
Probabilistic Programming
Hongseok Yang

University of Oxford



Manchester Univ. 1953



Manchester Univ. 1953



Manchester Univ. 1953



Manchester Univ. 1953

Manchester Univ. Computer.
Produced by Strachey’s “Love Letter” (1952)

Generated by the reimplementation in http://www.gingerbeardman.com/loveletter/



Strachey’s program

Implements a simple randomised algorithm:

1. Randomly pick two opening words.

2. Repeat the following five times:

• Pick a sentence structure randomly.

• Fill the structure with random words.

3. Randomly pick closing words.



Strachey’s Program

Implements a simple randomised algorithm:

1. Randomly pick two opening words.

2. Repeat the following five times:

• Pick a sentence structure randomly.

• Fill the structure with random words.

3. Randomly pick closing words.

random N times

1. More randomness.
2. Adjust randomness. 

Use data.



Strachey’s Program

Implements a simple randomised algorithm:

1. Randomly pick two opening words.

2. Repeat the following five times:

• Pick a sentence structure randomly.

• Fill the structure with random words.

3. Randomly pick closing words.

1. More randomness.
2. Adjust randomness. 

Use data.

random N times



What is probabilistic 
programming?



(Bayesian) probabilistic 
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.



(Bayesian) probabilistic 
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

in a prob. prog. language



(Bayesian) probabilistic 
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

as a program

in a prob. prog. language



(Bayesian) probabilistic 
modelling of data

1. Develop a new probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algo., fit the model to the data.

a generic inference algo. 
of the language

as a program

in a prob. prog. language



Line fitting

X

Y



Line fitting

f(x) = s*x + b

X

Y



Bayesian generative model
s

b
yi

i=1..5



Bayesian generative model
s

b
yi

i=1..5

s     ~ normal(0, 10) 
b      ~ normal(0, 10) 
f(x)  = s*x + b 
yi    ~ normal(f(i), 1) 
           where i = 1 .. 5 
  
Q: posterior of (s,b) gi 
ven y1 .. y5?



Bayesian generative model

s     ~ normal(0, 10) 
b      ~ normal(0, 10) 
f(x)  = s*x + b 
yi    ~ normal(f(i), 1) 
           where i = 1 .. 5 
  
Q: posterior of (s,b)  
given y1 .. y5?

s

b
yi

i=1..5



Bayesian generative model
s

b
yi

i=1..5

s     ~ normal(0, 10) 
b      ~ normal(0, 10) 
f(x)  = s*x + b 
yi    ~ normal(f(i), 1) 
           where i = 1 .. 5 
  
Q: posterior of (s,b) given y1=2.5, 
…, y5=10.1?



Posterior of s and b given yi's

P(y1, .., y5 | s,b) × P(s,b)

  P(y1, .., y5)
P(s, b | y1, .., y5)  =



Posterior of s and b given yi's

P(y1, .., y5 | s,b) × P(s,b)

  P(y1, .., y5)
P(s, b | y1, .., y5)  =



Posterior of s and b given yi's

P(y1, .., y5 | s,b) × P(s,b)

  P(y1, .., y5)
P(s, b | y1, .., y5)  =



Posterior of s and b given yi's

P(y1, .., y5 | s,b) × P(s,b)

  P(y1, .., y5)
P(s, b | y1, .., y5)  =



Posterior of s and b given yi's

P(y1, .., y5 | s,b) × P(s,b)

  P(y1, .., y5)
P(s, b | y1, .., y5)  =



Anglican program

(let [s (sample (normal 0 10)) 
      b (sample (normal 0 10)) 
      f (fn [x] (+ (* s x) b))] 

  (observe (normal (f 1) 1) 2.5) 
  (observe (normal (f 2) 1) 3.8) 
  (observe (normal (f 3) 1) 4.5) 
  (observe (normal (f 4) 1) 8.9) 
  (observe (normal (f 5) 1) 10.1) 

  f))



Anglican program

(let [s (sample (normal 0 10)) 
      b (sample (normal 0 10)) 
      f (fn [x] (+ (* s x) b))] 

  (observe (normal (f 1) 1) 2.5) 
  (observe (normal (f 2) 1) 3.8) 
  (observe (normal (f 3) 1) 4.5) 
  (observe (normal (f 4) 1) 8.9) 
  (observe (normal (f 5) 1) 10.1) 

  (predict :f f))



Anglican program

(let [s (sample (normal 0 10)) 
      b (sample (normal 0 10)) 
      f (fn [x] (+ (* s x) b))] 

  (observe (normal (f 1) 1) 2.5) 
  (observe (normal (f 2) 1) 3.8) 
  (observe (normal (f 3) 1) 4.5) 
  (observe (normal (f 4) 1) 8.9) 
  (observe (normal (f 5) 1) 10.1) 

  (predict :sb [s b]))



Anglican program

(let [s (sample (normal 0 10)) 
      b (sample (normal 0 10)) 
      f (fn [x] (+ (* s x) b))] 

  (observe (normal (f 1) 1) 2.5) 
  (observe (normal (f 2) 1) 3.8) 
  (observe (normal (f 3) 1) 4.5) 
  (observe (normal (f 4) 1) 8.9) 
  (observe (normal (f 5) 1) 10.1) 

  (predict :sb [s b]))



Samples from posterior

X

Y



Why should one care 
about prob. programming?



My favourite answer

“Because probabilistic programming is a good 
way to build an AI.”            (My ML colleague)



Procedural modelling

Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo

Daniel Ritchie⇤
Stanford University

Ben Mildenhall⇤
Stanford University

Noah D. Goodman⇤
Stanford University

Pat Hanrahan⇤
Stanford University

Forward Sampling SOSMC-Controlled Sampling Forward Sampling SOSMC-Controlled Sampling

Figure 1: Controlling the output of highly-variable procedural modeling programs using our Stochastically-Ordered Sequential Monte Carlo
algorithm. Here, the controls encourage volumetric similarity to a target shape (shown in black).

