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Abstract

Low-power, small-scale Bluetooth radio beacons provide a novel approach
for tracking animals in their natural habitat. As a specific case, flight path
prediction of honey bees is investigated, using a bee-mounted radio beacon
and an array of ground based sensors. We explore different machine learn-
ing approaches for the travel path inference, specifically comparing discrete
hidden Markov models with continuous Gaussian processes. Both models
are empirically compared in simulation, and then a prototype bee tracking
system is implemented using hidden Markov models.

Employing domain-specific optimisations and low-level concurrency con-
trols, we manage to create a parallelised, extensible and efficient bee tracking
software which can simultaneously track hundreds of bees even on the low-
resource machine. We extend the system provided by the project supervisor
to incorporate the prediction engine and enhance the visualisation of the
flight path, resulting in a prototype system ready to be deployed in the field.

Finally, we provide theoretical lower bounds on the prediction accuracy
using Bayesian Cramér-Rao bounds to evaluate the performance of the model
compared to the information-theoretic limit.
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1 Introduction

1.1 Motivation

The problem of tracking the animal behaviour and movement patterns is
of particular importance in biology and ecology (Levin 1992). Advances in
tracking technology allows novel insights on animals navigation, as noted by
Reynolds et al. (2007) for foraging bees and by Mann et al. (2011) for homing
pigeons. Tracking insects and other small animals presents unique challenges
due to the limited hardware size. Common approaches include miniaturised
radio transmitters and harmonic radars, used by Wikelski et al. (2010) and
Wolf et al. (2014).

1.2 Challenges

We investigate the usage of compact and low-power Bluetooth radio beacons
for tracking the behaviour of animals in their natural environment. Such a
system would use ground based sensors to receive the beacon ID and record
the signal strength. As a concrete use case, we turn our attention to the
problem of tracking the flight paths of honey bees (Apis mellifera).

This presents several challenges: firstly, the size of the bee limits the size
of the Bluetooth transmitter and a battery, facilitating the need to conserve
power as much as possible, hence, we can only send a signal occasionally.
Secondly, in order for the cost of this approach to be feasible, we cannot
afford to have too many ground sensors, hence, they will have to be placed
on the ground sparsely. Furthermore, we aim to track a large number of bees
simultaneously, thus the approach must be efficient.

1.3 Requirements

The goal of this project is to empirically select the best machine learning
techniques and build a prototype bee tracking software.
We identify several crucial requirements for the system:

(R1) To conserve power, we must only occasionally send a radio signal,
hence, we will aim to maximise the delay between observations without
sacrificing accuracy.

(R2) To keep the cost reasonable, the number of ground sensors has to be
limited and thus they can only be placed on the ground sparsely.

(R3) The bee tracking software should provide real-time predictions of the
bee flight paths. Furthermore, it should be possible to track multiple
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bees simultaneously and the information should be displayed on a map
in an intuitive format.

(R4) The bee tracking software should work without access to any server or
cloud service. The software is intended to be run on a laptop in the
actual field near the beehive, where we expect the internet connection
to be slow or non-existent, so ideally internet should only be required
to load the map. Also, it must be efficient: it must run smoothly even
on low-resource machine and use a limited amount of memory.

(R5) Finally, tracking should be accurate. The main measure of accuracy
throughout this report will be root mean square error. More precisely,
if our predictions are (£1,%1),-..,(Zn,¥n) and the bee is actually in
coordinates (1,¥1),-- -, (Tn,Yn), the Toot mean square error is

J}—Z(ﬁ—w)” (G —-v)? 1)

ni3

Also, we want the accuracy to be not far from the theoretical limit to
make sure the accuracy is not far from optimal.

1.4 Owur contributions

We develop a bee flight path simulator, including the simulation of the radars,
based on the biologically sound model of the beehive. Using this simulator
as a generator for both training and testing data, we apply two machine
learning approaches to the problem: Hidden Markov models and Gaussian
Processes, empirically selecting the best hyperparameters. We research and
implement optimisations for these approaches to be feasible, including novel
ideas for Hidden Markov models enabled by domain knowledge. Further, to
compute information-theoretic bounds on prediction accuracy, we use an ap-
proximation technique called kernel density estimation, enabling us to apply
the Bayesian Cramér-Rao bounds to our problem.

Finally, we select Hidden Markov models as the best approach and de-
velop bee tracking software, building on the skeleton implementation pro-
vided by project supervisor. Our contributions include lightweight, highly
optimised prediction module in C++ employing multithreading and intu-
itive GUI for predicted path visualisation. The system is efficient enough to
track hundreds of bees in real time. This project is sponsored by Syngenta
and the tracking software will be demonstrated in summer 2017 at Jealott’s
Hill International Research Centre.




1.5 Methods

We will be comparing two approaches commonly used in the machine learning
field for tracking problems: Hidden Markov models and Gaussian processes.
We will be interested of two tracking modes: filtering and smoothing. Fil-
tering refers to the situation where data is coming datapoint-by-datapoint
and predictions are made in real-time. Smoothing is the situation where all
the observation data is known in advance, and location is predicted with
knowledge of past and future observations.

Hidden Markov model (HMM) presupposes that we have a system with
changing state (in this case, the location of the bee), and information about
the state is available only through some observations. Crucially, this ap-
proach relies on the assumption that the probability of the next state depends
only on the previous state. One caveat of using hidden Markov models is
the need for states to be discrete — we will divide the map into square cells,
each of which constitutes a state. We will refer to this process as discretisa-
tion. Furthermore, we note that hidden Markov models can benefit from the
domain-specific optimisations, as noted in Murphy (2012, p. 777).

Gaussian processes (GPs) approach is conceptually different, since it mod-
els a distribution over functions. For a finite dataset it is enough to model a
distribution over the values of a function at the finite set of points. Gaussian
processes are inherently continuous and therefore suitable for representa-
tion of bees’ movements through continuous space. Continuity also means
that it is possible to get the estimate of the bee position at any time (not
only once an observation has occurred) and naturally deal with any missing
data. Moreover, each prediction is accompanied by variance at that point,
thus quantifying the uncertainty about the predictions, which is essential for
monitoring the performance of the model.

In order to understand how close the accuracy is to the theoretical limit,
we will employ Bayesian Cramér-Rao bounds.

Cramér-Rao bounds is a tool commonly used in statistics to give a lower
bound for the mean square error for deterministic parameters (Schervish
1997), subject to various regularity conditions. Van Trees (1968) derived the
analogous bound for random wvariables, called Bayesian Cramér-Rao bound.
However, this approach requires inverting a huge matrix (scaling quadrati-
cally in number of observations), making it infeasible for our purposes. We
will use a refinement of this technique (Dauwels 2005), making the compu-
tation tractable.

One of the key parts of the Bayesian Cramér-Rao bound computation
requires knowledge of the probability density function (pdf) of bee location
and observations. Given the complexity of the bee simulation algorithm, no



analytic form can be given. Thus, we will resort to estimating the pdf by
the kernel density estimation method, effectively representing the density by
mixture of Gaussian densities.

1.6 Structure of the report

The rest of the report is structured as follows: the background for the tech-
niques used is presented in Section 2. The modelling process is described
in Section 3. The in-depth accuracy comparison of the models is presented
in Section 4, and in Section 5 we discuss the implementation of bee track-
ing software. In Section 6 we calculate the approximate lower bounds and
compare them to our practical results. Finally, in Section 7, we present the
conclusions, limitations and possible extensions of the project.

2 Background

We will briefly review the background knowledge on Hidden Markov mod-
els, Gaussian Processes, Bayesian Cramér-Rao bounds and kernel density
estimation necessary to understand the project.

