
Christopher Strachey
and the

Development of CPL
by

Martin Richards
www.cl.cam.ac.uk/users/mr10

The CPL Project

• The CPL Project ran from about 1962 to
the end of 1966.

• I was involved as a Research Student
from October 1963 to November 1966.

• The computing facilities in Cambridge at
the time were as follows.

EDSAC 1949-1958

EDSAC Details

• Mercury delay line memory of 512 35-bit
words.

• Words could hold two 17-bit instructions.
• Fairly slow clock rate, 500kHz.
• It had a 71-bit accumulator.
• Primitive instruction set but good for high

precision arithmetic.
• Contributed to at least two Nobel Prizes.

Edsac 2 1958-1965

Edsac 2 Details
• Bit-sliced machine with 2048 20-bit words

controlled by a micro program.
• User friendly machine code.
• Could perform 40-bit integer and floating point

arithmetic.
• Extra 16K words of memory added in 1962.
• The fifth bit of the effective address of

instructions was connected to a loudspeaker.
Users found this useful.

BCPL Self Compilation

Titan 1965-1973

Titan Details

• Transistor machine with a core memory of
32K 48-bit words.

• 128 24-bit index registers.
• 48-bit instructions.
• It was a cut down versions of the Ferranti

Atlas Computer.
• When first installed it had no assembler,

no operating system and no compilers.

Development of CPL

• Initial ideas started in 1961 by Strachey
and Wilkes.

• The language was to be an extension of
ALGOL 60 including the good features and
removing or modifying features that were
hard to implement efficiently.

CPL Name Change

• CPL changed from Cambridge
Programming Language to Combined
Programming Language when the
University of London Institute of Computer
Science joined the project.

• They had a full blown Atlas Computer.

CPL Design Committee

• From Cambridge: Christopher Strachey,
Peter Landin, David Hartley, David Park,
David Barron.

• From London: John Buxton, Eric Nixon,
George Coulouris.

• As a Research Student involved with CPL,
I was able to attend most of the meetings.

CPL Design Meetings

• Usually in Cambridge or in Strachey’s
house in London.

• Lively animated discussions trying to make
compromises between the wishes of the
different members.

CPL Design Principles

• Firm Mathematical Foundation.
• Generality.
• Ease of description.
• Only include features that were useful.
• Only include features that could be

implemented efficiently.

CPL Features
• Recursive and non recursive functions
• Modes of calling: value, ref and subst
• L and R values, L and R mode evaluation
• Fixed and free functions
• Automatic deduction of data types
• Allow declarations to be qualified by other

declarations using in and where
• And many more

Automatic Type Deduction

• Data types were little understood at the
time. For instance the type of a function
did not include the types and modes of
calling of their arguments

• Much later Robin Milner received the
Turing Award in 1991 partly for the superb
polymorphic type system of ML

ML Types

• The type of every variable and expression
can be deduced in finite time by the ML
compiler, but only just. Consider

fun a x y = y x x;

fun b x = a(a x);
fun c x = b(b x);

fun d x = c(c x);
fun e x = d(d x);

fun f x = e(e x);

The Cambridge CPL Compiler

• This compiler was developed between
1963 and 1966 and halfway into the
project we had to move from Edsac 2 to
Titan

• We wrote the compiler in a subset of CPL
and hand translated it into a macro calls
that could be expanded easily into code
for either Edsac 2 or Titan

GPM

• Strachey invented the truly wonderful
macrogenerator GPM for the purpose

• I will describe a variant of GPM called
BGPM that uses the ASCII characters set
rather that the Flexowriter code used at
the time. BGPM also corrects a subtle bug
in GPM but is otherwise essentially the
same.

BGPM

• Typical macro call: [aaa,bbb,ccc]
• aaa is looked up in an environment of

defined macros, input temporarily comes
from the body of macro aaa.

BGPM Example

[def,hi,{Hello #1}]’

[hi,Sally]

[hi,James]

This generates the following:

Hello Sally

Hello James

BGPM Example

[def,counter,0000]’
[def,inc,{[set,#1,[eval,[#1]+1]]}]’
[inc,counter]cointer = [counter]
[inc,counter]counter = [counter]

This generates:

counter = 1
counter = 2

BGPM Conditionals
If a definition is made in the argument list
of a macro call, the definition is removed
when the call completes.

This allows macros such as ifeq to be
defined. You can even define prime so
than [prime,100] expands to 541.

let rec Fact(n) = n=0 -> 1, n * Fact(n-1)

[Prog,Fact]
[Link]
[LRX,1]
[LoadC,0]
[Eq]
[JumpF,2]
[LoadC,1]
[End,1,1]
[Label,2]
[LRX,1]
[LoadC,1]
[Sub]
[Fn,Fact]
[LRX,1]
[Mult]
[End,1,1]

Effect of using GPM

All values were the same size.
Functions were represented by just their entry points.
All arguments were called by value.
Memory consisted of consecutively numbered cells.
There were macros to obtain the addresses of variables.
There were macros for indirect access to memory.

The subset of CPL we used was a prototype
version of BCPL, but we still felt we were still
programming in CPL.

The macro code was semantically similar to
the intermediate code OCODE used in
BCPL compilers.

writef

writef was a result of our experience using
GPM.

The first argument of writef is a format very
similar to the body of a macro, and the remaining
arguments are output in turn by substitution items
in the format, such as %c, %s and %n.

printf
C adopted a variant of writef called printf.

Since the much loved function printf has a
variable number of arguments which can each
have different types, it is difficult to provide a
similar function in strictly typed languages such as
ML or Java.

PAL
Strachey visited Jack Wozencraft at MIT who was
designing a new course to teach first year students the
principles of programming.

He arranged for both Peter Landin and myself to move to
MIT to help design and implement a form of sugared l-
calculus based on ISWIM.

This resulted in PAL which used Peter’s SECD machine.

OS6
Strachey was enthusiastic about BCPL and its
portability to the extent he caused it to be
implemented on the KDF-9 at Oxford, and also on
the Modula 1 at the Programming Research Group
in Banbury Road.

He also implemented an operating system in BCPL
called OS6 which contained many innovations
such as the way I/O streams worked.

Tripos
Later I lead a team that implemented the portable operating
system Tripos.

BCPL and Tripos has been used by Ford in many of its
plants since 1982 to control the factory floor.

A demonstration version of their system runs happily on a
Raspberry Pi.

Conclusion

I am deeply indebted to Christopher for his influence when I
was a Research Student and for arranging that I could go
to MIT.
Without him and CPL, BCPL would not have been
developed and it would not have been seen by Ken
Thompson.
Ken’s language B would not have been developed.
His collaboration with Dennis Ritchie would not have
created C.
Even C++ and Java might not have been created.

