
Semantic	relationships:	
reducing	the	separation	

between	theory	and	practice	

Robert	Milne
rem@antelope.org.uk

1

The	sixties

19701960

2

Basic	attitude

“It	has	long	been	my	personal	view	that	the	separation	of	practical	and	theoretical	
work	is	artificial	and	injurious.	Much	of	the	practical	work	done	in	computing,	both		
in	software	and	in	hardware	design,	is	unsound	and	clumsy	because	the	people	who	
do	it	have	not	any	clear	understanding	of	the	fundamental	design	principles	of	their	
work.	Most	of	the	abstract	mathematical	and	theoretical	work	is	sterile	because	it	
has	no	point	of	contact	with	real	computing.”
Christopher	Strachey,	Towards	a	formal	semantics,	1966.

“We	need	to	develop	our	insight	into	computing	processes	and	to	recognise	and	
isolate	the	central	concepts—things	analogous	to	the	concepts	of	continuity	and	
convergence	in	analysis.	To	do	this	we	must	become	familiar	with	them	and	give	
them	names	even	before	we	are	really	satisfied	that	we	have	described	them	
precisely.	If	we	attempt	to	formalise	our	ideas	before	we	have	really	sorted	out	the	
important	concepts	the	result,	though	possibly	rigorous,	is	of	very	little	value—
indeed	it	may	well	do	more	harm	than	good	by	making	it	harder	to	discover	the	really	
important	concepts.	Our	motto	should	be	‘No	axiomatisation	without	insight’.”
Christopher	Strachey,	Fundamental	concepts	in	programming	languages,	1967.

3

The	Programming	Research	Group

• Attracted	because	of	these	early	
papers	and	the	subsequent	progress.

• Unstructured	and	informal,	perhaps	as	
when	Christopher	had	one	employee.

• Occupied	occasionally	by	up	to	twelve	
people	(half	being	students).

• Slightly	more	structured	when	we	
wrote	the	essay	for	the	Adams	Prize.

4

Writing	the	essay

• Typing
• Multiple	golf	balls	per	line	and	at	least	

four	per	page.
• Up	to	fifty	written	or	stamped	script	

characters	per	page.

• Correction
• Different	alignments	of	moved	and	

reinserted	pages.
• Different	reflectances of	original	and	

amended	characters.

• Notation
• Few	simplifications.
• Detailed	proofs	to	show	feasibility.
• Explicit	entities	to	limit	abstraction.

𝒞⟦Ε0Ε1⟧ =
𝜆𝜌𝜃. ℰ⟦Ε0⟧𝜌(𝜆𝜀0. ℰ⟦Ε1⟧𝜌(𝜆𝜀1. 𝑎𝑝𝑝𝑙𝑦	𝜀0	𝜀1𝜃))		
would	be	used.	
𝒞⟦Ε0Ε1⟧ =	
𝑙𝑒𝑡	𝜀0 = ℰ⟦Ε0⟧	𝑖𝑛	𝑙𝑒𝑡	𝜀1 = ℰ⟦Ε1⟧	𝑖𝑛	𝑎𝑝𝑝𝑙𝑦	𝜀0	𝜀1		
(with	or	without	the	brackets)	could	have	served	
instead	in	all	forms	of	semantics,	not	just	this	one.	

5

Describing	the	fundamental	concepts

Fundamental	concepts	in	programming	languages The	essay
locations	and	values
environments	and	stores
procedures	and	routines
parameters
recursion
changeable	data	structures
typespolymorphism

scopes	and	extents
jumps
continuations

concurrency

6

Relating	theory	to	practice

From	Fundamental	concepts	in	programming	languagesAfter	Fundamental	concepts	in	programming	languages

• Procedure	implemented	in	practice
• Executable	statement.
• Environment	(“FVL”)	with	an	explicit	

pointer.
• Recursion	by	pointing	back	to	the	

statement	through	the	location.

