
Programming Research Group

A REFLECTIVE FUNCTIONAL LANGUAGE FOR
HARDWARE DESIGN AND THEOREM PROVING

Jim Grundy, Intel Corporation
Tom Melham, Oxford University
John O’Leary, Intel Corporation

PRG-RR-03-16

�
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD

A Reflective Functional Language for
Hardware Design and Theorem Proving

Jim Grundy1 Tom Melham2 John O’Leary1

Abstract

This paper introduces reFLect, a functional programming language with re-
flection features intended for applications in hardware design and verifica-
tion. The reFLect language is strongly typed and similar to ML, but has
quotation and antiquotation constructs. These may be used to construct
and decompose expressions in the reFLect language itself. The paper moti-
vates and presents the syntax and type system of this language, which brings
together a new combination of pattern-matching and reflection features tar-
geted specifically at our application domain. It also gives an operational
semantics based on a new use of contexts as expression constructors, and it
presents a scheme for compiling reFLect programs into the λ-calculus using
the same context mechanism.

1 Introduction

In this paper we describe reFLect, a new programming language for applications
in hardware design and verification. The reFLect language is strongly typed and
similar to ML [11], but has quotation and antiquotation constructs. These may
be used to construct and decompose expressions in the reFLect language itself and
provide a form of reflection, similar to that in LISP but in a typed setting. The
design of reFLect draws on the experience of applying an earlier reflective functional
language called FL [1] to large-scale verification problems at Intel [13, 14, 15].

Hardware designs are modeled as reFLect programs. As with similar work based
on Haskell [5, 19] or LISP [12, 16], a key capability is simulation of hardware models
by executing functional programs. In reFLect, however, we also wish to do various
operations on the abstract syntax of models written in the language—for example
circuit design transformations [27]. Moreover, we want the reFLect language to
form the core of a typed higher-order logic for specifying and verifying hardware
properties [9, 20], and simultaneously the implementation language of a theorem
prover for this logic.

1Strategic CAD Labs, Intel Corporation, JF4-211, 5200 NE Elam Young Parkway, Hillsboro,
OR 97124, USA. {jgrundy,joleary}@ichips.intel.com

2Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD,
England. Tom.Melham@comlab.ox.ac.uk

1

Formal reasoning about hardware is performed using the Forte tool [13], which
was originally designed around FL but now uses reFLect. Forte includes a theo-
rem prover of similar design to the HOL system [10]. In such systems the object
language is embedded as a data-type in the meta-language. Representing object-
language expressions as a data-type makes implementing the various term analysis
and transformation functions required by a theorem prover straightforward. But
separating the object-language and meta-language causes duplication and ineffi-
ciency. Theorem provers like HOL, for example, include special code for efficient
execution of object-language expressions [4].

In reFLect we have made the data-structure used by the underlying language
implementation to represent syntax trees available as a data-type within the lan-
guage itself. Functions on that data-structure, like evaluation, are also made avail-
able. Our aim was to retain all the term inspection and manipulation abilities of
the conventional theorem prover approach while borrowing an efficient execution
mechanism from the meta-language implementation.

The logic of HOL-like systems is constructed following the model of Church’s
formulation of simple type theory [6], in which higher-order logic is defined on top of
the λ-calculus. Our theorem prover follows this approach and constructs a variant
of higher-order logic on top of the reFLect language. The reduction rules for the
language in this paper are among the inference rules in our higher-order logic.

The applications just described give intensional analysis a primary role in
reFLect. The design of our language is therefore different from staged functional
languages like MetaML [30] and Template Haskell [25], which are aimed more at
program generation and the control and optimization of evaluation. The reFLect

language also provides a native pattern matching mechanism designed to make it
easy to analyze the structure of code (and logical formulas).

In the sections that follow, we describe reFLect by presenting extensions to the
λ-calculus that implement its key features. We first present the syntax and type
system, and then give an operational semantics of evaluation. We conclude by
presenting a scheme for compiling reFLect programs into the λ-calculus. This com-
pilation scheme forms the basis of the reFLect implementation used at Intel.

2 Examples

The reFLect language augments λ-calculus with a form of quotation, written by
enclosing an expression between ‘〈〈’ and ‘〉〉’. The denotation of a quoted expression
is its own abstract syntax. There is also an antiquotation mechanism, written by
prefixing an expression with ‘̂ ’, that escapes the effect of a quotation.

Quotation and antiquotation may also be used for pattern matching. For exam-
ple, in theorem proving systems like HOL there are ML functions for constructing

2

and destructing function applications in the object language. In reFLect analogous
functions can be implemented for constructing and destructing quoted reFLect ap-
plications as follows:

let make apply = λf .λx. 〈〈̂ f ·̂ x〉〉
let dest apply = λ〈〈̂ f ·̂ x〉〉. (f, x)

A more complex example is the reFLect function below, which traverses a quoted
reFLect expression and commutes the arguments of any addition.

letrec comm = λ〈〈̂ x+ ŷ〉〉. 〈〈̂ (comm·y) + (̂comm·x)〉〉
||| λ〈〈̂ f ·̂ x〉〉. 〈〈̂ (comm·f)·̂ (comm·x)〉〉
||| λ〈〈λ̂ p. b̂〉〉. 〈〈λ̂ p. (̂comm·b)〉〉
||| λ〈〈λ̂ p. b̂ ||| â〉〉. 〈〈λ̂ p. (̂comm·b) ||| (̂comm·a)〉〉
||| λx.x

For example, the application comm·〈〈λx.m ∗ x+ c〉〉 evaluates to 〈〈λx. c+m ∗ x〉〉.

3 Syntax

The syntax of reFLect is similar to that of the typed λ-calculus, but with function
abstraction constructed over general patterns, rather than just variables, and with
primitive syntax for quotations and anti-quotations.

3.1 Types

The reFLect language is simply typed in the Hindley-Milner style, like ML. A type
may be a type variable, written with a lower-case letter from the start of the Greek
alphabet: α, β, etc.; or a compound type, made up of a type operator applied
to a list of argument types. We use lower-case letters from the end of the Greek
alphabet, σ, τ , etc., for syntactic meta-variables ranging over types. Type operators
are usually written post-fix, but certain binary type operators, such as → and ×,
are written infix. Atomic types, like int and bool, are considered to be zero-ary type
operators applied to empty lists of arguments. The reFLect type system contains one
interesting atomic type: term, the type of a quoted reFLect expression. Figure 1
shows the syntax of the reFLect type system assuming a syntactic class of type
operator symbols, written c.

We assume the existence of a meta-linguistic function vars from types to the sets
of type variables that occur in them. We also apply vars to sets of types, implicitly
taking the union of their sets of variables. Figure 2 defines the function vars.

3

σ, τ, . . . : : = α | β | γ | . . . – A type variable
| (σ1, . . . σn)c – A compound type

Figure 1: The Syntax of Types

vars α = {α}
vars(σ1, . . . σn)c = vars σ1 ∪ . . . vars σn

Figure 2: The Type Variables of a Type

3.1.1 Type Instantiation

A type instantiation is a mapping from type variables to types that is the identity
on all but finitely many arguments. We use the meta-variables φ and χ to stand
for type instantiations. We will write dom φ for the domain of φ, meaning the set
of variables for which φ is not the identity. If dom φ = {α1, . . . αn} and φ αi = σi

for 1 ≤ i ≤ n, then we sometimes write φ as [σ1, . . . σn/α1, . . . αn].
Every type instantiation induces a map from types to types. For any type σ

and instantiation φ we will write σφ for the result of applying the map induced by φ
to σ. The induced map is described in Figure 3.

3.2 Expressions

The syntax of reFLect expressions, shown in Figure 4, is an extension of the syntax
of the λ-calculus. Uppercase letters from the middle of the Greek alphabet, Λ,
M, etc., range over expressions. We assume the existence of syntactic classes of
constant names and variable names, ranged over by k and v respectively. For
clarity of presentation, we will write constants such as +, ∗, ∨ and , (pairing) in infix
position. The syntax requires explicit type annotations for constants, variables, and
antiquotations. For example, v◦◦σ is a variable with name v and type σ. We may
omit type annotations when the type is easily inferred.

Several extensions over the simple λ-calculus are apparent from the grammar.

αφ = φ α
(σ1, . . . σn)cφ = (σ1φ, . . . σnφ)c

Figure 3: Type Instantiation

4

Λ,M, . . . : : = k◦◦σ – Constant
| v◦◦σ – Variable
| λΛ. M – Abstraction
| λΛ. M ||| N – Alternation
| Λ·M – Application
| 〈〈Λ〉〉 – Quotation
| Λ̂◦

◦σ – Antiquotation

Figure 4: The Syntax of Expressions

These are discussed below.

3.2.1 Constants

Constants are not theoretically necessary in a presentation of the λ-calculus and are
therefore often omitted. They are, however, important in any practical logic and
so we include them here. Constants also play a special role in reFLect by facilitating
a restricted form of polymorphism.

A practical functional language would normally be based on an extension of the
λ-calculus with a polymorphic local let construct. However, simple type-theories
based on such extended λ-calculi exhibit Girard’s Paradox [7]. Since we use the
reFLect language as the foundation for such a logic we must eschew this extension.
This does not mean that our language lacks all polymorphism; constants may be
polymorphic. We assume a top level let command that defines a constant to stand
for a closed, possibly polymorphic, expression. The type checking rules given later
in section 4.2 will allow that constant to be used at any instance of its polymorphic
type. The logical soundness of this restricted form of polymorphism is exhibited in
Pitts’s semantics for the HOL logic [10].

3.2.2 Quotations

A reFLect expression may contain a quoted reFLect expression. These are written
using the form 〈〈Λ〉〉. Note that 1 + 2 is considered semantically equal to 3, but that
〈〈1 + 2〉〉 is considered semantically different from 〈〈3〉〉. The expressions 1 + 2 and 3
both denote the same integer value, namely 3. The expression 〈〈1 + 2〉〉 denotes the
abstract syntax tree of the expression 1 + 2, which is different from the abstract
syntax tree of the expression 3.

The reFLect language also has an antiquotation operation, which is used to
remove the quotes from around its argument. Antiquotation is written Λ̂◦

◦ σ or
(omitting the type) just Λ̂ and may be used only inside quotation. Section 6.1

5

will explain how in certain circumstances subexpressions of the form 〈̂〈Λ〉〉 may
be reduced to Λ. As an example, consider the expression 〈〈1 + 〈̂〈2 + 3〉〉〉〉. This
expression may be reduced to to 〈〈1 + (2 + 3)〉〉. The expressions are considered
semantically equal, denoting the same abstract syntax tree.

