If it is possible to find a balanced solution that satisfies a 1 − δ fraction of all the
equations, one must answer Yes; otherwise, it if is not even possible to find any (possibly
even unbalanced) solution that satisfies a 1

2 + δ fraction of the equations, one must answer
No.

We believe that [20] proves, without being explicit, NP-hardness of BalancedE3Linδ,
although it is not straightforward to see it from the proof in [20]. For completeness, we
provide a simple, self-contained reduction.

▶ Lemma 12. For every small enough δ, the problem BalancedE3Linδ is NP-hard.

Proof. We reduce from E3Linδ to BalancedE3Linδ.
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Reduction

Given a system of m equations E on n variables, which contains the equations xi + yi + zi ≡
pi mod 2 for i ∈ [m],7 we define the system of equations E ′ on n variables, which contains
the equations x′

i + y′
i + z′

i ≡ 1 − pi mod 2 for i ∈ [m]. We then return the system of equations
E ⊔ E ′ i.e. the disjoint union of the two systems.

Completeness

Suppose that E has a solution xi 7→ c(xi) that satisfies a 1−δ fraction of the equations. Then
the system E ⊔ E ′ has a balanced solution that also satisfies a 1 − δ fraction of its equations,
namely the one that sends xi to c(xi) and x′

i to 1 − c(xi). This solution is balanced since
every equation xi + yi + zi ≡ pi mod 2 that it solves within E can be paired up with an
equation x′

i + y′
i + z′

i ≡ 1 − pi mod 2 which is solved in E ′.

Soundness

Suppose E ⊔ E ′ has a solution xi 7→ c(xi), x′
i 7→ d(x′

i), which satisfies a 1
2 + δ fraction of the

equations. Such a solution must either satisfy a 1
2 + δ fraction of the equations within E , or

a 1
2 + δ fraction of the equations within E ′. In the first case, c is the required solution for the

original problem; in the second, xi 7→ 1 − d(x′
i) is the required solution. ◀

We now define the notion of “gadget” that we will need for this particular reduction.
This is along the same lines as [5, 32], but (i) generalised to deal with promise problems and
(ii) specialised to our particular promise problem.

For the following, if G = (V,E) is any bipartite graph, and V ′ ⊆ V , then we say that a
function c : V ′ → {0, 1} is compatible with G if it is possible to extend c into a 2-colouring
of G.

▶ Definition 13. A gadget with performance α ∈ N and parity p ∈ {0, 1} is a graph
G = (V,E), with 0, x, y, z ∈ V , where the following hold.

1. For any function c : {0, x, y, z} → {0, 1} such that c(0) + c(x) + c(y) + c(z) ≡ p mod 2,
there exists a bipartite subgraph H of G with α edges, such that c is compatible with H.

2. Any triangle-free subgraph of G has at most α edges.
3. Every triangle-free subgraph H of G with strictly more than α − 1 edges puts 0, x, y, z

in the same connected component C, and the distance from 0 to x, y, z respectively is at
most 2. Furthermore C is bipartite, and for any c : {0, x, y, z} → {0, 1} that is compatible
with C, we have that c(0) + c(x) + c(y) + c(z) ≡ p mod 2.

▶ Lemma 14. Suppose we have n containers with capacities c1, . . . , cn ≥ 0. Suppose we
distribute a volume of c1 + · · · + cn − n+ a among the containers, distributing vi ≤ ci volume
to container i. Then the number of containers i for which vi > ci − 1 is at least a.

Proof. If we want to minimise the number of containers with vi > ci − 1, it is optimal first
to distribute ci − 1 volume to each container i, and then for those containers where we are
forced to distribute more to distribute up to ci. The first step uses up c1 + · · · + cn − n

volume, leaving us with a volume to distribute. This volume of a cannot push fewer than ⌈a⌉
of the containers above ci − 1, since once pushed above this one can then add only 1 further
unit to that container. ◀

7 As usual, we denote by [m] the set {1, . . . , m}.
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The next theorem encodes our reduction from the 3-bit PCP of [20] to MaxPCSP(K2,G3).
This reduction is standard, needing only some care to deal with the fact that the triangle-free
graph selected in the soundness case must be “connected enough”.

▶ Theorem 15. Suppose that for i ∈ {0, 1} there exist gadgets Gi with performance αi and
parity i. Then it is NP-hard to approximate MaxPCSP(K2,G3) with approximation ratio
1 − 1/(α0 + α1) + ε.

Proof. We reduce BalancedE3Linδ to approximate MaxPCSP(K2,G3) with approximation
ratio 1 − 1/(α0 + α1) + ε. Our choice of δ will be bounded above by a value that depends on
ε. We now describe our gadget reduction.

