
Programming Research Group

A CALCULATIONAL APPROACH TO PROGRAM INVERSION

Shin-Cheng Mu

PRG-RR-04-03

Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD

To my grandmother, Mrs. Mao-Qian Chen.

!
"

#

$
%
&
'
(
)
*

A Calculational Approach to Program Inversion∗

Shin-Cheng Mu

Abstract

Many problems in computation can be specified in terms of computing the inverse of an easily
constructed function. However, studies on how to derive an algorithm from a problem specification
involving inverse functions are relatively rare. The aim of this thesis is to demonstrate, in an
example-driven style, a number of techniques to do the job. The techniques are based on the
framework of relational, algebraic program derivation.

Simple program inversion can be performed by just taking the converse of the program, some-
times known as to “run a program backwards”. The approach, however, does not match the
pattern of some more advanced algorithms. Previous results, due to Bird and de Moor, gave
conditions under which the inverse of a total function can be written as a fold. In this thesis, a
generalised theorem stating the conditions for the inverse of a partial function to be a hylomor-
phism is presented and proved. The theorem is applied to many examples, including the classical
problem of rebuilding a binary tree from its preorder and inorder traversals.

This thesis also investigates into the interplay between the above theorem and previous results
on optimisation problems. A greedy linear-time algorithm is derived for one of its instances — to
build a tree of minimum height. The necessary monotonicity condition, though looking intuitive,
is difficult to establish. For general optimal bracketing problems, however, the thinning strategy
gives an exponential-time algorithm. The reason and possible improvements are discussed in a
comparison with the traditional dynamic programming approach. The greedy theorem is also
generalised to a generic form allowing mutually defined algebras. The generalised theorem is ap-
plied to the optimal marking problem defined on non-polynomial based datatypes. This approach
delivers polynomial-time algorithms without the need to convert the inputs to polynomial based
datatypes, which is sometimes not convenient to do.

The many techniques are applied to solve the Countdown problem, a problem derived from
the popular television program of the same name. Different derivation strategies are compared.
Finally, it is shown how to derive from its specification the inverse of the Burrows-Wheeler trans-
form, a string-to-string transform useful in compression. As a bonus, we also outline how two
generalisations of the transform may be derived.

∗Further copies of this Research Report may be obtained from the Librarian, Oxford University Comput-
ing Laboratory, Programming Research Group, Wolfson Building, Parks Road, Oxford OX1 3QD, England
(Telephone: +44-1865-273837, Email: library@comlab.ox.ac.uk).

Acknowledgements

The past three years in Oxford were among the happiest time in my life. I would like to express
my deep gratitude to Richard Bird, who has been a great supervisor in every aspect. He has been
a constant source of inspiration and ideas. His experience and insight always helped whenever I
got stuck. I benefited from his supervision not only through his technical advice but also though
his ever-open door for students, his frank comments on my work, and his insistence that behind
every problem there ought to be a beautiful solution that is worth striving for. I will certainly
miss every moment of our meetings in his office, his college, or a local pub, including the way he
shouted “out!” in the end when he needed to deal with other urgent business.

I would also like to thank Oege de Moor, who always understood my work better than myself
and told me how important it is, for his constant interest and encouragement. My thanks also go
to Jeremy Gibbons, who often managed to quickly understand my work however badly I presented
it in our meetings, and would then explain to other puzzled members. I enjoyed every meeting of
the Algebra of Programming group, whose regular members include Geraint Jones, Clare Martin,
and Barney Stratford. With them I learnt how enjoyable it can be to work with a group of
excellent people sharing the same interests.

All this could not have happened if it were not for the encouragement from Tyng-Ruey Chuang,
who is not only a good teacher at work but also one I can consult with for many important
decisions. I would also like to thank Shi-Jean Tai, for teaching me many important things in life
and encouraging me to take the offer from Oxford.

Many people gave me useful and constructive comments on contents of this thesis. I would
like to thank Roland Backhouse, Ralf Hinze, and Graham Hutton. Johan Jeuring, Andres Leoh,
and Isao Sasano painstakingly read through much of this thesis and pointed out many errors. To
them I must express my sincere gratitude.

Most of my time in Oxford was spent in the attic in Wolfson Building, staying up late with
Malcolm Low and Sunil Nakarani. Many things we did together, such as our successful interior
design and our movie nights, will be my sweet memories. Thank-you to my colleagues Stephen
Drape, Will Greenland, Yorck Hunke, David Lacy, and Tom Newcomb for the calendar, the dart
board, and many happy nights in pubs. I would also like to thank Silvija Seres for her good
cooperation and useful advice, many of which triggered important opportunities for me. A thank-
you to Christian Greiffenhagen, for his friendly chats and for taking a frightened foreign student
who just arrived on the other side of the world to his first movie in Oxford.

Being in a foreign country, I am lucky to have the firm friendship of many people around me.
Shih-Hsin Kan spoiled me with his cooking in our first year. Duen-Wei Hsu then took over by
dragging me to pubs. I would like to thank Bert Chen, Hsiao-Hui Chen, Jwu-Ching Shu, Hsiao-
Ting Lin, Hsin-Yi Lin, Hsiu-Hsu Lin, Po-Hsien Liu, I-Chun Shih, Pi-Ho Wu for their company.
I would also like to thank Yu-Chan Lu for reminding me what the most important section in a

thesis is. My sincere thank to Yuling Chang for sharing a memorable time with me.
Special thanks to Akiko Nakata, who always tries hard to make me happy, whose love and

care always warmed my heart.
My parents Ren-Ho Mu and Pu-Mei Chen generously supported my study both financially

and emotionally. I would also like to express my gratitude to my uncle Yen-Ru Chen, who has
been my role-model since childhood, and will remain to be so.

I was raised by my grandmother Mrs. Mao-Qian Chen. With her unconditional love, she gave
me everything I have and made me who I am. I would always feel safe wherever I am, knowing
that she would be home waiting for me with her kind smile. She passed away on 2nd August,
2002. Words cannot describe my sorrow. It is a pity that I did not finish this thesis earlier and
make her proud.

Shin-Cheng Mu
Oxford, 23rd January 2003

Contents

1 Introduction 1

1.1 A Teaser . 2

1.2 Background . 3

1.3 Outline . 4

2 Preliminaries 7

2.1 Categories and Functors . 8

2.2 Products and Coproducts . 9

2.3 Algebras and folds . 10

2.4 Relations . 12

2.5 Power Transpose . 14

2.6 Relators . 15

2.7 Relational Folds . 15

2.8 Hylomorphisms and Fixed-points . 16

3 The Compositional Approach 17

3.1 Splitting a List into Two . 17

3.2 Partitioning a List . 20

3.3 Rebuilding a Tree from its Traversals . 22

3.3.1 An Attempt via Direct Inversion . 22

3.3.2 Adding Redundancy . 23

3.3.3 The Inversion . 25

3.4 Discussion . 26

4 The Converse-of-a-Function Theorem 29

4.1 Inverting a Function as a Fold . 29

4.2 Partitioning a List Revisited . 30

4.3 Building a Tree from Its Depths . 31

4.3.1 Building a Tree with a Fold . 32

4.3.2 The Derivation . 34

4.4 Breadth-First Labelling . 35

4.5 Rebuilding a Tree from its Traversals Revisited . 39

4.5.1 Unflattening an Internally Labelled Binary Tree 41

4.5.2 Enforcing a Preorder . 42

4.5.3 Building a Tree with a Given Preorder . 46

4.6 The Generalised Converse-of-a-Function Theorem 51

4.6.1 Inductivity and Membership . 51

i

ii CONTENTS

4.6.2 The Proof . 52

4.7 Applications of the Generalised Theorem . 54

4.7.1 Splitting a List revisited . 55

4.7.2 The String Edit Problem . 56

4.7.3 Building Trees by Combining Pairs . 58

5 Optimisation Problems 61

5.1 Building Trees with Minimum Height . 61

5.1.1 The Greedy Theorem . 64

5.1.2 Proving the Monotonicity Condition . 65

5.1.3 A Further Refinement . 69

5.1.4 The Implementation . 71

5.2 Optimal Bracketing Problems . 72

5.2.1 The Thinning Theorem . 74

5.2.2 Implementing Thinning . 75

5.2.3 Solving the Optimal Bracketing Problem 78

5.2.4 A Comparison with Dynamic Programming 81

5.3 The Generic Greedy Theorem . 82

5.3.1 The Maximum Subtree Problem . 83

5.3.2 Introducing the Theorem . 85

5.3.3 Application . 87

5.3.4 The Maximum Sub-Rectangle Problem . 89

5.3.5 Comparison . 92

6 Countdown: A Case Study 93

6.1 The Specification . 94

6.2 The Top-Down Approach . 95

6.2.1 Choosing a Representation for Bags . 96

6.2.2 Building Trees First . 98

6.2.3 Summary and Comparisons . 99

6.3 The Closure Algorithm . 101

6.3.1 Generating Subbags within the Recursion 102

6.3.2 Transforming to a Closure . 103

6.3.3 Computing Closures . 104

6.3.4 Thinning . 106

6.4 A Fold Algorithm . 107

6.5 Comparisons . 109

6.6 Conclusions . 112

7 The Burrows-Wheeler Transform 113

7.1 Defining the BWT . 113

7.2 Lexicographic sorting . 115

7.3 Recreating the Matrix . 117

7.4 Picking a Row from the Matrix . 118

7.5 Schindler’s variation . 121

7.6 Chapin and Tate’s variation . 122

7.7 Conclusions . 124

CONTENTS iii

8 Conclusion 125
8.1 Relations and Non-determinism . 125
8.2 The Converse-of-a-Function Theorem . 126
8.3 Tree Construction and the Spine Representation 127
8.4 More on Compression and Decompression . 128
8.5 Mechanised Approaches to Inverse Computation 128
8.6 Reversible Computation and Quantum Computing 129

A Proof of Minor Lemmas 139

B Proof of the Generic Greedy Theorem 147

C Missing Proofs in Chapter 6 151
C.1 An Online Algorithm for Binary Closure . 151
C.2 Proof of Theorem 6.1 . 151
C.3 Building Oriented Trees by a Fold . 154

Chapter 1

Introduction

This thesis is about relational program derivation. It will be shown in an example-driven style how
various theories and techniques can be applied to derive algorithms from a relational specification.
Most examples in this thesis involve inverting functions as a common theme.

It has long been known that program construction by trial and error is doomed to failure and a
more systematic approach is required. One methodology toward constructing correct and efficient
programs is through program transformation [22, 27]. One starts from a specification which is
obviously correct but either inexecutable or inefficient. The specification is then manipulated via
successive transformations until an executable program that is efficient, yet still a valid refinement
of the original specification, is constructed. We will call the progress from the specification to
the resulting program a program derivation. Among the many approaches to program derivation,
ours is a descendant of the Bird-Meertens Formalism [61, 62, 12, 33]. The characteristics of this
style includes a uniform and concise notation for both specification and programming constructs,
and a linear, equational reasoning style of program refinement.

There are at least two reasons why program derivation involving inverse functions deserves a
thesis of its own. Firstly, inverse functions are useful in specification. Many problems in computa-
tion can be specified in terms of computing the inverse of an easily constructed function. Among
many obvious examples, parsing is the inverse of printing, while compression and decompression
are inverses of each other. As we shall soon see, inverse functions sometimes even arise in unex-
pected situations. Surprisingly, relatively little research has been done about program derivation
when inverse functions are present.

The second reason is that we already have the tools to talk about inverse functions properly.
During the last decade, there was a trend in the programming derivation community to move from
functions to a relational framework. Relations serve as such a convenient tool for specification
that one might begin to believe that it is the right model to develop a theory of programming on.
Indeed, it has been proposed that non-determinism should be taken as primitive in a programming
and deterministic programming a special case [28, 3]. Considering applications, the best explored
area for relational derivation is that of optimisation problems [26, 17]. As the inverse of a function
is most conveniently described as a relation, it might be another area for which the relational model
can be of use. This thesis explores such a possibility, as well as recording some new results on
optimisation problems.

1

2 CHAPTER 1. INTRODUCTION

a,1

b,2 g,3

f,5c,4 h,6 m,7

d,8 e,9 i,10 j,11

k,12 l,13

a

b g

fc h m

d e i j
k l

Figure 1.1: Breadth-first labelling a tree on the left with [1..].

1.1 A Teaser

To convince the reader that inverse functions are useful for specification, and to give a feel what
this thesis is about, let us consider, as a teaser, the problem of breadth-first labelling.

To breadth-first label a tree with respect to a given list is to augment the nodes of the tree with
values in the list in breadth-first order. Figure 1.1 shows the result of breadth-first labelling a tree
with 13 nodes with the infinite list [1..]. While everybody knows how to do breadth-first traversal,
the closely related problem of efficient breadth-first labelling is not so widely understood.

How would one specify this problem, and what does it have to do with inverse functions?
Let us call the type of binary trees Tree A and assume that we have at hand the function bft ::
Tree A → List A, for breadth-first traversal, and zipTree :: Tree A → Tree B → Tree (A × B), a
partial function zipping together two trees of the same shape. To perform breadth-first labelling
given a tree t and a list x , we want to zip t with another tree u. What, then, must this tree
u satisfy? Firstly, it must be of the right shape, a condition that can be enforced by zipTree.
Secondly, its breadth-first traversal must be a prefix of the given list x . We thus come up with
the following specification:

bfl t x = zipTree t u

where bft u = y

y ++ z = x

Now look at the flow of information in the above specification. The functions bft and ++ appear
on the left-hand side, meaning that we wish the data to go backwards through them. Let us
denote the inverse of a function f by f ◦, pronounced “the converse of f ” or more briefly “f wok”.
The formal definition of f ◦ will be delayed to Chapter 2. For now, let us say that f ◦ y non-
deterministically yields some x such that f x = y . It follows that we can alter the directions of
functions and make the specification a pipeline from the right to the left, resulting in the following
equivalent point-free specification:

bfl t = zipTree t · bft◦ · fst · cat◦

where cat = uncurry (++). Here cat◦ non-deterministically splits the input list in two, therefore
fst · cat◦ takes an arbitrary prefix of the input list. The inverse of bft gives us a tree whose
breadth-first traversal matches the prefix. The tree is then zipped with the input t .

This is an example where inverses arise unexpectedly in specification. Concise as it is, how
does one derive an algorithm from it? The answer, among many other examples, is to be presented
in this thesis.

1.2. BACKGROUND 3

1.2 Background

The use of relations to model programming can be traced to the 80’s. Earlier work (for example,
[63, 10]) started with modelling common imperative programming constructs as input/output
relations. The relational approach was later extended to model datatypes as well as operations on
them. Some focused on relations [6, 7, 31, 32], while some took a category theoretical approach
[64, 17]. Both approaches gave a formal treatment of important building blocks of functional
programs, such as fold and unfold.

The idea of program inversion can be traced at least back to Dijkstra [29]. However, given the
importance of inversion as a tool for specification, surprisingly few papers have been devoted to
the topic. Among those that do, most deal with imperative program inversion in the context of
refinement calculus. A program is inverted by running it “backwards”, and the challenging part
is when one encounters a branch or a loop [75]. The classic example was to construct a binary
tree given its inorder and preorder traversal [38, 39, 24, 83, 78].

Inversion of functional programs has received even less attention. Most published results (e.g.
[55, 40]) are based on a “compositional” approach, which is essentially the same as its imperative
counterpart: the inverses of the sequentially composed components are recursively constructed,
before being combined “in reverse”. The recursive process continues until we reach primitives
whose inverses are pre-defined.

A matter of concern is: what does it mean to “invert” a function or a program? We know
that a function f has a left inverse f −1 if for all a, f −1 (f a) = a. To invert a function can be
thought of as constructing f −1 given f . However, f −1 exists as a function only if f is injective.
To generalise the notion of inversion to arbitrary functions, one possible choice is to switch to
set-valued functions (for example, in [41]). To invert a function f :: A → B is to construct a
function f −1 :: B → Set A, where f −1 b yields the set of all values a such that f a = b. In [40],
both the domain and range of such a function were lifted to powerdomains. The approach in
this thesis, on the other hand, is to work on relations rather than functions and take relational
converse to be the “inverse” of a function.

Development on the side of refinement calculus seems to be more advanced. In [24], a program
T was defined to be an inversion of program S under precondition P if

{P ∧Q}S ;T{Q}

for all predicates Q – that is, when the side condition P holds, T is supposed to put the computer
back to the initial condition which S started with. This notion of inversion was further discussed
in [84, 4], where a program S has an inverse S− if

S−;S ≤ skip ∧ {wp(S , true)} ≤ S ;S−

where ≤ is the refinement ordering and {P} is the predicate transformer for assertions, defined by
wp({P},Q) = P ∧Q . It was also shown in [4] that this view is equivalent to taking the relational
converse of a program.

The above techniques, as well as those of this thesis, aim at producing an optimised algorithm
by hand. As a consequence, the derivation usually works in a case-by-case basis and human
inspiration is an essential part of the derivation. In contrast, efforts have also been made on auto-
matically performing inversion for programs in general, such as in [74, 49, 2]. In [2], two different
approaches toward inversion were distinguished: the aim of inverse computation is to determine
what inputs would deliver in a certain output, while inverse compilation or program inversion
aims at producing a program performing the inverse task of a given program. In this thesis, on

4 CHAPTER 1. INTRODUCTION

the other hand, we will use the term function inversion or program inversion interchangeably to
refer to algorithm derivation.

1.3 Outline

Earlier, in the teaser, we made use of inverses without a rigorous definition. This will be remedied
in Chapter 2, where the minimal theory necessary for the rest of the thesis will be introduced.
We will then show in Chapter 3 some examples of simple program inversion using what we will
call the compositional approach, culminating in rephrasing the problem of rebuilding a binary
tree from its prefix and infix traversals in a functional setting.

However, many algorithms involving inversion do not follow from the simple compositional
approach. In Chapter 4, we will present the converse-of-a-function theorem, which states the
conditions under which the converse of a function is a fold. The power of the theorem will be
demonstrated by a number of examples, including the derivation of another algorithm that solves
the classical problem of rebuilding a binary tree from its traversals. In this chapter, we will also
solve the breadth-first labelling problem described in the teaser. A more general theorem, which
allows to write the converse of a partial function as a hylomorphism, is proved and its applications
are discussed.

Studies on optimisation problems have been a fruitful area of application for relational program
derivation. Chapter 5 starts with an exploration of the interplay between the converse-of-a-
function theorem and existing greedy and thinning theorems for optimisation problems. A greedy
linear-time algorithm is derived for a special case of the optimal bracketing problem — to build
a tree of minimum height. We will then apply the thinning strategy to solve optimal bracketing
problems in general. The result, however, is an exponential-time algorithm. The reason and
possible improvements are discussed in a comparison with the traditional dynamic programming
approach. The greedy theorem is also generalised to a generic form allowing mutually defined
algebras. The generalised theorem is applied to the optimal marking problem defined on non-
polynomial based datatypes. This approach delivers polynomial-time algorithms without the need
to convert the inputs to polynomial based datatypes, which is sometimes not flexible to do.

In Chapter 6 we present a larger example. The Countdown problem is derived from the popular
television program of the same name. The many techniques developed earlier in the thesis, as well
as some problem specific optimisations, are applied to derive an efficient algorithm to tackle the
problem. Different strategies are subjected to experiment and compared. Some strategies have
poor performance, while some deliver up to a three-fold improvement in efficiency.

In Chapter 7 we turn to another example, which is mostly independent from the other chapters.
It is shown how to derive from its specification the inverse of the Burrows-Wheeler transform, a
string-to-string transform useful in compression. Not only do we identify the key property of why
the inverse algorithm works but, as a bonus, we also outline how to derive the inverses of two
generalisations of the transform.

Finally we conclude in Chapter 8, give a brief summary of related work and discuss some
interesting future directions.

Chapter 2

Preliminaries

This chapter introduces some basic concepts and notations that we will use throughout the thesis.
This chapter aims at tackling two tasks. The first one is to present, using category theory,

a uniform treatment of the family of fold functions. The family of functions foldr , foldr1. . . etc.
is ubiquitous in functional programming. For example, we can define the following generalised
variant of the Haskell Prelude function fold1, a fold defined on non-empty lists1:

foldrn :: ((A × B)→ B)→ (A→ B)→ List A→ B

foldrn f g [x] = g x

foldrn f g (x : xs) = f (x , foldrn f g xs)

We can also define a fold for the datatype Tree below, representing tip-valued binary trees:

dataTree A = tip A

| bin (Tree A× Tree A)

foldTree :: ((A × A)→ A)→ (B → A)→ Tree B → A

foldTree f g (tip a) = g a

foldTree f g (bin (x , y)) = f (foldTree f g x , foldTree f g y)

In general, every regular datatype gives rise to a corresponding fold function.
We want to be able to talk about properties of these folds in general, as well as to present and

to prove some common properties they all share. However, folds for different datatypes may take
different numbers of functional arguments, each of different arities.

Category theory offers a concise notation for theorems and proofs, and enables us to talk
about properties of many different datatypes as a whole. In the first few sections of this chapter,
we will quickly review some fundamental concepts of category theory just to the extent that is
sufficient for our purposes. Then we will show how these basic building blocks help us to model
the concept of datatypes. For a more complete account of category theory, the reader is directed
to [17, 8].

The second task is to generalise from functions to relations. The inverse of a function is
not necessarily a function. One of the ways to formally talk about inverses is to generalise to
relations, of which functions are a special case. While the semantics of Haskell is built upon
functions between CPOs, for program derivation, we find relations between sets much easier to
deal with. This is the approach we will take in this thesis.

1The notation here deviates a little from Haskell and is closer to that in [17]. Types begin with capital letters
while value constructors, perceived as an injective function, begin with lower-case letters. Single-letter functors are
written in sans serif font while multiple-letter functors are written in normal italic font.

5

6 CHAPTER 2. PRELIMINARIES

2.1 Categories and Functors

A category consists of a collection of objects and arrows, together with four operations:

• Two total operations source and target both assign an object to an arrow. We write f ::
A→ B when an arrow f has source A and target B .

• A total operation id takes an object A to an arrow idA :: A→ A. The subscript is sometimes
omitted when it is clear from the context.

• A partial operation composition takes two arrows f :: B → C and g :: A → B to another
arrow f · g :: A→ C . It is required to be associative and takes id as unit.

While [17] takes an axiomatic approach to category theory, for the purpose of this thesis we can
just focus on two special cases: the category Fun, whose objects are sets and arrows are total
functions between sets, and the category Rel, whose objects are sets and arrows are relations.
In Fun, the arrow id is interpreted as the identity function id a = a and composition is just
functional composition (f · g) a = f (g a).

A functor is a mapping between categories. It consists of two total operations: one maps
objects to objects and another maps arrows to arrows, but we usually denote the two mappings
by the same name. A functor F satisfies the following properties:

• It respects identity: F idA = idFA

• It respects composition: F(f · g) = Ff · Fg

These properties, when being used in later chapters, will be referred to as “functor”. The notion
of functors can be generalised to take more than one argument. A bifunctor takes two arguments
and satisfies the extended laws:

• F(idA, idB) = idF(A,B)

• F(f · h, g · k) = F(f , g) · F(h, k)

Finally, an object is called initial if there exists a unique arrow from the initial object to every
object in the category.

2.2 Products and Coproducts

The cartesian product × can be thought of as a bifunctor in Fun. The operation of × on objects
is defined by

A× B = {(a, b) | a ∈ A ∧ b ∈ B}

Familiar functions fst :: (A × B) → A and snd :: (A × B) → B extract the left and right
components of a pair respectively. For every pair of functions f :: A → B and g :: A → C , the
function 〈f , g〉 :: A→ (B × C) (pronounced “f fork g”) for is defined by:

〈f , g〉 a = (f a, g a)

It satisfies the universal property:

h = 〈f , g〉 ≡ fst · h = f ∧ snd · h = g

2.3. ALGEBRAS AND FOLDS 7

With fork, the operation of × on arrows can be defined by

f × g = 〈f · fst , g · snd〉

The following laws useful for calculation can be derived from the universal property of product:

• cancellation : fst · 〈f , g〉 = f and snd · 〈f , g〉 = g

• fusion : 〈f , g〉 · h = 〈f · h, g · h〉

• absorption : (h × k) · 〈f , g〉 = 〈h · f , k · g〉

If we reverse the directions of all the arrows of a product, we get a coproduct. In Fun, coproduct
can be defined by

A + B = {inl a | a ∈ A} ∪ {inr b | b ∈ B}

A coproduct gives a disjoint union, and the arrows inl :: A → (A + B) and inr :: B → (A + B)
become injections. Just as with fork, we can define for each pair of functions f :: A → C and
g :: B → C an arrow [f , g] :: (A + B)→ C (pronounced “f join g”):

[f , g] (inl a) = f a

[f , g] (inr b) = g b

It satisfies the following universal property:

h = [f , g] ≡ f = h · inl ∧ g = h · inr

Like product, the coproduct can also be defined to be a bifunctor. The operation of + on arrows
can be defined by:

f + g = [inl · f , inr · g]

As a dual of product, we also have a set of laws

• cancellation : [f , g] · inl = f and [f , g] · inr = g ,

• fusion : h · [f , g] = [h · f , h · g],

• absorption : [f , g] · (h + k) = [f · h, g · k]

It is easy to check that the above definitions for × and + do satisfy the conditions for being
bifunctors.

2.3 Algebras and folds

An arrow of type FA → A for some A is called a F-algebra, with A being its carrier. A F-
homomorphism from F-algebra α :: FA → A to F-algebra β :: FB → B is an arrow γ :: A → B

such that

γ · α = β · Fγ

The reason for introducing F-algebras is to capture the structures of many different datatypes
in a unified form. Look at the following datatype definition for non-empty lists of integers2:

dataListInt1 = wrap Z | cons (Z × ListInt1)

2We use a notation similar to Haskell for datatype declarations. Whereas Haskell prefers curried data construc-
tors, we find uncurried ones more suitable for our purpose.

8 CHAPTER 2. PRELIMINARIES

For brevity we use Z to denote the set of integers. Note that data constructor wrap has type
Z → ListInt1 and cons type (Z × ListInt1) → ListInt1. If we define F to be a functor whose
operations on objects and arrows are respectively

FX = Z + (Z ×X)
Ff = idZ + (idZ × f)

then the coproduct [wrap, cons] yields type FListInt1 → ListInt1. It is thus a F-algebra with
carrier ListInt1.

Similarly, consider the type TreeInt of leaf-valued binary trees defined below:

dataTreeInt = tip Z | bin (TreeInt × TreeInt)

The join of its constructors [tip, bin] is a G-algebra with TreeInt being the carrier, where G is

GX = Z + (X × X)
Gf = idZ + (f × f)

The two instances above are not the only F-algebra and G-algebra. For any g :: Z → A and
f :: (Z × A) → A, the coproduct [g , f] forms a F-algebra of type FA → A. Similarly for G. For
example, [id , plus], where plus is the uncurried addition function on integers, can be seen both
as an F-algebra and a G-algebra with carrier Z. Coproduct [wrap, cat], on the other hand, is a
G-algebra with carrier ListInt1, where cat is the uncurried variant of ++, concatenating two lists
represented by datatype ListInt1.

An important result shown in [58] is that for any F belonging to a certain class of functors
(which fortunately includes the examples we are currently interested in), all the F-algebras them-
selves form a category whose objects are F-algebras and arrows are homomorphisms between
F-algebras. Furthermore, initial objects in such categories exist.

When we see the definition of non-empty lists above, we think of it as defining [wrap, cons] to
be an initial object in the category of F-algebras, with ListInt1 being its carrier. That [wrap, cons]
is initial means that, for any F-algebra h, there exists a unique homomorphism, which we will
denote, adopting the concise banana bracket notation, by ([h])

F
. The condition for ([h])

F
to be a

homomorphism reads:

([h])
F
· [wrap, cons] = h · (idZ + (idZ × ([h])

F
))

Since a coproduct-forming arrow can be represented as a coproduct of arrows [35], we can
assume h has form [g , f] without loss of generality. If we split it to pointwise style and write
foldrn f g for ([g , f])

F
(for this particular F), we obtain the characterisation of fold on non-empty

lists, which should look familiar:

foldrn f g (wrap a) = g a

foldrn f g (cons (a, x)) = f (a, foldrn f g x)

Similarly, for any f :: (A × A) → A and g :: Z → A, the arrow ([g , f])
G

is the unique
homomorphism from initial algebra [tip, bin] :: GTreeInt → TreeInt to the algebra [g , f] :: GA →
A. Expanding the homomorphic condition and writing foldTree f g for ([g , f])

G
, we obtain:

foldTree f g (tip a) = g a

foldTree f g (bin (x , y)) = f (foldTree f g x , foldTree f g y)

In particular, flatten = foldTree cat wrap is the function flattening a tree to a list by concatenating
the elements from the left to the right.

2.4. RELATIONS 9

In general, for any functor F and F-algebra h :: FA→ A, a fold ([h])
F

has type T→ A, where
T is the carrier of F. We will call F the base functor defining T. The condition for ([h])

F
to be a

homomorphism is

([h])
F
· αF = h · F([h])

F

where αF is the initial algebra, or the data constructor, whose type is FT→ T. It serves both as
a definition of ([h])

F
and an important law for program calculation.

Initiality means not only such a homomorphism ([h])
F

exists, but it is unique. The uniqueness
of the homomorphism implies the following fold fusion theorem.

h · ([f])
F

= ([g])
F
⇐ h · f = g · Fh

The fold fusion theorem is considered a very important law for the algebra of programming.

Finally we come to polymorphic datatypes. Datatypes are often parameterised. In that case
αF has type FA(TA)→ TA. For example, the base functor for cons-lists over an arbitrary type can
be defined by FA X = 1+(A×X). Sometimes we will write F(A,X) instead of FA X , thinking of F

as a bifunctor. As other examples, the base functor for non-empty lists is F(A,X) = A+(A×X),
and that for leaf-valued binary trees is F(A,X) = A+(X ×X). The initial algebra α now has type
F(A,TA)→ TA. When describing the action of F on types, we will always write F as a bifunctor.
For its action on functions, we will write Ff in place of F(id , f) for brevity. We will also omit the
type subscripts when it is clear from the context which base functor we are referring to.

Functional programmers are familiar with folds but, curiously, get confused when they see
banana brackets. Therefore, we will use foldr , foldrn or foldTree, etc, when we talk about specific
folds and use the banana bracket notation only when proving general properties of folds. For
example, foldr and foldrn are defined by:

foldr f e = ([const e, f])
F

where F(A,X) = 1 + (A× X)
foldrn f g = ([g , f])

F
where F(A,X) = A + (A × X)

similarly for other folds. We follow the Haskellish convention of putting the “more complicated”
argument in the front, while taking constants rather than constant functions. Unlike in Haskell,
however, we use uncurried versions of the arguments.

2.4 Relations

Now it is time to generalise from functions to relations. Set-theoretically speaking, a relation
R :: A → B is a set of pairs (a, b) where a has type A and b type B . For R :: B → C and
S :: A→ B , the composition R · S :: A→ C is defined by

(a, c) ∈ R · S ≡ (∃b : b ∈ B : (b, c) ∈ R ∧ (a, b) ∈ S)

Since we use forward arrows for types, we take the left component of the pair as the “input”.
This notational decision differs from the one used in [7].

Since a relation is just a set, relations of the same type are ordered by set inclusion. Usual
set-theoretic operations such as union, intersection and subtraction apply to relations as well. We
will not make use of negations, however.

The converse of a relation is defined by flipping the pairs, that is,

(b, a) ∈ R◦ ≡ (a, b) ∈ R

10 CHAPTER 2. PRELIMINARIES

It is the notion of “inversion” we are going to adopt in this thesis. When we say to “invert a
function”, we actually mean to construct its relational converse. Converse distributes into union
and intersection, that is, (R ∪ S)◦ = R◦ ∪ S ◦ and (R ∩ S)◦ = R◦ ∩ S ◦. Furthermore, converse is
contravariant with respect to composition, i.e., (R · S)◦ = S ◦ ·R◦.

For each type A, a relation idA is defined by idA = {(a, a) | a ∈ A}. We will omit the subscript
when it is clear from the context. A relation R :: A → B is called simple if R · R◦ ⊆ idB . That
is, every value in A is mapped to at most one value in B . In other words, R is a partial function.
A relation R is called entire if idA ⊆ R◦ · R, that is, every value in A is mapped to at least one
value in B . A relation is a (total) function if it is both simple and entire.

We follow the convention in [17] that single lower-case letters always denote functions, so we
do not have to state so explicitly. Single capital letters or longer identifiers in lower-case letters
denote relations in general.

A relation is called a coreflexive if it is a subset of id . Coreflexives are useful for modelling
predicates. The ? operator converts a boolean-valued (partial) function to a coreflexive:

(a, a) ∈ p? ≡ p a

For convenience, when p is partial, we let (a, a) 6∈ p? both when p a yields False and when a is
not in the domain of p. If we perform two consecutive tests, one of them being stronger than the
other, the stronger one can absorb the weaker one:

(p a ⇒ q a) ⇒ p? · q? = p? (2.1)

Given a relation R :: A→ B , the coreflexive dom R determines the domain of R and is defined by

(a, a) ∈ dom R ≡ (∃b : b ∈ B : (a, b) ∈ R)

Alternatively, dom R = R◦ ·R ∩ id , where ∩ denotes set intersection. It follows that

dom R ⊆ R◦ ·R (2.2)

The coreflexive ran R determines the range of a relation and is defined by ran R = dom R◦.

When writing in the pointwise style, relations can be introduced by the choice operator 2.
The expression x 2y non-deterministically yields either x or y . For example, the following relation
prefix maps a list to one of its prefixes:

prefix :: List A→ List A

prefix = foldr step []
where step :: A→ List A→ List A

step a x = (a : x) 2 []

In each step of the fold we can choose either to cons the current item to some prefix of the sublist,
or just return the empty sequence [], which is a prefix of every list. When lambda binding and
variable substitution are involved, giving a formal semantics for pointwise relational programming
is a more involved task than it seems. The semantics of an expression is no longer simply a relation.
The reader is referred to [67] for more details. In this thesis we will avoid using those constructs
that complicate the semantics, therefore we can just think of the use of 2 operator as syntax
sugar to save us from writing in point-free style when the latter is more complicated.

2.5. POWER TRANSPOSE 11

2.5 Power Transpose

We use relations to model non-deterministic behaviour of programs. An alternative approach is to
appeal to set-valued functions. The two views can be converted via the power transpose operator
Λ. It converts a relation R :: A→ B to a function ΛR :: A→ Set B , defined by

(ΛR) a = {b | (a, b) ∈ R}

The function ΛR is also called the breadth of R. The reverse operation, membership relation
(∈) :: Set A→ A, maps a set x to any of its members. It is defined by {(x , b) | x :: Set A, b ∈ x}.
Together they satisfy the universal property:

f = ΛR ≡ ∈ ·f = R

Instantiating f to ΛR, we get the cancellation law:

∈ ·ΛR = R

As a consequence of the cancellation law we obtain the fusion law:

Λ(R · f) = ΛR · f

Furthermore, instantiating f and R to id and ∈ results in the reflection law Λ∈= id .

The existential image functor E converts a relation R :: A → B to a function ER :: Set A →
Set B . When given a set, ER applies R to every element of the set and then collects the result.

(ER)x = {b | ∃a : a ∈ x : (a, b) ∈ R}

Or, equivalently, ER = Λ(R ·∈). The following absorption law is immediate from its definition:

ER · ΛS = Λ(R · S) (2.3)

With the absorption property it is not difficult to see that E is indeed a functor.

The restriction of the existential image functor to functions is written P. There is a further
extension of P to take relational arguments, which will be discussed in Section 5.2.2. For now, we
only need to know that E and P coincide on functions.

The familiar function union :: Set (Set A)→ Set A, which takes the union of a set of sets, can
be defined by union = E ∈. The following law relates union, the existential image functor and
the power transpose:

ER = union · P(ΛR) (2.4)

2.6 Relators

The notion of functors can be generalised to Rel as well. Furthermore, a monotonic functor in
Rel is called a relator. That is, a functor satisfying

FR ⊆ FS ⇐ R ⊆ S

for all R and S . The definition is equivalent to saying that F preserves functions and converses,
that is, Ff is a function and that:

(FR)◦ = F(R◦)

12 CHAPTER 2. PRELIMINARIES

We can thus omit the surrounding brackets.

The same definition of coproducts still suffices to be a relator in Rel. Laws for cancellation,
absorption, and fusion still hold. As for products, however, we need to define the fork to be:

〈R,S 〉 = (fst◦ · R) ∩ (snd◦ · S)

The definition for the product remains the same: (R×S) = 〈R ·fst ,S ·snd〉. It is still a relator and
the absorption law still holds. The fork, however, does not satisfy the same universal property.
Instead it is weakened to:

fst · 〈R,S 〉 = R · dom S (2.5)

snd · 〈R,S 〉 = S · dom R (2.6)

2.7 Relational Folds

With the ingredients prepared in the previous two sections, finally we are able to generalise folds
to relations. A fold taking a relational argument is defined in terms of its functional counterpart,
as in:

([R]) = ∈ ·([Λ(R · F∈)])

where F is the base functor of the fold. It can be proved that, under the above definition, ([R])
still satisfies the universal property

X = ([R]) ≡ X · α = R · FX

Since ([R]) is unique, it is both the least fixed-point of the inequation R · FX · α◦ ⊆ X and the
greatest fixed-point of X ⊆ R · FX · α◦. The fusion theorem thus has two variants when it comes
to relational folds.