3.2.3 Abstractions

In the λ-calculus each abstraction binds a single variable. In reFLect an expres-
sion may appear in the binding position of an abstraction, which then binds all
the free variables of that expression. Not all such expressions will be executable,
though all are meaningful. We leave a precise description of which expressions
are executable until later. Abstractions with a quotation in the binding posi-
tion are evaluated by pattern matching. By using these facilities we may write
(λ〈〈̂ x+ ŷ〉〉. 〈〈̂ y + x̂〉〉)·〈〈1 + 2〉〉, which is semantically equal to 〈〈2 + 1〉〉.

Not all attempts to execute an application by pattern matching will succeed,
so reFLect includes an alternation construct that can be used to try alternative
patterns. Using this construct we may write the following function that commutes
the arguments of quoted additions and multiplications:

λ〈〈̂ x+ ŷ〉〉. 〈〈̂ y + x̂〉〉 ||| λ〈〈̂ x ∗ ŷ〉〉. 〈〈̂ y ∗ x̂〉〉

Most logical languages omit pattern matching from their abstract syntax so as
to simplify their semantics. We considered doing this with reFLect, but decided
against it for two reasons. The first is that pattern matching quoted expressions
seemed the most natural interface for inspecting and destructing term values. The
second is that we wish to support reasoning about all well-founded reFLect functions
including those that make use of pattern matching, which the implemented language
also supports on algebraic data-types. The earlier FL system excluded pattern
matching from the logical language, and so reasoning was performed on expressions
after pattern matching had been translated into conditional expressions. In reFLect

we support reasoning about expressions in a form closer to the surface syntax in
which the user wrote them.

Syntactically, any reFLect expression can appear as a pattern. A natural alter-
native would be to have a separate syntactic class of patterns, but this was rejected
because in the implemented language we allow a rather broad class of patterns.
These include literal constants for integers, booleans and string, as well as an open-
ended class of patterns built up from data-type constructors for free algebras. A
separate grammar for patterns would therefore have to duplicate much of the ex-
pression language anyway. In addition, the expression of algorithms that traverse
expressions would be more complicated, with separate cases for patterns and other
expressions. Users often write expression-traversal code in theorem proving and de-

6

sign transformation applications—unlike in a compiler, where the developers write
it once.

We could treat patterns as a subtype of expressions, and use a runtime check
when an expression is antiquoted into a pattern position to confirm that it is a
valid pattern. We may add such a check in a future version of reFLect if our ex-
perience suggests it is warranted and we can devise an implementation that does
not degrade the performance of theorem proving algorithms that make heavy use
of antiquotation for expression construction.

3.3 Contexts

For later use in describing the semantics of reFLect, we introduce the notation of
a context to represent an expression with a number of holes that occur at specific
subexpression positions in the abstract syntax tree. The notion of context we use
here is similar to that readers may be familiar with from other language descriptions,
except that the holes in our contexts are typed.

Formally, contexts are described by the same grammar as expressions, with the
addition of a new production to represent a hole.

Λ,M, . . . : : = . . . (as in Figure 4)
| ◦

◦σ – A hole

A hole is represented by the symbol ‘ ’ annotated by a type. We may omit type
annotations on holes in a context when they are irrelevant or easily inferred.

We use the calligraphic letters, C, D, etc., as syntactic meta-variables ranging
over contexts. We will use the notation C[◦

◦σ1, . . . ◦
◦σn] to indicate that the context

C has the n holes shown. The order in which the holes are indicated is unimportant,
except that it be must fixed for any given context. We write C[Λ1, . . .Λn] to stand
for the expression resulting from a context C[◦

◦ σ1, . . . ◦
◦σn], where σ1, . . . σn are the

types of Λ1, . . . Λn respectively, in which each hole ◦
◦σi has been filled by expression

Λi. Note that this is different from the usual notion of expression substitution, in
that there is no renaming to avoid variable capture.

4 Static Semantics

In this section we introduce the two well-formedness criteria for expressions. The
first is a notion of ‘level’ which constrains the nesting of quotations and antiquota-
tions allowed in an expression. The second is a notion of strong typing.

7

0 ` ◦
◦σ n ` k◦◦ σ n ` v◦◦σ

n ` C n ` D
n ` λC.D

n ` C n ` D n ` E
n ` λC.D ||| E

n ` C n ` D
n ` C·D

n+ 1 ` C
n ` 〈〈C〉〉

n ` C
n+ 1 ` (̂ C◦

◦σ)

Figure 5: A Level Consistent Context, n ≥ 0

4.1 Level

We use the term level to mean the number of quotations that surround a subex-
pression. The level of a quoted subexpression is one higher than the level of the
surrounding expression. The level of an antiquoted subexpression is one lower than
the level of the surrounding subexpression. The level of an entire expression is zero,
and no expression may occur at negative level.

Level is an important notion in reFLect because it affects variable binding and
reduction. Generally speaking, expressions that occur at level zero may be reduced
while those that occur at a higher level may not. For example the normal form
of the expression (1 + 2, 〈〈1 + 2〉〉) is (3, 〈〈1 + 2〉〉) because the first occurrence of
1+2 occurs at level zero in the expression and therefore may be reduced, while the
second occurrence is at level one and therefore may not.

We formalize our notion of level in relation to contexts. Since all expressions
may be considered as contexts with no holes, the definitions and properties we
describe for contexts also apply to expressions. We consider a context to be well
formed only if all its holes occur at level zero and no portion of the context occurs
at a negative level. We will say that such a context is level consistent. For example,
ˆ + 1 not level consistent, but 〈〈̂ + 1〉〉 is.

Figure 5 formalizes our notion of a level consistent context by defining judgments
of the form n ` C, which should be read as ‘C is level consistent at level n’. We may
read judgments of the form 0 ` C as simply ‘C is level consistent’. If the unique
derivation of 0 ` C contains a subderivation with the intermediate conclusion n ` D,
then we say that ‘D occurs at level n in C’.

The following properties follow from the definition of level consistency.

Proposition 1 If C contains no holes and n ` C, then m ` C for any m ≥ n.

8

Proposition 2 For any n and C, there is at most one derivation concluding n ` C.

Proposition 3 If C contains one or more holes, then there exists at most one n
such that n ` C.

Proposition 4 If Λ is an expression such that 1 ` Λ then there is a unique context
C[◦

◦ σ1, . . . ◦
◦σn] and set of expressions M1, . . . Mn such that C [̂ M1

◦
◦σ1, . . .ˆMn

◦
◦ σn]

is syntactically identical to Λ and 0 ` C[◦
◦ σ1, . . . ◦

◦σn].

Proposition 4 allows us to treat contexts as a form of general constructor for quoted
expressions. We will use an expression of the form 〈〈C [̂ Λ1

◦
◦σ1, . . . Λ̂n

◦
◦σn]〉〉 under

the condition 0 ` C[◦
◦ σ1, . . . σn] to stand for any quoted expression with level

zero subexpressions Λ1, . . . Λn. Many of the remaining figures contain recursive
definitions over the structure of expressions that use this property to give the case
for quoted expressions. Figures 6 and 9 are typical examples. This mechanism
allows us to write our structural definitions such that they traverse only the level
zero portions of an expression. This contrasts with the presentation technique used
for other reflective languages [30, 25] in which the entire term in traversed, and the
traversal function tracks the level of the current expression.

4.2 Typing

All quoted expressions in reFLect have the same type, term. In FL, the type of a
quoted expression depended on what was inside the quote [1]. For example, 〈〈x+ y〉〉
had type int term, while 〈〈p ∨ q〉〉 had type bool term. The idea was similar to the
code type <σ> of MetaML [30]. But this scheme means that certain functions that
destruct or traverse the structure of an expression cannot be typed. Such functions
are common in our target application domain of theorem proving; the functions in
section 2 are typical examples.

Pas̆alić et al. show how to address the problem of typing transformation routines
with dependent types [23]. But there remain functions, like finding free variables,
that are important for implementing theorem provers and which still cannot be
typed in a dependent type system. Even if it were possible to type such routines
with dependent types we would reject this option because we wish to present our
end-users, practicing hardware design engineers, with the simplest type system that
meets their needs. By giving all quoted expressions the same type, term, we can
type such expressions in a Hindley-Milner type system. The same decision is made
for similar reasons in Template Haskell [25].

This means, of course, that in reFLect some type-checking must be done at run
time.1 For example the expression 〈〈1 + x̂〉〉 is well-typed and requires x to be of

1Unlike Template Haskell, in which second-level type errors can still be caught at compile time.

9

(mgtype k)φ = σ

` k◦◦σ: σ ` v◦◦σ:σ
` Λ: σ ` M: τ
` λΛ. M:σ → τ

` Λ:σ ` M: τ ` N:σ → τ
` λΛ. M ||| N:σ → τ

` Λ: σ → τ ` M:σ
` Λ·M: τ

0 ` C[◦
◦σ1, . . . ◦

◦σn] ` Λ1: term . . . ` Λn: term ` C[v1
◦
◦σ1, . . . vn

◦
◦σn]: τ

` 〈〈C [̂ Λ1
◦
◦σ1, . . . Λ̂n

◦
◦ σn]〉〉: term

Figure 6: A Well Typed Expression

type term. But the further requirement that x is bound only to integer-valued
expressions cannot be checked statically; it must be enforced at run time.

This design decision goes against the common functional programming ideal
of catching as many type errors as possible statically. Our approach, however, is
similar to the way typing is handled in conventional theorem-proving systems that
have a separate meta-language and object-language, such as HOL. Both languages
are strongly typed, but evaluating a meta-language expression may attempt to
construct an ill-typed object language expression, resulting in a run-time error. Our
experience in the theorem proving domain is that this seemingly ‘late’ discovery of
type errors is not a problem in practice.

4.2.1 A Well Typed Expression

We say Λ is well-typed with type σ if it is level consistent and we may derive the
judgment ` Λ: σ by the rules of Figure 6. Some of the rules merit explanation:

• We suppose that each constant symbol k has an associated most general type,
mgtype k. The type of a constant named k may be any instance of this type.

• A variable may be explicitly annotated with any type, and it is well-typed
with this type.

