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Quantitative Modelling

Quantitative modelling is concerned with the dynamic behaviour of
systems and quantified assessment of that behaviour.

There are often conflicting interests at play:

For example, in performance evaluation users typically want to
optimise external metrics such as response time (as small as
possible), throughput (as high as possible) or blocking
probability (preferably zero);

In contrast, system managers may seek to optimize internal
metrics such as utilisation (reasonably high, but not too high),
idle time (as small as possible) or failure rates (as low as
possible).

Mathematical models are needed to represent and analyse the
dynamic behaviour to gain understanding and make predictions.
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Quantitative Modelling using CTMC

Continuous Time Markov Chains are often the formalism of choice



Introduction Strachey 100

Quantitative Modelling using CTMC

Continuous Time Markov Chains are often the formalism of choice



Introduction Strachey 100

Quantitative Modelling using CTMC

Continuous Time Markov Chains are often the formalism of choice



Introduction Strachey 100

Quantitative Modelling using CTMC

Continuous Time Markov Chains are often the formalism of choice



Introduction Strachey 100

Deriving Performance Measures

SYSTEM MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS

..... .....

DIAGRAM
TRANSITION

STATE

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

Linear algebra is used to derive a transient or steady state
probability distribution — the probability that the system is in each
particular state at a given time.

From the probability distribution the measures such a throughput,
response time and utilisation can be straightforwardly derived
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Difficulties of working with Markov processes

SYSTEM MARKOV Q = 
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TRANSITION

STATE

e.g. throughput, response time, utilisation

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

PERFORMANCE MEASURES

Whilst Markov process-based modelling has many advantages,
working directly in terms of the state transition diagram or
infinitesimal generator matrix is at best time-consuming and error
prone, and often simply infeasible.
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The PEPA project

The PEPA project started in Edinburgh in 1991.

It was motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov processes.

Process algebras offered a compositional description technique
supported by apparatus for formal reasoning.

Performance Evaluation Process Algebra (PEPA) sought to
address these problems by the introduction of a suitable
process algebra.

We have sought to investigate and exploit the interplay
between the process algebra and the continuous time Markov
chain (CTMC).
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Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules

For quantitative modelling we need to incorporate
quantitative information — stochastic process algebra (SPA).
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Performance Evaluation Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P

�
��* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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PEPA

S ::= (α, r).S | S + S | A
P ::= S | P ��

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P ��
L
P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L⇒ α→ τ
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))

π(∞)Q = 0
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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Benefits of using a language

There are clear benefits for model construction in using a
modelling language and its semantics to build the required
CTMC.

But the language also allows you to characterise properties of
the CTMC, previously described as properties of the
infinitesimal generator matrix, as easily checked syntactic
conditions.

This supports automatic model reductions and model
manipulations to improve the efficiency of solution.
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Aggregation and lumpability

Model aggregation: partition the state space of a model, and
replace each set of states by one macro-state

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

In order to preserve the Markov property we must ensure that
the partition satisfies a condition called lumpability.

Use a behavioural equivalence in the process algebra to form
the partitions; moreover this is a congruence allowing the
reduction to be carried out compositionally.
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State space explosion

Unfortunately, as the size of the state space becomes large it
becomes infeasible to carry out numerical solution and extremely
time-consuming to conduct stochastic simulation.

Even with sophisticated model reduction and aggregation
techniques discrete approaches are defeated by the scale of many
dynamic systems.
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The Fluid Approximation Alternative

Fortunately there is an alternative: fluid approximation.

For a large class of models, just as the size of the state space
becomes unmanageable, the models become amenable to an
efficient, scale-free approximation.

These are models which consist of populations.
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Population models

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we calculate the
proportion of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
proportions vary over time.
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Population models — intuition

On Off

Y (t)

N copies: Y
(N)
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Y (t), Y
(N)
i (t) and X(N)(t) are all CTMCs;

As N increases we get a sequence of CTMCs, X(N)(t)
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Normalised process — intuition

We consider the sequence of CTMCs, X(N)(t) as N −→∞.

We focus on the occupancy measure — the proportion of the
population that is in each possible state.

In the normalised CTMC X̂(N)(t) we are concerned with only the
proportion of agents that exhibit the different possible states.



Fluid approximation Strachey 100

Normalised process — intuition

We consider the sequence of CTMCs, X(N)(t) as N −→∞.

We focus on the occupancy measure — the proportion of the
population that is in each possible state.

In the normalised CTMC X̂(N)(t) we are concerned with only the
proportion of agents that exhibit the different possible states.



Fluid approximation Strachey 100

Normalised process — intuition

We consider the sequence of CTMCs, X(N)(t) as N −→∞.

We focus on the occupancy measure — the proportion of the
population that is in each possible state.

In the normalised CTMC X̂(N)(t) we are concerned with only the
proportion of agents that exhibit the different possible states.