R · ([S]) ⊆ ([T]) ⇐ R · S ⊆ T · FR

([T]) ⊆ R · ([S]) ⇐ T · FR ⊆ R · S

The definition of relational folds also tells us how to distribute Λ into a fold:

Λ([R])

= {by definition}

Λ(∈ ·([Λ(R · F∈)]))

= {([Λ(R · F∈)]) a function, Λ fusion}

Λ∈ ·([Λ(R · F∈)])

= {reflection law: Λ∈= id}

([Λ(R · F∈)])

This is often referred to as the Eilenberg-Wright Lemma.

For a fuller account of relator theory and relational catamorphisms, the reader is referred to
[6, 7].

2.8. HYLOMORPHISMS AND FIXED-POINTS 13

2.8 Hylomorphisms and Fixed-points

The converse of a fold is called an unfold. A fold after an unfold is called a hylomorphism. The
unfolding phase generates an intermediate data structure, while the folding phase consumes it.
More precisely, consider a hylomorphism ([R]) · ([S])◦, where R has type FA → A, S has type
FB → B , and F is the base functor of T. The unfolding phase ([S])◦ :: B → T produces a value
of type T, which is then consumed by ([R]) :: T → A. All primitive recursive functions can be
written as hylomorphisms.

A hylomorphisms can be characterised as a least fixed point:

([R]) · ([S])◦ = µ(X 7→ R · FX · S) (2.7)

Here we denote anonymous functions by the 7→ notation and fixed-point operator by µ. Since
([α]) = id , both folds and unfolds are special cases of (2.7) by substituting α for R or S respectively.
Furthermore, folds and unfolds are unique fixed-points characterised by (2.7). The question of
when this fixed-point is unique has been answered by [31, 32, 30]. We will talk more about that
in Section 4.6.

A calculus of fixed-points becomes handy when the, usually simpler but less general, laws on
folds do not apply. A summary of fixed-point calculus can be found in [5]. Among the many rules,
we will only cite the fixed-point fusion theorem below and leave the others to be introduced when
they are needed. The theorem says that, provided that h is a lower adjoint in a Galois connection,
we have:

h(µf) = µg ⇐ h · f = g · h

The Galois connection is an important, re-occurring concept in many fields of mathematics and
computation, although it is beyond the scope of this thesis to go into a fuller discussion. What is
immediately relevant to us now is that the converse operator and the power-transpose operator
are both lower adjoints. The reader can then verify that (µ f)◦ = µ(X 7→ (f X ◦)◦). Or, more
concisely:

(µ f)◦ = µ((◦) · f · (◦)) (2.8)

14 CHAPTER 2. PRELIMINARIES

Chapter 3

The Compositional Approach

Many program inversions are performed via what we will call a compositional approach: given
the definition of a function of interest in terms of simpler components, we construct the converse
of each component and thereby construct the converse of the given function. Laws of use here are
various distributivity laws of the converse operator, such as (R · S)◦ = S ◦ ·R◦, (R ∪ S)◦ = R◦∪S ◦,
etc.

In this chapter we will look at three such examples. The first one is to split a list into two in
all possible ways by inverting cat . It is basically rephrasing the same example discussed in [40] in
a relational setting. As a second example, we consider the similar problem of inverting concat , in
order to set the stage for when we consider the same problem again in later chapters. Finally, we
review the famous problem of constructing a tree from its inorder and preorder traversal, but in
a non-imperative setting.

3.1 Splitting a List into Two

The function cat :: (List A × List A) → List A is the uncurried variant of the Haskell Prelude
function ++:

cat ([], y) = y

cat (a : x , y) = a : cat (x , y)

For convenience in the next section, however, we will instead consider the variant cat1 :: (List1 A×
List1 A)→ List1 A, whose domain and range are restricted to non-empty lists only:

cat1 ([a], b : y) = a : b : y

cat1 (a : x , y) = a : cat1 (x , y)

This variation is a partial function concatenating two non-empty lists into one. Conversely, the
relation cat◦1 , also partial, splits a given list into two non-empty lists in an arbitrary way. In
this section we will show how to derive Λcat◦1 . Since it is our first example of relational program
derivation, we will go through it in finer details, even though this seems to be a rather hairy
approach to a simple problem. We will come back to this problem again in Section 4.7.1, where
another approach to the problem will be mentioned.

We will rewrite cat1 as the least fixed-point of catF , defined by:

catF X = (cons · (wrap◦ × (not · null)?)) ∪
(cons · (id × X) · assocl · (cons◦ × id))

15

16 CHAPTER 3. THE COMPOSITIONAL APPROACH

where cons is the uncurried version of the list constructor (:), null is the predicate testing whether
the given argument is an empty list, and the plumping function assocl :: ((A × B) × C) →
(A × (B × C)) is defined by assocl ((a, b), c) = (a, (b, c)).

Our aim is to derive Λ(µcatF)◦. We will do so in two steps: first by promoting the converse
into the fixed-point using (2.8), recited below:

(µ f)◦ = µ((◦) · f · (◦))

and second by promoting Λ into the resulting fixed-point.
To promote the converse operator into µcatF , we just need to construct (◦) · catF · (

◦). We
reason:

(catF X ◦)◦

= {by definition}

(cons · (wrap◦ × (not · null)?) ∪ cons · (id × X ◦) · assocl · (cons◦ × id))◦

= {since composition distributes into union}

(cons · ((wrap◦ × (not · null)?) ∪ (id × X ◦) · assocl · (cons◦ × id)))◦

= {since (R · S)◦ = S ◦ ·R◦}

((wrap◦ × (not · null)?) ∪ (id × X ◦) · assocl · (cons◦ × id))◦ · cons◦

Since (R ∪ S)◦ = R◦∪S ◦, we will consider the two sides of the union separately. For the left-hand
side, the converse operator distributes into product, resulting in (wrap × (not · null)?). For the
other side, we reason:

((id × X ◦) · assocl · (cons◦ × id))◦

= {since (R · S)◦ = S ◦ ·R◦}

(cons◦ × id)◦ · assocl ◦ · (id × X ◦)◦

= {since relators preserve converse}

(cons × id) · assocl ◦ · (id × X)

Defining assocr (a, (b, c)) = ((a, b), c), we have

assocl ◦ = assocr (3.1)

For the curious reader, a proof of (3.1) will be presented in Appendix A.
The above reasoning shows that (◦) · catF · (

◦) = splitF , where splitF is defined by

splitF X = ((wrap × (not · null)?)∪
(cons × id) · assocr · (id × X)) · cons◦

Therefore, we have (µcatF)◦ = µsplitF . Although the derivation involves manipulating long
expressions, it is essentially just mechanically pushing the converse operator as deeply inside the
expression as possible.

The second step is to calculate Λ(µsplitF). Expanding µsplitF and using (2.3), we get

Λ(µsplitF) = E((wrap × (not · null)?) ∪
(cons × id) · assocr · (id × µsplitF)) · Λcons◦

Let cup denote uncurried set union, defined by cup = Λ(∈ ·(fst ∪ snd)). The following property,
also proved in Appendix A, enables us to distribute power transpose into union:

Λ(R ∪ S) = cup · 〈ΛR,ΛS 〉 (3.2)

3.1. SPLITTING A LIST INTO TWO 17

Since ER = Λ(R· ∈), as a corollary we have

E(R ∪ S) = cup · 〈ER,ES 〉

Therefore, we can rewrite Λ(µsplitF) as:

Λ(µsplitF) = cup · 〈E(wrap × (not · null)?),
E((cons × id) · assocr · (id × µsplitF))〉 · Λcons◦

The left component of the fork, E(wrap×(not ·null)?), simply constructs a singleton set containing
a pair of lists if the predicate holds. We thus continue with simplifying the right component. Define
the function cpr by:

cpr f (a, b) = {(a, c) | c ∈ f b}

such that, given a set-valued function f :: B → Set C , the function cpr f :: (A×B)→ Set (A×C)
implements Λ (id× ∈ ·f). We reason:

E((cons × id) · assocr · (id × µsplitF))

= {functor}

E((cons × id) · assocr) · E(id × µsplitF)

= {(2.4)}

E((cons × id) · assocr) · union · PΛ(id × µsplitF)

= {introducing cpr , where f = Λ(µsplitF)}

E((cons × id) · assocr) · union · P(cpr Λ(µsplitF))

= {since E and P coincide on functions}

P((cons × id) · assocr) · union · P(cpr Λ(µsplitF))

Therefore, we conclude that:

ΛµsplitF = cup · 〈E(wrap × (not · null)?),
P((cons × id) · assocr) · union · P(cpr ΛµsplitF)〉 · Λcons◦)

Equivalently, ΛµsplitF is a fixed-point of the relation-valued function:

X 7→ cup · 〈E(wrap × (not · null)?),

P((cons × id) · assocr) · union · P(cpr X)〉 · Λcons◦)

For reasons to be discussed in Section 4.6.1, ΛµsplitF is actually the unique fixed-point of the
above relation-valued function. We can therefore take the recursive equation as the definition of
ΛµsplitF .

In the implementation we will represent sets by lists. The power functor P can be implemented
by map, and cup and union by list concatenation. If we switch back to pointwise definition and list
comprehension, we get the code shown in Figure 3.1. where Λcons◦ is implemented by pattern
matching. The case for splits1 [] yields an empty set (represented as an empty list) because
(Λcons◦) [] yields an empty set.

As a side remark, had we started from the point-free definition of cat :

cat = µ(X 7→ (snd · (null?× id)∪
(cons · (id ×X) · assocl · (cons◦ × id)))

we would have recovered the standard Haskell definition of splits:

splits [] = [([], [])]
splits (a : x) = [([], a : x)] ++ [(a : y , z) | (y , z)← splits x]

18 CHAPTER 3. THE COMPOSITIONAL APPROACH

splits1 [] = []

splits1 (a:x) = [([a],x) | not (null x)] ++

[(a:y,z) | (y,z) <- splits1 x]

Figure 3.1: Haskell code implementing splits1.

3.2 Partitioning a List

As the second example, let us consider the problem of computing all partitions of a list. For
example, given [1, 2, 3], we want the set:

{[[1], [2], [3]], [[1], [2, 3]], [[1, 2], [3]], [[1, 2, 3]]}

Since we are not interested in an infinite sequence of empty lists, we restrict our attention to
non-empty lists. Let concat :: List (List1 A) → List A be the function concatenating a list of
non-empty lists. It turns out that its definition is best given in two steps, one step dealing with
the empty case separately. Let concat filter out the case when the input list is empty:

concat [] = []
concat xs = concat1 xs

Here, concat1 :: List1 (List1 A)→ List1 A can be defined simply as a fold on non-empty lists:

concat1 = foldrn cat1 id

The aim is to calculate partitions = Λconcat◦. Since concat1 returns only non-empty lists, we
can deal with the empty case separately, that is, partitions [] = {[]}. Now we will focus on
constructing partitions1 = Λconcat◦1 .

Similar to the last section, we start with looking for a recursive characterisation for concat◦1 .
This step, however, is a bit easier than in the previous section because, since concat1 is a fold, its
converse is an unfold. We can therefore directly appeal to (2.7) and conclude:

concat◦1 = µ(X → [wrap, cons] · (id + (id × X)) · [id , cat1]
◦)

By laws of coproduct, the above is equivalent to:

concat◦1 = µ(X → wrap ∪ (cons · (id ×X) · cat◦1))

The next step, to work out Λconcat◦1 , is similar to that in the previous section. We unfold the
fixed-point definition of concat◦1 , and try to promote the Λ operator to the leaf of the expression.
Calculation on the more complicated branch goes:

Λ(wrap ∪ (cons · (id × concat◦1) · cat◦1))

= {by (3.2)}

cup · 〈Λwrap,Λ(cons · (id × concat◦1) · cat◦1)〉

= {Λ absorption}

cup · 〈Λwrap,Econs · union · PΛ(id × concat◦1) · Λcat◦1 〉

= {introduce cpr , letting f = Λconcat◦1 }

cup · 〈Λwrap,Pcons · union · P(cpr Λconcat◦1) · Λcat◦1 〉

3.3. REBUILDING A TREE FROM ITS TRAVERSALS 19

partitions [] = [[]]

partitions x = [[x]] ++ [y:zs | (y,z) <- splits1 x, zs <- partitions z]

Figure 3.2: Haskell code implementing partitions.

It is also the unique fixed-point. We therefore conclude that:

Λconcat◦1 = µ(X → cup · 〈Λwrap,Pcons · union · P(cpr X) · Λcat◦1 〉)

Refining sets to lists and putting the empty case back, we get the pointwise definition familiar to
Haskell programmers, shown in Figure 3.2.

This implementation, however, is very inefficient because of overlapping recursive calls. For
example, both ([1], [2, 3, 4, 5]) and ([1, 2], [3, 4, 5]) are possible splits of [1, 2, 3, 4, 5]. To compute
its partitions, one will need to recurse on [2, 3, 4, 5] and [3, 4, 5], among others. To compute the
partitions of [2, 3, 4, 5], however, another call to partitions [3, 4, 5] will be made. One therefore
might wish to switch to a bottom-up algorithm, reusing the computed results. In Section 4.2, we
will demonstrate another approach to derive an alternative implementation for Λconcat ◦. More
discussions on top-down v.s. bottom-up algorithms will be given in Chapter 6.

3.3 Rebuilding a Tree from its Traversals

It is well known that, given the inorder and preorder traversal of a binary tree whose labels are
all distinct, one can reconstruct the tree uniquely. The problem has been recorded in [53, Section
2.3.1, Exercise 7] as an exercise, where Knuth briefly described why it can be done and commented
that it “would be an interesting exercise” to write a program for the task. Indeed, it has become
a classic problem to tackle for those who study program inversion, for example, see [24, 83]. As
van de Snepscheut noted in [83], one class of solution attempts to invert an iterative algorithm
while the other class delivers a recursive algorithm. In this section we will look at the second
alternative. The derivation here is a rephrasing of that in [83] in a non-imperative style. The
class of iterative solutions, on the other hand, will be discussed in Section 4.5.

To formalise the problem, consider internally labelled binary trees defined by the following
datatype:

dataTree A = null | node (A× (Tree A× Tree A))

The fold function for Tree is defined by:

foldTree :: (A× (B × B))→ B → Tree A→ B

foldTree f e null = e

foldTree f e (node (a, (t , u))) = f (a, (foldTree f e t , foldTree f e u))

Inorder and preorder traversal on the trees can then be defined in terms of foldTree:

preorder = foldTree pre []
pre (a, (x , y)) = [a] ++ x ++ y

inorder = foldTree inf []
inf (a, (x , y)) = x ++ [a] ++ y

Define pinorder = 〈preorder , inorder〉, of type Tree A → (List A × List A), and let distinct be
a predicate on trees yielding true for trees whose labels are all distinct. The task is to derive

20 CHAPTER 3. THE COMPOSITIONAL APPROACH

distinct? ·pinorder ◦. It should also be shown that distinct? ·pinorder ◦ is a simple relation, so that
the tree is indeed uniquely determined by the two traversals. Finally, we wish that the derived
algorithm has a linear-time complexity.

3.3.1 An Attempt via Direct Inversion

A standard tupling transform (see, for example [44] or [17, Chapter 3]) yields the following
definition of inpreorder as a fold:

pinorder :: Tree A→ (List A× List A)
pinorder = foldTree pi ([], [])

where pi = 〈pre · F1fst , inf · F1snd〉

where F1f = (id × (f × f)). We can invert pinorder as an unfold if we can invert pi . Furthermore,
since we want the inverse to be a simple relation, pi◦ had better be simple too. However, if we
expand the definition of pi in pointwise style:

pi (a, ((x1, y1), (x2, y2))) = ([a] ++ x1 ++ x2, y1 ++ [a] ++ y2)

it is clear that pi has as an inverse a simple relation only if a is not present in either y1 or y2

– otherwise there would be more than one possible decomposition to split the second list. Even
then, we are still left with resolving the non-determinism in inverting [a] ++ x1 ++ x2. That is why
we need the labels in the tree to be all distinct. It is not difficult to show that

pinorder · distinct? = eqSet? · (nodup? × nodup?) · pinorder

where nodup is a predicate on lists yielding true for lists that contain no duplicated elements, and
eqSet :: (List A × List A) → Bool is defined by eqSet (x , y) ≡ setify x = setify y , ensuring that
the two lists contain the same elements. The invariant can be fused into pinorder via fold fusion,
thus in inverting pi , we can split the first list in a unique way and split the second list according
to how the first was split.

This is how Knuth explained in [54] that there is indeed such a unique construction of the
tree. We will not go into the details, however, since a naive implementation following this line
would result in a cubic time algorithm.

3.3.2 Adding Redundancy

In the next two sections we will construct a linear-time algorithm to rebuild a tree from its
preorder and inorder traversals. However, to reduce the amount of detail, we will make the fusion
of the invariant (nodup?× nodup?) into pinorder implicit and simply assume in this section that
x and y are both lists containing no duplicated elements. The derivation in the next two sections
will be presented in pointwise style. To reduce the number of brackets, we will also make use of
triples, which can be defined easily in terms of binary tuples.

What we will do now is to come up with a function more general than pinorder , but whose
inversion is trivial. At least two factors contribute to the cubic behaviour of the previous algorithm.
One is due to the data structure we use – searching and cutting a list in the middle is a linear-time
operation. This problem will be solved by introducing an accumulating parameter.

The second problem is more fundamental. We have to look back and forth on the input pair of
lists to decide where to cut them, and that is because we simply do not have enough information to

3.3. REBUILDING A TREE FROM ITS TRAVERSALS 21

x y xor

0 0 0
0 1 1
1 0 1
1 1 0

x y xor y

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1

Figure 3.3: Truth tables of the functions xor and 〈xor , snd〉.

do it more quickly1. As a similar example, consider the function xor whose truth table is shown in
Figure 3.3. The function xor is not invertible (to a function) because it is not injective. However,
〈xor , snd〉 is. The extra output records some information about the history of the computation,
enabling us to put the machine back to its original state. Such logic gates with extra “garbage
lines” are essential in [82] to the construction of logically reversible devices, which are of interest
to physicists and researchers in quantum computing. Similar ideas were also lifted to a higher
level in the design of programming languages for reversible programs [85]. In this section we will
also need to make the program produce some “redundant” outputs before being able to invert it.

Now let us start with the first point. To introduce accumulating parameters, let us define:

prin :: (Tree A× (List A× List A))→ (List A× List A)
prin (u, (x , y)) = (z ++ x ,w ++ y)

where (z ,w) = pinorder u

Equivalently,

prin (u, (x , y)) = (preorder u ++ x , inorder u ++ y)

By standard techniques we can easily derive a recursive definition of prin:

prin (null , (x , y)) = (x , y)
prin (node (a, (u, v)), (x , y)) =

let (x ′, y ′) = prin (v , (x , y))
(x ′′, y ′′) = prin (u, (x ′, [a] ++ y ′))

in ([a] ++ x ′′, y ′′)

Can we invert prin to a partial function? One problem would be that given an output (x , y),
we are not sure where it came from: did it come from the first pattern, in which case we should
return (null , (x , y)), or did it come from the second pattern, in which case we should return a
node? The problem comes from the fact that the first case returns (x , y) unaltered, so we cannot
detect whether it has been invoked. It would be better to move some of the work to the first case
such that both cases leave some footprints. Therefore we come up with this new definition for
prin:

prin :: (Tree A× (A× List A× List A))→ (List A× List A)
prin (u, (b, x , y)) = (preorder u ++ x , inorder u ++ [b] ++ y)

1Oege de Moore kindly pointed out that the problem can also be resolved by defining:

rebuild a (x , y) = (pinorder◦ (x1, y1), x2, y2)
where (x1, x2) = splitAt (length y1) x

y1 ++ [a] ++ y2 = y

and deriving rebuild . This route is much simpler than the one in this section. The author is planning to integrate
it to a future paper. For now, however, we will stick with the approach resembling that in [83].

22 CHAPTER 3. THE COMPOSITIONAL APPROACH

Beside the pair of lists (x , y), the new definition takes an extra element b and appends it in front
of y . As a result, when u is a null tree, it should return (x , [b] ++ y), while in the case when u is
not null we can make use of this extra b and move some work to the first case.

Now we come to the second problem mentioned in the beginning of this section. It will turn
out that we also need to quote b as part of the output in order to invert prin. Our final choice
for a proper definition of prin will thus be:

prin :: (Tree A× (A× List A× List A))→ (A× List A× List A)
prin (u, (b, x , y)) = (b, preorder u ++ x , inorder u ++ [b] ++ y)

By simple reasoning we can derive the recursive definition below for prin:

prin (null , (b, x , y)) = (b, x , b : y) (a)
prin (node (a, (u, v)), (b, x , y)) =

let (b, x ′, y ′) = prin (v , (b, x , y)) (b)
(a, x ′′, y ′′) = prin (u, (a, x ′, y ′)) (c)

in (b, a : x ′′, y ′′)

Notice the non-standard use of patterns like a and b. The pattern a is just a syntax sugar for a
coreflexive (a)?. It is like a “don’t-care” pattern in that the matched results are thrown away,
except for that it only matches certain values.

Finally, check that prin maintains this invariant: provided that the values in all the initial
arguments to prin are all distinct, the values in x , y , a and b remains all distinct at each recursive
call. This invariant is important in making the inversion possible.

3.3.3 The Inversion

All the hassle we have been through was just to put prin in a form easy to invert, and our effort
indeed pays. Denote by rebuild the converse of prin. Look at the recursive definition of prin in the
last section and consider a triple returned by prin. If it looks like (b, x , b : y), that is, the head of
the last list equals b, oweing to the invariant, the triple must have come from the case marked (a).
We shall thus just perform the converse action of returning (null , (b, x , y)), resulting in case (a’)
below. Otherwise it must have come from the second case, which is also inverted by switching the
roles of input and output. For example, the let binding (b, x ′, y ′) = prin (v , (b, x , y)) is inverted
to (v , (b, x , y)) = prin◦ (b, x ′, y ′). The resulting program is shown below:

rebuild :: (A× List A× List A)→ (Tree A× (A× List A× List A))
rebuild (b, x , b : y) = (null , (b, x , y)) (a’)
rebuild (b, a : x ′′, y ′′) =

let (u, (a, x ′, y ′)) = rebuild (a, x ′′, y ′′) (c’)
(v , (b, x , y)) = rebuild (b, x ′, y ′) (b’)

in (node (a, (u, v)), (b, x , y))

Notice how prin and rebuild are symmetrical: (a) is inverted to (a’), and the two let-binding, (b)
and (c) in prin are inverted respectively to (b’) and (c’) and performed in reverse order. Since
we have made the plumping implicit by working in pointwise style, the inversion has the feel of
running the program backwards. Also note that the pattern (b, x , b : y) is PROLOGish in that
we require the two occurrences of b to have the same value.

Having inverted prin, we have yet to relate the latest definition of prin to the original problem.
How is prin related to pinorder? The function prin takes not only two lists, but also a label b. To

3.4. DISCUSSION 23

data Tree a = Null | Node a (Tree a) (Tree a)

deriving (Show,Eq)

class Lifted a where phi :: a

instance Lifted Int where phi = -1

unpinorder :: (Eq a, Lifted a) => ([a],[a]) -> Tree a

unpinorder = proj . rebuild . init

where init (x,y) = (phi, x, y ++ [phi])

proj (u,(phi, [],[])) = u

rebuild :: Eq a => (a,[a],[a]) -> (Tree a,(a,[a],[a]))

rebuild (b, x, b’:y)

| b == b’ = (Null, (b, (x,y)))

rebuild (b, a:x’’, y’’) =

let (u, (_, x’,y’)) = rebuild (a, x’’, y’’)

(v, (_, x,y)) = rebuild (b, x’, y’)

in (Node a u v, (b, x,y))

Figure 3.4: Haskell code implementing unpinorder .

assign to b a value, we assume the existence of a value φ distinct from all values in the tree. The
value will then be taken away after the traversal. The relationship between prin and pinorder

can be expressed as the following equality:

pinorder = cut · prin · init

where init u = (u, (φ, [], []))
cut (φ, x , y ++ [φ]) = (x , y)

Having inverted prin as rebuild , the inverse of pinorder is simply

pinorder ◦ = proj · rebuild · tag
where tag (x , y) = (φ, x , y ++ [φ])

proj (u, (φ, [], [])) = u

where apparently init◦ = proj , cut◦ = tag , and prin◦ = rebuild . The Haskell implementation is
shown in Figure 3.4, where we declare a type class Lifted to denote the types that have a distinct
φ.

3.4 Discussion

Most attempts to program inversion were based on the compositional approach, be them procedu-
ral [29, 39, 24, 84, 83, 78] or functional [40]. The basic strategy is to promote the converse operator
inside with the help of various distributivity laws, such as (R · S)◦ = S ◦ ·R◦, (R ∪ S)◦ = R◦ ∪ S ◦,
and that (µ f)◦ = µ((◦) · f · (◦)), until we reach some primitives whose inverses are either prede-
fined or trivial. In procedural programming where sequencing is ubiquitous, or when the use of
plumping functions is implicit like in Section 3.3, this approach gives one the feeling of “running a
program backwards”, since inverses of sub-components are composed in reverse. The challenging

24 CHAPTER 3. THE COMPOSITIONAL APPROACH

part is when we encounter branches, in such cases we had better somehow decide which branch
the result used to come from.

This rather control-oriented view is complemented by a more data-oriented view in [47, 48]. In
their paper, Jansson and Jeuring generalised functions to arrows. They then considered polytypic
operations on datatypes and ensured that an operation and its inverse carrying things out in
reverse order (such as “map from the left” and “map from the right”, “traverse from the left
branch”, and “traverse from the right branch”) are always constructed in pairs.

The tricky bits of Section 3.3 is to transform the original program to a form easier to invert.
In [83], the same transform was presented in a procedural style. In a procedural language, the
distinction between input and output is not explicit. In our formulation here, however, we have
to explicitly copy some inputs to the output to achieve invertability. This is related to the
construction of logically reversible circuits [82, 85] where the same action sometimes needs to be
done.

The formalisation in [40] is based on functions lifted to sets, while we use relations here. One
of the advantages of using relations is that the separation between inverting a function and taking
its breadth reveals more structure of the program. In Section 3.2, for instance, concat is a fold
and its inverse is naturally an unfold. Bringing in breadths too early obscures the symmetry.

In the next chapter, however, we will see a quite different approach to function inversion,
where the inverse of a function, even defined as a fold, might be constructed as a fold as well.

Chapter 4

The Converse-of-a-Function Theorem

In the previous chapter, the function concat1, defined as a fold, is inverted as an unfold. Func-
tional programmers are aware that flattening a structure is usually performed by a fold operation.
Consequently, building a structure is usually performed by the converse operation, unfold. How-
ever, there is no reason why the converse operation should necessarily involve an unfold. The
converse-of-a-function theorem, to which this chapter is devoted, gives us conditions under which
the inverse of a function can be written as a fold. When the theorem applies, the important thing
is not how the function to be inverted was defined, but the properties it satisfies.

In the following sections we will show how this theorem can be applied to derive solutions to
several problems, including the breadth-first labelling problem we promised to solve in Chapter
1. A proof of the theorem will then be given. In fact, we will prove a generalised theorem which
gives conditions under which a simple relation can be inverted as a hylomorphism. Finally we
will demonstrate some applications of the generalised theorem.

4.1 Inverting a Function as a Fold

The converse-of-a-function theorem, introduced in [17, 67], tells us how to write the inverse of a
function as a fold. It reads:

Theorem 4.1 (Converse of a function) Given a function f :: B → TA. If R :: F(A,B) → B

is surjective and f · R ⊆ αF · Ff , where F is the base functor for T, then f ◦ = ([R])
F
.

The specialisation of this theorem to functions over lists reads as follows: let f :: B →
List A be given. If base :: B and step :: (A × B) → B are jointly surjective (meaning that
{(base, base)} ∪ ran step = idB) and satisfy

f base = []

f (step (a, x)) = a : f x

then f ◦ = foldr step base.

Similarly, to invert a total function f on non-empty lists, Theorem 4.1 states that if base ::
A → B and step :: (A × B) → B are jointly surjective (that is, ran base ∪ ran step = idB) and
satisfy

f (base a) = [a]

f (step (a, x)) = a : f x

25

26 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

then f ◦ = foldrn step base.
We will postpone the proof of Theorem 4.1 to Section 4.6, where in fact a more general result

is proved. For now, let us see some of its applications.

4.2 Partitioning a List Revisited

First of all, let us revisit the problem dealt with in Section 3.2: given the function concat ::
List (List1 A) → List A, to construct concat ◦. Theorem 4.1 says that if we can find a pair of
relations base and step such that

concat base = []

concat (step (a, xs)) = a : concat xs (4.1)

then we have concat◦ = foldr step base.
Notice that the type of base ought to be List (List1 A). Therefore the only choice of base we

have is the empty list, as [[]] can only be given the type List (List A). What about step? We
start the reasoning from the right-hand side of (4.1):

a : concat xs

= {lists}

[a] ++ concat xs

= {since [a] and concat xs are non-empty}

cat1 ([a], concat xs)

= {definition of concat}

concat ([a] : xs)

Therefore, choosing step (a, xs) = [a] : xs satisfies (4.1). However, base and step are not jointly
surjective, because there is no way for step to return a list of lists whose head is not a singleton
list. We therefore consider the following case when the argument to concat in left-hand side of
(4.1) is not empty:

a : concat xs

= {assumption: xs non-empty}

a : concat (head xs : tail xs)

= {definition of concat}

a : (head xs ++ concat (tail xs))

= {since ++ is commutive}

(a : head xs) ++ concat (tail xs)

= {definition of concat}

concat ((a : head xs) : tail xs)

It has just been shown that returning (a : x) : xs is another action step may safely perform:
taking step (a, x) = [a] : xs 2 (a : head xs) : tail xs still satisfies (4.1). Furthermore, base and step

are now jointly surjective. We therefore come up with the following definition for concat◦:

concat◦ = foldr step base

where base = []
step (a, xs) = [a] : xs 2 (a : head xs) : tail xs

4.3. BUILDING A TREE FROM ITS DEPTHS 27

partitions = foldr step base

where base = [[]]

step a xss = [[a] : xs | xs <- xss] ++

[(a:x):xs | (x:xs) <- xss]

Figure 4.1: Implementing partitions by a fold.

3 3 3

4 4

3 3
2

Figure 4.2: A tree whose tips have depths [3, 3, 3, 4, 4, 3, 3, 2]

Define partitions = Λconcat ◦ and promote Λ inside, we get the Haskell program in Figure 4.1.
This approach of partitioning a list via a fold is well-known as the engine of many optimisation

algorithms, such as that for paragraph formatting [66].

4.3 Building a Tree from Its Depths

Consider the following datatype Tree A of tip-valued binary trees:

dataTree A = tip A | bin (Tree A× Tree A)

Suppose we are given a list representing the depths of the tips of a tree in left-to-right order.
How can we reconstruct (the shape of) the tree from the list? This particular problem arises, for
instance, in the final phase of the Hu-Tucker algorithm [43]. For simplicity, we will identify tip
values with their depths, as in Figure 4.2. Of course, not every list corresponds to a tree.

We will start with a formal specification of the problem. First of all, the familiar function
flatten, which takes a tree and returns its tips in left-to-right order, can be written as a fold:

flatten :: Tree A→ List1 A

flatten = foldTree cat1 wrap

A tree of integers is well-formed if one can assign to it a level, where the level of a tip is the
number at the tip, and the level of a non-tip is defined only if its two subtrees have the same
level, in which case it is one less than the levels. The partial function level can be defined by:

level :: Tree Z → Z
level = foldtree up id

where up (a, b) = if a b then a − 1

Note that the if clause in the definition of up does not have an else branch. Therefore, level is a
partial function which only returns a value for a tree when its left and right subtrees are assigned
the same level. A tree is well-formed if it is in the domain of level .

Our problem can thus be specified by

build = ((0) · level)? · flatten◦

28 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

! "

#
$

%

&

!

' #

$

%

&
'

!

Figure 4.3: Adding a new node to a tree

Now we have got the problem specification. In the following sections we will transform it to
a program in two major steps. The first is to use the converse-of-a-function theorem to construct
flatten◦ as a relational fold. The second step is then to exploit ((0) · level)? to eliminate the
non-determinism in the fold.

4.3.1 Building a Tree with a Fold

Our aim is to apply the converse-of-a-function theorem to invert flatten. We need a pair of
relations one :: A → Tree A and add :: (A × Tree A) → Tree A that are jointly surjective and
satisfy

flatten (one a) = [a]

flatten (add (a, u)) = a : flatten u

Look at the second equation. It says that if we have a tree u which flattens to some list x , the
relation add must be able to create a new tree v out of a and u such that v flattens to a : x . One
way to do that is illustrated in Fig. 4.3. We divide the left spine of u in two parts, move down
the lower part for one level, and attach a to the end.

To facilitate this operation, we introduce an alternative spine representation. A tree is repre-
sented by the list of subtrees along its left spine, plus the left-most tip. The function roll converts
a spine back into a single tree, and is in fact an isomorphism between Spine A and Tree A.

type Spine A = A× List (Tree A)

roll :: Spine A→ Tree A

roll(a, x) = foldl bin (tip a) x

The advantage of this representation is that we can trace the spine upward from the left-most
leaf, rather than downwards from the root. As we will see in the end of the next section, this is
necessary for an efficient implementation.

The function flatten · roll flattens a spine tree. Our task now is to invert it as a fold. We need
a pair of relations one :: A→ Spine A and add :: (A× Spine A)→ Spine A satisfying

flatten (roll (one a)) = [a] (4.2)

flatten (roll (add a (b, us))) = a : flatten (roll (b, us)) (4.3)

4.3. BUILDING A TREE FROM ITS DEPTHS 29

We claim that the following definition for one and add does the job:

one a = (a, [])
add (a, (b, us)) = (a, roll (b, vs) : ws)

where vs ++ ws = us

The non-deterministic pattern in the definition of add , dividing the list xs into two parts, indicates
that add is not a function. The relations one and add are jointly surjective because roll , being
an isomorphism, is surjective; thus, given any spine tree (a,ws), either ws is empty, in which case
it is covered by one a, or there always exists a spine tree (b, vs) such that it rolls into the head of
ws, in which case (a,ws) would be one of the results of add a (b, vs ++ tail ws).

It is clear that the function one satisfies (4.2). To show that add satisfies (4.3), we will need
the following fact, whose proof is left to Appendix A:

flatten(roll (a, us)) = a : concat(map flatten us) (4.4)

Now we will show that add satisfies (4.3):

a : flatten(roll (b, vs ++ ws))

= {(4.4)}

a : b : concat(map flatten (vs ++ ws))

= {concat and map distributes over ++ }

a : b : concat(map flatten vs) ++ concat(map flatten ws)

= {(4.4)}

a : flatten(roll (b, vs)) ++ concat(map flatten ws)

= {definition of concat and map}

a : concat(map flatten (roll(b, vs) : ws))

= {(4.4)}

flatten (roll (a, roll(b, vs) : ws))

Thus (flatten · roll)◦ = foldrn add one by Theorem 4.1.

4.3.2 The Derivation

Having inverted flatten · roll , we can start the derivation:

build

= {definition}

((0) · level)? · flatten◦

= {roll is an isomorphism}

((0) · level)? · (flatten · roll · roll◦)◦

= {converse is contravariant}

((0) · level)? · roll · (flatten · roll)◦

= {inverting flatten · roll as in the last section}

((0) · level)? · roll · foldrn add one

= {since p? · f = f · (p · f)?, let wellform = (0) · level · roll}

roll · wellform? · foldrn add one

30 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

Whereas (0) · level checks whether a tree is well-formed, wellform is its counterpart defined on
spine trees. Intuitively, a spine tree (b, us) is well-formed if either us is empty and b = 0, or all
the trees in us has a level number, the leftmost one being b, the next one being b − 1,... and the
rightmost one being 1.

As roll · wellform? is a partial function, it can be easily implemented in Haskell. However,
add is still a relation. If we can fuse wellform? into the fold and thereby refine add to a partial
function, the whole expression will be implementable.

However, wellform? is a rather strong condition to enforce. It is not possible to maintain this
invariant within the fold before and after each applications of add . It is time to take the second
inventive step: to invent a weaker condition. The predicate decform holds for a spine tree (b, us)
if the level number of the first tree in us is at most b and the trees in us have strictly decreasing
level numbers:

decform (b, us) = leading (b, us) ∧ decreasing (map level us)
leading (b, us) = null us ∨ level(head us) ≤ b

Note that the application of level to all the trees in xs implicitly states the requirement that all
the trees have level numbers.

The predicate decform is weaker than wellform. We can thus derive:

roll · wellform? · foldrn add one

= {(2.1)}

roll · wellform? · decform? · foldrn add one

= {fold fusion, see below}

roll · wellform? · foldrn add ′ one

The equality established by fold fusion in the last step ensures that no result is lost from the
refinement. Fortunately, it can be shown that the following fusion condition is valid:

decform? · add = add ′ · (id × decform?)

where add ′ is defined by rolling the given spine tree up to the point when the two left-most trees
do not have the same level number:

add ′ (a, (b, us)) = leading? (a, decRoll (tip b)us)
decRoll u [] = [u]
decRoll u (v : ws) | (level u level v) = decRoll (bin u v)ws

| otherwise = u : v : ws

The code is shown in Fig. 4.4. We refine the data structure to avoid recomputing level by defining
type SpineI and maintain the invariant that level x = n for all pairs (x ,n) along the spine.
Constructors tip and bin are lifted accordingly. The function rollwf implements roll · wellform?.
The partial function bin performs a check each time two trees are joined. This algorithm is linear
in the number of nodes in the tree, as each call to join either stops or builds a new node.

Some reader might recognise we are actually performed a specific kind of parsing. Indeed,
one of the early application of the converse-of-a-function was to derive the Floyd’s algorithm for
precedence parsing [67]. We will discuss more about that in Section 8.3.