• If the body of a quotation is well-typed with some type σ then the quotation
is well-typed with type term. The type of the body does not figure in the
type of the quoted expression as a whole.

• An antiquotation expression will be well typed if the body of the antiquotation
has type term, regardless of the type annotated on the antiquote.

10

(mgtype k)φ = σ

Γ ` k◦◦σ: σ

(v 7→ σ) ∈ Γ

Γ ` v◦◦σ:σ

∆ ` Λ: σ (∆ ∪ Γ) ` M: τ

Γ ` λΛ. M:σ → τ

∆ ` Λ: σ (∆ ∪ Γ) ` M: τ Γ ` N:σ → τ

Γ ` λΛ. M ||| N:σ → τ
Γ ` Λ:σ → τ Γ ` M:σ

Γ ` Λ·M: τ

0 ` C[◦
◦ σ1, . . . ◦

◦σn]
Γ ` Λ1: term . . . Γ ` Λn: term
∆ ` C[v1

◦
◦σ1, . . . vn

◦
◦σn]: τ

Γ ` 〈〈C [̂ Λ1
◦
◦σ1, . . . Λ̂n

◦
◦σn]〉〉: term

Figure 7: Type Inference

Proposition 5 For any Λ there is at most one type σ such that ` Λ:σ.

4.2.2 Type Inference

Type inference in reFLect takes user input and constructs well-typed expressions,
attaching the type annotations required to variables, constants and antiquotations.
Users need not include these annotations in their input, though they may if they
wish a more restricted type than would otherwise be inferred. The type inference
algorithm used is essentially the Hindley-Milner algorithm, which performs type-
checking relative to an environment associating each variable with its type. The
algorithm is different for reFLect in that it performs type checking relative to the
typing environment on the top of a stack of such environments. A fresh environment
is pushed for each quotation. The stack is popped while traversing an antiquotation.

The reFLect type inference system will produce well-typed expressions with the
most general type consistent with the rules of figure 7. Each judgment of the form
Σ ` Λ: σ should be interpreted as meaning that the expression Λ may have the
type σ under the environment Σ. The environment of a judgment is a map, Γ,
from variable names to their types.

Proposition 6 If Σ ` Λ: σ can be deduced from the type inference rules in Figure 7,
then ` Λ:σ may be deduced from the type checking rules in Figure 6.

11

4.2.3 Variables and Types

In reFLect the identity of a variable is determined by the combination of its name
and type. A well-typed expression may have two or more (different) variables with
the same name but different types. The type inference algorithm will never produce
such an expression, but they may arise as a result of evaluation. For example, the
expression 〈〈̂ 〈〈x◦◦α→ β〉〉·̂ 〈〈x◦◦α〉〉〉〉 may be reduced using the rules in section 6.1 to
〈〈x◦◦α→ β·x◦◦α〉〉. Both these expressions are well typed according to the definition
in figure 6, but only the first could be constructed by the type-inference system of
figure 7. Accordingly, subject reduction holds of reFLect only with respect to the
notion of being well-typed, not the stronger property of being type inferable.

Note that while the rules in Figure 7 require variables (in the same scope) in a
common quotation to share a common type, they do not require variables with the
same name in different quotations to share a type. For example, the type inference
system may construct the well typed expression f ·〈〈1 + x〉〉·〈〈T ∧ x〉〉.

We could avoid the construction of expressions with multiple variables of the
same name and different type if for quoted expressions we retained not only the
information about the type of the expression, but also the type-checking environ-
ment describing the types of the variables it contains. For antiquotations we would
record not only the expected type, but also the prevailing type-checking environ-
ment, which describes expectations about the types of incoming variables. The
operation to splice one expression into another could then complete a conventional
type inference operation on the entire expression.

This approach is not, however, appropriate for our applications in theorem
proving. Consider the standard logical rule for conjunction introduction:

` P ` Q
` P ∧Q

An implementation of this rule is straightforward in reFLect using quoted expres-
sions. In the rule, P and Q stand for two separate and arbitrary boolean expres-
sions, perhaps with free variables. Logically, the rule is valid even if P and Q
contain variables with the same name but different types.

It would complicate the presentation and use of the logic if rules like this were
restricted with side-conditions to ensure the consistent typing of variables in the
result. The decision to allow well typed expressions containing variables with the
same name and different types is one that reFLect shares with the object languages
of more conventional theorem proving systems for typed logics, such as HOL.

4.2.4 Extending Static Typing

It is possible to design a more elaborate static typing system than the one just
described, with the aim of catching more type errors before runtime. For example,

12

◦
◦σnφ =

{
◦
◦σ , if n > 0
◦
◦σφ , if n = 0

k◦◦σnφ =

{
k◦◦σ , if n > 0
k◦◦σφ , if n = 0

v◦◦σnφ =

{
v◦◦σ , if n > 0
v◦◦σφ , if n = 0

(λC.D)nφ = λCnφ.Dnφ

(λC.D ||| E)nφ = λCnφ.Dnφ ||| Enφ

(C·D)nφ = Cnφ·Dnφ

〈〈C〉〉nφ = 〈〈Cn+1φ〉〉
(̂ C◦

◦σ)nφ = Ĉn−1φ
◦
◦σ , if n > 0

Figure 8: Type Instantiation of a Context, n ≥ 0

it shouldn’t really be necessary to wait until runtime to find out that 〈〈1 + 〈̂〈T〉〉〉〉 is
going to run into trouble. The only concern is that this extension might complicate
the static semantics of the language. The next paragraph shows some less obvious
examples that an extended static type system might detect.

Consider the expression (〈〈1 + x̂〉〉, 〈〈T ∧ x̂〉〉). This expression is statically well-
typed, but at runtime we can already see that it will fail, because no runtime value
of x could contain simultaneously both an integer and a boolean. Now consider
the expression (〈〈1::̂ x〉〉, 〈〈T::̂ x〉〉). This expression looks like it might be dynami-
cally type correct as x may be bound to 〈〈[]◦◦α list〉〉. However, the reduction rules
presented later in Section 6 will not allow the α type variables in the two copies
of this expression to be instantiated, and so this too will result in a runtime type
failure.

4.2.5 Type Instantiation of Contexts

We may apply a type instantiation to a context by instantiating every type that
appears at level zero in the context. We write Cnφ to indicate the result of applying
the type instantiation φ to the context (or expression) C at level n. In the case
where n is zero we will simply write Cφ. Type instantiation of a context is defined
in Figure 8.

Proposition 7 If 0 ` Λ and ` Λ: σ, then 0 ` Λφ and ` Λφ: σφ for any type instan-
tiation φ.

13

5 Abstractions

Abstractions in reFLect are more complex than in the λ-calculus because any expres-
sion may appear in the binding position. This complicates our notion of variable
binding and therefore our notion of substitution. Binding and substitution are
further complicated by the notion of level. This section describes binding and
substitution, and gives an informal introduction to the meaning of abstraction in
reFLect.

5.1 Binding

An abstraction in the λ-calculus is an expression of the form λv. Λ. The free
variables of this expression are the free variables of Λ except for v, which the
expression is said to bind. Let us ignore the presence of quotation and antiquotation
in reFLect for a moment and imagine a language that allowed abstractions of the
form λΛ. M. We will say that the free variables of this expression are the free
variables of M except for the free variables of Λ.

We now consider the effect of level on binding. Consider λv. v + 1 and λw. 1 + w.
These expressions have different syntax, but they denote the same semantic object,
namely the function that increments its argument. Now consider 〈〈λv. v + 1〉〉 and
〈〈λw. 1 + w〉〉. These expressions denote different semantic objects, namely the syn-
tax of two programs that compute the increment function in different ways. In fact,
we even consider the expressions 〈〈λv. v〉〉 and 〈〈λw.w〉〉 to be different. They denote
semantic objects that represent the syntax of different programs, albeit different
programs that both compute the identity function.

In reFLect, therefore, the expressions λv. v and λw.w are equal while 〈〈λv. v〉〉 and
〈〈λw.w〉〉 are not. The unquoted λs in the first pair of expressions act as binders,
but the quoted λs in the second pair of expressions do not; they act like syntax
constructors. This allows us to write functions that construct lambda expressions.
Consider β-reducing the expression (λv. 〈〈λ̂ v. v̂ + 1〉〉)·〈〈w〉〉 to 〈〈λ̂ 〈〈w〉〉. 〈̂〈w〉〉+ 1〉〉.
Section 6.1 will explain how this expression may be reduced to 〈〈λw.w + 1〉〉. We can
think of the reFLect expression 〈〈λ̂ t. û〉〉 as a meta-language program that constructs
an object-level abstraction. Viewed from this perspective, t is free in this expression,
at least at the meta-level, but any variables in the value t takes on will be bound
at the object level in the result.

The approach we take is to consider only those variables that appear at level
zero in the binding position of a level zero abstraction to be bound. For example,
consider the expression λ〈〈̂ x+ ŷ〉〉. 〈〈̂ y + x̂〉〉, which binds x and y. This denotes a
function that pattern matches quoted additions and commutes them. In contrast,
consider the expression λ〈〈x+ y〉〉. 〈〈y + x〉〉, which binds no variables. This denotes
a function that pattern matches quoted additions where the first argument liter-

14

free k◦◦ σ = {}
free v◦◦σ = {v◦◦σ}
free λΛ. M = free M− free Λ
free λΛ. M ||| N = (free M− free Λ) ∪ free N
free Λ·M = free Λ ∪ free M
free〈〈C [̂ Λ1

◦
◦σ1, . . . Λ̂n

◦
◦σn]〉〉 = free Λ1 ∪ . . . free Λn

(where 0 ` C[◦
◦σ1, . . . ◦

◦σn])

Figure 9: Free Variables

ally is ‘x’ and the second argument literally is ‘y’, and always returns the quoted
addition 〈〈y + x〉〉. Patterns with fixed variable names—like this last one—don’t
appear useful, but they have application in searching for specific variables in a large
expression. Figure 9 shows the definition of a function free, which describes the
free variables of an expression.

5.1.1 Binding and Level

An alternative binding scheme would allow abstractions to bind variables at equal
or higher level. In such a system the expression (λx. 〈〈x〉〉)·1 would evaluate to 〈〈1〉〉.
This binding scheme is used in MetaML, where it is called cross-stage persistence.

