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Introduction

Christopher Strachey (1916–1975) was a pioneering computer scientist and the founder of the Program-
ming Research Group, now part of the Department of Computer Science at Oxford University. Although
Strachey was keenly interested in the practical aspects of computing, it is in the theoretical side that
he most indelibly left his mark, notably by creating with Dana Scott the denotational (or as he called
it, ‘mathematical’) approach to defining the semantics of programming languages. Strachey also spent
time writing complex programs and puzzles for various computers, such as a draughts playing program
for the Pilot ACE in 1951. He developed some fundamental concepts of machine-independent operating
systems, including an early suggestion for time-sharing, and was a prime mover in the influential CPL
programming language. Strachey came from a notable family of intellectuals and artists, perhaps most
famous for Christopher’s uncle Lytton, a writer and member of the Bloomsbury group.

The conference will open with a morning of talks dedicated to a historical exploration of Strachey’s life,
chaired by Cli↵ Jones. The morning session will end with a panel chaired by Bernard Sufrin. After lunch,
there will be a video presentation from Strachey’s long-time collaborator Dana Scott, who regrets he is
unable to be in the United Kingdom for this event. The afternoon session will consist of talks about the
future of research inspired by Strachey at Oxford and further afield, which will be chaired by Samson
Abramsky.

This booklet will provide some information on the proceedings of the conference, including a schedule of
talks and short abstracts from those contributors who provided them. There is also a series of appendices
with some longer papers, and a list of the items shown at an exhibition at the Bodleian Library.
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Programme

Start Name Title

Morning session (Chair: Cli↵ Jones)

09:00 Opening remarks

09:15 Martin Campbell-Kelly Strachey: the Bloomsbury years

09:45 Joe Stoy Strachey and the Oxford Programming Group

10:15 Martin Richards Strachey and the development of CPL

10:45 break

11:15 Peter Mosses SIS, a semantics implementation system

11:45 Robert Milne Semantic relationships: reducing the separation between
practice and theory

David Hartley

12:15 Michael Jackson Panel (Chair: Bernard Sufrin)

Roger Penrose

Chris Wadsworth

13:00 lunch

Afternoon session (Chair: Samson Abramsky)

14:15 Dana Scott Video presentation

14:45 Jane Hillston A mathematical approach to defining the semantics of mod-
elling languages

15:15 Philip Wadler Christopher Strachey, first-class citizen

15:45 break

16:15 Hongseok Yang Probabilistic programming

16:45 Uday Reddy Parametric polymorphism and models of storage

17:15 Jeremy Gibbons What are types for?

17:45 Closing remarks
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Talk abstracts

Martin Richards:

‘Christopher Strachey and the Development of CPL’

Christopher Strachey was the most significant contributor to the design and implementation of the
programming language CPL. At the time there was little understanding of the complexities of computer
language design and how type systems could cope with lists and the kinds of structures needed to
represent, for instance, parse trees. The CPL project cannot be regarded as being successful since it
did not result in a usable CPL compiler. The reasons being that the language became too large and
complicated, there were insu�cient people to implement the compiler and, in the middle of the three
year project, all work had to be transferred from Edsac 2 to Titan, a newly designed version of the
Ferranti Atlas computer which as yet had no operating system. Even so, we can be proud of the work
that went into CPL and its influence on the design of many later languages.

Peter Mosses:

‘SIS, A semantics implementation system’

During my DPhil studies, supervised by Christopher Strachey, I developed a prototype of a system for
executing programs based on their denotational semantics. It involved partial evaluation of lambda-
notation, implemented using Wadsworth’s call-by-need algorithm. I continued the development of the
system as a postdoc at Oxford, and subsequently at Aarhus, Denmark. The system was called SIS:
Semantics Implementation System.

Robert Milne:

‘Semantic relationships: reducing the separation between practice and theory’

Christopher Strachey believed that the gap between theory and practice was impeding the development
of computing science. In my talk I shall consider how our work together on the essay that ultimately
became our book tried to narrow the gap, by formalising, and reasoning about, the implementation
concepts for programming languages. A particular focus will be the proof techniques for imperative
programs that use storage, which were implicit, but not very easy to discern, in the book.

Philip Wadler:

‘Christopher Strachey, first-class citizen’

The talk will review Christopher Strachey’s influence on modern-day functional programming languages.

Uday Reddy:

‘Parametric Polymorphism and Models of Storage’

In this presentation, we bring together two strands of Christopher Strachey’s thought, viz., parametric
polymorphism and abstract models of storage. The term parametric polymorphism was introduced in
[Str00], where Strachey distinguished it from “ad hoc” polymorphism. In the words of John Reynolds,
“a parametric polymorphic function is one that behaves the same way for all types,” whereas an ad hoc
polymorphic function may have unrelated meanings at di↵erent types. [Rey83] A very similar intuition
arose in mathematics, some twenty years earlier, for which Eilenberg and MacLane proposed a “General
Theory of Natural Equivalences”, what we now call category theory. [EM45] Relating the two notions
allows us to develop a broad view of “parametricity” (the idea of acting the same way for all types), which
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is applicable not only to programming languages but also to mathematics and perhaps other disciplines.
A particularly important application of this broad view is for Strachey’s “mathematical semantics” of
programming languages.

For modelling imperative programming languages that operate by manipulating a store, Strachey pre-
sented a basic model of storage based on “locations”, while promising a further paper on an “abstract
model of storage” to appear in future. [Str97]. Unfortunately the latter never appeared. In succeed-
ing work, Reynolds [Rey81] proposed an abstract model of store as well as an “intuitionistic” functor
category approach to model the stack discipline of the store. O’Hearn and Tennent made the crucial
observation that the model needs to be embellished with parametricity to capture the data abstraction
aspects of the store. [OT95, TG00] In this talk, I review these developments as well as my recent work
on integrating the Reynolds model with parametricity to capture the fact that state changes of the
store are irreversible. [Red12, Red13]. One way to understand these developments is to view them as a
“parametric mathematical semantics” of programming languages.

References

[EM45] S. Eilenberg and S. Mac Lane. General theory of natural equivalences. Trans. Amer. Math.
Society, 58:231–294, 1945.

[OT95] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. J. ACM, 42(3):658–709,
1995. (Reprinted as Chapter 16 of [OT97])

[OT97] P. W. O’Hearn and R. D. Tennent. Algol-like Languages (Two volumes). Birkhäuser, Boston,
1997

[Red12] U. S. Reddy and B. P. Dunphy. An automata-theoretic model of Idealized Algol. In Automata,
Languages and Programming (ICALP 2012), volume 7392 of LNCS, pages 337–350. Springer- Verlag,
2012.

[Red13] U. S. Reddy. Automata-theoretic semantics of Idealized Algol with passive expressions. In D.
Kozen and M. Mislove, editors, Proc. 29th Conf. on Math. Found. of Program. Semantics (MFPS
XXIX), volume 298 of ENTCS, pages 325–348. Elsevier, 2013.

[Rey81] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van Vliet, editors, Algorithmic
Languages, pages 345–372. North- Holland, 1981. (Reprinted as Chapter 3 of [OT97]).

