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Abstract

The Dual Calculus, proposed by Wadler in 2003, is the outcome of two dis-
tinct lines of research in theoretical computer science:
A. Efforts to extend the Curry-Howard isomorphism, established between
simply-typed lambda calculus and intuitionistic logic, to classical logic.
B. Efforts to establish the tacit conjecture that call-by-value reduction in
lambda calculus is dual to call-by-name reduction.
This project is aiming at introducing the Dual Calculus, examining its syn-
tactic behaviour, and investigating possible extensions of it to polymorphic
types.
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1 Introduction

1.1 Two lines of research leading to the Dual Calculus

The Dual Calculus, proposed by Wadler in [Wad03a], is the outcome of two distinct lines
of research in theoretical computer science:

1. Efforts to extend the Curry-Howard isomorphism, established between simply-typed
lambda calculus and intuitionistic logic, to classical logic.

2. Efforts to establish the tacit conjecture that call-by-value reduction in lambda cal-
culus is dual to call-by-name reduction.

Regarding the first line of investigation, the Curry-Howard isomorphism correlates two
seemingly alien scientific fields, namely proof theory and type theory. It states a cor-
respondence between systems of formal logic and computational calculi: logic formulas
are related to types, and logic proofs are related to typed terms. More than that, proof
normalization is related to term reduction. Of course, this correspondence is of great
importance, since it allows to use methods and properties of the one field for the other,
and it drives to a deeper understanding of foundational matters in theoretical computer
science.
Traditionally, classical logic was not taken into account in the Curry-Howard isomorphism
(see, for example, [GTL89, SU98]). The first attempt to add classical constructs to a com-
putational calculus is present in the work of Griffin [Gri90], who defined a simply-typed
lambda calculus in which the law of double-negation elimination was expressed in the
typing rules. Griffin’s rule would read:

If M is a term of type ¬¬A, then C(M) is a term of type A

C is a control operator2 which adds further expressive power to the simply-typed lambda
calculus by allowing for some non-trivial jumps in computation. For example, using C we
can define the call/cc operator of Scheme language.
After the work of Griffin, the view that classical constructs could be used to extend
programming control features which would otherwise not be expressible in logical terms
became increasingly widespread. Parigot [Par92] refined the idea of Griffin to a more con-
crete calculus, the λµ-calculus. This calculus is an extension of lambda calculus where
one has the ability to name arbitrary subterms of a term by µ-variables and to abstract
on these names. Thus, operations can be applied directly to subterms of a term and
control features such as C can be easily simulated in the λµ-calculus. Using this “naming
mechanism”, Parigot was able to derive a typed λµ-calculus corresponding to a natural
deduction system with multiple conclusions. This latter system, called Classical Natural
Deduction, is a system of classical logic.
A different approach was taken by Barbanera and Berardi [BB96], who proposed a clas-
sical simply-typed lambda calculus equipped with the following set of types:

Type A,B ::= X| ¬X| A ∨B | A ∧B

2In fact, C was introduced by Felleisen, see more, for example, in [FH92].
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with X standing for type variables. Thus, negation is a primitive type constructor in this
calculus, yet constrained only to type variables. Negation is extended to all types by the
usual De Morgan laws, and thus the authors manage to identify any type A with ¬¬A.
Hence, having the law of double negation embedded in the syntax, this calculus (named
Symmetric λ-calculus) corresponds to propositional classical logic. Further investigation
on this calculus to second-order was done by Parigot [Par00].
Regarding the second line of investigation, the notion of ‘duality’ between call-by-value
(CBV) and call-by-name (CBN) reduction was first suggested by Filinski [Fil89]. Filinski
defined a symmetric lambda-calculus (SLC) in which there exist two distinct syntactic
classes: values and continuations. The notion of a continuation was a well established
one at the time:

in any computation being part of a program there is some “rest of the pro-
gram” ready to absorb the result of the given computation and continue with
execution of following commands.