• Procedure	modelled	by	theory
• Mathematical	function.
• Environment	embedded	in	the	

function.
• Recursion	by	introducing	a	fixed	

point	of	the	function.

interpretation
compilation

“standard	semantics”
“store	semantics”
“stack	semantics”

“SECD”
chained	display

Programming	language Execution	language

equivalence	proofs equivalence	proofsequivalence	proofs

7

Relationships	between	forms	of	the	semantics

translating	program	
fragments	into	executable	

statements

restricting	program	
fragments	to	ones	for	which	

different	forms	of	the	
semantics	should	be	related

denotingdenoting denoting denoting

related
by	inclusive	predicates	
(or	“logical	relations”)

identifying	executable	
statements	for	which	
different	forms	of	the	

semantics	should	be	related

entities	more	
deeply	embedded	

in	functions			

entities	less	
deeply	embedded	

in	functions			

execution	states	
as	arguments	and	
executable	code	
as	functions

execution	states	
as	tuples and	

executable	code	
as	text

related	
by	inclusive	predicates	
(or	“logical	relations”)	

related	
by	inclusive	predicates	
and	partial	orders

Γ	 Γ	 Π	Π	

program
fragment

program
fragment

executable
statement

executable
statement

𝒱⟦Π⟧𝜁&𝜈𝜐̀𝜎̀	 𝒵⟦Π⟧𝜈𝜐𝜎	𝒞⟦Γ⟧𝜌́𝜃(𝜎́	 �𝒞⟦Γ⟧𝜌̀𝜁)𝜐̀𝜎̀�	

𝑐⟦Γ⟧𝜌́	 Γ ↦ 𝑐⟦Γ⟧𝜌̀𝜈	 Π ↦ Π	

𝒞⟦Γ⟧𝜌̀𝜁(𝜐̀𝜎̀ = 𝒱⟦𝒸⟦Γ⟧𝜌̀1⟧𝜁(1𝜐̀𝜎̀	

Programming	language Execution	language

8

The	abstract	model	for	storage

The	effect	of	an	assignment	command	is	to	change	the	contents	of	the	store	of	the	
machine.	Thus	it	alters	the	relationship	between	L-values	and	R-values	and	so	
changes	σ.	We	can	therefore	regard	assignment	as	an	operator	on	σ which	
produces	a	fresh	σ.	If	we	update	the	L-value	α (whose	original	R-value	in	σ was	β)	
by	a	fresh	R-value	β’	to	produce	a	new	store	σ’,	we	want	the	R-value	of	α in	σ’	to	be	
β’,	while	the	R-value	of	all	other	L-values	remain	unaltered.	
Christopher	Strachey,	Fundamental	concepts	in	programming	languages,	1967.
Thus	storage	is	modelled	by	such	functions	as	the	following.	
𝑎𝑟𝑒𝑎:	𝐋 → 𝐒 → 𝐓	
ℎ𝑜𝑙𝑑:	𝐋 → 𝐒 → 𝐕		
𝑛𝑒𝑤: 𝐒	 → 𝐋	
𝑒𝑚𝑝𝑡𝑦: 𝐒	
𝑢𝑝𝑑𝑎𝑡𝑒:	𝐋 → 𝐕 → 𝐒 → 𝐒	

	
𝑎𝑟𝑒𝑎	𝛼(𝑢𝑝𝑑𝑎𝑡𝑒	𝛼′𝛽𝜎) = 𝑖𝑓	𝛼 = 𝛼′	𝑡ℎ𝑒𝑛	𝑡𝑟𝑢𝑒	𝑒𝑙𝑠𝑒	𝑎𝑟𝑒𝑎	𝛼𝜎	
ℎ𝑜𝑙𝑑	𝛼(𝑢𝑝𝑑𝑎𝑡𝑒	𝛼′𝛽𝜎) = 𝑖𝑓	𝛼 = 𝛼′	𝑡ℎ𝑒𝑛	𝛽	𝑒𝑙𝑠𝑒	ℎ𝑜𝑙𝑑	𝛼𝜎	
𝑎𝑟𝑒𝑎	(𝑛𝑒𝑤	𝜎)𝜎 = 𝑓𝑎𝑙𝑠𝑒	
𝑎𝑟𝑒𝑎	𝛼(𝑒𝑚𝑝𝑡𝑦) = 𝑓𝑎𝑙𝑠𝑒	
	