2.1 Hidden Markov models

In the Hidden Markov model framework, we identify hidden states: latent
random variables which are not observable (denoted z1, za, . .. ), each associ-
ated with an corresponding random variable x;, called an observation.

We will model the actual flight path of a honey bee as a sequence of
latent variables {z;};>1 and we will denote the radio beacon observations
(the location of the ground station and the signal strength) as corresponding
observations {x;}i>1.

Hidden Markov models allow the latent variable to be dependent on the
(single) previous latent variable through a conditional distribution p(z;|2;_1),
but it also assumes that it is independent of anything else. Formally, this is
known as Markovian property:

p(2j|zj-1) = p(zj]2j-1, - - ., 21) (2)

For observations, it is assumed that the x; is only dependent on the cor-
responding latent variable z; and, moreover, conditional on latent variable,
the observation is independent of everything else.

Noting that the states must be discrete, we will divide the map into the
grid of square cells, each one of them corresponding to a state. We will refer
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to a state by a tuple (¢, 7), meaning the cell in the j-th row and i-th column
(corresponding to z,y coordinates on the map).

The Markovian property (2) implies that it is natural to consider transi-
tion probabilities p(z;|z;_1) from one hidden state to the other. The transi-
tion probabilities model the usual movement of the bee without taking any
observations into account. For example, if the bee is in the hive, it is more
likely that after a second it will still be in the beehive than that it will
suddenly appear kilometres away from it.

The transition probabilities can be concisely expressed as a transition
matrix A such that

Aij = p(ze = jlzi-1 =1) 3)
The initial probabilities of the model starting in the i-th state (bee being in
a location denoted by i-th state) are given by m; = p(z; = 19).

To fully specify the model, we also need to define the probabilities of
observations given that the bee is in any particular state. The conditional
probabilities p(x;|z;) are modelled as Gaussian distribution of the difference
of presumed and real signal strength. More precisely, each state is naturally
associated with location on a map (for consistency, we treat the location
of the state as the location of the middle point of the cell). Given some
potential location of a bee and a radio beacon location, we can calculate
the ideal, noiseless signal strength which would be observed by the ground
station. We look at the difference between the observed and ideal signal
strengths and use a Gaussian distribution on this error. Technically, if the
bee is at state a which is a cell with centre at (Zpee, Ynee) and we consider an
observation from the radio beacon at location (Zps, Yobs) With signal strength
Sobs, then we model the probability by

P(x; = (Zobs, Yobs, Sobs) |2t = a)

= N(Sobs - \/(xobs - xbee>2 + (yobs — Yee)?|0, 02) (4)

Our goal will be to find the most likely path of the bee (sequence of hidden
states), given the sequence of observations, that is, the maximum a posteriori
(MAP) estimate

arg max p(zy.7|®1.7) (5)
zZ1.7

Note that this is very different from calculating the sequence of most
likely states for each observation, as those may not even form a valid path.
For efficient calculation of the most likely path, we use the Viterbi algorithm,
presented in the next section.



2.2 The Viterbi algorithm

The problem of finding the most likely sequence of latent states is efficiently
solved by using the Viterbi algorithm (Forney 1973).

In the essence of this algorithm there is a dynamic programming ap-
proach: we will dynamically compute the probability of most likely path up
to timestep ¢ ending in state 7, denoted by &;(5).

This computation will make use of the observation that this problem
exhibits an optimal substructure property: that is, an optimal solution can be
efficiently computed from the optimal solutions to the smaller subproblems.
In this case, this means that the most likely path up to timestep t ending in
7 will consist of the most likely path up to timestep ¢ — 1 ending in 7 and
then a transition from ¢ to j, for some state <.

Formally, let us denote the probability of getting the current observations
if we are in j-th state by ¢:(j) = p(a:]|2: = 7). Recall that a probability of a
transition from state ¢ to j is denoted A;;. Then we can write the probability
of most likely path up to time t ending in state j as:

01(7) = ¢e(7) (max 8¢-1(¢)Ayg) (6)

As values of A;; are known (after the training stage), and ¢;(5), the obser-
vation probabilities, are easy to compute, the problem is efficiently solvable
using dynamic programming, by memorising the values of &;(5).

Also note that adding a new datapoint at time T +1 is easy: we only have
to calculate d711(j) for all values of j, and we can make use of previously
calculated 7.

2.3 (Gaussian Processes

For the presentation of the framework of Gaussian processes we are largely
going to follow Rasmussen and Williams (2005).

In the inference problem, we get some inputs @y, . .., z, and some outputs
Yi,--.,Yn (In general, inputs and outputs are real-valued vectors). The key
assumption is that for all input-output pairs, y; = f(x;) for some unknown
function f, possibly corrupted by noise.

Instead of assuming the general, parameterized form of f and trying to
learn the parameters, as it is common in other machine learning approaches,
Gaussian processes takes a different approach and models distributions over
Sfunctions.

The distribution is fully characterised by the mean function m(z) and
the covariance function (also called kernel) x(z, x’).
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Let us choose some mean function m(x) and the covariance function
k(x,x’). Then, for any finite set of inputs £ = (¢1,...%,), the set of function
values f(t) = (f(t1),... f(¢,)) has a jointly Gaussian distribution:

f@) ~ N(u(t), K(t, 1)) (7)

)
where p(t) is a vector and K (t) is a matrix such that

wt) = (m(tr), .. m(tn)) (8)

K(p,q)i; = x(pi, ;) (9)
Now assume we know outputs y,...,y, at inputs x1,...,x,. In addi-
tion, we want to make predictions at inputs z7,...,z¥. Let us denote the

predicted values by y1*, ..., yr.
Now, by the definition of Gaussian processes,

v\ ([ #@)) (K@) Kz o

(o)~ () (22 ) 1o

By the well-known rules of conditioning multivariate Gaussians (see Mur-
phy 2012, sec. 4.3) the posterior distribution is given as

Y'ly,z,z" ~ N (i, X) (11)
p=ula”) + K" z) (K", 2))” (y - u(z)) (12)
Y =K(z* z*) - K(z*, ) K (z,z) ' K (z,x*) (13)

Note that this calculation explains one of the strengths of Gaussian pro-
cesses — it does not simply provide a prediction as a point estimate, but
rather gives a Gaussian distribution centred around the best guess with well-
calibrated variance, expressing uncertainty about the prediction.

As noted by Murphy (2012), a common practice is to set m(t) = O,
since the Gaussian processes are flexible enough to approximate the function
through covariance matrix alone.

However, so far, we have said nothing about the choice of covariance
function . It is chosen to reflect the prior beliefs about the structure of
function — how its output varies with changing input.

As noted by Genton (2002), the commonly used kernels in time series and
spatial tracking are stationary, that is, the output of a kernel belongs only
on the distance between the input vectors. This naturally embodies the idea
that the absolute location or time is not relevant, only the relative distance
between the datapoints and delay between them.
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In this report, inspired by Mann et al. (2009) we consider only the Matérn
3/2 kernel, belonging to the class of stationary kernels. It is given by

k(w,z') = M ([l — z'[]) (14)

M(d) = §° (1 + @) exp <——-¢%> (15)

for the hyperparameters § and p. Hyperparameter § adjusts the scale of
variations over the function values (output scale), while p determines the
distance over which function values become uncorrelated.

where

2.4 Application to the problem

The training data consists of datapoints: & 5-tuple (Zpee, Yvees Tradars Yradars S)
for each timestep, where Zpee, Yree are the x and y coordinates of a true bee
location, respectively, and Z,qdar, Yradar are the x and y coordinates of a radar
which made the observation and s is the signal strength.

