Probabilistic Programming

Hongseok Yang
University of Oxford

Manchester Univ. 1953

DARLING LOVE,

MY SEDUCTIVE APPETITE CLINGS TO YOUR AMBITION. MY
RAPTURE LUSTS AFTER YOUR CRAVING. MY BURNING YEARNS FOR
YOUR AMBITION. MY ENCHANTMENT IMPATIENTLY ADORES YOUR
CURIOUS WISH. MY LOVING EAGERNESS IMPATIENTLY THIRSTS FOR
YOUR LUST.

YOURS CURIOUSLY,

M.U.C.

Manchester Univ. 1953

FANCIFUL CHICKPEA,

YOU ARE MY AMOROUS SYMPATHY. MY PASSIONATE DEVOTION
HOPES FOR YOUR HEART. YOU ARE MY SEDUCTIVE FONDNESS. MY
WISH PANTS FOR YOUR AMOROUS ARDOUR. MY TENDER ADORATION
CLINGS TO YOUR DEVOTION.

YOURS WISTFULLY,

M.U.C.

Manchester Univ. 1953

FANCIFUL DUCK,

MY AFFECTION LUSTS AFTER YOUR BEING. YOU ARE MY
SYMPATHETIC RAPTURE, MY TENDER BURNING. MY SYMPATHY LIKES
YOUR LONGING. MY CURIOUS ENTHUSIASM PANTS FOR YOUR
UNSATISFIED CRAVING.

YOURS SEDUCTIVELY,

M.U.C.

Manchester Univ. 1953

FANCIFUL DUCK,

MY AFFECTION LUSTS AFTER YOUR BEING. YOU ARE MY
SYMPATHETIC RAPTURE, MY TENDER BURNING. MY SYMPATHY LIKES
YOUR LONGING. MY CURIOUS ENTHUSIASM PANTS FOR YOUR
UNSATISFIED CRAVING.

YOURS SEDUCTIVELY,
M.U.C.

Manchester Univ. Computer.
Produced by Strachey’s “Love Letter” (1952)

Generated by the reimplementation in http://www.gingerbeardman.com/loveletter/

Strachey’s program

Implements a simple randomised algorithm:
|. Randomly pick two opening words.
2. Repeat the following five times:
® Pick a sentence structure randomly.
® Fill the structure with random words.

3. Randomly pick closing words.

|. More randomness.

Strachey’s

Implements a simple randomised algorithm:

|. Randomly pick two opening words.
Jandom N times .
2. Repeat the following-five-timess~—"

® Pick a sentence structure randomly.
® Fill the structure with random words.

3. Randomly pick closing words.

|. More randomness.

StraChey,S 2. Adjust randomness.

Use data.

Implements a simple randomised algorithm:

|. Randomly pick two opening words.
Jandom N times .
2. Repeat the followingfive-timesi~—"

® Pick a sentence structure randomly.
® Fill the structure with random words.

3. Randomly pick closing words.

What is probabilistic
programming?

(Bayesian) probabilistic
modelling of data

|. Develop a new probabilistic (generative) model.
2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

(Bayesian) probabilistic
modelling of data ~__
in a prob. prog. language

|. Develop a new probabilistic (generative) model.
2. Design an inference algorithm for the model.

3. Using the algo,, fit the model to the data.

(Bayesian) probabilistic
modelling of data ~__
in a prob. prog. language

as a program

|. Develop a new probabilistic (generative) model™
2. Design an inference algorithm for the model.