Abstract

We present a method for controlling the output of procedural
modeling programs using Sequential Monte Carlo (SMC). Previ-
ous probabilistic methods for controlling procedural models use
Markov Chain Monte Carlo (MCMC), which receives control feed-
back only for completely-generated models. In contrast, SMC re-
ceives feedback incrementally on incomplete models, allowing it to
reallocate computational resources and converge quickly. To handle
the many possible sequentializations of a structured, recursive pro-
cedural modeling program, we develop and prove the correctness
of a new SMC variant, Stochastically-Ordered Sequential Monte
Carlo (SOSMC). We implement SOSMC for general-purpose pro-
grams using a new programming primitive: the stochastic future.
Finally, we show that SOSMC reliably generates high-quality out-
puts for a variety of programs and control scoring functions. For
small computational budgets, SOSMC’s outputs often score nearly
twice as high as those of MCMC or normal SMC.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: Procedural Modeling, Directable Randomness, Prob-
abilistic Programming, Sequential Monte Carlo

⇤e-mail: {dritchie, bmild, ngoodman, hanrahan}@stanford.edu

1 Introduction

Procedural modeling has long been used in computer graphics
to generate varied, detailed content with minimal human effort.
Procedural models for trees, buildings, cities, and decorative pat-
terns enrich the virtual worlds of movies and games [Měch and
Prusinkiewicz 1996; Müller et al. 2006; Wong et al. 1998]. Am-
bitious new projects aim to produce fully-procedural, galactic-
scale environments for players to explore [Procedural Reality 2014;
Hello Games 2014].

This expressive power comes at a cost: procedural models often
use complex, recursive control logic, resulting in emergent behav-
ior which is difficult to direct. As a result, technical artists often
must tweak parameters and massage initial conditions to achieve a
desired look. This time and effort may defeat the purpose of using
procedural modeling in the first place.

Fortunately, recent years have seen advances in the use of proba-
bilistic inference techniques to control procedural models [Talton
et al. 2011; Stava et al. 2014; Yeh et al. 2012]. Viewing a procedu-
ral model as sampling from a probability distribution allows for the
application of Bayesian inference techniques: the prior is the pro-
cedural model itself, and the likelihood is some high-level control
expessed as a scoring function.

This previous work relies on Markov Chain Monte Carlo (MCMC),
but other Bayesian posterior sampling algorithms are available: an-
other popular choice is Sequential Monte Carlo (SMC). SMC uses a
set of samples, or particles, to represent a distribution that changes
over time as new evidence is observed. As the distribution changes,
SMC shifts more particles (and thus more of its computational bud-
get) to higher-probability regions of the state space. For proba-
bilistic models that fit this pattern of ‘evidence arriving over time,’
such as modeling the location of a mobile robot, SMC is often the
method of choice: the incremental evidence it receives provides
feedback early and often, allowing it to converge quickly [Doucet
et al. 2001]. In contrast, MCMC receives feedback only after run-
ning through the entire model.

Ritchie, Mildenhall, Goodman, 
Hanrahan [SIGGRAPH’15]



Procedural modelling

Ritchie, Mildenhall, Goodman, 
Hanrahan [SIGGRAPH’15]



Procedural modellingAsynchronous function 
call via future

Ritchie, Mildenhall, Goodman, 
Hanrahan [SIGGRAPH’15]



Captcha solving

Inference Compilation and Universal Probabilistic Programming

Table 1: Captcha recognition rates.
Baidu 2011 Baidu 2013 eBay Yahoo reCaptcha Wikipedia Facebook

Our method 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
Bursztein et al. (2014) 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
Starostenko et al. (2015) 91.5% 54.6%
Gao et al. (2014) 34% 55% 34%
Gao et al. (2013) 51% 36%
Goodfellow et al. (2013) 99.8%
Stark et al. (2015) 90%

1: procedure Captcha
2: ‹ ≥ p(‹) Û sample number of letters

3: Ÿ ≥ p(Ÿ) Û sample kerning value

4: Generate letters:

5: � Ω {}
6: for i = 1, . . . , ‹ do

7: ⁄ ≥ p(⁄) Û sample letter ID

8: � Ω append(�, ⁄)

9: Render:

10: “ Ω render(�, Ÿ)

11: fi ≥ p(fi) Û sample noise parameters

12: “ Ω noise(“, fi)

return “

a

1

= “L” a

2

= “Ÿ” a

3

= “⁄” a

4

= “⁄”

i

1

= 1 i

2

= 1 i

3

= 1 i

4

= 2

x

1

= 7 x

2

= ≠1 x

3

= 6 x

4

= 23

a

5

= “⁄” a

6

= “⁄” a

7

= “⁄” a

8

= “⁄”

i

5

= 3 i

6

= 4 i

7

= 5 i

8

= 6

x

5

= 18 x

6

= 53 x

7

= 17 x

8

= 43

a

9

= “⁄” Noise: Noise: Noise:

i

9

= 7 displacement stroke ellipse

x

9

= 9 field

Figure 6: Pseudo algorithm and a sample trace of the
Facebook Captcha generative process. Variations in-
clude sampling font styles, image coordinates for letter
placement, and language-model-like letter ID distri-
butions p(⁄ | ⁄

1:t≠1

) (e.g., for meaningful Captchas).
Noise parameters p(fi) may or may not be a part of
inference. At test time an observe statement that com-
pares the generated Captcha with the ground truth is
added after line 12.

can create instances of a Captcha, you can break it.

