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Abstract

Alloy is an extension of first-order logic for modelling software systems. Alloy
has a fully automatic analyser which attempts to refute Alloy formulae by searching
for counterexamples within a finite scope. However, failure to find a counterexample
does not prove the formula correct. A system is data-independent in a type T if the
only operations allowed on variables of type T are input, output, assignment and
equality testing. This paper gives a theorem in a language closely related to Alloy,
which applies to models of data-independent systems. The theorem calculates for
such types T a threshold size. If no counterexamples are found at the threshold, the
theorem guarantees that increasing the scope on T beyond the threshold still yields
no counterexamples, and can complete the analysis for data-independent systems.

1



1 Introduction

Computer systems play an increasingly significant role in our prosperity, yet at the same
time they are becoming increasingly large and complex, and prone to failure. Failure of
computer systems can cause a significant economic impact and even loss of life.

Correctness of such systems is often verified informally and much emphasis is placed on
testing. An alternative approach to verifying correctness, called formal methods is based
on precise and rigorous mathematical reasoning. Such methods can give much greater
confidence in the correctness of a design.

The formal methods approach to software engineering proceeds with precise mathematical
models of both how the system should behave (specification) and how the system is de-
signed (implementation). Verifying the implementation meets the specification becomes
a question which can be argued beyond mathematical doubt.

Unfortunately a naive formal methods approach generally requires a high degree of ex-
pensive labour to construct the necessary mathematical proofs. Therefore a number of
software tools have been, and continue to be, developed to automate the formal methods
approach. Research (and use of) such tools falls under the banner of Computer-aided
verification.

In particular this transfer thesis 1 looks at a technique known as model finding. Model
finders are programs which attempt to refute a logic formula by searching for a model of
the formula’s negation. Such a model corresponds to a failed test case of the system in
question, and model finding can be thought of as exhaustive, automated testing. Being
completely automatic, model finders can reduce the labour costs of the formal methods
approach significantly. However, to test exhaustively the system in question in a finite
time, one has to supply the model finder with a scope, which tells the model finder the size
of base types to use in its search. This has the effect of approximating infinite systems
by finite ones. If no counterexamples are found in the finite approximation, this gives an
indication that the infinite system and larger finite systems are correct, but no guarantee.
Model finders can not guarantee correctness of infinite systems.

The problem to be addressed in the thesis proposed herein is the extension of model find-
ing technique for guaranteeing correctness from finite systems, to systems where infinite
data independent types are also allowed. Informally and operationally speaking, a system
is data independent in a type T if it can only input, output, store and perform equality
tests on the values of T . No other operations are permitted. We will look at this problem
in the particular context of the Z-like language Alloy [Jac02a] and its associated model
finder.

1This technical report was originally the author’s transfer thesis under the title: Towards a Small
Model Theorem for Data Independent Systems in Alloy.
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1.1 Overview

In section 2 we look in more depth at related work in computer-aided verification. In the
following section, we look at a motivating example and show informally how the small
model theorem would work here. In section 4 we prove a small model theorem on a lan-
guage related to Alloy. Although this is a significant step towards solving the proposed
thesis problem, there are minor differences between this language and the language re-
quired to solve the thesis problem. Therefore we conclude by outlining the further work
required to solve the problem, and other potential directions this research could then
take.
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2 Related Work

In this section we introduce the related work from the area of Computer-aided verification,
and the Alloy language.

Recall that the formal methods approach to software engineering proceeds with precise
mathematical models of both how the system should behave (specification) and how the
system is designed (implementation).

2.1 Theorem Proving

With theorem proving the specification and implementation are represented in formalisms
which allow the refinement of the specification by the implementation to be represented
as a logic formula; then axioms and inference rules are used to prove the formula. For the
size and complexity of today’s systems often such proofs can be long and complex. But
unlike proof in mathematics the usual social process of review by independent peers is not
available or too expensive [DLP79]. Therefore a number of proof tools have been created
to check proofs e.g. PVS [ORS92], HOL [GM93]. Moreover, theorem proving tools can
make parts of the proof construction automatic, although it can be shown impossible to
completely automate the process — this follows trivially from the Halting Problem.

2.1.1 Advantages and Disadvantages

Theorem proving is a very general approach and can be applied to a wide variety of
systems, in particular infinite-state and parameterised systems. [See Sec. 2.4]. The
main disadvantage with theorem proving is that a high degree of highly skilled labour is
required, even when proof tools are used.

2.2 Model Checking

This is a brute-force approach to verifying correctness, where a complete state-transition
graph of the implementation is constructed and automatically checked state by state
that is satisfies its specification. SPIN [Hol90] and FDR [FSEL92] are model checkers,
for example.

2.2.1 Advantages and Disadvantages

The main advantage with this approach is that it is completely automatic. Also, if an
implementation does not meet its specification it is possible to generate a counterexample
showing an execution path that leads to the error which can help in fixing the problem.
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However, one can construct a complete state-transition graph only when the system is
finite state. Furthermore, some systems suffer from state-explosion, which means although
the system is finite-state, the size of its transition graph is so large as to be practically
uncheckable using a reasonable amount of time and computational resource.

2.3 Model Finding

Like theorem proving, the refinement of the specification by the implementation is first
represented as a logic formula. An attempt to refute the logic formula is made by auto-
matically searching for a counterexample.

Model finding is similar to model checking since both methods are fully automated.
However, whereas model checkers take a specification, usually in the form of a temporal
logic formula, and check whether an implementation is a model of it, model-finders take
a logic formula and attempt to find a model of it.

2.3.1 Advantages and Disadvantages

The advantages and disadvantages of model finding are very similar to model checking.
In order to keep the search for a counterexample bounded it is necessary to give a scope
to the model finder. For each type used in the formula, the scope bounds the number of
elements used to instantiate the type in the counterexample. Therefore it is only possible
to check finite-state systems completely.

2.4 Infinite and Parameterised Verification

In the context of model checking a system is finite-state if and only if its state-transition
graph has a finite number of nodes. Complete model checking of general infinite-state
systems is not possible in a finite amount of time. A related problem to the verification
of infinite state systems is the verification of parametrised systems where the value of a
parameter ranges over an infinite range. e.g. checking deadlock freedom of a token ring
network for an arbitrary number of nodes in the network.

In the context of model finding, infinite and infinitely parameterised systems are ones
which require checks where it not possible to give a priori bounds on the size of types.
This is clearly an analogous concept since a system with an infinite number of states
can not be represented by a finite number of variables declared using finite constructs on
finite types, whereas a system with a finite number of states can.

It follows immediately from the Halting Problem that is it impossible to build a model
checker or finder which can in general deal with infinite-state systems or the general
parameterised verification problem. Nevertheless an active research area is finding special
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cases of these problems which can be dealt with. These techniques can not only reduce
the state space from infinite to finite, but for some problems reduce state-explosion.

2.4.1 Data Independence

One special case is called data independence [Wol86] [LN00]. Informally, a system is data
independent with respect to a type T if it can only input, output and store values of this
type as well as copy them within its variables. The control-flow of such a system is not
affected by different values; changing the input data will not affect behaviour except for
the corresponding output data. Because the control-flow is independent of the type used
this can be exploited in the verification of such systems.