3. Using the algo,, fit the model to the data.

\
g"
B 1

(Bayesian) probabilistic
modelling of data ~__
in a prob. prog. language

as a program

Develop a new probabilistic (generative) model™

X - g~ . - -~ - o P ~»> X P o -~ BV _— W o~ - e
L~ Lo e s Ggien e ra— oo 4272 P S i o amE ol g Ko i s . c a7 DS
' T LN T 1 - _C - s o °
o (]

fit the model to the data.

a generic inference algo.
of the language

11 =

10+

Line fitting

—r
—r

—
o
|

N w EEN %) (=) ~ @® (o]
| | | | | | |

<

Line fitting

Bayesian generative model

Bayesian generative model

®
e

S ~ normal (O, 10)
b ~ normal (0, 10)

Bayesian generative model

®
e

S ~ normal (0, 10)

b ~ normal (0, 10)
f(x) =s*xX + b

Y ~ normal(f(1), 1)

where 1 =1 .. 5

Bayesian generative model

®
e

S ~ normal (O, 10)

b ~ normal (0, 10)

f(X) =s*x + b

Y ~ normal(f(1), 1)
where 1 =1 .. 5

Q: posterior of (s,b) given yi=2.5,
ey y5=1O .17

Posterior of s and b given yi's

P()'|, s Y5 ‘ S,b) X P(S,b)
P(y1, .., ys)

P(s,b |y, .,ys5) =

Posterior of s and b given yi's

P()'|, s Y5 ‘ S,b) X P(S,b)
P(yi, .., ¥5)

P(s,b | yiI,.,ys5) =

Posterior of s and b given yi's

P(yi, .., ys | s,b) X P(s,b)
P(yi, .., ¥5)

P(s,b |y, .,ys5) =

Posterior of s and b given yi's

P(yi, .., ys| s,b) X P(s,b)
P(yi, .., ¥5)

P(s,b |y, .,ys5) =

Posterior of s and b given yi's

P(y1, .., ys | s,b) X P(s,b)
P(yi, .., ¥5)

P(s,b | yiI,.,ys5) =

Anglican program

(let [s (sample (normal 0 10))
b (sample (normal 0 10))

f (tn [x] (+ (* s x) b))]

Anglican program

(let [s (sample (normal 0 10))
b (sample (normal 0 10))

f (ftn [x] (+ (* s x) b))]

(observe (normal (f 1) 1) 2.5)
(observe (normal (f 2) 1) 3.8)
(observe (normal (f 3) 1) 4.5)
(observe (normal (f 4) 1) 8.9)
(observe (normal (f 5) 1) 10.1)

Anglican program

(let [s (sample (normal 0 10))
b (sample (normal 0 10))

f (ftn [x] (+ (* s x) b))]

(observe (normal (f 1) 1) 2.5)
(observe (normal (f 2) 1) 3.8)
(observe (normal (f 3) 1) 4.5)
(observe (normal (f 4) 1) 8.9)
(observe (normal (f 5) 1) 10.1)

(predict :sb [s b]))

Anglican program

(let [s (sample (normal 0 10))
b (sample (normal 0 10))

f (ftn [x] (+ (* s x) b))]

(observe (normal (f 1) 1) 2.5)
(observe (normal (f 2) 1) 3.8)
(observe (normal (f 3) 1) 4.5)
(observe (normal (f 4) 1) 8.9)
(observe (normal (f 5) 1) 10.1)

(predict :sb [s b]))

Samples from posterior

VVhy should one care
about prob. programming!

My favourite answer

“Because probabilistic programming is a good
way to build an Al” (My ML colleague)

Procedural modelling

iy

Ritchie, Mildenhall, Goodman,
Hanrahan [SIGGRAPH’I15]

Procedural modelling

future.create(function(i, frame, prev)
if flip(T.branchProb(depth, i)) then

end

-- Theta mean/variance based on avg weighted b
local theta mu, theta sigma = T.estimateThetaD:
local theta = gaussian(theta mu, theta sigma)
local maxbranchradius = 0.5*(nextframe.center -
local branchradius = math.min(uniform(©.9, 1) °
local bframe, prev = T.branchFrame(splitFrame,
branch(bframe, depth+1l, prev)

Ritchie, Mildenhall, Goodman,
Hanrahan [SIGGRAPH’I15]