5 DISCUSSION

We have explored making use of deep neural networks
for amortizing the cost of inference in probabilistic
programming. In particular, we transform an inference
problem given in the form of a probabilistic program
into a trained neural network architecture that pa-
rameterizes proposal distributions during sequential
importance sampling. The amortized inference tech-
nique presented here provides a framework within which
to integrate the expressiveness of universal probabilis-
tic programming languages for generative modeling
and the processing speed of deep neural networks for

inference. This merger addresses several fundamen-
tal challenges associated with its constituents: fast
and scalable inference on probabilistic programs, inter-
pretability of the generative model, an “infinite” stream
of labeled training data, and the ability to correctly
represent and handle uncertainty.
Our experimental results show that, for the family
of models on which we focused, the proposed neural
network architecture can be successfully trained to ap-
proximate the parameters of the posterior distribution
in the sample space with nonlinear regression from
the observe space. There are two aspects of this ar-
chitecture that we are currently working on refining.
Firstly, the structure of the neural network is not wholly
determined by the given probabilistic program: the in-
variant LSTM core maintains long-term dependencies
and acts as the glue between the embedding and pro-
posal layers that are automatically configured for the
address–instance pairs (a

t

, i

t

) in the program traces.
We would like to explore architectures where there is a
tight correspondence between the neural artifact and
the computational graph of the probabilistic program.
Secondly, domain-specific observe embeddings such as
the convolutional neural network that we designed for
the Captcha-solving task are hand picked from a range
of fully-connected, convolutional, and recurrent archi-
tectures and trained end-to-end together with the rest
of the architecture. Future work will explore automat-
ing the selection of potentially pretrained embeddings.
A limitation that comes with not learning the gen-
erative model itself—as is done by the models orga-
nized around the variational autoencoder (Kingma and
Welling, 2013; Burda et al., 2015)—is the possibility
of model misspecification (Shalizi et al., 2009; Gel-
man and Shalizi, 2013). Section 3.3 explains that our
training setup is exempt from the common problem of
overfitting to the training set. But as demonstrated
by the fact that we needed alterations in our Captcha
model priors for handling real data, we do have a risk of
overfitting to the model. Therefore we need to ensure
that our generative model is ideally as close as possi-
ble to the true data generation process and remember
that misspecification in terms of broadness is prefer-
able to a misspecification where we have a narrow, but
uncalibrated, model.

Inference Compilation and Universal Probabilistic Programming

4 EXPERIMENTS

We demonstrate our CSIS scheme on two examples. In
our first example we demonstrate compiled inference
for an open universe mixture model. In our second, we
demonstrate Captcha solving via probabilistic inference
(Mansinghka et al., 2013).

4.1 Mixture Models

Mixture modeling, e.g. the Gaussian mixture model
(GMM) shown in Figure 5, is about density estimation,
clustering, and counting. The inference problems posed
by a GMM, given a set of vector observations, are to
figure out how many clusters there are, where they are,
how big they are, and, optionally, which data points
came from which cluster.
We investigate compiled inference for a GMM in which
the number of clusters is unknown. Inference arises
from observing the values of y

n

(Figure 5, line 8) and
inferring the posterior number of clusters K and the set
of cluster mean and covariance parameters {µ

k

, �
k

}K

k=1

.
We assume that the input data to this model has been
translated to the origin and constrained to lie within
[≠1, 1] in both directions.
In order for CSIS to make good proposals for such
inference, the encoder artifact must be able to count,
i.e., extract and represent information about how many
clusters there are and, conditioned on that, to localize
the clusters. Towards that end our encoder includes
a deep convolutional neural network whose input is
a D ◊ D two-dimensional histogram image of binned
observed data y.
In presenting observational data y assumed to arise
from a mixture model to the neural network, there are
some important considerations that must be accounted
for. In particular there are symmetries in mixture
models (Nishihara et al., 2013) that must be broken in
order for training and inference to work. First, there
are K! (factorial) ways to label the classes. Second,
there are N ! ways the individual data points could be
permuted. Even in experiments like ours with K <

6 and N ¥ 100 this presents a major challenge for
neural network training. We break the first symmetry
by, at training time, sorting the clusters by Euclidian
distance from the origin and relabeling all points with a
permutation that labels points from the cluster nearest
the original as coming from the first cluster, next closest
the second, and so on. This is only approximately
symmetry breaking as many di�erent clusters may be
very nearly the same distance away from the origin.
Second, we avoid the N ! symmetry by only predicting
the number, means, and covariances of the clusters, not
the individual cluster assignments. The net e�ect of
the sorting is that the proposal mechanism will learn to
propose the nearest cluster to the origin as it receives

1: procedure GMM
2: K ≥ p(K|·) Û sample number of clusters

3: for k = 1, . . . , K do

4: µk, �k ≥ p(µk, �k|·) Û sample cluster parameters

5: fi Ωuniform(1, K)

6: for n = 1, . . . , N do

7: zn ≥ p(zn|fi) Û sample class label

8: yn ≥ p(yn|zn = k, µk, �k) Û sample or observe data

return {µk, �k}K
k=1

, K

Figure 5: Pseudo algorithm for a Gaussian mixture
model with unknown number of clusters.
training data always sorted in this manner.
Figure 4 shows that we are able to learn a proposal
that makes inference dramatically more e�cient. Fig-
ure 2 shows one kind of application such an e�cient
inference engine can do: object counting (Lempitsky
and Zisserman, 2010) and localization.

4.2 Captcha Solving

Here we also demonstrate our CSIS framework by writ-
ing generative probabilistic models for Captchas (von
Ahn et al., 2003) and comparing our results with the lit-
erature. Captcha solving is well suited for a generative
probabilistic programming approach because its latent
parameterization is low-dimensional and interpretable
by design. Using conventional computer vision tech-
niques, the problem has been previously approached
using segment-and-classify pipelines (Starostenko et al.,
2015; Bursztein et al., 2014; Gao et al., 2014, 2013),
and state-of-the-art results have been obtained by using
deep convolutional neural networks (CNNs) (Goodfel-
low et al., 2013; Stark et al., 2015), at the cost of
requiring very large (in the order of millions) labeled
training sets for supervised learning.
We start by writing generative models for each of
the types surveyed by Bursztein et al. (2014), namely
Baidu 2011 ( ), Baidu 2013 ( ), eBay ( ),
Yahoo ( ), reCaptcha ( ), and Wikipedia
( ).3 Figure 6 provides an overall summary of
our modeling approach. The actual models include
domain-specific letter dictionaries, font styles, and var-
ious types of renderer noise for matching each Captcha
style. In particular, implementing the displacement
fields introduced by Simard et al. (2003) proved instru-
mental in achieving our results. Note that the steps
of stochastic renderer noise are not included in the ex-
ample trace in Figure 6. Our experiments have shown
that we can successfully train artifacts that also extract
renderer noise parameters, but excluding these from
the list of addresses for which we learn proposal dis-
tributions improves robustness when testing with data
not sampled from the same model. This corresponds
to the well-known technique of adding synthetic varia-
tions to training data for transformation invariance, as

3Source codes in our probabilistic programming system
are available, but kept anonymous for this double-blind
review.