We will formalise this as a multi-output function with input being time:

f(t) = <xbeey Ybees Tradars Yradar, 3> (16)

Following the suggestion by Osborne (2010, p. 51), we can treat this as a
function g taking a timestep and a discrete label and outputting only scalars:

9(¢,0) = Teee (17)
9(t, 1) = Yee (18)
9(t,2) = Tradar (19)
9(t:3) = Yradar (20)
9(t,4)=s (21)

As noted by Osborne (2010, p. 51), this gives us the advantage that we
can readily deal with partial and missing data. In training, we will learn the
correlation between true location of a bee and radar data, and in the test
time, we will input the radar observations and will ask to predict the bee
location.

Furthermore, the missing data is gracefully handled — if the bee is out of
range for all the radars in a particular time step, we simply do not input the
radar location and signal strength for this timestep.

Note that if we have chosen an alternative formalisation of the prediction,
that is, to feed in the datapoint along the timestep as an input:

f(f), Tradar, Yradars 3) = <xbee> ybee> (22)
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we would be unable to treat missing data: it would be impossible to predict
the bee location for the timestep with missing data, and we could not predict
the bee location in the future.

2.5 The linear model of coregionalisation

It remains to specify the kernel for our formalisation which would take into
the account that the second input to function f is a discrete label.

Following Alvarez, Rosasco, and Lawrence (2012, p. 12), we consider a
type of multi-output kernel: sum of separable kernels. That is, the output
will be a weighted sum of kernels of the input without a label:

Q
K([:Zj, 1], [wla ZID = Zl kq(x7 xl)]%quv Z/) (23>
or, equivalently,
Q
K([z,1,[+,1]) = Zl kqy(z,2') (B (24)

where each By is some 5 x 5 matrix (as the output is a d-tuple, thus we have
5 possible labels).

We can consider the form of our function under this kernel. It is not hard
to see that the outputs are expressed as a weighted combination of functions
only depending on the timestep:

Q
9(t, 1) = ;wq,luq(t) (25)

The functions u,(t) are called latent. Furthermore, they are independent,
have zero mean and covariance

ko(t,t) ifg=¢

) (26)
0 otherwise

Covlug(t), ug (t')] = {

This model is simple enough to be computationally tractable, yet powerful
enough to learn the correlations between different labels.

2.6 Bayesian Cramér-Rao bounds

Our presentation of the Bayesian Cramér-Rao bounds is largely going to
follow Dauwels (2005).
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Let us consider the problem of estimating some states from the ob-
servations. Let X = (X1, Xa,...,X,)T be the vector of states and let
Y = (1,Ys,,... ,Yn)T be the vector of observations, where all X and Y
are real-valued vectors, not necessarily of the same dimensionality. Further-
more, let p(z,y) be a joint probability density function of X and Y.

Consider the estimation of X from the observations Y, that is, we have
the estimator of X denoted by £(Y). We are interested in the error of this
estimator and to this end we define the error matriz of this estimator:

B = Exy[(#(Y) - X)(@(Y) - X)7] (27)

The error matrix relates to the mean square error, which is simply a
weighted sum of diagonal elements:

1
—E;; 28
. (28)

As we shall see, the error matrix is related to the Bayesian information
matriz J defined as:

Ji; = E[Vq, log p(z,y) V3, log p(z, y)] (29)

where V refers to the gradient, which, for vector v = (vy, ... vg)T, is defined
as

o 9 81"
Vo= |o— =, ey
v vy’ Bvy’ 7 D, (30)
Van Trees (1968, p. 72-73) proved a bound on the error matrix (27):
ExJ! (31)

where inequality means that matrix E — J~! is positive semi-definite.

The theorem is subject to some regularity conditions and “weak unbi-
asedness” condition. However, Dauwels (2005) proved that if the latter con-
dition does not hold, we still get the lower bound, however, not as tight.
This bound by Van Trees is also known as “Bayesian Cramér-Rao bound”
(“Bayesian CRB”) or “posterior CRB” or “Van Trees bound”.

Note that if we can calculate the Bayesian information matrix J, it is
particularly easy to bound the mean square error, which can be thought as a
performance measure of our estimator. By the bound (31) and the fact that
diagonal submatrices of a positive semi-definite block matrix are themselves
positive, if follows that

[37 (32)

3=
S|

n n
> “Euix= ),
i=1 i=1

14




and by equation (28), this is a bound of mean square error.

Therefore, to get the bounds on the performance of our predictor, we
only need to calculate the Bayesian information matrix J , whichisan xn
matrix for n observations. However, the computation of the elements of
J is computationally expensive and so is the inversion of it. To make the
computation tractable, we are going to use the result of Dauwels (2005)
which allows to take into the account the structure of p(x,y) and compute
the Bayesian information matrix more efficiently.

To this end, we consider the state-space model with freely evolving state,
that is, we say that the next state X x+1 depends only on the state X}, and the
observations Y} depend only on the corresponding state Xj. The probability
density function of such model is

Pz, ) = po(o) kH Pkl oer)p(gelz) (33)

To derive the results for filtering, we can use the results of Tichavsky,
Muravchik, and Nehorai (1998). For the derivation, the interested reader is
referred to Dauwels (2005) and Tichavsky, Muravchik, and Nehorai (1998),
but for our purposes it is enough to state this (rather technical) result: The
Bayesian Cramér-Rao bound for filtering is

Ew = (nf)™ (34)

where E is the Bayesian information matrix (29), and pi is defined recur-
sively as

By = Groo — Groi(pl + Gi11) "Gz (35)
Pis1 = Bgr + B4 (36)

with the matrices G being defined as

Gr1 = E[Vy, log p(r11|2x) V2 log p(zkrs|zy)] (
G2 = E[Va, log p(zp41[24) V5, ., 1og p(Tis1|2s)] (38)
Gra = [Gya]” (39)
G2 = E[V,,,, Ing(xk-f-llxk)vZkH log p(zg11|zr)] (40)
pi. = B[V, log p(ye|zi) VZ, log plyslzs)] (41)
and the recursion is initialised as

pt =E[V,, log p(z0) VZ, log p(zo)] (42)
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Analogously, we have a bound for smoothing, given by Dauwels (2005):

Ee = (Bf + fg + 15 )" (43)

where
BE = Gros — Grar(phys + Gr11) " Grao (44)
pe = Bg + B (45)

for matrices G' defined in (38)—(41).

Note that while the formulas look cumbersome, the only difficulty in
evaluating the equations is the necessity to calculate the gradients of function
of pdfs and also to be able to take expectations over this expression. We will
see that as we can easily generate sequences of xj and y, calculating the
expectations is relatively easy by Monte Carlo methods. However, calculating
gradients of logarithm of pdfs require an explicit representation of the density
and we will deal with it with methods presented in Section 2.7.

2.7 Kernel density estimation

The bounds on the performance described in Section 2.6 requires the value
of probability density function p(z+1|zx) and p(y|z), which also needs to be
differentiable. However, the simulation of the beehive is far too complex to
provide any analytic solution for the pdf, thus the only thing we can do is to
generate sequences of bee state (zj) and observations (yr), that is, sample
from the joint distribution.

We employ the technique known as kernel density estimation to provide
an estimate of the density function. For introduction, see Simonoff (1998,
p. 112). The basic idea is to sample many points from the distribution and
calculate the value of a pdf depending on how close it is to the points in
sample.

Specifically, if we sample real-valued vectors &1, Zs, - - ., T, from the dis-
tribution, then the estimate of probability density function is

— i Kl @ =) (46)

where

e K is the kernel function, providing some measure of similarity between
the data points. We will use

Ky(u) = [ ¢(w) (47)




for ¢ being the pdf of a univariate standard normal distribution. In case
datapoints are scalars, the kernel density estimate becomes a simple
mixture of Gaussians centred around the datapoints.