Fluid approximation Strachey 100

Normalised process — intuition

We consider the sequence of CTMCs, X(N)(t) as N −→∞.

We focus on the occupancy measure — the proportion of the
population that is in each possible state.

In the normalised CTMC X̂(N)(t) we are concerned with only the
proportion of agents that exhibit the different possible states.



Fluid approximation Strachey 100

Normalised process — intuition

We consider the sequence of CTMCs, X(N)(t) as N −→∞.

We focus on the occupancy measure — the proportion of the
population that is in each possible state.

In the normalised CTMC X̂(N)(t) we are concerned with only the
proportion of agents that exhibit the different possible states.



Fluid approximation Strachey 100

Kurtz’s Deterministic Approximation Theorem

Kurtz established in the 1970s that for suitable sequences of
CTMCs, in the limit, the behaviour becomes indistinguishable from
a continuous evolution of the occupancy measures, governed by an
appropriate set of ordinary differential equations.

Deterministic Approximation Theorem (Kurtz)

Assume that ∃ x0 ∈ S such that X̂(N)(0)→ x0 in probability.
Then, for any finite time horizon T <∞, it holds that as
N −→∞:

P

{
sup

0≤t≤T
||X̂(N)(t)− x(t)|| > ε

}
→ 0.

T.G.Kurtz. Solutions of ordinary differential equations as limits of pure jump Markov processes.

Journal of Applied Probability, 1970.
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Illustrative trajectories
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Fluid semantics for Stochastic Process Algebras

To apply these results in a stochastic process algebra we need
to derive the right set of ODEs, from the model expression.

Embedding the approach in a formal language offers the
possibility to establish the conditions for convergence at the
language level via the semantics,

This removes the requirement to fulfil the proof obligation on
a model-by-model basis.

Moreover the derivation of the ODEs can be automated in the
implementation of the language.
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Deriving a Fluid Approximation of a SPA model

The aim is to represent the CTMC implicitly (avoiding state space
explosion), and to generate the set of ODEs which are the fluid
limit of that CTMC.

The existing SOS semantics is not suitable for this purpose
because it constructs the state space of the CTMC explicitly.

SPA
MODEL

SYMBOLIC
LABELLED

TRANSITION
SYSTEM

ABSTRACT
CTMC Q

or
ODEs FM(x)

- -
SOS rules generator

functions

M.Tribastone, S.Gilmore and J.Hillston. Scalable Differential Analysis of Process Algebra Models. IEEE TSE 2012.
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Developing a probabilistic programming approach

SPA represent systems in which there is variability in behaviour but
still with the assumption that all parameters (rates) in the model
are known.

What if we could...

include information about uncertainty about the model?

automatically use observations to refine this uncertainty?

do all this in a formal context?

Starting from an existing process algebra (Bio-PEPA), we have
developed a new language ProPPA that addresses these issues

A.Georgoulas, J.Hillston, D.Milios, G.Sanguinetti: Probabilistic Programming Process Algebra. QEST 2014.
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Probabilistic programming

A programming paradigm for describing incomplete knowledge
scenarios, and resolving the uncertainty.

Describe how the data is generated in syntax like a
conventional programming language, but leaving some
variables uncertain.

Specify observations, which impose constraints on acceptable
outputs of the program.

Run program forwards: Generate data consistent with
observations.

Run program backwards: Find values for the uncertain
variables which make the output match the observations.
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ProPPA: Probabilistic Programming Process Algebra

The objective of ProPPA is to retain the features of the stochastic
process algebra:

simple model description in terms of components

rigorous semantics giving an executable version of the model...

... whilst also incorporating features of a probabilistic programming
language:

recording uncertainty in the parameters

ability to incorporate observations into models

access to inference to update uncertainty based on
observations
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Semantics

parameter

model

k = 2

CTMC

ProPPA models are given semantics in terms of Probabilistic
Constraint Markov Chains, and a variety of inference algorithms
are available to refine the prior distribution into the posterior.
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Semantics
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 of CTMCs

ProPPA models are given semantics in terms of Probabilistic
Constraint Markov Chains, and a variety of inference algorithms
are available to refine the prior distribution into the posterior.
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Semantics

parameter

model

k ∼ p
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observations
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distribution 
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ProPPA models are given semantics in terms of Probabilistic
Constraint Markov Chains, and a variety of inference algorithms
are available to refine the prior distribution into the posterior.
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The future?

The area for quantitative analysis and verification is a good
example of Strachey’s ideal of theory and practice intertwined.

New applications pose new challenges for both representation and
analysis and we seek to design languages to support them.

Current challenges include

Spatially constrained behaviour

Heterogeneous populations of agents

Collective adaptive systems where global behaviour is defined
by but also influences the behaviour of individual agents.
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Thank you!
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