This “rest of the program” is called a continuation ([SW74]). Thus, there is some kind of
duality (or symmetry) between values and continuations in programming languages, in
that values yield data whereas continuations absorb data. This duality is part of SLC and
Filinski suggests that a similar kind of duality holds between CBV and CBN reduction
(or evaluation) strategies for SLC.
The suggestions of Filinski where established by Selinger in [Sel01]3, who worked in the
λµ-calculus. Selinger showed categorical duality between CBV and CBN reduction in
the λµ-calculus by use of control categories to model the CBN semantics and co-control
categories to model the CBV semantics.
Finally, Curien and Herbelin [CH00] defined the λ̄µµ̃-calculus, which is an extension
of the λµ-calculus having duals for λ- and µ-abstraction. In order to type these dual
abstractions, a difference (−) type constructor is included in the typed version of the
calculus. This selection is due to the fact that difference is the De Morgan dual of
implication – even though the operational interpretation of difference is not very intuitive.
For this calculus it is shown that CBV is dual to CBN in a De Morgan fashion.

1.1.1 Summary

In this chapter we will firstly present the definition of the Dual Calculus of Wadler. Next,
we are going to demonstrate the Curry-Howard isomorphism of this calculus to classical
logic, and also show the duality between CBV and CBN reduction relations in the calcu-
lus. Both of these topics were, of course, discussed in [Wad03a]. Finally, we are going to
present a simple embedding of simply-typed lambda calculus to the Dual Calculus, thus
clarifying the point that the latter is an extension of the former.
In the second chapter we will investigate syntactic properties of the Dual Calculus under
CBV reduction. Namely, we will examine the Church-Rosser and Strong Normalization
properties. These are original contributions and, in rough lines, follow and extend stan-
dard techniques from the literature.

3first published in 1998
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Finally, in the third chapter we will attempt to extend the calculus to polymorphic types,
by adding second-order quantifiers over types. However, this extension is not an easy one,
since problems with subject reduction can easily arise. We will give several formulations
in order to overcome and to understand the difficulties that arise.

1.2 The Dual Calculus

The lines of investigation presented above lead to the Dual Calculus ([Wad03a]), which
epitomizes both properties of being the Curry-Howard equivalent of classical logic and
of its CBV and CBN reduction relations being De Morgan duals. More than that, the
calculus has the advantage of simplicity in syntax and operational semantics.

1.2.1 Definition

The Dual Calculus (DuCa) consists of types and objects, in the same way that simply-typed
lambda calculus consists of types and terms. The types are the same as the formulas of
propositional logic, whereas the objects are divided in terms, coterms and statements.
The intended computational interpretation is this of terms being objects yielding data,
whereas coterms absorb data4. In fact, this is very similar to the notion of values and
continuations, as presented in [Fil89]. The statements of DuCa represent cuts of terms
upon coterms, that is constructions consisting of a term and a coterm, where the term is
yielding data to be absorbed by the coterm.
Below we give the definition of DuCa we will be using throughout this project.

Definition 1.1 (Dual Calculus. [Wad03b])
DuCa consists of Types and Objects. The set of objects is the union of the sets of Terms,
Coterms and Statements:

Type A,B ::= X | A&B | A ∨B | ¬A
Object G,H ::= M | K | S
Term M,N ::= x | 〈M,N〉 | 〈M〉inl | 〈N〉inr | [K]not | (S).α
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | x.(S)
Statement S, T ::= M •K

The typing rules (or inference rules) involve three forms of sequents:

Left Sequent K : A ❙ Γ ➞ Θ
Right Sequent Γ ➞ Θ ❙ M : A

Center Sequent Γ ❙ M •K ❙ ➞ Θ

where Γ and Θ are antecedent and succedent sets respectively:

Antecedent Γ,∆ ::= {x1 : A1, . . . , xn : An}
Succecedent Θ, I ::= {α1 : B1, . . . , αm : Bm}

4The use of “data” is preferred here instead of the standard “value”, since the latter is reserved for
terms of special syntax.