¢ H is the positive definite, symmetric matrix, called bandwidth matrix.
It changes the scale — that is, it tells how close the datapoints should
be in order for them to have significant effect on the result.

It is helpful to think of the case in a single dimension — then the sum-

h

T
mands are K ( >, and the bandwidth parameter naturally con-

trols the scale.

As noted, for the kernel we are going to use a simple product of standard
normal Gaussians. The choice of the kernel is arbitrary, but our choice is
motivated by the simplicity of this distribution and also the convention that
Gaussian is a preferred distribution in machine learning due to it being a
maximum entropy distribution with a given mean and variance.

Having made this choice, we can rewrite the estimate as a mixture of
multivariate Gaussians:

n

@) = 2> Cm) i e (<o 2) H - 2)) ()

For this to be used as an estimator, we just need to choose a matrix & , which
will be discussed in the Section 6 on applying this method for our project.

3 Modelling

In order to evaluate the tracking approaches, we need to acquire the training
and testing data and apply the general theory of both Gaussian Processes
and Hidden Markov models to our specific problem.

3.1 Hive simulator

In order to use machine learning and evaluate the results, it is required to
have large amounts of sample bee flight data. Unfortunately, the real bee
flight data was not available at the time of the project development, thus a
bee simulator was used instead. This has an advantage of readily generating
new paths for training and testing, thus eliminating the need to maintain
careful separation of test, training and validation datasets.

The bee flight simulator is taken from the beehive simulation developed by
Williams and De Souza Junior (2016) in Python with minor modifications. It

17



aims to model realistic flight paths by using extensive background knowledge
on the bees’ orientation in space.

The model simulates the habitat of bees in the South Eck catchment
region in north-eastern Tasmania. The space is discretised into spatial grid
consisting of 10 x 10 m grid cells and the simulation is implemented as a
discrete-time process, simulating a bee location every 3 seconds.

The flight paths are generated by two types of random processes (Lévy or
correlated random walks), as there is a debate over which approach is more
suitable for modelling animal foraging paths (Kawai and Petrovskii 2012).
We choose a correlated random walk model.

The simulator provides an extensive simulation of a beehive, including
passing the information about locations of the food sources by waggle dance
and different bee roles, thus producing realistic, unlimited training and test-
ing data. However, it also contributes to the limitations of the model, as
the maximum time granularity cannot be more that 3 seconds, the location
precision is limited to 10 meters and it depends on the assumption that bee
flight paths can be modelled as random walk of particular type.

3.2 Sensors simulation

To complete the simulation, we also need to simulate the ground sensor
observations. We expect these to be corrupted by noise in the real life, so
we add independent and identically distributed (iid) Gaussian noise to our
idealised signal strength samples.

We place 100 sensors in the equally-spaced grid formation in the 1.9 km
x1.9 km simulated field with the hive in the centre (this slight asymmetry
is chosen so that the hive, where a significant amount of time is spent, is in
range for some radar). The presumed range of the radar is simulated to be a
circle with radius of 100 meters. This decision is influenced by requirement
(R2): the number of sensors is limited and thus they are placed quite sparsely.

The procedure for generating an observation for a particular ground sta-
tion given the bee location is as follows: we determine the distance between
the bee and the station, calculate the signal strength, corrupt it by noise and
check if it is below a certain threshold — if so, we record an observation with
noisy signal strength, otherwise we say that no detection occurred.

The signal strength for each sensor is calculated following the simple free-
space model (Fujimoto, Riley, and Perumalla 2006, p. 31). Given its distance
to the bee d, the signal strength is:

d
—n10logy, <3-> + SaB (49)
0
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where:

® n is a path-loss exponent. It is chosen to be n = 2, same as vacuum
path-loss exponent, as hive is assumed to be located in the open field,
with no significant objects to obstruct the signal.

e dy is a reference distance (signal strength is calculated relative to strength
at this distance). A typical value, also chosen in this simulation, is
do =1m.

® Sgp is a zero-mean Gaussian (normal) random variable, Syg ~ A/ (0,8%).
The typical value for standard deviation § is in range from 3 to 12, de-
pending on the perceived noisiness of the environment (Fujimoto, Riley,
and Perumalla 2006, p. 31).

We conservatively choose a value of § = 8, for a pessimistic view on
how noisy the sensors in an open field might be to account for various
real-life inaccuracies not reflected in a model.

In the generated data, each testing datapoint is of two types: either it
consists of a location of a ground sensor which detected the bee accompanied
by the signal strength or it simply notes that the bee was not detected by
any radar (censored observation). Training datapoints in addition have a
true bee location.

The simulation is done in Python, and documentation generation tool
Sphinx is used to provide both code documentation and a high-level descrip-
tion of the code.

3.3 Gaussian processes

We use the theory described in Sections 2.3, 2.4 and 2.5 to model the bee
flight using a Gaussian process.

In the linear model of coregionalisation, we use three latent processes,
that is, @ = 3 in equation (25), meaning that predictions are a weighted
sum of three functions. As noted before, for the latent functions we are
using Matérn 3/2 kernels. The parameters are optimised using maximum
likelihood.

We implement the Gaussian processes prediction framework using GPy
library in Python, as it provides the framework for maximum likelihood op-
timisation and predictions.
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3.3.1 Optimisations

Given that our first task is to compare different machine learning approaches
based on accuracy, for now we are not too concerned with the prediction speed
or memory usage as long as the testing can be done in some reasonable time.

However, it is important to consider potential optimisations which would
be implemented in practice to consider their effect on accuracy and the design
of the framework.

One such concern is the different modes of prediction. For Gaussian
processes, smoothing (offline prediction with full knowledge of the data) is
the natural mode of operation, as all available data is simply added to the
model with appropriate timestamps, and subsequently we ask for predictions
at particular points.

However, filtering is not straightforward: we must deal with datapoints
coming one-by-one. Note that conditioning on more datapoints implies cal-
culation of an inverse of a matrix with all observations so far, as evident from
equation (13). For testing the accuracy, the simplest thing to do is, upon the
arrival of a new datapoint, to throw away all the information and recalculate
all parameters from scratch. This does not influence accuracy and is easy to
implement given the existing functions in GPy library.

However, we note that Osborne (2010, p. 83) provides a way to reuse the
computation of the Gaussian Process covariance matrix by using a Cholesky
decomposition. This would remove the bottleneck present in the current
implementation without any changes to the accuracy.

Another possible optimisation would be to model x and y coordinates
using two separate Gaussian processes. This would reduce the memory usage
during training stage, as both coordinates can be trained separately, thus
allowing to use more data, hopefully yielding better predictions.

More precisely, instead of formalising a Gaussian process as trying to
predict the function outputting a 5-tuple (as described in Section 2.4), we
consider a function with time as input:

fx (t) = <$beey Tradars 3) (50)

where s is, as before, signal strength, and Zpee, Zradar are bee true location
and radar x-coordinates, respectively.

However, this might influence the accuracy, thus we want to test if the
optimisation is worth the effort. We compare the approach of having two
separate Gaussian processes for z and y coordinates with having a single GP
for both coordinates. We train both models on same 30 minutes of bee flight,
and test them on another 30 minutes of bee flight in both smoothing and
filtering modes.
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Filtering RMSE (m) Smoothing RMSE (m)
Frequency Separate GPs Single GP Separate GPs Single GP

3s 180.5 118.5 124.5 71.5
6s 195.0 125.9 129.6 80.4
9s 233.6 168.9 150.7 105.7
125 228.3 144.2 146.6 92.3
15s 253.2 188.0 170.6 136.9
18 s 273.9 189.2 183.6 136.7
21 s 302.1 262.6 187.0 182.2
24 s 251.7 165.0 164.4 116.0

Table 1:  Root mean square error of bee location predictions, either in
filtering or smoothing modes. Separate GPs refer to the approach where
x-coordinate and y-coordinate are modelled by two separate Gaussian pro-
cesses, and Single GP refers to the situation where the location is modelled
as a single Gaussian process. Frequency is the delay between subsequent
observations.