Reduction

Suppose we are given an instance of BalancedE3Linδ, with 2m constraints and n variables
V . Suppose that the constraints are x0

i + y0
i + z0

i ≡ 0 mod 2 and x1
i + y1

i + z1
i ≡ 1 mod 2

for i ∈ [m]. Our reduction first creates n+ 1 vertices, one for every variable, plus a special
vertex denoted by 0′. For every constraint xp

i + yp
i + zp

i = p mod 2 we create a copy of Gp,
identifying vertices 0, x, y, z with 0′, xp

i , y
p
i , z

p
i .

Completeness

Suppose that our BalancedE3Lin instance has a balanced solution that satisfies at least a
1 − δ fraction of the constraints. We claim that the graph outputted by our algorithm
has a cut with at least m(1 − δ)(α0 + α1) edges. Indeed, this cut is guaranteed by Item 1
in Definition 13: place the vertices corresponding to variables in the original problem in the
cut according to their value; then the vertices in the gadgets are placed according to the cut
guaranteed by this assumption. The cut then has at least m(1 − δ)(α0 + α1) edges because
the solution is guaranteed to be balanced.

Soundness

Suppose that the graph outputted by our reduction has a triangle-free subgraph S with
m(α0 + α1 − 1 + δ) = m(α0 + α1) − 2m+m+ 2mδ edges. We call a constraint with parity i
“good” if the intersection of S with the gadget corresponding to that constraint has weight
greater than αi − 1. Observe that at least m+ 2mδ constraints must be good by Lemma 14:
the gadgets for the 2m constraints are the containers; by Item 2 from Definition 13, m of the
capacities are α0, and m are α1; finally, a constraint is “good” if it’s container is allocated
strictly more volume than it’s capacity minus one. We now show how to create a solution to
the original BalancedE3Lin instance that satisfies all the good constraints: this solution then
satisfies a (m+ 2mδ)/2m = 1/2 + δ fraction of the constraints.

To create our solution, consider the subgraph S. Find the shortest path from 0′ to every
variable, then set the variable to the parity of the length of that path. (If there is no path,
then we can set that variable arbitrarily.) Consider now any good constraint: suppose it is
x+ y + z ≡ p mod 2. Suppose S′ is the intersection of S with the gadget for this constraint.
Since S is triangle-free, S′ must be triangle-free; since the constraint is good, the weight of
S′ is strictly greater than αi − 1. By Item 3 of Definition 13, S′ is bipartite; furthermore
S′ connects 0′ to x, y, z by paths of length at most 2. Thus the shortest path from 0′ to
x, y, z in S (as well as S′) is also of length at most 2 as well. Since S is triangle-free, the
parity of the length of the shortest path from 0′ to x, y, z in S matches the parity of any
path from 0′ to x, y, z in S′. (To see why: if this were not the case, then for one of x, y, z,
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there are two paths from 0′ of different parities, both of length at most 2. The first path is
the one that exists in S by assumption, the second one is the one that exists in S′ by Item 3
of Definition 13. This implies a triangle in S, a contradiction.) Colouring according to the
sides of the bipartite graph S′ satisfies the constraint according to Item 3 of Definition 13,
and our colouring is the same as this. So all good constraints are satisfied.

Hardness factor

Thus we have shown that given a BalancedE3Lin instance with a balanced solution that
satisfies a 1 − δ fraction of the equations, our reduction yields a graph with a cut with
m(1 − δ)(α0 + α1) edges; and if the graph we output has a triangle-free subgraph with at
least m(α0 + α1 − 1 + δ) edges the original instance must have had a solution that satisfies
at least a 1/2 + δ fraction of equations. It follows that MaxPCSP(K2,G3) is NP-hard to
approximate with approximation ratio

m(α0 + α1 − 1 + δ)
m(1 − δ)(α0 + α1) =

(
1 − 1

α0 + α1
+O(δ)

)
(1 +O(δ)) = 1 − 1

α0 + α1
+O(δ).

This can be made to be less than 1 − 1
α0+α1

+ ε by setting δ small enough. ◀

We now exhibit the gadgets. The first gadget is identical to a gadget of Bellare, Goldreich
and Sudan [5] (although our analysis is slightly more complicated). In [5], this gadget
is called “PC-CUT”, defined immediately before [5, Claim 4.17]. The second gadget is a
generalisation of the first. Recall that the gadgets of [5] were improved in [32], and indeed
the results of [32] indicate a generic method to find optimal gadgets for finite-domain CSPs.
We do not believe this approach directly applies to our case because the property of being
triangle-free is not captured by any finite CSP template (indeed, G3 is infinite, and any
homomorphism-equivalent structure must also be).