Le, Baydin, Wood [2016]



Inference Compilation and Universal Probabilistic Programming

Tuan Anh Le Atılım Güne� Baydin Frank Wood
Department of Engineering Science, University of Oxford

{tuananh, gunes, fwood}@robots.ox.ac.uk

Abstract

We introduce a method for using deep neu-
ral networks to amortize the cost of inference
in models from the family induced by uni-
versal probabilistic programming languages,
establishing a framework that combines the
strengths of probabilistic programming and
deep learning methods. We call what we do
“compilation of inference” because our method
transforms a denotational specification of an
inference problem in the form of a probabilis-
tic program written in a universal program-
ming language into a trained neural network
denoted in a neural network specification lan-
guage. When at test time this neural network
is fed observational data and executed, it per-
forms approximate inference in the original
model specified by the probabilistic program.
Our training objective and learning procedure
are designed to allow the trained neural net-
work to be used as a proposal distribution in
a sequential importance sampling inference
engine. We illustrate our method on mixture
models and Captcha solving and show signifi-
cant speedups in the e�ciency of inference.

1 INTRODUCTION

Probabilistic programming uses computer programs to
represent probabilistic models (Gordon et al., 2014).
Probabilistic programming systems such as STAN (Car-
penter et al., 2015), BUGS (Lunn et al., 2000), and
Infer.NET (Minka et al., 2014) allow e�cient inference
in a restricted space of generative models, while sys-
tems such as Church (Goodman et al., 2012), Venture
(Mansinghka et al., 2014), and Anglican (Wood et al.,
2014)—which we call universal—allow inference in un-
restricted models. Universal probabilistic programming
systems are built upon Turing complete programming
languages which support constructs such as higher or-
der functions, stochastic recursion, and control flow.
There has been a spate of recent work addressing the
production of artifacts via “compiling away” or “amor-

Compilation

Probabilistic program
p0!;y)

Inference

Training data
!!!!);y!!)g

Test data
y

Posterior
p0! j y)

Training #

Expensive / slow Cheap / fast

SIS
NN architecture

Compilation artifact

q0! j y;#)

DKL 0p0! j y) jj
q0! j y;#))

Figure 1: Our approach to compiled inference. Given
only a probabilistic program p(x, y), during compi-
lation we automatically construct a neural network
architecture comprising an LSTM core and various em-
bedding and proposal layers specified by the probabilis-
tic program and train this using an “infinite” stream of
training data {x(m)

, y(m)} generated from the model.
When this expensive compilation stage is complete, we
are left with an artifact of weights „ and neural archi-
tecture specialized for the given probabilistic program.
During inference, the probabilistic program and the
compilation artifact is used in a sequential importance
sampling procedure, where the artifact parameterizes
proposal distributions q(x | y; „).

tizing” inference (in the sense of Gershman and Good-
man (2014)). This body of work is roughly organized
into two camps. The one in which this work lives, ar-
guably the camp organized around “wake-sleep” (Hin-
ton et al., 1995), is about o�ine unsupervised learning
of observation-parameterized importance-sampling dis-
tributions for Monte Carlo inference algorithms. In
this camp, the approach of Paige and Wood (2016) is
closest to ours in spirit; they propose learning autore-
gressive neural density estimation networks o�ine that
approximate inverse factorizations of graphical models
so that at test time, the trained “inference network”
starts with the values of all observed quantities and
progressively proposes parameters for latent nodes in
the original structured model. However, inversion of
the dependency structure is impossible in the universal
probabilistic program model family, so our approach

ar
X

iv
:1

61
0.

09
90

0v
1 

 [c
s.A

I] 
 3

1 
O

ct
 2

01
6

Le, Baydin, Wood [2016]



Inference Compilation and Universal Probabilistic Programming

Tuan Anh Le Atılım Güne� Baydin Frank Wood
Department of Engineering Science, University of Oxford

{tuananh, gunes, fwood}@robots.ox.ac.uk

Abstract

We introduce a method for using deep neu-
ral networks to amortize the cost of inference
in models from the family induced by uni-
versal probabilistic programming languages,
establishing a framework that combines the
strengths of probabilistic programming and
deep learning methods. We call what we do
“compilation of inference” because our method
transforms a denotational specification of an
inference problem in the form of a probabilis-
tic program written in a universal program-
ming language into a trained neural network
denoted in a neural network specification lan-
guage. When at test time this neural network
is fed observational data and executed, it per-
forms approximate inference in the original
model specified by the probabilistic program.
Our training objective and learning procedure
are designed to allow the trained neural net-
work to be used as a proposal distribution in
a sequential importance sampling inference
engine. We illustrate our method on mixture
models and Captcha solving and show signifi-
cant speedups in the e�ciency of inference.