The results can be seen in Table 1. Note that using separate GPs causes
a significant drop in accuracy. We conclude that it is better to model the
bee flight as a single function and we will use this approach for the rest of
the report.

3.3.2 Hyperparameters: Matrix size of the Gaussian processes

Another possible optimisation is limiting the number of considered past ob-
servations.

In the filtering problem (where datapoints come one-by-one), we only care
about the prediction of the most recent location of a bee. Since we are using
Matérn kernels, the prediction depends strongly on the recent observations
and the effect of observations far in the past is small. This is because Matérn
kernel value depends only on the distance of two datapoints (which, in our
case, in time difference) and this dependence is controlled by the lengthscale

parameter p.
K(d) = ¢* <1 + @) exp (-@) (51)

In the coregionalised model of Gaussian process we are using 3 Matérn
kernels, and the largest value of lengthscale parameter of p, estimated by
maximum likelihood, is 68 three-second intervals, corresponding to about 3
minutes of flight. Therefore, we conjecture that if we only input roughly the
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last 70 observations instead of full history, the decrease in accuracy should
be negligible.

Note that this is important for speed: as predictions requires inverting
the kernel matrix of the observations, reducing the number of most recent
points which the model takes into the account decreases the running time
significantly. Therefore, we seek to ascertain the effect of the number of
previous observations and test our conjecture empirically.

The results are outlined in Table 2. They suggest setting the history cutoft
value to about 70, as setting anything above makes no significant difference
on the accuracy while compromising the running time.

Most recent obs. RMSE mean (m) RMSE SD (m) Time (s)

S 166.32 4.24 21.88
10 131.89 4.73 24.56
20 128.52 5.41 27.16
30 127.34 5.07 33.55
40 127.20 4.65 35.10
a0 127.30 4.57 40.73
60 127.29 4.59 45.71
70 127.26 4.60 54.07
80 127.25 4.61 58.46
90 127.25 4.61 70.06
100 127.25 4.61 81.36
200 127.25 4.61 167.29

Table 2: Comparison of the root mean square error depending of the history
size. The SD stands for standard deviation, as the results are obtained by
averaging over 10 samples, each predicting 30 minutes of bee flight. The time
denotes the average time taken per each sample.

We have developed the Gaussian process framework for prediction and
selected the relevant optimisations which reduce the prediction time and
memory costs without significantly affecting the accuracy. Now we turn our
attention to the Hidden Markov model approach, and compare the perfor-
mance of both approaches in Section 4.

3.4 Hidden Markov model

We implement the Hidden Markov models following the basic definitions in
Section 2.1.

The algorithm is easy enough to be implemented from scratch, so we
choose not to use any specific libraries for hidden Markov models, giving us
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the freedom to optimise all parts of the process, easily employ multithreading
and optimise for our particular setting.

The project is mostly implemented in Python, which is generally slower
than compiled languages. Thus, for HMMs, we use C++, which allows us to
compile the code for a particular architecture. In addition, we gain a fine-
grained control over the concurrency management. Both of these benefits
contribute to significant speed gains.

3.4.1 Optimisation: convolutional approach

To improve the model, we will perform some domain-specific simplifications.
The method to estimate the transition matrix directly is well-known, de-
scribed, for example, by Ghahramani (2002). While the second optimisation
— to limit the considered states in the inference step — is simple and was used,
for instance, by Shih, Renuka, and Rose (2015), our contributions include ap-
plying this technique to the spatial domain by using domain-knowledge, thus
enabling the efficient implementation of the first simplification.

First we note that, unlike in a general setting, we can directly observe the
latent state during training, as we know the true bee location. Therefore, we
can estimate the parameters of transition matrix A (defined in equation (3))
directly by checking the number of empirical transitions between the states.

Furthermore, we employ a convolutional approach: as the hidden states
represent a discretised grid (with natural order), and the top speed of a bee
Is limited, we know that transitions are only possible to “neighbour” states
~ the bee cannot transition from any state to any other, as for example, it
is unrealistic to model a bee flying through the whole map in a single time
step.

Implementing the original version of hidden Markov model would require
calculating O(N?) operations for each timestep, where NV is the number of
states in the model. Since the number of states depends quadratically on the
cells per x or y coordinate, the path estimation (Viterbi algorithm) becomes
prohibitively expensive. Moreover, as we will infer A using the sample flights,
estimating the transition probabilities of the states far away from the centre
would require a large amount of data, as flights are naturally centred around
the hive.

The convolutional approach alleviates both of these problems. In this
approach, we assume that the transition probability depends only on the
difference between locations, not on the absolute position on the map. More
precisely, we will assume that

p(z = (z+ Az, y + Ay)|zi—1 = (z,y)) (52)
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is the same for all z,y. Now estimation becomes easy, as we simply generate n
datapoints for bee flight path (z1,91), - - - (€, yn) and estimate the transition
probabilities by a proportion of such transitions in the training data:

I(z;—zi1 = AzAY;—Yi-1 = Ay)

(53)

This helps us in two ways: firstly, by inspecting the transition matrix, we
can find out that transitions are possible to only a few neighbouring cells —
this will dramatically decrease the running speed, as now it is only O(Nk)
per each timestep (where k is the number of states it is possible to transition
in a single step).

Furthermore, the estimation of the transition matrix becomes feasible,
as number of estimation parameter decreases from O(N?) to O(k) and we
no longer have a problem of having few observations for distant parts of the
map.

Combined together, these optimisations provide considerable reductions
in running time and memory usage and mitigate the sparsity problem, mak-
ing learning feasible.

p(z = (z+Az, y+AY) |21 = (T,Y) =

3=

n
1=2

3.4.2 Hyperparameters: grid size

In order to fully specify the Hidden Markov model, we must determine the
values of hyperparameters. In this case, there is only one: the size of map
grid. In discretisation, we have to choose the size of cells — as they are square,
it is enough to choose the length of its side.

This has dramatic implications for the running time: denoting cell side
length as 6, each timestep takes O(Nk) time, where both the number of
states N o 1/62 and neighbouring cells k oc 1/6* depend on 6. This shows
that running time has 1/§* dependency, thus even small increase in o allows
to significantly reduce the running time.

To ascertain if we can do so without losing accuracy, we employ a grid
search over §, with a sample size of 30 min of honey bee flight (with datapoints
every 3 seconds), averaged over 50 such samples.

Results of the simulation are shown, in detail, in Table 3 and plotted
(without running time) in Figure 1. The data implies that the accuracy is
almost identical for small values of cell size (10-20 m), while the running
time drops dramatically while choosing the slightly larger value. Motivated
by this, we will generally set the value of § = 20 m in subsequent exploration
of model behaviour.
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Cell size (m) RMSE mean (m) RMSE SD (m) Time (s)

5 64.31 13.16 85.5
10 56.84 9.69 9.6
15 56.18 3.47 3.3
20 94.06 5.56 1.8
25 56.42 5.19 1.2
30 08.18 8.72 0.9
35 61.09 11.24 0.7
40 62.35 5.62 0.6
45 62.30 6.82 0.5
50 68.84 7.04 0.5
95 62.97 10.76 0.5
60 62.78 8.49 0.4
65 73.16 9.93 0.4
70 50.08 13.91 0.4
75 51.59 14.35 0.4
80 83.77 13.12 0.4
85 72.58 5.27 0.4
90 61.55 7.33 0.4
95 74.10 17.87 0.4
100 105.25 5.66 0.4

Table 3: Accuracy (root mean square) depending on cell size of the discreti-
sation grid. SD stands for standard deviation, time marks the total time for
predictions with the given cell size.

