Christopher Strachey

and the

Programming Research
Group

The Germ of the PRG

Fox (Computer Journal, 1961):

It is certainly true that mathematicians ... should know what computing is
about, and something about the nature of programming of machines. On the
other hand it would be a degenerate step to replace, say, the theory of
convergence, or even a more abstract topic in the mathematics syllabus, by a
course designed to produce a breed of professional programmers.

This might seem obvious, but there seems to be a great need to labour it. |
have the impression that some people think that programming ... is not only
more important than mathematics but can actually replace mathematics, that, in
a sense it is mathematics.

... the idea must be resisted strenuously that an ability to code a machine is
synonymous with the mathematical ability necessary to make the best use of
this remarkable equipment.

Response

Gill and Strachey:

Does not practical work on such a scale inevitably call for theoretical work on
studies of common principles -- in this case the theories of programming
languages, algorithms, compiling processes, list structures, recursive
functions etc. ...? Are these not mathematics?

[Computers] are destined to play a part so basic and revolutionary that a
correct appraisal of them is essential to our survival as an important nation.
If this is so then the professional mathematicians must play a leading part ...
as true mathematicians. They must do for computer programs what the
famous mathematicians of the past have done for real and complex
numbers.

Comeback

Fox:

Any undergraduate teaching of topics in “programming languages, compiling
processes, list structures, recursive functions, etc.” must be associated, in black
and white, with a syllabus. The Faculty is disinclined to alter a syllabus, and no
amount of Churchillian rhetoric about ... “our survival as an important nation”, “a
leading part”, “true mathematicians”, ... “famous mathematicians of the past” and

so on, will bring about this change.

But:
[Gill and Strachey] could also perform a valuable service by entering temporarily
the teaching world. ... | would be very happy to organize in 1963 a Summer

School on "Non-numerical algorithms", "Artificial Intelligence", or whatever title is
thought desirable A concrete approach of this kind is, | suggest, the only way
of getting their ideas across.

The Result

Summer School happens in 1963

Fox, L (ed): Advances in Programming and Non-Numerical Computation
(1966)

Fox obtains SRC Research Grant to set up a research group at Oxford

PRG starts in April 1966 with Strachey as leader

- Strachey, initially paid from the SRC grant, is “taken over” by the
University as an ad hominem Reader in August 1967 (at which time the
grant is extended till 1972).

Two Seminal Books

Fox, L (ed): Advances in Programming and Non-Numerical Computation (Pergamon
1966)

Steele, TB (ed): Formal Language Description Languages for Computer
Programming (North-Holland 1966)

- Proceedings of conference in Vienna (1964)
« Semantics by symbol manipulation (- Algol 68)
« Syntax, Chomsky languages etc.
e The CUCH (Bohm)
e A-calculus (Landin)
« Semantics by functions (Strachey)

= <

s N o s} SN vATY ofE
et |

Nt

v

Strachey’s Objective:

“It has long been my personal view that the separation of practical and

theoretical work is artificial and injurious.

Much of the practical work done in computing, both in software and in hardware
design, is unsound and clumsy because the people who do it have not any clear

understanding of the fundamental design principles of their work.

Most of the abstract mathematical and theoretical work is sterile because it has
no point of contact with real computing.

One of the central aims of the Programming Research Group as a teaching and
research group has been to set up an atmosphere in which this separation

cannot happen.”

,\,“

SV¥

Ky 2

| A&
:P-ﬁqﬁ‘l
.gtc_

i
1
i

7| e Ay
1% 2 H

153-Ty 1
?w"l)_

Pub] wﬁ?d»; nd»; 1

.5"’\10...«: o 'k) Pcf (CJ’)

\ [Sancha

. Ik s Lo
. ﬁ m’ e b3y T e

B S\al-r T,)}(rr\ 4—’?0— d(t\-) i~ 73 M“J

Y _;pué ; KLfV\ ~ <mﬁﬂai;..(}$!Q __(”m¢Tan
Ak ; i -St.hm ﬂtm\c-'\ 2| w(ﬁ: ij : Ofyxl»}{ykh =