1 INTRODUCTION

Probabilistic programming uses computer programs to
represent probabilistic models (Gordon et al., 2014).
Probabilistic programming systems such as STAN (Car-
penter et al., 2015), BUGS (Lunn et al., 2000), and
Infer.NET (Minka et al., 2014) allow e�cient inference
in a restricted space of generative models, while sys-
tems such as Church (Goodman et al., 2012), Venture
(Mansinghka et al., 2014), and Anglican (Wood et al.,
2014)—which we call universal—allow inference in un-
restricted models. Universal probabilistic programming
systems are built upon Turing complete programming
languages which support constructs such as higher or-
der functions, stochastic recursion, and control flow.
There has been a spate of recent work addressing the
production of artifacts via “compiling away” or “amor-

Compilation

Probabilistic program
p0!;y)

Inference

Training data
!!!!);y!!)g

Test data
y

Posterior
p0! j y)

Training #

Expensive / slow Cheap / fast

SIS
NN architecture

Compilation artifact

q0! j y;#)

DKL 0p0! j y) jj
q0! j y;#))

Figure 1: Our approach to compiled inference. Given
only a probabilistic program p(x, y), during compi-
lation we automatically construct a neural network
architecture comprising an LSTM core and various em-
bedding and proposal layers specified by the probabilis-
tic program and train this using an “infinite” stream of
training data {x(m)

, y(m)} generated from the model.
When this expensive compilation stage is complete, we
are left with an artifact of weights „ and neural archi-
tecture specialized for the given probabilistic program.
During inference, the probabilistic program and the
compilation artifact is used in a sequential importance
sampling procedure, where the artifact parameterizes
proposal distributions q(x | y; „).

tizing” inference (in the sense of Gershman and Good-
man (2014)). This body of work is roughly organized
into two camps. The one in which this work lives, ar-
guably the camp organized around “wake-sleep” (Hin-
ton et al., 1995), is about o�ine unsupervised learning
of observation-parameterized importance-sampling dis-
tributions for Monte Carlo inference algorithms. In
this camp, the approach of Paige and Wood (2016) is
closest to ours in spirit; they propose learning autore-
gressive neural density estimation networks o�ine that
approximate inverse factorizations of graphical models
so that at test time, the trained “inference network”
starts with the values of all observed quantities and
progressively proposes parameters for latent nodes in
the original structured model. However, inversion of
the dependency structure is impossible in the universal
probabilistic program model family, so our approach

ar
X

iv
:1

61
0.

09
90

0v
1 

 [c
s.A

I] 
 3

1 
O

ct
 2

01
6

Le, Baydin, Wood [2016]

Approximating prob. 
programs by neural nets.



Nonparametric Bayesian: 
Indian buffer process

A stochastic programming perspective on nonparametric Bayes

checks to see if the mapping for its given arguments
already exists, and if so, returns that cached value.
Otherwise, it applies the underlying procedure, stores
the result in the map, and returns it. This stateful-
ness allows us to delay countably many computations
while preserving exchangeability. Using mem, we can
implement the Dirichlet process, following [12]:

(define (DP concentration base-measure)

(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))

(atoms (mem (lambda j (base-measure)))))

(lambda ()

(let loop ((j 1))

(if (flip (sticks j)) ;; with probability (stick j)

(atoms j) ;; return j’th sample from base measure

(loop (+ j 1))))))) ;; otherwise move to (j+1)’th stick

In fact, DP lets us generalize memoization to a form
more useful in the stochastic setting. On repeated
calls with the same arguments, we want a stochasti-
cally memoized procedure that sometimes returns old
values, but sometimes samples new values.

(define (DPmem alpha proc)

(let ((restaurants (mem (lambda args (DP alpha

(lambda () (apply proc args)))))))

(lambda args ((apply restaurants args)) )))

DPmem with alpha set to 0 recovers mem, and with
alpha set to 1 recovers no memoization (wasting
space). This idiom lets us compactly describe a wide
range of Dirichlet process based models in the liter-
ature, in particular recursively structured models not
easily describable in graphical terms (see Figure 1).
Many other higher order procedures play important
roles in functional programming, and may suggest new
stochastic processes.

We also provide a Church program that uses the stick
breaking representation of the Indian Bu↵et Process
[16, 5] introduced in [15]:

(define (ibp-stick-breaking-process concentration base-measure)

(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))

(atoms (mem (lambda j (base-measure)))))

(lambda ()

(let loop ((j 1) (dualstick (sticks 1))}

(append (if (flip dualstick) ;; with prob. dualstick

(atoms j) ;; add feature j

’()) ;; otherwise, next stick

(loop (+ j 1) (* dualstick (sticks (+ j 1)))) ))))))

This procedure does not halt, and therefore does not
induce a well-defined distribution on values, although
the original IBP does. This raises the question of
whether the IBP has a computable de Finetti represen-
tation and may have implications for sampler design.

Church also introduces (query <expr> <pred>),
which samples a value v from the marginal distribu-
tion on values of <expr> given that (<pred> v) re-
turns true. This provides a Turing-universal target
for exact and approximate inference, and exposes fur-
ther connections between probability and computing.
For example, a Church representation of a distribution
also has well-defined time, space and entropy complex-
ity, which interacts with the complexity of inference

�0.4 �0.2 0.2 0.4

0.5

1.0

1.5

2.0

�0.4 �0.2 0.2 0.4

0.5

1.0

1.5

Figure 1. Exact posterior samples from a DP mixture of
Gaussians (with Gaussian mean and inverse gamma vari-
ance), using the collapsed rejection algorithm for query.

schemes that use forward simulation (including our
MH algorithm). Di↵erent Church representations of a
given nonparametric object may thus be more or less
suitable for di↵erent inference algorithms. Further-
more, although our generic inference algorithms are
currently less e�cient than special-purpose alterna-
tives, techniques for functional program analysis and
transformation between marginally equivalent repre-
sentations could yield significant improvements. For
example, we think exploiting the dynamic program-
ming ideas from [9] in the general context of Church (or
programmatically identifying the subset of programs
to which those techniques apply) will implicate flow
analysis techniques [13].

Figure 1 Examples of stochastic transition models.