4.3. BUILDING A TREE FROM ITS DEPTHS 31

data Tree a = Tip a | Bin (Tree a) (Tree a) deriving Show

type SpineI = (Int, [(Tree Int, Int)])

build :: [Int] -> Tree Int

build = rollwf . foldrn add’ one

one a = (a,[])

add’ a (b,us) | leading (a,ws) = (a,ws)

where ws = decRoll (tip b) us

decRoll u [] = [u]

decRoll u (v:ws) | level u == level v = decRoll (bin u v) ws

| otherwise = u:v:ws

leading (a,us) = level (head us) <= a

tip a = (Tip a, a)

bin (u,m) (v,n) | m == n = (Bin u v, m-1)

level = snd

rollwf :: SpineI -> Tree Int

rollwf (b,us) = pick (foldl bin (tip b) us)

where pick (u,0) = u

foldrn f g [x] = g x

foldrn f g (a:x) = f a (foldrn f g x)

Figure 4.4: Code for rebuilding a tree from the depths of its tips

32 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

a,1

b,2 g,3

f,5c,4 h,6 m,7

d,8 e,9 i,10 j,11

k,12 l,13

a

b g

fc h m

d e i j
k l

Figure 4.5: Breadth-first labelling a tree on the left with [1..].

4.4 Breadth-First Labelling

We are now equipped with sufficient tools to solve the problem mentioned as a teaser in Section
1.1: to breadth-first label a tree with respect to a given list!

To remind the reader of the problem, we recall the example diagram in Figure 4.5, where
a tree with 13 nodes is labelled with the infinite list [1..]. While everybody knows how to do
breadth-first traversal, efficient breadth-first labelling is not so widely understood. Jones and
Gibbons [37] proposed a neat solution to this problem, based on a clever use of cyclic data
structures. The problem was revisited by Okasaki [71] in his talk in International Conference
on Functional Programming 2000, where he challenged all the audience to come up with a good
algorithm that does not exploit laziness. We are going to show how Okasaki’s algorithm can be
derived using the converse-of-a-function theorem.

Let us go through again the specification in finer detail. Consider the data structure of
internally and externally labelled binary trees:

dataTree A = tip A | bin (A× Tree A× Tree A)

The queue-based algorithm for breadth-first traversal is well-known:

bft :: Tree A→ List A

bft u = bftF [u]

typeForest A = List (Tree A)

bftF :: Forest A→ List A

bftF [] = []
bftF (tip a : us) = a : bftF us

bftF (bin (a, u, v) : us) = a : bftF (us ++ [u, v])

To perform the labelling, we use the following partial function zipTree:

zipTree :: Tree A→ Tree B → Tree (A× B)
zipTree (tip a) (tip b) = tip (a, b)
zipTree (bin (a, x , y)) (bin (b, u, v)) = bin ((a, b), zipTree x u, zipTree y v)

Breadth-first labelling of a tree u can then be seen as zipping u with another tree v , in which the
breadth-first traversal of v is a prefix of the given list x :

bfl :: List A→ Tree B → Tree (A× B)
bfl x u = zipTree v u

where (bft v) ++ y = x

4.4. BREADTH-FIRST LABELLING 33

Equivalently,

bfl x u = zipTree ((bft◦ · prefix) x)u

= (zipTree · bft◦ · prefix) x u

This completes the specification. The relation prefix non-deterministically maps a list to one of
its finite prefixes. The prefix is then passed to bft◦, yet again being non-deterministically mapped
to a tree whose breadth-first traversal equals the chosen prefix. It is important that zipTree is a
partial function which yields a value only when the given two trees are of exactly the same shape.
Therefore, the tree composed by bft◦ · prefix can be zipped with the input tree only if it is of the
correct size and shape. The partial function zipTree plays the role of a filter.

Since breadth-first traversal is an algorithm more naturally defined in terms of queues of trees
(or forests) rather than of a single tree, it is reasonable to try to invert bftF rather than bft . The
problem can be rephrased in terms of bftF :

bfl x u = wrap◦ ((zipForest · bftF ◦ · prefix) x [u])

Here zipForest :: Forest A→ Forest B → Forest (A×B) is a simple extension of zipTree to forests,
which, like zipTree, is a partial function:

zipForest [] [] = []
zipForest (u : us) (v : vs) = zipTree u v : zipForest us vs

Once the decision to focus on bftF is made, the rest is mechanical. To invert bftF , we are to
find base and step such that

bftF base = []
bftF (step a us) = a : bftF us

The value of base can only be []. The derivation for step is not too difficult either. We start with
the general case which does not assume any structure in us:

a : bftF us

= {definition of bftF}

bftF (tip a : us)

Therefore step a us might contain (tip a : us) as one of the possible values. But this choice alone
does not make step jointly surjective with [], since it cannot generate a forest with a non-tip tree
as its head. We therefore consider the case when us contains more than two trees:

a : bftF (us ++ [u, v])

= {definition of bftF}

bftF (bin (a, u, v) : us)

Therefore we define step to be:

step :: (A× Forest A)→ Forest A

step (a, us) = (tip a : us) 2 (bin (a, u, v) : ws)
where ws ++ [u, v] = us

Since a forest either begins with a tip tree, begins with a non-tip tree, or is empty, step is jointly
surjective with []. The converse of bftF is thus constructed as bftF ◦ = foldr step [].

34 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

data Tree a = Tip a | Bin a (Tree a) (Tree a) deriving Show

bfl :: [a] -> Tree b -> Tree (a,b)

bfl xs = unwrap . foldr rzip stop xs . wrap

where stop [] = []

rzip a f [] = []

rzip a f (Tip b:us) = Tip (a,b) : f us

rzip a f (Bin b u v :us) = Bin (a,b) x y : ys’

where ys = f (us ++ [u,v])

(ys’,x,y) = (init (init ys), last (init ys), last ys)

wrap a = [a]

unwrap [a] = a

Figure 4.6: Code for breadth-first labelling

Now that bftF ◦ :: List A→ Forest A is a fold, we can fuse zipForest and bftF ◦ by fold fusion:

zipForest · bftF ◦ :: List A→ Forest B → Forest (A× B)
zipForest · bftF ◦ = foldr rzip stop

stop :: Forest B → Forest (A× B)
stop [] = []

rzip :: (A × (Forest B → Forest (A× B)))→ Forest B → Forest (A× B)
rzip (a, f) (tip b : us) = tip (a, b) : f us

rzip (a, f) (bin (b, u, v) : us) = bin ((a, b), x , y) : xs

where xs ++ [x , y] = f (us ++ [u, v])

Consider (zipForest · bftF ◦) x where x is a list of labels. Constructors building x are replaced by
rzip and stop, yielding a relation mapping an unlabelled forest to a labelled forest. A pattern
matching error will be invoked by stop if x is too short, and by rzip if x is too long. Applying
fold fusion again to fuse zipForest · bftF ◦ with prefix in effect adds another case for rzip, that is,
rzip (a, f) [] = [], which cuts the list of labels when the forest is consumed earlier than the list.
Still, the list of labels cannot be too short.

The resulting code is shown in Fig. 4.6. It can be made linear if we use an implementation of
deques supporting constant-time addition and deletion [25, 70] for both the input and output of
rzip. For clarity, we will just leave it as it is. It is nothing more than an adaption of Okasaki’s
algorithm in [71] to lists. In his paper, Okasaki raised the question why most people did not
come up with this algorithm but instead appealed to more complicated approaches. Our answer
is because they did not know the converse-of-a-function theorem.

4.5 Rebuilding a Tree from its Traversals Revisited

As the third example, we come back to the problem of rebuilding a tree from its inorder and
preorder traversals. Let us recall the datatype definition for internally labelled binary trees:

dataTree A = null | node (A× (Tree A× Tree A))

4.5. REBUILDING A TREE FROM ITS TRAVERSALS REVISITED 35

Inorder and preorder traversal on the trees are defined by

inorder = foldTree inf []
where inf (a, (x , y)) = x ++ [a] ++ y

preorder = foldTree pre []
where pre (a, (x , y)) = [a] ++ x ++ y

Finally, the predicate distinct yields true for a tree whose node values are all distinct. The aim is
to construct distinct? · 〈preorder , inorder〉◦.

We will try to follow the same strategy that worked in the previous sections: to construct the
converse of a function as a relational fold, and then impose some constraints on the fold. However,
due to its type, 〈preorder , inorder〉◦ apparently cannot be a fold on a recursive datatype. The
first step, then, is to transform 〈preorder , inorder〉◦ to a filter after the converse of some function.

To do so, notice that currying can be specified as:

curry :: ((A × B)→ C)→ A→ B → C

curry S a = S · 〈const a, id〉

where S :: (A × B) → C and a :: A. In words, curry remembers the constant a and pair it with
whatever input before feeding the pair to S . Furthermore, when S is the converse of a fork, the
following lemma allows us to convert it to a filter after a converse of a function, which is the form
we want:

Lemma 4.2 〈R, f 〉◦ · 〈const a, id〉 = ((a) · R)? · f ◦

Writing down the types helps us to get an intuition of the lemma. Assume that a has type A. Let
R :: C → A and f :: C → B . The term 〈R, f 〉◦ thus has type (A × B) → C . The left-hand side
takes a value b of type B , constructs the pair (a, b), and reduces it to a value c :: C such that
that (c, a) ∈ R and (c, b) ∈ f . The right-hand side does the same by mapping b to an arbitrary
c through f , and taking only those c satisfying (c, a) ∈ R. A proof of the lemma is given in
Appendix A.

Now let us substitute preorder for R and inorder for f , we get:

curry 〈preorder , inorder〉◦ x = ((x) · preorder)? · inorder ◦

Putting it the other way round, if we define rebuild to be

rebuild x = ((x) · preorder)? · inorder ◦

we have 〈preorder , inorder〉◦ = uncurry rebuild . Recall that our aim is to construct distinct? ·
〈preorder , inorder〉◦. The aim now is thus to derive rebuild .

The relation inorder ◦ constructs all trees whose inorder traversal meet a given list. The
coreflexive ((x) · preorder)? then picks the one whose preorder traversal is the list x . The
derivation therefore again proceeds in two parts: to invert inorder , and to impose a constrain on
the constructed fold such that it only generates the tree we want. Furthermore, the predicate
distinct implies that x must not contain duplicated elements; it is thus safe to assume so in the
derivation of rebuild .

36 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

4.5.1 Unflattening an Internally Labelled Binary Tree

In this section we aim to construct inorder as a fold. To do so, it is also helpful to switch to
a spine representation. The following type Spine A represents the spine of an internally labelled
binary tree:

typeSpine A = List (A× Tree A)

The conversion from a spine tree to the ordinary representation can be performed by the function
roll defined below:

roll :: Spine A→ Tree A

roll = foldl join null

where join (u, (a, v)) = node (a, (u, v))

The converse-of-a-function theorem says that inorder ◦ = foldr add zero if we can find add and
zero satisfying:

inorder (roll zero) = []

inorder (roll (add (a, us))) = a : inorder (roll us) (4.5)

An easy choice for zero would be []. As for add , we claim that the following definition satisfies
(4.5):

add :: (A× Spine A)→ Spine A

add (a, us) = (a, roll vs) : ws

where vs ++ ws = us

Figure 4.7 illustrates the idea. The tree on the left-hand side is represented by the list

[(b, t), (c, u), (d , v), (e,w)]

One of the possible ways to extended the tree with a new node a is to cut the list in the middle,
yielding:

[(a, roll [(b, t), (c, u)]), (d , v), (e,w)]

It is shown in the figure on the right-hand side. The proof that the definition of add above does
satisfy (4.5) is similar to that in Section 4.3.1. We will also need a property distributing inorder

into the subtrees on the spine:

inorder · roll = concat ·map (cons · (id × inorder)) (4.6)

The proof goes:

a : inorder (roll (vs ++ ws))

= {(4.6)}

a : concat (map (cons · (id × inorder)) (vs ++ ws))

= {since concat and map distributes over ++}

a : concat (map (cons · (id × inorder)) vs)++
concat (map (cons · (id × inorder))ws)

= {(4.6)}

a : inorder (roll vs) ++ concat (map (cons · (id × inorder))ws)

4.5. REBUILDING A TREE FROM ITS TRAVERSALS REVISITED 37

! "

#

$ %
& '
(

)
*

!

#

$ %
& '
(

)
*
!

Figure 4.7: Spine representation for internally labelled trees.

= {definition of concat and map}

concat (map (cons · (id × inorder)) ((a, roll vs) : ws))

= {(4.6)}

inorder (roll ((a, roll vs) : ws))

It is also not difficult to see that [] and add are jointly surjective, since if a spine tree is not [], it
must be a result of adding its left-most element on the spine to some tree. We therefore conclude
that inorder ◦ = foldr add null .

4.5.2 Enforcing a Preorder

Now recall our the specification of rebuild

rebuild x = ((x) · preorder)? · inorder ◦

In the last section we have inverted inorder as a relational fold and switched to a spine represen-
tation, yielding:

rebuild x = roll · (hasPreorder x)? · foldr add []

where hasPreorder x = (x) · preorder · roll . The next step is to fuse some constraints into the
fold to eliminate its non-determinism. Still, hasPreorder is too strong an invariant to enforce.
Can we again invent a weaker alternative that can be fused into the fold?

Define preorderF to be the preorder traversal of forests:

preorderF = concat ·map preorder

Look at Figure 4.7 again. The preorder traversal of the tree on the left-hand side is

[e, d , c, b] ++ preorderF [t , u, v ,w]

that is, to go down along the left spine, then traverse through the subtrees upwards. In general,
given a spine tree us, its preorder traversal is

reverse (map fst us) ++ preorderF (map snd us)

We will call the part before ++ the prefix and that after ++ the suffix of the traversal. Now look
at the tree on the right-hand side. Its preorder traversal is

[e, d , a, c, b] ++ preorderF [t , u, v ,w]

38 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

It is not difficult to see that when we add a node a to a spine tree us, the suffix of its preorder
traversal does not change. The new node a is always inserted to the prefix.

With this insight, we split hasPreorder into two parts:

hasPreorder :: List A→ Spine A→ Bool

hasPreorder x us = prefixOk x us ∧ suffixOk x us

suffixOk x us = preorderF (map snd us) isSuffixOf x

prefixOk x us = reverse (map fst us) (x 	 preorderF (map snd us))

where x 	 y removes y from the tail of x and is defined by:

x 	 y = z where z ++ y = x

The expression x isSuffixOf y yields true if x is a suffix of y . The use of boldface font here
indicates that it is an infix operator (and binds looser than function application). The plan is to
fuse only suffixOk x into the fold while leaving prefixOk x outside.

There is a slight problem, however. The invariant suffixOk x does not prevent the fold from
generating, say, a leftist tree with all null along the spine, since the empty list is indeed a
suffix of any list. Such a tree may be bound to be rejected later. Look again at the right-
hand side of Figure 4.7. Assume we know that the preorder traversal of the tree we want is
x = [.. d , c, b] ++ preorderF [t , u, v ,w]. The tree in the right-hand side of Figure 4.7, although
satisfying suffixOk x , is bound to be wrong because d is the next immediate symbol but a now
stands in the way between d and c, and there is no way to change the order afterwards. Thus
when we find a proper location to insert a new node, we shall be more aggressive and consume as
much suffix of x as possible. The following predicate lookahead x ensures that in the constructed
tree, the next immediate symbol in x will be consumed:

lookahead :: List A→ Spine A→ Bool

lookahead x us = length us ≤ 1 ∨ (map fst us) !! 1 6=last x ′

where x ′ = x 	 preorderF (map snd us)

Apparently lookahead x is weaker, and thus can be conjuncted with hasPreorder x without
changing it. We will use both suffixOk x and lookahead x as our invariant. Define

ok x us = suffixOk x us ∧ lookhead x us

The derivation goes:

rebuild

= {definition}

((x) · preorder)? · inorder ◦

= {inverting inorder and moving roll to the left}

roll · (hasPreorder x)? · foldr add []

= {since hasPreorder x us = prefixOk x us ∧ ok x us}

roll · (prefixOk x)? · (ok x)? · foldr add []

= {fold fusion, assume nodup x}

roll · (prefixOk x)? · foldr (add ′ x) []

To justify the fusion step, it can be shown that if x contains no duplicated elements, the following
fusion condition holds:

(ok x)? (add (a, us)) = add ′ x (a, (ok x)? us)

4.5. REBUILDING A TREE FROM ITS TRAVERSALS REVISITED 39

data Tree a = Null | Node a (Tree a) (Tree a) deriving (Show,Eq)

rebuild :: Eq a => [a] -> [a] -> Tree a

rebuild x = rollpf . foldr add’ ([],reverse x)

where add’ a (us,x) = up a Null (us,x)

up a v ([],x) = ([(a,v)],x)

up a v ((b,u):us, b’:x)

| b == b’ = up a (Node b v u) (us, x)

| otherwise = ((a,v):(b,u):us, b’:x)

rollpf :: Eq a => ([(a,Tree a)],[a]) -> Tree a

rollpf (us,x) = rp Null (us,x)

where rp v ([],[]) = v

rp v ((b,u):us, b’:x)

| b == b’ = rp (Node b v u) (us,x)

Figure 4.8: Rebuilding a tree from its traversals via a fold.

where add ′ is defined by:

add ′ :: List A→ (A× Spine A)→ Spine A

add ′ x (a, us) = up a null (us, x 	 preorderF (map snd us))

up :: A→ Tree A→ (Spine A× List A)→ Spine A

up a v ([], x) = [(a, v)]
up a v ((b, u) : us, x ++ [b ′]) | b b ′ = up a (node (b, (v , u)) (us, x)

| otherwise = (a, v) : (b, u) : us

In words, the function up traces the left spine upwards and consumes the values on the spine if
they match the tail of x . It tries to roll as much as possible before adding a to the end of the
spine.

As a final optimisation, we can avoid computing x 	 preorderF (map snd us) from scratch
each time by applying a tupling transformation, having the fold returning a pair. The Haskell
implementation is shown in Figure 4.8. The fold in rebuild returns a pair, the first component
being a tree and the second component being a list representing x	preorderF (map snd us). Since
the list is consumed from the end, we represent it in reverse. The function rollpf implements
roll · (prefixOk x)?.

Figure 4.9 shows an example of this algorithm in action. The part in boldface font indicates
preorderF (map snd us). Notice how the preorder traversals on of the trees under the spine always
form a suffix of the given list [a, b, c, d , e, f].

We have actually reinvented the algorithm proposed in [24], but in a functional style. The
first step in [24] was to transform the recursive definition of 〈preorder , inorder〉 into an iteration
by introducing a stack. The same effect we achieved by introducing the spine representation.

4.5.3 Building a Tree with a Given Preorder

The reader might justifiably complain that the derivation works because, by luck, we choose to
invert inorder first. Had we started with 〈inorder , preorder〉◦ instead, it would lead us to

((x) · inorder)? · preorder ◦

40 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

!"#$%&$'(')'%'*'+'&',
-$&#$%&$('+')'*'%'&',

,

+

) &

%
+* ,

&

,

a b c d e f

+
&
,

a b c d e f

a b c d e f

a b c d e f+
&
,

*

a b c d e f+
&
,

*
%

a b c d e f

./0

.10

.20

.30

.40

.50

Figure 4.9: Building a tree from its preorder. The preorder traversals of the trees under the spine
is written in boldface font.

Now, we would have to invert preorder , and then enforce, on the resulting fold, the constraint
that the tree built must have a given inorder traversal. Does the alternative still work? In fact,
it does, and the result is a new, though complicated, algorithm to the problem of building a tree
with given traversals. We sketch an outline of its development in this section.

We first seek to invert preorder . For this problem it turns out that it makes more sense to work
on forests rather than trees. Abbreviate List (Tree A) to Forest A. Recall preorderF :: Forest A→
List A defined by preorderF = concat ·map preorder . The reader can easily verify that preorderF

can be inverted as below:

preorderF ◦ = foldr step []
where step (a, us) = tip a : us

2 lbr (a, head us) : tail us

2 rbr (a, head us) : tail us

2 node(a, (us!!0, us!!1)) : tail (tail us)

where the helper functions tip, lbr and rbr respectively creates a tip tree, a tree with only the left
branch, and a tree with only the right branch. They are defined by:

tip a = node (a, (null ,null))
lbr (a, t) = node (a, (t ,null))
rbr (a, t) = node (a, (null , t))

In words, the relation step extends a forest in one of the four possible ways, when applicable :
adding a new tip tree, extending the left-most tree in the forest by making it a left-subtree or a
right-subtree, or combining the two left-most trees, if they exist.

The next step is to find out a guideline which of the four operations to perform when adding
a new value. We need to invent an invariant to enforce in the body of the fold. To begin with,
we reason:

((x) · inorder)? · preorder ◦

= {since preorder = preorderF · wrap}

((x) · inorder)? · wrap◦ · preorderF ◦

4.5. REBUILDING A TREE FROM ITS TRAVERSALS REVISITED 41

= {some trivial manipulation}

wrap◦ · ((x) · concat ·map inorder)? · preorderF ◦

Again, the condition (x) · concat ·map inorder is too strong to maintain. Luckily, it turns out
that the weaker constraint

(isSubSeqOf x) · concat ·map inorder

will do, where (isSubSeqOf x) y = y isSubSeqOf x yields true if y is a subsequence of x . That
is, we require that during the construction of the forest, the inorder traversal of each tree shall
always form segments of x , in correct order. Figure 4.10 demonstrates the process of constructing
the same tree as that in Figure 4.9. This time notice how the inorder traversal of the constructed
forest always forms a subsequence of the given list [b, d , c, a, e, f].

After some pencil-and-paper work, it is not difficult to work out the rules to extend the forest
while maintaining the invariant. Let the desired inorder traversal of the resulting tree be x . Define
skipx by:

skipx :: Forest A→ List A

skipx (t : u : us) = y

where ++ inorder t ++ y ++ inorder u ++ = x

skipx = []

That is, skipx us is the part of x between the leftmost tree and the next tree of the forest us.
They correspond to the underlined segments in Figure 4.10. Also define leftx by

leftx :: Forest A→ List A

leftx [] = []
leftx (t : us) = y

where y ++ inorder t ++ = x

It is a prefix of x before the leftmost tree in the forest. Some experiments will lead one to
the following rules adding a value a to a forest while maintaining the invariant that the inorder
traversal of the forest is a subsequence of x :

add :: (A× Forest A)→ Forest A

add (a, []) = [tip a]
add (a, us) | skipx us [] =

if isNextx us a then rbr (a, head us) : tail us

else tip a : us

add (a, us) | skipx us [a] =
case us of

[t]→ [lbr (a, t)]
(t : u : us)→ node (a, (t , u)) : us

add (a, t : us) | head (skipx (t : us)) [a] = lbr (a, t) : us

| isNextx (t : us) a = rbr (a, t) : us

| otherwise = tip a : t : us

isNextx us a = not (null (leftx us)) ∧ last (leftx us) a

The rules above are visualised in Figure 4.11, where add is written as ⊕ and the values of skipx is
written as a superscript above the trees. The left-hand sides of the arrows indicates the patterns

42 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

� �

�
�

�
�

�
� �

�
� � �

� �
�

�
�

� � � 	
 �

� � � 	 � �

�
 � 	 � �

�
 � 	 � �

�
 � 	 � �

�
 � � � �

� � �

� � �

� � �

� � �
�

� �
�

� � �

� � �

� � � � � � � � � ! " � #

$ � � � � � � � � " ! � � #

Figure 4.10: Building a tree from its preorder.

! "# !"$$$#

!

"$$$$$$#

%$&'
"#

()*+
,
$-$...!

/+0)123')

!

+
+ %$&'

!
"!#
+

& %$&'%

!

+
"$$$$$$#

! +
"!#

!

+ &

%$&'

%$&'

%

! +
!%4'

!

+

%$&'
4'

%$&'! +
4%4'

/+0)123')

!

+

%$&'
4%4'

! %$&'+

%! %$&'+

"#

"#

4' 4'

5

()*+
,
$-$...!

5

5

5
20)1)$6$77$"!#$77$38/19)1$+77:$-$,
-$6

Figure 4.11: Building a tree from its preorder.

4.6. THE GENERALISED CONVERSE-OF-A-FUNCTION THEOREM 43

to match, in top-down order. The resulting forest is drawn on the right-hand side, together with
new values of skipx . From the figure, it is easier to see that the rules do maintain the invariant.

To the best of the author’s knowledge, this algorithm is new. However, the rules consists of
totally eight cases and are relatively complicated comparing to the simpler algorithms in Section
3.3 and Section 4.5.2. It is due to the fact that we have four possible operations to choose from,
while in Section 4.5.2 there are only two – either to walk upward along the spine for one node or
to stop and attach a new node. For that reason we will not go into more detail but just present
the result. A similar approach can be applied to the well-known problem of constructing a binary
search tree from its preorder traversal. In this simpler version, the algorithm is much simpler.

A program implementing the algorithm is presented in Figure 4.12. To avoid repeatedly
traversing the forest for each computation of skip, each tree in the forest is annotated with the
skip value of the forest starting from itself, represented by the type AForest A. Furthermore, to
speed up the computation of isNext , the value of left at each step of computation is reversed
and paired with the forest. The function add thus takes and returns an annotated forest of type
(List A × AForest A). After this data refinement, the program runs in linear time, but with a
bigger constant overhead than that in Section 4.5.2.

4.6 The Generalised Converse-of-a-Function Theorem

By definition, a hylomorphism is the composition of a fold after an unfold. The hylomorphism
([R])

F
· ([T])◦

F
can be characterised as the least solution for X of the inequation R · FX · T ◦ ⊆ X .

The aim of this section is to prove the following generalisation of Theorem 4.1:

Theorem 4.3 (Generalised converse-of-a-function theorem) Let S :: B → A be a simple
relation. If there exists a relation R :: F(C ,B) → B and a simple relation T :: F(C ,A) → A are
such that (i) dom S = ran R; (ii) S ·R ⊆ T · FS ; and (iii) δF · R

◦ is inductive, then

S ◦ = ([R])
F
· ([T])◦

F

In words, Theorem 4.3 gives conditions under which a simple relation can be inverted as a
hylomorphism. The new ingredients in Theorem 4.3 are the membership relation δF of a relator
F, and the notion of an inductive relation. Both are described below in Section 4.6.1. The main
proof is given in Section. 4.6.2.

Theorem 4.1 follows as a special instance of Theorem 4.3 by taking T = α and S to be an
entire relation as well as a simple one, that is, a function. An entire relation S is one for which
dom S = id , so condition (i) translates to the requirement that R be a surjective relation. In
Section 4.6.2, we will prove that condition (iii) holds if both (i) and (ii) do and if δF · T

◦ is
inductive. Fact 4.6 below gives us that δF · α

◦

F
is inductive. Since ([αF])

F
= id , we then obtain the

result S ◦ = ([R])
F
, the conclusion of Theorem 4.1.

4.6.1 Inductivity and Membership

We say that a relation admits induction, or is inductive, if we can use it to perform induction[31].
Formally, inductivity is defined by:

Definition 4.4 (Inductivity) A relation R :: A ; A is inductive if for all X :: B ; A,

R\X ⊆ X ⇒ Π ⊆ X

44 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

tip a = Node a Null Null

rbr a x = Node a Null x

lbr a x = Node a x Null

type AForest a = [(Tree a, [a])]

rebuild :: Eq a => [a] -> [a] -> Tree a

rebuild x = fst . unwrap . snd . foldr add (reverse x, [])

where add :: Eq a => a -> ([a],AForest a) -> ([a],AForest a)

add a xu@(x, []) = newtree a xu

add a xu@(x, (t,[]):us)

| isNext x a = (tail x, (rbr a t, []):us)

| otherwise = newtree a xu

add a xu@(x,(t,b:bs):us)

| a == b = (x, join a (t,bs) us)

| isNext x a = (tail x, (rbr a t, b:bs):us)

| otherwise = newtree a xu

join a (t,[]) [] = [(lbr a t,[])]

join a (t,[]) ((u,y):us) = (Node a t u, y) : us

join a (t,bs) us = (lbr a t, bs):us

newtree a (x,us) = (x’, (tip a, y):us)

where (x’,y) = skip x a

isNext [] a = False

isNext (b:bs) a = a == b

skip x a = locate a [] x

where locate a y [] = ([],y)

locate a y (b:x) | a == b = (x,y)

| otherwise = locate a (b:y) x

Figure 4.12: Another way to rebuild a tree from its traversals via a fold.

4.6. THE GENERALISED CONVERSE-OF-A-FUNCTION THEOREM 45

Here Π denotes the largest relation of its type, and the left division operator (\) is defined by the
Galois connection:

S ⊆ R\T ≡ R · S ⊆ T

The definition can be translated to the point level to aid understanding. It says that R is inductive
if the property

(∀c :: (c, a) ∈ R ⇒ (c, b) ∈ X) ⇒ (a, b) ∈ X

where a and b are arbitrary, implies X contains all the pairs of its type. As an example, take R

to be <, the ordering on natural numbers, and P a = (a, b) ∈ X to be some property we want to
prove for all a and some fixed b. The definition specialises to the claim that if

(∀c :: c < a ⇒ P c) ⇒ P a

then P a holds for all natural numbers a. Thus we can see that inductivity captures the principle
of induction.

Inductivity is important to us because it guarantees uniqueness of solutions. The following
theorem comes from [17, Theorem 6.3]:

Theorem 4.5 If δF · R is inductive, then then equation X = T · FX · R has a unique solution
X = ([T])

F
· ([R◦])◦

F
.

Three facts concerning inductivity we will need are the following:

Fact 4.6 The relation δF · α
◦

F
is inductive.

Fact 4.7 If R is inductive and S ⊆ R, then S is inductive.

Fact 4.8 If R is inductive, so is S ◦ ·R · S for any simple relation S .

The other concept we need, due to Hoogendijk and de Moor [42], is the membership relation
of a datatype. For example, a membership relation δList for lists can be specified informally by:

(a, [a0, a1, . . . an]) ∈ δList ≡ (∃i :: a = ai)

The formal definition of membership is not at all intuitive, and we refer the reader to [42] for
more discussion. A fact about membership we will use is that it is a lax natural transformation,
which is to say,

δF · FR ⊆ R · δF (4.7)

for all R.

4.6.2 The Proof

Taking converses of both sides, the aim is to prove that S = ([T])
F
·([R])◦

F
under the given conditions.

Since, by Theorem 4.5 and assumption (iii) that δF · R
◦ is inductive, we know that ([T])

F
· ([R])◦

F

is the unique solution for X of the equation below:

X = T · FX · R◦

46 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

Now we will show that S is also a solution. The proof goes:

S

= {since S = S · dom S = S · ran R by assumption (i)}

S · ran R

⊆ {since ran R ⊆ R ·R◦}

S ·R · R◦

⊆ {by assumption (ii): S ·R ⊆ T · FS}

T · FS · R◦

= {since R = ran R ·R = dom S · R by assumption (i)}

T · FS · R◦ · dom S

⊆ {since dom S ⊆ S ◦ · S}

T · FS · R◦ · S ◦ · S

⊆ {by assumption (ii): S ·R ⊆ T · FS}

T · FS · (T · FS)◦ · S

⊆ {since T · FS simple}

S

We will now prove a lemma which shows that condition (iii) of Theorem 4.3 holds if conditions
(i) and (ii) do and if δF ·T

◦ is inductive. It is this lemma that establishes the connection between
Theorem 4.1 and Theorem 4.3. We will make use of the following shunting rule for simple S :

S ·X ⊆ Y ≡ dom S ·X ⊆ S ◦ · Y (4.8)

For the reader’s reference, the above shunting rule is proved in Appendix A. When S is also
entire, i.e., dom S = id , (4.8) reduces to the usual shunting rule for functions.

Lemma 4.9 The relation δF · R
◦ is inductive if (i) ran R ⊆ dom S ; (ii) S · R ⊆ T · FS ; and (iii)

δF · T
◦ is inductive.

Proof. We reason:

δF ·R
◦

⊆ {claim: R ⊆ S ◦ · T · FS}

δF · FS ◦ · T ◦ · S

⊆ {by (4.7)}

S ◦ · δF · T
◦ · S

Since δF ·T
◦ is inductive, so is S ◦ · δF ·T

◦ ·S by Fact 4.8. We then obtain that δF ·R
◦ is inductive

by Fact 4.7.

The claim that R ⊆ S ◦ · T · FS is proved below:

R ⊆ S ◦ · T · FS

≡ {using R = ran R · R}

ran R · R ⊆ S ◦ · T · FS

⇐ {assumption (i)}

4.7. APPLICATIONS OF THE GENERALISED THEOREM 47

dom S · R ⊆ S ◦ · T · FS

≡ {shunting (4.8)}

S ·R ⊆ T · FS

2

4.7 Applications of the Generalised Theorem

Theorem 4.3 can potentially be very powerful since it allows the functor F, which determines
the pattern of recursion, to be independent from the input and output types. A much wider
class of algorithms can thus be covered. However, the theorem itself offers no clue how F and f

could be chosen. It is therefore less useful for program derivation and more helpful in proving the
correctness of known algorithms.

One application we have found for Theorem 4.3 is to prove that a loop implements the inverse
of some function. A loop can be specified relationally by

T ·R∗ · S

The relation S initialises the loop, while R serves as the loop body. The domain of T represents the
terminating condition and therefore ought to be disjoint from the domain of R. Given a relation
R, the reflexive transitive closure R∗ is the smallest reflexive transitive relation containing R.
More generally, the relation R∗ · S :: A → B , where S :: A → B and R :: B → B , can be defined
as a least fixed-point:

R∗ · S = µ(X 7→ S ∪ R ·X)

A key observation here is that a closure can also be written as a hylomorphism, with the base
functor FAX = A + X :

R∗ · S

= {definition of closure}

µ(X : S ∪R · X)

= {coproduct}

µ(X : [S ,R] · (id + X) · [id , id]◦)

= {hylomorphism, let FAX = A + X }

([S ,R])
F
· ([id , id])◦

F

Here the unfolding phase wraps the input value with an inl , before wrapping it with an indefinite
number of inrs. The folding phase then replaces the inl with S and each inr with an R. The
exact number of iterations performed is determined the termination test T .

Given a function f , let us instantiate Theorem 4.3 to discover the conditions under which
f ◦ = ([S ,R])

F
· ([id , id])◦

F
:

• Since dom f = id , condition (i) instantiates to ran [S ,R] = id . That is, S and R shall be
jointly surjective.

• Condition (ii) can be divided into two parts:

f · S ⊆ id ∧ f ·R ⊆ f

48 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

Shunting the functions to the other side, we get:

S ⊆ f ◦ ∧ R · f ◦ ⊆ f ◦

which looks familiar enough! Think of f ◦ as an invariant. The first half says that the initial
values satisfies the invariant, while the second half says that given inputs satisfying the
invariant, the loop body R maintains the invariant.

• Since δF · [S ,R] = R, condition (iii) requires that R be inductive. Intuitively speaking, we
want R to “decrease” the loop variables in some sense, so that the loop terminates.

Assume we wish to prove that T · R∗ · S correctly implements a specification X . As will be
shown in the next two sections, in some occasions X can be quite naturally factored into T · f ◦

for some f . We then just need to check the three conditions above.

4.7.1 Splitting a List revisited

As the first example, let us consider again inverting the function cat :: (List A×List A)→ List A.
The two conditions instantiate to

cat · S ⊆ id

cat · R ⊆ cat

The second condition says that given a pair of lists (x , y), the relation R ought to map it to
another pair of lists which still concatenates to x ++ y . One possible way to do that is to move
one element from the head of y to the tail of x :

R (x , y) = (x ++ head y , tail y)

The relation R alone is not surjective: it only generates pairs of lists whose first components are
not empty. To ensure surjectivity, the following choice of S comes naturally:

S y = ([], y)

The relation R reduces the length of y , therefore the loop does eventually terminate when y

becomes empty. We therefore conclude that cat◦ = R∗ · S .
Note that the following choice of R, moving two elements at a time, does not work:

R (x , [a]) = (x ++ [a], [])
R (x , (a : b : y)) = (x ++ [a, b], y)

It fails to satisfy the surjectivity condition because it does not generate pairs of lists (x , y) where
x is of odd length and y is not empty.

4.7.2 The String Edit Problem

The string edit problem is a typical example for dynamic programming. Recently it has drawn
much attention due to its application in DNA sequence matching. In its simplest form, we are
given two strings, one as the source and one as the target, and some available commands. Imagine
a cursor positioned to the left of the source string. We assume the following commands:

• ins c: to insert a character c at the current position. The target string will thus have an
extra character c after this operation.

4.7. APPLICATIONS OF THE GENERALISED THEOREM 49

• del c: to delete the character, c, in the current position. Or, one can think of it as a
statement that the source string has an extra c.

• cpy c: to skip the current character c and move the cursor one position to the right. Some
people prefer to view it as copying the character c from the source to the target.

The task is to find the shortest sequence of commands to transform the source string to the target
string. In more complicated variations we might be given more commands and their weights may
vary.

We represent the three commands with a datatype Op:

dataOp = ins Char | del Char | cpy Char

To specify the problem, one might attempt to construct a relation taking the pair of strings and
return an arbitrary sequence of commands relating the strings. In fact, it is easier to construct
its inverse. The function exec below executes a sequence of commands, starting from a pair of
empty strings, and yields two strings:

exec :: List Op → (String × String)
exec = foldl step ([], [])

where step (x , y) (ins c) = (x , y ++ [c])
step (x , y) (del c) = (x ++ [c], y)
step (x , y) (cpy c) = (x ++ [c], y ++ [c])

The string edit problem is thus defined by

stredit = min R · Λexec◦

The ingredient min R will be discussed in detail in the next chapter. For now the reader merely
needs to know that its type instantiates to Set (List Op) → List Op and it chooses a shortest
sequence of operations from a set of candidates. In [17, Chapter 9], Bird and de Moor derived from
this specification a dynamic programming algorithm using their dynamic programming theorem
for unfolds.