Cross-stage persistence is not appropriate for the object language of a theorem
prover for standard logics. Consider the formula ¬(〈〈x〉〉 = 〈〈1〉〉). This statement
seems transparently true, and indeed reFLect evaluates this expression to true. We
desire this behavior because we want to write programs that distinguish between
the syntax of an object-language variable x and the syntax of an object-language
constant 1. But if quantifiers were to bind variables at higher levels then we could
make the following sequence of deductions using standard logical quantifier rules,
leading to an inconsistent logic.

` ¬(〈〈x〉〉 = 〈〈1〉〉)
` ∀x.¬(〈〈x〉〉 = 〈〈1〉〉)
` ¬(〈〈1〉〉 = 〈〈1〉〉)

Suppes [28] also observes this problem and concludes that ‘Rule (II) [the pro-
hibition on binding at higher levels] . . . is to be abandoned only for profound
reasons.’ Taha [29] observes the same problem from the perspective of including
intensional analysis in MetaML. He notes, as we do, that intensional analysis re-
quires reductions to be allowed only at level zero, but that this restriction cannot
be enforced in a language with cross-stage persistence without loss of confluence.

15

5.2 The Meaning of Abstractions

The expression that occurs in the binding position of an abstraction in reFLect

is treated as a pattern. As discussed above, a pattern may bind several variables
simultaneously. A pattern may also be partial, in the sense that it does not match all
possible values of the relevant type. For example, the pattern in λ〈〈̂ f ·̂ x〉〉. f ranges
over only that subset of the type of expressions containing syntactic applications.
When applied to an expression outside this subset, the result of this function is
unspecified.

Moreover, it is syntactically possible for a pattern to contain several instances
of a variable, as in λ〈〈̂ x+ x̂〉〉. 〈〈2 ∗ x̂〉〉. We do not require an implementation
to evaluate such expressions; any attempt to do so may cause a run-time error.
But because such expressions may occur in a logic based on reFLect, we need to
take at least an informal position on their semantics, so that basic operations like
substitution and type instantiation respect this semantics.

One possible approach to the semantics of duplicate pattern variables is to con-
sider only the rightmost occurrence of a variable in a pattern to bind the variable in
the body. Then we would expect (λ〈〈̂ x+ x̂〉〉. 〈〈2 ∗ x̂〉〉)·〈〈1 + 2〉〉 to be semantically
equal to 〈〈2 ∗ 2〉〉. This works for patterns that are essentially terms in a free alge-
bra. However, in reFLect any expression can occur in pattern position, so we instead
take the position that in the pattern of a function such as λ〈〈̂ x+ x̂〉〉. 〈〈2 ∗ x̂〉〉 both
occurrences of x bind the variable x in the body. The pattern then places a con-
straint on which applications of the function can be reduced. In this example, the
constraint is that the expression to which the function must be an additions of two
syntactically identical expressions. Hence we expect (λ〈〈̂ x+ x̂〉〉. 〈〈2 ∗ x̂〉〉)·〈〈1 + 1〉〉
to be semantically equal to 〈〈2 ∗ 1〉〉. If the constraint is not satisfied, then applica-
tion of the function is not defined.

In the HOL logic, we would usually express this kind of partially-defined object
as an ‘under-specified’ total function [21]. Formally, one uses a selection opera-
tor [18] to construct an expression ‘ε x.P [x]’ with the meaning ‘an x such that
P [x], or a fixed but unknown value if no such x exists’. With this approach, we
can view the abstraction λΛ. M as an abbreviation for

εf .∀ free Λ. fΛ = M

For example, λ(x, y). y is the function εf . ∀x y. f(x, y) = y. We may then view
λΛ. M ||| N as an abbreviation for

λv. if (∀ free Λ. v 6= Λ) then N v else (λΛ. M) v

where the variable v is chosen to be distinct from all variables in free{Λ,M,N}.

16

k◦◦σθ = k◦◦ σ
v◦◦σθ = θ(v◦◦σ)
(λΛ. M)θ = λΛι. Mιθ
(λΛ. M ||| N)θ = λΛι. Mιθ ||| Nθ
(Λ·M)θ = Λθ·Mθ
〈〈C [̂ Λ1

◦
◦σ1, . . . Λ̂n

◦
◦σn]〉〉θ = 〈〈C [̂ Λ1θ◦◦σ1, . . . Λ̂nθ◦◦σn]〉〉

(where 0 ` C[◦
◦σ1, . . . ◦

◦σn] and ι is a renaming such that:
dom ι ⊆ free Λ, and dom θ ∩ ι(free Λ) = {}, and
(free M− free Λ) ∩ ι(dom ι) = {}, and
free(θ(free M− free Λ)) ∩ ι(free Λ) = {})

Figure 10: Substitution

5.3 Substitution and Type Instantiation

Substitution and type instantiation in reFLect are a little more complex than in
the λ-calculus, owing to the presence of pattern matching. The two operations are
defined as follows.

5.3.1 Substituting Expressions

A substitution is a mapping from variables to expressions of the same type that is the
identity on all but finitely many variables. We typically use the meta-variables θ
and ι to stand for substitutions. We write dom θ for the domain of θ, meaning
the set of variables for which θ is not the identity. If dom θ = {v1

◦
◦σ1, . . . vn

◦
◦σn}

and θ(vi
◦
◦σi) = Λi for all 1 ≤ i ≤ n, then we sometimes write θ using the notation

[Λ1, . . .Λn/v1
◦
◦σ1, . . . vn

◦
◦ σn]. A renaming is an injective substitution that maps

variables to variables.
For any expression Λ and substitution θ we may write Λθ to stand for the action

of applying the substitution to all the free variables of Λ, with appropriate renaming
of the bound variables in Λ to avoid capture. Figure 10 defines this operation.2

Note that substitution must be consistent with the interpretation we place on re-
peated pattern variables. We require the result of (λ(x, x). y) [x/y] to be λ(x′, x′).x.
That is, both occurrences of x in the pattern are renamed.

Proposition 8 If 0 ` Λ and ` Λ:σ, then 0 ` Λθ and ` Λθ:σ for any substitution θ.

2In the condition of figure 10, ι, θ, and free are implicitly extended to image functions over
sets where required.

17

Most HOL-style theorem provers have a more general substitution primitive,
which allows one to substitute for arbitrary subexpressions occurring free in an
expression, not just for free variables. This is also the case in the reFLect theorem
prover, but variable-substitution suffices for presenting the operational semantics.

5.3.2 Type Instantiation

We may also apply a type instantiation to an expression. For any expression Λ
and type instantiation φ, we write Λφ to mean the result of applying the instan-
tiation to the expression. This applies the instantiation to every level zero type
in the expression, using the notion of instantiation defined in Section 3.1.1. Since
the identity of a variable in reFLect consists of its name and type, we need to re-
name bound variables to avoid capture during a type instantiation. For example,
(λ(x◦◦α, x◦◦ β).x◦◦α)[β/α] should produce λ(x′◦◦ β, x◦◦ β).x′◦◦ β or λ(x◦◦ β, x′◦◦ β).x◦◦ β.

The formal definition of type instantiation for expressions is similar to the def-
inition of substitution in Figure 10. Note that Λφ is not the same as the context
type instantiation operation Cφ in Figure 8, which does not rename variables to
avoid capture. We will not use type instantiation on expressions as described here
until section 8.1.

6 Operational Semantics

Figures 11 and 12 present the reduction rules for evaluating a reFLect expression.
The rules in Figure 11 describe individual reductions, while those in Figure 12
describe how reductions may be applied to subexpressions. The judgments are of
the form ` Λ → Λ′, which means that Λ reduces to Λ′ in one step. These rules
ensure that reductions apply only to level zero subexpressions, and then only to
those that do not fall in the binding position of a level zero abstraction. We use
the standard notation ` Λ

∗→ Λ′ to indicate that Λ can be reduced to Λ′ in zero or
more steps. This is formalized in figure 13.

The rules of Figure 11 use some auxiliary meta-functions, which we briefly
introduce here and describe in more detail later. The function definition returns
the definition of a constant. The predicate pattern characterizes the expressions we
consider valid for pattern matching against, variables or quotations whose level zero
subexpressions are variables. The relation (Λ, θ) matches Ξ means that applying the
substitution θ to the pattern Λ causes it to match the expression Ξ (in a sense we
define precisely later). The relation Λ ready M means that the expression M has
been sufficiently evaluated to determine whether or not it matches the pattern Λ.

Proposition 9 If 0 ` Λ and ` Λ: σ, then for any M such that ` Λ
∗→ M we have

0 ` M and ` M:σ.

18

` definition k: τ τφ = σ

` k◦◦ σ → (definition k)φ
[δ]

pattern Λ Λ ready Ξ (Λ, θ) matches Ξ

` (λΛ. M)·Ξ → Mθ
[β]

pattern Λ Λ ready Ξ (Λ, θ) matches Ξ

` ((λΛ. M) ||| N)·Ξ → Mθ
[γ]

pattern Λ Λ ready Ξ 6 ∃θ. (Λ, θ) matches Ξ

` ((λΛ. M) ||| N)·Ξ → N·Ξ
[ζ]

0 ` C[◦
◦σ1, . . . ◦

◦σn] ` Λ1: σ1φ . . . ` Λn: σnφ dom φ ⊆ vars{σ1, . . . σn}
` 〈〈C [̂ 〈〈Λ1〉〉◦◦σ1, . . . 〈̂〈Λn〉〉◦◦σn]〉〉 → 〈〈Cφ[Λ1, . . .Λn]〉〉

[ψ]

Figure 11: Reduction

19

` M → M′

` λΛ. M → λΛ. M′
` M → M′

` λΛ. M ||| N → λΛ. M′ ||| N
` N → N′

` λΛ. M ||| N → λΛ. M ||| N′

` Λ → Λ′

` Λ·M → Λ′·M
` M → M′

` Λ·M → Λ·M′

0 ` C[◦
◦σ1, . . . ◦

◦σm, . . . ◦
◦σn] ` Λm → Λ′

m

` 〈〈C [̂ Λ1
◦
◦σ1, . . . Λ̂m

◦
◦ σm, . . . Λ̂n

◦
◦σn]〉〉 → 〈〈C [̂ Λ1

◦
◦σ1, . . . Λ̂′

m
◦
◦σm, . . . Λ̂n

◦
◦ σn]〉〉

Figure 12: Reducing Subexpressions

` Λ
∗→ Λ

` Λ → M ` M
∗→ N

` Λ
∗→ N

Figure 13: Reduction Closure

Proposition 9 is the subject reduction property for reFLect. The property states
that a level consistent and well typed expression remains so as it is reduced, and
that the expression retains the same type as it is reduced. Krstić and Matthews
have a proof of this property [17].