[Rey83] J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor,
Information Processing ‘83, pages 513– 523. North-Holland, Amsterdam, 1983.

[Str97] C. Strachey. The varieties of programming language. In Algol- like Languages [OT97], chapter 2.
(original Tech. Report. Oxford PRG-10, 1973).

[Str00] C. Strachey. Fundamental concepts in programming languages. J. Higher-order Symbolic Com-
put., 13(1-2):11–49, 2000. (original lecture notes, Copenhagen, 1967).

[TG00] R. D. Tennent and D. R. Ghica. Abstract models of storage. Higher-Order and Symbolic Com-
putation, 13:119–129, 2000.

Jeremy Gibbons:

‘What are types for?’

Types in programming languages are commonly thought of as a way of preventing certain bad things
from happening, such as multiplying a number by a string. But this is only half of the benefit of types:
it is what types are against. Types in programming languages are also what enable some good things
to happen, such as selecting the right implementation of a heterogeneous operation like comparison or
printing based on type information; this is what are types for. This ability is surprisingly powerful, and
gives rise to a variety of highly expressive generic programming techniques. I will illustrate with some
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examples based on the rank-polymorphic array operations introduced in Iverson’s APL: not only does
the type information prevent array shape errors, it is what directs the lifting of operations across array
dimensions.
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Exhibition items

Some information here has been taken from the catalogue of the Strachey archive at the Bodleian
Library, collected by the Contemporary Science Archives Centre. This is available online at http:

//www.bodley.ox.ac.uk/dept/scwmss/wmss/online/modern/strachey-c/strachey-c.html.

1. Account of Strachey’s life and work. Date: 1926–1964.
Tabulated account of his life and activity, drawn up by Strachey.

The information, itemised by year and by month, is compressed in Strachey’s very tiny handwriting
on to 2 and a half sheets of writing-paper. The earliest entry is for 1926, and the entries have been
added in blocks of two or three minutes at a time, to the end of 1964.

Personal and professional events are recorded, and the account is remarkable for the amount of
information encompassed.

2. Pictures of Strachey. Dates: 1923, 1925, 1973.
A photo of Strachey aged 6 lying by the side of the pool at Mud, the Strachey holiday home in
Sussex. Another of Strachey aged 8 wearing a hat and carrying a forkful of hay. Four photos of
Strachey looking relaxed reading a newspaper in 1973, probably also taken at Mud. One computer
generated image of Strachey, composed of various symbols including a moustache of �s.

3. Diagrams of the school gramophone at St. Edmund’s School, Canterbury. Date: late 1940s.
Strachey was employed as a schoolmaster at this small public school, where he taught physics
and mathematics. He was also involved in extra-curricular school activities, including the school’s
radio club, where he designed and built a combined radio and gramophone.

4. ‘Interplanetary travel’. Article in Harrow School magazine. Date: 1950.
After leaving St. Edmund’s school, Strachey took a post at the rather more prestigious Harrow.
Here as well he took part in a number of activities, including teaching musical appreciation, and
often gave lectures at the science society, including on the topic of interplanetary travel.

5. Items related to the ‘Draughts’ program. Date: 1950–1952.
During the last years of his time at Harrow, Strachey became interested in computers, and spent
some time at the National Physical Laboratory learning about their Pilot ACE machine. He then
spent quite a few years working on a program which would enable a computer to play draughts.

6. Letter to Alan Turing. Date: May 1951.
Strachey’s copy of his letter to A.M. Turing, 15 May 1951. Written immediately after hearing
Turing’s talk ’Can Digital Computers think?’, broadcast on BBC Third Programme on same day.
In his letter Strachey discusses the general problems of ’thinking machines’, their application to
the Manchester machine, and his modification of his ACE draughts program.

7. ‘Specification of the machine’. Date: 1957.
Whilst working at the National Research Development Corporation, Strachey was responsible for
large parts of the design of Ferranti’s new computer, the Pegasus.

8. ‘Time sharing in large fast computers’. Date: 1959.
Typescript abstract, and 2 typescript versions of a paper read at the UNESCO Conference on
Information Processing, Paris, July 1959.

Strachey describes the paper as follows: “‘Time Sharing in Large Fast Computers’ was probably
the first paper to discuss time-sharing and multi-programming as we now know them. It is a
matter of history that the time-sharing idea became extremely fashionable in the middle sixties
and dominated much of the work on computing at that time. When I wrote the paper in 1959
I, in common with everyone else, had no idea of the di�culties which would arise in writing the
software to control either the time-sharing or multi-programming. If I had I should not have been
so enthusiastic about them.”

9. ‘CPL working papers’ (Introduction). Date: 1966.
The CPL Working Papers were issued in July 1966 following a meeting of the CPL authors
in Oxford on 24 June. They consisted of 2 parts: 1. The second edition of the Elementary
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Programming Manual and 2. An unfinished Reference Manual. The concluding paragraphs of
the minutes of the 24 June 1966 meeting state: “The circulation of the CPL Technical Report
will conclude the phase of e↵ort on CPL which has continued for the past four years, and at
this stage most authors will probably wish to discontinue their e↵orts in a formal way... CPL of
course needs major further work, particularly on data structures and program segmentation. C.S.
(Strachey) and D.P. (Park) propose to study this at Oxford, and M.R. (Richards) may implement
it at M.I.T.”

Strachey’s preface to the Working Papers, which gives a useful account of the history of CPL and
its documentation, is on display here.

10. ‘A general purpose macrogenerator’. Date 1965.
In an autobiographical note written in 1971, Strachey described this as follows:

“An interesting by-product of the work on CPL and its compiler was the General Purpose Macro-
generator which is in e↵ect a simple but very general string processor. This program has now
been implemented in almost every country in which computing is a research subject—I certainly
know of implementations in Australia, Japan, Poland, Norway, Denmark, Germany, France, Italy,
Holland as well as several in England and America. It gives an elegant example of the use of a
stack and shows the power of functional composition to construct complicated operations from
simple primitives. It is not, however, of any very deep theoretical interest and I now regard it as
a rather beguiling time-waster.”

11. Time sharing patent. Date 1965.
Strachey’s work on time sharing culminated in US and UK patents, filed at the end of the 1950s
and only awarded in the mid 1960s.

12. ‘Systems analysis and programming’, in Scientific American. Date: 1970.
Strachey described this as ‘a popular article ... it describes, amongst other things, a draughts-
playing program’. Strachey found di�culty in writing, and in adequately illustrating, the article,
of which many drafts, revisions and alternatives survive in the folders both of working papers and
editorial correspondence.

13. Single-page language semantics. Date: early 1970s.
One of the features of Strachey and Scott’s mathematical semantics which must have particularly
pleased Strachey is the compactness with which languages could be defined. This is an example
of such a single page (two-sided) definition.

14. ‘A theory of programming language semantics’. Draft manuscript (with Robert Milne). Date:
1974.
Strachey was determined to be elected to the Royal Society towards the end of his life, and
partly in an attempt to increase his publication count and win some notoriety, he co-wrote with
one of his students this extremely lengthy essay and submitted it for the Cambridge Adams
prize. It represents the ultimate achievement of Strachey’s work on semantics, and explains the
concept and metalanguage as well as giving exhaustive worked examples on a sizeable programming
language. The Strachey archive contains a large quantity of manuscript material, written in both
Strachey’s and Milne’s hands. Displayed here is only the introduction and the note to the assessor’s
apologising for the length of the essay.