9

Problems	and	solutions	for	storage

• Relations	are	based	on	states	such	as:
• Stores	(if	locations	can	be	paired	with		

other	entities).	
• Locations	(if	locations	are	paired	only	

with	locations).	
• Stacks	and	stores	(if,	as	in	the	essay,	

the	relations	are	between	“stack	
semantics”	and	“store	semantics”,	with	
states	ordered	by	match	and	restricted	
by seen).

fun	f(z)		=	y	:=	ref(0)
val x	=	ref(1)
f(2)

inequivalent

fun	f(z)	=	y	:=	ref(0)
f(2)
val x	=	ref(1)

• Assignment	of	an	integer
• The	location	for	x	is	inaccessible	in	f.	
• The	fragments	should	be	equivalent.
• Their	denotations	might be	unequal.

• Assignment	of	a	reference
• The	location	for	x	is	dependent	on	f.
• The	fragments	should	be	inequivalent.
• Their	denotations	should be	unequal.

fun	f(z)	=	y	:=	!ref(0)
f(2)
val x	=	ref(1)

equivalent

fun	f(z)	=	y	:=	!ref(0)
val x	=	ref(1)
f(2)

related

denoting denoting

one	program	
fragment	and	state	

another	program	
fragment	and	state	

10

Principles	for	reasoning	about	storage

• Constrain	fragments	to	be	consistent	
with	the	expected	relations.

• Introduce	binary	relations	that	both	fit	
the	domain	constructors	and	reflect	
the	intentions	of	the	constraints.

• Relate	(or	make	assertions	about)	
fragments	through	states.

• Order	states	partially	according	to	
whether	one	extends	another.

• Apply	fragments	in	states	that	extend	
those	for	their	definitions.

related

one	program	
fragment	and	state

another	program	
fragment	and	state	

𝒞⟦Γ$ ⟧𝜌̀𝜃$ 𝜎̀	𝒞⟦Γ$ ⟧𝜌́𝜃$ 𝜎́	

Γ" 	Γ" 	

	
	

	
𝒸⟦Γ$⟧𝜒́ ∧ 𝒸⟦Γ)⟧𝜒̀ ⇒	𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡	𝜒́𝜋́𝜌́ ∧ 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡	𝜒̀𝜋̀𝜌̀ ⇒	
𝑢𝜋7𝜌8 ⇒ (𝑐𝜋7 → 𝑐𝜋7)	〈𝒞⟦Γ$⟧𝜌́, 𝒞⟦Γ) ⟧𝜌̀〉	
	
𝒸⟦Γ$⟧(𝑒𝑥𝑡𝑟𝑎𝑐𝑡	𝜋́𝜌́) ∧ 𝒸⟦Γ)⟧(𝑒𝑥𝑡𝑟𝑎𝑐𝑡	𝜋̀𝜌̀) ⇒		
𝑢𝜋7𝜌8 ⇒ (𝑐𝜋7 → 𝑐𝜋7)	〈𝒞⟦Γ$⟧𝜌́, 𝒞⟦Γ) ⟧𝜌̀〉	
	

denoting denoting

𝒸 Γ, 𝜒́ ∧ 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡	𝜒́𝜋́𝜌́
	𝒸 Γ9 (𝑒𝑥𝑡𝑟𝑎𝑐𝑡	𝜋̀𝜌̀)

	(𝑐?@→ 𝑐?@)𝛾D	means	∀𝜃G. 𝑐?@𝜃G ⇒ 𝑐?@ 𝛾́𝜃, , 𝛾̀𝜃9

𝑢?@𝜌D ⇒ 𝑐?@ → 𝑐?@ 	 𝒞 Γ, 𝜌́, 𝒞 Γ9 𝜌̀

𝜋 ≤ 𝜋N	means	∃𝛼. 𝜋 = 𝜋N † 𝛼 where 𝜋N † 𝛼

𝜋D ≤ 𝜋NS ⇒
𝑐?@ → 𝑐?@ 	 𝒞 Γ, 𝜌́, 𝒞 Γ9 𝜌̀ ⇒
𝑐?NT → 𝑐?NT 	 𝒞 Γ, 𝜌́, 𝒞 Γ9 𝜌̀

has	no	locations	in	the	state	𝜋′ "newer"	than	𝛼.