6.1 Reducing Quotations

The rule for ψ-reduction in Figure 11 allows the elimination of antiquoted quo-
tations at level one. The rule caters for the possibility that the type variables of
a quoted region may need to be instantiated in order to be type consistent with
the antiquoted regions being spliced into it. Suppose, for example, that inc is a
constant of type int → int. The ψ rule lets us reduce 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈1〉〉◦◦α〉〉 to
〈〈inc·1〉〉 by allowing α and β to be instantiated to int.

This type-instantiation behavior of ψ is the basis for run-time type checking in
reFLect. At compile time, we type-check quotation contexts at their most general
types. Then at run-time—when the expressions being spliced into the holes become
available—we check type consistency by instantiating the context’s type variables
to match the types inside the incoming expressions. For example, consider the
function comm in Section 2. Static type checking will assign polymorphic types to
the quotations in the definition of comm so that, for example, comm·〈〈inc·(1 + 2)〉〉

20

reduces at run time to 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈2 + 1〉〉◦◦α〉〉. Then, using ψ-reduction, we
get the expected expression 〈〈inc·(2 + 1)〉〉.

The rule does not allow reductions to create badly-typed expressions. For ex-
ample, we cannot use this rule to reduce the expression 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈T〉〉◦◦α〉〉.
Note also that the rule does not allow type instantiations of the expressions in-
side the antiquotes. For example, we cannot use this rule to reduce the expression
〈〈̂ 〈〈f ◦

◦α→ β〉〉◦◦ int → int·1〉〉.

6.1.1 Instantiation Must Affect the Entire Term

One might first imagine a simpler rule for ψ-reduction like the one shown below:

` Λ: τφ
` 〈̂〈Λ〉〉◦◦ τ → Λ

Unfortunately the effect of this rule does not cover enough of the expression to
ensure type consistency. Consider again the expression 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈T〉〉◦◦α〉〉.
We could use this incorrect rule to reduce it to 〈〈inc◦

◦ int → int·̂ 〈〈T〉〉◦◦α〉〉 and then
again to 〈〈inc◦

◦ int → int·T◦
◦ bool〉〉.

6.1.2 All Antiquotes Eliminated Simultaneously

The assumption 0 ` C[◦
◦σ1, . . . ◦

◦σn] of the ψ-reduction rule ensures that it elim-
inates every level one antiquote enclosed by a given quotation. We could imag-
ine a version of this rule that need not eliminate every antiquote simultaneously.
We could then reduce 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈1〉〉◦◦α〉〉 to 〈〈inc ·̂ 〈〈1〉〉◦◦ int〉〉 and later to
〈〈inc·1〉〉. But this rule would also allow us to reduce 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈T〉〉◦◦α〉〉
to both 〈〈inc ·̂ 〈〈T〉〉◦◦ int〉〉 and 〈〈̂ 〈〈inc〉〉◦◦ int → β·T〉〉. Since these expressions may not
be further reduced this would leave reFLect with a non-confluent reduction system.3

We could, however, allow a rule that requires only that all the antiquotes oc-
curring at the same level within a given quoted region need be eliminated simulta-
neously. For example, consider

〈〈(̂ 〈〈1〉〉, 〈̂〈2〉〉, 〈〈(̂ 〈̂〈〈〈3〉〉〉〉,ˆ̂〈〈〈〈4〉〉〉〉)〉〉)〉〉

The first two antiquotes must be eliminated simultaneously, and so must the second
two, but it would be possible to develop a valid semantics that did not require all
four to be eliminated together. Expressions like this, however, do not arise in our
applications—so we do not complicate the semantics to facilitate this relaxation.

3It may still have some property similar to confluence, in which expressions like these are
considered equivalent.

21

6.1.3 Type Instantiation Impacts Only the Context

The ψ-reduction operation ensures that it constructs a well typed expression by type
instantiating the context into which the antiquoted expressions are spliced. One
might also consider unifying the types of the context and the incoming expressions
to achieve a match. This is the approach taken in the system of Shields et al. [26].

This option was rejected for reasons that derive from the target application
of reFLect to theorem proving and circuit transformation. In these applications
most operations that manipulate expressions are expected to preserve the types of
the manipulated expressions. In this case, unification is not appropriate. This is
in contrast to systems designed for code-generation [25] or staged evaluation [30],
which focus more on flexible ways of constructing or specializing programs.

For example, a ubiquitous theorem proving application is term rewriting [22],
in which an expression is transformed by application of general rewrite rules to
its subexpressions. The matching that makes a general rewrite rule applicable at
a subexpression is always one-way and type unification is not appropriate. The
semantics of our hole-filling ψ rule therefore exactly achieves the reFLect design
requirement for a native mechanism to support rewriting.

In theorem proving and transformation applications, contexts are typically small
and the incoming expressions very large. The same expression may also be spliced
into more than one context. If we unified types when splicing an expression into a
context, we could not do it by destructively instantiating type variables, a constant
time operation. Rather, we would have to copy incoming expressions using time
and space proportionate to their size. Since the speed of rewriting is key to the
effectiveness of a theorem prover, we would not be able to use this splicing operation
to implement our rewriter.

6.2 Patterns May Not Be Reduced

An examination of the rules in Figure 12 reveals that it is possible to reduce any
level zero subexpression, except those in the binding position of an abstraction.
Patterns may not be reduced. We might imagine a system that allowed reductions
on patterns as well. For example, it seems reasonable to reduce the expression
(λ〈〈̂ 〈〈1〉〉+ x̂〉〉.x)·〈〈1 + 2〉〉 to (λ〈〈1 + x̂〉〉. x)·〈〈1 + 2〉〉 and then to 〈〈2〉〉.

But unrestricted reduction of patterns is unsafe. As an example, consider the
expression λ(λy. z)·x. x, in which the pattern (λy. z)·x occurs in binding position.
If we were to allow reduction of this pattern, we could reduce the whole expression
to λz.x. But then the variable x, which was bound in the original expression,
has become free—perhaps to be captured by some enclosing scope. It might be
possible to avoid this problem by not allowing pattern reductions that change the
free variable set of the pattern. But in the absence of a compelling application, it

22

pattern v◦◦σ

0 ` C[◦
◦σ1, . . . ◦

◦σn]

pattern〈〈C [̂ (v1
◦
◦ term)◦◦σ1, . . . (̂vn

◦
◦ term)◦◦σn]〉〉

Figure 14: Valid Pattern

seems simpler just to forbid all pattern reductions.

6.3 Pattern Matching

The rules for β-reduction, γ-reduction, and ζ-reduction apply only to abstractions
over valid patterns. Not all expressions make valid patterns. For example, the
expressions in the binding positions of λx. x and λ〈〈̂ x+ 1〉〉. 〈〈1 + x̂〉〉 are both valid
patterns, but the binding expression in λx+ 1.x is not. This is not to say that such
bindings are without meaning, only that we do not support the evaluation of such
patterns, and so they are considered invalid for the purposes of this operational
semantics.

Figure 14 defines the predicate pattern that characterizes which patterns are
considered valid. It can be summarized by saying that a valid pattern is either
a variable or a quotation where every level zero subexpression is a variable. The
definition does not rule out patterns containing more than one instance of the same
variable. An implementation, however, may have a stricter notion of valid pattern
that disallows this. Any attempt to match a invalid pattern should lead to a
run-time failure.

We also make some restrictions on when we are prepared to consider matching
a pattern. If a pattern is a simple variable, then we may match it straightaway, but
if a pattern is a quotation then we must wait until the expression we are trying to
match has been reduced to a quotation with level one antiquotes eliminated. We
will say that the expression M is ready to be matched to the pattern Λ, Λ ready M,
if this condition holds. Figure 15 formalizes this notion, which is used in the rules
for β and γ-reduction in figure 11.

Consider what can happen without this restriction by contemplating the effect of
dest apply from section 2. If we apply this to the expression 〈〈g◦◦α→ α·̂ 〈〈1〉〉◦◦α〉〉 and

v ready Λ
0 ` Λ

M ready 〈〈Λ〉〉

Figure 15: Match Readiness

23

v◦◦σ θ = Ξ
(v◦◦σ, θ) matches Ξ

0 ` C[◦
◦σ1, . . . ◦

◦σn] φ ` C[w1
◦
◦σ1, . . . wn

◦
◦σn] D[w1

◦
◦ σ1φ, . . . wn

◦
◦ σnφ]

v1
◦
◦ term θ = 〈〈Ξ1〉〉 . . . vn

◦
◦ term θ = 〈〈Ξn〉〉

(〈〈C [̂ (v1
◦
◦ term)◦◦σ1, . . . (̂vn

◦
◦ term)◦◦σn]〉〉, θ) matches 〈〈D[Ξ1, . . .Ξn]〉〉

(where w1, . . . wn are fresh)

Figure 16: Pattern Matching an Expression

we were to evaluate the application before ψ-reducing the argument we would get
the result (〈〈g◦◦α→ α〉〉, 〈〈̂ 〈〈1〉〉◦◦α〉〉), which would then reduce to (〈〈g◦◦α→ α〉〉, 〈〈1〉〉).
If we were to ψ-reduce the argument before reducing the application we would get
the result (〈〈g◦◦ int → int〉〉, 〈〈1〉〉).

As with the possible generalization to ψ-reduction discussed in Section 6.1.2, we
believe there is an equally valid semantics that doesn’t force the elimination of all
level one antiquotes from an expression before it may be matched, but only those
from level contiguous regions that are in some way accessed by the match. But this
would complicate the semantics without benefit to practical applications.

6.3.1 Matching An Alternative

Once we have determined that a pattern is valid and an expression is ready to be
matched by it then we are ready to determine whether (and how) the expression
matches the pattern. The predicate matches, defined in Figure 16, makes this
determination.