Tre- {}‘C ﬁ”" K| *‘T = | | ||
[270" Srecs | o uFel |

Bers: ST SRS e
1 I |

Penparion

M RGN R e SO o

Bl SRe o T e TN S k300 EEENT ’/Pju

fin
| ©

L AREEOR |

|
[
J

L T—'u,taé—\ wat s l | ’ahcuh 3 .’?Cf\ L&'Jv’?n [rg#g’l
T leer D bon (£0) J'T»le_..‘-l [4)

LA

B |

S immoNs

'.?
L7

1N -
S

i.. i g -4 = 1 S5e S SR Eedh = BEE -
(| _ 34 {PhheToe, rg e
j.: S &R e 9 Revh ;tmnm 7? m r?
=SB~ | f Al I- =
4 B ey

2
TRy

{

=5

[

§ +
|

|
|
|
T
|

a_art,u}w-)—

Trm;}\, ?Bch ‘é(\. 9-:(»‘-'3&()9(X Cm_kﬁ‘[“:.,

Piyd iz ::1351

T

FRR SR i 10N S
i

V,”)!,“t.’A ’?,7:1\,53.4 7"* f”%{fﬁ';,ﬁ,-ﬁ\;ﬁ“’?igf'.‘!‘_ s

TR PP

o] Yt | | Sk»e«’Nwlnn Iigm.h 12y poin 3
LN b L] ol |
j CWPHT\!' A‘m){‘(\?}v gh~7;'3 ¥
SE 6N R SRS R - . i

Initial Work

* “Theory”

- Tidying up CPL Papers (several CPL meetings)
Fundamental Concepts in Programming Languages
Compound Data Structures (Park)

Continuing work on program schemata (Park)
“Mathematical Semantics” — for first Diploma students

* “Practice”
- (Attempts to move CPL from Titan to Atlas)

- Experiments on KDF9
» Streams

- Transfer of other work to KDF9
« GPM
- BCPL

* Visitors
- Doug Mcllroy works on coroutines (invents pipes)

Mcliroy: “I went to Oxford for a year, solely so | could imbibe denotational semantics from the source."

Aho: “Doug Mcllroy, though, | think is probably the author of translation...of pipes. That he had written, | think, this unpublished paper when he [was] at Oxford
back in the ‘60s....You should read this paper because it's UNIX pipes. One of the interesting things about Doug is that he has had these great, seminal ideas
which not everyone knows about. And whether his standards are so high that he doesn't publish them...or what? But it's remarkable...”

|
i
sly |

@ e
+

ilgl.: uj
Ph

e 7,
|

Lo |
St
)

* FraT Syl e | .00 u,m. s gqaz. =
| B DD (hy KIFS). P il macbde wde,

41:4&&~»7 ‘-*f"'s \Rt S S#;'c--\ uldk\»—) QW;&i“?tkw\"\ = o

1l e
: eSS i Vzg Lo Wremna el Wel 2, 48 ey Ds | | F | |
e | 1 o M i y—Nl\. ’ ame \v—u;r(}éﬁ:r T#I‘g 0&0 T’\r@'u;{\. "‘"@ $N
,,,,,,,,,,,,,,,,,,, L4 1P [E W (Sl (0 L0 et it
Sl RS T B T T P We
| AN 1| i ga Torfersd | T ;;;a 830 Ty iarulrx ,Xgﬂrumf
s H 1) -‘
| S N Nt BT s ek o NN N S IS X, ‘f(m @' 0-!
f'\ v +
b Lt PR L 11 g H DeselpmeT G ﬂ(? ?v,f"tx‘m Porond | | |
B N | BN ! < e ﬂ((S’(-T-'S"‘VL—\ '—u\()v- ’5€W g |
D | o | T Mr:-o ,DPN: 27w 3
1970 % S RS R T s

4
55 v/ 3R FE

4

|

[PP Tbsal Mo WL ?ﬁs w
JENEEEONEEMNREEEETT .