This deterministic higher-order function defines the basic
structure of stochastic transition models:
(define (unfold expander symbol)

(if (terminal? symbol)

symbol

(map (lambda (x) (unfold expander x))

(expander symbol) )))

A Church model for a PCFG transitions via a fixed multi-
nomial over expansions for each symbol:
(define (PCFG-productions symbol)

(cond ((eq? symbol ’S) (multinomial ’((S a) (T a)) (0.2 0.8)))

((eq? symbol ’T) (multinomial ’((T b) (a b)) (0.3 0.7))) ))

(define (sample-pcfg) (unfold PCFG-productions ’S))

The HDP-HMM [2, 14] uses memoized symbols for states
and memoizes transitions. Fresh symbols are generated by
the exchangeable (but stateful) primitive gensym, which
returns distinct symbols on each call:
(define get-symbol (DPmem 1.0 gensym))

(define get-observation-model (mem (lambda (symbol) (make-100-sided-die))))

(define ihmm-transition (DPmem 1.0 (lambda (state)

(if (flip) ’stop (get-symbol)) )))

(define (ihmm-expander symbol)

(list ((get-observation-model symbol)) (ihmm-transition symbol)) )

(define (sample-ihmm) (unfold ihmm-expander ’S))

The HDP-PCFG [8] is also straightforward:
(define terms ’( a b c d))

(define term-probs ’(.1 .2 .2 .5))

(define rule-type (mem (lambda symbol)

(if (flip) ’terminal ’binary-production))

(define ipcfg-expander (DPmem 1.0 (lambda (symbol)

(if (eq? (rule-type symbol) ’terminal)

(multinomial terms term-probs)

(list (get-symbol) (get-symbol)) ))))

(define (sample-ipcfg) (unfold ipcfg-expander ’S))

Making adapted versions of any of these models [6] only
requires stochastically memoizing unfold:
(define adapted-unfold

(DPmem 1.0 (lambda (expander symbol)

(if (terminal? symbol)

symbol

(map (lambda (x) (adapted-unfold expander x))

(expander symbol)) ))))

Roy et al.  2008



Nonparametric Bayesian: 
Indian buffer process

A stochastic programming perspective on nonparametric Bayes

checks to see if the mapping for its given arguments
already exists, and if so, returns that cached value.
Otherwise, it applies the underlying procedure, stores
the result in the map, and returns it. This stateful-
ness allows us to delay countably many computations
while preserving exchangeability. Using mem, we can
implement the Dirichlet process, following [12]:

(define (DP concentration base-measure)

(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))

(atoms (mem (lambda j (base-measure)))))

(lambda ()

(let loop ((j 1))

(if (flip (sticks j)) ;; with probability (stick j)

(atoms j) ;; return j’th sample from base measure

(loop (+ j 1))))))) ;; otherwise move to (j+1)’th stick

In fact, DP lets us generalize memoization to a form
more useful in the stochastic setting. On repeated
calls with the same arguments, we want a stochasti-
cally memoized procedure that sometimes returns old
values, but sometimes samples new values.

(define (DPmem alpha proc)

(let ((restaurants (mem (lambda args (DP alpha

(lambda () (apply proc args)))))))

(lambda args ((apply restaurants args)) )))

DPmem with alpha set to 0 recovers mem, and with
alpha set to 1 recovers no memoization (wasting
space). This idiom lets us compactly describe a wide
range of Dirichlet process based models in the liter-
ature, in particular recursively structured models not
easily describable in graphical terms (see Figure 1).
Many other higher order procedures play important
roles in functional programming, and may suggest new
stochastic processes.

We also provide a Church program that uses the stick
breaking representation of the Indian Bu↵et Process
[16, 5] introduced in [15]:

(define (ibp-stick-breaking-process concentration base-measure)

(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))

(atoms (mem (lambda j (base-measure)))))

(lambda ()

(let loop ((j 1) (dualstick (sticks 1))}

(append (if (flip dualstick) ;; with prob. dualstick

(atoms j) ;; add feature j

’()) ;; otherwise, next stick

(loop (+ j 1) (* dualstick (sticks (+ j 1)))) ))))))

This procedure does not halt, and therefore does not
induce a well-defined distribution on values, although
the original IBP does. This raises the question of
whether the IBP has a computable de Finetti represen-
tation and may have implications for sampler design.

Church also introduces (query <expr> <pred>),
which samples a value v from the marginal distribu-
tion on values of <expr> given that (<pred> v) re-
turns true. This provides a Turing-universal target
for exact and approximate inference, and exposes fur-
ther connections between probability and computing.
For example, a Church representation of a distribution
also has well-defined time, space and entropy complex-
ity, which interacts with the complexity of inference

�0.4 �0.2 0.2 0.4

0.5

1.0

1.5

2.0

�0.4 �0.2 0.2 0.4

0.5

1.0

1.5

Figure 1. Exact posterior samples from a DP mixture of
Gaussians (with Gaussian mean and inverse gamma vari-
ance), using the collapsed rejection algorithm for query.

schemes that use forward simulation (including our
MH algorithm). Di↵erent Church representations of a
given nonparametric object may thus be more or less
suitable for di↵erent inference algorithms. Further-
more, although our generic inference algorithms are
currently less e�cient than special-purpose alterna-
tives, techniques for functional program analysis and
transformation between marginally equivalent repre-
sentations could yield significant improvements. For
example, we think exploiting the dynamic program-
ming ideas from [9] in the general context of Church (or
programmatically identifying the subset of programs
to which those techniques apply) will implicate flow
analysis techniques [13].

Figure 1 Examples of stochastic transition models.