When the pattern is a variable, we say that the pattern matches an expression
under a substitution precisely when the substitution maps that variable to the
expression. When the pattern is a quotation, we first find a level-consistent context
C[◦

◦σ1, . . . ◦
◦σn] and term variables v1, . . . vn such that the pattern we are trying to

match against is 〈〈C [̂ (v1
◦
◦ term)◦◦σ1, . . . (̂vn

◦
◦ term)◦◦σn]〉〉. Next we must find a level

consistent context D[◦
◦ τ1, . . . ◦

◦ τn] and list of subexpressions Ξ1, . . . Ξn such that
〈〈D[Ξ1, . . .Ξn]〉〉 is the expression we are trying to match. The expression matches
the pattern if D is a type instance, in the sense explained below, of C and we can
match each expression Ξ1, . . . Ξn to the corresponding variable v1, . . . vn under
the same substitution.

The notation φ ` Λ M indicates that M is a type instance of Λ under some
type instantiation φ and is defined in Figure 17. The role of the relation is to

24

σφ = τ

φ ` k◦◦ σ k◦◦ τ

σφ = τ

φ ` v◦◦ σ v◦◦ τ

φ ` Λ Λ′ φ ` M M′

φ ` λΛ. M λΛ′. M′

φ ` Λ Λ′ φ ` M M′ φ ` N N′

φ ` λΛ. M ||| N λΛ′. M′ ||| N′

φ ` Λ Λ′ φ ` M M′

φ ` Λ·M Λ′·M′

σ1χ = τ1 . . . σnχ = τn
χ ` C[v1

◦
◦σ1, . . . vn

◦
◦σn] C′[v1

◦
◦ τ1, . . . vn

◦
◦ τn]

0 ` C[1
◦
◦σ1, . . . n

◦
◦σn] 0 ` C′[1

◦
◦ τ1, . . . n

◦
◦ τn]

φ ` Λ1 Λ′
1 . . . φ ` Λn Λ′

n

φ ` 〈〈C [̂ Λ1
◦
◦σ1, . . . Λ̂n

◦
◦σn]〉〉 〈〈C ′ [̂ Λ′

1
◦
◦ τ1, . . . Λ̂′

n
◦
◦ τn]〉〉

(where v1 . . . vn are fresh)

Figure 17: Type-Match Relation

25

allow the types within quotations in the pattern to be more general than those
of the argument. This allows functions on expressions to be defined by pattern
matching, as in the following example:

let len = λ〈〈Len·([]◦◦α list)〉〉. 〈〈0〉〉
| λ〈〈Len·(̂ h::̂ t)〉〉. 〈〈(Len·̂ t) + 1〉〉

We would expect to be able to apply the first λ-abstraction in this function to
expressions such as 〈〈Len·([]◦◦ int list)〉〉, and so the pattern 〈〈Len·([]◦◦α list)〉〉 must
match up to some instantiation of type variables.

6.3.2 Discarding an Alternative

The rules for β and γ-reduction require the argument expression to be ready to
match the pattern before a match is made. Similarly, the rule for ζ-reduction
requires the argument expression to be ready to match the pattern before the
match is rejected.

In general, we may have (λΛ. M ||| N)·Ξ, where Ξ has type term but has not
yet been evaluated to yield a quotation. It is not possible to tell if and how Ξ
might match the pattern Λ until Ξ has been evaluated. The assumption Λ ready M
on the ζ-reduction rule prevents a match from being discarded too early. If an
expression M is ready to match a pattern Λ, but there is no substitution θ such
that (Λ, θ) matches M, then we may safely conclude that the expression doesn’t
match the pattern and discard this alternative.

In some circumstances a pattern will never match an expression and yet may
also not be discarded. Consider the following application:

(λ〈〈̂ f ·̂ x〉〉. Λ ||| M)·〈〈̂ 〈〈inc◦◦ int → int〉〉◦◦α→ α ·̂ 〈〈T〉〉◦◦α〉〉

In this example the argument is not ready to match the pattern, however it may
not be further reduced. The reFLect language does not let us conclude anything
about the internal structure of expressions that are not sufficiently evaluated to
tell if they are well typed. In an implementation, the inability to apply either the
γ-reduction or ζ-reduction rules would result in the argument being forced to point
where ψ-reduction was attempted and a run-time type error raised.

7 Compiling to λ-Calculus

Given data-structures for lists, expressions and contexts—and two functions, fill and
match for manipulating them—the special features of reFLect (quotation, antiquo-
tation, pattern matching) can be compiled away to produce ordinary λ-calculus.

26

E “v◦◦ τ” = v
E “k◦◦ τ” = k
E “Λ·M” = (E “Λ”) (E “M”)
E “λΛ. M” = P “Λ” (E “M”) error
E “λΛ. M ||| Ξ” = P “Λ” (E “M”) (E “Ξ”)
E “〈〈C [̂ Λ1

◦
◦ τ1, . . . Λ̂n

◦
◦ τn]〉〉” = fill ‘〈〈C[◦

◦ τ1, . . . ◦
◦ τn]〉〉’ [E “Λ1”, . . .E “Λn”]

(where 0 ` C[◦
◦ τ1, . . . ◦

◦ τn])

P “v◦◦ τ” M N = λv. M
P “〈〈C [̂ (v1

◦
◦ term)◦◦ τ1, . . . (̂vn

◦
◦ term)◦◦ τn]〉〉” M N =

match ‘〈〈C[◦
◦ τ1, . . . ◦

◦ τn]〉〉’ (λw. L [“v1
◦
◦ term”, . . . “vn

◦
◦ term”] M w) N

(where 0 ` C[◦
◦ τ1, . . . ◦

◦ τn], w is fresh, and v1, . . . vn are distinct)

L [] M x = M
L [“v◦◦ τ”] M x = (λv. M) (hd x)
L (“v◦◦ τ”::vs) M x = (λv. L vs M (tl x)) (hd x)

Figure 18: Compilation to λ-calculus

Expressions and contexts can be represented as ordinary algebraic data-types. The
function fill and match can then be defined on those data-types. The data-types for
expressions and contexts must be as described in section 3. This section describes
the required behavior of fill and match, and how those functions can then be used
to implement the special features of reFLect.

The implementation of reFLect used at Intel follows the technique described here,
except that the types of expressions and contexts are not implemented as ordinary
algebraic data-types. Rather, the representation of reFLect syntax trees used by the
underlying compiler is reused for these types. As a result, once an expression has
been constructed it may be evaluated directly. The functions fill and match are
implemented as primitives.

We write values of the type term—representing reFLect expressions—inside dou-
ble quotes, “like this”. Similarly, we will write values of type context—representing
reFLect contexts—inside single quotes, ‘like this’. We do this to distinguish values
of these types from each other and from the surrounding λ-calculus expressions,
with which they share much common syntax.

We describe the compilation process with three recursive functions: E (for com-
piling expressions), P (for compiling pattern abstractions), L (for compiling abstrac-

27

tions over lists lists of variables). The definitions of these functions are in Figure 18.
Together these functions can compile expressions in reFLect to λ-calculus that uses
the functions fill and match for constructing and destructing expressions. These
functions are explained in Sections 7.1 and 7.2. The generated code also uses a
constant value error to signal the outcome of a pattern matching failure.4

It must also be noted that because reFLect distinguishes variables by name and
type, while ordinary λ-calculus distinguishes variables solely by name, we must
avoid inadvertent variable capture by first α-converting any reFLect program to an
equivalent one in which distinct variables at level zero have distinct names before
compiling with the method described here.

7.1 Constructing Terms

Values of the term and context types are ground expressions and therefore not
reducible. This means that the reFLect program λx.λy. 〈〈̂ x+ ŷ〉〉 is not represented
directly in the λ-calculus by the term “λx.λy. 〈〈̂ x+ ŷ〉〉”. To achieve the effect
of this program we assume a function fill that takes a context with n holes and
a list of n expressions, and forms a new expression by applying the minimal type
instantiation to the context that makes the type of each hole agree with the type
of the corresponding expression in the list, and then replaces each hole with the
corresponding expression from the list (with surrounding quotations removed). The
function fails if the list does not have the same number of the expressions as there
are holes in the context or if a type instantiation cannot be found that brings the
type of each hole in the context into agreement with the type of the corresponding
expression in the list. The fill function is described below.5

fill: context → term list → term

` Λ1:σ1φ . . . ` Λn: σnφ dom φ ⊆ vars{σ1, . . . σn}

` fill ‘〈〈C[◦
◦σ1, . . . ◦

◦σn]〉〉’ [“〈〈Λ1〉〉”, . . . “〈〈Λn〉〉”]
λ→ “〈〈Cφ[Λ1, . . .Λn]〉〉”

The reFLect program 〈〈̂ x+ ŷ〉〉 can now be translated into the λ-calculus expression
fill ‘〈〈 + 〉〉’ [x, y].

7.2 Destructing Terms

For the compilation of quotation patterns we will require another built-in function
called match. The first argument to match is a context with n holes that will serve

4The compiler requires a slightly stricter definition of valid patterns, in that it is applicable
only to linear patters, i.e., those in which no variable is repeated.

5We use λ→ to indicate a reduction in the λ-calculus as opposed to reFLect.

28

as a pattern. The second argument is a function that takes a list of n expressions
as its argument. The third argument is a function from an expression to the same
return type as the second argument. The fourth argument is an expression. It then
attempts to match the expression to the context, producing a list of expressions
for the regions that were matched to the holes. If the match was successful then
the result is the application of the second argument to this list. If the match is not
successful then the third argument is applied to the expression instead.

match:
context → (term list → α) → (term → α) → term → α

(〈〈C [̂ (v1
◦
◦ term)◦◦σ1, . . . (̂vn

◦
◦ term)◦◦σn]〉〉, [〈〈Ξ1〉〉, . . . 〈〈Ξn〉〉/v1, . . . vn]) matches 〈〈N〉〉

` match ‘〈〈C[◦
◦σ1, . . . ◦

◦ σn]〉〉’ Λ M “〈〈N〉〉” λ→ Λ [“〈〈Ξ1〉〉”, . . . “〈〈Ξn〉〉”]
(where v1, . . . vn are fresh)

6 ∃θ. (〈〈C [̂ v1
◦
◦σ1, . . . v̂n

◦
◦σn]〉〉, θ) matches 〈〈N〉〉

` match ‘〈〈C[◦
◦σ1, . . . ◦

◦σn]〉〉’ Λ M “〈〈N〉〉” λ→ M “〈〈N〉〉”
(where v1, . . . vn are fresh)

Using match the reFLect program λ〈〈̂ x+ ŷ〉〉. (x, y) can be translated into λ-
calculus as follows:

match ‘〈〈 + 〉〉’ (λ[x, y]. (x, y)) error

7.3 Compilation Example

We illustrate the action of the compiler on the definition of the comm function from
section 2.