These strict conditions on data-independence can often be relaxed to allow equality testing
between variables of the type, and uninterpreted constants and finite range functions on
the type as well, whilst still maintaining decidability results.

Data independent systems are very common, for example a communication protocol is
usually data-independent in the type communicated. Memory or database systems may
be data-independent with respect to the type of values which they store as well as the
type of address.

One way to check data-independent systems is through finite-instantiation methods.
Threshold theorems can be developed which show that once a system is verified for
all sizes of its data-independent type up to a particular value, then the system is correct
for all non-empty instantiation of the type [Wol86].

2.5 Alloy and the Alloy Analyser

The Alloy [Jac02a] [Jac02b] modelling language consists of first order logic with sets and
relations. It is roughly a subset of the Z notation [Spi92], and also has similarities with
UML’s OCL [JRB99][WK99]. Alloy is designed to bring to Z-style specification the kind
of automation offered by model checkers.

The Alloy Analyser is a model finder for the Alloy language. The Analyser works by first
translating formulae in the Alloy Language into a smaller Alloy Kernel language [Jac02a].
Because the Analyser is given a finite scope (Sec. 2.3.1), it can transform an Alloy Kernel
language formula into a boolean formula, such that the boolean formula has a model
exactly when the Alloy Kernel language formula (and hence the original formula) has a
model within the given scope [Jac00]. To test the boolean formula, the Analyser wraps
off-the-shelf SAT solvers, such as SATO [Zha97] or RelSAT [BS97].
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2.6 MACE and other Model Finders

Other model finders such as MACE [McC] and FINDER [Sla94] are oriented toward
solving problems in mathematics e.g. finite algebras, rather than software engineering.
These tools find models in languages which are untyped; they take as their scope a single
natural number which determines the size of domain to search. Unfortunately, the theory
we will develop does not apply to such languages except for a trivial class of problems.

2.7 Small Model Theorems

A small model theorem is a generic name for a theorem which proves that in some language
a formula has a model only if it has a model below a particular threshold size. The notion
of size in our case is scope, which we define formally in Sec. 4.29. In [Jac02a], Jackson
asks if a small model theorem could be found for Alloy:

By its very nature, the analysis is not complete: a failure to find a coun-
terexample does not prove a theorem correct. It may be possible to perform a
static analysis that establishes a ‘small model theorem’. If one can show that
a formula has a model only if it has a model within a given scope, an analysis
within that scope would constitute a proof. Because Alloy is based on tradi-
tional logic and set notions, it may be possible to develop such a technique
by applying known results from model theory.

Clearly the notion of small model theorem and the finite instantiation method for data
independence are related, even though the term data independence is used in the con-
text of model checking. It seems reasonable to expect the existence of a small model
theorem which applies to a general class of systems: those viewed as data-independent
from the model checking perspective. The proceeding theory is inspired by this intuition,
and aspects of it have similarities with data independence theory in model checking, in
particular [LN00]. Although our approach is model theoretic, we are not aware of known
results from model theory which could be directly applied.
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3 Example and Motivation

In this section we give an example problem and informally develop a small model theorem
for this particular example. The approach used can be applied to a general class of
problems though, and so we formally develop a general small model theorem in the
following section. The example is intended to illustrate the thesis problem proposed in
Sec. 1, and provide intuition for the more general theorem.

3.1 Birthday Book

The example is the Birthday Book from [Spi92]:

[NAME ,DATE ]

BirthdayBook
known : P NAME
birthday : NAME 7→ DATE

known = dom(birthday)

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

birthday ′ = birthday ⊕ {name? 7→ date?}

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

date! = birthday(name?)

DeleteBirthday
∆BirthdayBook
name? : NAME

birthday ′ = {name?} −C birthday
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Let us suppose we want to check the following assertions which we will refer to as
AddWorks and DelIsUndo respectively:

AddBirthday o
9 FindBirthday ⇒ date? = date!

AddBirthday o
9 DeleteBirthday ⇒ ΞBirthdayBook

Jackson translates this into the Alloy language as follows:

module samples/BirthdayBook

sig Name {}

sig Date {}

sig BirthdayBook {known: set Name, birthday: known ->! Date}

fun AddBirthday (bb, bb’: BirthdayBook, n: Name, d: Date) {

bb’.birthday = bb.birthday ++ (n->d)

}

fun DelBirthday (bb, bb’: BirthdayBook, n: Name) {

bb’.birthday = bb.birthday - (n->Date)

}

fun FindBirthday (bb: BirthdayBook, n: Name, d: option Date) {

d = bb.birthday[n]

}

assert AddWorks {

all bb, bb’: BirthdayBook, n: Name, d: Date, d’: option Date |

AddBirthday (bb,bb’,n,d) && FindBirthday (bb’,n,d’) => d = d’

}

assert DelIsUndo {

all bb1,bb2,bb3: BirthdayBook, n: Name, d: Date|

AddBirthday (bb1,bb2,n,d) && DelBirthday (bb2,bb3,n)

=> bb1.birthday = bb3.birthday && bb1.known=bb2.known

}

check AddWorks for 3 but 2 BirthdayBook

check DelIsUndo for 3 but 2 BirthdayBook

The statement: check DelIsUndo for 3 but 2 BirthdayBook instructs the Alloy Analyser
to look for a counterexample to the DelIsUndo assertion in which the carrier set size of
Name and Date are 3 but BirthdayBook is 2. This produces the following counterexample:

BirthdayBook = {BirthdayBook_0, BirthdayBook_1}

Date = {Date_0, Date_1, Date_2}

Name = {Name_0, Name_1, Name_2}
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known = {BirthdayBook_0 -> {},

BirthdayBook_1 -> {Name_2} }

birthday = {BirthdayBook_0 -> {},

BirthdayBook_1 -> {Name_2 -> Date_2} }

bb1@1 = BirthdayBook_1

bb2@2 = BirthdayBook_1

bb3@3 = BirthdayBook_0

n@4 = Name_2

d@5 = Date_2

We know the DelIsUndo assertion is false.

The statement check AddWorks for 3 but 2 BirthdayBook similarly instructs the Alloy
Analyser to look for a counterexample to the AddWorks assertion. None is found so
we don’t know whether the assertion is true or false. Could we find a counterexample
if we increase the scope? At first we ask the following question: Keeping the size of
BirthdayBook at 2 and Name at 3 could we find a counterexample to the AddWorks
assertion by increasing the size of Date, and by how much?

Returning to the the DelIsUndo counterexample for a moment, we see the variables
bb1@1, bb2@2, bb3@3, n@4, d@5 in the counterexample. These are called skolem vari-
ables and the first thing the Alloy Analyser does with a formula is convert to negation
normal form and skolemize [Ham88] [Jac00].

Our argument to generate a threshold on Date in the AddWorks check proceeds by a
similar process of Skolemization. Let us suppose a counterexample (countermodel) does
exist. We can fill in the following table with 0 and 1’s to represent the assignment of
variables involving Date in the counterexample. There is one row in the table per value
of Date, so potentially an infinite number of rows in the table. The skolem variables are
d@1 and d’@2.

BirthdayBook 0 BirthdayBook 1
Name 0 Name 1 Name 2 Name 0 Name 1 Name 2 d@1 d’@2

Date 0

Date 1

. . .

