Christopher Strachey:
First-class Citizen

Philip Wadler
University of Edinburgh
Strachey 100, 19 November 2016

Mervyn Pragnell

.,....;r.A
_l.l |
e

B 1s for Bonnie
C 1s tor Christopher

CPL

Combined Programming Language
Cambridge Programming Language
Christopher’s Programming Language

BCPL

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

HALL SOFTWARE SERIES

Fundamental Concepts in
Programming LLanguages

';ﬁ Higher-Order and Symbolic Computation, 13, 11-49, 2000
©

2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Fundamental Concepts in Programming LLanguages

CHRISTOPHER STRACHEY
Reader in Computation at Oxford University, Programming Research Group, 45 Banbury Road, Oxford, UK

Abstract. This paper forms the substance of a course of lectures given at the International Summer School in
Computer Programming at Copenhagen in August, 1967. The lectures were originally given from notes and the
paper was written after the course was finished. In spite of this, and only partly because of the shortage of time, the
paper still retains many of the shortcomings of a lecture course. The chief of these are an uncertainty of aim—it is
never quite clear what sort of audience there will be for such lectures—and an associated switching from formal

to informal modes of presentation which may well be less acceptable in print than it is natural in the lecture room.
For these (and other) faults, I apologise to the reader.

AR LA ¢ - THANDLAMENTAL CTSNVTELPTC

J.'é j)mq Trbiood. in gm tes Jav?,wmq

‘golttqhkfk, 04«3 | 96 7 (/z.m‘. Jtu_z;.(op

Puadazental Concopts in Prozriming Lan~uiges

by

Christophor Strackey
(Render in Computztion at Oxford University)

ilcte This dccwwnt 1 intended for ublicoti ne It
3 aade ~vnilible ns srecrint v the under-
standing thet rotir .ncos or cxtyrncts will nct
ho *ubl:.shuc'l rrior to tho ;wblizaciin of +he
origdnnd it ut the cosent af the ~uthor.

Progrromizge Roconrch Group,
45 Banbury Road,
Oxcford.

Per1eR sesTurE T
78 ¥ -3 - 05
(Feon PeTee b, MSSeES)

4)

1

Goctents

lather' s Mota.

1= Prelininarics

1.1 Introduction
1.2 Pdlosovnhical Considerntions

2.__Basic Concopts
24 JAsaigrnent Comands
2.2 L-.alues and R~vrlues
2.3 Dofinitions
2.4 Names
2.5 HNeiernls
2.6 Conceptual Kodel

3. Conceptunl.Construc ts

Jel Ixpressions and Comnand s

3+2 TDxprosslons and Tvnluation
3.2 Volures
3e242 ”‘.’nvi.runnonta
3.2.3 dorlicative Strue tupe
3.2.4 Tveluation
3.2.5 Condi tieni) Bxorossions

3«3 Comaands and Scquencing
3.3 Vari~ bles
r.3.2 Tha ibstret Store
3.3} Comuaxds

3+ Tefinition of I\mctibna anJ Reutir.es

34 .1 Tunctional abstxrnction
3te? Parnoetey Cal il YModes
5423 tcdes of Free Yariaolea
3424 Om Variaitcs

3.ta) Fu?ctions and Routinas
}eeb Constonts and Verfables
}e4e7 Pixod and Froo

Jetse8 Seijaentztion

A S]

o -~y -y

11
11
13

Functions as First-Class Citizens

3.5 Functicps »nd Soutines as dInte Tten

e
— —_

3.5.4 Pirst ~nd Sccand C1i35 Ohjects

Ir Algol ~ raal awlber nny anpear in an e:mrcssisn or Le
assincl to a variable, and oi thor may anvesr 23 an actual paranmiter
in a procadurc eall. . procclure, on the othér hard, nay only azdear
in mcther procedure eall either as tic orcrator (the most comnen
caac) o1® as une of the :etuni parnzeters. Thera arl nu othirs cxprez2s-
fons involvins -roc:cCuxcs or shase resulis erc wreccdurczs Thus im a
sense procceduras in Aljjol are second clnsa citizens - thoy 2limys
hove ©6 apxvar in ;;;rson and c¢2n ncver Le reprcscnted by a varisdle
or ex'ruscicn (¢xe ;;t in the casce of a furmnl ;n.'*mctc:r) , While wo

on 7rite (in Algcl still)

vhar a and b ar rocls, ne cnnnot cerrectly virite

(Lf x >1 then Sin 21se Cos)(x)

——

nor can we urito a tyno nrocedure (Al-ol's nenrcst sopreach to a

function) 3ith A result vrhich i3 i+sclf a »rocouure.