E “λ〈〈̂ x+ ŷ〉〉. 〈〈̂ (comm·y) + (̂comm·x)〉〉
|||λ〈〈̂ f ·̂ x〉〉. 〈〈̂ (comm·f)·̂ (comm·x)〉〉
|||λ〈〈λ̂ p. b̂〉〉. 〈〈λ̂ p. (̂comm·b)〉〉
|||λ〈〈̂ p. b̂ ||| â〉〉. 〈〈λ̂ p. (̂comm·b) ||| (̂comm·a)〉〉
|||λx.x”

We begin by repeatedly invoking the expression compiler E. In this first step we have
invoked E on any instances of the fourth and fifth clauses of its definition. These
clauses translate reFLect pattern matching λs into calls to the pattern compiler P.

P “〈〈̂ x+ ŷ〉〉” (E “〈〈̂ (comm·y) + (̂comm·x)〉〉”)
(P “〈〈̂ f ·̂ x〉〉” (E “〈〈̂ (comm·f)·̂ (comm·x)〉〉”)
(P “〈〈λ̂ p. b̂〉〉”(E “〈〈λ̂ p. (̂comm·b)〉〉”)
(P “〈〈λ̂ p. b̂ ||| â〉〉”(E “〈〈λ̂ p. (̂comm·b) ||| (̂comm·a)〉〉”)
(P “x” (E “x”) error))))

29

Next we use E again, this time applying it to any instances of the sixth clause
of its definition. This translates the use of antiquotation to perform expression
construction into an application of the fill function.

P “〈〈̂ x+ ŷ〉〉” (fill ‘〈〈 + 〉〉’ [E “comm·y”,E “comm·x”])
(P “〈〈̂ f ·̂ x〉〉” (fill ‘〈〈 · 〉〉’ [E “comm·f”,E “comm·x”])
(P “〈〈λ̂ p. b̂〉〉”(fill ‘〈〈λ . 〉〉’ [E “p”,E “comm·b”])
(P “〈〈λ̂ p. b̂ ||| â〉〉”(fill ‘〈〈λ . ||| 〉〉’ [E “p”,E “comm·b”,E “comm·a”])
(P “x” x error))))

A few more applications of E, this time focusing on instances of the first three
clauses of its definition, remove the remaining uses of this function. In doing so we
complete the translation of the bodies of the original reFLect abstractions.

P “〈〈̂ x+ ŷ〉〉” (fill ‘〈〈 + 〉〉’ [comm y, comm x])
(P “〈〈̂ f ·̂ x〉〉” (fill ‘〈〈 · 〉〉’ [comm f, comm x])
(P “〈〈λ̂ p. b̂〉〉”(fill ‘〈〈λ . 〉〉’ [p, comm b])
(P “〈〈λ̂ p. b̂ ||| â〉〉”(fill ‘〈〈λ . ||| 〉〉’ [p, comm b, comm a])
(P “x” x error))))

We now use P to compile the pattern matching code into an application of the
match function.

match ‘〈〈 + 〉〉’ (λk. L [“x”, “y”] (fill ‘〈〈 + 〉〉’ [comm y, comm x]) k)
(match ‘〈〈 · 〉〉’ (λl. L [“f”, “x”] (fill ‘〈〈 · 〉〉’ [comm f, comm x]) l)
(match ‘〈〈λ . 〉〉’(λm. L [“p”, “b”] (fill ‘〈〈λ . 〉〉’ [p, comm b]) m)
(match “〈〈λ . ||| 〉〉”(λn. L [“p”, “b”, “a”] (fill ‘〈〈λ . ||| 〉〉’ [p, comm b, comm a]) n)
(λx.x))))

We complete the compilation with repeated application of the variable list abstrac-
tion compiler L.

match ‘〈〈 + 〉〉’ (λk. (λx. (λy. fill ‘〈〈 + 〉〉’ [comm y, comm x]) (hd (tl k))) (hd k))
(match ‘〈〈 · 〉〉’ (λl. (λf . (λx. fill ‘〈〈 · 〉〉’ [comm f, comm x]) (hd (tl l))) (hd l))
(match ‘〈〈λ . 〉〉’(λm. (λp. (λb. fill ‘〈〈λ . 〉〉’ [p, comm b]) (hd (tl m))) (hd m))
(match “〈〈λ . ||| 〉〉”(λn. (λp. (λb. (λa. fill ‘〈〈λ . ||| 〉〉’ [p, comm b, comm a])

(hd (tl (tl n)))) (hd (tl n))) (hd n))
(λx.x))))

8 Reflection

Thus far we have described the core of the reFLect language. This language features
facilities for constructing and destructing expressions using quotation, antiquota-
tion and pattern matching. These allow reFLect to be used for applications, like

30

theorem prover development, that might usually be approached with a system
based on a separate meta-language and object-language. In this section we add
some facilities for reflection.

8.1 Evaluation

The reFLect language has two built-in functions for evaluation of expressions: eval
and value.6 Suppose we use the notation Λ ⇒ Λ′ to mean that Λ is evaluated
to produce Λ′. Certainly Λ ⇒ Λ′ implies Λ

∗→ Λ′, but we consider the order of
evaluation and the normal form at which evaluation stops to be implementation
specific, and so we leave these unspecified. The eval function is then described as
follows:

` eval: term → term

0 ` Λ ` Λ ⇒ Λ′

` eval·〈〈Λ〉〉 → 〈〈Λ′〉〉

Next we consider value. It is a slight misstatement to say that value is a function
in reFLect—rather there is an infinite family of functions valueσ indexed by type.
The behavior of value is similar to that of antiquotation; it removes the quotes from
around an expression and interprets the result as a value of the appropriate type.

` valueσ: term → σ

0 ` Λ free Λ = ∅ ` Λ: τ τφ = σ

` valueσ·〈〈Λ〉〉 → Λφ

There are several important differences between value and antiquotation:

• The value function may appear at level zero, while antiquotation may not.

• Like other functions, value has no effect when quoted, while a (once) quoted
antiquote may be reduced.

• If the type required of an expression is different from the actual type, then
value may instantiate the type of the expression. Antiquotation may instead
instantiate the type of its context.

• Antiquotation does not alter the level of the quoted expression, but value
moves the body of the quoted expression from level one to level zero.

6Note that of the two, it is value rather than eval that most closely corresponds to the eval
operation in LISP.

31

This last difference has important consequences for the treatment of variable
binding. In moving an expression to level zero, value could expose its free variables
to capture by enclosing lambda bindings. We restrict value to operate on closed
expressions to prevent this. The restriction is similar in motivation to the run-time
variable check of run in MetaML [30] or the static check for closed code in the
system λBN [3].

8.2 Value Reification

The reFLect language also supports a partial inverse of evaluation through the lift
function; its purpose is to make quoted representations of values. For example,
lift·1 is 〈〈1〉〉 and lift·T is 〈〈T〉〉. The function lift is strict, so lift·(1 + 2) is equal
to 〈〈3〉〉. Note also that lift may only be applied to closed expressions. Lifting
quotations is easy: just wrap another quote around them. For example, lift·〈〈x+ y〉〉
gives 〈〈〈〈x+ y〉〉〉〉. Lifting recursive data-structures follows a recursive pattern that
can be seen from the following example of how lift works on lists.

lift·[]◦◦σ list = 〈〈[]◦◦ σ list〉〉
lift·(::◦◦ σ → σ list → σlist)·Λ·M) =
〈〈(::◦◦ σ → σ list → σlist)·̂ (lift·Λ)◦◦σ·̂ (lift·M)◦◦σ list〉〉

Lifting numbers, booleans and recursive data-structures is easy because they
have a canonical form, but the same is not true of other data-types. For example,
how do we lift λx.x + 1? Naively wrapping quotations around the expressions
would result in inconsistencies. For example, λx. x+ 1 and λx. 1 + x are equal and
extensionality therefore requires that lift·(λx. x+ 1) and lift·(λx. 1 + x) be equal,
but 〈〈λx. x+ 1〉〉 and 〈〈λx. 1 + x〉〉 are not equal. If Λ is an expression of some type
σ without a canonical form then we will use the following definition for lift.

lift·Λ = 〈〈[[Λ]]◦◦σ〉〉

You should think of [[Λ]] as being a new and unusual constant name. These names
have the property that if Λ and M are semantically equal, then [[Λ]] and [[M]]
are considered the same name. For example evaluating lift·(λx.x+ 1) produces
〈〈[[λx.x+ 1]]〉〉 and evaluating lift·(λx. 1 + x) produces 〈〈[[λx. 1 + x]]〉〉, and the two
resulting expressions are equal since they are both quoted constants with ‘equal’
names.7 When we do this, we say that we have put the expression in a black
box. Since black boxes are just a kind of constant they require no further special
treatment.

Note that eval is not simply the composition of value and lift. Consider the
expressions 〈〈(λx.λy.x+ y)·1)〉〉 and 〈〈(λx.λy. y + x)·1)〉〉. Applying eval to these

7Of course, the equality of such names is not decidable.

32

expressions produces 〈〈λy. 1 + y〉〉 and 〈〈λy. y + 1〉〉. Applying value then lift however
must yield 〈〈[[λy. 1 + y]]〉〉 and 〈〈[[λy. y + 1]]〉〉. Because the composition of value and
lift takes an expression to an expression via the unquoted form that represents
its meaning, two different expressions that represent semantically equal programs
must produce the same result. By taking expressions to expressions directly the
eval operation is not so constrained.

As an example, by using lift you can write the function sum defined by

letrec sum = λn. if n = 0 then 〈〈0〉〉 else 〈〈̂ (lift·n) + (̂sum·(n− 1))〉〉

This maps n to an expression that sums all the numbers up to n. For example,
sum·4 produces 〈〈4 + 3 + 2 + 1 + 0〉〉.

This feature addresses a shortcoming of the previous version of Forte based on
FL . Users of this system sometimes want to verify a result by case analysis that
can involve decomposing a goal into hundreds of similar cases, each of which is
within reach of an automatic solver. It is difficult in FL to write a function that
will produce (a conjunction of) all those cases. Facilities like lift make this easier,
and the code that does it more transparent.

8.3 Reflection and Compilation

In an implementation based on compilation the reflection features just presented
are complicated by the fact that type information is lost during the compilation
process. To compensate for this the lift operation must reconstruct types as it
processes an expression. In some cases the quoted expression returned will have a
more general type than the original value because non-inferable type information
will have been lost.