This deterministic higher-order function defines the basic
structure of stochastic transition models:
(define (unfold expander symbol)

(if (terminal? symbol)

symbol

(map (lambda (x) (unfold expander x))

(expander symbol) )))

A Church model for a PCFG transitions via a fixed multi-
nomial over expansions for each symbol:
(define (PCFG-productions symbol)

(cond ((eq? symbol ’S) (multinomial ’((S a) (T a)) (0.2 0.8)))

((eq? symbol ’T) (multinomial ’((T b) (a b)) (0.3 0.7))) ))

(define (sample-pcfg) (unfold PCFG-productions ’S))

The HDP-HMM [2, 14] uses memoized symbols for states
and memoizes transitions. Fresh symbols are generated by
the exchangeable (but stateful) primitive gensym, which
returns distinct symbols on each call:
(define get-symbol (DPmem 1.0 gensym))

(define get-observation-model (mem (lambda (symbol) (make-100-sided-die))))

(define ihmm-transition (DPmem 1.0 (lambda (state)

(if (flip) ’stop (get-symbol)) )))

(define (ihmm-expander symbol)

(list ((get-observation-model symbol)) (ihmm-transition symbol)) )

(define (sample-ihmm) (unfold ihmm-expander ’S))

The HDP-PCFG [8] is also straightforward:
(define terms ’( a b c d))

(define term-probs ’(.1 .2 .2 .5))

(define rule-type (mem (lambda symbol)

(if (flip) ’terminal ’binary-production))

(define ipcfg-expander (DPmem 1.0 (lambda (symbol)

(if (eq? (rule-type symbol) ’terminal)

(multinomial terms term-probs)

(list (get-symbol) (get-symbol)) ))))

(define (sample-ipcfg) (unfold ipcfg-expander ’S))

Making adapted versions of any of these models [6] only
requires stochastically memoizing unfold:
(define adapted-unfold

(DPmem 1.0 (lambda (expander symbol)

(if (terminal? symbol)

symbol

(map (lambda (x) (adapted-unfold expander x))

(expander symbol)) ))))

Roy et al.  2008Lazy infinite array



Nonparametric Bayesian: 
Indian buffer process

A stochastic programming perspective on nonparametric Bayes

checks to see if the mapping for its given arguments
already exists, and if so, returns that cached value.
Otherwise, it applies the underlying procedure, stores
the result in the map, and returns it. This stateful-
ness allows us to delay countably many computations
while preserving exchangeability. Using mem, we can
implement the Dirichlet process, following [12]:

(define (DP concentration base-measure)

(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))

(atoms (mem (lambda j (base-measure)))))

(lambda ()

(let loop ((j 1))

(if (flip (sticks j)) ;; with probability (stick j)

(atoms j) ;; return j’th sample from base measure

(loop (+ j 1))))))) ;; otherwise move to (j+1)’th stick

In fact, DP lets us generalize memoization to a form
more useful in the stochastic setting. On repeated
calls with the same arguments, we want a stochasti-
cally memoized procedure that sometimes returns old
values, but sometimes samples new values.

(define (DPmem alpha proc)

(let ((restaurants (mem (lambda args (DP alpha

(lambda () (apply proc args)))))))

(lambda args ((apply restaurants args)) )))

DPmem with alpha set to 0 recovers mem, and with
alpha set to 1 recovers no memoization (wasting
space). This idiom lets us compactly describe a wide
range of Dirichlet process based models in the liter-
ature, in particular recursively structured models not
easily describable in graphical terms (see Figure 1).
Many other higher order procedures play important
roles in functional programming, and may suggest new
stochastic processes.

We also provide a Church program that uses the stick
breaking representation of the Indian Bu↵et Process
[16, 5] introduced in [15]:

(define (ibp-stick-breaking-process concentration base-measure)

(let ((sticks (mem (lambda j (random-beta 1.0 concentration))))

(atoms (mem (lambda j (base-measure)))))

(lambda ()

(let loop ((j 1) (dualstick (sticks 1))}

(append (if (flip dualstick) ;; with prob. dualstick

(atoms j) ;; add feature j

’()) ;; otherwise, next stick

(loop (+ j 1) (* dualstick (sticks (+ j 1)))) ))))))

This procedure does not halt, and therefore does not
induce a well-defined distribution on values, although
the original IBP does. This raises the question of
whether the IBP has a computable de Finetti represen-
tation and may have implications for sampler design.

Church also introduces (query <expr> <pred>),
which samples a value v from the marginal distribu-
tion on values of <expr> given that (<pred> v) re-
turns true. This provides a Turing-universal target
for exact and approximate inference, and exposes fur-
ther connections between probability and computing.
For example, a Church representation of a distribution
also has well-defined time, space and entropy complex-
ity, which interacts with the complexity of inference

�0.4 �0.2 0.2 0.4

0.5

1.0

1.5

2.0

�0.4 �0.2 0.2 0.4

0.5

1.0

1.5

Figure 1. Exact posterior samples from a DP mixture of
Gaussians (with Gaussian mean and inverse gamma vari-
ance), using the collapsed rejection algorithm for query.

schemes that use forward simulation (including our
MH algorithm). Di↵erent Church representations of a
given nonparametric object may thus be more or less
suitable for di↵erent inference algorithms. Further-
more, although our generic inference algorithms are
currently less e�cient than special-purpose alterna-
tives, techniques for functional program analysis and
transformation between marginally equivalent repre-
sentations could yield significant improvements. For
example, we think exploiting the dynamic program-
ming ideas from [9] in the general context of Church (or
programmatically identifying the subset of programs
to which those techniques apply) will implicate flow
analysis techniques [13].

Figure 1 Examples of stochastic transition models.