Date n

. . .

Let us consider a typical assignment.
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BirthdayBook 0 BirthdayBook 1
Name 0 Name 1 Name 2 Name 0 Name 1 Name 2 d@1 d’@2

Date 0 1 0 0 0 0 0 0 0

Date 1 0 1 0 0 0 0 0 0

Date 2 0 0 1 0 0 0 0 0

Date 3 0 0 0 1 0 0 0 0

Date 4 0 0 0 0 1 0 0 0

Date 5 0 0 0 0 0 1 0 0

Date 6 0 0 0 0 0 0 1 0

Date 7 0 0 0 0 0 0 0 1

Date 8 0 0 0 0 0 0 0 0

Date 9 0 0 0 0 0 0 0 0

. . . 0 0 0 0 0 0 0 0

Date ∞ 0 0 0 0 0 0 0 0

We can transform this assignment as follows:

BirthdayBook 0 BirthdayBook 1
Name 0 Name 1 Name 2 Name 0 Name 1 Name 2 d@0 d’@1

{Date 0} 1 0 0 0 0 0 0 0

{Date 1} 0 1 0 0 0 0 0 0

{Date 2} 0 0 1 0 0 0 0 0

{Date 3} 0 0 0 1 0 0 0 0

{Date 4} 0 0 0 0 1 0 0 0

{Date 5} 0 0 0 0 0 1 0 0

{Date 6} 0 0 0 0 0 0 1 0

{Date 7} 0 0 0 0 0 0 0 1

{Date 8. . .
Date ∞} 0 0 0 0 0 0 0 0

The resulting table is formed by choosing values of Date which are the equivalence classes
of the values of Date having equivalent rows in the table. These actual values of Date,
referred to as atoms, are not important to the countermodel; all that matters of course
is that there are nine of them and they are distinct. The above transformation can be
repeated on any potential assignment. In the former table, ‘1’ may occur no more than
once in each column, so there are no more than 8 rows, which do not contain ‘0’ all the
way through. This tells us there will never be more than 9 equivalence classes for any
assignment, so a maximum of 9 rows in the latter table.

Because the formula we are checking does not use quantifier or set builder constructs
over the Date type, it turns out that the original assignment is a countermodel if and
only if the transformed assignment is a countermodel (with the assignment of variables
not covered by the table i.e. not involving Date, unchanged). This tells us that 9 is a
threshold for Date.

If the scope on BirthdayBook or Name were to increase, we would have to increase the
threshold on Date accordingly, and we could easily give the appropriate function. We
have not generated an overall threshold scope, but this may be possible. [See Sec.5.2].
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We would like to stress our argument applies to a general class of formulae. We can draw
a similar table for any formula and if there are a finite number of columns, there will be a
finite number of equivalence classes. This is so, provided we assume a finite scope on all
type variables other than Date, and each variable in the formula is declared with a type
expression which uses Date no more than once. The other condition is that the formula
does not use set builder or quantifier constructs over Date; then the number of equivalence
classes is a threshold. This latter condition can be weakened using Skolemization. We
can of course repeat the argument for type variables other than Date.
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4 Small Model Theorem

In this section we prove our small model theorem which will be described formally in 4.32.
Without loss of generality, we will assume the type variable for which we want to obtain a
bound is X . The small model theorem takes a formula, a declaration of the type of each
variable, and a scope for each relevant type variable other than X . Subject to various
side conditions, the theorem gives a scope for X such that a check at this threshold scope
for X is equivalent to one with a larger scope for X .

Since the full Alloy language is compiled by the Analyser into a much smaller Alloy
Kernel language, we choose to make a small model theorem about this language. We
considered a developing a small model theorem for the full Alloy language or Z, but these
languages have a much larger syntax and this would have added significant burden to our
proof. For now, it seems progress can be made more quickly with a smaller language;
other languages could be considered later. In fact the language we give here has some
differences from the Alloy Kernel language. We present these differences and discuss how
they could be eliminated in 5.1. Since we present this language in a rather terse manner,
the reader may wish to refer to [Jac02a].

The notation we use for the meta-language in this section is roughly based on Z [Spi92].

4.1 Definition: Type Syntax

Let TypeVar be a set, whose elements are called type variables. Let M == {∗, !, ?}, the
set of multiplicity markings. A type expression takes the following form:

TypeExp ::= TypeVar M → M TypeVar

In other words a type expression is formed as a quadruple of values
A : TypeVar , B : TypeVar , m : M , n : M and written A m → n B . In this context → is
an uninterpreted symbol of the meta-language.

4.2 Definition: Free Types

The following function returns the type variables used in a a type expression:

Free(A m → n B) = {A,B}

4.3 Definition: Set Map

Let Atom be a set, whose elements we will call atoms. A set map is a partial map from
type variables to sets of atoms. Thus the set of set maps is:

SetMap == TypeVar 7→ P Atom
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The image of a type variable under this map is called its carrier set.

4.4 Definition: Type Semantics

Given T ∈ TypeExp and δ ∈ SetMap such that Free(T ) ⊆ dom δ, the denotational
semantics of T with respect to δ, written [[T ]]δ is defined as follows2:

[[A m → n B ]]δ ==
{r : P(δ(A) × δ(B)) | (m = ! ⇒ ∀ b : δ(B) • # dom(r B {b}) = 1)

∧ (m = ? ⇒ ∀ b : δ(B) • # dom(r B {b}) ≤ 1)
∧ (n = ! ⇒ ∀ a : δ(A) • # ran({a}C r) = 1)
∧ (n = ? ⇒ ∀ a : δ(A) • # ran({a}C r) ≤ 1))
}

The type semantics gives the meaning of a type expression. We use the type semantics
to tell us what possible meanings a variable of the type expression can have.

4.5 Example: Type Semantics

Note, the multiplicity markings can be used to refer to general relationships between
types, or more specific relationships, such as partial/total, injective/surjective functions
e.g.

[[A ∗ → ∗ B ]]δ = δ(A) ↔ δ(B)
[[A ∗ →? B ]]δ = δ(A) 7→ δ(B)
[[A ! →! B ]]δ = δ(A) �→ δ(B)

4.6 Definition: Type Map

Let Var be a set whose elements we will call variables. A type map is a partial map from
variables to type expressions whose domain is finite3:

TypeMap == {Γ : Var 7→ TypeExp | dom Γ ∈ F Var}

The type map is used to determine the types of variables.
2the symbols B,C are respectively the range and domain restriction, see [Spi92]
3F denotes the set of finite subsets of some set
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4.7 Definition: Signature

A signature is an ordered pair, (Υ, Γ), where:

Υ ⊆ TypeVar
Γ ∈ TypeMap
∀ v : dom Γ • Free(Γ(v)) ⊆ Υ

A formula or expression gives rise to a compatible signature which will be defined later in
4.24. What the signature tells us, for the formula or expression at hand is: the relevant
type variables (Υ), the relevant variables (dom Γ), and the types of those variables (Γ).
The final condition ensures that the set of relevant type variables includes those appearing
in the type expression of any relevant variable.