Yet some others prefer to describe exec◦ as an iterative process. That is, they claim that
exec◦ = end ·move∗ · start , where

start (x , y) = (x , y , [])
move (x , y , ops) = (x , init y , ins (last y) : ops)

2 (init x , y , del (last x) : ops)
2 ((init x , init y , cpy (last x) : ops), if last x last y)

end ([], [], ops) = ops

The loop starts with the two strings and an empty list of commands. The non-deterministic loop
body move then try to recover what the last command might be by trying all possible commands.
The iteration repeats until both strings become empty. Notice that move is defined as a partial
relation which yields value only when not both of x and y are empty. This was the view taken by
Curtis in [26]. Once a specification is written in terms of a min R after a loop, theories in [26] are
ready to transform it to a dynamic programming algorithm, if certain conditions are satisfied.

Optimisation problems will be discussed in the next chapter and this is not the place to
discuss how the problem can be solved using the developed theories. Instead we will bridge the
gap between the two views on exec. In other words, how do we know the claim that exec◦ =
end ·move∗ · start is true?

50 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

With the discussions in the opening of Section 4.7 in mind, we generalise exec to execWith

such that

exec = execWith · end◦

The function execWith has type (String × String × List Op) → (String × String) and is defined
by:

execWith (x , y , ops) = foldl step (x , y) ops

It is just replacing the constant ([], []) in the definition of exec with a given argument (x , y). The
task is then to show that execWith◦ = move∗ · start . One may also think of it as that we have
just invented and proposed execWith◦ to be the loop invariant, and are about to check whether
this invariant works. The invariant says that, denoting the input pair of strings by (x , y), and
the intermediate values at any point of computing move∗ · start by (x ′, y ′, ops), executing the
commands ops on (x ′, y ′) shall always yield (x , y).

Now we will check the conditions one by one:

• Condition (i) holds: start and move are jointly surjective.

• Condition (ii) requires:

execWith · start ⊆ id

execWith ·move ⊆ execWith

The first one trivially holds. The second inclusion holds because move undoes the last step
of execution. Thus the domain of the left-hand side is restricted to triples where one of the
two strings is not empty. The execution still yields the same result.

• For condition (iii): move is well-founded and thus inductive.

Therefore, we conclude that execWith◦ = ([start ,move])
F
· ([id , id])◦

F
= move∗ · start .

4.7.3 Building Trees by Combining Pairs

Recall again the following datatype for leaf-valued binary trees:

dataTree A = tip A | bin (Tree A× Tree A)

And yes, we are about to introduce yet another approach to building trees from a given list.
We have briefly mentioned inverting flatten to an unfold (we will come back to this unfolding

approach later in Chapter 6), and the majority of this chapter has been focusing on inverting
flatten to a fold. There is yet another alternative way to build a tree from a list: starting from a
list of tips, keep combining adjacent trees until only one is left. The process can be characterised
by

wrap◦ · join∗ ·map tip

where join (x ++ [a, b] ++ y) = x ++ [bin (a, b)] ++ y .
Our aim is, of course, to show that flatten◦ = wrap◦ · join∗ ·map tip. Observe that

flatten = flattenF · wrap

where flattenF = concat · map flatten. We have just proposed this invariant for the loop: that
during the iterations, the forest always flattens to the given list. Now we check that flattenF ◦ =
join∗ ·map tip:

4.7. APPLICATIONS OF THE GENERALISED THEOREM 51

• Indeed, map tip and join are jointly surjective. The former covers any lists of tip trees while
the latter covers the rest.

• We need to verify that:

concat ·map flatten ·map tip ⊆ id

concat ·map flatten · join ⊆ concat ·map flatten

The first inclusion trivially holds. The second holds because join restricts the domain of
the left-hand side to lists with at least two trees, but not affecting the result returned.

• Finally, join is well-founded because it reduces the length of the forest.

It then follows that flattenF ◦ = join∗ ·map tip and, consequently, flatten◦ = wrap◦ · join∗ ·map tip.
One might relate this small exercise to merge sort. There are two ways to implement merge

sort: one is to implement it as a hylomorphism, where the unfolding phase expands a tree and the
folding phase performs merging at each node. The other is to implement it as a loop: to start with
map wrap, converting the input to a list of singleton lists, and then to iteratively merge adjacent
lists until only one list is left. The first can be said to be top-down and the second bottom-
up. A similar reasoning converts the former to the latter. However, an additional distributivity
property of list merging will be needed in the proof. A similar problem was treated in [41], where
a top-down algorithm was also transformed to a bottom-up one.

52 CHAPTER 4. THE CONVERSE-OF-A-FUNCTION THEOREM

Chapter 5

Optimisation Problems

Optimisation problems, which usually involves choosing a best solution among the set of all legal
ones, are suitable to be expressed relationally. In [17], Bird and de Moor have developed theories
formalising when and how an optimisation problem, specified as a fold or an unfold, can be
solved by a greedy algorithm, a thinning algorithm or a dynamic programming strategy. Curtis
[26] further generalised their theories to problems that can be specified in terms of an iterative
operator, which covers most optimisation problems we encounter in practice.

In the first two sections of this chapter, we will look at the interplay between the converse-
of-a-function theorem and the above theories about optimisation problems. In particular, we
utilise the greedy and the thinning theorem developed in [17] for the optimal bracketing problem.
A greedy linear-time algorithm is derived for one of its instances — to build trees of minimum
height.

In the third section, we will deviate from the theme of inverse functions a bit and pursue
further on more knowledge about optimisation problems specified as folds. The greedy theorem is
extended to allow mutually defined algebras. The generalised theorem is applied to an interesting
class of problems called the optimal marking problem. Polynomial-time algorithms are derived
for two instances of such problems.

5.1 Building Trees with Minimum Height

Given is a list of trees. The task is to combine them into a single tree, retaining the left-to-right
order of the subtrees. How can we make the height of the resulting tree as small as possible?
Figure 5.1 illustrates one such tree, of height 11, for given subtrees of heights [2, 9, 8, 3, 6, 9]. As
the actual content of the subtrees is not important, we can think of them simply as numbers
representing the heights. The problem is therefore again one of turning a list of numbers to a
tree. A linear-time algorithm to this problem has been proposed in [14]. Here we will demonstrate
how a similar algorithm can be derived.

First let us consider now to formalise the problem. We will make use of the same datatype as
in Section 4.3 for leaf-valued binary trees:

dataTree A = tip A | bin (Tree A× Tree A)

Also recall the familiar function flatten defined by

flatten :: Tree A→ List1 A

flatten = foldTree (++)wrap

53

54 CHAPTER 5. OPTIMISATION PROBLEMS

2 9
8

3 6

9

Figure 5.1: A tree with height 11 built from trees with heights [2, 9, 8, 3, 6, 9].

Given a tip-valued binary tree whose tip values represent the heights of trees below, the function
computing the height of the combined tree can be defined as a fold in the obvious way:

height :: Tree Z → Z
height = foldTree ht id

where ht (a, b) = (a t b) + 1

where t returns the larger of its two arguments.
The problem is to find, among all the trees which flatten to the given list, one for which height

yields the minimal value. To collect all possible solutions, we can make use of the power transpose
operator Λ. To extract a value from a set, we will need the relation min R :: Set A → A defined
by:

(xs, x) ∈ min R ≡ x ∈ xs ∧ (∀y : y ∈ xs : x R y)

The relation min R chooses among the given set a minimum member under the ordering R. For
this definition to be of any use, R has to be a connected preorder. A relation is a preorder if it is
reflexive and transitive. We call a preorder connected if it compares everything of the type: i.e.,
for every x and y either x R y or y R x . However, in such cases x and y need not necessarily be
equal, That is, a preorder is not necessarily anti-symmetric. Therefore, min R will not in general
be a function. Complementarily, we also define:

max R = min R◦

The relation max R chooses among the given set a maximum member. Two properties of min (as
well as max), proved in [17], will be used repeatedly and are thus cited below:

min R · Pf = f ·min (f ◦ · R · f) (5.1)

min R ⊆ min Q ⇐ R ⊆ Q (5.2)

For our problem, define (�) to be a comparison between the heights of two trees:

x � y ≡ height x ≤ height y

Our problem can then be specified as:

bmh = min (�) · Λ(flatten◦)

Given a list, flatten◦ maps it to an arbitrary tree that flattens to the list. The Λ operator collects
all the trees into a set. Within the set, one with the minimum height is chosen by min (�).

5.1. BUILDING TREES WITH MINIMUM HEIGHT 55

To derive an algorithm from the specification, the relations derived in Sect. 4.3.1 can be
reused. We borrow from there the spine representation:

typeSpine A = (A× List (Tree A))

and an injective function roll :: Spine A→ Tree A for converting between the two representations,
as well as the algebra add and one are defined by:

one a = (a, [])
add (a, (b, us)) = (a, roll (b, vs) : ws)

where vs ++ ws = us

The function flatten was inverted to roll · foldrn add one. Back to our problem, the derivation
goes:

bmh

= {definition}

min (�) · Λ(flatten◦)

= {inverting flatten}

min (�) · Λ(roll · foldrn add one)

= {roll a function}

min (�) · Proll · Λ(foldrn add one)

= {by (5.1), define �′ below}

roll ·min (�′) · Λ(foldrn add one)

where the ordering �′ is the counterpart of � on spine trees:

xs �′ ys ≡ roll xs � roll ys

Still, Λ(foldrn add one) generates an exponential number of possible trees. This time, how are
we supposed to enforce some constraints into the fold to reduce the number of possibilities? The
answer is to make use of the greedy theorem, to be introduced in the next section.

5.1.1 The Greedy Theorem

We will now briefly review the greedy theorem in [17] and see how it can be applied to our problem.
First of all, we will introduce the notion of monotonicity.

Definition 5.1 (Monotonicity) A relation S :: FA → A is said to be monotonic on R if and
only if:

S · FR ⊆ R · S

Take non-empty cons-lists for example. The base functor is FAX = A + A × X . Without loss of
generality we can assume that S has the form S = [base, step]. What does it mean for S to be
monotonic on a preorder �? The above definition translates to1:

(a, x) ∈ base ⇒ (∃y : (a, y) ∈ base : x � y)

1Free identifiers are considered to be universally quantified.

56 CHAPTER 5. OPTIMISATION PROBLEMS

which is a tautology if � is a preorder since we can take y to be x , and:

((a, x), x ′) ∈ step ∧ x � y ⇒ (∃y ′ : ((a, y), y ′) ∈ step : x ′ � y ′)) (5.3)

Suppose that we use foldrn step base to generate an arbitrary solution. The relation step takes
a partial solution and extends it. If we have S monotonic on �, in effect it means that for two
solutions x and y , y being at least as large as x with respect to �, no matter how we extend x to
x ′, we can always find a way to extend y to y ′ such that y ′ is not smaller than x ′. There is thus
no point keeping the smaller one, x , in the first place. We need to keep only the best solution so
far in each stage. This is made precise in the following greedy theorem:

Theorem 5.2 (Greedy Theorem) If S is monotonic on connected preorder R, then

([max R · ΛS])
F
⊆ max R · Λ([S])

F

Since min R = max R◦, the same theorem can also be written as

([min R · ΛS])
F
⊆ min R · Λ([S])

F
⇐ S monotonic on R◦

We see that min R is promoted into the fold. Rather than looking for a minimum one among
all the solutions returned by the fold, a minimum solution is chosen in each step of the fold and
becomes the only one to be passed on to the next step.

Back to our problem. Had add satisfied the monotonicity condition (5.3) with respect to �′

(the converse of �′), we would be able to apply the greedy theorem. However, it is not true: a
tree with the smallest height does not always remain the smallest after being extended by add .

Fortunately, add is monotonic on a stronger ordering. We define:

heights (a, xs) = (reverse ·map height · scanl Bin (Tip a)) xs

In words, heights returns a list of heights along the left spine, starting from the root. The relation
add is monotonic on �, defined by:

y � x ≡ heights y � heights x

where � is the lexicographic ordering on sequences. This choice does make sense: to ensure
monotonicity, we need to optimise not only the whole tree, but also all the subtrees on the left
spine. The use of the lexicographic ordering is quite common for such problems, for example, it
also features in Knuth’s axiomatic theory of convex hull algorithms [52].

Once we know that the monotonicity condition holds, we can apply the greedy theorem to
refine the specification. We will prove the monotonicity condition in section 5.1.2 and talk about
a further refinement necessary to make it a linear-time algorithm in section 5.1.3. The resulting
code is shown in 5.1.4.

5.1.2 Proving the Monotonicity Condition

This section is dedicated to proving that add is monotonic on �. Before we go into the details,
we will informally explain how we can maintain the monotonicity. For any two spine trees y � x ,
no matter how x is extended by add , we must find a way to extend y such that the resulting
tree is not larger under �. Suppose the spines of x and y look like in Figure 5.2. Since x � y ,
either the two spines are all the same, or we can find a position where the values (computed by
height) on the two spines divert from each other. Call the position r . Assume x was extended at
position p. If the position is within the area where the two spines are all the same, as in Figure

5.1. BUILDING TREES WITH MINIMUM HEIGHT 57

!"# $%

&%'(&) &*

$%'($) $*

+,

-,'(-) -*

+,'(+) +*
."#

Figure 5.2: Assumption of how x and y look like. Here x = (sm , [am−1, am−2, . . . a0]) and y =
(tn , [bn−1, bn−2, . . . b0]). The values sm−1, sm−2, . . . s0 and tn−1, tn−2, . . . t0 are the computed hights
on the spine.

5.3, we also extend y at the same position p. If p comes after that area, we can always extend y

at position r , as in Figure 5.4.
The rest of this section will be devoted to the actual proof. To start with, we notice that the

cost function x ⊕ y = (x t y) + 1 has the following useful properties:

commuting : a ⊕ b = b ⊕ a (5.4)

strictness : a ⊕ b > a (5.5)

monotonicity : a ′ ≥ a ⇒ a ′ ⊕ b ≥ a ⊕ b (5.6)

bimonotonicity : a ⊕ c = b ⊕ d ∧ a ′ ≥ a ∧ a ′ ≥ b ′

⇒ a ′ ⊕ c ≥ b ′ ⊕ d (5.7)

ordering : a ⊕ b ≥ b ⊕ c ⇒ (a ⊕ b)⊕ c ≥ a ⊕ (b ⊕ c) (5.8)

The purpose of property (5.4) is just to keep other properties brief. We will make use of (5.5)
and (5.7) in this section, while the others will be useful in the next section when we talk about an
important refinement. Some of the properties above are rather obvious, but we still give a proof
for the last two items.

Proof. For bimonotonicity:

a ′ ⊕ c ≥ b ′ ⊕ d

≡ {definition of ⊕}

a ′ t c ≥ b ′ t d

≡ {property of t }

a ′ t c ≥ b ′ ∧ a ′ t c ≥ d

≡ {a ′ ≥ b ′}

a ′ t c ≥ d

⇐ { a ′ ≥ a}

a t c ≥ d

⇐ {property of t }

a ⊕ c = b ⊕ d

58 CHAPTER 5. OPTIMISATION PROBLEMS

For ordering:

a ⊕ b ≥ b ⊕ c

≡ {definition of ⊕}

a + 1 t b + 1 ≥ b + 1 t c + 1

≡ {arithmetic}

a + 2 t b + 2 ≥ b + 2 t c + 2

⇒ {a + 2 ≥ a + 1 ∧ c + 1 ≤ c + 2}

a + 2 t b + 2 t c + 1 ≥ a + 1 t b + 2 t c + 2

≡ {definition of ⊕}

(a ⊕ b)⊕ c ≥ a ⊕ (b ⊕ c)

2

In fact, the properties above holds for many cost functions commonly seen. What makes this
cost function a⊕b = (a tb)+1 unique is the following lemma, which says that adding an element
to a tree results in a value greater than both of them. The lemma follows from the definition of
⊕.

Lemma 5.3 ((a, x), x ′) ∈ add ⇒ height x ′ ≥ a + 1 t height x

Now we prove the main proposition.

Proposition 5.4 The relation add is monotonic on � in the sense that

add · (id × (�)) ⊆ (�) · add

Or restating the monotonicity condition in first-order logic:

((a, x), x ′) ∈ add ∧ x � y ⇒ (∃y ′ : ((a, y), y ′) ∈ add : x ′ � y ′)

Proof. Suppose the spines of x and y look like in Figure 5.2, with y � x . Here x = (sm , [am−1, am−2, . . . a0])
and y = (tn , [bn−1, bn−2, . . . b0]). The values sm−1, sm−2, . . . s0 and tn−1, tn−2, . . . t0 are computed
by heights. They are not actually represented in the data structure. Note that the values on
each spines are strictly increasing. Furthermore, by bringing in the context, we can assume that
sm = tn . Therefore,

1. either the spines are identical (i.e. m = n ∧ ∀i : m ≥ i ≥ 0 : ti = si),

2. or we can find the first value on x , starting from the root, strictly greater than the cor-
responding value on y . That is, exists r , 0 ≤ r ≤ m u n, such that sr > tr and
∀i : r > i ≥ 0 : ti = si .

Assume add extends x at position p. We will distinguish between two cases:

• Case 1 : p ≤ r or when the spine values are the same (i.e. ∀i : p ≥ i ≥ 0 : si = ti).
In this case we extend y at the same position p, as in Figure 5.3. We can show that the
lexicographic ordering holds by showing the following two properties:

5.1. BUILDING TREES WITH MINIMUM HEIGHT 59

!"

#"$% #&

#'

!"$% !&

!'(

#

!&(

)*

+*$% +&

+'

)*$%)&

)'(

#

)&(

,(-.

/(-.

Figure 5.3: How we can extend y when p < r .

1. s ′p ≥ t ′p .
By assumption we have sp ≥ tp.It then follows by (5.4) and (5.6) that s ′p = a ⊕ sp ≥
a ⊕ tp = t ′p .

2. ∀i : p > i ≥ 0 : s ′i ≥ t ′i .
By definition of p we know that sp−1 = tp−1, or equivalently, sp ⊕ ap−1 = tp ⊕ bp−1.
From (5.5) we know that s ′p > sp . And s ′p = t ′p because sp = tp . Putting them all
together, we start with:

sp ⊕ ap−1 = tp ⊕ bp−1 ∧ s ′p > sp ∧ s ′p = t ′p

⇒ {(5.7)}

s ′p ⊕ ap−1 ≥ t ′p ⊕ bp−1

≡ {definition of s ′p−1 and t ′p−1}

s ′p−1 = t ′p−1

Also, we have sp−2 = tp−2 followed by definition of p, s ′p−1 > sp−1 followed by (5.5),
and s ′p−1 = t ′p−1 proved just now. Therefore, we can apply (5.7) again to prove the
next step.

sp−1 ⊕ ap−2 = tp−1 ⊕ bp−2 ∧ s ′p−1 > sp−1 ∧ s ′p−1 = t ′p−1

⇒ {(5.7)}

s ′p−1 ⊕ ap−2 ≥ t ′p−1 ⊕ bp−2

≡ {definition of s ′p−2 and t ′p−2}

s ′p−2 = t ′p−2

We can repeatedly apply (5.7) this way until we reach

s0 = s1 ⊕ a0 = t1 ⊕ b0 ≥ t0 ∧ s ′1 > s1 ∧ s ′1 ≥ t ′1

⇒ {(5.7)}

s ′0 = s ′1 ⊕ a0 ≥ t ′1 ⊕ b0 = t ′0

• Case 2: p > r . In this case we can always extend y at position r , as in Figure 5.4. By
the strictness property (5.5) we know that a must be strictly less than s ′r+1. Therefore, to
retain the lexicographic ordering we just need to show

60 CHAPTER 5. OPTIMISATION PROBLEMS

!"

#"$% #&

#'

!"$% !&

!'(
#

!&(

)*

+*$% +,
+')*$%),
)'(

#
),(

- (. /
0 (. /

#,

!, .(

Figure 5.4: How we can extend y when p ≥ r .

1. s ′r ≥ t ′r .
We reason

s ′r

≥ {by Lemma 5.3}

a + 1 t sr

≥ {sr > tr ⇒ sr ≥ tr + 1}

a + 1 t tr + 1

= {definition of ⊕}

t ′r

Note that we made use of Lemma 5.3 and the definition of ⊕. This is the part of the
proof which can not be adapted to other cost functions.

2. ∀i : p ≥ i ≥ 0 : s ′i ≥ t ′i .
The same reasoning as in the last case applies.

2

5.1.3 A Further Refinement

Now that we have proved the monotonicity condition, we can apply the greedy theorem:

bmh

= {shown in the beginning of Section 5.1}

roll ·min (�′) · Λ(foldrn add one)

⊇ {by (5.2)}

roll ·min (�) · Λ(foldrn add one)

⊇ {the greedy theorem}

roll · foldrn (min (�) · Λadd) (min (�) · Λone)

We still need to further refine the two argument to foldrn to functions. Since one is a function,
Λone always yields a singleton list. Therefore the expression min (�) · Λone equals one. On the
other hand, min (�) ·Λadd can be implemented as a function by checking through all the possible
positions to insert a new node, and choose, say, the lowest position.

5.1. BUILDING TREES WITH MINIMUM HEIGHT 61

!"

#"$
!

#%$

!%&'

#%&'$

#%

!"

#"$$
!

!%&'

#%&'$$

#% #%&'

()%*+,

()%&'*+,

)!*

!"

#"$
!

#-$

!%

#%$

#-

!"

!

#"$$#%$$

#%

()-*+,

()%*+,

).*

Figure 5.5: Proof for a further refinement.

In fact, we can do better. We claim that to find the best position to insert node a on spine
x of length n, we do not need to actually check through all the n + 1 possibilities. A minimum
result would always come from extending x at position p, where p is the maximal index satisfying
a ⊕ sp < sp−1, assuming s−1 =∞. We can start from the left of the spine and choose the first p

which satisfies the condition.
Let us denote the spine resulting from extending x at position i by x (i). To prove the above

claim, we will show that

(∀i : m ≥ i > p : x (i) � x (i − 1)) (5.9)

(∀i : p > i ≥ 0 : x (i) � x (p)) (5.10)

where x � y denotes that x is strictly greater than y under the reversed lexicographic ordering.

Proof. Figure 5.5(a) compares x (i) and x (i − 1). To prove (5.9), we show that s ′i−1 ≥ s ′′i−1.

m ≥ i > p

⇒ {definition of p}

a ⊕ si ≥ si−1 = si ⊕ ai−1

⇒ {ordering (5.8)}

(a ⊕ si)⊕ si−1 ≥ a ⊕ (si ⊕ si−1)

≡ {definition of s ′i−1 and s ′′i−1}

s ′i−1 ≥ s ′′i−1

Then, by the monotonicity property (5.6) , s ′j ≥ s ′′j for every j between i − 1 and 0. In addition,
we know that s ′i > a. Thus we conclude x (i) � x (i − 1).

62 CHAPTER 5. OPTIMISATION PROBLEMS

To prove (5.10), look at Figure 5.5(b). We will show that s ′p−1 = sp−1. That will imply s ′i = si
for all i between p − 1 and 0, that is, the spine values does not change after position p − 1. Since
s ′′i > si for any other x (i), we then have x (i) � x (p).

By the definition of p, we know a ⊕ sp < sp−1. We reason

a ⊕ sp < sp−1

≡ {definition of sp−1}

a ⊕ sp < sp ⊕ ap−1

≡ {definition of ⊕}

a t sp < sp t ap−1

≡ {property of t }

a < sp t ap−1 ∧ sp < sp t ap−1

≡ {sp = sp}

a < sp t ap−1 ∧ sp < ap−1

Therefore we have

s ′p−1

= {definition of s ′p−1}

(a ⊕ sp)⊕ ap−1

= {definition of ⊕}

a + 2 t sp + 2 t ap−1 + 1

= {arithmetic}

(a t (sp t ap−1 − 1)) + 2

= {a < sp t ap−1 ⇒ a ≤ sp t ap−1 − 1}

(sp t ap−1 − 1) + 2

= {arithmetic}

(sp + 1 t ap−1) + 1

= {sp < ap−1 ⇒ sp + 1 ≤ ap−1}

(sp t ap−1) + 1

= {definition of ⊕ and sp−1}

sp−1

2

5.1.4 The Implementation

As usual, we refine the data structure to avoid recomputing the height of each subtree. A spine is
represented by typeSpineI A = (A× List(Z ×Tree A)), annotating each subtree along the spine
with its height. Note that the value paired with a tree stands for the height of the subtree (the
ai ’s in the diagrams), not the value on the spine (the si ’s), because we do not want to update the
value all the way to the root each time we attach a new tip.

In this representation, when we are processing the ith subtree on the spine we only have si
and ai−1 at hand. We will now show that the condition we check in each step to decide where

5.2. OPTIMAL BRACKETING PROBLEMS 63

to extend the spine, namely a ⊕ si < si−1, is equivalent to a < ai−1 ∧ si < ai−1. This is not a
necessary step but we choose to do so to reflect the close resemblance with the code in [14]:

a ⊕ si < si−1

≡ {definition of si−1}

a ⊕ si < si ⊕ ai−1

≡ {definition of ⊕}

a t si < si t ai−1

≡ {property of t }

a < si t ai−1 ∧ si < si t ai−1

≡ { si = si }

(a < si ∨ a < ai−1) ∧ si < ai−1

≡ {distribution}

(a < si ∧ si < ai−1) ∨ (a < ai−1 ∧ si < ai−1)

≡ { (a < si ∧ si < ai−1)⇒ (a < ai−1 ∧ si < ai−1)}

a < ai−1 ∧ si < ai−1

The resulting code is shown in Figure 5.6. Function minadd is the result of the refinement
described in Section 5.1.3. It’s not difficult to see that it is a linear time algorithm, since each
call to minadd consumes a value, each recursive call to minsplit either returns or joins a node,
and each node in the resulting tree is built only once.

5.2 Optimal Bracketing Problems

The monotonicity of add on the reversed lexicographic ordering, proved in Section 5.1.2, depends
on Lemma 5.3, which in turn depends crucially on that particular definition of ⊕. For other cost
functions, this nice property holds no more. In this section, let us see what we can do if we
consider a wider range of cost functions.

We aim to solve problems of the form:

obp = min (�) · Λflatten◦

where min (�) attempts to minimise the value obtained by folding over the tree with cost function
⊕:

x � y ≡ value x ≤ value y

value = foldTree (⊕) id

In other words, we are to solve the optimal bracketing problem with respect to cost function ⊕.
Given a list of elements, the resulting tree indicates how it should be bracketed.

The cost functions we will investigate into are those satisfying properties (5.4), (5.5) and (5.6).
Among the functions belonging to this class are

• a ⊕ b = (a t b)× 2, thus value computes
⊔n

i=1 ai × 2di , where di is the depth of element ai

in the tree;

• a ⊕ b = (a + b)× 2. Folding it over the tree computes
∑n

i=1 ai × 2di ;

64 CHAPTER 5. OPTIMISATION PROBLEMS

type SpineI a = (a, [(Int, Tree a)])

bmh :: [Int] -> (Tree Int, Int)

bmh = roll . foldrn minadd one

one a = (a,[])

minadd :: Int -> SpineI Int-> SpineI Int

minadd a (b,xs) = (a, minsplit (tip b) xs)

where minsplit x [] = [x]

minsplit x (y:xs) | a < height y

&& height x < height y = x:y:xs

| otherwise = minsplit (bin x y) xs

tip a = (Tip a, a)

bin (x,a) (y,b) = (Bin x y, ht a b)

height = snd

ht a b = (a ‘max‘ b) + 1

roll :: SpineI Int -> (Tree Int, Int)

roll (a,x) = foldl bin (tip a) x

Figure 5.6: Program for Building Trees with Minimum Height

5.2. OPTIMAL BRACKETING PROBLEMS 65

• (c1, s1) ⊕ (c2, s2) = (c1 + c2 + s1 + s2, s1 + s2), computing the pair (
∑n

i=1 ai × di ,
∑n

i=1 ai),
which is the cost function used in the optimal alphabetic tree problem;

• (c1, (m, l)) ⊕ (c2, (l ,n)) = (c1 + c2 + (m × l × n), (m,n)), representing the number of mul-
tiplications performed to compute the product of a sequence of matrix, together with its
dimension,

and many more.
Typically, the optimal bracketing problem is solved with a dynamic programming strategy.

Still, we are interested in how the converse-of-a-function theorem suggests another possible ap-
proach. As in the previous sections, flatten is inverted to roll · foldrn add one. With properties
(5.4), (5.5) and (5.6), it is not difficult to see that add is monotonic on the pairwise ordering.
That is, the tree y in Figure 5.2 is better than x if m = n and ti ≤ si for m ≥ i ≥ 0.

However, the pairwise ordering is not connected — not every two spines are comparable. In
such cases we do not know which lead to a better solution and we have to keep both of them.
The greedy theorem is thus not applicable. We can instead make use of the thinning theorem.

An introduction to the thinning theorem and its implementation will be given in Section 5.2.1
and 5.2.2. The techniques learnt in these two sections will be applied to the optimal bracketing
problem in in Section 5.2.3. Unfortunately, the algorithm is exponential in the worst case. Section
5.2.4 explains the reason by comparing it with the traditional dynamic programming approach.

5.2.1 The Thinning Theorem

The greedy theorem is only of use for connected preorders. Otherwise min may be partial on
non-empty arguments.. For unconnected preorders, the best we can do is to keep all the solutions
which we cannot compare, while throwing away those which we know are inferior to some others.
This is the motivation of a thinning algorithm.

Let Q :: A→ A be a preorder. The relation thin Q :: Set A→ Set A is defined by

(xs, ys) ∈ thin Q ≡ (ys ⊆ xs) ∧ (∀x : x ∈ xs : ∃y : y ∈ ys : yQx)

That is, ys is a streamlined subset of xs. It cannot be a arbitrary subset, however. The second
term ensures that for every x in xs there must be something at least as good in ys. So x itself
must survive to ys if nothing else in xs as good.

Given a specification min R · Λ([S])
F
, where S is monotonic on an ordering Q which is a sub-

relation of R. If Q is connected, we might just go for applying the greedy theorem. Otherwise,
rather than keep only the best solution, we will have to keep a set of solutions. In each step we
try reduce the size of the set by applying thin Q to it, throwing away some useless solutions. This
is what the thinning theorem says:

Theorem 5.5 (Thinning Theorem) If S is monotonic on preorder Q , and Q ⊆ R, then

min R · ([thin Q · Λ(S · F∈)])
F
⊆ min R · Λ([S])

F

Note that thin Q is a relation mapping a set of solutions to any set satisfying the constraints in
its definition. Neither the thinning theorem nor the definition of thin specify how the set is to be
thinned, which is left for the programmer to decide. In other words, we are still left with the work
of refining min R · ([thin Q · Λ(S · F ∈)])

F
to a function. One possible approach will be discussed

in the next section.

66 CHAPTER 5. OPTIMISATION PROBLEMS

5.2.2 Implementing Thinning

In this section we will talk about how to further refine to a function the result delivered by the
thinning theorem

min R · ([thin Q · Λ(S · F∈)]) (5.11)

In one extreme, refining thin Q to id does satisfy the requirement for thin Q . In this case nothing
gets thinned at all and all the work is just left to min R. In practice, we hope to throw away as
many useless solutions as possible to improve the efficiency. Yet we do not want to perform a full
comparison between each pair of elements in the set, whose quadratic overhead usually outweighs
the benefit of down-sizing the set of solutions. The programmer thus often faces the dilemma
between not thinning enough or wasting too much time thinning.

In this section we will present a common solution: to sort the set of solutions such that we
only need to compare adjacent elements. The derivation in this section is a generalisation of the
binary thinning theorem in Section 8.3 of [17]. The new theorem allows thinning to be performed
before as well as after merging.

First we go from sets to lists. Let setify :: List A→ Set A be the function converting a list to
a set. It is a lax natural transformation in that for all R:

setify ·map R ⊆ PR · setify (5.12)

Here the functor P is generalised to a relator. Given a relation R :: A → B , the relation PR has
type Set A→ Set B , defined by:

(x , y) ∈ PR ≡ a ∈ x ⇒ (∃b : b ∈ y : (a, b) ∈ R) ∧

b ∈ y ⇒ (∃a : a ∈ x : (a, b) ∈ R)

Property (5.12) can be proved by defining setify = ΛδList , and using the naturality of δList . In
fact, (5.12) is true for any type functor with membership. For the reader’s reference, it is proved
in Appendix A.

The relation min R :: Set A→ A has an obvious functional counterpart minlist R :: List A→
A, which should satisfy

minlist R ⊆ min R · setify (5.13)

To simulate ΛF∈:: F(Set A)→ Set A, we need a function cplistF :: F(List A)→ List A satisfying

setify · cplistF ⊆ ΛF∈ ·Fsetify (5.14)

We hope to represent the set of solutions as a list such that we only need to compare adjacent
elements, which is a linear time operation. We will sort the solution set according to some ordering
P , hoping that it can bring comparable elements together. Sorting a set into a list with respect
to a connected preorder P is specified by

sort P = (ordered P)? · setify◦ (5.15)

where ordered P is a predicate yielding true for a list if it is sorted with respect to P . Given
sort P , we assume the existence of a function thinlist , the list counterpart of thin, satisfying

thinlist Q · sort P ⊆ sort P · thin Q (5.16)

We will not overspecify either minlist or thinlist , but just assume that they can be implemented
as functions taking time linear in the size of the input list. Problem specific choices for P and
thinlist will be discussed in the next section.

5.2. OPTIMAL BRACKETING PROBLEMS 67

It is also useful to see how sort interacts with min and cplist . Given (5.13), (5.14), (5.15),
ordered P ⊆ id , and that setify is a function, we can prove that

minlist R · sort P ⊆ min R (5.17)

setify · cplistF · F(sort P) ⊆ ΛF∈ (5.18)

Finally, we also need the property of thin below, which states that if we are about to thin a
union of sets, we can also thin each them separately before thinning them again as a whole:

thin Q · union · P(thin Q) ⊆ thin Q · union (5.19)

This property is also proved in Appendix A.
Finished with all the properties we need, the aim is to refine (5.11) to a function. We start

with:

min R · ([thin Q · Λ(S · F∈)])

⊇ {(5.17)}

minlist R · sort P · ([thin Q · Λ(S · F∈)])

⊇ {fold fusion. See below.}

minlist R · ([T])

We want to use the fold fusion theorem to derive T . The fusion condition is

sort P · thin Q · Λ(S · F∈) ⊇ T · F(sort P)

To construct T , we derive:

sort P · thin Q · Λ(S · F∈)

= {since Λ(S · T) = ES · ΛT and ES = union · P(ΛS)}

sort P · thin Q · union · P(ΛS) · ΛF∈

⊇ {by (5.19)}

sort P · thin Q · union · P(thin Q · ΛS) · ΛF∈

⊇ {by (5.16)}

thinlist Q · sort P · union · P(thin Q · ΛS) · ΛF∈

⊇ {by (5.18)}

thinlist Q · sort P · union · P(thin Q · ΛS) · setify · cplistF · F(sort P)

⊇ {by (5.12)}

thinlist Q · sort P · union · setify ·map (thin Q · ΛS) · cplistF · F(sort P)

= {let merge satisfy merges P ·map setify◦ = sort P · union · setify}

thinlist Q ·merges P ·map (setify◦ · thin Q · ΛS) · cplistF · F(sort P)

⊇ {since setify◦ ⊇ sort P}

thinlist Q ·merges P ·map (sort P · thin Q · ΛS) · cplistF · F(sort P)

⊇ {by (5.16)}

thinlist Q ·merges P ·map (thinlist Q · sort P · ΛS) · cplistF · F(sort P)

The function merges will have to merge a list of sorted lists into one, which can be done in time
O(log k × n + k) for k lists of length n. Fig. 5.7 shows one possible implementation of merge and

68 CHAPTER 5. OPTIMISATION PROBLEMS

two of thinlist satisfying the specifications above. More possibilities can be found in Section 8.3
of [17].

Usually we can implement ΛS such that it generates the solutions in the correct order. That
is, we can implement f = sort P · ΛS . In summary, in this section we have proved the following
theorem:

Theorem 5.6 Let R and Q be connected preorder such that R is connected and Q ⊆ R. Also
given are functions minlist , cplistF, thinlist and merge characterised by the following axioms that
for all connected preorder X :

minlist X ⊆ min X · setify

setify · cplistF ⊆ ΛF∈ ·Fsetify

merges X ·map setify◦ = sort X · union · setify

If we can find a connected preorder P such that

thinlist Q · sort P ⊆ sort P · thin Q

we then have:

minlist R · ([thinlist Q ·merges P ·map (thinlist Q · f) · cplistF])

⊆ min R · ([thin Q · Λ(S · F∈)])

where f = sort P · ΛS .

Therefore, before solving specification in the form of min R ·Λ([S]) with the thinning theorem,
we will need to find a sub-relation Q of R on which S is monotonic, and a relation P grouping
together the partial solutions comparable under Q .

5.2.3 Solving the Optimal Bracketing Problem

Back to the optimal bracketing problem. We have chosen Q to be the pairwise ordering. Now we
need a suitable ordering P with which we sort the list of solutions such that comparable elements
are brought to adjacent positions. The choice of P can dramatically change the efficiency of the
program. After some experiments we choose

xs P ys ≡ value (roll xs) < value (roll ys)∨
(value (roll xs) = value (roll ys) ∧ length (snd xs) ≥ length (snd ys))

That is, we choose to sort the list of solutions firstly in ascending cost, then in descending spine
length. The implementation of thinlist also has strong influence on the efficiency. In our expe-
rience, the first thinlist in Figure 5.7 outperforms all the others for this particular problem. A
possible reason is that the first element of the resulting list is available earlier.