Wk VS Moy »3 ,c:gf,{:’ff::—!‘ 4 /’J

SN
1
c O o™

—— L} 2 FERESE 59 55 T SN RSN NSNS SHS SIS SN SIS SN RIS SRR Sheeh S e R

b} - | - e L BUNBUSE SNSRI NSRS SO SRS WS SRS S

~{r
t
+
+
{
|

T
-1
|
|

| Riswins
dWLER,,

|
{
|
t

5
P

WS sqaluz o wiely
dum D

bz o\ wQ

T | s eiben, Pscist | opin v 0 2! ”?73 *:? ,§
?!AH\\(~7?’V:—”P% Z:"}. '1 = i i ‘, T :'*“,1,.. -4

73T

- HABRILL |
|
t+
t
1
{
{
|
T
|
+
i
!
|

SRR <
i

- g, SN FRNGS SISO WISt SIS - S SNy S Fess: REan. B - - ZER 42 Baasets B
E I B LR 2 7 TR S Ll S
| CREREE
fces SR RN Rl == P e S 5 ——— Y 4. e i B
| < s i
= LEF I g
-0 S s Neld = S < g BEBEEE RS e
ul RegeT o ?f?g b s Baaell (Fsrg) |

|
t
|
)

.9”,

48T mnedd E g ien ST E 3,/7/>:, e
- S'WL' %S nScz :D?Ln ""YMJ‘II 7: E'} Yr

K%
&

Shud
WKBSWILT |

— 33

1969

* (1968) JH Morris’s thesis (MIT): proves minimality of Y (Y is “worst possible” operator)

* PRG gets its own computer
- (32K store; paper tape; no disc)
- Prepare system on KDF9 in Jan, Feb
- One visit to Hemel Hempstead

- Machine arrives in March; system working within 48hrs.

« Dana Scott visits in Michaelmas Term
- Strachey meets Scott at WG2.2 in Vienna (April)

- Long weekly seminars in Michaelmas Term

1) “Type-theoretic alternative to CUCH, ISWIM, OWHY”
2) More explicit representation and derepresentation
3) Inverse limit construction for reflexive domain

* PRG plans to publish Technical Monographs

Morris’s Thesis Proof

Definition: A=B: Acnv;B.

Definition: A D B: For any E, whenever E[B] has a normal form,

E[A] = E[B].
Theorem: If A D FA, then A D YF.

Corollary: If A=FA, then AD YF.

1969

* (1968) JH Morris’s thesis(MIT): proves minimality of Y (Y is “worst possible” operator)

* PRG gets its own computer
- (32K store; paper tape; no disc)
- Prepare system on KDF9 in Jan, Feb
- One visit to Hemel Hempstead

- Machine arrives in March; system working within 48hrs.

« Dana Scott visits in Michaelmas Term
- Strachey meets Scott at WG2.2 in Vienna (April)

- Long weekly seminars in Michaelmas Term

1) “Type-theoretic alternative to CUCH, ISWIM, OWHY”
2) More explicit representation and derepresentation
3) Inverse limit construction for reflexive domains

* PRG plans to publish Technical Monographs

The Modular One and OS1...

» Always used with IC interpreter, never the raw machine

« OS
“The most important single feature, however, is the hierarchical nature of its control structure, which avoids
the need for a special job-control language.”
- “Job Control Language” should be (subset of) the programming language
- Job invocation same as function call
« Difference: in case of error abandon job

» Streams (and later files)

“The input/output system uses a very general form of stream; the filing system is designed to have a clear
and logical structure.”

- a stream characterized by operations available on it
- file structure very similar to Unix’s
* inodes, hard and symbolic links, etc
 (eventually) predecessor directories (form of version control)

A Stream

let Next[S] = (SINEXT)[S]

0T and Out[S,x] be (S10UT)[S,X]

The Modular One and OS1...

» Always used with IC interpreter, never the raw machine

« OS
“The most important single feature, however, is the hierarchical nature of its control structure, which avoids
the need for a special job-control language.”
- “Job Control Language” should be (subset of) the programming language
- Job invocation same as function call
« Difference: in case of error abandon job

» Streams (and later files)

“The input/output system uses a very general form of stream; the filing system is designed to have a clear
and logical structure.”

- a stream characterized by operations available on it
- file structure very similar to Unix’s
* inodes, hard and symbolic links, etc
 (eventually) predecessor directories (form of version control)

1969

* PRG gets its own computer
- (32K store; paper tape; no disc)
- Prepare system on KDF9 in Jan, Feb
- One visit to Hemel Hempstead

- Machine arrives in March; system working within 48hrs.