4.8 Example: Signature

An example signature (Υ, Γ) is:

Υ = {U ,X }
Γ = {v 7→ (U ∗ →! X ),w 7→ (U ∗ → ∗ X )}

In this case the signature gives the following information. The type of the variable v is a
total function from U to X . The type of the variable w is a relation between U and X .
The relevant type variables are U and X .

4.9 Definition: Instantiation

Given a signature S = (Υ, Γ), an instantiation of S is an ordered pair, (δ, η), where:

δ ∈ SetMap
η ∈ Var 7→ P(Atom × Atom)
dom δ = Υ
dom η = dom Γ
∀ v : dom η • η(v) ∈ [[Γ(v)]]δ

The instantiation is used to give a denotational semantics to the expressions and formulae
of the language. The instantiation tells us the carrier sets of the relevant type variables.
It also tells us the meaning of any variables. The last condition ensures that the meaning
of each variable is consistent with the semantics of its type.
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4.10 Example: Instantiation

(δ, η) is an instantiation of the above signature (4.8), where:

δ = {U 7→ {a},X 7→ {1, 2, 3, 4, 5}}
η = {v 7→ {(a, 1)},w 7→ {(a, 1), (a, 2)(a, 3)}}

The carrier set of U is {a}, and X is {1,2,3,4,5}. The meaning given to v by η is indeed
a total function form δ(U ) to δ(X ). The meaning given to w is a relation between δ(U )
and δ(X ). Thus this is a valid instantiation of the signature.

4.11 Definition: Distinguished Type Variable

X is a fixed element of TypeVar . X will be the candidate type variable on which we will
apply our threshold theorem. We will be developing the appropriate conditions for the
theorem to be applicable as we proceed.

4.12 Definition: Related Atoms

Recall X is a fixed element of TypeVar . Given a signature, S = (Υ, Γ), and a instantiation
of it, I = (δ, η), for each type variable Y ∈ Υ, we define a relation on δ(Y ), called ∼Y

S ,I

as follows:

y ∼Y
S ,I y ′ ⇔ y = y ′ (providedY 6= X )

x ∼X
S ,I x ′ ⇔ ∀(v ,Y m → n Z ) : Γ •

(Y = X ⇒ ran({x}C η(v)) = ran({x ′}C η(v))) ∧
(Z = X ⇒ dom(η(v) B {x}) = dom(η(v) B {x ′}))

When x ∼X
S ,I x ′, no variable v can witness any difference between x and x ′. Although

perhaps not equal, x and x ′ are completely interchangeable as elements of the carrier set;
neither atom has any property the other does not.

For further intuition the reader is referred back to the tabular presentation in the example
(sec. 3.1) and the notion of equivalent rows.

4.13 Lemma: Related Atoms are Equivalent

Claim: For any signature S = (Υ, Γ), instantiation of it, I = (δ, η), and type variable
Y ∈ Υ, ∼Y

S ,I is an equivalence relation.

Proof: Trivial.
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4.14 Convention: Equivalence classes

Given an equivalence relation ∼ on a set S , for any s ∈ S let [s]∼ be the equivalence class
of s, i.e.

[s]∼ == {s ′ : S | s ∼ s ′}

Let []∼ be the set of all equivalence classes, i.e.

[]∼ == {s : S • [s]∼}

4.15 Example: Atom Equivalence Classes

If we use the same example signature and instantiation (4.8, 4.10):

Υ = {U ,X }
Γ = {v 7→ (U ∗ →! X ),w 7→ (U ∗ → ∗ X )}
δ = {U 7→ {a},X 7→ {1, 2, 3, 4, 5}
η = {v 7→ {(a, 1)},w 7→ {(a, 1), (a, 2)(a, 3)}

the atom equivalence classes in the carrier set of X will be:

[]∼X
(Υ,Γ),(δ,η)

= {{1}, {2, 3}, {4, 5}}

{1} forms an equivalence class because (a, x ) is in η(v) only when x = 1. {2, 3} forms
an equivalence class because (a, x ) is in η(w) and not in η(v) only when x = 2 ∨ x = 3.
{4, 5} forms an equivalence class because (a, x ) is not in η(w) and not in η(v) only when
x = 4 ∨ x = 5.

4.16 Definition: Size

Given a signature S = (Υ, Γ), and instantiation of it, I = (δ, η), we define the size,
Size(S , I ):

Size(S , I ) == ∞ if ∃(v ,A m → n B) : Γ • A = X ∧ B = X
Size(S , I ) ==

∑
(v ,T ):Γ Sum(T ) +

∏
(v ,T ):Γ Prod(T ) otherwise

where, we define Sum(T ) for any type expression T to be 0, except for any A : TypeVar \
{X },m : M :

Sum(A m →! X ) == #δ(A)
Sum(X ! → m A) == #δ(A)
Sum(A m →? X ) == #δ(A)
Sum(X ? → m A) == #δ(A)
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and we define Prod(T ) for any type expression T to be 1, except for any A : TypeVar \
{X }:

Prod(A ! → ∗ X ) == #δ(A)
Prod(X ∗ →! A) == #δ(A)
Prod(A ? → ∗ X ) == #δ(A) + 1
Prod(X ∗ →? A) == #δ(A) + 1
Prod(A ∗ → ∗ X ) == 2#δ(A)

Prod(X ∗ → ∗ A) == 2#δ(A)

Note that Size(S , I ) is dependent only on S and #δ(Y ) for Y ∈ Υ\{X }. It is independent
of η and δ(X ).

4.17 Theorem: Number of Atom Equivalence Classes

Claim: For any signature, S , and instantiation of it, I , we have:

#[]∼X
S,I
≤ Size(S , I )

Proof: Let S = (Υ, Γ) be a signature and I = (δ, η) be an instantiation of it. We may
assume there is no element of the form X n → m X in ranΓ for then Size(S , I ) = ∞
and there is nothing to prove.

For each v : Var ; A : TypeVar ; m : M ; n : {!, ?} such that (v ,A m → n X ) ∈ Γ and
each a : δ(A) we define the following predicates on δ(X ):

P(v ,a)(x ) ⇔ (a, x ) ∈ η(v)

Similarly for each v : Var ; A : TypeVar ; m : M ; n : {!, ?} such that (v ,X n → m A) ∈ Γ
and each a : δ(A) we define the following predicates on δ(X ):

P(v ,a)(x ) ⇔ (x , a) ∈ η(v)

Thus we have defined
∑

(v ,T ):Γ Sum(T ) (not necessarily distinct) predicates. Each predi-
cate determines a set: the set of atoms in δ(X ) for which it holds. Due to the restriction
on n, the multiplicity marking associated with X , we see each set is at most a singleton.
If the set is a singleton, {x} say, and x ′ /∈ {x} then ¬ P(v ,a)(x ′) so ¬ x ′ ∼X

S ,I x by 4.12.
Thus each set is either empty or an equivalence class.