Procedural Asynchronous function

call via future

NS

wfuture create(functlon(l,frame,‘prev)

plfjflika'brahéhﬁrOb(deﬁfh;llj) then
-- Theta mean/variance based on avg weighted b
local theta mu, theta sigma = T.estimateThetabD:
local theta = gaussian(theta mu, theta sigma)
local maxbranchradius = 0.5*(nextframe.center -
local branchradius = math.min(uniform(©.9, 1) °
local bframe, prev = T.branchFrame(splitFrame,
branch(bframe, depth+1l, prev)

end

Ritchie, Mildenhall, Goodman,
Hanrahan [SIGGRAPH’I15]

Captcha solving

Whspels [FR2B=_

Le, Baydin,VWood [201 6]

Compilation Inference

Training data Test data

Probabilistic program

p(x,y)
NN architecture \ \/
0.0 T IS
Q. 0.0 « Compilation artifact /

oNe®
(/> %@S A‘ Y; ¢) v

Training — Posterior
Dy (p(x | y) | p(x|y)
a(x|y;9))
Expensive / slow Cheap / fast

Le, Baydin,VWood [201 6]

Approximating prob.
Compilation programs b), neural nets. Inference

Training data Test data

L _Probabilistic program
NN architecture ; ;'5 v

~——
0.0 ¥ SIS
Q.00 « { Compilation artifact /
OO ‘
(yio)
Training — Posterior
Dy, (p(x | y) || p(x|y)
(x| y;9))
Expensive / slow Cheap / fast

Le, Baydin,VWood [201 6]

Nonparametric Bayesian:
Indian buffer process

(define (ibp-stick-breaking-process concentration base-measure)
(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))
(atoms (mem (lambda j (base-measure)))))

(lambda ()
(let loop ((j 1) (dualstick (sticks 1))}
(append (if (flip dualstick) ;3 with prob. dualstick
(atoms j) 53 add feature j
>()) :: otherwise, next stick

(loop (+ j 1) (* dualstick (sticks (+ j 1))))))))))

Roy et al. 2008

Nonparametric Bayesian:
Indian buffer process

(define (ibp-stick-breaking-process concentration base-measure)
(let ((sticks (mem (lambda j (random-beta 1. 0 concentratlon))))
(atoms (mem| (lambda j (base-measure)))

(lambda ()
(let loop ((j/) (dualstick (sticks 1))}
(append (if|/ flip dualstick) ;; with prob. dualstick
vtoms j) 53 add feature j
)) ;; otherwise, next stick

(1 (+ j 1) (* dualstick (sticks (+ j 1))))))))))

Lazy infinite array Roy et al. 2008

Nonparametric P22 '=~=—

igher-order

Indian buffer P parameter

\/

(define (ibp-stick-breaking-process concentration base-measure)
(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))
(atoms (mem (lambda j (base-measure)))))

(lambda ()
(let loop ((j 1) (dualstick (sticks 1))}
(append (if (flip dualstick) ;; with prob. dualstick
(atoms j) 53 add feature j
>()) .+ otherwise, next stick

(loop (+ j 1) (* dualstick (sticks (+ j 1))))))))))

Roy et al. 2008

My research :
Denotational semantics

Joint work with Chris Heunen, Ohad Kammar, Sam Staton, Frank Wood
[LICS 2016]

(let [s (sample (normal 0 10))
b (sample (normal 0 10))

f (fn [x] (+ (* s x) b))]

(observe (normal (f 1) 1) 2.5)
(observe (normal (f 2) 1) 3.8)
(observe (normal (f 3) 1) 4.5)
(observe (normal (f 4) 1) 8.9)
(observe (normal (f 5) 1) 10.1)

(predict :sb [s b]))

(let [s (sample (normal 0 10))
b (sample (normal 0 10))

f (tn [x] (+ (* s x) b))]