15. ‘A theory of programming language semantics’. Draft typescript (with Robert Milne). Date: 1974.
A preliminary typed version of the essay, although still not completed. Strachey continued to revise
the essay extensively, and there were plans to publish in 1975, although these were changed by
Strachey’s sudden death. The submission did not win the prize.

16. A Theory of Programming Language Semantics. Book, two volumes (Robert Milne and Christopher
Strachey). Date: 1977.
After Strachey’s death, Milne rewrote the material of the Adams Essay and it was published in
book form.

17. ‘The word games of the night bird’. Date: 1974.
An interview with Nancy Foy, published in Computing Europe.
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18. Eminent Victorians. Book, Lytton Strachey (Christopher’s uncle). Date: 1918.
Biographies of four leading figures from the Victorian era. Made Lytton Strachey’s name as a
biographer, and was notorious for the irreverence with which Strachey challenged the values and
vices of the period. Lytton Strachey was one of the members of the hugely influential Bloomsbury
group, which also counted amongst its members Virginia and Leonard Woolf, E. M. Forster, and
John Maynard Keynes. Aside: Christopher’s mother Ray’s younger sister Karin married Adrian
Stephen, Virginia Woolf’s younger brother.

19. Remarkable Relations: The Story of the Pearsall Smith Women. Book, Barbara Strachey (Christo-
pher’s sister). Date: 1980.
Barbara who became a writer after her brother’s death, writing on, among other things, the works
of Tolkein. This book describes the lives of their mother’s family line, and includes biography of
Alys Pearsall Smith, first wife of Bertrand Russell.
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Greetings to the Participants at “Strachey 100”

by Dana S. Scott

I am very sorry indeed not to be able to make the trip from Berkeley, California, to be at this birthday
party. And it is certainly hard to imagine that Christopher would be 100 years old this week! It is even
harder to think that he died over 40 years ago at the age of 58 in May of 1975. I can still remember the
deep, deep pain I felt in getting the not unexpected, but terrible news from the hospital, and the pain
felt by all his circle of relatives, friends, students, and colleagues.

On my recent lecture tour in the UK last summer, I remarked that if one lives long enough, then one
becomes something of “an historical figure”! And that is rather how I feel today speaking to you at
age 84. People say, “Oh, you knew Christopher Strachey!” Or ask, “You really met Kurt Gödel?” Or,
“You really once visited Bertrand Russell?” Or, “What was Paul Erdős like?” And though I never had
a chance to meet Alan Turing (1912–1954), I met many, many people who did, including my colleague
and good friend Robin Gandy (1919–1995). He was Turing’s only Ph.D. student, remember, and, sadly,
he also is now gone for over 20 years.

Let me give you all a warning and, perhaps, some advice. Having met so many remarkable people in my
career, I have that very unpleasant reaction—in reading their obituaries, for example—of asking myself:
“Why in heaven’s name didn’t you ask them more questions about their lives?” We are often all too
content with quite trivial, social conversations, but a pointed question will sometimes elicit fascinating
stories. Now, a remarkable Oxford figure, Sir Isaiah Berlin (1909—1997), who was a favorite guest of
ours when we lived in Oxford, never needed any prodding and was always full of good stories. Sometimes
maybe Sir Isaiah indulged too much in what I like to call creative remembering, but his entertainment
value was always high. The lives of others, however, are often hidden, and they are the shy ones needing
our encouragement to reminisce. So my advice is this: Don’t miss the chance of asking questions! It is
much too easy to be too late.

Fortunately Berlin has an extensive biography by Michael Ignatie↵, and Strachey has a quite detailed,
briefer biography by Martin Campbell-Kelly. A very detailed history of the Strachey family was written
by Barbara Caine; while Christopher’s sister, Barbara Strachey, has well documented the “remarkable”
female side of the Stracheys and their relations. I mention some of these references in my bibliography.

What, we can wonder, would Christopher have been like at age 100? What indeed. Well, assuming he
would have retained all his faculties, he definitely would have been outspoken, critical, and funny—
in other words he would have been quite the same as he was in his late 50s! But, perhaps, today as
an ancient, respected guru, he would have allowed himself to be rather more forgiving . We can only
conjecture.

Of course, the whole aspect and style of the computing profession has completely changed over these
last 40 years. We need to remember that Christopher was not in favor of an undergraduate degree.
He was not in favor of the term “Computer Science”. And he insisted on being called “Professor of
Computing”. And so it is somewhat di�cult to think of how his attitudes would have changed now that
we have something called machine learning winning Go games and making money in the stock market
(to name only two recent areas of development that scare us).

And would he have liked the cloud and the extensive remote use of software? (I hope so.) Would he
have approved of students getting an undergraduate degree and then opting for the large salaries rather
than continuing to a Masters or even a D.Phil.? (I hope not, and I don’t.) But too much is out of the
hands of us academics today, and we have to learn to adjust. I think Christopher would have adjusted
eventually, but he would have made us debate the changes — because he liked to force people to think.

Let us note that in this year, 2016, the CWI, Amsterdam, will also celebrate the 100th anniversary of
Adriaan van Wijngaarden (1916–1987). He was the irrepressible force behind the design of ALGOL 68.
One of van Wijngaarden’s early students was Edsger W. Dijkstra (1930—2002), who received his Ph.D.
in 1959. I knew Dijkstra and always found his highly critical and judgmental attitude hard to deal with.
Aad van Wijngaarden was not at all like that, though he had great self-confidence. One of his later
students, Jaco de Bakker (1939–2012), who received his Ph.D. in 1967, I liked enormously. Jaco had
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a long and distinguished career as a researcher and teacher, both at the CWI (Centrum Wiskunde &
Informatica) in Amsterdam and at the Vrije Universiteit.

I met van Wijngaarden and de Bakker in Amsterdam during the academic year 1968/69 while on sabbat-
ical from Stanford University. Here is my favorite story about van Wijngaarden. The design of ALGOL
68 had been concluded and the report on the language came out the next year. When I received it back
in the States in 1970 I was amazed by its complex typesetting, for it had been completely typed on an
IBM Selectric typewriter using at least a dozen “golfballs” to get all those special symbols and typefaces.
On my next visit to Amsterdam when I met van Wijngaarden I said to him: “Aad, Aad! How in the
world did you get a secretary to type such a complicated document?” He smiled and answered: “Oh, I
have a secretary who types whatever I want!” And he silently pointed to himself! Yes, he alone typed it
all so he would know it was correct. That takes a truly remarkable determination.

Back in the early 1960s at Berkeley I had been introduced to ALGOL 60 and was very intrigued by
its high-level design, having as a graduate student at Berkeley and Princeton done some (quite small-
scale) machine-language programming projects. Then in the mid 1960s at Stanford, when the Computer
Science Department was just being formed, I had many connections with the new group of students there
and with John McCarthy (1927–2011). McCarthy had received his Ph.D. in 1951 at Princeton, not in
Logic but in Partial Di↵erential Equations under the direction of Solomon Lefschetz (1884–1972).
He was however influenced by what he learned of the �-calculus of Alonzo Church (1903–1995), another
Princeton professor at the time.