𝜋D means 𝜋́, 𝜋̀

𝑙?@𝛼D ⇒ 𝑣?@WX@ ℎ𝑜𝑙𝑑	𝛼́𝜎́, ℎ𝑜𝑙𝑑	𝛼̀𝜎̀

11

Relationships	for	storage
In	the	current	application,	a	store	can	be	extracted	from	a	state	𝜋	by	𝑠𝑡𝑜𝑟𝑒	𝜋,	with	
∀𝜋. ∀𝜋′ . ∀𝛼. 𝜋 ≤ 𝜋′ ⇒ 𝑎𝑟𝑒𝑎	𝛼(𝑠𝑡𝑜𝑟𝑒	𝜋) ⇒ 𝑎𝑟𝑒𝑎	𝛼(𝑠𝑡𝑜𝑟𝑒	𝜋′)	
∀𝜋. ∀𝜋′ . ∀𝛼. 𝜋 ≤ 𝜋′ ⇒ 𝑎𝑟𝑒𝑎	𝛼(𝑠𝑡𝑜𝑟𝑒	𝜋) ⇒ ℎ𝑜𝑙𝑑	𝛼(𝑠𝑡𝑜𝑟𝑒	𝜋) = ℎ𝑜𝑙𝑑	𝛼(𝑠𝑡𝑜𝑟𝑒	𝜋′)	
	
𝑙𝜋5𝛼6 = 𝑎𝑟𝑒𝑎	𝛼́(𝑠𝑡𝑜𝑟𝑒	𝜋́) ∧ 𝑎𝑟𝑒𝑎	𝛼̀(𝑠𝑡𝑜𝑟𝑒	𝜋̀)	
𝑠𝜋5𝜎6 = ∀𝛼6. 𝑙𝜋5𝛼6 ⇒ (𝑎𝑟𝑒𝑎	𝛼́𝜎́ ∧ 𝑎𝑟𝑒𝑎	𝛼̀𝜎̀) ∧ 𝑣𝜋5†𝛼5〈ℎ𝑜𝑙𝑑	𝛼́𝜎́, ℎ𝑜𝑙𝑑	𝛼̀𝜎̀〉			
𝑣𝜋5𝛽A = 𝑏𝜋5 + 𝑒𝜋5∗ +	𝑓𝜋5 +	 𝑗𝜋5 	
	
𝑓𝜋5𝜙H = ∀𝜋′I. 𝜋6 ≤ 𝜋′I ⇒ (𝑒𝜋′I → 𝑐𝜋′I → 𝑐𝜋′I)𝜙H	
𝑗𝜋5𝜃H = ∀𝜋′I. 𝜋6 ≤ 𝜋′I ⇒ 𝑐𝜋′I𝜃H	
𝑐𝜋5 = 𝑠𝜋5 → 𝑎𝜋5 	
	
𝑢𝜋5 = 𝑖𝑑𝑒 → 𝑒𝜋5 	
𝑒𝜋5𝜀̂ = (𝑙𝜋5 + 𝑣𝜋5)𝜀̂ ∧	
												(𝜀̂ ∈ 𝐋×𝐕	 ⇒ 𝑎𝑟𝑒𝑎	𝜀́(𝑠𝑡𝑜𝑟𝑒	𝜋́) ∧ 𝑣〈𝜋́†𝜀́,𝜋̀〉〈ℎ𝑜𝑙𝑑	𝜀́(𝑠𝑡𝑜𝑟𝑒	𝜋́), 𝜀〉̀) ∧		
												(𝜀̂ ∈ 𝐕×𝐋	 ⇒ 𝑎𝑟𝑒𝑎	𝜀(̀𝑠𝑡𝑜𝑟𝑒	𝜋̀) ∧ 𝑣〈𝜋́,𝜋̀†𝜀̀〉〈𝜀́, ℎ𝑜𝑙𝑑	𝜀(̀𝑠𝑡𝑜𝑟𝑒	𝜋̀)〉)	
	