In such a system the eval and value functions would be implemented as follows.

free Λ = ∅ ` Λ: σ ` lift·(E “Λ”)
λ→ “〈〈M〉〉” ` M: τ τθ = σ

` eval “〈〈Λ〉〉” λ→ “〈〈Mθ〉〉”

free Λ = ∅ ` Λ: τ τφ = σ

` valueσ “〈〈Λ〉〉” λ→ (E “Λ”)

Note that the eval function here is less widely applicable than one based directly
on the operational semantics. It may also return results with subexpressions at
more general types than one based on the operational semantics. Using lift in the
implementation of eval may also result in subexpressions that are black boxes, as
described above. However, we may relax the behavior of lift in this case so that
it does not produce black boxes as it poses no logical problem for eval to take
syntactically different input terms to different output terms.

33

9 Related Work

The reFLect language can been seen as an application-specific contribution to the
field of meta-programming. In Tim Sheard’s taxonomy of meta-programming [24],
reFLect is a framework for both generating and analyzing programs; it includes
features for run-time program generation; and it is typed, ‘manually staged’, and
‘homogeneous’. Our design decisions, however, were driven by the needs of our
target applications: symbolic reasoning in higher-order logic, hardware modeling,
and hardware transformation. So the ‘analysis’ aspect is much more important
than for the design of functional meta-programming languages aimed at optimized
program execution.

Nonetheless, reFLect has a family resemblance to languages for run-time code
generation such as MetaML [30] and Template Haskell [25]. A distinguishing feature
of MetaML is cross-stage persistence, in which a variable binding applies across the
quotation boundary. The motivation is to allow programmers to take advantage
of bindings made in one stage at all future stages. In reFLect, however, we wish to
define a logic on top of the language and so we take the conventional logical view
of quotation and binding. Variable bindings do not persist across levels. Constant
definitions, however, are available in all levels. They therefore provide a limited
and safe form of ‘cross-level’ persistence, just as they do with polymorphism.

For reasons already described, reFLect also differs from MetaML in typing all
quotations with a universal type term. Template Haskell is similar to reFLect in
this respect. One of the ‘advertised goals’ of Template Haskell is also to support
user-defined code manipulation or optimization, though probably not logic.

Perhaps the closest framework to reFLect is the system described by Shields
et al. in [26]. This has a universal term type, a splicing rule for quotation and
antiquotation similar to our ψ rule, and run-time type checking of quoted regions.
Our applications in theorem proving and design transformation have, however,
led to some key differences. We adopt a simpler notion of type-consistency when
splicing expressions into a context, ensuring only that the resulting expression is
well typed, while the Shields system ensures consistent typing of variables. This
relaxation keeps the logic we construct from reFLect simple, and the implementation
of time critical theorem proving algorithms, like rewriting, efficient.

The reFLect language extends the notion of quotation and antiquotation, which
have been used for term construction since the LCF system [8], by also allowing
these constructs to be used for term decomposition via pattern matching. In this
respect we follow the work of Aasa, Petersson and Synek [2] who proposed this
mechanism for constructing and destructing object-language expressions within a
meta-language. The other reflective languages discussed here [25, 26, 30] do not
support this form of pattern matching, which is valuable for our applications in code
inspection and transformation, but would find less application in the applications

34

targeted by these systems.

10 Conclusion

In this paper we presented the language reFLect; a functional language with strong
typing, quotation and antiquotation features for meta-programming, and reflec-
tion. The quotation and antiquotation features can be used not only to construct
expressions, but also to transparently implement functions that inspect or traverse
expressions via pattern matching. We made novel use of contexts with a level con-
sistency property to give concise descriptions of the type system and operational
semantics of reFLect, as well as using them to describe a method of compiling away
the new syntactic features of reFLect.

We have completed an implementation of reFLect using the compilation tech-
nique described to translate reFLect into λ-calculus, which is then evaluated using
essentially the same combinator compiler and run-time system as the previous FL
system [1]. The performance of FL programs that do not use the new features of
reFLect has not been impacted.

We have used reFLect to implement a mechanized reasoning system based on
inspirations from HOL [10] and the Forte [1, 13] system, a tool used extensively
within Intel for hardware verification. The ability to pattern match on expressions
has made the logical kernel of this system more transparent and compact than
those of similar systems. The system includes evaluation as a deduction rule, and
combines evaluation with rewriting to simplify closed subexpressions efficiently.

This presentation of the type system and operational semantics for reFLect gives
a good starting point for investigation of more theoretical properties of the lan-
guage, like confluence, subject-reduction, and normalization. Sava Krstić and John
Matthews of the Oregon Graduate Institute have proved these properties for the
reFLect language features for expression construction and analysis, though not those
that relate to evaluation of expressions [17]. Their proofs cover the language pre-
sented here up to, but not including, section 7.

11 Acknowledgments

The authors would like to thank the following people for their helpful discussions
on reFLect: Rob Gerth and Carl Seger of the Intel Corporation, Mike Gordon of the
University of Cambridge, Sava Krstić and John Matthews of the Oregon Graduate
Institute, and Mark Shields of Galois Connections.

35

References

[1] M. D. Aagaard, R. B. Jones, and C.-J. H. Seger. Lifted-FL: A pragmatic im-
plementation of combined model checking and theorem proving. In Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, Theorem Proving
in Higher Order Logics: 12th International Conference, TPHOLs’99, volume
1690 of LNCS, pages 323–340. Springer-Verlag, 1999.

[2] A. Aasa, K. Petersson, and D. Synek. Concrete syntax for data objects. In
LISP and Functional Programming: ACM Conference, LFP 88, pages 96–105.
ACM Press, 1988.

[3] Z. E.-A. Benaissa, E. Moggi, W. Taha, and T. Sheard. Logical modalities and
multi-stage programming. In Intuitionsitic Modal Logics and Applications:
Federated Logic Conference Satellite Workshop, IMLA, 1999.

[4] S. Berghofer and T. Nipkow. Executing higher order logic. In P. Callaghan,
Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs and Programs:
International Workshop, TYPES 2000, volume 2277 of LNCS, pages 24–40.
Springer-Verlag, 2000.

[5] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design
in Haskell. In Functional Programming: International Conference, ICFP’98,
pages 174–184. ACM Press, 1998.

[6] A. Church. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5:56–68, 1940.

[7] T. Coquand. An analysis of Girard’s paradox. In Logic in Computer Science:
1st IEEE Symposium, LICS’86, pages 227–236. IEEE Computer Society Press,
1986.

[8] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mech-
anised Logic of Computation, volume 78 of LNCS. Springer-Verlag, 1979.

[9] M. J. C. Gordon. Why higher-order logic is a good formalism for specifying
and verifying hardware. In G. J. Milne and P. A. Subrahmanyam, editors,
Formal Aspects of VLSI Design: Workshop, pages 153–177. North-Holland,
1985.

[10] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press,
1993.

36

[11] R. Harper, D. MacQueen, and R. Milner. Standard ML. Report 86-2, Univer-
sity of Edinburgh, Laboratory for Foundations of Computer Science, 1986.

[12] S. D. Johnson. Synthesis of Digital Designs from Recursion Equations. MIT
Press, 1984.

[13] R. B. Jones, J. W. O’Leary, C.-J. H. Seger, M. D. Aagaard, and T. F. Melham.
Practical formal verification in microprocessor design. IEEE Design & Test of
Computers, 18(4):16–25, 2001.

[14] R. Kaivola and K. R. Kohatsu. Proof engineering in the large: Formal ver-
ification of the Pentium 4 floating-point divider. In T. Margaria and T. F.
Melham, editors, Correct Hardware Design and Verification Methods: 11th Ad-
vanced Research Working Conference, CHARME 2001, volume 2144 of LNCS,
pages 196–211. Springer-Verlag, 2001.

[15] R. Kaivola and N. Narasimhan. Formal verification of the Pentium 4 multi-
plier. In High-Level Design Validation and Test: 6th International Workshop:
HLDVT 2001, pages 115–122, 2001.

[16] M. Kaufmann, P. Manolios, and J. S. Moore, editors. Computer-Aided Rea-
soning: ACL2 Case Studies. Kluwer, 2000.

[17] S. Krstić and J. Matthews. Subject reduction and confluence for the reFLect

language. Technical Report CSE-03-014, Department of Computer Science
and Engineering, OGI School of Science and Engineering at Oregon Health
and Sciences University, 2003.

[18] A. C. Leisenring. Mathematical Logic and Hilbert’s ε-Symbol. Macdonald,
1969.

[19] J. Matthews, B. Cook, and J. Launchbury. Microprocessor specification in
Hawk. In Computer Languages: International Conference, pages 90–101. IEEE
Computer Society Press, 1998.

[20] T. F. Melham. Higher Order Logic and Hardware Verification. Cambridge
University Press, 1993.

[21] O. Müller and K. Slind. Treating partiality in a logic of total functions. The
Computer Journal, 40(10):640–651, 1997.

[22] L. C. Paulson. A higher-order implementation of rewriting. Science of Com-
puter Programming, 3(2):119–149, 1983.

37

[23] E. Pas̆alić, W. Taha, and T. Sheard. Tagless staged interpreters for typed
languages. SIGPLAN Notices, 37(9):218–229, 2002.

[24] T. Sheard. Accomplishments and research challenges in meta-programming.
In W. Taha, editor, Semantics, Applications, and Implementation of Program
Generation: 2nd International Workshop, SAIG 2001, volume 2196 of LNCS,
pages 2–44. Springer-Verlag, 2001.

[25] T. Sheard and S. Peyton Jones. Template meta-programming for Haskell. In
Haskell: Workshop, pages 1–16. ACM Press, 2002.

[26] M. Shields, T. Sheard, and S. P. Jones. Dynamic typing as staged type in-
ference. In Principles of Programming Language: 25th Annual Symposium,
POPL 1998, pages 289–302, 1998.

[27] G. Spirakis. Leading-edge and future design challenges: Is the classical EDA
ready? In Design Automation: 40th ACM/IEEE Conference, DAC 2003, page
416. ACM Press, 2003.

[28] P. C. Suppes. Introduction to Logic, chapter 6. Dover, 1999.

[29] W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1999.

[30] W. Taha and T. Sheard. Multi-stage programming with explicit annotations.
SIGPLAN Notices, 32(12):203–217, 2002.

38