4



We will usually omit the outer brackets in succedent and antecedent sets and use comma
notation for set union (e.g. Γ, Γ′ ≡ Γ ∪ Γ′).
The typing (or inference) rules of DuCa are:

idL
α : A ❙ Γ ➞ Θ, α : A

idR
x : A, Γ ➞ Θ ❙ x : A

K : A ❙ Γ ➞ Θ

fst[K] : A&B ❙ Γ ➞ Θ

L : B ❙ Γ ➞ Θ
&L

snd[L] : A&B ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A Γ ➞ Θ ❙ N : B
&R

Γ ➞ Θ ❙ 〈M,N〉 : A&B

Γ ➞ Θ ❙ M : A

Γ ➞ Θ ❙ 〈M〉inl : A ∨B

Γ ➞ Θ ❙ N : B
∨R

Γ ➞ Θ ❙ 〈N〉inr : A ∨B

K : A ❙ Γ ➞ Θ L : B ❙ Γ ➞ Θ
∨L

[K, L] : A ∨B ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A
¬L

not〈M〉 : ¬A ❙ Γ ➞ Θ

K : A ❙ Γ ➞ Θ
¬R

Γ ➞ Θ ❙ [K]not : ¬A

x : A, Γ ❙ S ❙ ➞ Θ
LI

x.(S) : A ❙ Γ ➞ Θ

Γ ❙ S ❙ ➞ Θ, α : A
RI

Γ ➞ Θ ❙ (S).α : A

Γ ➞ Θ ❙ M : A K : A ❙ Γ ➞ Θ
Cut

Γ ❙ M •K ❙ ➞ Θ

The above rules form the sequent calculus GW. a
In the definition above note that there is no need to include rules for Weakening or
Contraction, since these are derived from the above (proposition 1.6).
The letters we use to denote components of DuCa are standard in this project. As above,
for types we use capital letters opening the alphabet (A,B,C, ...); for variables we use
x, y, z, ...; for terms M,N ; for covariables α, β, γ, ...; for coterms K, L; for objects G, H;
for antecedent sets Γ,∆; for succedent sets Θ, I.
In DuCa, variable and covariable abstractions are performed by dots ′.′ . For example,
the rule LI introduces the variable abstraction x.(S). Consequently, we have the usual
convention for free and bound occurrences of variables and covariables. For example, in
x.(S) all occurrences of x inside S are bound, while the occurrence of x right before the
dot is transparent. Similar things hold for covariables.
The intended computational interpretation of objects in DuCa is as aforementioned: terms
stand for computations yielding data, whereas coterms stand for computations absorbing
data. Thus, sequents stand for computational scenarios where one supplies data to all
variables (and coterms) of the sequent, and expects the computation to pass data to some
covariable (or a term to yield data).
Under this interpretation, a term x trivially yields the data supplied to x and a term
〈M, N〉 yields a pair of data of type A&B, consisting of the data yielded by terms M and
N . Hence, the type conjunction A&B corresponds to product of types. Dually, a coterm
α absorbs the data passed to α and a coterm [K, L] absorbs a data of type A∨B, which
is passed on to K or L according to this data being a left or right injection. Therefore,
A ∨ B corresponds to sum of types. For further details on the intended computational
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interpretation see [Wad03a].
Note that the inference rules of GW are very similar to the inference rules of system LK
of Gentzen [Gen35] restricted to propositional logic5. In the following subsection we will
see that this similarity is in fact a Curry-Howard isomorphism.
Now, though we advertised that DuCa is an extension of simply-typed lambda calculus,
one can notice that in the definition above there aren’t any λ’s whatsoever. This is not
important though, since we can define abbreviations standing for constructions similar to
λ-abstractions and applications. Such abbreviations will be presented shortly (definition
1.5), and in section 1.3 we will see in detail why DuCa is an extension of simply-typed
lambda calculus.
Back to GW, since we’ll be using sequent derivations, it is useful to give them a formal
definition.