Let Q be the disjunction of the above predicates. Consider the functions f : Var →
P Atom with the following constraints:

dom f = {v : Var |
∃m : M ; A : TypeVar | (v ,A m → ∗ X ) ∈ Γ ∨ (v ,X ∗ → m A) ∈ Γ
}
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(i.e. the domain of the function is the set of variables mapped by Γ to types containing
∗ X )

∀(v , as) : f •
∃m : M ; A : TypeVar | (v ,A m → ∗ X ) ∈ Γ ∨ (v ,X ∗ → m A) ∈ Γ •

(m =! ⇒ as ∈ {a : δ(A) • {a}}) ∧
(m =? ⇒ as ∈ {a : δ(A) • {a}} ∪ {∅}) ∧
(m = ∗ ⇒ as ∈ P A)

There are
∏

(v ,T ):Γ Prod(T ) such functions. We let each one define a predicate on δ(X )
as follows:

Pf (x ) ⇔
(∀ v : Var | (∃A : TypeVar ; m : M • (v ,A m → ∗ X ) ∈ Γ) •

dom(η(v) B {x}) = f (v))
∧

(∀ v : Var | (∃A : TypeVar ; m : M • (v , ∗ X → m A) ∈ Γ) •
ran({x}C η(v)) = f (v))

∧
¬ Q

Again, each predicate determines a set. If this set is non-empty, with reference to 4.12
we see it is an equivalence class.

Furthermore, if x ∈ δ(X ) and not Q(x ) then define g : Var → P Atom by:

{v : Var ; A : TypeVar ; m : M |
(v ,A m → ∗ X ) ∈ Γ • (v ,dom(η(v) B {x}))}

∪
{v : Var ; A : TypeVar ; m : M |

(v ,X ∗ → m A) ∈ Γ • (v , ran({x}C η(v)))}

which satisfies the above constraints on functions from Var to P Atom due to the mul-
tiplicity markings. Clearly Pg holds for x . Thus we have shown that the totality of
predicates (of the form P(v ,a) and Pf ) given above are exhaustive.

It follows that every equivalence class of ∼X
S ,I is determined by at least one of the above

predicates, of which there are Size(S , I ). This completes the proof.

4.18 Example: Applying the above Theorem

With the assignments of 4.15 we have Size((Υ, Γ), (η, δ)) = #δ(U ) + 2#δ(U ) = 3. The
above theorem tells us there are no more than 3 equivalence classes in []∼X

S,I
. Furthermore

because Size((Υ,Γ), (η, δ)) is independent of η and δ(X ), changing their values will never
give more than 3 equivalence classes.
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4.19 Definition: Quotient Instantiation

In the context of a given a signature S = (Υ, Γ), we define on any instantiation of it
I = (δ, η), the quotient instantiation I = (δ, η) as follows:

dom δ == Υ
∀A : Υ • δ(A) == []∼A

S,I

dom η == dom Γ
∀(v ,A m → n B) : Γ • η(v) == {(a, b) : η(v) • ([a]∼A

S,I
, [b]∼B

S,I
)}

The quotient instantiation uses an alternate set of atoms, Atom, where:

Atom = P Atom

In the context of a quotient instantiation, we replace Atom with Atom in the definition
of set map (4.3) and instantiation (4.9). For the sake of brevity we do not repeat these
definitions.

The quotient instantiation will be useful for us because there are two ways to see the
atoms it uses. As atoms of the quotient instantiation there is a completely flat structure
on them; they can only be compared with each other for equality and no more. But as
sets of atoms of the original instantiation they will allow us to make a link between the
original and quotient instantiations.

4.20 Lemma: Quotient Instantiation is a Valid Instantiation

Claim: If S is a signature and I and instantiation of S , then I is also an instantiation of
S .

Proof: Let S = (Υ, Γ) be a signature and I = (δ, η) an instantiation of it. The conditions
for I to be a valid instantiation, given in 4.9, follow trivially from 4.19 with the exception
of ∀ v : dom η • η(v) ∈ [[Γ(v)]]δ, which we now prove.

Recall the definition of type semantics (4.4):

[[A m → n B ]]δ ==
{r : P(δ(A) × δ(B)) | (m = ! ⇒ ∀ b : δ(B) • # dom(r B {b}) = 1)

∧ (m = ? ⇒ ∀ b : δ(B) • # dom(r B {b}) ≤ 1)
∧ (n = ! ⇒ ∀ a : δ(A) • # ran({a}C r) = 1)
∧ (n = ? ⇒ ∀ a : δ(A) • # ran({a}C r) ≤ 1))
}

Let (v ,A m → n B) : Γ.
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η(v) = {(a, b) : η(v) • ([a]∼A
S,I

, [b]∼B
S,I

)} (4.19)
⊆ {(a, b) : δ(A) × δ(B) • ([a]∼A

S,I
, [b]∼B

S,I
)} (4.9)

= δ(A) × δ(B)

Suppose for some b ′ : δ(B) we have # dom(η(v) B {b′}) > 1 . Choose a ′1, a
′
2 : δ(A) such

that a ′1 6= a ′2 and (a ′1, b
′) ∈ η(v) and (a ′2, b

′) ∈ η(v). Then choose (a1, b1), (a2, b2) : η(v)
such that ([a1]∼A

S,I
, [b1]∼B

S,I
) = (a ′1, b

′) and ([a2]∼A
S,I

, [b2]∼B
S,I

) = (a ′2, b
′). It follows that

b1 ∼B
S ,I b2, and so (by 4.12) (a1, b2) ∈ η(v). Since a1 and a2 are in distinct equivalence

classes, a1 6= a2, and therefore # dom(η(v) B {b2}) > 1. This implies m 6=! and m 6=?.
We have shown the following:

m =! ∨ m =? ⇒ ∀ b′ : δ(B) • # dom(η(v) B {b}) ≤ 1 (1)

Now suppose m =!. For all b : δ(B) we have # dom(r B {b}) > 0. Let b ′ : δ(B).
Choose b : b ′. Since b ∈ δ(B) we can choose a : δ(A) such that (a, b) ∈ η(v). Then let
a ′ = [a]∼A

S,I
. It now follows (a ′, b ′) ∈ η(v) and thus for all b ′ : δ(B), # dom(r B {b}) > 0.

Therefore we have shown:

m =! ⇒ ∀ b ′ : δ(B) • # dom(η(v) B {b ′}) > 0 (2)

Combining (1) and (2) we have:

m =! ⇒ ∀ b ′ : δ(B) • # dom(η(v) B {b ′}) = 1
m =? ⇒ ∀ b ′ : δ(B) • # dom(η(v) B {b ′}) ≤ 1

And by appealing to symmetry, we see η(v) ∈ [[Γ(v)]]η
δ

according to the definition of type
semantics (4.4) we recalled above. Since dom η = dom Γ, we have now completed the
proof.

4.21 Definition: Unit Type Variable

There is a special element Unit ∈ TypeVar , which always has a singleton carrier set i.e.:

∀ δ : SetMap • #δ(Unit) = 1

If the set map is clear from the context we define unit by δ(Unit) = {unit}.

Note that the Unit type variable can be used to define subsets and elements of a type
as degenerate relations. For example a subset of the type variable Y would be the type
Unit∗ → ∗Y and an element would be Unit∗ →!Y .
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4.22 Definition: Language Syntax

Exp ::= Exp + Exp union
| Exp & Exp intersection
| Exp − Exp difference
| Exp.Exp navigation
|∼ Exp transpose
| +Exp closure
| {Var : TypeVar | Formula} set former
| Var

Formula ::= Exp in Exp subset
|!Formula negation
| Formula && Formula conjunction
| Formula || Formula disjunction
| all Var : TypeVar | Formula universal
| some Var : TypeVar | Formula existential

4.23 Definition: Type Judgement

The multiplicity markings, although relevant to the type semantics are superfluous for
making type judgements, so we drop them. Given a type map Γ, we define the type
judgement using natural deduction below.