« Dana Scott visits in Michaelmas Term
- Strachey meets Scott at WG2.2 in Vienna (April)

- Long weekly seminars in Michaelmas Term
1) “Type-theoretic alternative to CUCH, ISWIM, OWHY”
2) More explicit representation and derepresentation

3) Inverse limit construction for reflexive domains

* Plan PRG Technical Monographs

|
i
sly |

@ e
+

ilgl.: uj
Ph

e 7,
|

Lo |
St
)

* FraT Syl e | .00 u,m. s gqaz. =
| B DD (hy KIFS). P il macbde wde,

41:4&&~»7 ‘-*f"'s \Rt S S#;'c--\ uldk\»—) QW;&i“?tkw\"\ = o

1l e
: eSS i Vzg Lo Wremna el Wel 2, 48 ey Ds | | F | |
e | 1 o M i y—Nl\. ’ ame \v—u;r(}éﬁ:r T#I‘g 0&0 T’\r@'u;{\. "‘"@ $N
,,,,,,,,,,,,,,,,,,, L4 1P [E W (Sl (0 L0 et it
Sl RS T B T T P We
| AN 1| i ga Torfersd | T ;;;a 830 Ty iarulrx ,Xgﬂrumf
s H 1) -‘
| S N Nt BT s ek o NN N S IS X, ‘f(m @' 0-!
f'\ v +
b Lt PR L 11 g H DeselpmeT G ﬂ(? ?v,f"tx‘m Porond | | |
B N | BN ! < e ﬂ((S’(-T-'S"‘VL—\ '—u\()v- ’5€W g |
D | o | T Mr:-o ,DPN: 27w 3
1970 % S RS R T s

4
55 v/ 3R FE

4

|

[PP Tbsal Mo WL ?ﬁs w
JENEEEONEEMNREEEETT .

Wk VS Moy »3 ,c:gf,{:’ff::—!‘ 4 /’J

SN
1
c O o™

—— L} 2 FERESE 59 55 T SN RSN NSNS SHS SIS SN SIS SN RIS SRR Sheeh S e R

b} - | - e L BUNBUSE SNSRI NSRS SO SRS WS SRS S

~{r
t
+
+
{
|

T
-1
|
|

| Riswins
dWLER,,

|
{
|
t

5
P

WS sqaluz o wiely
dum D

bz o\ wQ

T | s eiben, Pscist | opin v 0 2! ”?73 *:? ,§
?!AH\\(~7?’V:—”P% Z:"}. '1 = i i ‘, T :'*“,1,.. -4

73T

- HABRILL |
|
t+
t
1
{
{
|
T
|
+
i
!
|

SRR <
i

- g, SN FRNGS SISO WISt SIS - S SNy S Fess: REan. B - - ZER 42 Baasets B
E I B LR 2 7 TR S Ll S
| CREREE
fces SR RN Rl == P e S 5 ——— Y 4. e i B
| < s i
= LEF I g
-0 S s Neld = S < g BEBEEE RS e
ul RegeT o ?f?g b s Baaell (Fsrg) |

|
t
|
)

.9”,

48T mnedd E g ien ST E 3,/7/>:, e
- S'WL' %S nScz :D?Ln ""YMJ‘II 7: E'} Yr

K%
&

Shud
WKBSWILT |

— 33

Sy A

Ol |
Goas

SRp

Bepy |

~F 5¢4

ST e g

i3

2 & L

L 8 S L] 4 , Ao

a1t 3t | I B | |

| \ﬂ' “ < :2 - { :

npts RN E Rllreaf>- | PREL | (ofe e dun
l\\: t 4 vt o
2 ! | 1

-

L. 4

an 4

Pl T—- 749 |(mltin

.

-

|

Sl 15 3 DYs!)

20Dy
WAL W T

" , | =
‘LT i gn;;“,ﬁf,»u: (#’L?Zk,hﬁﬂiﬁa)
N 1 | ! {
! i
iyl P TR ¥7
o ! ' |
2 R ‘ .