McCarthy later introduced functional abstraction into his design of LISP, but on his own admission
he did not understand much of Church’s logical development of the �-calculus. I, on the other hand,
had as an undergraduate about 1952 at Berkeley learned about the subject on my own from a small,
but rich logic text by Paul C. Rosenbloom (1920–2005), and I subsequently studied the monograph of
Church (1941), the works of his close colleague Haskell Brooks Curry (1900–1982), and of his prominent
students, Stephen Kleene (1909–1994) and J. Barkley Rosser (1907–1989), all of whom I got to know
well in later life. However, during my time at Berkeley and Stanford I did not see the role �-calculus
would grow to play in programming-language theory.

During the spring of 1969 de Bakker and I worked on what we called “A Theory of Programs” defined
in the spirit of Automata Theory, but with input and output . I reported on the ideas when visiting the
Vienna IBM Laboratory later that summer. The notes, handwritten by me, were finally reproduced in
1989 in a Festschrift for Jaco. That visit to Vienna was the start of many long-lasting friendships with
the group there, who are now scattered around Europe.

But, more fatefully, I attended my first meeting of the IFIP Working Group WG 2.2 Formal Descrip-
tion of Programming Concepts. I had been proposed for membership by my long-standing friend
and mentor, Patrick Suppes (1922–2014), Professor of Philosophy at Stanford. He was unable to attend
that meeting and sent me in his place. Alas, I have lost track of all my files, but some of the history of
WG 2.2 is available on the internet. Here is the outline of the very early days:

• IFIP Working Conference on Formal Language Description Languages, met near Vienna in Baden-
bei-Wien, 15–18 September 1964, organized by Prof. Heinz Zemanek (1920–2014), leader of the
IBM Laboratory. This was the seminal event for the creation of WG 2.2.

• The first meeting of WG 2.2. was held at Alghero, Italy, 6–8 September 1967 organized by Prof.
A. Caracciolo di Forino. The first chairman, until the Geneva meeting, was T. B. Steel Jr.

• The next meetings were at Copenhagen, Denmark, 22–26 July 1968, and then at Vienna, Austria,
21–25 April 1969, organized by Dr. Kurt Walk of the IBM Laboratory.

The April 1969 meeting was where I first met Christopher, and I was immediately impressed by the clarity
of his statements. These working group conferences always had a lot of arguing back and forth (though
not as bad as what I heard about the ALGOL meetings in WG 2.1!), and Christopher was a very good
debater. His experience with the sadly failed CPL (Cambridge Programming Language) project, and his
subsequent work, especially in collaboration with Peter Landin (1930-2009), had made him very aware of
good design decisions. The ALGOL language had originally been only meant as a publication language
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for numerical algorithms and was not originally intended to become a programming language. However,
its clean ideas attracted many groups to make it—or something like it—an operational language. I note
in passing that I was at a very well attended 40th Anniversary Meeting of WG 2.2 held in Udine, Italy,
in September of 2006.

Let us now return to �-calculus and Strachey’s use of it. Christopher told me once that Roger Penrose
(now Sir Roger!) suggested to him that he ought to look into using the �-calculus for the kind of function
definitions he wanted to use. At this moment I cannot track down or verify the story. (Perhaps people
in Oxford might ask Penrose personally about this?) But, in Landin’s three papers in 1964 and 1965,
Peter from the start brings in �-calculus—but without attribution to Strachey, even though they were
close associates. It is of course quite possible that Landin thought of this himself, and he mentions
Rosenbloom in his references. Landin in one abstract says:

This paper is a contribution to the “theory” of the activity of using computers. It shows
how some forms of expression used in current programming languages can be modelled in
Church’s �-notation, and then describes a way of “interpreting” such expressions. This
suggests a method of analyzing the things computer users write, that applies to many dif-
ferent problem orientations and to di↵erent phases of the activity of using a computer. Also
a technique is introduced by which the various composite information structures involved
can be formally characterized in their essentials, without commitment to specific written or
other representations.

And at the end of his third paper he writes:

This paper was written while I worked for Christopher Strachey. It is based on some
lectures that George Coulouris invited me to contribute in Spring 1963 to a series on the
“Logical Foundations of Programming” at the University of London Computer Unit. W. H.
Burge, C. Strachey and M. Woodger read parts of an earlier version and pointed out many
errors and obscurities.

So, there is no question that many ideas were shared. In any case, when I met Strachey and subsequently
arranged to spend the Autumn term in Oxford in 1969 working with him, he was using �-calculus in
the style of Landin’s papers, which were much read by all of us wanting to follow the paths Landin had
convincingly set forth.

Form the beginning of our association in Oxford I told Christopher, “Lambda-calculus has no math-
ematical models!” Calling on my background in model theory and recursion theory, I suggested a
partial-order structure for functions and functionals that had been much employed could be adapted
to his objectives. There were several earlier works doing computability theory in this way, though at
that time the theory people were much more involved in understanding infinitary computation. Using
inspiration from the Ph.D. thesis of Richard Platek and writings of Kleene, I suggested a formulation
for Strachey to use in my draft paper “A type-theoretical alternative to ISWIM, CUCH, OWHY.”

Then, one Saturday morning in November of 1969, when lying on the bed in the guest room of the flat
that I and my family had rented in Headington, an awful thought occurred to me. In setting up the
higher types of continuous functionals, I had seen that each of the type domains had a basis of finite
elements—in the sense that each object of each type is the least upper bound of the finite elements it
contains. In passing from one type level to the level of continuous functions above it, the basis of finite
elements usually became more complicated. But what if, I suddenly thought, there were a type D such
that the basis of the function space (D → D) was no more complicated than the basis of D? Could we
then have a type D = (D → D) in the sense of an isomorphism of partially ordered sets? In a fever I
set about finding such a domain over the next few days, and that was how Domain Theory was born in
my mind. After being so critical of the formal approach to �-calculus, I would now have to eat my own
words, because the �-calculus could indeed have mathematical models.

In many ways I rather regret having cast the foundations of Domain Theory at that time in the form
of lattice theory (and later DCPO theory). Some people liked it, and some people disparaged it
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as “Scottery” and too abstract. A change came in the mid 1970s when I had become a colleague
of Christopher’s at Oxford as the first Professor of Mathematical Logic. Gordon Plotkin, then a new
Ph.D. in AI at Edinburgh, sent me a 1972 memo, “Set-theoretical and other elementary models of the
�-calculus,” inspired by Domain Theory. I at first did not fully understand Plotkin’s simplification
(by focussing on one particular domain), and I put the memorandum aside. But later for teaching
purposes I went back to it and realized that, by using ideas of Recursive Function Theory, the set theory
could be replaced just by the powerset of the set of natural numbers. I wrote up a report on the
approach in 1975, which was published the next year, called, “Data types as lattices: To the Memory of
Christopher Strachey, 1916–1975.” That paper had considerable historical detail and suggestions about
understanding higher types. Of course, by then Christopher was gone. My earlier unpublished memo on
the type-theoretical alternative, and Plotkin’s memo on the set-theoretical model were finally published
in the Festschrift for our friend and colleague Corrado Böhm in 1993—along with additional materials.