Definition 1.2
Let S be some sequent calculus. A derivation D in S is a labelled tree, whose nodes are
labelled by sequents. A node σ is connected to parental nodes σ1, ..., σn, if there is an
instance of an inference rule in S having σ1, ..., σn as premises and σ as conclusion.
We say that D derives the sequent σ, if D is some derivation with root σ. σ is derivable
in S, if there is some D which derives σ. a
It is also useful to introduce some notation in relation to objects of DuCa being typed by
sequents of GW.

Definition 1.3
Let G,G′ ∈ DuCa and σ, σ′ be sequents in GW, then

• σ ∈ TG(A,Γ, Θ) if σ is derivable in GW and either

σ ≡ Γ ➞ Θ ❙ M : A and G is a term M , or
σ ≡ K : A ❙ Γ ➞ Θ and G is a coterm K, or
σ ≡ Γ ❙ S ❙ ➞ Θ and G is a statement S.

• σ ∈ TG(A) if σ ∈ TG(A, Γ, Θ) for some Γ, Θ.

• σ ∈ TG(Γ, Θ) if σ ∈ TG(A,Γ, Θ) for some type A.

• σ ∈ TG if σ ∈ TG(A,Γ, Θ) for some A,Γ, Θ. G is typed if TG 6= ∅. a

According to the above, if σ ∈ TG and σ ∈ TH , then G ≡ H. Moreover, for all statements
S and types A, TS = TS(A). This reflects the fact that statements are not assigned
types, but are typed iff their components are typed with the same type. Further, an
object G of the calculus can be assigned more than one type and, on the other hand, we
allow for elements G with TG = ∅. For example, 〈x, x〉 • [a, a] is not typed.

5One may also note that symbols for logical connectives follow Gentzen’s formulations.
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1.2.2 Curry-Howard isomorphism

In order for the connection of DuCa with classical logic to become clearer, we will tem-
porarily use an alternative sequent calculus for DuCa, equivalent to the initial GW, the
system GW1:

Definition 1.4 (System GW1. [Wad03a])
GW1 consists of left, right and center sequents. These are as in definition 1.1, with the
only difference of having succedent and antecedent sequences instead of sets; that is,

Antecedent Γ, ∆ ::= x1 : A1, . . . , xn : An

Succecedent Θ, I ::= α1 : B1, . . . , αm : Bm

The inference rules of the calculus are of two kinds:
Logical (or operational) rules:

idL
α : A ❙ ➞ α : A

idR
x : A ➞ ❙ x : A

K : A ❙ Γ ➞ Θ

fst[K] : A&B ❙ Γ ➞ Θ

L : B ❙ Γ ➞ Θ
&L

snd[L] : A&B ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A Γ ➞ Θ ❙ N : B
&R

Γ ➞ Θ ❙ 〈M,N〉 : A&B

Γ ➞ Θ ❙ M : A

Γ ➞ Θ ❙ 〈M〉inl : A ∨B

Γ ➞ Θ ❙ N : B
∨R

Γ ➞ Θ ❙ 〈N〉inr : A ∨B

K : A ❙ Γ ➞ Θ L : B ❙ Γ ➞ Θ
∨L

[K,L] : A ∨B ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A
¬L

not〈M〉 : ¬A ❙ Γ ➞ Θ

K : A ❙ Γ ➞ Θ
¬R

Γ ➞ Θ ❙ [K]not : ¬A

x : A, Γ ❙ S ❙ ➞ Θ
LI

x.(S) : A ❙ Γ ➞ Θ

Γ ❙ S ❙ ➞ Θ, α : A
RI

Γ ➞ Θ ❙ (S).α : A

Γ ➞ Θ ❙ M : A K : A ❙ ∆ ➞ I
Cut

Γ, ∆ ❙ M •K ❙ ➞ Θ, I

Structural rules for left, right and center sequents; for left sequents these are:

K : A ❙ Γ ➞ Θ

K : A ❙ x : A,Γ ➞ Θ
Weakening

K : A ❙ Γ ➞ Θ

K : A ❙ Γ ➞ Θ, α : A

K : A ❙ x : B, y : B, Γ ➞ Θ

K{y/x} : A ❙ y : B, Γ ➞ Θ
Contraction

K : A ❙ Γ ➞ Θ, α : B, β : B

K{β/α} : A ❙ Γ ➞ Θ, β : B

K : A ❙ ∆, x : A, y : B, Γ ➞ Θ

K : A ❙ ∆, y : B, x : A,Γ ➞ Θ
Interchange

K : A ❙ Γ ➞ Θ, α : A, β : B, I

K : A ❙ Γ ➞ Θ, β : B,α : A, I

and similarly for center and right sequents. a
It is time to define abbreviations for implicational types and objects in DuCa.
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Definition 1.5
For any A,B, x,M,N, L ∈ DuCa we define the following abbreviations:

A ⊃ B ≡ ¬(A&¬B)
λx.M ≡ [z.(z • fst[x.(z • snd[not〈M〉])])]not
N@L ≡ not〈〈N, [L]not〉〉

and thus A ⊃ B is a type, λx.M a term, and N@L a coterm of DuCa. a
For the constructs we have just defined, we have the following familiar inference rules
holding (i.e. being derivable) in GW1:

Γ ➞ Θ ❙ M : A K : B ❙ ∆ ➞ I
⊃ L

M@K : A ⊃ B ❙ Γ,∆ ➞ Θ, I

x : A, Γ ➞ Θ ❙ M : B
⊃ R

Γ ➞ Θ ❙ λx.M : A ⊃ B

It is not difficult now to see that we have gathered in GW1 all the inference rules of
Gentzen’s LK (presented in the Appendix), apart from rules with quantifiers. It is there-
fore straightforward to deduce:

The Dual Calculus with typing rules these of GW1 is isomorphic in Curry-
Howard style to LK restricted to propositional logic. Types of DuCa corre-
spond to formulas of classical propositional logic, and objects correspond to
proofs.

The only purpose for introducing GW1 was this of demonstrating the Curry-Howard iso-
morphism with classical logic6. In the sequel we will abandon GW1 and return to our
initial sequent calculus GW of definition 1.1. This is mainly because it is much easier to
deal with antecedent and succedent sets instead of sequences. Moreover, GW satisfies the
structural rules of GW1, as these are embedded inside its syntax. The latter is shown in
the following proposition.

Proposition 1.6 Weakening and Contraction are derived rules of GW.

Proof: By induction on derivations. �

Of course, there is no need for exchange rules in GW, since we use antecedent and succe-
dent sets. Note that the above proposition may be used in the sequel frequently without
being mentioned.
Finally, assuming we have a standard translation from antecedent and succedent se-
quences to antecedent and succedent sets, and viceversa, it is not difficult to show that:

GW and GW1 are equivalent.

We don’t give any further details on the statement above and this is done on purpose, since
there are many technical details involved and a full argument could be uncomfortably
long.

6Strictly speaking, the isomorphism described above is a mere bijection. The true isomorphism will
become evident when we add a reduction relation to DuCa, which will correspond to cut-elimination in
propositional LK.

8



1.2.3 Reduction relations

In [Wad03a] two reduction relations are proposed for DuCa, representing call-by-value
(CBV) and call-by-name (CBN) approaches. In fact, both these relations are restrictions
of a basic reduction relation, which we present below.

Definition 1.7 (Basic Reduction Rb)
Rb is the one-step reduction relation yielded by the reduction rules listed below, when
these are applied on subobjects of DuCa objects.