Note, we write Γ, v : Unit → A for Γ ⊕ {v 7→ (Unit ∗ →! A)}. In the following A,B ,C
are any type variables, v is any variable, d , e are any expressions, F ,G are any formulae.

[ Γ(v) = A m → n B ]
Γ ` v : A → B

For any cons ∈ {+, &,−}:

Γ ` d : A → B , Γ ` e : A → B

Γ ` d cons e : A → B

Γ ` d : A → B , Γ ` e : B → C

Γ ` d .e : A → C

Γ ` e : A → B

Γ `∼ e : B → A

Γ ` e : A → A

Γ ` +e : A → A
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Γ, v : Unit → A ` F

Γ ` {v : A | F} : Unit → A

Γ ` d : A → B , Γ ` e : A → B

Γ ` d in e

Γ ` F

Γ `!F

For any op ∈ {&&, ||}:

Γ ` F , Γ ` G

Γ ` F op G

For any quant ∈ {all , some}:

Γ, v : Unit → A ` F

Γ ` quant v : A | F

We say an expression e is well-formed with respect to Γ provided there exists A,B ∈
TypeVar such that Γ ` e : A → B can be derived. We say a formula F is well-formed
with respect to Γ provided Γ ` F can be derived.

4.24 Definition: Compatible Signature

A formula (resp. expression) and a signature S = (Υ, Γ) are compatible if the formula is
well-formed with respect to Γ and any type variables introduced with the set former and
quantification constructs in the formula are members of Υ.

4.25 Definition: Semantics

Given a signature, S = (Υ, Γ), and a formula or expression which are compatible, we
can define the denotational semantics with respect to any instantiation, I = (δ, η), of the
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signature.

[[v ]]ηδ = η(v)
[[d + e]]ηδ = [[d ]]ηδ ∪ [[e]]ηδ
[[d&e]]ηδ = [[d ]]ηδ ∩ [[e]]ηδ
[[d − e]]ηδ = [[d ]]ηδ \ [[e]]ηδ
[[d .e]]ηδ = [[d ]]ηδ o

9 [[e]]ηδ
[[ ∼ e]]ηδ = ([[e]]ηδ )

∼

[[ + e]]ηδ = ([[e]]ηδ )
+

[[v : T | F ]]ηδ = {x : δ(T ) | [[F ]]η⊕{v 7→{(unit ,x)}}
δ • (unit , x )}

[[d in e]]ηδ ⇔ [[d ]]ηδ ⊆ [[e]]ηδ
[[!F ]]ηδ ⇔ ¬ [[F ]]ηδ
[[F && G ]]ηδ ⇔ [[F ]]ηδ ∧ [[G ]]ηδ
[[F || G ]]ηδ ⇔ [[F ]]ηδ ∨ [[G ]]ηδ
[[all v : T | F ]]ηδ ⇔ ∀ x : δ(T ) • [[F ]]η⊕{v 7→{(unit ,x)}}

δ

[[some v : T | F ]]ηδ ⇔ ∃ x : δ(T ) • [[F ]]η⊕{v 7→{(unit ,x)}}
δ

4.26 Definition: Functions Relating an Instantiation and its Quotient

We will relate the denotational semantics with respect to the instantiation and the quo-
tient instantiation with the following functions. Let S = (Υ, Γ) be a signature, I = (δ, η)
an instantiation of it and A m → n B ∈ TypeExp.

KA→B
S ,I : [[A m → n B ]]δ → [[A m → n B ]]δ

KA→B
S ,I (r) == {(a, b) : r • ([a]∼A

S,I
, [b]∼B

S,I
)}

LA→B
S ,I : [[A m → n B ]]δ → [[A m → n B ]]δ

LA→B
S ,I (r) ==

⋃
{(a, b) : r • a × b}

Note that for any r : [[A m → n B ]]δ

KA→B
S ,I (LA→B

S ,I (r)) = r

4.27 Definition: Banned Constructs

The constructs in the language which will be banned for our small model theorem are the
following (where var : Var):

all var : X . . .
some var : X . . .
{var : X | . . .}

i.e. quantification or set formation using the type variable X .
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4.28 Theorem: Instance and Quotient are Related

Let e be an expression not using banned constructs. Let F be a formula not using banned
constructs. Let S = (Υ,Γ) be a compatible signature, I = (δ, η) an instantiation of it.
Let A,B ∈ Υ. We claim:

(Γ ` e : A → B) ⇒ (LA→B
S ,I ([[e]]η

δ
) = [[e]]ηδ )

(Γ ` F ) ⇒ ([[F ]]ηδ ⇔ [[F ]]η
δ
)

Proof: We proceed by structural induction over the expression or formula.

4.28.1 Case: var

Suppose Γ ` var : A → B . We show LA→B
S ,I ([[var ]]η

δ
) = [[var ]]ηδ by showing inclusion in

both directions.

Let (a, b) : LA→B
S ,I ([[var ]]η

δ
). By the definition of LA→B

S ,I it follows that (a, b) ∈
⋃
{(a ′, b ′) :

η(var) • a ′ × b ′}. So choose (a ′, b′) : η(var) such that (a, b) ∈ a ′ × b ′, and then choose
(a0, b0) : η(var) such that [a0]∼A

S,I
= a ′ and [b0]∼B

S,I
= b ′. It follows that a0 ∼A

S ,I a and
b0 ∼B

S ,I b. We know (a0, b0) ∈ η(var), hence by the definition of ∼A
S ,I in 4.12 we have

(a, b0) ∈ η(var). Similarly it follows (a, b) ∈ η(var). Since η(var) = [[var ]]ηδ we have
shown: LA→B

S ,I ([[var ]]η
δ
) ⊆ [[var ]]ηδ .

Now let (a, b) : [[var ]]ηδ . Then (a, b) ∈ η(var). It follows by the definition of quotient
instantiation that ([a]∼A

S,I
, [b]∼B

S,I
) ∈ η(var) Thus:

(a, b) ∈ [a]∼A
S,I
× [b]∼B

S,I

⊆
⋃
{(a ′, b′) : η(var) • a ′ × b ′}

= LA→B
S ,I ([[var ]]η

δ
)

So we have shown [[var ]]ηδ ⊆ LA→B
S ,I ([[var ]]η

δ
)

4.28.2 Case: d + e, d&e, d − e.

The proof for these three cases is very similar. In the following proof each of: (+,∨
), (&,∧), (−,∧ ¬ ) can be substituted for (⊕,⊗).