And here is another deep regret of mine. I was a graduate student at Princeton in Mathematics from
1955 to 1958 working under the direction of Church. Now he never spoke to us students at that time
about �-calculus. My conjecture is that he was always deeply disappointed that his early idea about a
new foundation for logic and mathematics proved to be inconsistent, as his students Kleene and Rosser
discovered. He wrote up the equational part of the theory (proved consistent by syntactical arguments)
in 1941 and then turned to typed �-calculus, and this later work became very influential indeed. Curry,
however, continued to do research in the untyped theory all his life, while Rosser and Kleene turned
away from it after their graduate school period.

What then is my regret? Well, in 1955 John R. Myhill (1923–1987) and John Shepherdson (1926–2015)
published their paper “E↵ective operations on partial recursive functions”. And in 1956 Richard M.
Friedberg and Hartley Rogers Jr. (1926–2015) wrote an abstract on what became their 1959 paper,
“Reducibility and completeness for sets of integers”. Friedberg and Rogers called their operators enu-
meration operators, but they were basically the same as Myhill and Shepherdson’s functionals. And
it took me almost 20 years until 1975 to see that they had therefore already discovered a model for
the �-calculus—but none of them ever seemed to know it!

Since I knew Myhill and Rogers personally and had read Shepherdson’s other work, and since I had a
good background in recursive function theory and model theory from my student days, and since Kleene
was resident in Princeton for 1956/57, and since Rodgers visited Princeton that academic year to lecture,
I myself could have put two and two together to produce a model in 1957! If only I had done
so and then announced it at the big 1957 Summer Logic Conference at Cornell University, I would now
be rich and famous (though the famous part is not my principal regret). Also the development of the
theory of programming languages would have been much di↵erent. Alas, history is not an experimental
science, and we cannot turn the clock back to correct our oversights and erase our stupidities.

Another regret is that my taking up the Oxford chair did not start up further collaboration with Strachey.
There were two reasons. For better or worse Oxford is governed by committees of academics. Strachey
had been given a personal chair in the early 1970s, and my chair was in both Philosophy (under the old
Lit Hum Board) and in Mathematics (with its own board). That meant both Christopher and I had to
take part in many committee meetings. Also the eight-week Oxford terms went by at a lightning pace.
There were also many students around (fortunately!) requiring supervision, but one term owing to leaves
of absence I had to supervise 19 postgraduates.

But a second reason that limited collaboration was the decision Strachey made to submit a book to
Cambridge for the Adams Prize. The rule was that all authors had to be former Cambridge students
or fellows, and so, as I could not be a co-author, Christopher recruited Robert Milne. The resulting
Strachey-Milne opus was perhaps too dense and too technical, and in the event it failed to garner the
prize—a sad, disheartening fact Christopher learned in hospital just before he died.

Fortunately, Strachey’s loyal assistant, Joseph E. Stoy, stepped up to the task and wrote “Denotational
Semantics: The Scott-Strachey Approach to Programming Language Theory.” That was an excellent
presentation, but it would have perhaps been even better with three authors.

At the time of my discovery of the �-calculus model in 1969, John Reynolds (1935–2013) was visiting
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England and attended my first lectures about the approach. He became an enthusiastic advocate, as
he had been working himself on programming-language design. Over the years he subsequently made
many major contributions to design and theory, as recounted in the Brookes–O’Hearn–Reddy Reynolds
memorial paper in 2014.

Reynolds, in works with his Ph.D students and, later, with Peter W. O’Hearn, brought a fresh new
approach to Denotational Semantics. In the memorial paper the authors write:

These type constructors are parametrized by a type variable S representing the set of
states for a store. This is in marked contrast to Strachey’s denotational semantics where the
store is fixed and global. Here the store is a type variable. In essence, this means that the
program can work with whatever “type” of store we supply, as long as it has all the required
data variables. An intuitive interpretation of parametric polymorphism immediately implies
that the program will act the same way for all these di↵erent “types” of stores.

Ah, if only that could have been discovered in the 1970s, the influence of Denotational Semantics would
have been much greater, as the original Strachey approach to modeling the store was quite ad hoc and
often unconvincing. Fortunately, however, research continues vigorously today. Most recently O’Hearn
has been co-recipient with Stephen Brookes of the 2016 Gödel Prize for the invention of Concurrent
Separation Logic, which was deeply influenced by Reynold’s ideas and results.

When I was invited to speak at the Princeton University and the Association for Computing Machinery’s
Alan Turing Centennial Celebrations in 2012 I tried to make a time line of events and ideas in Logic,
Computability, and Category Theory. This is only a faint approximation to a history of ideas, but that
might encourage others to flesh out my outline. I also just found through an internet search the slides
of a talk by Pierre-Louis Curien on the semantics of programming languages. He and the French have
made major contributions to the area, and his report might also be an inspiration to historians.

In conclusion, then, we can agree this has been an amazing half century in the development of computers
and the ways of using them. New surprises pop up every week. Ten years ago we could not have predicted
even half of what is available today. And, of course, I am deeply sad that Christopher could not live to
see what has happened.

Thanks, and my best greetings this November of 2016.
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history and only wanted to trace some of the paths he was personally involved in that were directly
inspired by Christopher Strachey.
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Abstract

Chrisopher Strachey was the most significant contributor to the design and implementation of the
programming language CPL. At the time there was little understanding of the complexities of
computer language design and how type systems could cope with lists and the kinds of structures
needed to represent, for instance, parse trees. The CPL project cannot be regarded as being
successful since it did not result in a usable CPL compiler. The reasons being that the language
became too large and complicated, there were insu�cient people to implement the compiler and,
in the middle of the three year project, all work had to be transferred from Edsac 2 to Titan, a
newly designed version of the Ferranti Atlas computer which as yet had no operating system. Even
so, we can be proud of the work that went into CPL and its influence on the design of many later
languages.

Keywords: Edsac, Titan, CPL, BCPL

1 Introduction

Before discussing the development of CPL it it necessary to have some understanding of what
computer facilities were available at Cambridge at the time.

The first electronic computer in Cambridge was constructed under the Direction of Maurice
Wilkes and successfully ran its first program in May 1949. It was a serial machine with up to
512 35-bit words of memory stored in mercury delay lines. Each word could contain two 17-bit
instructions. Wilkes made two important decisions that contributed to the machine’s success.
Firstly, he chose to use a fairly slow clock rate of 500kHz arguing that reliability and ease of design
were more important than speed since the machine was already going to be able to do calculations
thousands of times faster than was possible by hand. Secondly, he made the machine available
to anyone in the University who could make use of it. This was enthusiastically taken up by
many departments including the radio astronomers, the theoretical chemists, and mathematicians,
directly contributing to at least two Nobel Prizes.