(β&1) 〈M,N〉 • fst[K] → M •K
(β&2) 〈M,N〉 • snd[L] → N • L
(β∨1) 〈M〉inl • [K,L] → M •K
(β∨2) 〈N〉inr • [K, L] → N • L
(β¬) [K]not • not〈M〉 → M •K
(βL) M • x.(S) → S{M/x}
(βR) (S).α •K → S{K/α}

(ηL) K → x.(x •K)
(ηR) M → (M • α).α

(ν&1) 〈M,N〉 •K → M • x.(〈x,N〉 •K)
(ν&2) 〈M,N〉 •K → N • y.(〈M, y〉 •K)
(ν∨3) 〈M〉inl •K → M • x.(〈x〉inl •K)
(ν∨4) 〈N〉inr •K → N • y.(〈y〉inr •K)
(ν∨1) M • [K,L] → (M • [α, L]).α •K
(ν∨2) M • [K,L] → (M • [K, β]).β • L
(ν&3) M • fst[K] → (M • fst[α]).α •K
(ν&4) M • snd[L] → (M • snd[β]).β • L

For G,H ∈ DuCa, (G,H) ∈ Rb is usually written G −→b H. a
In rules βL and βR we notice the introduction of substitutions: the statement S{M/x}
is obtained from S if we substitute M for all the free occurrences of x in S. Similarly,
S{K/α} is obtained.
Note that we will often use explicit notation in reduction arrows to indicate the reduction
rule responsible for a reduction7. For example, if G −→b H because of some redex
〈M, N〉 • fst[K] inside G reducing to M •K, we may write G

β&1−→b H. Note also that in
rules ηL and ηR, x and α, respectively, are fresh.
The β-reduction rules listed above correspond to familiar cut elimination techniques for
LK (see for example [GTL89]), and demonstrate further the Curry-Howard isomorphism.
η-expansions entangle the syntax of objects, thus their translations to LK represent non-
meaningful additions of cuts. Finally, ν-rules also entangle the syntax, and their utility

7In this thesis “reduction” is often identified with what some authors call “reduction step”.
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in DuCa will be seen clearly later, when we introduce CBV and CBN reduction relations.
At this point, it is useful to introduce some notation on reduction relation closures which
is standard in this project. We introduce it as definition for easier reference.

Definition 1.8
Suppose R is some reduction relation denoted by −→, then

• its reflexive closure is denoted by −→=

• its transitive closure is denoted by −→+

• its reflexive transitive closure is denoted by −→→ a

Due to duality being present in its reduction rules, Rb is not confluent. For example,
(x • α).β • y.(z • γ) reduces both to x • α and to z • γ. Confluent reduction relations can
be obtained by placing restrictions on Rb. In particular, restrictions placed on Rb can
lead to confluent CBV and CBN reduction relations.
In order for CBV and CBN reduction relations to be defined, one should define first which
objects are to be considered as values. Due to the computational interpretation of terms
and coterms, values are a subset of terms. Dually, one defines covalues as coterms of
special structure. The intuition behind these definitions can be found in [Wad03a].

Definition 1.9 (Values and Covalues)

Value V, W ::= x | 〈V, W 〉 | 〈V 〉inl | 〈W 〉inr | [K]not
Covalue P, Q ::= α | [P, Q] | fst[P ] | snd[Q] | not〈M〉 a

Thus, variable abstractions are not values, and similarly for covariable abstractions.
The reader should not make any correlations with lambda calculus and the fact that in
the latter λ-abstractions are taken as values, since variable (and covariable) abstractions
of DuCa are not quite the same thing. This will become clearer though in the next section.
The reader is also advised to keep in mind the letters used to denote values and covalues,
since these are standard in this project.
It is almost evident that covalues are in a way the duals of values. In fact, covalues are
to call-by-name what values are to call-by-value.