Another little refinement can be done. We can implement Λadd such that it generates the
extended spines in descending spine length. Figure 5.8 compares two extended spine trees which
differ in length only by one. The longer spine has no chance to be better than the shorter one
under the pairwise ordering: by the strictness property (5.5), a is strictly smaller than s ′m . If s ′′m−1

is also smaller than or equal to s ′m−1, we know immediately that the longer one is worse because
they will both be joined to the same list of ai s rightwards. We can thus drop it immediately.
Otherwise they become incomparable and we have to keep them both. In this manner we can
fuse thinlist Q · sort P · Λadd into one function. If we further assume that property (5.8) holds,
comparing s ′′m−1 and s ′m−1 can be done by comparing a ⊕ sm and sm ⊕ am−1.

5.2. OPTIMAL BRACKETING PROBLEMS 69

merges :: (a -> a -> Bool) -> [[a]] -> [a]

merges p = foldr mrg []

where mrg x [] = x

mrg [] y = y

mrg (a:x) (b:y)

| a ‘p‘ b = a : mrg x (b:y)

| otherwise = b : mrg (a:x) y

thinlist :: (a -> a -> Bool) -> [a] -> [a]

thinlist q [] = []

thinlist q [x] = [x]

thinlist q (a:b:x)

| a ‘q‘ b = thinlist q (a:x)

| b ‘q‘ a = thinlist q (b:x)

| otherwise = a : thinlist q (b:x)

thinlist’ :: (a -> a -> Bool) -> [a] -> [a]

thinlist’ q = foldr (bump q) []

bump q (a,[]) = [a]

bump q (a,(b:x)) | a ‘q‘ b = a:x

| b ‘q‘ a = b:x

| otherwise = a:b:x

Figure 5.7: Possible Implementations of merges and thinlist

!"

#"$
!

#%$

!%&'

#%&'$

#%
!(&'

#(&'$

!

!%&'

#%&'$$

#% #%&'
!"

#"$$

!(&'

#(&'$$

Figure 5.8: Creating trees and thinning at the same time.

70 CHAPTER 5. OPTIMISATION PROBLEMS

type SpineV a = (SpineI a, Int, [a])

type CostFun a = (a, a) -> a

obp :: Ord a => CostFun a -> [a] -> Tree a

obp op =

rollV . head . foldrn (step op) base

where base a = [(one a,0,[])]

step op = thinlist pwleq . merges acdl .

map(thinaddV op) . cplist

thinaddV :: Ord a => CostFun a -> (a,SpineV a) -> [SpineV a]

thinaddV op (a,(x,_,_)) = map (sval op) (thinaddI op (a,x))

where sval op (a,x) = ((a,x), length x+1, spineval op (a,x))

thinaddI :: Ord a => CostFun a -> (a, SpineI a) -> [SpineI a]

thinaddI op (a,(b,x)) = add (b,Tip b) x

where add x [] = [(a,[x])]

add x (y:ys)

| op (a,fst x) >= op (fst x,fst y) = add (bin(x,y)) ys

| otherwise = (a,x:y:ys) : add (bin (x,y)) ys

bin ((b,x),(c,y)) = (op (b,c), Bin (x,y))

spineval :: CostFun a -> SpineI a -> [a]

spineval op (a,x) = foldl step [a] x

where step y@(a:_) t = op (a,fst t) : y

rollV :: SpineV a -> Tree a

rollV (x,_,_) = roll x

(_,_,x) ‘pwleq‘ (_,_,y) = and $ zipWith (<=) x y

(_,m,x) ‘acdl‘ (_,n,y) = head x < head y ||

(head x == head y && m >= n)

cplist :: (a,[b]) -> [(a,b)]

cplist (a,x) = [(a,b) | b <- x]

Figure 5.9: The code solving the general optimal bracketing problem.

5.2. OPTIMAL BRACKETING PROBLEMS 71

The code is shown in Figure 5.9. The function obp is the main program. The type SpineI

in Figure 5.6 has been reused. To ease the task of merging and thinning, we extend SpineI to
SpineV , attaching to each spine its length and the list of values (the ss) on the spine. The function
spineval , parametrised by a cost function, generates the list of values on the spine of the given
spine tree.

The function thinaddI is the fusion of thinlist Q · sort P · Λadd which, as described above,
performs spine extension and thinning together. The function thinaddV merely acts as a wrapper,
unwrapping and wrapping a spine tree with its length and spine values. Predicates pwleq and
acdl (which stands for “ascending cost and descending length”) are the orderings we use in the
thinning and merging phases, respectively. Finally, since the list of solutions has been sorted in
ascending cost, the outermost minlist can be simply replaced by head .

Unfortunately, the worst case running time of this algorithm is exponential. For such an
example, try the cost function a ⊕ b = (a + b) × 2. The sequence a1, a2, . . . an with a1 = 1 and
ai greater than the maximal cost of trees built from a1 . . . ai−1 will force the thinning phrases
to process lists of exponential sizes, no matter how we sort or thin the list. This unfortunately
complicates matters by making the elements to the right of the spine so heavy that every attempt
to deepen an element will incur some penalty.

5.2.4 A Comparison with Dynamic Programming

How did the algorithm become exponential? Is it possible, say, by choosing a better Q , to expose
more possibility of thinning and thereby make the algorithm polynomial? In this section we will
compare our approach to the traditional dynamic programming approach to optimal bracketing
problems. We claim that the inefficiency lies not in the ordering Q , but in the data structure
representing the set of solutions.

Many optimisation problems can be solved in two dual approaches. We can either specify it
in terms of a fold and solve it using a thinning strategy, or write the specification in terms of
an unfold and turn to dynamic programming. In most cases, the two approaches represent very
similar computations. We also have some examples for which the thinning approach performs
slightly better.

Take, for example, the 0-1 knapsack problem for example, which in many textbooks constitutes
a typical example of dynamic programming: we maintain a table, one entry for each weight, to
store the best value we can pack within that weight. The algorithm proceeds by adding the items
one by one, updating the table, until all the items has been considered.

Alternatively, we can also apply the thinning approach to the 0-1 knapsack problem. A packing
is a subsequence of the list of items. The subsequences can be generated by a fold. The ordering
in the thinning phrase is chosen such that one packing is worse than another when it is neither
more valuable nor lighter. Maintaining the list of solutions has the same effect as maintaining the
table. The restriction of the ordering on the weight ensures that we only keep the best packing for
each weight. This approach represent a very similar computation to the dynamic programming
approach. Even better, the list may have a smaller size than the table because we do not keep
packings for weights that are not constructible. The thinning approach is therefore slightly more
efficient than the dynamic programming approach. In [65], de Moor has developed a program for
0-1 knapsack problem which outperforms all other algorithms.

Back to the optimal bracketing problem. We also expect the ordering we have chosen to bear
some resemblance to what we did in the traditional approach. In the dynamic programming
strategy, we compute the best subtree for each segment of the input list, and then choose a best
combination among them. What about the thinning approach?

72 CHAPTER 5. OPTIMISATION PROBLEMS

!

!

"#$

% &

&

%

'#$

"(#$

'(#$

!

% &

)

!

&

%

)

Figure 5.10: All rolled subtrees must be optimal. In this figure, y ′ will be ruled out by x ′.

!

" #

!

#

"

$ %&

%

$&

$

& %

Figure 5.11: How the number of solutions become exponential

The pairwise ordering does guarantee that all the subtrees along the spine are optimal. A
subtree, once it is rolled, can survive on the spine only if it is the best one among all the rolled
subtrees having the same set of leafs. This is illustrated in Figure 5.10. Assume (b ⊕ c) ⊕ d

is the better way to bracket b, c and d than b ⊕ (c ⊕ d). Both x and y will remain in the set,
before (b⊕c)⊕d is rolled. However, after being extended with a, x ′ will definitely be better than
y ′. This resembles the dynamic programming way of keeping only the optimal subtree for each
segments. We therefore believe that pairwise ordering is the right ordering to choose.

The problem lies in the data representation. See Figure 5.11. All the tips b, c, d , e and f

standing alone is the best subtree representing themselves. The best subtree for any two elements,
say b, c, is of course bin (tip b, tip c). We do not know what element will be appended to the spine
later, so we do have reason to keep them all, in case we may need one of them. In the dynamic
programming approach, the optimal subtrees are kept in separate entries in the table. In our
approach, however, due to our data representation, the two trees for a, b, c must be repeated for
each instance of d , e, f . We have to keep all their combinations. That is where the exponential
number of trees come from.

It is possible to refine the data structure of the set of solutions to avoid repeating the tails.
Eventually, we will probably arrive at an algorithm very similar to the traditional dynamic pro-
gramming approach. It may help to clarify the relationship between thinning and dynamic pro-
gramming. This is subject to further research.

5.3. THE GENERIC GREEDY THEOREM 73

5.3 The Generic Greedy Theorem

This section deviates from our theme of inverse functions and investigate into the interplay between
minimisation and folds. In the previous sections we have been dealing with problems of this form:

min R · Λ([S])

where the fold generates all the solutions and min R chooses one among them. However, there
are occasions when it is not possible to have the fold returning just the set of valid candidates.
For instance, the fold would have to construct the solutions with the help of the banana-split
transform [17, Chapter 3] and return the candidates in a pair. The problem might thus be be
specified as:

bmin R · (min R ×min R) · ([S])

where S has type F(Set A × Set A) → (Set A × Set A) and bmin R :: (A × A) → A chooses a
preferred member from a pair. In general, the solutions might need to be classified into many
kinds in order to generate new ones. That leads us to consider problems of this general form:

minG R · G(min R) · ([S])

where S has type FG(Set A) → G(Set A) and minG R chooses a minimum member from a G-
structure.

In this section we will discuss a generalisation of the greedy and theorem to promote G(min R)
into a fold. We will first discuss, as a motivating example, a generalisation of the famous maximum
segment sum problem to rose trees in Section 5.3.1. We will then present in Section 5.3.2 our
extended greedy theorem and see the theorem in action in Section 5.3.3. and 5.3.4. We finally
make a comparison between the generalised theorem and the ordinary thinning approach in Section
5.3.5.

5.3.1 The Maximum Subtree Problem

Assume the following datatype definition of a rose tree:

dataRose = null | node (Z × List Rose)

It is the type defined by the base functor FX = 1 + Z × List X . The fold function coming with
it is defined by:

foldRose f e null = e

foldRose f e (node (a, xs)) = f (a,map (foldRose f e xs))

The maximum subtree problem is to find a subtree whose sum of the values in the nodes is
maximal. By a “subtree”, we mean a contiguous set of nodes such that for any two marked
nodes, all the nodes along the paths to their common parents must be chosen as well. For
example, for the tree shown in Figure 5.12, the nodes with bold borders indicates its maximum
subtree. The node with value −1 under 8 need not be chosen. In general, the subtree need not
start from the root.

This problem is a generalisation of the famous maximum segment sum [33] problem to rose
trees, mentioned as an example in [13], the very first paper that introduced generic programming.
In [76], Sasano and Hu calculated a linear-time algorithm for a family of such optimal marking
problems – given the name because nodes in the tree are marked according to a given predicate.

74 CHAPTER 5. OPTIMISATION PROBLEMS

!"

#

"

$

% &

" '

!

& $

(" %

%)

)

)

)

)

)

) &))

)

Figure 5.12: An example of the maximum subtree problem.

Bird [16] further showed how their algorithm is actually an instance of the thinning strategy. In
this section we are going to show that the same problems can also be seen as a greedy algorithm,
derivable using a generalised greedy theorem.

One possible approach to tackle this problem is to follow the example of maximum segment
sum on lists: to decompose segments into inits of tails. To apply the same approach to trees, one
would need a notion of initial and tail segments for rose trees. Another possibility is to follow
the theme of previous chapters: to express the problem in the form of max R · Λcont , where
cont :: Rose → Rose relates a rose tree to one of its legal marking – a contiguous subtree. If cont

can be written as a fold, we can then apply either the greedy or the thinning theorem.
However, cont can not be a fold of that type. In each iteration, it can not simply return a

subtree, since we need more information about what kind of subtree it is. Instead, function conts

which returns the set of all the contiguous subtrees of a tree can be written as a fold over rose
trees by further dividing the subtrees into two kinds: those which starting from the root, and
those which do not include the root, and return them in a tuple:

conts :: Rose → (Set Rose × Set Rose)
conts = foldRose 〈Λ(incl · (∈ × ∈)),Λ(excl · (∈ × ∈))〉 ({null}, {null})

incl , excl :: Z × List (Rose × Rose)→ Rose

incl (a, xs) = node (a, subseq (map fst xs))
excl (a, xs) = fst (δList xs)2 snd (δList xs)

Relations incl and excl of type (Z×List (Rose ×Rose))→ Rose return a contiguous subtree that
includes or excludes the root of a given tree, respectively. The relation subseq :: List A→ List A,
having the usual definition:

subseq = foldr (cons ∪ snd) []

relates a list to one of its subsequences. Membership relations in general have been introduced in
Section 4.6.1. Here δList can be thought of as a variant of ∈ defined on list: it non-deterministically
relates a list to any of its members. The relation incl picks any combination of subtrees (rep-
resented by the expression subseq (map fst xs)), all of them including the roots of those direct
children, and attaches them to the current node, thus forming a new tree starting from the root.
The relation excl , on the other hand, just combines the results of previous calls to incl and excl .
A fold defined this way is usually called a mutumorphism, as the two (or more) relations are
mutually defined in terms of each other.

The problem specification can then be written as

mstree = bmax R · (max R ×max R) · conts

x R y ≡ val x ≤ val y

val = foldRose sumF 0
where sumF (a, x) = a + sumlist x

5.3. THE GENERIC GREEDY THEOREM 75

GA = (A× A) G generalised

(max R ×max R) G(max R)
:: (Set A× Set A)→ (A× A) :: G(Set A)→ GA

〈ES ,ET 〉 h

:: Set(F(A×A))→ (Set A× Set A) :: Set(FGA)→ G(Set A)

〈ΛS ,ΛT 〉 h · wrap

:: F(A× A)→ (Set A× Set A) :: FGA→ G(Set A)

〈Λ(S · F(∈ × ∈)),Λ(T · F(∈ × ∈))〉 h · ΛFG ∈
:: F(Set A× Set A)→ (Set A× Set A) :: FG(Set A)→ G(Set A)

Table 5.1: Comparison of the case when G is a product and when G is generalised to an arbitrary
regular functor.

where function bmax R :: (A × A) → A takes a pair and returns the greater one with respect to
R. Function sumlist , as the name suggests, sums up a given list of numbers.

We thus need a theorem enabling us to refine (max R ×max R) · conts, where conts is a fold
returning a pair of sets.

Before proceeding to the next section, let us rewrite the definition of conts in the banana-
bracket notation, as it is easier to relate to the general theorem to be presented in the next
section. Relations incl and excl are also rephrased in point-free style:

conts = ([〈Λ([null , incl] · F(∈ × ∈)),Λ([null , excl] · F(∈ × ∈))〉])
F

incl = node · (id × subseq ·map fst)
excl = (fst ∪ snd) · δList · snd

5.3.2 Introducing the Theorem

It is not difficult to see that both incl and excl are monotonic with respect to R in the sense that

incl · (id ×map (R × R)) ⊆ R · incl (5.20)

excl · (id ×map (R × R)) ⊆ R · excl (5.21)

In effect, that means we only need to keep the best result returned by incl and excl , respectively.
Denoting [null , incl] by S and [null , excl] by T , it follows from (5.20) and (5.21) that:

〈S ,T 〉 · F(R × R) ⊆ (R × R) · 〈S ,T 〉

In general, when faced with a fold defined in terms of two relations S and T as below:

(max R ×max R) · ([〈Λ(S · F(∈ × ∈)),Λ(T · F(∈ × ∈))〉])
F

(5.22)

We need a theorem enabling us to turn it into

([〈max R · ΛS ,max R · ΛT 〉])
F

(5.23)

given that the monotonic condition below holds.

〈S ,T 〉 · F(R × R) ⊆ (R × R) · 〈S ,T 〉 (5.24)

In fact, we can prove a more general theorem not only for the product, but for any regular
functors. Before we can state the theorem, however, we need to find out this generic form. We

76 CHAPTER 5. OPTIMISATION PROBLEMS

start from finding out the general form of the algebra in the fold. Supposing both S and T have
type F(A× A)→ A, we write down the algebra in (5.22) and its type below:

〈Λ(S · F(∈ × ∈)),Λ(T · F(∈ × ∈))〉 :: F(Set A× Set A)→ (Set A× Set A)

A sub term ΛF(∈ × ∈) can be factored out of the split, resulting in:

〈ES ,ET 〉 · ΛF(∈ × ∈) :: F(Set A× Set A)→ (Set A× Set A)

We then abstract the product to a general functor G and replace 〈ES ,ET 〉 by a function h (which
covers 〈ES ,ET 〉 as a special case because E delivers functions from sets to sets), yielding:

h · ΛFG∈ :: FG(Set A)→ G(Set A)

Now h ·ΛFG∈ is an F-algebra with carrier G(Set A). Note that h has type Set (FGA)→ G(Set A),
which is generalised from Set (F(A× A))→ (Set A× Set A), the type of 〈Ef ,Eg〉.

The generic form of expression (5.22) is therefore

G(max R) · ([h · ΛFG∈])
F

:: T→ GA

where T is the datatype defined by base functor F. The generic counterpart of 〈ΛS ,ΛT 〉 is h ·wrap

because

h · wrap

= {since we choose h = 〈ES ,ET 〉 }

〈ES ,ET 〉 · wrap

= {since functions distributes into splits and ER · wrap = ΛR}

〈ΛS ,ΛT 〉

The expression (5.23) thus generalises to:

([G(max R) · h · wrap])
F

Since h now operates on set of values, we want the monotonic condition to be:

h · EFGR ⊆ GER · h

Finally, halfway in the proof we will find ourselves needing this property:

h · subset = Gsubset · h

where subset relates a set of one of its subsets. The above condition ensures that h is made of
functions lifted by existential functor E — that the result of applying h to a subset can also be
obtained by taking the subset after applying h to the whole set.

Table 5.1 summarises the conversion from pairs to the generic form. Now we can present our
main theorem in this section:

Theorem 5.7 (The Generic Greedy Theorem) Let G be a regular functor. If a function
h :: Set (FGA)→ G(Set A) satisfies

h · subset = Gsubset · h (5.25)

and is monotonic with respect to preorder R in the sense that

h · EFGR ⊆ GER · h (5.26)

then

([G(max R) · h · wrap])
F
⊆ G(max R) · ([h · ΛFG∈])

F

The proof of the theorem will be presented in Appendix B.

5.3. THE GENERIC GREEDY THEOREM 77

5.3.3 Application

For the contiguous tree marking problem, we take GA = A× A and

h = 〈E[null , incl],E[null , excl]〉

The monotonic condition (5.26) specialises to:

〈E[null , incl],E[null , excl]〉 · EF(R × R)

⊆ (ER × ER) · 〈E[null , incl],E[null , excl]〉

which follows directly from (5.20) and (5.21), as shown below:

〈E[null , incl],E[null , excl]〉 · EF(R × R)

⊆ {splits, E a functor}

〈E([null , incl] · F(R × R)),E([null , excl] · F(R × R))〉

= {coproduct, letting F1A = id × List A for brevity}

〈E[null , incl · F1(R × R)],E[null , excl · F1(R × R)]〉

⊆ {by (5.20) and (5.21)}

〈E[null ,R · incl],E[null ,R · excl]〉

= {null = R · null , coproduct}

〈E(R · [null , incl]),E(R · [null , excl])〉

= {product}

(ER × ER) · 〈E[null , incl],E[null , excl]〉

We can thus apply the generic greedy theorem to refine our specification:

mstree

= {definition}

bmax R · (max R ×max R)·
([〈Λ([null , incl] · F(∈ × ∈)),Λ([null , excl] · F(∈ × ∈))〉])

⊇ {generic greedy theorem}

bmax R · ([〈max R · Λ[null , incl],max R · Λ[null · excl]〉])

We now have a chance to optimise max R · Λ[null , incl] and max R · Λ[null , excl] separately.
Since post composition and the Λ operator distribute into joins, and max R ·Λnull equals null , we
are left with optimising max R ·Λincl and max R ·Λexcl . The optimisation will in turn make use
of the (ordinary) greedy theorem. Notice that the generic greedy theorem itself does not provide
immediate enhancement in speed. Its role is to promote max into the fold, so that further chances
of refinement can be exposed.

We will demonstrate how max R · Λincl can be refined using the greedy theorem. The case
for max R · Λexcl is similar. Using (5.1), max R · Λincl is equivalent to

node ·max (node◦ ·R · node) · Λ(id × subseq ·map fst)

We need some mechanism to promote max (node◦ · R · node) into Λ. The following property of
min, given as an exercise in [17], becomes handy:

〈max R · ΛS ,max Q · ΛT 〉 ⊆ max (R ×Q) · Λ〈S ,T 〉 (5.27)

78 CHAPTER 5. OPTIMISATION PROBLEMS

To make use of it, however, we need to convert node◦ · R · node into a product. We calculate

(node (a, xs))R (node (b, ys))

≡ {definition of R}

(val (node (a, xs)))R (val (node (b, ys)))

≡ {expand val · node, let sumvals = sumlist map val}

a + sumvals xs ≤ b + sumvals ys

⇐ {arithmetic}

a ≤ b ∧ sumvals xs ≤ sumvals ys

≡ {functors}

(a, xs) ((≤) × (sumvals◦ · (≤) · sumvals)) (b, ys)

Let Q = sumvals◦ · (≤) · sumvals, we have just shown that ((≤)×Q) ⊆ node◦ ·R · node. We then
derive:

max (node◦ ·R · node) · Λ(id × subseq ·map fst)

⊇ {since node◦ · R · node ⊇ ((≤)×Q), (5.2)}

max ((≤)×Q) · Λ(id × subseq ·map fst)

⊇ {(5.27)}

(max (≤) · Λid ×max R′ · Λ(subseq ·map fst))

= {since max Q · Λid = id}

(id ×max Q · Λ(subseq ·map fst))

⊇ {fusing subseq ·map snd to a fold, applying the greedy theorem}

(id × foldr (max Q · Λ((cons · (fst × id)) ∪ snd)) [])

= {further simplification}

(id × foldr (((t ,), x) 7→ if val t ≤ 0 then x else t : x) [])

The corresponding Haskell code is shown in Figure 5.13. After using a tupling transformation
to pair a tree together with its value, the program runs in time linear to the size of the tree.

5.3.4 The Maximum Sub-Rectangle Problem

Consider a similar problem on a different datatype. This time we are given a matrix represented
by a list of lists:

newtypeRect = List1 (List Z)

We also assume that the lists are all of the same length, that is, they represent a rectangle. The
maximum sub-rectangle problem is to find a sub-rectangle within the given rectangle such that
the sum of the values in the rectangle is maximal. As an example, the maximum sub-rectangle
in Figure 5.14 is the area surrounded by the lines. The problem appeared in various texts, for
example, [11]. In [45], Hu, Iwasaki and Takeichi talked about the same problem in the context of
parallel programming.

To solve the rectangle problem we can follow a route similar to that in the previous section.
One possible approach is to choose GA = A × A, and express the problem in terms of a fold on
non-empty lists returning a pair of sets of rectangles:

msrect = bmax R · (max R ×max R) · rects
rects = foldrn 〈Λ(incl · F1(∈ × ∈),Λ(excl · F1(∈ × ∈)〉 〈Pwrap · segs, const ∅〉

5.3. THE GENERIC GREEDY THEOREM 79

data Rose = Null | Node Int [Rose] deriving Show

foldRose f e Null = e

foldRose f e (Node a us) = f a (map (foldRose f e) us)

null = (Null,0)

mstree :: Rose -> Rose

mstree = fst . bmaxR . foldRose step (null,null)

where step a us = (incl a us, excl a us)

incl a us = (Node a (foldr op1 [] us), a + foldr op2 0 us)

where op1 ((t,v),_) us = if v <= 0 then us else (t:us)

op2 ((t,v),_) n = if v <= 0 then n else (v+n)

excl _ [] = null

excl _ us = (bmaxR . (maxR ‘cross‘ maxR) . unzip) us

maxR x = foldr1 (curry bmaxR) x

bmaxR ((t,a), (u,b)) | a >= b = (t,a)

| otherwise = (u,b)

(f ‘cross‘ g) (a,b) = (f a, g b)

Figure 5.13: Program for the maximum subtree problem

0 1 −8 6 −5 −4 3 1 −6 −7
7 2 −9 1 −1 −3 7 9 5 2
−9 −8 0 −9 8 0 1 −2 7 −3
−8 −6 9 2 −9 8 −9 0 3 −9

3 −4 4 6 1 −6 4 −1 −5 −9

Figure 5.14: An example of the maximum sub-rectangle problem.

80 CHAPTER 5. OPTIMISATION PROBLEMS

such that incl relates a rectangle to a sub-rectangle including some part of the first row, while excl

relates it to a sub-rectangle excluding the first row. The function segs :: List A → Set (List A)
returns the set of all segments of the given list. Both relations have type F1(Rect ×Rect)→ Rect ,
where F1A = id × A, the second component of the base functor defining non-empty lists.

This time incl is not monotonic on R. It is instead monotonic on a sub-relation of R under
which two rectangles are comparable only when their first row start and end in the same columns.
That means we cannot keep only one optimal instance among the solutions returned by incl .
Instead we have to keep the optimal rectangle for each starting and ending position. We will
therefore have to appeal to some generic thinning theorem. The problem becomes one thinning
algorithm (the incl part) and one greedy algorithm (the excl part) running together. The size of
the solution set we have to keep for the thinning part is at most (n × (n + 1))/2. We thus have a
cubic time algorithm.

Alternatively, we could have chosen to manipulate the (n×(n +1))/2 instances in the solution
set explicitly by choosing GA = List A× A. We rephrase the problem as:

msrect = maxsnoc R · (map (max R)×max R)·
foldrn 〈Λ(incl · F1G∈),Λ(excl · F1G∈)〉 〈segs, const ∅〉

where maxsnoc R (x , a) = max R (setify x ∪ {a}).
This time incl has to process a whole list of rectangles instead of just one. The list contains

the optimal solutions so far for each starting-ending positions. As the base case, we need segs to
have type List A → List (List A) and return the list of all segments of the given list in a fixed
order. We use a list of lists rather than a set of lists because the ordering helps: we store the best
solutions for each segments in the list in a fixed order, therefore we can then zip the list with the
existing list of solutions to generate the new solutions, without having to keep track of the actual
positions. The relations incl and excl are defined below:

incl :: F1(GRect)→ List Rect

incl (x , (xss, ys)) = zipWith above (segs x , xss)
where above(x , xs) = [x] 2 x : xs

excl :: F1(GRect)→ Rect

excl (x , (xss, ys)) = δList xss 2 ys

Here incl takes a list of rectangles xss and, for each xs in xss, the relation incl has the choice
between either adding a new row x above it, or just throw it away.

Now we can apply the generic greedy theorem. Fusing (map (max R)×max R) into the fold,
we get:

foldrn 〈map (max R) · Λincl ,max R · Λexcl〉 〈segs, const ∅〉

Further calculations needs to be done to simplify map (max R) · Λincl and max R · Λexcl . We
will then find it becomes 1 + (n × (n + 1))/2 greedy algorithms running in parallel! Some routine
calculations results in the code in Figure 5.15. It is a cubic-time algorithm.

The algorithm derived in [45] was in the same spirit, except for that their algorithm, aiming
at parallel execution, was based on join-lists rather than cons-lists. The resulting algorithm has a
O((log n)2) parallel complexity. The Almost Fusion theorem generalises the fold fusion theorem
in a way different from the generic greedy theorem: it addresses fusion in general rather than just
minimals, while it dealt with only tuples rather than arbitrary functors.

5.3. THE GENERIC GREEDY THEOREM 81

type Rect = [[Int]]

msrect :: Rect -> Rect

msrect = fst . bmaxR . (maxR ‘cross‘ id) . foldrn step base

where base = (map (wrap ‘fork‘ sum) . segs) ‘fork‘ const ([],0)

step x (xss,ys) = (incl x (xss,ys), excl x (xss,ys))

incl x (xss,_) = zipWith above (segs x) xss

where above x (xs,v) | v <= 0 = ([x],sum x)

| otherwise = (x:xs, sum x + v)

excl _ (xss,xs) = bmaxR (maxR xss, xs)

segs = concat . map tails . inits

Figure 5.15: A program solving the maximum sub-rectangle problem.

5.3.5 Comparison

We have seen two applications of the generic greedy theorem. Why do we need this beast? How
does it compare to the ordinary thinning theorem?

The thinning approach of solving 0-1 knapsack problem, as presented in [65] and [17], beats the
traditional dynamic programming solution both in efficiency and clarity. In [16], Bird derived an
elegant generic algorithm solving marking problems, where he separated the phrases of extending
a solution and shrinking the solution set. The derived program runs nicely in polynomial time
for problems defined on datatypes with a polynomial base functor — that is, functors defined in
terms of the identity functor, product, and coproduct. Lists and binary trees, among many useful
datatypes, both belong to this category.

When it comes to non-polynomial based datatypes such as rose trees, however, the algorithm
takes exponential time. Take the maximum subtree problem for example. To compute the best
tree starting from the root, the first step in a thinning phrase, namely F(id ,∈) (or cplistF in the
implementation), automatically generate an exponential number of possibilities because there is
a linear number of children and all the children can be either taken or dropped. This is not
necessary. We all know that the best policy is simply take all the children yielding positive value.

The solution in [76] and [16] is to transform non-polynomial based datatypes into their
polynomial-based embeddings in a systematic way. When it comes to Rect , for which the re-
lationship between the polynomial and the non-polynomial types are more obscure, we lose the
clarity. The problem was that we lost, during the separation of phases, the chance to perform
customised refinement for each problem. What we need is a mechanism to promote max R into
the fold, like what was done in the previous sections. We can then further refine max R ·Λincl and
max R ·Λexcl in a way customised for each definitions of incl and excl , eliminating the exponential
number of choices we encounter when they are treated uniformly. This is what the generic greedy
theorem enables us to do.

82 CHAPTER 5. OPTIMISATION PROBLEMS

Chapter 6

Countdown: A Case Study

We have seen many techniques to invert a function. One may look into its definition and invert it
via the compositional approach. When the function happens to be a fold, the result would be an
unfold. The resulting program thus runs in a top-down manner. One may also attempt to invert
it as a fold, thereby computing the results bottom-up. Yet another bottom-up approach, similar
to that in Section 4.7.3, will be discussed later in this chapter. It works by turning a top-down
specification to a closure. In practice it is difficult to predict which one will turn out to be better,
as each of them might expose different chances for further optimistaion, or interact with the rest
of the algorithm in different ways.

A very nice illustration of all these ideas is provided by Hutton’s functional pearl on the
Countdown problem [46]. In the Countdown problem one is given a bag of positive integers, and
the aim is to construct an arithmetic expression out of some of these numbers to get as close
as possible to a given target integer. The name of the problem derives from a popular British
television programme in which contestants are given six source numbers and a time limit of 30
seconds to construct a solution. In the Computing Laboratory, the Countdown problem has been
used as a topic for a programming competition held by Spivey[81], who also conducted some
initial research on the problem. In [46], Hutton developed a straightforward but, at least for bags
of size six, reasonably effective top-down algorithm that nevertheless repeated a lot of work. In
a concluding section he proposed the investigation of a bottom-up algorithm to see whether it
would be superior. It turns out to be an attractive problem for comparing the various approaches
to function inversion, as well as being ideal both for presenting and illustrating some general
theory about tabulation, thinning and closure algorithms, we take up Hutton’s proposal in this
chapter. Specifically, we will derive about half a dozen algorithms for Countdown, both top-down
and bottom-up, and compare their performance.

6.1 The Specification

To specify Countdown we define the following datatype for expressions:

dataExpr = val Z | app (Op × (Expr × Expr))
dataOp = add | sub |mul | div

The fold function for Expr is naturally defined by:

foldExpr f g (val n) = g n

foldExpr f g (app (op, (l , r))) = f (op, (foldExpr f g l , foldExpr f g r))

83

84 CHAPTER 6. COUNTDOWN: A CASE STUDY

We call the bag of numbers used in an expression it basis. It can be defined in terms of
foldExpr as below:

basis :: Expr → Bag Z
basis = foldExpr wrap (plus · snd)

The function wrap is overloaded to bags, and plus takes the bag-union of two non-empty bags.
Note that wrap and plus have disjoint ranges: wrap returns a singleton bag, while plus returns a
bag of size at least two.

The function value evaluates an expression and is defined by

value :: Expr → Z
value = foldExpr id apply

The subsidiary function apply applies an operator to two numbers and is defined in the obvious
way, with div interpreted as integer division. According to the rules of the game, whenever division
is used, the denominator must exactly divide the numerator. Also, the result of a subtraction
must always be positive. We therefore build only those expressions that are valid according to the
rules. The validity of expressions is determined by the coreflexive valid :: Expr → Expr defined
by valid = foldExpr val app′, where app′ is a partial function defined by:

app′ :: (Op × (Expr × Expr))→ Expr

app′ = app · legal?

and the boolean-valued function legal is defined by

legal (add , (x , y)) ≡ true

legal (sub, (x , y)) ≡ (value x > value y)
legal (mul , (x , y)) ≡ true

legal (div , (x , y)) ≡ (value x)mod (value y) 0

We know that valid is a coreflexive because app′ ⊆ app, and as a consequence we have valid ⊆
foldExpr val app = id .

To continue with the specification, let subbag :: Bag Z → Bag Z be a relation that takes a
non-empty bag to one of its non-empty sub-bags, including possibly the bag itself. The expression
valid · basis◦ · subbag therefore takes a bag of numbers to a valid expression mentioning only the
numbers in the bag. The problem is to find an expression whose value is as close to a chosen
target number as possible. Hence we define

countdown :: Z → Bag Z → Expr

countdown n = min Rn · Λ(valid · basis◦ · subbag)

where the parameterised ordering Rn is defined by u Rn v ≡ dist n u ≤ dist n v and the function
dist by dist x y = abs (x − y).

6.2 The Top-Down Approach

Let us first review Hutton’s top-down solution to the Countdown problem. The first thing to say
is that the problem reminds one of bin packing[60], but is much more complicated. The main
complication is that the principle of optimality does not hold for Countdown: expressions that
are closest to the target are not built out of subexpressions that are closest to the target. This is
due to the presence of operators like minus, division and multiplication. Consequently the main

6.2. THE TOP-DOWN APPROACH 85

focus is on how to compute the full set of possible expressions. True, once one finds an expression
whose value matches the target exactly, further computation can be abandoned. We will return
to this point after seeing how to transform Λ(valid · basis◦ · subbag) into an implementable form.

The second thing to say is that with the given definition of valid there is a great deal of
redundancy in the set of expressions one can build. For example, x + y and y + x are essentially
the same expression, as are (x−y)+z and x+(z−y) (and so on), and x , x×1 and x/1. On the other
hand, while possessing the same value, (7 + 4) + 3 and 7× 2 are essentially different expressions.
One approach to restraining the redundancy is to strengthen the definition of valid with the aim
of excluding all but a single representative of each set of essentially similar expressions. In fact,
Hutton uses a definition of valid based on the following definition of legal :

legal (add , (x , y)) ≡ value x ≤ value y

legal (sub, (x , y)) ≡ value x > value y

legal (mul , (x , y)) ≡ value x 6= 1 ∧ value y 6= 1 ∧ value x ≤ value y

legal (div , (x , y)) ≡ value y 6= 1 ∧ (value x)mod (value y) = 0

Stronger still is the following definition:

legal (add , (x , y)) ≡ value x ≤ value y ∧ not sub x ∧ not add y ∧ not sub y

legal (sub, (x , y)) ≡ value x > value y ∧ not sub x ∧ not sub y

legal (mul , (x , y)) ≡ 1 < value x ≤ value y ∧ not div x ∧ not mul y ∧ not div y

legal (div , (x , y)) ≡ 1 < value y ∧ (value x)mod (value y) = 0
∧not div x ∧ not div y

where not op (val n) = true and not op1 (app op2 x y) = (op1 6= op2). One can add yet more
refinements, and it is orthogonal to the developments in the sections to come. However, it is quite
tricky to devise a test that ensures a single representative of essentially similar expressions. An
alternative and more systematic approach to the eliminate redundant expressions is described in
Section 6.3.4 below.

Turning to the derivation of the top-down algorithm. Observe that the function basis is defined
as a fold, so its converse basis◦ is an unfold. The expression valid · basis◦ is thus a hylomorphism.
Define expr = valid · basis◦, we have:

expr

= {hylomorphism}

µ(X 7→ [val , app′] · (id + (id × (X × X))) · [wrap, plus · snd]◦)

= {join and coproduct}

µ(X 7→ val · wrap◦ ∪ app′ · (id × (X × X)) · (plus · snd)◦)

= {since snd · (f × R) = R · snd}

µ(X 7→ val · wrap◦ ∪ app′ · snd◦ · (X × X) · plus◦)

The resulting expression has a simple reading: to compute expr on a singleton bag, just apply
val to its sole inhabitant. To compute expr on a bag of size at least two, split the bag into
two, recursively compute expr on each sub-bag, choose an operator and, if the result is a valid
expression, combine them. The relation snd◦ invents an operator to fill in. Note that wrap◦ is
defined only on singleton bags and plus◦ only on bags of size at least two, so it is legitimate to
interpret ∪ as a conditional. Also note that expr is in fact the unique fixed-point of the mapping.
The reason is that (fst ∪ snd) · plus◦, which has type Bag A→ Bag A, is an inductive relation.