One advantage of the serial design was that it allowed high precision arithmetic to be imple-
mented using rather few logic gates. Although the instruction set was quite primitive with no



subroutine jump instructions and no index registers, it did include an instruction to add the prod-
uct of two 35-bit numbers to a 71-bit accumulator. Indeed, it was a good machine for serious
numerical calculation. For more information look at the poster[12] which is on the wall of the
Cambridge Computer Laboratory’s first floor Co↵ee Room describing how the incredibly cunning
EDSAC initial orders worked, written by David Wheeler. In a mere 31 instructions, it could load
a program from paper tape written in assembly language and execute it.

In 1958 the EDSAC was replaced by Edsac 2. This was a bit sliced computer controlled by a
micro program consisting of a matrix 32x32 ferrite cores. Each core corresponded to a di↵erent
micro instruction. When a core was fired, windings on it would give the (x, y) address of the next
micro instruction to obey and other windings would send signals to control the machine. Some
micro instructions used signals from the machine, such as the sign of the accumulator, to modify
the address of the next core to fire. The micro program consisted of up to 1024 instructions many
of which were conditional. David Wheeler wrote the micro program and as with the Initial Orders
of the EDSAC, it allowed paper tapes of assembly language to be loaded and executed. But unlike
the EDSAC, the instruction set was much more powerful and convenient to use and included some
rather wonderful debugging aids. For instance, by pressing a switch on the control panel, the
machine would output a paper tape giving a compact represention of the recent flow of execution
of the program, typically in the form of recently executed nested loops. Another intriguing feature
was that the fifth bit of the e↵ective address of every instruction was fed to a loudspeaker normally
producing a rich sound that programmers soon learnt to interpret. For users not using assembly
language the preferred language was Edsac Autocode, designed and implemented by David Hartley.

Initially, Edsac 2 had a memory of 2048 20-bit words. These were used to represent machine
instructions, but some instructions used pairs of these words to represent 40-bit integers or floating
point numbers. The machine also had a read only memory filled with many useful subroutines,
typically entered by the instruction with function code 59. The main memory was extended in 1962
by an additional 16K words purchased from Ampex. Access to this memory was less convenient
since it required the use of a new base register.

Around 1961, it was clear that the University needed a more powerful computer, and it was
decided to install a version of the Ferranti Atlas, but, to save money, a cut down version was
designed. Following the success of the previous two computers, it is perhaps not surprising that
modifications to the machine were designed and built in Cambridge. Some users would probably
have preferred a more conventional machine such as the IBM 7094 allowing greater compatibility
with other universities, particularly in America.

David Wheeler had a major hand in the modified hardware design. Since the machine was
going to allow simultaneous access for many users, it required hardware memory protection, but
rather than the full blown paging mechanism of the full Atlas, David designed a much simpler
system using a base address and limit register. For e�ciency reasons, the base address was ORed
into the e↵ective address rather than being added. This meant that with a main memory of 32K
words, small programs of say 4K could be placed in 8 positions in memory but programs larger
that 16K only had one choice. To make time sharing responsive, small programs were strongly
encouraged. This cut down machine was called Titan but was not ready to use until 1964 and
even then it needed an operating system, an assembler and at least one high level programming
language. With the limited resources available, an assembler was constructed on time but the
operating system was clearly going to be late, and the decision to design and implement CPL
which was substantially more complicated than ALGOL 60 was extraordinarily optimistic. At a
late stage, Peter Swinnerton-Dyer was called in and miraculously implemented, in about six weeks,
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a simple operating system including an assembler, and a version of Edsac Autocode. Edsac 2 was
switched o↵ on 1 November 1965.

2 Development of CPL

The initial plan was to design a new language related to ALGOL 60, taking advantage of its
many good features such as its block structure, but removing or modifying features that caused its
implementation to be di�cult or ine�cient. A paper by Strachey and Wilkes[21] proposed some
possible improvements. One idea was to allow programmers to state when functions were non
recursive and another was a scheme that attempted to stop functions having side e↵ects to allow
compilers more freedom to optimise the order of evaluation within expressions. They also felt that
a simpler form of ALGOL 60’s call-by-name would be useful. They called this call-by-simple-name
being equivalent to call-by-reference we use today. These ideas found their way into the design
of CPL. The work on CPL ran from about 1962 to 1966. The first outline of CPL was in the
paper “The main features of CPL”[2] published in 1963 and a later document “CPL Papers”[3]
was written in 1966.

I was involved with CPL when I was a research student for three years starting in October 1963.
By then CPL changed from being Cambridge Programming Language to Combined Programming
Language since the project was now a collaboration with the University of London, Institute of
Computer Science. The committee involved in the design of CPL was headed by Strachey and
included his assistant Peter Landin, David Hartley, David Park, David Barron, from Cambridge
and, from London, John Buxton, Eric Nixon and George Coulouris who implemented a satisfac-
tory subset of CPL on the London Atlas computer. As a junior research student involved with the
Cambridge implementation, I was lucky enough to attend most of these meetings. They usually
took place either in Cambridge or in Strachey’s house in Bedford Gardens, London. The discus-
sions were lively and animated trying to reach compromises between the conflicting desires of the
participants. Some wanted a firm underlying mathematical stucture to the design, others only
wanted features that were useful, and those involved with the implementation favoured a design
that could be compiled e�ciently. In general, the kind of discussions were like those fictitous lan-
guage design discussions appearing in chapter 8 of “System Programming with Modula-3” edited
by Greg Nelson[10]. During breaks in the discussions, Christopher and Peter would sometimes
entertain us with piano duets.

Clearly the designers of ALGOL 60 were familiar with Church’s �-calculus since the ALGOL 60
Report describes procedure calling and call-by-name parameter passing in term of textual replace-
ment of procedure calls by suitably modified copies of the procedure bodies, in more or less the
same way that �-calculus used ↵-conversion and �-reduction. This was clarified in Peter Landin’s
paper “Correspondence between ALGOL 60 and Church’s Lambda-notation”[7]. With such a close
relationship between ALGOL 60 and �-calculus, it was natural to allow procedures to be defined
within other procedures.

CPL was a natural extension of ALGOL 60 with a wider variety of numerical values, including
integers, reals and complex numbers both in single and double precision as well as bit pattern
values called logicals. It also contained a wide variety of useful and easily implemented conditional
constructs using keywords such as if, unless, while, until and repeat. Strachey was always
full of great ideas for other extensions, not all of which ended up in CPL. He was keen on the idea
of L and R values and L and R mode evaluation. These corresponded to the di↵erent ways in
which expressions on the left and right hand side of assignment statements were processed. He also
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liked the idea of referential transparency which essentially means an expression can be replaced
by any other expression that evaluates to the same result. This led to the belief that conditional
expressions and even function calls should be allowed on the left hand side of assigments and in call-
by-reference parameters. Strachey thought it important to make a distinction between functions
that produced results and routines whose sole purpose was to have side e↵ects. He liked the idea
that some functions could be defined in such a way that they could not have side e↵ects. He called
them fixed functions and had a way of implementing them. Rather than use the common choice of
dynamic and static chains through the runtime stack, he proposed the construction of a list of free
variable values at the time a function was defined. For fixed functions, the values were R values
and assignments to them would not cause side e↵ects. Free functions on the other hand would use
L values, allowing them to have side e↵ects. His liking for L values extended to the idea of creating
a general form consisting of a load-update pair (LUP), allowing a user to, for instance, construct
the L value of a field of bits within a logical variable.