3.4.3 Censored observations

As the observations come at precise and known times, we still get some
information even if no ground radar detected the bee — specifically, bee is
more likely to be in areas not covered by any radar. Such a missing but
informative observation is called a censored observation.

Note that it is difficult to incorporate information from censored observa-
tions to Gaussian processes framework. However, for Hidden Markov models
this requires only a slight change of likelihood calculations.

To include the information from the censored observations in our model,
for all cells on the discretised map we must compute the likelihood of bee
being in that location and avoiding detection from all ground sensors. Since
we have assumed that the noise is independent for all the sensors, we can
calculate the likelihood by calculating it separately for all ground radars and
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Figure 1: Box plot of root mean square error in meters, depending on the cho-
sen cell side length. Whiskers are of 1.5 interquantile length, with datapoints
beyond treated as outliers.

multiplying it together:

P({bee avoids detection}) = [ [ P({bee avoids detection from i-th sensor})

=1
(54)
Given the bee and i-th ground sensor locations, we can use equation (49)
to determine the signal strength s; in a noiseless environment.
As our noise is Gaussian and additive,

P({bee avoids detection from i-th sensor}) = P(s; + € > T) (55)

where r represents a maximal range of a ground radar and € ~ N(0,02).

Knowing the range of the radar allows us to easily evaluate equation (55)
and thus (54). Once we are able to compute the likelihoods for arbitrary
locations, the rest of the algorithm remains the same. Further, calculation of
these probabilities does not require any data and thus can be precomputed
before the prediction stage to improve the running speed.
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4 Comparison of the performance

To evaluate the performance of Hidden Markov models and Gaussian pro-
cess approaches, we compare them on both filtering mode (where the data, is
coming datapoint-by-datapoint and bee’s most recent location must be pre-
dicted) and smoothing mode (where the full flight path is predicted, given
all observations at once).

For comparison, we also use two baselines: “Always-0” baseline predicts
that the bee is always in the hive; “Radar baseline” takes the last 10 ground
station locations from observations and averages them to generate a predic-
tion.

By the requirement (R1) we aim to conserve power and thus send the
radio beacon signal as infrequently as possible. To this end, we evaluate the
performance of both models with observations coming at different frequen-
cies (with different delays between consecutive observations). The results are
averaged over 10 samples, with each sample consisting of 300 datapoints (for
observations every 3 seconds, this is 15 minutes of flight, while for observa-
tions every 24 seconds, this corresponds to the flight duration of 2 hours).
About 1.8% of datapoints are missing (censored). However, only HMMs use
information from censored observations.

Frequency HMM RMSE (m) GP RMSE (m) Always-0 baseline Radar baseline

3s 98.1 £ 15.1 126.3 + 9.1 291.0 + 198.1 203.2 £ 99.4
6s 106.7 £ 19.4 155.7 £ 11.1 296.7 £+ 128.6 258.7 4+ 98.1
9s 1274 4+ 274 176.2 £ 11.2 254.9 £ 119.4 231.3 £ 974
12s 131.4 £ 30.5 1945 £ 7.3 263.6 = 95.9 249.8 + 87.3
15s 158.3 £ 31.0 202.7+ 7.1 241.0 £ 86.6 230.5 £ 79.6
18s 158.0 + 31.8 209.8 £+ 10.2 2475 £ 76.8 237.1 £ 70.9
21s 183.4 + 27.6 223.3 + 12.9 2489 £ 69.6 240.1 + 634
24 s 182.5 £ 29.1 233.4 + 10.1 276.8 + 49.6 265.6 £+ 45.2

Table 4: Online prediction mode evaluation. T
is written as a mean, with standard deviatio
1s root mean square error of always predicting that
“Radar baseline” is the root mean square error of always

(RMSE)
The baseline “Always-0”
bee is at the hive.

predicting the average of 10 last radar locations.

he root mean square error
n given after a =+ sign.

The results for online prediction mode (for datapoints coming one-by-one)

are detailed in Table 4. It seems that hidden Markov models outperforms

the Gaussian process approach at all fre
baselines.
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The results for offline predictions are detailed in Table 5. This task is
evidently easier, as the root mean square error is significantly lower than in
the online prediction mode. The Hidden Markov model approach seems to
be superior to the Gaussian processes approach also in this case.

Frequency HMM RMSE (m) GP RMSE (m) Always-0 baseline Radar baseline

3s 63.3 + 11.9 78.6 = 8.7 291.0 4 198.1 203.2 £ 99.4
6s 64.9 + 12.5 100.5 £ 11.1 296.7 £ 128.6 258.7 4+ 98.1
9s 83.8 £ 15.9 120.5 £+ 10.6 254.9 £+ 119.4 231.3 £ 97.4
12's 94.4 £ 22.2 131.0 £ 8.1 263.6 £ 95.9 249.8 + 87.3
15s 114.4 £ 19.5 139.8 £ 6.5 241.0 £ 86.6 230.5 £ 79.6
18's 114.6 + 22.5 147.1 4+ 14.2 2475 £ 76.8 237.1 £ 70.9
21 s 136.7 &= 24.8 156.7 £+ 12.0 2489 £ 69.6 240.1 + 63.4
24 s 137.7 £ 22.9 169.0 + 11.5 276.8 = 49.6 265.6 £ 45.2

Table 5: Offline prediction mode evaluation. The root mean square error
(RMSE) is written as a mean, with standard deviation given after a = sign.
The baseline “Always-0" is the root mean square error of always predicting
that bee is at the hive. “Radar baseline” is the root mean square error of
always predicting the average of 10 last radar locations.

As Hidden Markov model approach outperforms the Gaussian processes
in both offline and online predictions and presents no significant downsides
except for inability to quantify uncertainty (provide variance estimate), we
choose to use Hidden Markov models for our prototype bee tracking software
implementation.

One hypothesis for the Hidden Markov models superiority is the dis-
crete nature of observations. While the underlying bee trajectory is better
modelled by continuous Gaussian Processes, the ground sensor locations are
fixed and thus can be thought as discrete: this is possibly better modelled by
HMMs. Also, HMMs allow specifying the precise relationship between obser-
vations and bee location, while Gaussian Processes must learn this from the
data. In addition, only HMMs can gain information from censored observa-
tions. We speculate that the combination of these factors results in better
performance for HMMs.

5 Implementation of tracking software

We have created a prototype bee tracker which is ready to be deployed
in the field, features a intuitive visualisation of predicted bee paths and is
lightweight enough to track hundreds of bees simultaneously.
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The bee tracker is built on top of the existing system created by Prof. Alex
Rogers. Our contributions include optimised prediction engine, visualisation
of the predictions and communication between these parts via RedisDB and
MongoDB.

9.1 Existing system
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Figure 2: Diagram of bee tracker software components. Our contributions
(marked in solid black) include a prediction module and changes to the UI
running in browser to display a path prediction.

Prof. Alex Rogers has implemented the basic framework of the bee tracker
software, consisting of the server for communication with the ground stations
via USB, main web server in Node.js and website displaying the map and
ground sensor updates using JavaScript (see Figure 2).

The system consists of several components, communicating via RedisDB
messages and using MongoDB for persistent storage. The ground station
data is retrieved via USB HID and written to the persistent MongoDB
database, also generating the RedisDB publisher / subscriber message. This
allows web server to wait for updates and send the messages indicating the
arrival of new information via WebSockets to the browser. The user front
end, implemented in JavaScript, retrieves the data via conventional HTTP
requests. The user interface consists of a map indicating the location of
deployed ground stations (rendered in Google Maps) and highlighting of sta-
tions which have just received an observation.