86 CHAPTER 6. COUNTDOWN: A CASE STUDY

Fusing Λ into the fixed-point using an approach similar to that in Section 3.1, we obtain the
following recursive definition for exprs = Λexpr , in which ops = {add , sub,mul , div}:

exprs xb | singleton xb = {val (wrap◦ xb)}
| otherwise = {app (op, (e1, e2)) | (yb, zb)← (Λplus◦) xb,

e1← exprs yb, e2← exprs zb,
op← ops, legal (op, (e1, e2))}

Hence, using Λ-composition, we have:

countdown n = min Rn · union · Pexprs · Λsubbag

We are now at a stage where the overall structure of the program has been determined, and it
seems that we are just one step away from an implementation. However, there are still a number
of decisions one can make in this last step, some of them having phenomenal influence on the
efficiency. We will explore some of the alternatives in the incoming sections.

6.2.1 Choosing a Representation for Bags

The specification of countdown involves both bags and sets, and in the implementation one might
choose to represent both these types by lists. The approach taken in [46] can be seen as to
represent a bag of integers by a list of all its permutations. The function Λsubbag is therefore
represented by a function subbags defined by

subbags :: List A→ List (List A)
subbags xs = [zs | ys ← subseqs xs, zs ← perms ys]

The redundancy in the representation of bags means that the function Λplus◦ in the definition of
exprs can be implemented by splits :: List A→ List ([List A,List A)] that splits a list into two non-
empty sublists in all possible ways, mentioned in Section 3.1. Finally, the set comprehension in
the definition of exprs can be replaced by a list comprehension. As usual, we can pair expressions
with their values to avoid repeated value computations in the evaluation of legal and min Rn .

Another choice is to represent a bag of integers by a single list in ascending order. Then
Λsubbag can be implemented simply as subseqs. Under this representation, plus will be imple-
mented by a function merge which merges two sorted lists into one. Consequently, to implement
Λplus◦, we have to “unmerge” a sorted list into two sorted lists. For example, the list [1, 2, 3] can
be decomposed in six ways:

([1], [2, 3]), ([2], [1, 3]), ([3], [1, 2]), ([1, 2], [3]), ([1, 3], [2]), ([2, 3], [1])

Half of these unmerges are pairwise swaps of the other half. We can define one half by

unmerges :: List A→ List (List A× List A)
unmerges [] = []
unmerges [a] = []
unmerges (a : x) = ([a], x) : concat [[(a : y , z), (y , a : z)] | (y , z)← unmerges x]

and then add in the pairwise swaps. A better idea is to take account of the swaps in the definition
of exprs by strengthening the definition of legal so that at most one of app (op, (e1, e2)) and
app (op, (e2, e1)) is a valid expression. This is certainly the case when op is div or sub, and it

6.2. THE TOP-DOWN APPROACH 87

causes no harm to extend it to add and mul because both operations are commutative. Thus we
can define

exprs xb | singleton xb = {val (wrap◦ xb)}
| otherwise =

union{combine (op, (e1, e2)) | (yb, zb)← (Λplus◦) xb,
e1← exprs yb, e2← exprs zb,
op← ops}

combine (op, (e1, e2)) | legal (op, (e1, e2)) = {app (op, (e1, e2))}
| legal (op, (e2, e1)) = {app (op, (e2, e1))}
| otherwise = { }

and implement Λplus◦ by unmerge, union by concat , and set comprehension by list compre-
hension.

Yet another slight modification on legal can be done. The reason for computing the set of
valid expressions in the first place is so that we can apply min Rn to it. As we said at the start,
this relation cannot be fused with the generation of expressions since the optimality principle
does not hold. However, once we have found an expression with value n there is no point in
continuing to construct further expressions. We can therefore strengthen the definition of legal to
exclude expressions that contain a subexpression with value n. This gives a modest performance
improvement of about 12% for the naive top-down approach. We will use this definition of legal

through out this chapter.

6.2.2 Building Trees First

Surprisingly, the most time and space efficient non-memoising implementation of the pure top-
down approach comes from introducing, rather than eliminating, an intermediate datatype. Recall
the tip-valued binary tree and its fold function:

data Tree = tip Z | bin (Tree × Tree)

foldTree :: ((A × A)→ A)→ (Z → A)→ Tree → A

foldTree f g (tip n) = f n

foldTree f g (bin (x , y)) = g (foldTree f g x , foldTree f g y)

We introduce a function basisT :: Tree → Bag Z and a relation toExpr :: Tree → Expr such that

basis = basisT · toExpr ◦

The function basisT returns the basis of a tree rather than an expression, while the relation
toExpr maps a Tree to an Expr by filling in arbitrary operators at the nodes. They can be
defined respectively as:

basisT = foldTree plus wrap

toExpr = foldTree (app · snd◦) val

Consequently, we have:

countdown n = min Rn · Λ(valid · toExpr · basisT ◦ · subbag)
= min Rn · E(valid · toExpr) · E(basisT ◦) · Λsubbag

= min Rn · union · P(Λvalid · toExpr) · union · P(ΛbasisT ◦) · Λsubbag

88 CHAPTER 6. COUNTDOWN: A CASE STUDY

Let trees = ΛbasisT ◦. After some reasoning, one can come up with the following recursive
definition for trees:

trees xb | singleton xb = {tip (wrap◦ xb)}
| otherwise = {bin (y , z) | (yb, zb)← (Λplus◦) xb,

y ← trees yb, z ← trees zb}

The function toValidExprs = Λ(valid · toExpr) converts a tree into a set of valid expressions by
inserting operators in all legal ways:

toValidExprs (tip m) = {val m}
toValidExprs (bin (t1, t2)) = union {combine (op, (e1, e2)) |

e1 ← toValidExprs t1,
e2 ← toValidExprs t2, op← ops}

The function combine is the same one defined in Section 6.2.1. The function Λplus◦ in the
definition of trees can be implemented by unmerges because the order of the subtrees in a tree is
immaterial: toExprs (bin (x , y)) = toExprs (bin (y , x)). The type Tree therefore implements the
abstract type of oriented binary trees.

The reason why this approach is efficient (at least, once toExprs is modified to return both
expressions and their values) is that it is very economical in its use of space: there are 1881
oriented binary trees with a basis included in six given numbers, compared typically to about
70,000 valid expressions (depending on the precise definition of valid), so the resident space is
smaller.

6.2.3 Summary and Comparisons

For the purposes of comparison we implemented three versions of the top-down algorithm:

hutton Hutton’s algorithm with a strengthened validity test, modified to return a closest match;

td1 Like hutton except that a bag is represented by a list in ascending order;

td2 The version in which trees are used as an intermediate data structure.

Each program was compiled using the Glasgow Haskell Compiler (version 4.08.2) with the -O flag,
run on a Sun Blade 100 workstation (with a 500 MHZ UltraSPARC IIe processor). Each program
was run on the following set of test cases:

Run1 100 test cases, each consists of 6 sources numbers. The source and target numbers are
randomly generated.

Run2 30 test cases each with 6 randomly generated sources. The target number is set to −1, an
unreachable number, in order to test the worst case performance.

Run3 100 test cases, each with 8 sources and a randomly generated target number.

Run4 10 cases, each consists of 7 sources with target number set to −1.

For Run1 and Run2, the programs were run with a standard 64 megabytes heap. For Run3 and
Run4, they were allocated with a 500 megabyte heap. The result of timing in seconds is shown
below:

6.3. THE CLOSURE ALGORITHM 89

hutton td1 td2

Run1 1.165 0.463 0.320
Run2 2.139 0.868 0.546
Run3 22.954 7.586 3.807
Run4 87.753 30.628 14.661

Heap profiles of the programs running on the source numbers {|13, 7, 18, 187, 475, 217|} and target
number 4117, which resulted in a miss, are shown in Figure 6.1. The heap profile is generated by
the utility hp2ps. Chunks in memory are classified according to the function that generated the
data, with the one occupying the largest area on the top.

The program td1 is about 2.5 to 3 times faster than hutton1, which shows that the choice of
representing bags as ascending lists does save lots of computation. The cost, however, is a larger
heap residency. If we just measure the elapse time, td2, with Tree introduced, is around 1.5 times
faster than td1 for 6 source numbers and nearly twice as fast for 7 and 8 source numbers. In their
time profile generated by GHC, however, td1 is actually around 8 percent faster than td2 if the
time spent on garbage collection is not counted. The overall better performance of td2 is clearly
contributed by its economic use of memory, resulting in less garbage collections. For 6 source
numbers, the maximal heap residency of td2 is around 24 kilobytes of memory, as opposed to
around 700 kilobytes required by td1. The reason why it is more memory-economic can be seen
from the heap profile. The phase occupying the most memory is not the generation of expressions
(chunks created by combine), but the generation of trees, which is much smaller in number than
the expressions.

6.3 The Closure Algorithm

Despite the above refinements, the problem with all of the above top-down solutions is that
computations are repeated. For example, take the input bag [1, 2, 3, 4, 5] and the two splits
([1, 2, 3], [4, 5]) and ([1, 2, 3, 4], [5]). For the first, we compute all expressions that can be formed
from [1, 2, 3]. But this work is repeated when we take the split ([1, 2, 3], [4]) of the first component
of the second split.

One way to avoid these repeated computations is to memoise the computation of exprs. That
way we will have to either rely on specific language features or implement our own mechanism
or memoisation. Or we can tabulate exprs. Consider again the structure of Hutton’s original
algorithm:

countdown n = min Rn · union · Pexprs · Λsubbag

Suppose we implement bags as lists in ascending order and Λsubbag as subseqs, taking care to
generate the list of subsequences of a list in such a way that, for all xs and ys, if xs is a subsequence
of ys then xs appears before ys. Then in the evaluation of exprs xs, which involves the evaluation
of exprs ys and exprs zs for all (ys, zs) ∈ unmerges xs, we can arrange that all these sets of
expressions will have already been computed. Consequently, for some suitable type Basis that
describes the set of possible bases for expressions, we can represent the set of expressions currently
computed by an element of FiniteMap Basis (List Expr) and simply look up previously computed
expressions. No recomputation is necessary. Though similar in effect to memoisation, tabulation
is different in that it proceeds by assembling solutions to larger problems out of smaller ones.

A good definition of Basis is a bit sequence; for example, the subsequence [x1, x2, x4] of
[x0, . . . x4] can be represented as the bit sequence 01101. Apart from implementing unmerges

as a function with type Basis → List (Basis × Basis) there is little more to be said about the

90 CHAPTER 6. COUNTDOWN: A CASE STUDY

huttonP 19,355 bytes x seconds Tue Sep 17 10:38 2002

seconds0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

by
te

s

0k

2k

4k

6k

8k

10k

12k

split

ops

nesplit

main/countdown

countdown/subbags

exprs/nesplit

MAIN/CAF

MAIN/main

subbags/subs

nesplit/split

subbags/perms

countdown/exprs

exprs/combine

td1P 699,061 bytes x seconds Tue Sep 17 01:12 2002

seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

by
te

s

0k

50k

100k

150k

200k

250k

300k

350k

400k

450k

500k

550k

600k

countdown/exprs

exprs/combine

td2P 6,944 bytes x seconds Tue Sep 17 01:13 2002

seconds0.0 0.2 0.4 0.6

by
te

s

0k

2k

4k

6k

8k

10k

12k

14k

16k

18k

20k

main/countdown

MAIN/CAF

MAIN/main

countdown/subseq

trees/unplus

countdown/toExpr

toExpr/combine

countdown/trees

Figure 6.1: Heap profiles of hutton, td1, and td2.

6.3. THE CLOSURE ALGORITHM 91

tabulation approach as far as Countdown is concerned. It can benefit from the optimisiation
described in Section 6.3.4, but it is simple and available without much effort. The overhead is
the space required to store the finite map and the cost of looking up an entry. The former is
significant, but the latter is not since there is at most 2n entries for n source numbers, so looking
up an entry costs log 2n = n steps.

Yet another approach to avoid repeated computation is to transform the specification to a
closure algorithm. We will discuss this approach in finer details.

6.3.1 Generating Subbags within the Recursion

Let us return to the expression valid · basis◦ · subbag and fuse all three relations. The fusion
theorem for foldExpr says that R · foldExpr S1 S2 = foldExpr T1 T2 if the following conditions
hold:

R · S1 = T1 · (id × (R × R))

R · S2 = T2

The relation subbag◦ · basis can therefore be expressed as a fold if we can find T1 and T2 so that

subbag◦ · plus · snd = T1 · (id × (subbag◦ × subbag◦))

subbag◦ · wrap = T2

Writing pick = wrap◦ · subbag , so pick picks an element from a non-empty bag, it is clear that we
can take T2 = pick◦. We can also take T1 = plus · snd since it is easy to check that

subbag◦ · plus = plus · (subbag◦ × subbag◦)

if plus, as mentioned before, is a partial relation taking only sets of more than two elements as its
input. Consequently, valid · basis◦ · subbag is a hylomorphism and can be written as a fixed-point:

valid · basis◦ · subbag = µ(X 7→ val · pick ∪ app′ · snd◦ · (X × X) · plus◦)

The fixed-point is also unique because δF · [pick , plus · snd]◦ is inductive. Note, however, that the
union in the body of the recursion shall not be interpreted as a conditional anymore: the domains
of the two alternatives are not disjoint and we can non-deterministically choose to terminate via
val · pick at any time. Consequently, in the breadth of its recursive solution, written as subexprs

below, the two alternatives shall both be explored and their union taken:

countdown n = min Rn · subexprs

subexprs xb | singleton xb = {val (wrap◦ xb)}
| otherwise = Pval xb ∪

union{combine (op, (e1, e2)) |
(yb, zb)← (Λplus◦) xb,
e1← subexprs yb, e2← subexprs zb,
op← ops}

Whereas exprs xb denotes the set of valid expressions with basis xb, the value of subexprs xb is the
set of valid expressions with a basis which is a subbag of xb. The main advantage of subexprs is
that we no longer have to compute subbags explicitly.

The problem with this approach is, however, that when sets are implemented by lists and
union by concatenation, we generate lots of repetitions in the list. Say, subexprs [1, 2, 3] would
generate the expression app (op, (2, 3)) three times for each operator op. One might attempt
to define a clever variation of plus to avoid the repetition. Another possibility, however, is to
turn to a bottom-up algorithm, and thereby systematically generate all the expressions without
repetition.

92 CHAPTER 6. COUNTDOWN: A CASE STUDY

6.3.2 Transforming to a Closure

We know from the previous section that

valid · basis◦ · subbag = µ(X 7→ val · pick ∪ app′ · snd◦ · (X × X) · plus◦)

Suppose there are no duplicated elements in the bag, an assumption we can take care of by tagging
identical numbers with distinct basis values to ensure uniqueness. Then bags can be replaced by
sets, subbag by subset (the relation returning a non-empty subset), and plus by cup, the disjoint
union of two non-empty sets. The point of this change is that we can then exploit the following
identity:

(subset × subset) · cup◦ = disjoint? · 〈subset , subset〉

where disjoint is a predicate testing whether a pair of sets have no members in common, The
relation cup◦ splits the set into two disjoint sets. In words, the identity says that we can select two
disjoint non-empty subsets from a set (the right-hand side) by splitting the set into two (disjoint,
proper, non-empty) subsets and taking non-empty subsets from each half (the left-hand side).

Having that in mind, we derive that applied to sets of size at least two:

(valid · basis◦ · subset × valid · basis◦ · subset) · cup◦

= {products}

(valid · basis◦ × valid · basis◦) · (subset × subset) · cup◦

= {above identity}

(valid · basis◦ × valid · basis◦) · disjoint? · 〈subset , subset〉

= {let disjointE be the counterpart of disjoint on expressions}

disjointE? · (valid · basis◦ × valid · basis◦) · 〈subset , subset〉

= {splits absorbs products}

disjointE? · 〈valid · basis◦ · subset , valid · basis◦ · subset〉

The predicate disjointE determines whether two expressions have disjoint bases.
Since we also have val · pick ⊆ valid · basis◦ · subset , it follows that valid · basis◦ · subset is a

solution for X of the inequation

val · pick ∪ app′ · snd◦ · disjointE · 〈X ,X 〉 ⊆ X (6.1)

We have mentioned in Section 4.7 what a closure is. In brief, the relation R∗ · S is defined as
a least fixed-point:

R∗ · S = µ(X 7→ S ∪R · X)

The least fixed-point is the unique fixed-point if and only if R◦ is an inductive relation. Here R

has type B → B .
Now look at (6.1) again. Its least solution is also the least fixed-point of the corresponding

equation. Furthermore, (fst ∪ snd) · snd · app′◦ · disjointE? is an inductive relation, so the least
fixed-point is the only fixed-point. In summary, we have shown:

valid · basis◦ · subset = µ(X 7→ val · pick ∪ app′ · snd◦ · disjointE? · 〈X ,X 〉)

Substitute S for val · pick and R for app′ · snd◦ · disjointE?, the right-hand side abbreviates to:

µ(X 7→ S ∪ R · 〈X ,X 〉)

It is a generalisation of a closure to binary relations R :: (B × B)→ B !
In the next section we will talk about, in general, how to compute µ(X 7→ S ∪ R · 〈X ,X 〉)

for arbitrary R and S .

6.3. THE CLOSURE ALGORITHM 93

6.3.3 Computing Closures

Given an initial value a, a naive way to compute Λ(R∗ · S) a is to apply ΛS to a, and then
repeatedly apply ER to the resulting set until we reach a fixed-point, i.e., until the set does
not change after an application of ER. This way, however, we might end up with unnecessarily
applying R many times to those members persisting in the set. A better approach is to distinguish,
say, by keeping two sets, the newly computed members and the older ones, and apply the next
iteration of ER to those new members only. In [17, Chapter 6] such an algorithm was derived. In
this section, we are going to generalise the result to binary R, i.e., to compute:

µ(X 7→ S ∪ R · 〈X ,X 〉) (6.2)

Let θR, parameterised by a relation R, be a function from pairs of relations to relations, defined
by:

θR(P ,Q) = P ∪ µ(X 7→ Q ∪ (R · (〈X ,X 〉 ∪ 〈X ,P〉 ∪ 〈P ,X 〉) − P))

where the relations P and Q have type A → B , and R has type (B × B) → B . When we set Q

to S and P to ∅, the right-hand side reduces to (6.2). Therefore, to compute (6.2) we just need
to compute θR(∅,S). We now aim at deriving an recursive characterisation of θR(P ,Q).

When Q = ∅, it is clear that the empty set is a solution, thus the least, of the fixed-point.
Therefore θR(P , ∅) = P . To derive the general case, we will make use of the rolling rule for
fixed-points, stated below:

µ(f · g) = f (µ(g · f)) (6.3)

Abbreviate the chain of unions 〈X ,X 〉 ∪ 〈X ,P〉 ∪ 〈P ,X 〉 to prods(X ,P). We derive:

θR(P ,Q)

= {definition}

P ∪ µ(X : Q ∪ (R · prods(X ,P) − P))

= {since X ∪ Y = X ∪ (Y − X)}

P ∪ µ(X : Q ∪ (R · prods(X ,P) − (P ∪Q)))

= {rolling rule (6.3), with f = (Q∪) and g X = R · prods(X ,P) − (P ∪Q)}

P ∪Q ∪ µ(X : R · prods(Q ∪ X ,P)− (P ∪Q))

= {claim: prods(Q ∪X ,P) = prods(Q ,P) ∪ prods(X ,P ∪Q)}

P ∪Q ∪ µ(X : R · (prods(Q ,P) ∪ prods(X ,P ∪Q))− (P ∪Q))

= {since (R·) and (−(P ∪Q)) distribute into ∪}

P ∪Q ∪ µ(X : (R · prods(Q ,P) − (P ∪Q))∪
(R · prods(X ,P ∪Q)− (P ∪Q)))

= {folding the definition of θR}

θR(P ∪Q ,R · prods(Q ,P) − (P ∪Q))

To prove the claim, we will make use of the following fact:

〈A ∪ B ,C ∪D〉 = 〈A,C 〉 ∪ 〈A,D〉 ∪ 〈B ,C 〉 ∪ 〈B ,D〉 (6.4)

The claim will be proved as below:

〈Q ∪ X ,Q ∪ X 〉 ∪ 〈Q ∪ X ,P〉 ∪ 〈P ,Q ∪X 〉

94 CHAPTER 6. COUNTDOWN: A CASE STUDY

= {expanding all the terms by (6.4)}

〈Q ,Q〉 ∪ 〈Q ,X 〉 ∪ 〈X ,Q〉 ∪ 〈X ,X 〉
∪ 〈Q ,P〉 ∪ 〈X ,P〉 ∪ 〈P ,Q〉 ∪ 〈P ,X 〉

= {rearranging the terms}

〈P ,Q〉 ∪ 〈Q ,P〉 ∪ 〈Q ,Q〉
∪ 〈X ,X 〉 ∪ 〈Q ,X 〉 ∪ 〈P ,X 〉 ∪ 〈X ,P〉 ∪ 〈X ,Q〉

= {folding the last four terms with (6.4)}

〈P ,Q〉 ∪ 〈Q ,P〉 ∪ 〈Q ,Q〉
∪ 〈X ,X 〉 ∪ 〈P ∪Q ,X 〉 ∪ 〈X ,P ∪Q〉

In summary, we have derived the following definition for θR:

θR(P , ∅) = P

θR(P ,Q) = θR(P ∪Q ,R · (〈P ,Q〉 ∪ 〈Q ,P〉 ∪ 〈Q ,Q〉)− (P ∪Q))

which itself can be written as a closure:

θR = stop · step∗

R

stop (P , ∅) = P

stepR (P ,Q) | Q 6= ∅ = (P ∪Q ,R · (〈P ,Q〉 ∪ 〈Q ,P〉 ∪ 〈Q ,Q〉)− (P ∪Q))

It is therefore an iterative algorithm.
The function θR constructs a relation defined as a least fixed-point. The set-theoretic coun-

terpart to θR is a function close defined by:

close :: ((Set A× Set A)→ Set A)→ (Set A× Set A)→ Set A

close f (ps, ∅) = p

close f (ps, qs) = close f (ps ∪ qs, f (ps, qs) ∪ f (qs, ps) ∪ f (qs, qs) − (ps ∪ qs))

which can also be written as a closure:

close f = stop · (step f)∗

stop (ps, ∅) = ps

step f (ps, qs) | qs 6= ∅ = (ps ∪ qs, f (ps, qs) ∪ f (qs, ps) ∪ f (qs, qs) − (ps ∪ qs))

The relationship between θ and close is given by:

Λ(θR(P ,Q)) = close Λ(R · (∈ × ∈)) · 〈ΛP ,ΛQ〉

We have derived an algorithm to compute (6.2) in general. For Countdown, however, some sim-
plification can be done. Firstly, we can make f commutative by constructing both app (op, (x , y))
and app (op, (y , x)), thus f (ps, qs)∪ f (qs, ps)∪ f (qs, qs) is equivalent to f (ps ∪ qs, qs). Secondly,
each tree we construct are deeper than those in the previous iteration, therefore ps∪qs are disjoint
with f (ps ∪ qs, qs). The subtraction is thus not necessary. Consequently, the recursive case of
close can be simplified to:

close f (ps, qs) = close f (ps ∪ qs, f (ps ∪ qs, qs))

Instantiating close for the Countdown problem we find that

countdown n = min Rn · close Λ(join · (∈ × ∈)) · 〈const ∅,Pval〉
join = app · snd◦ · (id ∪ swap) · disjointE?

The term (id ∪ swap) is inserted into join to ensure commutativity.

6.3. THE CLOSURE ALGORITHM 95

To understand what is going on with this algorithm, let (psn , qsn) be the arguments of close

at the nth recusive call, beginning with n = 0. It is easy to show by induction that psn is the
set of valid expressions of height less than n and qsn is the set of expressions with height n. The
algorithm therefore stops after k − 1 iterations, where k is the size of the input set.

As a side note: had we started off with this definition:

θ′R(P ,Q) = µ(X 7→ Q ∪ (R · (〈X ,X 〉 ∪ 〈X ,P〉 ∪ 〈P ,X 〉) − P))

we would have come up with this recursive definition for θR:

θ′R(P , ∅) = ∅
θ′R(P ,Q) = Q ∪ θ′R(P ∪Q ,R · (〈P ,Q〉 ∪ 〈Q ,P〉 ∪ 〈Q ,Q〉)− (P ∪Q))

This “online” algorithm produces results as soon as they are available, which may be advantageous
in a lazy language. The derivation of θ′R is recoded in Appendix C.1. However, in our experiment,
this variant is not significantly better, so we will just stick with the first, tail-recursive definition.

6.3.4 Thinning

There are about 33 million expressions on 6 numbers, of which about 4.5 million satisfy the
basic validity test, 250,000 that satisfy the first strengthened validity test given in Section 6.2,
and 70,000 that satisfy the second (of course, the figures vary depending on the actual source
numbers). But we can go further in reducing the number of expressions that have to be considered.
If two expressions x and y have the same value but the basis of x is contained in the basis of
y , then there is no point keeping y . Whatever expressions we further construct using y , we can
construct with x instead. We will make this informal observation precise below. By ‘thinning’
of the set of possible expressions we can eliminate duplicates of essentially the same expression,
expressions such as (x + y) + z and x + (z + y) which have exactly the same basis, or expressions
such as x and x ∗ (y/y) in which the former has a smaller basis than the latter. We will also
eliminate expressions such as 7 + 5 + 2 in favour of 7 ∗ 2, an expression with the same value but a
smaller basis. Thinning can therefore dramatically cut down the number of expressions we need
to consider. The downside, of course, is that thinning takes time.

The relation thin has been introduced in Section 5.2.1. Let Q :: A → A be a preorder. The
relation thin Q :: Set A→ Set A is defined by

(xs, ys) ∈ thin Q ≡ (ys ⊆ xs) ∧ (∀x : x ∈ xs : ∃y : y ∈ ys : yQx)

The resulting set ys is a streamlined subset of xs. For the Countdown problem take Q to be the
preorder

x Q y ≡ (value x = value y) ∧ (basis x ⊆ basis y)

we have x Q y ⇒ dist n x = dist n y ⇒ x Rn y , so it is legitimate to introduce the term thin Q

after min Rn . The next step is to fuse the relation thin Q into the main computation, thereby
thinning at each stage.

The proof of the following theorem is relegated to Appendix C.2:

Theorem 6.1 Let R be monotonic on Q◦ in the sense that R · (Q◦ ×Q◦) ⊆ Q◦ ·R. Then

thinclose Q f ⊆ thin Q · close f

where f = (ΛR · (∈ × ∈)) and thinclose is defined by:

thinclose Q f = stop · ((thin Q × thin Q) · step f)∗ · (thin Q × thin Q)

96 CHAPTER 6. COUNTDOWN: A CASE STUDY

In earlier experiments in Oberon, with efficient hash table and sophisticated linking data struc-
ture, this approach turned out to be very efficient [81]. In order to install the thinning refinement
into Haskell, we made use of a supplementary data structure typeTable = FiniteMap Z (List (Expr×
Basis)) that organises computed expressions according to their value. The entry associated with
value v in the table consists of a set of expressions with disjoint bases each with value v . We
will not spell out the details because the bottom line is that the thinning stage turns out not
to be worth the candle, at least not in Haskell without the use of destructive data structures.
Our experiments show that a thinning algorithm with a basic validity test is outperformed by a
non-thinning algorithm with the more sophisticated validity test described in Section 6.2. Nev-
ertheless, the efficiency of the thinning algorithms could be dramatically improved if arrays were
used, at the expense of having to program in a monadic style. We have recorded the thinning
theorem in this section primarily because they do not appear in either [17] or [26].

6.4 A Fold Algorithm

The top-down approach is based on the compositional approach to function inversion. Naturally,
we would like to give the converse-of-a-function theorem a try.

Define the datatype for oriented binary trees by:

dataOTree = tip Z | bin (∇Tree)

where ∇ stands for the type of unordered pairs, or sets with two elements. A value of type ∇A

can be constructed by ⊗ : (A×A)→ ∇A, and it is assumed that x⊗y = y⊗x for all x and y . The
fold function for OTree will be denoted by foldOTree :: ((A×A)→ A)→ (Z → A)→ OTree → A.
It is defined the same as that for ordinary, ordered binary trees, with one extra constraint — that
its first argument, as a consequence of using ∇, must be a commutative function. We overload
the function basisT to oriented trees and bags. It has type OTree → Bag Z and is be defined by
basisT = foldOTree wrap bcup, where bcup is the counterpart of cup for bags.

Similarly, the fold function for non-empty bags, written foldBag :: ((A × B) → B) → (A →
B) → Bag A → B , is defined the same as that for non-empty lists, except that we require a
healthiness condition on its first argument — denoting it by ⊕, we need a⊕ (b⊕ x)) = b⊕ (a⊕ x)
to hold.

According to the converse-of-a-function theorem, in order to show that:

basisT ◦ = foldBag add tip

for some definition of add , we need to show that the following premises holds:

basisT · tip ⊆ wrap

basisT · add ⊆ bcons · (id × basisT)

where bcons is the counterparts of cons on bags. The condition on tip is obviously true. For the
second condition, we claim the following definition of add suffices:

add (a, tip b) = bin (tip a ⊗ tip b)
add (a, bin (x ⊗ y)) = bin (tip a ⊗ bin (x ⊗ y))

2 bin (add (a, x) ⊗ y)

Since bin (x ⊗ y) is a nondeterministic pattern, the recursion only need to be performed on one
of the branches.

6.4. A FOLD ALGORITHM 97

We will need to prove that add does satisfy the premise for converse-of-a-function theorem.
Besides, we need to show that add satisfies the healthiness condition to be an argument to
foldBag . Since add is defined recursively, a proof that add does satisfy the above conditions
involves manipulating with fixed-points. A good exercise as it is, guiding the reader through the
proof is not the purpose of this chapter. The full proof will be be relegated to Appendix C.

In the implementation, OTree can be simulated by Tree. To implement the non-deterministic
pattern bin (x ⊗ y) in add , however, we have to perform the swapping ourselves. The following
function simulates Λadd :

padd :: (Z × Tree)→ Set Tree

padd (a, tip b) = {bin (tip a, tip b)}
padd (a, bin (x , y)) = {bin (tip a, bin (x , y))}

∪ {bin (x ′, y) | x ′ ← padd (a, x)}
∪ {bin (x , y ′) | y ′ ← padd (a, y)}

We now have:

Λ(basisT ◦) = foldBag (union · Ppadd · Λ(id× ∈)) (wrap · tip)

This implementation of Λ(basisT ◦) can readily be used in place of that in Section 6.2.2.
In the development of the top-down algorithms, we tried to fuse subbag into the body of the

computation. It turned out to be a bad idea because we end up building lots of repeated trees.
The problem, however, does not occur for our folding algorithm here. Since subbag is a fold on
bags:

subbag = foldBag step {||}
where step (a, x) = {||} 2 ({|a|} ∪ x)

Simple fold fusion suffices to show that foldBag paddsub (wrap ·tip) implements Λ(basisT ◦ ·subbag),
where paddSub is defined by:

paddsub :: (Z × Set Tree)→ Set Tree

paddsub (a, xs) = {tip a} ∪ xs ∪ {add (a, x) | x ← xs}

We still need to refine sets to lists. One naive way is just to replace each ∪ by ++. But look
at the definition of paddsub above. Take xs = [x , y , z], we would get

[tip a] ++ [x , y , z] ++ padd (a, x) ++ padd (a, y) ++ padd (a, z)

as a result. Recall that the list is then piped to min Rn lazily. The order of the list means that x

needs to reside in memory until y and z are processed! Similarly with y . Learning from previous
experiences how heap residency can effect the efficiency, we would prefer this order:

[tip a] ++ [x] ++ padd (a, x) ++ [y] ++ padd (a, y) ++ [z] ++ padd (a, z)

such that x and y can both be thrown away earlier. Define:

shuffle :: (List A× List (List A))→ List A

shuffle = concat ·map cons · zip

where zip :: (List A×List B)→ List (A×B), we can get the order we want by implementing the
second ∪ in the definition of paddsub by shuffle. This trick effectively reduces the heap residency.

98 CHAPTER 6. COUNTDOWN: A CASE STUDY

6.5 Comparisons

We implemented the following variations of the closure and folding algorithms:

close1 The closure algorithm of Section 6.3.3;

close2 The closure algorithm with thinning;

cft1 The fold algorithm of Section 6.4, subbag not fused;

cft2 The same as cft1 except that subbag is fused;

cft3 The same as cft2 but with shuffling.

Each program was compiled and run as for the top-down algorithms. The results, with the first
and second columns repeating the statistics for hutton and td2, were:

hutton td2 close1 close2 cft1 cft2 cft3

Run1 1.165 0.320 0.593 1.744 0.293 0.219 0.212
Run2 2.139 0.546 1.008 2.559 0.484 0.413 0.414
Run3 22.954 3.807 10.856 - 3.311 3.035 1.772
Run4 87.753 14.661 37.261.0 87.261 13.445 13.382 13.462

The performance of close1, the closure algorithm without thinning, lies between the most naive
and the most sophisticated top-down algorithm. Not indexing on values, the answer is extracted
by flattening the FiniteMap to a list and performing a linear search, which results in the down
slope in the heap profile. Thinning, however, does not pay in our experiments. We believe that
both of them will do better with nicer support of destructive data structures.

The folding programs are very fast and memory economic. Comparing cft1 and cft2, we see
that fusing subbag helps to gain fringe speed, while increasing the heap residency. By looking at
the heap profile of cft2, however, we find that the dominant chunks are from add called by paddsub,
leading one to doubt that some chunks might have stayed in memory longer than necessary. It
leads to the idea of shuffling, which proved to be very effective – the memory requirement of cft3 is
reduced back to around 10 kilobytes. The effort pays in Run3, where cft3 performed 170 percent
faster than cft2 and 12 times faster than hutton.

6.6 Conclusions

By now the reader has probably been counted out by Countdown. All the algorithms we have
described have been derived from a simple specification, using a variety of ideas drawn from
the growing body of mathematics for program construction. There are many ways to solve the
problem, some more or less closely related to others. The structure of an algorithm is partly
determined by different strategies for inversion. However, we also find that in transforming a
specification to a program, various other decisions, especially those involving implementing sets
in lists such as different representations of sets, different ways to merge lists, etc, play important
roles in improving the performance of the resulting program.

6.6. CONCLUSIONS 99

close1P 9,438,205 bytes x seconds Tue Sep 17 01:08 2002

seconds0.0 2.0 4.0 6.0

by
te

s

0k

200k

400k

600k

800k

1,000k

1,200k

1,400k

closure/union

closure/combineAll

closure/collect

combineAll/combine

close2P 339,051,807 bytes x seconds Tue Sep 17 01:00 2002

seconds0.0 20.0 40.0 60.0

by
te

s

0k

500k

1,000k

1,500k

2,000k

2,500k

3,000k

3,500k

4,000k

4,500k

5,000k

5,500k

foldl’/addUseful

addIfUseful’/unitFM

mkBalBranch/mkBranch

addIfUseful/addIfUseful’

combineAll/combine

Figure 6.2: Heap profiles of close1 and close2.

100 CHAPTER 6. COUNTDOWN: A CASE STUDY

cft1P 3,109 bytes x seconds Tue Sep 17 20:56 2002

seconds0.0 0.2 0.4 0.6

by
te

s

0k

2k

4k

6k

8k

build/foldrn

main/countdown

countdown/subseq

MAIN/CAF

MAIN/main

foldrn/padd

padd/add

countdown/treeToExpr

treeToExpr/combine

cft2P 8,092 bytes x seconds Tue Sep 17 01:09 2002

seconds0.0 0.2 0.4 0.6

by
te

s

0k

2k

4k

6k

8k

10k

12k

14k

MAIN/CAF

MAIN/main

countdown/toExpr

foldrn/paddsub

toExpr/combine

paddsub/add

cft3P 3,064 bytes x seconds Tue Sep 17 01:09 2002

seconds0.0 0.2 0.4 0.6

by
te

s

0k

2k

4k

6k

8k

main/countdown

MAIN/CAF

foldrn/paddsub

MAIN/main

paddsub/shuffle

paddsub/add

countdown/toExpr

toExpr/combine

Figure 6.3: Heap profiles of cft1, cft2, and cft3.

Chapter 7

The Burrows-Wheeler Transform

The Burrows-Wheeler Transform [21] is a method for permuting a string with the aim of bringing
repeated characters together. As a consequence, the permuted string can be compressed effectively
using simple techniques such as move-to-front or run-length encoding. In [69], the article that
brought the BWT to the world’s attention, it was shown that the resulting compression algorithm
could outperform many commercial programs available at the time. The BWT has now been
integrated into a high-performance utility bzip2, available from [79].

Clearly the best way of bringing repeated characters together is just to sort the string. But this
idea has a fatal flaw as a preliminary to compression: there is no way to recover the original string
unless the complete sorting permutation is produced as part of the output. Instead, the BWT
achieves a more modest permutation, one that aims to bring some but not all repeated characters
into adjacent positions. Moreover, the transform can be inverted using a single additional piece
of information, namely an integer b in the range 0 ≤ b < n, where n is the length of the output
(or input) string.

It often puzzles people, at least on a first encounter, why the BWT is invertible and how
the inversion is actually carried out. Our objective in this chapter is to prove a fundamental
property which made the inversion possible and, based on that, derive the inverse transform from
its specification, all by equational reasoning. As a reward, we can further derive the inverse of
two variations of the BWT transform, one proposed in [77], another in [23].