Definition 1.10 (CBV Reduction Rv and CBN Reduction Rn. [Wad03a])
The call-by-value (CBV) reduction relation Rv is the one-step reduction relation yielded
by the CBV reduction rules listed below, when these are applied to subobjects of DuCa
objects. For G, H ∈ DuCa, (G,H) ∈ Rv is usually written G −→v H.
The call-by-name (CBN) reduction relation Rn is the one-step reduction relation yielded
by the CBN reduction rules listed below, when these are applied to subobjects of DuCa
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objects. For G, H ∈ DuCa, (G,H) ∈ Rn is usually written G −→n H.

CBV rules CBN rules

(β&1) 〈V, W 〉 • fst[K] → V •K 〈M,N〉 • fst[P ] → M • P

(β&2) 〈V, W 〉 • snd[L] → W • L 〈M,N〉 • snd[Q] → N •Q

(β∨1) 〈V 〉inl • [K, L] → V •K 〈M〉inl • [P, Q] → M • P

(β∨2) 〈W 〉inr • [K,L] → W • L 〈N〉inr • [P, Q] → N •Q

(β¬) [K]not • not〈M〉 → M •K [K]not • not〈M〉 → M •K

(βL) V • x.(S) → S{V/x} M • x.(S) → S{M/x}
(βR) (S).α •K → S{K/α} (S).α • P → S{P/α}
(ηL) K → x.(x •K) K → x.(x •K)

(ηR) M → (M • α).α M → (M • α).α

(ν&1) 〈M, N〉 •K → M • x.(〈x,N〉 •K) M • fst[K] → (M • fst[α]).α •K

(ν&2) 〈V, N〉 •K → N • y.(〈V, y〉 •K) M • snd[L] → (M • snd[β]).β • L

(ν∨1) 〈M〉inl •K → M • x.(〈x〉inl •K) M • [K, L] → (M • [α, L]).α •K

(ν∨2) 〈N〉inr •K → N • y.(〈y〉inr •K) M • [P, L] → (M • [P, β]).β • L

a
One clearly notes the duality in the definitions of Rv and Rn, which proposes that sums
are treated as ‘duals’ of products.
Another property to be discussed further ahead is this of confluence. Though it is clear
that the case of the critical pair (x • α).β • y.(z • γ) is now resolved in CBV or CBN,
it is not clear that confluence (also called the Church-Rosser property) holds for these
reduction relations. This is studied in the next chapter, and it is shown that indeed
confluence holds under CBV and CBN.

1.2.4 CBV is dual to CBN

In DuCa there is a De Morgan duality present, as advertised in several occasions above.
It is time to see a translation inside DuCa demonstrating this duality. We assume that
there is a bijection mapping every variable x to a covariable xo, and every covariable α
to a variable αo, such that xoo ≡ x and αoo ≡ α.

Definition 1.11 (De Morgan translation. [Wad03a])
For any type A and object G in DuCa, their De Morgan translations Ao and Go are defined
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recursively by:

(X)o ≡ X
(A&B)o ≡ Ao ∨Bo

(A ∨B)o ≡ Ao&Bo

(¬A)o ≡ ¬Ao

(x)o ≡ xo (α)o ≡ αo

(〈M,N〉)o ≡ [Mo, No] ([K, L])o ≡ 〈Ko, Lo〉
(〈M〉inl)o ≡ fst[Mo] (fst[K])o ≡ 〈Ko〉inl
(〈N〉inr)o ≡ snd[No] (snd[L])o ≡ 〈Lo〉inr
(not〈M〉)o ≡ [Mo]not ([K]not)o ≡ not〈Ko〉
((S).α)o ≡ αo.(So) (x.(S))o ≡ (So).xo

(M •K)o ≡ Ko •Mo

The translation is extended to antecedent and succedent sets and to sequents by:

(x1 : A1, . . . , xn : An)o ≡ xo
1 : Ao

1, . . . , x
o
n : Ao

n

(α1 : B1, . . . , αm : Bm)o ≡ αo
1 : Bo

1, . . . , α
o
m : Bo

m

(Γ ➞ Θ ❙ M : A)o ≡ Mo : Ao ❙ Θo ➞ Γo

(K : A ❙ Γ ➞ Θ)o ≡ Θo ➞ Γo ❙ Ko : Ao

(Γ ❙ S ❙ ➞ Θ)o ≡ Θo ❙ So ❙ ➞ Γo

a
Thus, the De Morgan translation of a term is its dual coterm and vice versa. Statements
have statements as duals. It is interesting to see that duality defined as above is an
involution, and also that derivability is preserved under duality.