3.5. Functions and routines as data items.

3.5.1. First and second class objects. In ALGOL areal number may appear in an expression
or be assigned to a variable, and either may appear as an actual parameter in a procedure
call. A procedure, on the other hand, may only appear in another procedure call either
as the operator (the most common case) or as one of the actual parameters. There are no
other expressions involving procedures or whose results are procedures. Thus in a sense
procedures in ALGOL are second class citizens—they always have to appear in person
and can never be represented by a variable or expression (except in the case of a formal
parameter), while we can write (in ALGOL still)

(if x > 1 then a else b) + 6

when a and b are reals, we cannot correctly write
(if x > 1 then sin else cos) (x)

nor can we write a type procedure (ALGOL’s nearest approach to a function) with a result
which is itself a procedure.

Suppose P is an operator (called by some a ‘functional’) which operates on functions.
The result of applying P to a function f(x) is often written P[f(x)]. What then does
Pl f(x + 1)] mean? There are two possible meanings (a) we form g(x) = f(x + 1) and
the result is P[g(x)] or (b) we form h(x) = P[f(x)] and the result is #(x + 1). In many
cases these are the same but not always. Let

ron={ T e
Then if f(x) = x?

Plg(x)] = P[x* +2x + 1] = x +2
while

hix) = P[f(x)] =x

sothat A(x +1) =x + 1.

This sort of confusion 1s, of course, avoided by using A-expressions or by treating func-
tions as firstclass objects. Thus, for example, we should prefer to write (P[f])[x] in place of
P[f (x)] above (or, using the association rule P[f][x] oreven P f x). The two alternatives
which were confused would then become

Pgx wheregx = f(x+1)

and P [(x + 1).
The first of these could also be written P(Ax. f(x + 1))x.

I have spent some time on this discussion in spite of its apparently trivial nature, because
I found, both from personal experience and from talking to others, that it 1s remarkably
difficult to stop looking on functions as second class objects. This is particularly unfortunate
as many of the more interesting developments of programming and programming languages
come from the unrestricted use of functions, and in particular of functions which have
functions as a result. As usual with new or unfamiliar ways of looking at things, it 1s harder
for the teachers to change their habits of thought than it 1s for their pupils to follow them. The

I have spent some time on this discussion in spite of its apparently trivial nature, because
I found, both from personal experience and from talking to others, that it 1s remarkably
difficult to stop looking on functions as second class objects. This is particularly unfortunate

as many of the more interesting developments of programming and programming languages
come from the unrestricted use of functions, and in particular of functions which have
functions as a result. As usual with new or unfamiliar ways of looking at things, it is harder

for the teachers to chan ge their habits of thought than it s for their pupils to follow them. The

Polymorphism

The desire to do this leads to an examination
of the various forms of polymorphism. There seem to be two main classes, which can be
called ad hoc polymorphism and parametric polymorphism.

In ad hoc polymorphism there 1s no single systematic way of determining the type of the
result from the type of the arguments. There may be several rules of limited extent which
reduce the number of cases, but these are themselves ad hoc both in scope and content. All
the ordinary arithmetic operators and functions come into this category. It seems, moreover,
that the automatic insertion of transfer functions by the compiling system is limited to this

class.

Parametric polymorphism is more regular and may be illustrated by an example. Suppose
f is a function whose argument is of type o and whose results is of 8 (so that the type of
f might be written « =), and that L 1s a list whose elements are all of type « (so that
the type of L 1s « 1ist). We can imagine a function, say Map, which applies f in turn to
each member of L and makes a list of the results. Thus Map [f,L] will produce a 8 1ist.
We would like Map to work on all types of list provided f was a suitable function, so that
Map would have to be polymorphic. However its polymorphism is of a particularly simple
parametric type which could be written

(¢ = B,x list) = B list

where o and 8 stand for any types.

The desire to do this leads to an examination
of the various forms of polymorphism. There seem to be two main classes, which can be
called ad hoc polymorphism and parametric polymorphism.