7.1 Defining the BWT

The BWT is specified by two functions: bwp :: String → String , which permutes the string and
bwn :: String → Z, which computes the supplementary integer. The restriction to strings is not
essential to the transform, and we can take bwp to have type Ord A ⇒ List A → List A, so lists
of any type will do provided there is a total ordering relation on the elements. The function bwp

is defined by

bwp = map last · sort · rots (7.1)

The function sort :: Ord A ⇒ List (List A) → List (List A) sorts a list of lists into lexicographic
order and is considered in greater detail in the following section. The function rots returns the
rotations of a list and is defined by

rots :: List A→ List (List A)
rots x = take (length x) (iterate lrot x)

101

102 CHAPTER 7. THE BURROWS-WHEELER TRANSFORM

0 y o k o h a m a 5 a m a y o k o h

1 o k o h a m a y 7 a y o k o h a m

2 k o h a m a y o 4 h a m a y o k o

3 o h a m a y o k 2 k o h a m a y o

4 h a m a y o k o 6 m a y o k o h a

5 a m a y o k o h 3 o h a m a y o k

6 m a y o k o h a 1 o k o h a m a y

7 a y o k o h a m 0 y o k o h a m a

Figure 7.1: Computation of recreate

where lrot x = tail x ++ [head x], so lrot performs a single left rotation. The definition of bwp is
constructive, but we won’t go into details – at least, not in this chapter – as to how the program
can be made more efficient.

The function bwn is specified by

sort (rots x) !! bwn x = x (7.2)

where x !! k applied to a list returns the element of x in position k , starting from 0. In words,
bwn x returns some position at which x occurs in the sorted list of rotations of x . If x is a repeated
string, then rots x will contain duplicates, so bwn x is not defined uniquely by (7.2).

As an illustration, consider the string yokohama. The rotations and the lexicographically
sorted rotations are as in Figure 7.1. The output of bwp is the string hmooakya, the last column
of the second matrix, and bwn "yokohama" = 7 because row number 7 in the sorted matrix of
rotations is the input string.

The BWT helps compression because it brings together characters with a common context.
To give a brief illustration, an English text may contain many occurrences of words such as
“this”, “the”, “that” and some occurrences of “where”, “when”, “she”, “ he” (with a space), etc.
Consequently, many of the rotations beginning with “h” will end with a “t”, some with a “w”,
an “s” or a space. The chance is smaller that a rotation beginning with “h” would end in a “x”,
a “q”, or an “u”, etc. Thus the BWT brings together a smaller subset of alphabets, say, those
“t”s, “w”s and “s”s. A move-to-front encoding phase is then able to convert the characters into a
series of small-numbered indexes, which improves the effectiveness of entropy-based compression
techniques such as Huffman or arithmetic coding. For a fuller understanding of the role of the
BWT in data compression, consult [21, 69].

For us, however, the BWT is interesting because it is not obvious how to convert the string
back. The inverse transform unbwt :: Ord A⇒ Z → List A→ List A is specified by

unbwt (bwn x) (bwp x) = x (7.3)

To compute unbwt we have to show how the matrix of lexicographically sorted rotations, or at
least its tth row where t = bwn x , can be recreated solely from the knowledge of its last column.
To do so we need to examine lexicographic sorting in more detail.

7.2. LEXICOGRAPHIC SORTING 103

7.2 Lexicographic sorting

Let (≤) :: A → A → Bool be a linear ordering on A. Define (≤k) :: List A → List A → Bool

inductively by

x ≤0 y = true

(a : x) ≤k+1 (b : y) = a < b ∨ (a = b ∧ x ≤k y)

The value x ≤k y is defined whenever the lengths of x and y are both no smaller than k .
Now, let sort (≤k) :: List (List A) → List (List A) be a stable sorting algorithm that sorts an

n × n matrix, given as a list of lists, according to the ordering ≤k . Thus sort (≤k), which we
henceforth abbreviate to sortk , sorts a matrix on its first k columns. Stability means that rows
with the same first k elements appear in their original order in the output matrix. By definition,
sort = sortn .

Define cols j = map (take j), so cols j returns the first j columns of a matrix. Our aim in
this section is to establish the following fundamental relationship, which is the key property
establishing the existence of an algorithm for inverse BWT. Provided 1 ≤ j ≤ k we have

cols j · sortk · rots = sort1 · cols j ·map rrot · sortk · rots (7.4)

where rrot denotes a single right rotation, defined by rrot xs = last xs : init xs. Equation (7.4)
looks daunting, but take j = n (so cols j is the identity) and k = n (so sortk is a complete
lexicographic sorting), the above reduces to:

sortn · rots = sort1 ·map rrot · sortn · rots

It says that given a matrix of sorted rotations, if we move the last column to the right, and stably
sort them on the first character, we get the same matrix back again. More generally, (7.4) states
that the following transformation on the sorted rotations is the identity: move the last column
to the front and resort the rows on the new first column. As we will see, this implies that the
(stable) permutation that produces the first column from the last column is the same as that
which produces the second from the first, and so on.

To prove (7.4) we will need some basic properties of rotations and sorting. For rotations, one
identity suffices:

map rrot · rots = rrot · rots (7.5)

More generally, applying a rotation to the columns of a matrix of rotations has the same effect as
applying the same rotation to the rows.

For sorting we will need

sortk ·map rrotk = (sort1 ·map rrot)k (7.6)

where f k is the composition of f with itself k times. Equivalently, equation (7.6) can be read as
sortk = (sort1 ·map rrot)k ·map lrotk . This identity formalises the fact that one can sort a matrix
on its first k columns by first rotating the matrix to bring these columns into the last k positions,
and then repeating k times the process of rotating the last column into first position and stable
sorting according to the first column only. Since map rrotn = id , the initial processing is omitted
in the case k = n, and we have the standard definition of radix sort. In this context see [34] which
deals with the derivation of radix sorting in a more general setting.

Substituting k + 1 for k in (7.6) and expanding the right-hand side, we obtain

sort(k+1) ·map rrotk+1 = sort1 ·map rrot · sortk ·map rrotk

104 CHAPTER 7. THE BURROWS-WHEELER TRANSFORM

Since rrotk · rrotn−k = rrotn = id we can compose both sides with map rrotn−k to obtain

sort(k+1) ·map rrot = sort1 ·map rrot · sortk (7.7)

Finally, we will need the following two properties of columns. Firstly, for arbitrary j and k :

cols j · sortk = cols j · sortjuk = sortjuk · cols j (7.8)

where u returns the smaller of its two arguments. In particular, cols j · sortk = cols j · sort j

whenever j ≤ k . Furthermore, since sort k sorts the list of strings by the first k characters only,
we have:

cols j · sortk · perm = cols j · sortk (7.9)

whenever j ≤ k and perm is any function that permutes its argument.
Having introduced the fundamental properties (7.5), (7.7), (7.8) and (7.9), we can now prove

(7.4). With 1 ≤ j ≤ k we reason:

sort1 · cols j ·map rrot · sortk · rots

= {by (7.8)}

cols j · sort1 ·map rrot · sortk · rots

= {by (7.7)}

cols j · sortk+1 ·map rrot · rots

= {by (7.8)}

cols j · sortk ·map rrot · rots

= {by (7.5)}

cols j · sortk · rrot · rots

= {by (7.9)}

cols j · sortk · rots

Thus, (7.4) is established.

7.3 Recreating the Matrix

Our aim is to develop a program that reconstructs the sorted matrix from its last column. In other
words, we aim to construct sort n · rots · unbwt t . In fact, we will try to construct a more general
expression cols j · sort k · rots · unbwt t (of which the former expression is the case j = k = n)
because the more general expression is used in the two variants of the BWT described in Sections
7.5 and 7.6.

First observe that for 0 ≤ j :

cols (j + 1) ·map rrot = join · 〈map last , cols j 〉 (7.10)

where join (x , xs) = zipWith (:) x xs, the matrix xs with x adjoined as a new first column. Hence:

cols (j + 1) · sortk · rots · unbwt t

= {by (7.4)}

sort1 · cols (j + 1) ·map rrot · sortk · rots · unbwt t

= {by (7.10)}

7.3. RECREATING THE MATRIX 105

recreate :: Ord a => Int -> [a] -> [[a]]

recreate 0 = map (const [])

recreate (j+1) = sortby leq . join . fork (id, recreate j)

where leq us vs = head us <= head vs

join = uncurry (zipWith (:))

fork (f,g) x = (f x, g x)

Figure 7.2: Computation of recreate

sort1 · join · 〈map last , cols j 〉 · sortk · rots · unbwt t

= {products: 〈f , g〉 · h = 〈f · h, g · h〉}

sort1 · join · 〈map last · sortk · rots · unbwt t , cols j · sortk · rots · unbwt t〉

In particular, consider t = bwn xs for an input xs and k = n, the length of xs. Since bwp =
map last · sort n · rots, and bwp (unbwt t xs) = xs, the equality shown above reduces to:

(cols (j + 1) · sort n · rots · unbwt t) xs

= (sort 1 · join · 〈id , cols j · sort n · rots · unbwt t〉) xs

Setting recreate j = cols j · sort n · rots · unbwt t , we have just constructed a recursive definition
for recreate:

recreate 0 = map (const [])
recreate (j + 1) = sort 1 · join · fork (id , recreate j)

The Haskell code for recreate is given in Figure 7.2. A function call to recreate j reconstructs the
first j columns of the sorted matrix of rotations.

The function sortby :: (A → A → Bool) → List A → List A is a stable sort. Its type slightly
varies from the standard function sortBy .

Now that recreate reconstructs the matrix, we just need to pick a particular row. Taking
j = n, we have unbwt t = (!! t) · recreate n. This implementation of recreate involves computing
sort1 a total of j times. To avoid repeated sorting, observe that recreate 1 y = sort y , where sort

now sorts a list rather than a matrix of one column. That is, each time in the recursive call we
really just repeatedly perform the same permutation as sorting the string y . We can thus just
sort y once, remember the permutation, and re-apply it afterwards.

We represent a permutation by a function of type Z → Z and define a function permby

rearranging a list according to a given permutation, such that:

permby p [x0, . . . , xn−1] = [xp(0), . . . , xp (n−1)]

More precisely, permby can be defined by:

permby p x = map ((x !!) · p) [0..length x − 1]

For each y , we can construct a permutation sp as below:

spy = snd · sply
sply i = sort (enum y) !! i
enum y = zip y [0..length y − 1]

It is then obvious that

sort (≤) y = permby spy y

106 CHAPTER 7. THE BURROWS-WHEELER TRANSFORM

In other words, spy remembers the permutation sorting y . Now we just need to sort y once to
find out the permutation spy , and reuse it in the body of recreate. Furthermore, permby spy is
a natural transformation, which is important for the next section. We will omit the subscript of
spy when it is clear from the context.

Denoting function application by •, which binds looser than function composition. The recur-
sive case for recreate can be written as:

recreate (j + 1) y = join · permby spy · 〈id , recreate j 〉 • y

7.4 Picking a Row from the Matrix

We are now able to rebuild the sorted matrix from its last column. However, we do not need the
entire matrix, but demand only one specific row of it. In this section, we are going to perform an
optimisation such that we can build just that row. The derivation makes heavy use of naturality
and even higher-order naturality.

The first step is to build the matrix iteratively, rather than recursively. Recall the Prelude
function transpose :: List (List A)→ List (List A) for transposing a matrix, which we will abbre-
viate to trans below. Also define:

iter1 f a = f a : iter1 f (f a)

It is a variation of the Haskell Prelude function iterate. It can be shown by the approximaton
lemma [15, Chapter 7] that:

iter1 f = cons · 〈f ,map f · iter1 f 〉

and it therefore follows that:

take (j + 1) · iter1 f = cons · 〈f ,map f · take j · iter1 f 〉 (7.11)

The first aim of this section is to prove that the sorted matrix can be rebuilt using iter1. More
precisely, we aim at showing the following equality:

trans · recreate j • y = take j · iter1 (permby sp) • y

Once it is established, we have the following alternative definition of recreate in terms of iter1:

recreate j y = trans · take j · iter1 (permby sp) • y (7.12)

The base case is easily established: when j = 0 both sides reduce to empty lists. We reason
for the inductive case:

trans · recreate (j + 1) • y

= {definition}

trans · sort1 · join · 〈id , recreate j 〉 • y

= {find sp such that sort y = permby sp y}

trans · permby sp · join · 〈id , recreate j 〉 • y

= {higher-order naturality: η · zip = zip · 〈η, η〉}

trans · join · 〈permby sp, permby sp · recreate j 〉 • y

= {higher-order naturality: η = map η · trans}

7.4. PICKING A ROW FROM THE MATRIX 107

trans · join · 〈permby sp,map (permby sp) · trans · recreate j 〉 • y

= {since trans · join = cons}

cons · 〈permby sp,map (permby sp) · trans · recreate j 〉 • y

= {induction}

cons · 〈permby sp,map (permby sp) · take j · iter1 (permby sp)〉 • y

= {by (7.11), with f = permby sp}

take (j + 1) · iterate (permby sp) • y

We have thus established (7.12).
How does that help to develop an algorithm picking a particular row in the matrix? Let t be

the row of interest, we wish to some how fuse (!!t) into recreate, and come up with an algorithm
which efficiently builds just that row. Let us start with:

(!!t) · recreate j • y

= {definition}

(!!t) · trans · take j · iter1 (permby sp) • y

= {since (!!t) · trans = map (!!t)}

map (!! t) · take j · iter1 (permby sp) • y

= {naturality: map f · take j = take j ·map f }

take j ·map (!!t) · iter1 (permby sp) • y

To push map (!!t) further to the right, one naturally recalls the following property which can be
easily proved by the approximation lemma:

map h · iter1 f = iter1 g · h ⇐ h · f = g · h (7.13)

To make use of it, however, we have to find a function g such that (!!t) · permby sp = g · (!!t).
Recall the definition of spl in the last section:

sply i = sort (enum y) !! i

Consider, for a fixed y , the list constructed in sply . The elements in y are (stably) sorted.
Furthermore, each of the elements is augmented with an index, indicating where it came from.
For example, take the string hmooakya, we get

a a h k m o o y

4 7 0 5 1 2 3 6

If we apply the same permutation to aahkmooy again, we get

m y a o a h k o

1 6 4 2 7 0 5 3

Now notice that each of the numbers 47051236 also indicates which item is going to occupy its
place. For example, the place of the first a is occupied by the element indexed 4 in the list, m.
The same happens when you apply the permutation again. The above formalises to the following
lemma:

Lemma 7.1 Let x be a list, p a permutation, and define plx i = permby p (enum x) !! i . We then
have:

iter1 (permby p) x = map (map fst) · iter1 (map (plx · snd)) · enum • x

108 CHAPTER 7. THE BURROWS-WHEELER TRANSFORM

unbwt :: Ord a => Int -> [a] -> [a]

unbwt t y = take (length y) (thread t)

where spl i = sort (zip y [0..]) !! i

thread i = x : thread j

where (x,j) = spl i

Figure 7.3: Computation of unbwt

Proof of Lemma 7.1 will be given in Appendix A. Furthermore, by the naturality property
(!!t) ·map f = f · (!!t), we have

(!!t) ·map (spl · snd) = spl · snd · (!!t)

That is indeed what we need to make use of (7.13)! We reason:

take j ·map (!!t) · iter1 (permby sp) • y

= {by Lemma 7.1}

take j ·map (!!t) ·map (map fst) · iter1 (map (spl · snd)) · enum • y

= {naturality: (!!t) ·map f = f · (!!t)}

take j ·map fst ·map (!!t) · iter1 (map (spl · snd)) · enum • y

= {(7.13), since enum y !!t = (y !!t , t) }

take j ·map fst · iter1 (spl · snd) • (y !!t , t)

Finally, map fst and iter1 can be combined into one loop, which
leads to the following algorithm:

unbwt t y = take (length y) (thread t)
where thread = cons · (id × thread) · spl

spl i = sortby (zip y [0..]) !! i

Its Haskell implementation is given in Figure 7.3. In a real implementation, the sorting in spl

would be performed by counting the histogram of the input, which can be done in linear time
using a mutable array. The “threading” part can be performed in linear time, assuming constant-
time array looking up. Seward [80] observed that the main inefficiency lies in the cache misses
involved in the threading, as a result of accessing the big array in a non-sequential order.

7.5 Schindler’s variation

The main variation of BWT is to exploit the general form of (7.4) rather than the special case
k = n. Suppose we define

bwpS k = map last · sortk · rots

This version, which sorts only on the first k columns of the rotations of a list, was considered in
[77]. The derivation of the previous section shows how we can recreate the first k columns of the
sorted rotations from y = bwp k x , namely by computing recreate k y .

The remaining columns cannot be computed in the same way. However, we can reconstruct
the tth row, where t = bwn k x and

sortk (rots x) !! t = x

7.6. CHAPIN AND TATE’S VARIATION 109

unbwt :: Ord a => Int -> Int -> [a] -> [a]

unbwt k p y = us ++ reverse (take (length y - k) v)

where u = ys !! p

ys = recreate k y

v = a:search k (reverse (zip ys y)) (take k (a:u))

a = y !! p

search :: Eq a => Int -> [([a],a)] -> [a] -> [a]

search k table x = a:search k table’ (take k a:x))

where (a,table’) = dlookup table x

dlookup :: Eq a => [(a,b)] -> a -> (b,[(a,b)])

dlookup ((a,b):abs) d = if a==d then (b,abs)

else (c,(a,b):cds)

where (c,cds) = dlookup abs d

Figure 7.4: Computation of Schindler’s variation

The first k elements of x are given by recreate k y !! t , and the last element of x is y !!t . Certainly
we know

take k (rrot x) = [xn , x1, . . . , xk−1]

This list begins with the last row of the unsorted matrix, and consequently, since sorting is stable,
will be the last occurrence of the list in recreate k y . If this occurrence is at position p, then
y !!p = xn−1. Having discovered xn−1, we know take k (rrot2 x). This list begins the penultimate
row of the unsorted matrix, and will be either the last occurrence of the list in the sorted matrix, or
the penultimate one if it is equal to the previous list. We can continue this process to discover all
of [xk+1, . . . , xn] in reverse order. Efficient implementation of this phase of the algorithm requires
building an appropriate data structure for repeatedly looking up elements in reverse order in
the list zip (recreate k y) y and removing them when found. A simple implementation is given in
Figure 7.4.

7.6 Chapin and Tate’s variation

Primarily for the purpose of showing that the pattern of derivation in this chapter can be adapted
to other cases, we will consider another variation. Define the following alternative of BWT:

bwpCT k = map last · twists k · sort · rots

Here the function twist rearranges the rows of the matrix and is defined as a sequence of steps:

twists 0 = id

twists (k + 1) = tstep (k + 1) · twists k

One possible choice of twist is shown in Figure 7.5. As an example, consider the rotations of the
string aabab:

110 CHAPTER 7. THE BURROWS-WHEELER TRANSFORM

tstep :: Eq a => Int -> [[a]] -> [[a]]

tstep k = concat . mapEven (map reverse). groupby (take k)

mapEven, mapOdd :: (a->a) -> [a] -> [a]

mapEven f [] = []

mapEven f (x:xs) = f x : mapOdd f xs

mapOdd f [] = []

mapOdd f (x:xs) = x : mapEven f xs

Figure 7.5: One possible choice of tstep

aabab ababa abaab

abaab abaab ababa

ababa aabab aabab

baaba baaba babaa

babaa babaa baaba

Shown on the left is the sorted matrix of rotations. The matrix in the middle is the result of
applying tstep 1. The rows are first partitioned into groups by groupby according to their first
characters. The even numbered groups (counting from zero) are then reversed. In the example,
the group starting with a is reversed. Shown on the right is the result of applying tstep 2 to the
matrix in the middle. The rows are partitioned into three groups, starting with ab, aa, and ba

respectively. The noughth and the second group are reversed.
The idea of twisting the matrix of sorted rotations was proposed in [23], where a similar but

slightly more complicated version of tstep was considered based on the Gray code. Chapin and
Tate’s generalisation can marginally improve the compression ratio of the transformed text.

What we require from twists to be invertible, however, is not specific to any particular tstep:
we need only the property that for 0 < j ≤ k ,

cols j · twists k = cols j · twists (j − 1) (7.14)

In words, further twisting (twists k where j ≤ k) does not change the first j columns after they
have been set by twists (j − 1). In the example above, for instance, the call to tstep 2 does
not change the first two columns of the matrix in the middle, nor do successive calls to tstep k

where k ≥ 2. Any tstep allowing twists to satisfy (7.14) suffices to make bwtCT invertible. This
separation of concerns on compression rate and invertibility means that one can try many possible
choices satisfying (7.14) and experiment with the effect on compression.

To derive an algorithm for the reverse transform we need the following analogue of (7.4):

col j · twists k · sort · rots

= twists k · sort 1 · untwists k · cols j ·map rrot · twists k · sort · rots (7.15)

where untwist k is inverse to twists k . The proof of (7.15) follows a similar path to the derivation
in Section 7.2. When k = 0 (so twists k = id) equation (7.15) reduces to a special case of (7.4).
In words, (7.15) means that the following operation is an identity on a matrix generated by
twists k · sort · rots: move the last column to the first, untwist it, sort it by the first character,
and twist it again.

Based on (7.15) one can now derive an algorithm similar to that of Section 7.3. Defining

recreateCT j k = col j · twists k · sort · rots · unbwtCT t

7.7. CONCLUSIONS 111

we can construct a recursive definition for recreateCT which is similar to (7.12), but with the
permutation sp simulating twists i ·sort 1·untwists i for appropriate i , rather than just sort 1. The
details are more complicated than for the corresponding definition of recreate (which builds one
column in each step) because in recreateCT the permutation sp changes each time a new column
is built. So the algorithm has to construct a new permutation as well as a new column at each
step. The resulting algorithm will thus return a pair whose first component is the reconstructed
matrix and the second component is a permutation representating sp. In the first step we build
the first column and a permutation simulating twists 1 · sort 1 · untwists 1; in the second step we
build the second column and a permutation for twists 2 · sort 1 · untwists 2, and so on. Further
details are omitted.

7.7 Conclusions

We have shown how the inverse Burrows-Wheeler transform can be derived by equational reason-
ing. The derivation can be re-used to invert the more general versions proposed by Schindler and
by Chapin and Tate.

Other aspects of the BWT also make interesting topics. The BWT can be modified to sort the
tails of a list rather than its rotations, and in [59] it is shown how to do this in O(n log n) steps
using suffix arrays. How efficiently it can be done in a functional setting remains unanswered,
though we conjecture that O(n(log n)2) steps is the best possible.

112 CHAPTER 7. THE BURROWS-WHEELER TRANSFORM

Chapter 8

Conclusion

Looking back at the promises we made in the beginning of the thesis, we have shown that the
inverse function is a useful tool for specification. Indeed, tasks like compression and decompression
certainly imply connection with inverse functions. Even for some tasks in which we do not
immediately see such a connection, such as breadth-first search or the string edit problem, the
presence of inverse functions in their specifications may come as a surprise. It shows that program
derivation involving inverse functions certainly deserves more attention.

The converse-of-a-function theorem plays a central role in this thesis. The compositional
approach to function inversion, presented in Chapter 3, inverts a fold to an unfold and vice versa.
The converse-of-a-function theorem, on the other hand, inverts any function that satisfies its
premises to a fold. To invert a function with the theorem, what matters is not how it is defined
but what properties it satisfies. This technique is not new. Similar techniques have been adopted
in, for example, [50] and [72]. However, to the best our knowledge, it was de Moor [17, 67] who
first presented the technique as a theorem, suggesting a wider range of application. The problem
dealt with in [67] was precedence parsing, leading to a derivation of Floyd’s algorithm. Recently,
Hinze [41] solved the problem again by a different approach avoiding the introduction of a spine
representation.

We have applied the converse-of-a-function theorem to a number of examples. The inversion
usually results in a non-deterministic fold. It is often composed before some other function which
acts as a filter. The fold fusion theorem is then applied to fuse the filter into the fold to remove
its non-determinism, refining the specification to an implementable function. This pattern of
derivation turned out to be useful in solving many problems.

In the sections to follow, we will discuss some related work and future directions.

8.1 Relations and Non-determinism

Encapsulating non-determinism, relations provide a natural and concise framework to extend
inversion to non-injective functions. The non-determinism can either be eliminated later in the
specification, or by taking the breadth of the constructed relation. The price we pay, however, is
having to bring in a heavy machinery: the algebra of relations is notorious for having too many
rules, and program transformation based on relational inclusion rather than simple equivalence
adds to the complexity. We have shown, at least for the examples in this thesis, that the complexity
is still within a manageable scale.

An alternative approach is to use set-valued functions [40, 41]. The pro is, besides getting
back to simple and nice equational reasoning, that the resulting program is closer to its functional

113

114 CHAPTER 8. CONCLUSION

(or in particular, Haskell) implementation – there is no need to take the breadth. The con, on
the other hand, is having to take care of the bookkeeping details of maintaining a set of results,
which is implicit in the relational approach.

We use relations to model non-determinism by allowing one item in the domain to be mapped
to more than one items in the range. This mapping, however, does not distinguish between
angelic and demonic non-determinism. Dijkstra proposed in [28], as a healthiness condition, that
predicate transformers should be conjunctive. The guarded command language of Dijkstra thus
captures demonic non-determinism. Back and von Wright [84, 3, 4] released the restriction and
considered disjunctive as well, adding angelic non-determinism to the language. In [4], they related
this calculus to program inversion and showed that the inverse of a demonic program is angelic,
and vice versa.

Much less has been done on modelling both style of non-determinism using relations. An
recent attempt was made by Rewitzky [73], where she proposed using upclosed multirelations to
capture both angelic and demonic non-determinism. More examples and applications are in high
demand, and it is interesting to see whether program inversion provides good applications.

8.2 The Converse-of-a-Function Theorem

One natural question is how widely the converse-of-a-function theorem can be applied. In other
words, how to determine whether the converse-of-a-function theorem can be applied to a particular
function. Part of the answer is given by Gibbons and Hutton in [36]. If the converse of a function
can be written as a fold, the function itself must be an unfold. The necessary and sufficient
conditions for a function to be an unfold given in [36] can thus be used as a test before applying
the converse-of-a function theorem.

We have proved a generalisation of the converse-of-the-function theorem, which inverts a simple
relation to a hylomorphism. The generalised converse-of-a-function theorem extends the original
one in two ways: it inverts partial as well as total functions, and the result can be a hylomorphism
rather than a fold. For all the examples we currently have, it suffices to invert a total function
before fusing a constraint into it. There is thus less need to invert partial functions. On the other
hand, being able to construct hylomorphisms does cover a much wider range of algorithms. It also
allows one to introduce a base functor independent from the input or output types. However, this
extra degree of freedom also means there is less help on how it could be used. We have applied
the theorem to a special case, choosing a particular base functor such that we can express a loop
as a hylomorphism. The author is keen to see more examples for which the general theorem is
necessary.

The theorem is formulated and proved with the concept of inductivity. In [36], on the other
hand, the central concept is the kernel of a function. It would be useful to have a variation
of the converse-of-a-function theorem based on kernels rather than the more obscure concept of
inductivity. This would make an interesting future work.

8.3 Tree Construction and the Spine Representation

Many examples in this thesis involves building trees, and in many of them we did so by introducing
a spine representation. One might complain that it is too inventive a step, if not itself the answer
to the problem. Our defence is that the spine representation is invented to enable traversing the
tree upwards from the left-most tip, which is more a concern of efficiency than an algorithmic
one. Indeed, in Chapter 6 where we discussed the Countdown problem, we attempted to solve the

8.4. MORE ON COMPRESSION AND DECOMPRESSION 115

sub-problem of constructing all oriented trees from a list. Since all trees are needed, being able
to traverse from the bottom does not give one too many advantages and the spine representation
is not used.

Encouragingly, the converse-of-a-function seems to provide just the right tool for this particular
task. It is superior to the top-down approach to construct oriented trees both in clarity and
efficiency.

The actions we perform on a spine (rolling a subtree down the spine and attaching a new
leaf to the left) resemble reducing and shifting in a shift-reduce parser. Indeed, the motivating
application for the invention of the converse-of-a-function theorem was precedence parsing [67]
in the abstract form of constructing heaps. The result was a derivation of Floyd’s algorithm. It
is certainly possible to derive a full shift-reduce parser using the theorem, although it may be a
laborious exercise.

Some earlier algorithms solve problems similar to those in Chapter 4 and 5 without the use
of the spine representation, at least not explicitly. The problem of rebuilding a binary tree from
its traversals has been discussed by, among many, Chen and Udding [24] and van de Snepscheut
[83]. The derivation of Chen and Udding started with converting the recursive characterisation of
prefix and infix to an iterative one. As as result he explicitly introduced a stack, which served the
same purpose of the spine we use. Van de Snepscheut’s algorithm, whose functional counterpart is
presented in Chapter 3, evolves from the recursive definitions directly. The problem of constructing
heaps was also dealt with Schoenmakers [78] and Hinze [41]. Hinze come up with an algorithm
by first performing a tupling transformation, then turning the top-down algorithm bottom-up. In
those algorithms without explicit use of the spine representation, however, one can still see the
result as implicitly storing the spine in the stack.

It has been pointed out by Backhouse that the problem of building trees of minimum height can
be seen as an instance of Knuth’s generalised shortest path problem [51]. The problem addressed
was, given a context-free grammar and a cost function on parse trees, to construct a word and
a parse tree whose cost is minimum. Given a list of numbers, we can construct an ambiguous
grammar whose only word is the list, while the possible parse trees includes all binary trees. The
cost of a parse tree would simply be its height. Knuth’s algorithm can thus be applied to find the
best parse yielding the minimum height. It would be interesting to investigate whether the linear
time algorithm in Chapter 5 is an optimised special case and how they relate to each other.

8.4 More on Compression and Decompression

Compression and decompression are natural candidates of examples of inverse functions. Some
compression methods, such as the run-length encoding or the simple dictionary look-up method,
are rather trivial considering constructing the reverse algorithm from the forward algorithm.
In this thesis we talked about the Burrows-Wheeler transform, which acts as a preprocessor
to compression. The transformed string is not compressed, but is put in a form making the
compression phase more effective. The transform attracted our attention because it is not obvious
at all at the first glance how to perform the inverse transform.

Arithmetic coding makes another interesting case. The most naive version of the encoding
phase takes a string and outputs a rational number in the interval [0..1). It starts with the
interval [0..1) and successively narrows the interval, with respect to a model designed by statistics,
while processing the input string from left to right. Finally a rational number is chosen from the
resulting interval. The decoding phase, on the other hand, takes the rational number and recovers
the string starting from the leftmost character. One can see that the encoding process is a foldl ,

116 CHAPTER 8. CONCLUSION

while decoding unfoldr . It is a pattern not covered in this thesis.
In their recent work, Bird and Stratford [20] showed how to formally specify arithmetic en-

coding and derive from it the decoding algorithm. They took into account the change of model
(which, interestingly, turned out to be necessary to justify further optimisations) and specified
the interval-narrowing process in the form foldl (⊗) e · unfoldr gen. A novel theorem was pre-
sented addressing on how to invert functions of the form. The idea was that the reverse algorithm
simulates each step of the forward algorithm.

Compression of structured data can be more effective if its structure information can be
exploited. In [47, 48], Jansson and Jeuring extended compositional program inversion to polytypic
data. They ensured that an generic operation and its inverse are always constructed in pairs.
Generic, structure-specific compression and decompression were among their examples. It is
largely orthogonal with conventional, bit-stream compressors and they can be used together to
achieve better compression rate.

8.5 Mechanised Approaches to Inverse Computation

This thesis is about program derivation. Consequently, our aim is not, say, to answer which binary
tree yields a particular pair of prefix and infix traversals; rather, we are interested in producing
algorithms that answer the question.

Researchers from the field of partial evaluation took complementary approaches [74, 49, 2]. In
[2], Abramov and Glück attempted at a universal method to inverse computation via an inverse
interpreter. At the core of their approach is a flexible, finite representation of possibly infinite
sets. Here is a sketch how the inverse interpreter works. Initially, the input is unconstrained or
specified by the user. All the paths of the program to invert are systemically traced with the
help of a partial evaluation technique called the universal resolving algorithm. Eventually, the
input/output pairs of the program are stored in a table. The user can then query the system with
questions like “For what numbers n would even n yield True?”, “What trees have breadth-first
traversal [1, 2, 3, 4, 5]?”, or even “What strings do not contain AAA as a substring?”

Many interesting results were obtained by exploiting partial evaluation techniques. Firstly,
after one implements an inverse interpreter as above for some programming language L, one
does not have to repeat the work for another language N . One just needs to write an ordinary
interpreter for N in L, and partial evaluation produces an inverse interpreter for N for free.
Secondly, partially evaluating an inverse interpreter with a given program as input produces a
program that performs the inverted task, which bridges the gap between inverse computation and
inverse compilation. Generalised versions of these results are presented in [1].

They also advocated an interesting view on the necessity of function inversion: there are
mainly three operations we can perform on a function – application, composition and inversion.
We know a lot about the former two, but comparatively little about the last, which justifies more
efforts to be put on the research on function inversion.

8.6 Reversible Computation and Quantum Computing

On a micro level, the interests in reversibility of computation comes from the desire to reduce
heat dissipation and achieve higher density and speed of computing machinery. It is known
in thermodynamics as the Landauer’s Principle [56] that erasure of information has a non-zero
thermodynamics cost, that is, it always generates an increase of the entropy of the universe.
Our ordinary model of computation may involve many-to-one functions that lose information.

8.6. REVERSIBLE COMPUTATION AND QUANTUM COMPUTING 117

The computing task must be realised by means of digital network and, at some point, this loss
of information results in a work-to-heat conversion. It is thus desirable to have a model of
computation where irreversibility is restricted, or at least made more explicit. Many such models
has been proposed, some based on a Turing machine recording its history [57, 9], some based on
logic gates that have extra “garbage lines” [82].

Reversibility is also an interesting topic for quantum computing because quantum computa-
tion, obeying the the microscopic laws of physics, is always reversible. This has given rise to the
question whether it is possible to develop a suitable programming language for quantum comput-
ers, which we know are inherently reversible devices. Efforts in this direction have been reported
in, amongst many others, [85, 86].

118 CHAPTER 8. CONCLUSION

Bibliography

[1] S. M. Abramov and R. Glück. From standard to non-standard semantics by semantics
modifiers. International Journal of Foundations of Computer Science, 12(2):171–211, 2001.

[2] S. M. Abramov and R. Glück. The universal resolving algorithm: inverse computation in a
functional language. Science of Computer Programming, 43:193–299, 2002.

[3] R. J. R. Back and J. von Wright. Combining angels, demons and miracles in program
specifications. Theoretical Computer Science, 100:365–383, 1992.

[4] R. J. R. Back and J. von Wright. Statement inversion and strongest postcondition. Science
of Computer Programming, 20:223–251, 1993.

[5] R. C. Backhouse. Fixed point calculus. In R. C. Backhouse, R. Crole, and J. Gibbons,
editors, Algebraic and Coalgebraic Methods in the Mathematics of Program Construction,
number 2297 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

[6] R. C. Backhouse, P. de Bruin, G. Malcolm, E. Voermans, and J. van der Woude. Rela-
tional catamorphisms. In B. Möller, editor, Proceedings of the IFIP TC2/WG2.1 Working
Conference on Constructing Programs, pages 287–318. Elsevier Science Publishers, 1991.

[7] R. C. Backhouse and P. F. Hoogendijk. Elements of a relational theory of datatypes. In
B. Möller, H. A. Partsch, and S. A. Schuman, editors, Formal Program Development. Proc.
IFIP TC2/WG 2.1 State of the Art Seminar., number 755 in Lecture Notes in Computer
Science, pages 7–42. Springer-Verlag, January 1992.

[8] M. Barr and C. Wells. Category Theory for Computing Science. International Series in
Computer Science. Prentice Hall, 1985.

[9] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and Develop-
ment, 17(6):525–532, 1973.

[10] R. Berghammer and H. Zierer. Relational algebraic semantics of deterministic and nonde-
terministic programs. Theoretical Computer Science, 43:123–147, 1986.

[11] R. S. Bird. Lectures on Constructive Functional Programming. In M. Broy, editor, Con-
structive Methods in Computing Science, number 55 in NATO ASI Series F, pages 151–216.
Springer-Verlag, 1989.

[12] R. S. Bird. A calculus of functions for program derivation. In D. A. Turner, editor, Research
Topics in Functional Programming, University of Texas at Austin Year of Programming
Series, pages 287–308. Addison-Wesley, 1990.

119

120 BIBLIOGRAPHY

[13] R. S. Bird. Generic programming with relations and functors. Journal of Functional Pro-
gramming, 6(1):1–28, 1996.

[14] R. S. Bird. On building trees with minimum height. Journal of Functional Programming,
7(4):441–445, 1997.

[15] R. S. Bird. Introduction to Functional Programming using Haskell. Prentice Hall, 1998.

[16] R. S. Bird. Maximum marking problems. Submitted to Functional Pearl, Journal of Func-
tional Programming, 2000.

[17] R. S. Bird and O. de Moor. Algebra of Programming. International Series in Computer
Science. Prentice Hall, 1997.

[18] R. S. Bird, J. Gibbons, and S.-C. Mu. Algebraic methods for optimization problems. In
R. C. Backhouse, R. Crole, and J. Gibbons, editors, Algebraic and Coalgebraic Methods
in the Mathematics of Program Construction, number 2297 in Lecture Notes in Computer
Science, pages 281–307. Springer-Verlag, January 2002.

[19] R. S. Bird and S.-C. Mu. Inverting the Burrows-Wheeler transform. In R. Hinze, editor,
ACM SIGPLAN 2001 Haskell Workshop, number 59.2 in Electronic Notes in Theoretical
Computer Science, pages 33–40. Elsevier Science Publishers, September 2001.