In this case we may suppose the following:

Γ ` d : A → B ∧ Γ ` e : A → B
LA→B

S ,I ([[d ]]η
δ
) = [[d ]]ηδ ∧ LA→B

S ,I ([[e]]η
δ
) = [[e]]ηδ
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We show, LA→B
S ,I , ([[d ⊕ e]]η

δ
) = [[d ⊕ e]]ηδ as follows:

(a, b) ∈ LA→B
S ,I ([[d ⊕ e]]η

δ
)

⇔
∃(a ′, b′) : [[d ⊕ e]]η

δ
• a ∈ a ′ ∧ b ∈ b′

⇔
∃(a ′, b′) : δ(A) × δ(B) • a ∈ a ′ ∧ b ∈ b′ ∧

((a ′, b ′) ∈ [[d ]]η
δ
⊗ (a ′, b′) ∈ [[d ]]η

δ
)

⇔
(a, b) ∈ LA→B

S ,I ([[d ]]η
δ
)⊗ (a, b) ∈ LA→B

S ,I ([[e]]η
δ
)

⇔
(a, b) ∈ [[d ]]ηδ ⊗ (a, b) ∈ [[e]]ηδ
⇔
(a, b) ∈ [[d ⊕ e]]ηδ

4.28.3 Case d .e

In this case we may suppose:

Γ ` d : A → B ∧ Γ ` e : B → C
LA→B

S ,I ([[d ]]η
δ
) = [[d ]]ηδ ∧ LA→B

S ,I ([[e]]η
δ
) = [[e]]ηδ

We show, LA→C
S ,I ([[d .e]]η

δ
) = [[d .e]]ηδ as follows:

(a, c) ∈ LA→C
S ,I ([[d .e]]η

δ
)

⇔
∃(a ′, c′) : [[d .e]]η

δ
• a ∈ a ′ ∧ c ∈ c′

⇔
∃ a ′ : δ(A); b′ : δ(B); c′ : δ(C ) • a ∈ a ′ ∧ c ∈ c′ ∧

(a ′, b ′) ∈ ([[d ]]η
δ
) ∧ (b′, c′) ∈ ([[e]]η

δ
)

⇔
∃ b : δ(B) • (a, b) ∈ [[d ]]ηδ ∧ (b, c) ∈ [[e]]ηδ
⇔
(a, c) ∈ [[d ]]ηδ o

9 [[e]]ηδ
⇔
(a, c) ∈ [[d .e]]ηδ

4.28.4 Case ∼ e

In this case we may suppose the following:

Γ ` e : B → A
LB→A

S ,I ([[e]]η
δ
) = [[e]]ηδ
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We show, LA→B
S ,I ([[ ∼ e]]η

δ
) = [[ ∼ e]]ηδ as follows:

(a, b) ∈ LA→B
S ,I ([[ ∼ e]]η

δ
)

⇔
∃(a ′, b′) : [[ ∼ e]]η

δ
• a ∈ a ′ ∧ b ∈ b′

⇔
∃(b ′, a ′) : [[e]]η

δ
• a ∈ a ′ ∧ b ∈ b ′

⇔
(b, a) ∈ [[e]]ηδ
⇔
(a, b) ∈ [[ ∼ e]]ηδ

4.28.5 Cases: {v : Y | F}, all v : Y | F , some v : Y | F

Recall these are banned constructs if Y = X . We assume Y 6= X and make the following
definitions:

Γ′ == Γ⊕ {v 7→ (Unit ∗ →! Y )}
S ′ = (Υ, Γ′)

For any y : δ(Y ) we define:

ηy == η ⊕ {v 7→ {(unit , y)}}
Iy == (δ, ηy)

Let Iy = (δ, ηy) be the quotient instantiation wrt. S ′. Because Y 6= X , ∼X
S ′,Iy

=∼X
S ,Iy

so
Iy is also the quotient instantiation wrt. S .

Recall unit is defined by δ(Unit) = {unit}. In this context, δ(Unit) = {{unit}}. Recall
also Y

S ,Iy
is the identity relation on δ(Y ). It follows:

ηy = η ⊕ {v 7→ {({unit}, {y})}}

Since Γ′ ` F we may suppose inductively:

[[F ]]ηy

δ
⇔ [[F ]]ηy

δ

Case {v : Y | F}.
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We prove LUnit→Y
(S ,I ) ([[{v : Y | F}]]η

δ
) = [[{v : Y | F}]]ηδ as follows:

(unit , y) ∈ LUnit→Y
(S ,I ) ([[{v : Y | F}]]η

δ
)

⇔
({unit}, {y}) ∈ [[{v : Y | F}]]η

δ
⇔
[[F ]]η⊕{v 7→{({unit},{y})}}

δ
⇔
[[F ]]ηy

δ
⇔
[[F ]]ηy

δ

⇔
(unit , y) ∈ [[{v : Y | F}]]ηδ

Case all v : Y | F .

[[all v : Y | F ]]η
δ

⇔
∀ y : δ(Y ) • [[F ]]η⊕{v 7→{({unit},y)}}

δ
⇔
∀ y : δ(Y ) • [[F ]]η⊕{v 7→{({unit},{y})}}

δ
⇔
∀ y : δ(Y ) • [[F ]]ηy

δ
⇔
∀ y : δ(Y ) • [[F ]]ηy

δ

⇔
[[all v : Y | F ]]ηδ

Case some v : Y | F , similarly.

4.28.6 Case: d in e

We may suppose:

Γ ` d : A → B
Γ ` e : A → B

and inductively:

LA→B
(S ,I ) ([[d ]]η

δ
) = [[d ]]ηδ

LA→B
(S ,I ) ([[e]]η

δ
) = [[e]]ηδ
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Applying KA→B
(S ,I ) to both sides:

[[d ]]η
δ

= KA→B
(S ,I ) ([[d ]]ηδ )

[[e]]η
δ

= KA→B
(S ,I ) ([[e]]ηδ )

If follows easily from their definitions 4.26 that KA→B
(S ,I ) and LA→B

(S ,I ) are monotonic wrt. the
subset ordering. Thus:

[[d ]]ηδ ⊆ [[e]]ηδ ⇔ [[d ]]η
δ
⊆ [[e]]η

δ

hence:

[[d in e]]ηδ ⇔ [[d in e]]η
δ

4.28.7 Case: &&, ||

This case is trivial. This concludes the proof.

4.29 Definition: Scope

Given a signature S = (Υ, Γ), a scope Θ for S is a total map from Υ to N ∪ {∞}.

We say Θ is a finite scope if and only if ∞ /∈ ranΘ.

4.30 Definition: Size2

Let S be a signature and, Θ a scope for S .

We define Size2(S , Θ) exactly as in 4.16 replacing #δ with Θ.

4.31 Definition: Consistent/Valid within Scope

Let S = (Υ, Γ) be a signature, Θ be a scope for S , and F a formula compatible with S .

We say F is consistent within Θ provided there exists an instantiation of S, I = (δ, η),
such that:

∀A : dom δ • #δ(A) ≤ Θ(A)
[[F ]]ηδ

We say F is valid within Θ if and only if !F is not consistent within Θ.

Note that if Θ is a finite scope, it can be decided (by a model finder) whether F is valid
within Θ. We do not prove this here.
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4.32 Theorem: Small Model Theorem

Claim: Let F be a formula not using banned constructs (4.27) and S be a compatible
signature. Let Θ be a scope for S. Let Θ = Θ⊕ {X 7→ Size2(S ,Θ)}. If F is valid within
Θ then F is valid within Θ.

Proof: Let F be a formula not using banned constructs and S be a compatible signature.
Let Θ be a scope for S, and let Θ = Θ⊕{X 7→ Size2(S , Θ)}. We will prove the equivalent
statement: If !F is consistent within Θ then !F is consistent within Θ.