𝜋: 𝐏		
𝛼: 𝐋	
𝜎: 𝐒		
𝛽: 𝐕 = 	𝐁 + 𝐄∗ + 𝐅 + 𝐉	
𝛽:𝐁	
𝜙: 𝐅 = 	𝐄 → 𝐂 → 𝐂	
𝜃:		𝐉 = 	𝐂	
𝜃: 𝐂 = 	𝐒 → 𝐀	
𝜊: 𝐀	
𝜌:𝐔 = 𝐈𝐝𝐞	 → 𝐄	
𝜀:	𝐄 = 	𝐋 + 𝐕	

Most	of	the	relations	respect	the	ordering,	in	that	if	∀𝜋#. ∀𝜋′&.∀𝛽(. 𝜋# ≤ 𝜋′& ⇒ 𝑏𝜋,𝛽(⇒ 𝑏𝜋′-𝛽(then	(for	example)	
∀𝜋#. ∀𝜋′&. ∀𝜀̂. 𝜋# ≤ 𝜋′& ⇒ 𝑒𝜋,𝜀̂	⇒ 𝑒𝜋′-𝜀.̂		
Indeed,	if	∀𝜋#. ∀𝜋′&. ∀𝜊#. 𝜋# ≤ 𝜋′& ⇒ 𝑎𝜋,𝜊# ⇒ 𝑎𝜋′-𝜊#	then	∀𝜋#. ∀𝜋′&. ∀𝜃5. 𝜋# ≤ 𝜋′& ⇒ 𝑐𝜋,𝜃5	⇒ 𝑐𝜋′&𝜃5.	
However,	∀𝜋#. ∀𝜋′&.∀𝜎#. 𝜋# ≤ 𝜋′& ⇒ 𝑠𝜋′-𝜎# ⇒ 𝑠𝜋,𝜎#.	
	
	

The	constraint	𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡	𝜒𝜋𝜌	requires	that	for	all	I	that	denote	locations	there	is	a	monotonic	mapping	
from	𝜒	to	𝜆Ι. 𝜋 † 𝜌⟦Ι⟧.	If	locations	enter	a	store	only	in	a	sequence	of	𝑛𝑒𝑤	operations	on	an	𝑒𝑚𝑝𝑡𝑦	store,	
then	𝑒𝑥𝑡𝑟𝑎𝑐𝑡	𝜋𝜌⟦Ι⟧	can	signify	the	point	in	the	sequence	at	which	𝜌⟦Ι⟧	enters;	as	𝒸⟦Γ⟧	depends	only	on	
the	ordering	of	the	values	of	𝜒⟦Ι⟧	and	𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡	(𝑒𝑥𝑡𝑟𝑎𝑐𝑡	𝜋𝜌)𝜋𝜌	holds,	𝑒𝑥𝑡𝑟𝑎𝑐𝑡	𝜋𝜌	can	serve	as	𝜒.	

12

Publishing	the	essay

• Motivations
• Needing	a	coherent	account	of	the	developments.
• Making	the	essay	more	widely	accessible.	
• Bridging	between	theory	and	practice.

• Changes
• Omission	of	personal	historical	remarks.
• Inclusion	of	extra	connections	with	other	work.
• Addition	of	more	waymarking and	explanation.

• Consequences
• Paying	for	a	possible	visit	to	China	(Barbara	Halpern).
• Ceasing	involvement	in	the	subject	(Robert	Milne).

“I	have	managed	to	clear	up	my	ideas	on	a	number	of	points	and	am	now	even	more	
convinced	than	before	that	we	have	a	new	branch	of	mathematics	to	deal	with.”
Christopher	Strachey,	letter	to	Leslie	Fox,	1965.

13

The	tens	and	twenties

1917 1921 1925