(observe (normal (f 1) 1) 2.5)
(observe (normal (f 2) 1) 3.8)
(observe (normal (f 3) 1) 4.5)
(observe (normal (f 4) 1) 8.9)
(observe (normal (f 5) 1) 10.1)

K0 R i a1 e ol B, o) el e, et e W P |)
R e RS0 e ekl N = e - g g o e — Lz o o - 4 nd “‘. 4 3
'y :

(predict :f)

(let [s (sample (normal 0 10))
b (sample (normal 0 10))

f (fn [x] (+ (* s x) b))]

(observe
(observe
(observe
(observe
(observe

(normal
(normal
(normal
(normal
(normal

(f
(f
(f
(f
(f

,ww-m“‘wmwwmaab‘Wap
R e a5 = oo - S e S O e T 5 e o e e ut_“

(predict :f)

1)
2)
3)
4)
35)

1) 2.5)
1) 3.8)
1) 4.5)
1) 8.9)
1) 10.1)

Generates a random function of type R—R.
But its mathematical meaning is not clear.

Measurability issue

® Measure theory is the foundation of probability
theory that avoids paradoxes.

® Silent about high-order functions.
® [Halmos] ev(f,a) = f(a) is not measurable.
® The category of measurable sets is not CCC.

® But Anglican supports high-order functions.

Use category theory to extend measure theory.

Meas

Monad

Meas

Use category theory to extend measure theory.

Yoneda

Embedding
Meas ————— > [Meas®P, Set]

Monad

Meas ——— > [Meas®P, Set]
Yoneda

Embedding

Use category theory to extend measure theory.

Yoneda

Embedding
Meas —— > [Meas®P, Set]q

Monad Left Kan

i Extension
Meas —— > [Meas®P, Set]p
Yoneda

Embedding

Use category theory to extend measure theory.

Yoneda

Embedding
Meas —— > [Meas®P, Set]q

Monad Left Kan
Extension

Meas —— > [Meas®P, Set]rq
Yoneda

Embedding

Use category theory to extend measure theory.

Yoneda
Embedding

Enough structure
for function types

~_

Meas — > [Meas®P, Set]y

Monad

Left Kan
Extension

Meas —— > [Meas®P, Set]

Yoneda
Embedding

Use category theory to extend measure theory.

Enough structure
Yoneda for function types

Embedding ~_
Meas —— > [Meas®P, Set]q

Monad Left Kan
Extension

Meas —— > [Meas®P, Set]rq
Yoneda

Preserves nearly ~Embedding
all the structures

[Question] Are all definable functions from R to
R in a high-order probabilistic PL measurable?

Our semantics says that the answer is yes for a
core call-by-value language, such as Anglican.

The monad M([R—R]) at [R—R] consists of:

equivalence classes of measurable functions
f : QxR — R for probability spaces ().

The function f is what probabilists call a
measurable stochastic process.

The extended monad M describes computations
with dynamically allocated read-only variables.

M(T)(w) =
{[@d,f)]~ | 3v. aeT(v) A f:w = Prob(v) }

The extended monad M describes computations
with dynamically allocated read-only variables.

M(T)(w) =
{[(d,)]~ | 3v. aeT(v) A f:w = Prob(v) }

T is the type of a value.

The extended monad M describes computations
with dynamically allocated read-only variables.

M(T)(w) =
{[@d,)]~ | 3v. aeT(v) A f:w = Prob(v) }

T is the type of a value.
w represents a space of all random vars so far.

The extended monad M describes computations
with dynamically allocated read-only variables.

M(T)(w) =
{[@d]~ | 3v. aeT(v) A f:w = Prob(v) }

T is the type of a value.
w represents a space of all random vars so far.
v extends w with new random variables according to f.

Try a probabilistic prog. language. It is fun.

® Anglican:
http://www.robots.ox.ac.uk/~fwood/
anglican/index.html

® VWebPPL:
http://webppl.org/

http://webppl.org/