This deterministic higher-order function defines the basic
structure of stochastic transition models:
(define (unfold expander symbol)

(if (terminal? symbol)

symbol

(map (lambda (x) (unfold expander x))

(expander symbol) )))

A Church model for a PCFG transitions via a fixed multi-
nomial over expansions for each symbol:
(define (PCFG-productions symbol)

(cond ((eq? symbol ’S) (multinomial ’((S a) (T a)) (0.2 0.8)))

((eq? symbol ’T) (multinomial ’((T b) (a b)) (0.3 0.7))) ))

(define (sample-pcfg) (unfold PCFG-productions ’S))

The HDP-HMM [2, 14] uses memoized symbols for states
and memoizes transitions. Fresh symbols are generated by
the exchangeable (but stateful) primitive gensym, which
returns distinct symbols on each call:
(define get-symbol (DPmem 1.0 gensym))

(define get-observation-model (mem (lambda (symbol) (make-100-sided-die))))

(define ihmm-transition (DPmem 1.0 (lambda (state)

(if (flip) ’stop (get-symbol)) )))

(define (ihmm-expander symbol)

(list ((get-observation-model symbol)) (ihmm-transition symbol)) )

(define (sample-ihmm) (unfold ihmm-expander ’S))

The HDP-PCFG [8] is also straightforward:
(define terms ’( a b c d))

(define term-probs ’(.1 .2 .2 .5))

(define rule-type (mem (lambda symbol)

(if (flip) ’terminal ’binary-production))

(define ipcfg-expander (DPmem 1.0 (lambda (symbol)

(if (eq? (rule-type symbol) ’terminal)

(multinomial terms term-probs)

(list (get-symbol) (get-symbol)) ))))

(define (sample-ipcfg) (unfold ipcfg-expander ’S))

Making adapted versions of any of these models [6] only
requires stochastically memoizing unfold:
(define adapted-unfold

(DPmem 1.0 (lambda (expander symbol)

(if (terminal? symbol)

symbol

(map (lambda (x) (adapted-unfold expander x))

(expander symbol)) ))))

Roy et al.  2008

Higher-order 
parameter



My research :
Denotational semantics

Joint work with Chris Heunen, Ohad Kammar, Sam Staton, Frank Wood
[LICS 2016]



(let [s (sample (normal 0 10)) 
      b (sample (normal 0 10)) 
      f (fn [x] (+ (* s x) b))] 

  (observe (normal (f 1) 1) 2.5) 
  (observe (normal (f 2) 1) 3.8) 
  (observe (normal (f 3) 1) 4.5) 
  (observe (normal (f 4) 1) 8.9) 
  (observe (normal (f 5) 1) 10.1) 

  (predict :sb [s b]))



(let [s (sample (normal 0 10)) 
      b (sample (normal 0 10)) 
      f (fn [x] (+ (* s x) b))] 

  (observe (normal (f 1) 1) 2.5) 
  (observe (normal (f 2) 1) 3.8) 
  (observe (normal (f 3) 1) 4.5) 
  (observe (normal (f 4) 1) 8.9) 
  (observe (normal (f 5) 1) 10.1) 

  (predict :sb [s b]))
(predict :f f)



(let [s (sample (normal 0 10)) 
      b (sample (normal 0 10)) 
      f (fn [x] (+ (* s x) b))] 

  (observe (normal (f 1) 1) 2.5) 
  (observe (normal (f 2) 1) 3.8) 
  (observe (normal (f 3) 1) 4.5) 
  (observe (normal (f 4) 1) 8.9) 
  (observe (normal (f 5) 1) 10.1) 

  (predict :sb [s b]))
(predict :f f)

Generates a random function of type R→R.
But its mathematical meaning is not clear.



Measurability issue

• Measure theory is the foundation of probability 
theory that avoids paradoxes.

• Silent about high-order functions.

• [Halmos] ev(f,a) = f(a) is not measurable.

• The category of measurable sets is not CCC.

• But Anglican supports high-order functions.



Meas

Monad 

Meas

Use category theory to extend measure theory.



Meas

Monad 

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding 

Meas
Yoneda

Embedding 

Use category theory to extend measure theory.



Meas

Monad 

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding 

Left Kan 
Extension

Meas
Yoneda

Embedding 

Use category theory to extend measure theory.



Meas

Monad 

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding 

Left Kan 
Extension

Meas
Yoneda

Embedding 

Use category theory to extend measure theory.



Meas

Monad 

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding 

Left Kan 
Extension

Meas
Yoneda

Embedding 

Use category theory to extend measure theory.
Enough structure 
for function types



Meas

Monad 

[Measop, Set]∏

[Measop, Set]∏

Yoneda
Embedding 

Left Kan 
Extension

Meas
Yoneda

Embedding 

Use category theory to extend measure theory.
Enough structure 
for function types

Preserves nearly 
all the structures



[Question] Are all definable functions from R to 
R in a high-order probabilistic PL measurable?

Our semantics says that the answer is yes for a 
core call-by-value language, such as Anglican. 



The monad M(⟦R→R⟧) at ⟦R→R⟧ consists of: 

equivalence classes of measurable functions 
f : Ω×R → R for probability spaces Ω.

The function f is what probabilists call a 
measurable stochastic process.



The extended monad M describes computations 
with dynamically allocated read-only variables.

M(T)(w) = 
{ [(a, f)]~  |  ∃v.  a∈T(v) ⋀  f : w →m Prob(v) }



M(T)(w) = 
{ [(a, f)]~  |  ∃v.  a∈T(v) ⋀  f : w →m Prob(v) }

The extended monad M describes computations 
with dynamically allocated read-only variables.

T is the type of a value.
w represents a space of all random vars so far.
v extends w with new random variables according to f.



M(T)(w) = 
{ [(a, f)]~  |  ∃v.  a∈T(v) ⋀  f : w →m Prob(v) }

The extended monad M describes computations 
with dynamically allocated read-only variables.

T is the type of a value.
w represents a space of all random vars so far.
v extends w with new random variables according to f.



M(T)(w) = 
{ [(a, f)]~  |  ∃v.  a∈T(v) ⋀  f : w →m Prob(v) }

The extended monad M describes computations 
with dynamically allocated read-only variables.

T is the type of a value.
w represents a space of all random vars so far.
v extends w with new random variables according to f.



Try a probabilistic prog. language. It is fun.

• Anglican:                                                     
http://www.robots.ox.ac.uk/~fwood/
anglican/index.html

• WebPPL:                                                   
http://webppl.org/

http://webppl.org/