In ad hoc polymorphism there 1s no single systematic way of determining the type of the
result from the type of the arguments. There may be several rules of limited extent which
reduce the number of cases, but these are themselves ad hoc both in scope and content. All
the ordinary arithmetic operators and functions come into this category. It seems, moreover,
that the automatic insertion of transfer functions by the compiling system is limited to this
class.

Parametric polymorphism is more regular and may be illustrated by an example. Suppose
f 1s a function whose argument is of type o and whose results is of 8 (so that the type of
f might be written « = f), and that L is a list whose elements are all of type « (so that
the type of L 1s @ 1ist). We can imagine a function, say Map, which applies £ in turn to
each member of L and makes a list of the results. Thus Map [f,L] will produce a 8 1ist.
We would like Map to work on all types of list provided f was a suitable function, so that
Map would have to be polymorphic. However its polymorphism is of a particularly simple
parametric type which could be written

(x = B,a list) = B list

where o and B stand for any types.

Polymorphism of both classes presents a considerable challenge to the language designer,
but it 1s not one which we shall take up here.

Type Classes

How to make ad-hoc polymorphism less ad hoc

Philip Wadler and Stephen Blott
University of Glasgow™

Abstract

This paper presents fype classes, a new approach
to ad-hoc polymorphism. Type classes permit over-
loading of arithmetic operators such as multiplica-
tion, and generalise the “eqtype variables” of Stan-
dard ML. Type classes extend the Hindley/Milner
polymorphic type system, and provide a new ap-
proach to issues that arise in object-oriented pro-
gramming, bounded type quantification, and ab-
stract data types. This paper provides an informal

ML [HMMS86, Mil87], Miranda'[Tur85], and other
languages. On the other hand, there is no widely
accepted approach to ad-hoc polymorphism, and so
its name is doubly appropriate.

This paper presents type classes, which extend the
Hindley /Milner type system to include certain kinds
of overloading, and thus bring together the two sorts
of polymorphism that Strachey separated.

The type system presented here is a generalisa-
tion of the Hindley/Milner type system. As in that
system, type declarations can be inferred, so explicit

1 Introduction

Strachey chose the adjectives ad-hoc and parametric
to distinguish two varieties of polymorphism [Str67].

Ad-hoc polymorphism occurs when a function 1is
defined over several different types, acting in a dif-
ferent way for each type. A typical example is
overloaded multiplication: the same symbol may be
used to denote multiplication of integers (as in 3%3)
and multiplication of floating point values (as in
3.1443.14).

Parametric polymorphism occurs when a function
is defined over a range of types, acting in the same
way for each type. A typicai example is the length
function, which acts in the same way on a list of
integers and a list of floating point numbers.

This paper presents fype classes, which extend the
Hindley /Milner type system to include certain kinds
of overloading, and thus bring together the two sorts
of polymorphism that Strachey separated.

Type classes

Haskell
Clean
Mercury
Hal
|Isabelle
Coq
Agda
Scala
C++ concepts
Rust

Semantics vs Syntax

This 1s probably an unfair criticism, for, as will become clear later, I am not only tem-
peramentally a Platonist and prone to talking about abstracts if I think they throw light on a
discussion, but I also regard syntactical problems as essentially irrelevant to programming
languages at their present stage of development. In a rough and ready sort of way it seems
to me fair to think of the semantics as being what we want to say and the syntax as how
we have to say it. In these terms the urgent task in programming languages 1s to explore
the field of semantic possibilities. When we have discovered the main outlines and the
principal peaks we can set about devising a suitably neat and satisfactory notation for them,
and this 1s the moment for syntactic questions.

This 1s probably an unfair criticism, for, as will become clear later, I am not only tem-
peramentally a Platonist and prone to talking about abstracts if I think they throw light on a
discussion, but I also regard syntactical problems as essentially irrelevant to programming
languages at their present stage of development. In a rough and ready sort of way it seems
to me fair to think of the semantics as being what we want to say and the syntax as how
we have to say it. In these terms the urgent task in programming languages is to explore

the field of semantic possibilities. When we have discovered the main outlines and the

principal peaks we can set about devising a suitably neat and satisfactory notation for them,
and this 1s the moment for syntactic questions.