We will build on top of the existing framework, aiming to preserve mod-
ularity and thus communicating only via RedisDB and MongoDB databases.
Furthermore, we will enhance the user interface to conveniently display the
bee flight path.
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5.2 Our contributions
5.2.1 Predictions module

We develop a module which, upon receiving a RedisDB message, retrieves
the information about ground station observations, predicts the flight path,
writes it to the MongoDB and informs the rest of the system via RedisDB
message that new prediction paths are available.

The module is written in C++, following the considerations outlined in
Hidden Markov models design (Section 3.4). Specifically, C++ offers the
ability to produce highly optimised, natively compiled code yielding fast
predictions. Also, C++ allows to use low-level concurrency primitives which
let us devise a module running on several threads with minimal overheads.

The in-depth documentation of the code is provided using Doxygen. The
documentation has been transformed into Sphinx format using Breathe plu-
gin. This allows generating a single document for both the sample flight
generator and predictions documentation.

Figure 3: Abstract scheme of prediction engine implementation.

The communication is done through the RedisDB which supports pub-
lisher / subscriber mechanism. This avoids the need to check for new data
periodically, instead allowing the threads to idle until a new message is pub-
lished and all subscribers are informed of the message. The event driven
approach offers the benefit of avoiding event loops which would waste re-
sources idling and also allows processing with minimal latency.
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Firstly, one distinct thread (“producer”) subscribes itself to the RedisDB
publisher / subscriber channel, thus receiving the messages about new ob-
servations (see Figure 3). If the thread receives g message about a new data
point, it connects to the MongoDB database and retrieves unprocessed ob-
servations. Then it groups the updates by the bee which is being tracked
and pushes new datapoints to the task pool.

Meanwhile, the worker threads are idling until they find a new task in
the task pool. Upon receiving a request to update the specific bee with the
given datapoints, the worker thread converts coordinates from latitude and
longitude to coordinates relative to the placement of radars and pushes the
observations to Viterbi algorithm class. Once it receives a prediction, it con-
verts it back to latitude and longitude format and writes the newly predicted
path to the MongoDB database. Finally, once all the worker threads have
processed the information, the “producer” thread publishes a single RedisDB
message to inform the rest of the system about the predicted paths.

The Viterbi algorithm class implements the algorithm developed in Sec-
tion 3.4, using dynamic programming. We also use multithreading here,
noting that the dynamic programming amounts to filling a table for each
timestep, but each cell in this table depends only on the previous timesteps
and thus can be computed concurrently. More precisely, as evident from
equation 6, the values of 6;(j) depends only on &;_1(z) for some indices 3.
We use a barrier as a concurrency management primitive, forcing threads to
synchronise at each timestep. This ensures that previous timestep data is
always computed whenever needed.

We use multithreading in two ways: if we have more bees than threads,
it pays off to use the thread pool to predict different bees concurrently. On
the other hand, if we have more threads than bees, it is beneficial to use
parallelism in the path prediction for s single bee (with barriers), as otherwise
some threads would be idling and thus wasting computing power.

As intended, this module follows the paradigm of storing persistent data
(predicted paths) in MongoDB and sending status messages via RedisDB.
This allows the module to be written in C++ while the rest of the system is
not, as narrow interface ensures compatibility. The module provides highly
optimised predictions engine acting on addition of new data with minimal
latency.

5.2.2 User interface

We enhance the existing front end interface by plotting the predicted most
likely path on the map for each bee.
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The path is drawn on the map using Google Maps API for drawing poly-
gons, allowing swift updates, as graphics are rendered in the browser.
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Figure 4: The user interface. The screenshot shows two bees, denoted by red
and blue. Bright colours indicate recent observations, faded colours represent

older ones.

The path is displayed either as continuous line or, to better visualise un-
certainty, as fading blocks. We note that our prediction engine discretises
the map into a grid, thus inherently cannot provide better estimates than
the grid cell — we can visualise this uncertainty by highlighting the whole
block. Recent predictions are represented by opaque blocks, the older pre-
dictions are visualised by faded colour, thus giving intuitive feeling of time
and uncertainty. Path of different bees are displayed using different colours.

The screenshot of a user interface can be seen in Figure 4.
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9.3 Optimisations

Our goal is to support the tracking of the bees for an unlimited amount
of time. However, in the naive version of Viterbi algorithm, we need to
keep a dynamic programming table (consisting of probabilities for every cell
in discretised map grid) for each timestep. This means that the memory
requirements are growing linearly with each added observation.

To alleviate this problem, we observe that adding a new observation has
a tiny effect for predictions far in the past. Therefore, we will keep dynamic
tables only for some recent observations and regard the distant past as fixed,
meaning that we will only keep the most likely path for old data.

To empirically test whether this observation is sound, we sample some
flights and see how many past predictions change upon adding a new dat-
apoint. The longest path which changed was of length 72 with sample size
n = 8399, with average change of 2.9 predictions in the past with standard
deviation of +5.6.

This suggests that we can keep only the most likely paths for predictions
older that roughly 100 datapoints. To accommodate this behaviour in the
prediction engine, we use a fixed size queue to save dynamic tables. Once
we are out of memory locations in the queue, we compute the most likely
path through the array (backwards pass in Viterbi algorithm), save it and
evict 10% of the oldest dynamic tables from the memory. This keeps the
memory costs bounded. Eviction of a percentage of all entries in the queue
avoids expensive backward pass for each timestep while still leaving the queue
useful.

Predictions only using the recent history allow us to keep the memory
costs bounded and also decreases the computation time per datapoint (and
makes it bounded), as backwards pass through the dynamic tables in the
queue takes a fixed number of steps.

5.4 Results

We test the implementation on the simulated data generated by bee flight
simulator described in Section 3.1 and Section 3.9. This reveals that sim-
ulation, running on a laptop with 4 cores of 1.80GHz CPUs, takes about
0.019 seconds (standard deviation 0.0039 seconds) to process an single ob-
servation for a single bee, with memory requirements about 13 MB per bee.
On the same hardware, the bee tracking software easily handles tracking of
200 simultaneously.

This test suggests that the prototype software matches the requirements
(R3) and (R4), implementing precise and efficient tracking of large number
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of bees with intuitive visualisation and is ready to be deployed in the real
life.

6 Bayesian Cramér-Rao bounds

Following the requirement (R5), we aim to place a theoretical bound on the
accuracy of predictions. To this end, we employ the Bayesian Cramér-Rao
bounds from Section 2.6. Recall that the bounds are mostly straightforward
to compute, except for the fact that they require an explicit form of proba-
bility density functions. As described in the Section 2.7, we can estimate it
using kernel density estimation.

The theoretical bound will depend on the simplifying assumption that
the bee path is following the state space model. That is, the next true bee
location (at the time of the observation) depends solely on the bee location
at the time of the previous observation.

Obviously, almost certainly this assumption is not valid, but we argue
that it is a sensible simplifying assumption to make for our purposes. One
reason for this simplification is necessity: we have no hope of analytically
analysing the full beehive simulation. Furthermore, the theory on Bayesian
Cramér-Rao bounds is only sufficiently developed to be tractable under this
assumption. Finally, we argue that since our model makes the same as-
sumption (Markovian assumption in the hidden Markov models), it is a fair
simplification for the theoretical bounds on the performance of our model.

Furthermore, since the estimate of the probability density function de-
pends on the sample from which it is inferred, the bound will also depend on
the sample and be probabilistic in nature. We will use a shortest possible,
3 second delay between observations to provide a lower bound on all other
frequencies.