T

Foe RETer T | enlTin

* R { g

§ =y

qre T B/RG/ 41 961 ﬁwkr\d -

Z o @ Y3 (W

i} 2 dd

DAY N

i

\

stilanai NS 1 prn Y

NILNE

[T o e, ey g

d 7*"’;7*‘7?".-?;?175, 'Ll‘-(;‘,

S R RO

|
-
|

1;5,»“‘_}:” [g::n?:tk R

S -

i B ISENE SRS SRS O)

55 0 O YO S Y AR g v

L XTI

b=z lo v=|hy =

Later Work

* Theoretical
- Continuations (starts 1972) (Wadsworth)
- Semantics of Algol 60 (Mosses)
- Monographs
- Lecture courses
- Proof Rules and Math. Semantics (Ligler)
- Adams Essay (Strachey and Milne)

* Practical
- 0S6 / OSPub
- Design of Instruction Sets (McGregor)
- Semantics & Pragmatics of A-calculus (graph-reduction) (Wadsworth)
- Compiler Generator (Mosses)
- (Implementation of PAL) (Turner)
- SASL - KRC - Miranda (- Haskell)

- Computing Mechanisms (Derret)

PRG-10: The Varieties of Programming Language

PREFACE

(With apologies to Professor William James, Miss Stella
Gibbons and the late Herr Baedeker.)

**In my belief that a large acquaintance with parti-
culars often makes us wiser than the mere possession of
abstract formulas, however deep, I have ended this paper
with some concrete examples, and I have chosen these among
the extreme designs of programming languages. To some '
readers I may consequently seem, by the time they reach
the end of the paper, to offer a caricature of the subject.
Such convulsions of linguistic purity, they will say, are
not sane, It is my belief, however, that there is much of
value to be learnt from the study of extreme examples, not
least, perhaps, that our view of sanity is rather easily
influenced by our environment; and this, in the case of
programming languages, is only too often narrowly confined
to a single machine, My ambition in this and other related
papers, mostly so far unwritten, is to develop an under-
standing of the mathematical ideals of programming languages
and to combine them with other principles of common. sense
which serve as correctives of exaggeration, allowing the
individual reader to draw as moderate conclusions as he
will,

PRG-10: The Varieties of Programming Language

PREFACE

(With apologies to Professor William James, Miss Stella
Gibbons and the late Herr Baedeker.)

**In my belief that a large acquaintance with parti-
culars often makes us wiser than the mere possession of
abstract formulas, however deep, I have ended this paper
with some concrete examples, and I have chosen these among
the extreme designs of programming languages. To some '
readers I may consequently seem, by the time they reach
the end of the paper, to offer a caricature of the subject.
Such convulsions of linguistic purity, they will say, are
not sane, It is my belief, however, that there is much of
value to be learnt from the study of extreme examples, not
least, perhaps, that our view of sanity is rather easily
influenced by our environment; and this, in the case of
programming languages, is only too often narrowly confined
to a single machine, My ambition in this and other related
papers, mostly so far unwritten, is to develop an under-
standing of the mathematical ideals of programming languages
and to combine them with other principles of common sense
which serve as correctives of exaggeration, allowing the
individual reader to draw as moderate conclusions as he
will,

The Story of the
Pearsall Smith Family

BARBARA STRACHEY

Later Work

* Theoretical
- Continuations (starts 1972) (Wadsworth)
- Semantics of Algol 60 (Mosses)
- Monographs
- Lecture courses
- Proof Rules and Math. Semantics (Ligler)
- Adams Essay (Strachey and Milne)

* Practical
- 0S6 / OSPub
- Design of Instruction Sets (McGregor)
- Semantics & Pragmatics of A-calculus (graph-reduction) (Wadsworth)
- Compiler Generator (Mosses)
- (Implementation of PAL) (Turner)
- SASL - KRC - Miranda (- Haskell)

- Computing Mechanisms (Derret)

Correspondence

To the Editor,
The Computer Journal.

An impossible program

Sir,

A well-known piece of folk-lore among programmers
holds that it is impossible to write a program which can
examine any other program and tell, in every case, if it
will terminate or get into a closed loop when it is run.
I have never actually seen a proof of this in print, and
though Alan Turing once gave me a verbal proof (in a
railway carriage on the way to a Conference at the
NPL in 1953), I unfortunately and promptly forgot the
details. This left me with an uneasy feeling that the
proof must be long or complicated, but in fact it is so
short and simple that it may be of interest to casual
readers. The version below uses CPL, but not in any
essential way.

Suppose T[R] is a Boolean function taking a routine
(or program) R with no formal or free variables as its
argument and that for all R, T[R] = True if R terminates
if run and that T[R] = False if R does not terminate,
Consider the routine P defined as follows

rec routine P
§L:if T[P)goto L
Return §

If T[P)] = True the routine P will loop, and it will
only terminate if T[P] = False. In each case T[P] has
exactly the wrong value, and this contradiction shows
that the function 7" cannot exist.