In addition to call-by-value and call-by-reference, CPL had ALGOL 60 style call-by-name using
the keyword subst, but this was soon dropped since passing a function as an argument was a simpler
way to provide the same facility.

One notable feature of CPL was its ability to deduce the data types of all expressions and
variables with little explicit help from the programmer. Partly because we had insu�cient under-
standing of type systems, we needed a type general which carried the actual type of values around
at runtime. The much more recent language ML[9] has a superb polymorphic type system with
the ability to statically deduce the types of all expressions and variables. The design of ML was a
tour de force and was cited as one of the reasons why Robin Milner received the Turing Award in
1991. Although ML can deduce the type of every expression in an ML program, this is only just
true because the process can take exponential time. For instance, the type of f in the following
short program is many millions of characters long.

fun a x y = y x x;
fun b x = a(a x);
fun c x = b(b x);
fun d x = c(c x);
fun e x = d(d x);
fun f x = e(e x);

3 GPM and the CPL Compiler

In order to write the CPL compiler in a form that could be easily transferred from Edsac2 to Titan,
it was decided to implement the compiler in essentially a subset of CPL and hand translate it into
a sequence of macro calls using the GPM macrogenerator that Strachey specifically designed for
the purpose. GPM was described in detail in a paper in the Computer Journal[18]. Since GPM
had such a significant influence on how the compiler was constructed it is necessary to learn a little
about how GPM worked.

Unfortunately Strachey’s paper contains a subtle bug as a result of his attempt to implement
GPM using a single stack. I therefore present a re-implementation of GPM called BGPM that uses
two stacks. BGPM is implemented in BCPL (not in CPL) using only ASCII characters rather than
those available on the flexowriters used at Cambridge. Its behaviour is almost identical to GPM. In
BGPM a typical macro call is: [aaa,bbb,ccc]. The character ’[’ marks the start of a macro call,
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’,’ separates the macro arguments and ’]’ indicates that a macro call is complete and should be
expanded. BGPM’s left hand stack holds incomplete macro calls while their arguments are being
formed. On encountering ’]’ the latest macro call is now complete and is moved to the right hand
stack. This stack contains complete macro calls and also the environment chain of defined macros.
The arguments of a macro are numbered from zero upwards, and when a complete call is moved
to the right hand stack its zeroth argument is looked up in the environment causing input to be
temporarily changed to the start of the body of the matching macro definition. An error occurs if
the macro is undefined.

While executing the body of a macro, a substitution item of the form #n is automatically
replaced by a copy of the n

th argument. Sometimes, especially when defining macros, it was
necessary to disable normal processing of special characters, and this was done by enclosing the
text in curly brackets ({ and }) which can be nested. Finally, there was a comment character (’)
which caused text to be skipped up to the first non-white-space character on a later line of input.

A new macro definition can be inserted at the front of the environment using the predefined
macro def as in the following demonstration.

[def,hi,{Hello #1}]’
[hi,Sally]
[hi,James]

This would would add the macro hi with body Hello #1 to the chain of defined macros and call
it twice, generating the following result:

Hello Sally
Hello James

Another built in macro, set, allows the body of a macro to be updated, essentially making
it behave like a variable, and with the aid of the eval macro, it is possible to perform integer
arithmetic, as in:

[def,counter,0000]’
[def,inc,{[set,#1,[eval,[#1]+1]]}]’
[inc,counter]counter = [counter]
[inc,counter]counter = [counter]

This will generate the following.

counter = 1
counter = 2

A notable feature of BGPM is that, if macros are defined within an argument list of a macro
call, they are removed when the macro finishes execution. Using this feature, it is easy to define
conditional macros such as ifeq. BGPM is thus simple but remarkably powerful, allowing one
to define, for instance, the macro prime to generate the n

th prime, so that [prime,100] would
expand to 541.

Some of the macros used in the Cambridge CPL compiler are exemplified by considering the
implementation of the following CPL definition of the factorial function.
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let rec Fact(n) = n = 0 -> 1, n * Fact(n-1)

The corresponding macro translation could be as follows.

[Prog,Fact] The start of a function named Fact

[Link] Store recursive function linkage information onto the stack
[LRX,1] Load the first argument of the current function onto the stack
[LoadC,0] Load the constant zero onto the stack
[Eq] Replace the top two values on the stack by TRUE if they were equal and

FALSE otherwise
[JumpF,2] Inspect and remove the top value of the stack and jump to label 2 if it

was FALSE
[LoadC,1] Load the constant 1 onto the stack
[End,1,1] Return from the current function returning one result in place of its

single argument
[Label,2] Set label 2 to this position in the code
[LRX,1] Load the first argument of the current function onto the stack
[LoadC,1] Load the constant 1 onto the stack
[Sub] Replace the top two items on the stack by n-1
[Fn,Fact] Call the function named Fact

[LRX,1] Load the first argument of the current function onto the stack
[Mult] Replace the top two values on the stack by the product of their values
[End,1,1] Return from the current function returning one result in place of its

single argument

To call a function, its arguments are loaded onto the stack in reverse order followed by the subrou-
tine jump, typically [Fn,Fact]. On entry to the function, linkage information is pushed onto the
stack by the Link macro. After evaluating the body of the function, a return is made using the
End macro that specified how many arguments to remove and how many results to copy in their
place from the top of the stack. It was helpful to use readable function names such as Fact in the
macro code. Since the assembly language for both Edsac 2 and Titan only had numerical program
labels the macros Prog and Fn would convert function names to label numbers using macros that
mapped function names to label numbers.

The CPL compiler written in a subset of CPL was large, and it gave us a reasonable feel of what
programming in CPL was like. Our subset of CPL needed a mechanism to allow us to construct
hash tables, lists and structures such as the parse tree generated during syntax analysis. This was
easily accomplished using a simple memory model in which all memory locations were of the same
size and labelled (or addressed) by consecutive integers. Macros were added to return the integer
addresses of arguments (LLX), locals (LLW) and globals (LLG), and a macro RV was added to access
the contents of a memory location given its address.

We found we did not need to define functions within other functions. This allowed us to
represent functions by just their entry points without any additional environment information.
This also meant that function calls did not need to implement either Dijkstra displays or Strachey’s
free variable lists. It also allowed the compiler to be broken into several sections each compiled
separately. We only needed called-by-value arguments, since pointers could be used for call-by-
reference arguments, and call-by-name could be implemented by passing functions. It is worth
noting that the CPL program given in Strachey’s GPM paper only used call-by-value and never
defined a function within another.
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We found that we could survive with all values being the same size, since they could represent
all the kinds of value we needed, including integers, characters, truth values, arrays and functions,
and this greatly reduced the number of macros we had to define. It was just as well that functions
were represented by a single pointer.

The resulting subset of CPL that was used is outlined in my PhD thesis[11] and it closely
resembles BCPL, but we still felt we were programming in CPL.