[20] R. S. Bird and B. Stratford. Arithmetic coding with folds and unfolds. Work in progress.

[21] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, Digital Systems Research Center, 1994. Re-
search Report 124. Available online at http://gatekeeper.dec.com/pub/

DEC/SRC/research-reports/abstracts/src-rr-124.html.

[22] R. M. Burstall and J. Darlington. A transformational system for developing recursive pro-
grams. Journal of the ACM, 24(1):44–67, 1977.

[23] B. K. Chapin and S. Tate. Higher compression from the Burrows-Wheeler transform by
modified sorting. In Data Compression Conference 1998, page 532. IEEE Computer Society
Press, March 1998. (Poster Session).

[24] W. Chen and J. T. Udding. Program inversion: more than fun! Science of Computer
Programming, 15:1–13, 1990.

[25] T.-R. Chuang and B. Goldberg. Real-time deques, multihead Turing machines, and purely
functional programming. In Conference on Functional Programming Languages and Com-
puter Architecture, Copenhagen, Denmark, June 1993. ACM Press.

[26] S. Curtis. A Relational Approach to Optimization Problems. PhD thesis, Oxford University
Computing Laboratory, 1995.

[27] J. Darlington. The structured description of algorithm derivations. In J. W. de Bakker and
J. C. van Vliet, editors, Algorithmic Languages, pages 221–250. Elsevier Science Publishers,
1981.

[28] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

BIBLIOGRAPHY 121

[29] E. W. Dijkstra. Program inversion. Technical Report EWD671, Eindhoven University of
Technology, 1978.

[30] H. Doornbos. Reductivity Arguments and Program Construction. PhD thesis, Eindhoven
University of Technology, 1996.

[31] H. Doornbos and R. C. Backhouse. Induction and recursion on datatypes. In B. Möller,
editor, Mathematics of Program Construction, 3rd International Conference, number 947 in
Lecture Notes in Computer Science, pages 242–256. Springer-Verlag, July 1995.

[32] H. Doornbos and R. C. Backhouse. Reductivity. Science of Computer Programming, 26:217–
236, 1996.

[33] J. Gibbons. An introduction to the Bird-Meertens formalism. New Zealand Formal Program
Development Colloquium Seminar, Hamilton, November 1994.

[34] J. Gibbons. A pointless derivation of radixsort. Journal of Functional Programming, 9(3):339–
346, May 1999.

[35] J. Gibbons. Lecture notes on algebraic and coalgebraic methods for calculating functional
programs. In Estonian Winter School on Computer Science, 1999.

[36] J. Gibbons, G. Hutton, and T. Altenkirch. When is a function a fold or an unfold? In
A. Corradini, M. Lenisa, and U. Montanari, editors, Coalgebraic Methods in Computer
Science, number 44.1 in Electronic Notes in Theoretical Computer Science, April 2001.

[37] J. Gibbons and G. Jones. Linear-time breadth-first tree algorithms: an exercise in the
arithmetic of folds and zips. Technical report, University of Auckland, 1993. University of
Auckland Computer Science Report No. 71, and IFIP Working Group 2.1 working paper 705
WIN-2.

[38] D. Gries. The Science of Programming. Springer Verlag, 1981.

[39] D. Gries and J. L. van de Snepscheut. Inorder traversal of a binary tree and its inversion. In
E. W. Dijkstra, editor, Formal Development of Programs and Proofs, pages 37–42. Addison
Wesley, 1990.

[40] P. G. Harrison and H. Khoshnevisan. On the synthesis of function inverses. Acta Informatica,
29:211–239, 1992.

[41] R. Hinze. Constructing tournament representations: An exercise in pointwise relational pro-
gramming. In E. Boiten and B. Möller, editors, Sixth International Conference on Mathemat-
ics of Program Construction, number 2386 in Lecture Notes in Computer Science, Dagstuhl,
Germany, July 2002. Springer-Verlag.

[42] P. F. Hoogendijk and O. de Moor. Container types categorically. Journal of Functional
Programming, 10(2):191–225, March 2000.

[43] T. C. Hu and A. C. Tucker. Optimal computer search trees and variable-length alphabetical
codes. SIAM Journal on Applied Mathematics, 21(4):514–532, 1971.

122 BIBLIOGRAPHY

[44] Z. Hu, H. Iwasaki, and M. Takeichi. Construction of list homomorphisms via tupling and
fusion. In 21st International Symposium on Mathematical Foundation of Computer Science,
number 1113 in Lecture Notes in Computer Science, pages 407–418, Cracow, September 1996.
Springer-Verlag.

[45] Z. Hu, H. Iwasaki, and M. Takeichi. Formal derivation of parallel program for 2-dimensional
maximum segment sum problem. In The Annual European conference on Parallel Processing
(Euro-Par’96), number 1123 in Lecture Notes in Computer Science, pages 553–562, LIP, ENS
Lyon, France, August 1996. Springer-Verlag.

[46] G. Hutton. The countdown problem. Journal of Functional Programming, 12(6):609–616,
2002.

[47] P. Jansson and J. T. Jeuring. Polytypic compact printing and parsing. In S. D. Swierstra,
editor, Proceedings of the 8th European Symposium on Programming (ESOP ’99), number
1576 in Lecture Notes in Computer Science, pages 273–287. Springer-Verlag, 1999.

[48] P. Jansson and J. T. Jeuring. Polytypic data conversion programs. Science of Computer
Programming, 43(1):35–75, 2002. Technical report Utrecht University UU-CS-2001-34, 2001.

[49] H. Khoshnevisan and K. M. Stephton. InvX: an automatic function inverter. In N. Der-
showitz, editor, Rewriting Techniques and Applications (RTA ’89), number 792 in Lecture
Notes in Computer Science, pages 564–568. Springer-Verlag, 1989.

[50] E. Knapen. Relational Programming, Program Inversion, and the Derivation of Parsing
Algorithms. Master’s thesis, Eindhoven University of Technology, 23 November 1993.

[51] D. E. Knuth. A generalization of Dijkstra’s algorithm. Information Processing Letters,
6(1):1–5, 1977.

[52] D. E. Knuth. Axioms and Hulls. Lecture Notes in Computer Science, no. 606. Springer-
Verlag, 1992.

[53] D. E. Knuth. The Art of Computer Programming Volume 1: Fundamental Algorithms, 3rd
Edition. Addison Wesley, 1997.

[54] D. E. Knuth. The Art of Computer Programming Volume 3: Sorting and Searching, 3rd
Edition. Addison Wesley, 1997.

[55] R. E. Korf. Inversion of applicative programs. In Proceedings of the Seventh Intern. Joint
Conference on Artificial Intelligence (IJCAI-81), pages 1007–1009. William Kaufmann, Inc.,
1981.

[56] R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal of
Research and Development, 5:183–191, 1961.

[57] Y. Lecerf. Machines de Turing réversibles. Récursive insolubilité en n ∈ N de l’équation
u = θn , où θ est un “isomorphisme de codes”. In Comptes Rendus, volume 257, pages
2597–2600, 1963.

[58] G. Malcolm. Algebraic Data Types and Program Transformation. PhD thesis, Groningen
University, The Netherlands, 1990.

BIBLIOGRAPHY 123

[59] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, October 1993.

[60] S. Martello and P. Toth. Knapsack Problems. Wiley, 1990.

[61] L. Meertens. Algorithmics - towards programming as a mathematical activity. In J. W.
de Bakker, M. Hazewinkel, and L. J. K., editors, Mathematics and Computer Science, num-
ber 1 in CWI Monographs, pages 3–42. North-Holland Publishing Co., New York, 1987.

[62] L. Meertens. Constructing a calculus of programs. In J. L. van de Snepscheut, editor,
Mathematics of Program Construction, number 375 in Lecture Notes in Computer Science,
pages 66–90. Springer-Verlag, 1989.

[63] A. Mili. A relational approach to the design of deterministic programs. Acta Informatica,
20:315–328, 1983.

[64] O. de Moor. Categories, Relations and Dynamic Programming. PhD thesis, Oxford University
Computing Laboratory, 1992.

[65] O. de Moor. A generic program for sequential decision processes. In PLILP, pages 1–23,
1995.

[66] O. de Moor and J. Gibbons. Bridging the algorithm gap: A linear-time functional program for
paragraph formatting. Science of Computer Programming, 35(1), September 1999. Revised
version of Technical Report CMS-TR-97-03, School of Computing and Mathematical Sciences,
Oxford Brookes University.

[67] O. de Moor and J. Gibbons. Pointwise relational programming. In Proceedings of Algebraic
Methodology and Software Technology 2000, number 1816 in Lecture Notes in Computer
Science, pages 371–390. Springer-Verlag, May 2000.

[68] S.-C. Mu and R. S. Bird. Inverting functions as folds. In E. Boiten and B. Möller, editors,
Sixth International Conference on Mathematics of Program Construction, number 2386 in
Lecture Notes in Computer Science, pages 209–232. Springer-Verlag, July 2002.

[69] M. Nelson. Data compression with the Burrows-Wheeler transform. Dr. Dobb’s Journal,
September 1996.

[70] C. Okasaki. Simple and efficient purely functional queues and deques. Journal of Functional
Programming, 5(4):583–592, 1995.

[71] C. Okasaki. Breadth-first numbering: lessons from a small exercise in algorithm design. In
Proceedings of the 2000 ACM SIGPLAN International Conference on Functional Program-
ming, pages 131–136. ACM Press, September 2000.

[72] C. Pareja-Flores and J. Á. Velázquez-Iturbide. Synthesis of functions by transformations
and constraints. In Proceedings of the 1997 ACM SIGPLAN International Conference on
Functional Programming, page 317, Amsterdam, The Netherlands, June 1997. ACM Press.

[73] I. Rewitzky. Binary multirelations. In H. de Swart, E. Orlowska, G. Schmidt, and
M. Roubens, editors, Theory and Application of Relational Structures as Knowledge Instru-
ments, number 2929 in Lecture Notes in Computer Science, pages 259–275. Springer-Verlag,
2003.

124 BIBLIOGRAPHY

[74] A. Y. Romanenko. The generation of inverse functions in Refal. In D. Bjorner, A. P. Ershov,
and N. D. Jones, editors, Partial Evaluation and Mixed Computation, pages 422–744. North-
Holland Publishing Co., New York, 1988.

[75] B. J. Ross. Running programs backwards: the logical inversion of imperative computation.
Formal Aspects of Computing Journal, 9:331–348, 1997.

[76] I. Sasano, Z. Hu, M. Takeichi, and M. Ogawa. Make it Practical: A Generic Linear-Time
Algorithm for Solving Maximum-Weightsum Problems. In Proceedings of the 2000 ACM
SIGPLAN International Conference on Functional Programming, pages 137–149. ACM Press,
September 2000.

[77] M. Schindler. A fast block-sorting algorithm for lossless data compression. In Data Com-
pression Conference 1997, page 469. IEEE Computer Society Press, March 1997. (Poster
Session).

[78] B. Schoenmakers. Inorder traversal of a binary heap and its inversion in optimal time and
space. In Mathematics of Program Construction 1992, number 669 in Lecture Notes in
Computer Science, pages 291–301. Springer-Verlag, 1993.

[79] J. Seward. bzip2, 2000. http://sources.redhat.com/bzip2/.

[80] J. Seward. Space-time tradeoffs in the inverse B-W transform. In Data Compression Con-
ference 2001, pages 439–448, 2001.

[81] M. Spivey. . Personal communications.

[82] T. Toffoli. Reversible computing. In J. W. d. Bakker, editor, Automata, Languages and
Programming, pages 632–644. Springer-Verlag, 1980.

[83] J. L. van de Snepscheut. Inversion of a recursive tree traversal. Technical Re-
port JAN 171a, California Institute of Technology, May 1991. Available online at
ftp://ftp.cs.caltech.edu/tr/cs-tr-91-07.ps.Z .

[84] J. von Wright. Program inversion in the refinement calculus. Information Processing Letters,
37:95–100, 1991.

[85] P. Zuliani. Logical reversibility. IBM Journal of Research and Development, 46(6):807–818,
2001. Available online at http://www.research.ibm.com/ journal/rd45-6.html.

[86] P. Zuliani. Quantum Programming. PhD thesis, Oxford University Computing Laboratory,
2001.

Appendix A

Proof of Minor Lemmas

Property (3.1)

The functions assocl and assocr can be written in point-free style as:

assocl = 〈fst · fst , 〈snd · fst , snd〉〉
assocr = 〈〈fst , fst · snd〉, snd · snd〉

For simple S , we have

(R ∩ T) · S = (R · S) ∩ (T · S) ⇐ S simple (A.1)

The proof goes:

assocl ◦

= {by definition}

(〈fst · fst , 〈snd · fst , snd〉〉)◦

= {by definition of fork}

((fst◦ · fst · fst) ∩ (snd◦ · 〈snd · fst , snd〉))◦

= {by definition of fork}

((fst◦ · fst · fst) ∩ (snd◦ · ((fst◦ · snd · fst) ∩ (snd◦ · snd))))◦

= {converse distributes into intersection}

(fst◦ · fst◦ · fst) ∩ (((fst◦ · snd◦ · fst) ∩ (snd◦ · snd)) · snd)

= {(A.1)}

(fst◦ · fst◦ · fst) ∩ (fst◦ · snd◦ · fst · snd) ∩ (snd◦ · snd · snd)

= {(A.1)}

(fst◦ · ((fst◦ · fst) ∩ (snd◦ · fst · snd))) ∩ (snd◦ · snd · snd)

= {definition of fork}

〈(fst◦ · fst) ∩ (snd◦ · fst · snd), snd · snd〉

= {definition of fork}

〈〈fst , fst · snd〉, snd · snd〉

= {definition of assocr}

assocr

125

126 APPENDIX A. PROOF OF MINOR LEMMAS

Property (3.2)

Proof.

cup · 〈ΛR,ΛS 〉

= {definition of cup}

Λ(∈ ·(fst ∪ snd)) · 〈ΛR,ΛS 〉

= {since 〈ΛR,ΛS 〉 is a function}

Λ(∈ ·(fst ∪ snd) · 〈ΛR,ΛS 〉)

= {composition distributes into union}

Λ((∈ ·fst · 〈ΛR,ΛS 〉) ∪ (∈ ·snd · 〈ΛR,ΛS 〉))

= {since ΛR and ΛS are total}

Λ((∈ ·ΛR) ∪ (∈ ·ΛS))

= {cancellation}

Λ(R ∪ S)

2

Lemma 4.2

Proof. The proof makes use of the modular law:

(S · R) ∩ T = S · (R ∩ (S ◦ · T)) ⇐ S simple (A.2)

and the following property concerning forks:

〈R,S 〉◦ · 〈X ,Y 〉 = (R◦ ·X) ∩ (S ◦ · Y) (A.3)

Also note that ((e) ·R)? is equivalent to (Π · (const e)◦ ·R)∩ id . The proof of Lemma 4.2 goes:

〈R, f 〉◦ · 〈const e, id〉

= {by (A.3) }

(R◦ · const e) ∩ f ◦

= {by modular law (A.2)}

((R◦ · const e · f) ∩ id) · f

= {since const e · S = const e ·Π if S is entire}

((R◦ · const e ·Π) ∩ id) · f

= {since C = C ◦ for coreflexives C}

((Π · (const e)◦ ·R) ∩ id) · f

= {since ((e) ·R)? = (Π · (const e)◦ · R) ∩ id}

((e) · R)? · f

2

Property 4.4

Proof. We will prove a stronger property:

flatten (foldl Bin u us) = concat (map flatten (u : us))

127

The proof is a simple induction on the length of us.

Case []:

flatten (foldl Bin u [])

= {definition of foldl}

flatten u

= {definition of concat and map}

concat (map flatten [u])

Case v : us:

flatten (foldl Bin u (v : us))

= {definition of roll}

flatten (foldl Bin (Bin (u, v))us)

= {induction}

concat (map flatten (Bin (u, v) : us))

= {definition of map}

concat (flatten (Bin (u, v)) : map flatten us)

= {definition of flatten}

concat (flatten u ++ flattenv : map flatten us)

= {definition of concat and map, ++ associative}

concat (map flatten (u : v : us))

2

Property 4.8

S ·X ⊆ Y

⇒ {since composition is monotonic}

S ◦ · S · X ⊆ S ◦ · Y

⇒ {since dom S ⊆ S ◦ · S}

dom S · X ⊆ S ◦ ·Y

⇒ {since composition is monotonic}

S · dom S ·X ⊆ S · S ◦ ·Y

⇒ {since S · dom S = S and S · S ◦ ⊆ id}

S ·X ⊆ Y

Property 5.12

The aim is to prove the inclusion:

setify · TR ⊆ PR · setify

128 APPENDIX A. PROOF OF MINOR LEMMAS

for some type T. We will make use of the point-free definition of P:

PR = ∈\(R· ∈) ∩ (3 ·R)/3

Furthermore, setify :: TA→ Set A for any T with membership can be defined by:

setify = ΛδT

The proof goes:

setify · TR ⊆ PR · setify

≡ {definition of P, since setify is a function}

setify · TR ⊆ (∈\(R· ∈) · setify) ∩ ((3 ·R)/3 · setify)

≡ {meet}

setify · TR ⊆ ∈\(R· ∈) · setify ∧
setify · TR ⊆ (3 ·R)/3 · setify

The first premise can be proved by:

setify · TR ⊆ ∈\(R· ∈) · setify

≡ {since setify is a function, division}

setify · TR ⊆ ∈\(R· ∈ ·setify)

≡ {division}

∈ ·setify · TR ⊆ R· ∈ ·setify

≡ {definition of setify}

δT · TR ⊆ R · δT

≡ {by (4.7)}

true

The second premise is proved by:

setify · TR ⊆ (3 ·R)/3 · setify

≡ {since setify is a function, division}

setify · TR ⊆ (3 ·R)/(∈ ·setify)◦

≡ {definition of setify}

δT · TR ⊆ (3 ·R)/δ◦
T

≡ {division}

δT · TR · δ◦
T
⊆3 ·R

≡ {since ΛT · T ◦ ⊆3}

true

Property 5.19

The aim is to prove:

thin Q · union · P(thin Q) ⊆ thin Q · union

129

The function union can be defined as union = E ∈= Λ(∈ · ∈). We will also make use of the
point-free definition of the relator P:

PR = ∈\(R· ∈) ∩ (3 ·R)/3

and the universal property of thin Q :

X ⊆ thin Q · ΛS ≡ ∈ ·X ⊆ S ∧ X · S ◦ ⊆3 ·Q

According to the universal property, (5.19) follows from:

∈ ·thin Q · union · P(thin Q) ⊆ ∈ · ∈

thin Q · union · P(thin Q)· 3 · 3 ⊆ 3 ·Q

The first premise is proved by:

∈ ·thin Q · union · P(thin Q)

⊆ {since thin Q ⊆ ∈\∈, division}

∈ ·union · P(thin Q)

= {since union = Λ(∈ · ∈), power transpose}

∈ · ∈ ·P(thin Q)

⊆ {since P(thin Q) ⊆ ∈\(thin Q · ∈), division}

∈ ·thin Q · ∈

⊆ {since thin Q ⊆ ∈\∈, division}

∈ · ∈

while the second is proved by:

thin Q · union · P(thin Q)· 3 · 3

⊆ {since P(thin Q) ⊆ (3 ·thin Q)/3,division}

thin Q · union· 3 ·thin Q · 3

⊆ {since thin Q ⊆ (3 ·Q)/3, division}

thin Q · union· 3 · 3 ·Q

⊆ {since union = Λ(∈ · ∈) and ΛR · R◦ ⊆3}

thin Q · 3 ·Q

⊆ {since thin Q ⊆ (3 ·Q)/3, division}

3 ·Q ·Q

⊆ {assumption: Q transitive}

3 ·Q

Lemma 7.1

To save space, we abbreviate apply p to π. Also, we adopt the good old squiggle notation writing
map f as f ∗ and zip x y as xΥy .

We will prove the property for iterate, that is,

iterate π x = fst∗
∗ · iterate (plx · snd)∗ • xΥ[0..m]

130 APPENDIX A. PROOF OF MINOR LEMMAS

where m = length x and plx i = π (xΥ[0..m])!!i . The lemma then follows from iter1 = tail ·iterate.
The proof proceeds by using the approxmiation lemma and the following rule:

map h · iterate f = iterate g · h ⇐ h · f = g · h (A.4)

The key property, however, is the following equality

pl∗y (π ns) = (id × π) (pl ∗
π y ns) (A.5)

We reason:

approx (n + 1) (fst∗∗ · iterate (plx · snd)∗ • xΥ[0..m])

= {definition of iterate and map}

x : approx n (fst∗∗ · iterate (plx · snd)∗ • pl∗ (snd∗ (xΥ[0..m])))

= {since snd∗ (xΥy) = y}

x : approx n (fst∗∗ · iterate (pl · snd)∗ • pl ∗x [0..m])

= {definition of plx}

x : approx n (fst∗∗ · iterate (plx · snd)∗ • π(xΥ[0..m]))

= {higher-order naturality: η (xΥy) = η xΥη y}

x : approx n (fst∗∗ · iterate (plx · snd)∗ • π xΥπ [0..m])

= {by (A.5) and (A.4)}

x : approx n (fst∗∗ · (id × π)∗ · iterate (plπ x · snd)∗ • π xΥ[0..m])

= {since fst∗ · (id × f) = fst∗}

x : approx n (fst∗∗ · iterate (plπ x · snd)∗ • π xΥ[0..m])

= {induction}

x : approx n (iterate π (π x))

= {definition of approx and iterate}

approx (n + 1) (iterate π x)

Appendix B

Proof of the Generic Greedy
Theorem

To prove the mutual greedy theorem, we will need the following lemma

Lemma B.1 Let G be a regular functor, we have

min GR · ΛG∈ = G(min R)

Proof. We reason

min GR · ΛG∈

= {definition of min}

(∈ ∩(GR/3)) · ΛG∈

= {ΛG∈ function}

(∈ ·ΛG∈) ∩ ((GR/3) · ΛG∈)

= {since R/S · f = R/f ◦ · S , power transpose}

G∈ ∩(GR/G3)

= {see below}

G(∈ ∩(R/3))

= {definition of min}

min GR

The property used in the penultimate step:

G((R/S) ∩ S ◦) = (GR/GS) ∩ GS ◦

is proved as Lemma 8.3.1.2 of [64].

2

Now we prove the theorem itself.

Proof. We reason:

([(G(min R) · h · wrap)])
F
⊆ G(min R) · ([(h · ΛFG∈)])

F

⇐ {fold fusion}

131

132 APPENDIX B. PROOF OF THE GENERIC GREEDY THEOREM

G(min R) · h · wrap · FG(min R) ⊆ G(min R) · h · ΛFG∈

≡ {Lemma B.1}

min GR · ΛG∈ ·h · wrap · FG(min R) ⊆ min GR · ΛG∈ ·h · ΛFG∈

≡ {since h · ΛFG∈ is a function}

min GR · ΛG∈ ·h · wrap · FG(min R) ⊆ min GR · Λ(G∈ ·h · ΛFG∈)

≡ {universal property of min}

min GR · ΛG∈ ·h · wrap · FG(min R) ⊆ G∈ ·h · ΛFG∈
∧

min GR · ΛG∈ ·h · wrap · FG(min R) · (G∈ ·h · ΛFG∈)◦ ⊆ GR

The first of the two premises can be proved by:

min GR · ΛG∈ ·h · wrap · FG(min R)

⊆ {since min GR ⊆∈}

G∈ ·h · wrap · FG∈

= {since f =∈ ·Λf }

G∈ ·h · wrap· ∈ ·ΛFG∈

⊆ {since wrap· ∈⊆ subset}

G∈ ·h · subset · ΛFG∈

= {by (5.25)}

G(∈ ·subset) · h · ΛFG∈

⊆ {since subset = ∈\∈}

G∈ ·h · ΛFG∈

and the second by:

min GR · ΛG∈ ·h · wrap · FG(min R) · (G∈ ·h · ΛFG∈)◦

⊆ {claim : G∈ ·h · ΛFG∈ ·FG(min R)◦ ⊆ G(R◦· ∈) · h · wrap}

min GR · ΛG∈ ·h · wrap · wrap◦ · h◦ · G(3 ·R)

⊆ {wrap and h functions}

min GR · ΛG ∈ ·G(3 ·R)

⊆ {min GR ⊆ GR/3}

(GR/3) · ΛG∈ ·G(3 ·R)

= {since R/S · f = R/f ◦ · S}

(GR/G3) · G(3 ·R)

⊆ {since (R/S) · S ⊆ R}

GR · GR

⊆ {R preorder}

GR

The claim can be proved below.

G∈ ·h · ΛFG∈ ·FG(min R)◦

133

⊆ {since FG∈ ·FG(min R)◦ ⊆ FGR◦ and R · S ⊆ T ⇒ ΛR · S ⊆ subset · ΛT}

G∈ ·h · subset · ΛFGR◦

= {by (5.25)}

G(∈ ·subset) · h · ΛFGR◦

⊆ {since subset = ∈\∈}

G∈ ·h · ΛFGR◦

= {since ΛR = ER · wrap}

G∈ ·h · EFGR◦ · wrap

⊆ {by (5.26)}

G(∈ ·ER◦) · h · wrap

= {power functor}

G(R◦· ∈) · h · wrap

2

134 APPENDIX B. PROOF OF THE GENERIC GREEDY THEOREM

Appendix C

Missing Proofs in Chapter 6

C.1 An Online Algorithm for Binary Closure

We start with the following definition for θR:

θR(P ,Q) = µ(X 7→ Q ∪ (R · (〈X ,X 〉 ∪ 〈X ,P〉 ∪ 〈P ,X 〉) − P))

Substituting Q for ∅, we have θR(P , ∅) = ∅. For the non-empty case we derive:

θR(P ,Q)

= {definition}

µ(X : Q ∪ (R · prods(X ,P) − P))

= {since X ∪ Y = X ∪ (Y − X)}

µ(X : Q ∪ (R · prods(X ,P) − (P ∪Q)))

= {rolling rule, letting f = (Q∪) and g X = R · prods(X ,P) − (P ∪Q)}

Q ∪ µ(X : R · prods(Q ∪ X ,P)− (P ∪Q))

= {claim in Section 6.3.3: prods(Q ∪ X ,P) = prods(Q ,P) ∪ prods(X ,P ∪Q), see below}

Q ∪ µ(X : R · ((prods(Q ,P) ∪ prods(X ,P ∪Q))− (P ∪Q))

= {since composition and subtraction distributes into union}

Q ∪ µ(X : (R · prods(Q ,P) − (P ∪Q)) ∪ (R · prods(X ,P ∪Q)− (P ∪Q)))

= {definition}

Q ∪ θR(P ∪Q ,R · prods(Q ,P) − (P ∪Q))

We thus come up with this definition for θR:

θR(P , ∅) = ∅
θR(P ,Q) = Q ∪ θ(P ∪Q ,R · (〈P ,Q〉 ∪ 〈Q ,P〉 ∪ 〈Q ,Q〉)− (P ∪Q))

C.2 Proof of Theorem 6.1

Our task is to refine thin Q ·close f = thin Q ·stop · (step f)∗. Introducing ∆R = R×R for brevity,
we have thin Q · stop = stop ·∆(thin Q), so we can move thin Q past stop. For the closure we use
the rule

S ∗ ·R ⊆ R · T ∗ ⇐ S ·R ⊆ R · T

135

136 APPENDIX C. MISSING PROOFS IN CHAPTER 6

For our problem we aim to show

∆(thin Q) · step f ·∆thin ⊆ ∆(thin Q) · step f (C.1)

That is, we have to somehow push thin Q through step.
The crucial part of the proof, however, is to show that

Λ(R · (∈ × ∈)) · (thin Q × thin Q) ⊆ thin Q · Λ(R · (∈ × ∈))

The proof is typical of that involving thin. Given the definition thin Q = ∈\∈ ∩ (3 ·Q)/3, the
above inclusion is equivalent to:

∈ ·Λ(R · (∈ × ∈)) · (thin Q × thin Q) ⊆ R · (∈ × ∈)

Λ(R · (∈ × ∈)) · (thin Q × thin Q) · (3 × 3) ·R◦ ⊆ 3 ·Q

The first inclusion can be proved by:

∈ ·Λ(R · (∈ × ∈)) · (thin Q × thin Q)

= {breadth}

R · (∈ × ∈) · (thin Q × thin Q)

⊆ {functor, definition of thin, division}

R · (∈ × ∈)

while the second can be proved by:

Λ(R · (∈ × ∈)) · (thin Q × thin Q) · (3 × 3) · R◦

⊆ {functor, definition of thin, division}

Λ(R · (∈ × ∈)) · (3 ·Q× 3 ·Q) · R◦

⊆ {monotonicity: R · (Q◦ ×Q◦) ⊆ Q◦ · R}

Λ(R · (∈ × ∈)) · (3 × 3) ·R◦ ·Q

⊆ {since Λf · f ◦ ⊆3}

3 ·Q

The rest of the proof is just laboriously but boring pushing thin Q through step. Observe that
step can be written in point-free notation as

step f = step′ f · (id × nonempty?)
step′ f = 〈cup, sub · 〈prods f , cup〉〉
prods f = cup · 〈f , cup · 〈f · swap, f · 〈snd , snd〉〉〉

Abbreviating thin Q to thin, we calculate:

∆thin · step′ f

= {definition}

∆thin · 〈cup, sub · 〈prods f , cup〉〉

= {products}

〈thin · cup, thin · sub · 〈prods f , cup〉〉

= {since thin · cup = thin · cup ·∆thin and thin · sub = thin · sub ·∆thin}

〈thin · cup ·∆thin, thin · sub ·∆thin · 〈prods f , cup〉〉

C.3. BUILDING ORIENTED TREES BY A FOLD 137

= {products}

∆thin · 〈cup ·∆thin, sub · 〈thin · prods f , thin · cup〉〉

⊇ {claim: prods f ·∆thin ⊆ thin · prods f }

∆thin · 〈cup ·∆thin, sub · 〈prods f ·∆ thin, thin · cup〉〉

⊇ {since cup ·∆thin ⊆ thin · cup}

∆thin · 〈cup ·∆thin, sub · 〈prods f ·∆ thin, cup ·∆thin〉〉

⊇ {using 〈R,S 〉 · T ⊆ 〈R · T ,S · T 〉 twice}

∆thin · 〈cup, sub · 〈prods f , cup〉〉 ·∆thin

= {definition}

∆thin · step′ f ·∆thin

And since ∆thin · (id ×nonempty?) = (id ×nonempty?) ·∆thin, we have shown that (C.1) holds.
The missing claim is proved below:

prods f ·∆thin

= {definition}

cup · 〈f , cup · 〈f · swap, f · 〈snd , snd〉〉〉 ·∆thin

⊆ {using 〈R,S 〉 · T ⊆ 〈R · T ,S · T 〉 three times}

cup · 〈f ·∆thin, cup · 〈f · swap ·∆thin, f · 〈snd ·∆thin, snd ·∆thin〉〉〉

= {since swap ·∆thin = ∆thin · swap

and snd ·∆thin = thin · snd , products}

cup · 〈f ·∆thin, cup · 〈f ·∆thin · swap, f ·∆thin · 〈snd , snd〉〉〉

⊆ {since f ·∆thin ⊆ thin · f }

cup · 〈thin · f , cup · 〈thin · f · swap, thin · f · 〈snd , snd〉〉〉

⊆ {products and cup ·∆thin ⊆ thin · cup, twice}

thin · cup · 〈f , cup · 〈f · swap, f · 〈snd , snd〉〉〉

= {definition}

thin · prods f

The condition is established.

C.3 Building Oriented Trees by a Fold

The definition of add can also be written as a least fixed-point:

add = µ(X : bin · (tip × id) ∪ bin · (X × id) · assocl · (id × bin◦))

where assocl (a, (x , y)) = ((a, x), y). According to the converse-of-a-function theorem, in order to
show that:

basisT ◦ = foldBag add tip

for some add , we need to show:

basisT · tip ⊆ bwrap

basisT · add ⊆ bcons · (id × basisT)

138 APPENDIX C. MISSING PROOFS IN CHAPTER 6

where bcons is the counterparts of cons on bags. The condition on tip is obviously true. For the
second condition, we reason:

basisT · add ⊆ bcons · (id × basisT)

≡ {division}

add ⊆ basisT\(bcons · (id × basisT))

⇐ {least-fixed point, let Y = basisT\(bcons · (id × basisT))}

bin · (tip × id) ∪ bin · (Y × id) · assocl · (id × bin◦) ⊆ Y

≡ {union}

bin · (tip × id) ⊆ Y ∧ bin · (Y × id) · assocl · (id × bin◦) ⊆ Y

≡ {division}

basisT · bin · (tip × id) ⊆ bcons · (id × basisT)
∧ basisT · bin · (Y × id) · assocl · (id × bin◦) ⊆ bcons · (id × basisT)

The first of the premises can be proved by:

basisT · bin · (tip × id)

= {definition of basisT}

bcup · (basisT × basisT) · (tip × id)

= {product, definition of basisT}

bcup · (bWrap × id) · (id × basisT)

= {since bcup · (bwrap × id) = bcons}

bcons · (id × basisT)

To prove the second premise we reason:

basisT · bin · (Y × id) · assocl · (id × bin◦)

= {definition of basisT , product}

bcup · (basisT ·Y × basisT) · assocl · (id × bin◦)

⊆ {definition of Y }

bcup · (bcons · (id × basisT)× basisT) · assocl · (id × bin◦)

= {since ((id × f)× f) · assocl = assocl · (id × (f × f))}

bcup · (bcons × id) · assocl · (id × (basisT × basisT) · bin◦)

= {since bcup · (bcons × id) = bcons · (id × bcup) · assocl ◦}

bcons · (id × bcup) · assocl ◦ · assocl · (id × (basisT × basisT) · bin◦)

= {since assocl ◦ · assocl = id , product}

bcons · (id × bcup · (basisT × basisT) · bin◦)

= {definition of basisT}

bcons · (id × basisT)

Certainly add and tip are jointly surjective, as any non-tip tree can be generated by add .
We still need to prove that add does satisfy the healthiness condition to be an argument to

foldBag : that add a ·add b = add b ·add a for all a and b. For the case the tree is a tip, we reason:

add a (add b (tip c))

C.3. BUILDING ORIENTED TREES BY A FOLD 139

= {definition of add}

add a (bin (tip b ⊗ tip c))

= {definition of add and bin}

bin (tip a ⊗ bin (tip b ⊗ tip c))
2 bin (bin (tip a ⊗ tip b)⊗ tip c)
2 bin (bin tip b ⊗ (tip a ⊗ tip c))

= {since x ⊗ y = y ⊗ x}

bin (tip a ⊗ bin (tip b ⊗ tip c))
2 bin (bin (tip b ⊗ tip a)⊗ tip c)
2 bin (bin tip b ⊗ (tip a ⊗ tip c))

= {definition of add and bin}

add b (bin (tip a ⊗ tip c))

= {definition of add}

add b (add a (tip c))

For the case the tree is a non-tip:

add a (add b (bin x y))

= {definition of add and bin}

add a (bin (tip b ⊗ bin (x ⊗ y))
2bin (add b x ⊗ y)
2bin (x ⊗ add b y))

= {definition of add and bin}

bin (tip a ⊗ bin (tip b ⊗ bin (x ⊗ y)))
2 bin (bin (tip a ⊗ tip b)⊗ bin (x ⊗ y))
2 bin (tip b ⊗ add a (bin (x ⊗ y)))
2 bin (tip a ⊗ bin (add b x ⊗ y))
2 bin (add a (add b x)⊗ y)
2 bin (add b x ⊗ add a y)
2 bin (tip a ⊗ bin (x ⊗ add b y))
2 bin (add a x ⊗ add b y)
2 bin (x ⊗ add a (add b y))

= {expand add in the third case}

bin (tip a ⊗ bin (tip b ⊗ bin (x ⊗ y)))
2 bin (bin (tip a ⊗ tip b)⊗ bin (x ⊗ y))
2 bin (tip b ⊗ bin (tip a ⊗ bin (x ⊗ y)))
2 bin (tip b ⊗ bin (add a x ⊗ y))
2 bin (tip b ⊗ bin (x ⊗ add a y))
2 bin (tip a ⊗ bin (add b x ⊗ y))
2 bin (add a (add b x)⊗ y)
2 bin (add b x ⊗ add a y)
2 bin (tip a ⊗ bin (x ⊗ add b y))
2 bin (add a x ⊗ add b y)
2 bin (x ⊗ add a (add b y))

140 APPENDIX C. MISSING PROOFS IN CHAPTER 6

If we expand add b (add a (bin x y)), we get another 11 possibilities.

bin (tip b ⊗ bin (tip a ⊗ bin (x ⊗ y)))

2 bin (bin (tip b ⊗ tip a)⊗ bin (x ⊗ y))

2 bin (tip a ⊗ bin (tip b ⊗ bin (x ⊗ y)))

2 bin (tip a ⊗ bin (add b x ⊗ y))

2 bin (tip a ⊗ bin (x ⊗ add b y))

2 bin (tip b ⊗ bin (add a x ⊗ y))

2 bin (add b (add a x)⊗ y)

2 bin (add a x ⊗ add b y)

2 bin (tip b ⊗ bin (x ⊗ add a y))

2 bin (add b x ⊗ add a y)

2 bin (x ⊗ add b (add a y))

By the community of ⊗ and the inductive premise we have established, we can check through
each of them and conclude that they are equivalent.

!

"

#

$

%

&

'

(

)

*

+

A good computer needs no aid from machines.

Lau Tzu, Tao Te Ching