Yours faithfully,
Churchill College, C. STRACHEY.

Cambridge.

Later Work

* Theoretical
- Continuations (starts 1972) (Wadsworth)
- Semantics of Algol 60 (Mosses)
- Monographs
- Lecture courses
- Proof Rules and Math. Semantics (Ligler)
- Adams Essay (Strachey and Milne)

* Practical
- 0S6 / OSPub
- Design of Instruction Sets (McGregor)
- Semantics & Pragmatics of A-calculus (graph-reduction) (Wadsworth)
- Compiler Generator (Mosses)
- (Implementation of PAL) (Turner)
- SASL - KRC - Miranda (- Haskell)

- Computing Mechanisms (Derret)

What was he thinking? (1970)

In fact, the
invention of the computing machine is a technological
advance of greater importance than any other since the
invention of printing. In the long run the effect of having a
mechanical assistant to our thinking will probably have as
profound an influence on our intellectual life, and hence on
our whole civilization, as the introduction of more or less
universal literacy. Fortunately, however, I think it will be at
least two hundred years before these changes become really
significant—fortunately, I say, because like most other
changes they are going to be very uncomfortable.

Is Computing Science? — Girton Centenary Symposium, 1970

What was he thinking? (1970)

FTABL}
Grades
State of
Develop
Relevance ment
1. Machine Design
1. Electronic Engineering,
Hardware), @ orfp
2. Machine Architecture,
Logical Design a or fi p or [y
B, Application
3. Numerical Analysis Y Qo
4. Problem Solving i ¥
5. Artificial Intelligence Y Y
6. Complicated Logical
structures Y v or 3y
C. Computing
7. Model |]|1'c1r}.
e.g. Real Time and Simulation o Y
8. Programming Languages Q g or By
9. Computing Theory 0 Y
10. Syntax and Linguistics Y or Py p
D. Mathematical Theory
11. Mathematical Logic
(a) Decidability 3 G
(b) A-calculus and
Combinators a or of 0
12. Information Theory 5 « or af

Is Computing Science? — Girton Centenary Symposium, 1970

What was he thinking? (1973)

1. Current State of Programming Language Theory
1.1 Formal Semantics [the longest subsection]
1.2 Proofs of Properties of Programs [State of Art — Hoare]
1.3 Programming Methodology ['In the absence of science we have to fall back on art.”]

2. Influence of Programming Theory on Programming Practice
2.1 Choice of Programming Language
2.2 Size of Programs [Modularity; but problems of scale -- not much help from theory yet]

3. Possible Technical Improvements

3.1 Technical Problems and Myths
(a) Unsuitable language facilities [justified concern]
(b) Inefficient object code [not justified]
(c) Compiling slow [no comment]
(d) Inadequate debugging facilities [justified]

3.2 Technical Remedies
(a) Better languages [not designed by amateurs]
(b) Better compilers and object code [designed together]

4. Practical and Human Problems
4.1 Programming Style

4.2.Toughness [Don't put up with inadequate equipment etc.]

5. Prospects
No overnight change [e.g. jet engines co-existing with props and turbo-props]

How Can we Put Programming Theory into Practice? — Loughborough Tech. July 1973

= <

s N o s} SN vATY ofE
et |

Nt

v

—
f
—— -~ —
—_—— ~ < ~
_A |
~ |
| ~<
| <
< <
A
< o~
~< e =
~< | ~ ~
— < G —
! ~
— — — < <
~——<
—~< ~
=< ~
~<
!
|]
'
| 7 _
—_~
~
<l ~
| <N
_ .. ' |
- . | v <
- _A _ _
1 ~<
~ 7 ~< ~ ~
[-_ ~< <~
~ ~<| ~
|) ~ ——
~< | _ =<
~—— —
~—
o — ~—
~< ~ ~— <~
- ~ ~~
~< [} ~ S~ ~<
- |~
~ ' ~~—< ~<
1 1 ~<
) | _—
~ —— ——— <
——— —
e e e ~
—_——— ~<
~——t ——
~< |
~ ~
~ ~ ~
——— e “\A
—=

Prof.C.Strachey

[1916-1975]