Within the compiler, it was frequently necessary to write code to generate error messages and
output assembly language. It was clear that the way GPM expanded macros by copying their
bodies while replacing substitution items by arguments was ideal. This resulted in the definition of
writef whose first argument was like the body of a macro but with slightly extended substitution
items such as %c, %s and %i5 to cope with characters, strings and numbers. There were as many
additional arguments as needed and substitution items did not need to specify argument numbers
since arguments were used in sequence. I regard writef as a direct result of our experience with
Strachey’s invention of GPM.

An extension of writef called printf is widely used in C, but due to its polymorphism it is
di�cult to implement it in strictly typed languages and so, sadly, is not available in ML or Java.

4 MIT, BCPL and PAL

Strachey visited Jack Wozencraft at MIT when he was designing a new course to introduce first
year students to computer programming. The outcome was that both Peter Landin and I moved
to MIT and helped to design a form of sugared �-calculus, based on the language ISWIM (If you
See What I Mean) described by Landin in “The next 700 programming languages”[8]. Landin
produced a prototype implementation in LISP using his SECD machine as described in “The
mechanical evaluation of expressions”[6]. When I arrived at MIT in December 1966, I quickly
constructed a BCPL compiler that ran on the timesharing system CTSS and set about using it to
implement a variant of Landin’s system called PAL[1] that was then used in the new course. This
language was a form of sugared �-calculus but its syntax was somewhat related to CPL. Based on
the SECD machine it was dynamically typed with every value carrying its data type at run time.
Like LISP, it required a garbage collector. Many years later this course was superceded by one
based on a cleaned up version of LISP called Scheme. The lecture notes for this replacement were
turned into the book “Structure and Interpretation of Computer Programs”[4]. A similar course
was later started in Cambridge, UK, using ML. BCPL still exists and is freely available[13] and
has a manual[14].

5 OS6 and Tripos

Throughout my time at MIT and later, on return to Cambridge, I maintained close ties with
Strachey. He was enthusiastic about the design and portability of BCPL to the extent that he
implemented it on the KDF-9 computer at Oxford, and later he installed it on the CTL Modula
One at the Programming Research Group at 45 Banbury Road. He also used BCPL to implement
an operating system called OS6 for that machine which, as the story goes, ran successfully, for the
first time, on a Sunday evening very few days after the machine arrived. The BCPL source code
is published in OS6Pub[19] with the “Commentary on the text of OS6Pub”[20]. BCPL running
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under OS6 was the only language available to students at the Programming Research Group for
some years.

OS6 included many innovative ideas, one being his implementation of I/O streams. He repre-
sented a stream by a small vector, called a stream control block (SCB), that held all the values
needed for its implementation, such as a pointer to its bu↵er and integers giving its size and current
position. But importantly, the SCB also held three functions. One (Next) to read the next value
from the stream, one (Out) to write a value to the stream and one (Close) to close the stream.
Next was defined as follows:

LET Next(s) = (s!NEXT)(s)

where s points to an SCB and NEXT is a manifest constant identifying the position of the read
function. This mechanism could be used to represent streams of characters, words or indeed any
kind of value. You could even create a stream that generated prime numbers. It is clear that this
structure is similar to an instance of a class in a language such as Java. Some streams required
larger SCBs but could still use the same definition of Next. This is clearly a precursor to the
concept of inheritance found in modern object oriented languages.

Some years later I led a team of research students that implemented a portable operating
system called Tripos[16]. This was used for some years in Cambridge for research concerned with
computer networks and the Cambridge Ring. BCPL running under a version of Tripos is still
used commercially controlling the factory floor of many Ford car plants around the world. An
interpretive version of Tripos called Cintpos[15] is still freely available.

6 Conclusions

I am deeply indebted to Christopher for the help and discussions we had when I was a Research
Student and for arranging that I could go to MIT after my PhD. Without him and the CPL project,
BCPL would not have been developed and it would not have been seen by Ken Thompson. Ken’s
language B[5] would not have been designed and his collaboration with Dennis Ritchie would not
have resulted in the development of C[17] and it successors such as C++ and Java. Whether this
was good is perhaps still debateable.

References

[1] A. Evans, Jr. PAL - A language designed for teaching programming linguistics. In Pro-
ceedings of 1968 23 ACM Conference, pp 395-403 August 1968. Thompson Book Company,
Washington, DC, 1968.

[2] D.W. Barron, J.N. Buxton, D.F. Hartley, E. Nixon, and C. Strachey. The main features of
CPL. The Computer Journal, 6:134–143, July 1963.

[3] Editor: C. Strachey. CPL Working Papers, V53-57. Technical report, Computer Laboratory,
Cambridge University, July 1966.

[4] G.J. Sussman H. Abelson and J. Sussman. Structure and Interpretation of Computer programs.
MIT Press, Cambridge, MA, 1985.

[5] S.C. Johnson and B.W. Kernighan. The Programming Language B. http://cm.bell-
labs.com/who/dmr/bintro.html, 1997.

8



[6] P.J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(4):308–320, 1964.

[7] P.J. Landin. Correspondence between ALGOL 60 and Church’s Lambda-notation, Parts 1
and 2. Comm. ACM, 8(2 and 3), February and March 1965.

[8] P.J. Landin. The next 700 programming languages. Comm. ACM, 9(3):157–166, 1966.

[9] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, Cambridge,
MA, 1990.

[10] Ed. G. Nelson. System Programming with Modula-3. Prentice Hall, 1991.

[11] M. Richards. The Implementation of CPL-like programming languages. PhD thesis, Cambridge
University, 1966.

[12] M. Richards. EDSAC Initial Orders and Squares Program .
www.cl.cam.ac.uk/users/mr/edsacposter.html, 2009.

[13] M. Richards. The BCPL Cintcode Distribution. www.cl.cam.ac.uk/users/mr/BCPL/bcpl.{tgz,zip},
2011.

[14] M. Richards. The BCPL Programming Manual. www.cl.cam.ac.uk/users/mr/bcplman.pdf,
2011.

[15] M. Richards. The Cintpos Distribution. www.cl.cam.ac.uk/users/mr/Cintpos/cintpos.{tgz,zip},
2011.

[16] M. Richards, A.R. Aylward, P. Bond, R.D. Evans, and B.J. Knight. The Tripos Portable
Operating System for Minicomputers. Software-Practice and Experience, 9:513–527, June
1979.

[17] D.M. Ritchie. The Development of C. http://cm.bell-labs.com/who/dmr/chist.html, 1997.

[18] C. Strachey. A General Purpose Macrogenerator. The Computer Journal, 8(3):225–241, Oc-
tober 1965.

[19] C. Strachey and J. Stoy. The text of OS6Pub. Programming Research Group, Oxford Univer-
sity Computer Laboratory, July 1972.

[20] C. Strachey and J. Stoy. The text of OS6Pub (Commentary). Programming Research Group,
Oxford University Computer Laboratory, July 1972.

[21] C. Strachey and M.V. Wilkes. Some Proposals for Improving the E�ciency of ALGOL 60.
Comm.A.C.M., 4:448, 1961.

9