Suppose !F is consistent within Θ. Let I = (δ, η) be an instance such that:

∀A : dom δ • #δ(A) ≤ Θ(A)
[[!F ]]ηδ

Let I = (δ, η) be the quotient instantiation of I defined in 4.19. It follows from 4.19,
4.17:

#δ(X ) = #[]∼X
S,I
≤ Size(S , I ) ≤ Size2(S , Θ)

and so
∀A : dom δ • #δ(A) ≤ Θ(A)

But, 4.28 tells us:

[[!F ]]η
δ

So we may conclude !F is consistent within Θ, completing our proof.

4.33 Corollary: Generalisation through Skolemization

We can modify the preceding theorem, by adding a step to transform the formula !F using
negation normal form and Skolemization. This removes existential quantification in !F
and hence allows universal quantification in the original formula F , which was previously
a banned construct. In other words, we arrive at a more general theorem which allows
universal quantification with appropriately increased thresholds.

Only two levels of quantifier nesting can be accommodated in the this language, but
arbitrary nesting follows immediately from proposed future work - see 5.1.

4.34 Corollary: Infinite Scope Checks

In the above theorem it is possible that Θ(X ) = ∞ whilst Θ(X ) < ∞, and Θ(X ) could
be an infinite scope, when Θ(X ) is a finite scope. Since model finders need a finite
scope normally, we have extended the class of problems (i.e. combination of formulae,
signatures and scopes) that can be checked in a finite time.
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5 Conclusions and Further Work

We have formally proved a small model theorem which applies to a general class of
formulae. The small model theorem can reduce some infinite state problems to finite
state problems by generating bounds on the size of type variable carrier sets. It may
be that for some problems the results of our theorem coincide with known decidability
results, but for most problems our theorem does not give rise to a decision procedure:
its novel contribution is to cut-down the choice of possible scopes by eliminating some of
them as redundant, and we hit this ‘sweet spot’ when bounds can be given for some type
variables only as a function of the scope on others.

We have made a significant step toward the proposed research goal, however there are
further areas to look at which we now outline.

5.1 Differences between our Language and the Alloy Kernel Language

Our small model theorem was based on a language which differs from the Alloy Kernel
language (AKL). These differences need to be eliminated so we can generate a small
model theorem of practical value and can leverage the Alloy Analyser model finder. We
explain the differences and how we might eliminate them.

The type expression syntax in the AKL is defined [Jac02a]:

TypeExpAKL ::= TypeVar → TypeVar
| TypeVar ⇒ TypeExpAKL

where A → B means relation between A and B (just like A ∗ → ∗ B in our language)
and A ⇒ t means total function from A to t . The AKL syntax also has a corresponding
construct for function application. This is the only difference between our language and
the AKL.

5.1.1 Recursive Type Syntax

Developing our small model theorem was non-trivial and we chose to remove recursive
type syntax constructs (TypeVar ⇒ TypeExpAKL) on the first attempt, because this
significantly simplified our theorem without making it vacuous. We now believe that a
recursive type syntax can be easily accommodated using the the notion of logical relations
in a similar manner to [LN00].
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5.1.2 Multiplicity Markings

Our language and has multiplicity markings, whereas the Alloy Kernel language does not.
Although our theorem is more general than required in this sense, proceeding without
multiplicity markings has the same effect as assuming all markings are ∗ in the calculation
of thresholds. This is undesirable because it would significantly increase thresholds (see
4.16) and therefore introduce state explosion.

Fortunately the full Alloy language has multiplicity markings so the information to re-
duce thresholds is available. During the Analyser’s compilation into the kernel language
though, these multiplicity markings are replaced by adding appropriate conjuncts to the
formula. Unless this is the last step of the compilation this represents an implementation
issue; we don’t don’t want to rewrite the whole compiler. Moreover, these additional con-
juncts, although redundant when multiplicity markings are used, typically use banned
constructs (4.27), which violate the conditions of our small model theorem.

We may hope to re-use the existing compiler in our solution as follows. If a problem in
the full language is compiled in to the AKL, then by looking at the original formulation
one should be able to infer appropriate multiplicity markings for variable declarations in
the AKL. Based on this information one should be able to define patterns which match
the (now redundant) additional conjuncts, so they can be removed.

In the worst case we might seek to exploit our results by lifting them to the full language,
or even reworking our theorem to operate at the level of the full language. However,
such an approach could be theoretically challenging, especially given our discussion at
the beginning of section 4.

Overall though, further work is required to inspect the existing compiler implementation
and discuss the best way forward with the compiler maintainer. It may be that the
compiler code can be easily modified to meet our needs, and fortunately the existing
implementation uses an open source license.

5.2 Thresholds on Multiple Type Variables

As we saw in the Birthday Book example (3.1), we can generate a threshold on Date but
only once a scope is given for Name and BirthdayBook . Generally our theorem does not
work as well as we would like when there is more than one type variable satisfying the
conditions of the theorem. Usually, applying the theorem repeatedly does not generate
an overall threshold for all the type variables, because the threshold for one type is a
function of the scope of the other types. The resulting simultaneous equations do not
usually have solutions. However, it seems sensible to imagine the existence of a more
general small model theorem which could provide thresholds on multiple type variables
simultaneously and we would seek this improved version as part of future work.
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5.3 Relation to Data Independence

Whilst it is clear that the definition of data independence (2.4.1) applies to a wide range
of systems, it is perhaps less/ clear that our small model theorem applies so widely. We
believe (at least in the case of a single data independent type for now - see 5.2) that our
theorem applies to the same systems and it is important to argue our theorem applies
widely for it to be of value.

Unfortunately our belief appears difficult or perhaps impossible to formulate as a math-
ematical question; our assertion does not prescribe any particular translation between
model checking problems and model finding problems, and there may be many ‘reason-
able’ translations. Nevertheless it may be fruitful to explore this issue further. Existing
work on translation between state-based and event-based formalisms (e.g. [Bol02]) could
provide insight here.

5.4 Generalisation over Language

A final area we would like to look at (if time permits) is the generalisation of our results
over the language used. The construction we have given seems generic and could be
applied to model finding in other typed languages e.g. Z. Although, the Alloy Analyser
seems to be the only model finder for typed languages (see 2.6), so this would be mainly
of theoretical interest. The proofs we have given may become clearer if we have abstract
away from the particularities of Alloy.

5.5 Plan of Work

In the introduction, we described the goal of the thesis: the extension of model finding
technique for guaranteeing correctness from finite systems, to systems where infinite data
independent types are also allowed. The following tasks are proposed for the completed
thesis:

• Prove a small model theorem over a modified version of our language — one with
the additional type construct of total functions (i.e. a recursive type syntax).

• Extend the small model theorem to give thresholds for multiple type variables.

• Modify or reuse Alloy Analyser compiler so that the full Alloy language is compiled
into a Kernel language with multiplicity markings intact, rather than the existing
Kernel language; then implement automatic threshold generation.

• Formalise the relationship between this small model theorem and data indepen-
dence.

• Generalise the small model theorem to apply to a general class of languages.
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• Use the small model theorem in a case study.
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