To choose a suitable bandwidth matrix for kernel density estimation,
we will follow the conclusions of Wand and Jones (1993) and consider only
diagonal matrices. More precisely, for simplicity, we are going to use H =
diag(hi, ha, . - . ,hg), a square matrix having value H; = h; and Hy; = 0 if
R

We select the best values for ki, ... h, by leave-one-out cross-validation
with maximum likelihood (Silverman 1986, p. 53). In each round, we take
aside a single datapoint, and compute the likelihood for all the remaining
datapoints. If we denote the likelihood for all datapoints z1, . .. Tn, €xcept T;
by f_;, then we seek to minimise the cross-validation objective:

OV (H) = =3 log f-i(a) (56)
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This is implemented in Python statistical package statsmodels.
Having estimated the bandwidth H , 1t is not difficult to calculate the
gradients using (48):

Ve logp(x) =

n

npiw) > (o)A e (—%(w — )T H (- mi)) H Y (z—a)
(57)

Using log p(z, y) = log p(ylz) —logp(z), we are able to calculate all matrices

G11, Gaa, Goai, Gaz required by (38)*(41)-

Furthermore, we make use of the Monte Carlo simulation for calculation

1

of the expectations, namely sampling m datapoints (z;,y;), ..., (Zn, Yn),
and using
1 & ‘
Eh(z,y)] = — > h(zs, y;) (58)
mis

for any function A, as required by calculation of Gy, G12, Ga1, Gos.

We implement the procedure in Python and run the bandwidth matrix
selection and Monte Carlo simulation with the datapoints coming each 3
seconds. This leads to the root mean square error for filtering of 13.2 m with
a standard deviation 1.7 m. For smoothing, the root mean square error is
11.2 m with a standard deviation of 1.5 m.

This is significantly better that the best results achieved with HMMs:
98.1£15.1 m for filtering and 63.34+11.9 m for smoothing (standard deviation
after = sign). Note that results for Hidden Markov models feature a rather
large variance, thus the average is bound to be significantly larger that the
lower bound. Also, lower bound is inexact due to various approximation
detailed above. However, the results suggest that hidden Markov models do
not have optimal accuracy while being acceptably close to it.

7 Conclusions

7.1 Summary

The project has achieved the desired goals outlined in the project descrip-
tion: we have researched and empirically compared different machine learn-
ing approaches and implemented a prototype bee tracking software, alongside
providing theoretical bounds.

A biologically sound model of the bee flight has been adapted and aug-
mented with the simulation of the ground sensors, serving as a generator for
training and testing data.
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We have cast the prediction problem as coregionalised regression model
for Gaussian processes, predicting each component of a multi-output function
as a weighted sum of latent functions. This approach gives us flexibility to
easily deal with missing data while learning the correlations between radar
observations and bee locations. Preemptively we have considered the optimi-
sations and their effect on accuracy: the optimisations include tricks to avoid
computationally expensive matrix recalculation and limiting the history size.
For the latter, we empirically selected the best hyperparameters.

For hidden Markov models, the problem was cast as an inference of a hid-
den state (bee location) from observations, achieved by discretising the map
to a grid. We select the hyperparameter empirically and perform domain-
specific simplifications without affecting accuracy, using knowledge that the
states have a natural spatial correspondence.

We have compared the performance of both models on the same data,
using root mean square €rTor as a criterion. In both filtering and smoothing,
for all delays between subsequent observations, hidden Markov model out-
performed the Gaussian processes, thus it was selected to be implemented in
a prototype tracking software.

Further, to evaluate how our models performs compared to theoretical
limit, we sought to calculate the lower bounds on the accuracy for predicting
the bee location. To this end, we have calculated the Bayesian Cramér-
Rao bounds for smoothing and tracking problems. This required several
simplifications to our model: firstly, we assumed that the bee location evolves
as a space state model, that is, current state depends only on the previous
state. Also, we estimated the probability density functions by kernel density
estimation techniques.

Finally, we have implemented the hidden Markov model approach in a
prototype bee tracker software. Building on top of the skeleton implemen-
tation provided by Prof. Alex Rogers, we have added a prediction engine
and user-friendly visualisation of predictions. The prediction engine uses
compiled C++ code and multithreading to ensure high performance, while
narrow interfaces via RedisDB and MongoDB keeps the code modularised
and extensible. User interface displays the bee paths in an intuitive way,
allowing visualisation of multiple bees simultaneously.

The software is optimised using an observation that only the recent ob-
servations affect the current prediction, ensuring the constant memory usage
and time for prediction, thus allowing tracking for unlimited time. The test-
ing indicates that software is lightweight enough to be able to handle tracking
of 200 bees at the same time even on relatively low-resource machine.

The full system, including real hardware, will be demonstrated at Syn-
genta, Jealott’s Hill International Research Centre in the summer of 2017.

36




7.2 Reflections

The lessons learnt from this project include both practical machine learning
approaches (including considerations for their deployment) and the bounds
studied in the field of computational learning theory.

In addition to the theory and techniques outlined in the report, the project
was also educational about the general modelling process. All modules were
first built in Python and, afterwards, performance-critical parts were re-
implemented in C++. While this approach proved to be largely successful,
allowing rapid design and exploration of the data and models, quick pro-
totyping diminished the reusability of the code — inflexible code for flight
simulation caused a refactoring of a sizeable portion of the codebase. An
advice for similar projects would be to pay attention to good OOP practices
even in the modelling stage to reduce development time.

7.3 Limitations

Notably, the project has certain limitations. Firstly, as we did not have
access to the real-life data, both training and testing was performed on the
data generated by a beehive simulator. While the simulation is theoretically
sound, it is unknown how well would the mode] perform in practice.

Further, the hive simulation discretises the map, thus limiting the ac-
curacy to the size of the cell. While the root mean square error for both
approaches appears to be too high for this discretisation step to make any
substantial difference, it was not empirically tested.

In addition, in our sensor simulation we relied on the simple model of noise
for observations’ signal strength, adding white Gaussian noise. Crucially, we
did not have access to the characteristics of the sensors to be used for bee
tracking, thus we have provided our best pessimistic guess about the expected
noise values.

All of these factors might contribute to a different behaviour of the model
in the real life, increasing or decreasing accuracy. Furthermore, to make
the computation feasible, we were forced to make an Markovian assumption
for Bayesian Cramér-Rao bounds and also estimate the probability density
functions by kernel density estimation and Monte Carlo methods. All of
these simplifications contribute to Inaccuracy and probabilistic nature of the
lower bound.
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7.4 Extensions of the project

Possible additions to the project include testing with the real life data. The
prototype can be deployed in the field for prediction of real bees’ movements
to test the usefulness of the bee tracking software.

Further, to resolve the problem of providing a guess for the noise values
and ranges of radars, we could consider comparing GPS data with the radar
observations. One possibility would be to carry beacons while walking or use
a drone to move the bee sensor in the field with placed ground radars while
tracking the actual position of the sensor with the GPS. This would allow to
infer the operational characteristics of radars and beacons.

A related extension would be to collect and use real bee flight data for
both learning and testing, alleviating the concerns that results might differ
in real life situations.

From the modelling perspective, different kernel functions could be tested
in the Gaussian processes approach, as the choice of covariance matrix cal-
culation may have a significant effect on accuracy.

From the theoretical standpoint, it would be useful to consider the ways
to remove Markovian assumption from the Bayesian Cramér-Rao bounds
computation, alleviating the concerns for inaccuracy. Further, other types of
similar bounds could be used, such as Bhattacharyya, Bobrovsky-Zakai or
Weiss-Weinstein lower bounds, as noted by Reece and Nicholson (2005).
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