We will write our gadgets as graphs with non-negative integer weights for simplicity of
presentation. These gadgets can then be implemented by adding edges multiple times.

▶ Lemma 16. There exists a gadget with performance 9 and parity 1.

Proof. Consider the complete graph on {0, a, x, y, z}. Suppose w(a) = 2, w(0) = w(x) =
w(y) = w(z) = 1, and give an edge (i, j) weight w(i, j) = w(i)w(j). We now show that this
satisfies the conditions from Definition 13.

1. Without loss of generality suppose c(0) = 0. We have two cases. First, suppose that
c(x) = c(y) = c(z) = 1. Then our cut is ({x, y, z}, {a, 0}) which has weight 9. Conversely,
suppose without loss of generality that c(x) = c(y) = 0, c(z) = 1. Then our cut is
({0, x, y}, {a, z}), which also has weight 9.

2. Consider any triangle-free subgraph of the gadget. This graph is either bipartite or it is
C5. If it is bipartite, suppose it has parts (A,B). Then

∑
i∈A,j∈B

w(i, j) =
(∑

i∈A

w(i)
)∑

j∈B

w(j)

 ,

and the optimal cut puts a (with weight 2) and one other vertex on one side, and the
other three vertices on the other side — this cut has weight 9, as required (all other cuts
have weight at most 8). On the other hand, if the triangle-free subgraph is C5 it has
weight at most 2 + 2 + 1 + 1 + 1 = 7 ≤ 9.
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3. Consider any triangle-free subgraph of the gadget. By the analysis in the previous item,
the only triangle-free subgraphs with weight greater than 8 are isomorphic to K2,3, which
put a and one of 0, x, y, z on one side, and the other three vertices on the other side. It is
not difficult to check that all of these graphs connect 0 to x, y, z with paths of length at
most 2, and that the sides of the cut exhibit the correct parity requirements. ◀

▶ Lemma 17. There exists a gadget with performance 17 and parity 0.

Proof. Consider the complete graph on {0, 1, a, x, y, z}. Let w(a) = w(1) = 2, w(0) =
w(x) = w(y) = w(z) = 1, δ(0, 1) = δ(1, 0) = 1, whereas otherwise δ(i, j) = 0. Then define
w(i, j) = w(i)w(j) + δ(i, j).

1. Without loss of generality suppose c(0) = 0. There are two cases. First suppose
c(x) = c(y) = c(z) = 0. Then our cut is ({x, y, z, 0}, {a, 1}) with weight 17. Otherwise,
suppose without loss of generality that c(x) = 0, c(y) = c(z) = 1. Then our cut is
({1, y, z}, {0, a, x}), with weight 17.

2. Consider all the triangle-free subgraphs of the gadget. This subgraph is either bipartite,
or it is a subgraph of the following graph

First we deal with the bipartite case. The weight of a complete bipartite graph with
parts (A,B) is ∑

i∈A,j∈B

δ(i, j)

+
(∑

i∈A

w(i)
)∑

j∈B

w(j)

 .

The first part of the sum is 1 if and only if 0 and 1 are in different sides of the cut, and
the second is maximised exactly when the two sides of the cut are as even as possible
i.e. have weight 4 and 4 respectively — cuts that satisfy both of these conditions weight
at most 17 = 4 × 4 + 1 edges, while all other cuts have weight at most 16.
Now consider a non-bipartite triangle-free subgraph. The largest this could be is the graph
pictured above. First consider the contribution of w(i)w(j) to the total weight. Suppose
for contradiction that the contribution is > 14; since there are 7 edges, there must exist
one edge whose contribution is > 2. Since w(i)w(j) ∈ {1, 2, 4}, and w(i)w(j) = 4 only
for {i, j} = {a, 1}, a and 1 are adjacent within the subgraph. Since any way of placing
a, 1 adjacently within the subgraph leads to them having at most 3 other neighbours, the
contribution of w(i)w(j) is at most 4 + 3 × 2 + 3 × 1 = 13 ̸> 14, a contradiction. So the
contribution of w(i)w(j) is at most 14, and the total weight is at most 15.

3. Consider now any triangle-free subgraph of the gadget with weight greater than 16. By
the analysis in the previous item, this subgraph must be a complete bipartite subgraph
where the two parts both have weight 4, and 0 and 1 are put on opposite sides of the cut.
Consider the side of a: if it is on the same side as 1, then x, y, z are all on the opposite
side i.e. together with 0. Conversely, if a is on the same side as 0, then two of x, y, z must
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be on the same side as 1, and the remaining vertex among x, y, z must be on the same
side as 0. It is not difficult to check that these bipartite subgraphs satisfy the desired
connectivity and parity conditions. ◀
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