Proposition 1.12 ([Wad03a])
1. Duality is an involution: for any type A and object G and any sequent σ,

Aoo ≡ A , Goo ≡ G , σoo ≡ σ

2. A sequent σ is derivable iff σo is.

Proof: Straightforward. �

We are now ready to present the main result of this subsection, namely duality between
call-by-value and call-by-name reduction relations in DuCa.

Proposition 1.13 (CBV is dual to CBN. [Wad03a]) Let G,H ∈ DuCa, then

G −→v H iff Go −→n Ho

Proof: Straightforward, because of duality in reduction rules. �
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1.3 Embedding the lambda calculus

In this section we introduce a simple embedding of the simply-typed lambda calculus in
the Dual Calculus (DuCa), which is to serve us solely in clarifying the fact that DuCa is
an extension of lambda calculus. Note that in [Wad03a] CPS translations are defined,
taking objects of DuCa to a restriction of the lambda calculus with sums and products8.
More than that, translations from this latter calculus to DuCa are also defined and some
nice involutive properties are shown. We clarify at this point that our task here is quite
different and clearly simpler, since we only opt for a translation from the simply-typed
lambda calculus to DuCa, with only further ambition the preservation of β-reduction.
The three forms of reduction relations in DuCa, namely basic, call-by-value and call-by-
name reduction, are also present in the simply-typed lambda calculus. Here we will use
the call-by-value relation of the simply-typed lambda calculus and therefore the call-by-
value relation of DuCa. Moreover, we will use, for space economy, the abbreviations of
lambda abstraction and application for DuCa defined earlier, that is:

A ⊃ B ≡ ¬(A&¬B)
λx.M ≡ [z.(z • fst[x.(z • snd[not〈M〉])])]not
N@K ≡ not〈〈N, [K]not〉〉

Note that under these abbreviations we have the following simulation of common β-
reduction:

λx.M • V @K
β−→v V • x.(M •K)

Now, the definition of the simply-typed lambda calculus is standard ([Bar84]).

Definition 1.14
The simply-typed lambda calculus consists of Types and Terms:

Type A,B ::= X | A ⊃ B
Term M,N ::= V | MN
Value V ::= x | λx.M

The set of terms is denoted by Λ. The typing rules for this calculus are:

Ax
x : A,Γ ` x : A

Γ ` M : A ⊃ B Γ ` N : A
App

Γ ` MN : B

Γ, x : A ` M : B
Abs

Γ ` λx.M : A ⊃ B

where Γ is some set of assumptions x1 : B1, . . . , xn : Bn.
The call-by-value reduction relation Rλ

v is yielded by the reduction rule

(λx.M)V → M{V/x}

being applied to subterms of terms. For M,N ∈ Λ, we usually write M −→v N instead
of (M, N) ∈ Rλ

v . a
8see [Dou93] for a definition of the lambda calculus with sums and products.
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The translation of the simply-typed lambda calculus is defined below. Note that all
elements (terms) of the source calculus are translated to terms of DuCa. It is no secret
that notation for translations is taken from [Wad03a].

Definition 1.15
We define the following translation from simply-typed lambda calculus to DuCa:

(A)D ≡ A
(x)D ≡ x
(λx.M)D ≡ λx.(M)d

(V )d ≡ ((V )D • α).α
(MN)d ≡ ((M)d • (N)d@α).α a

Note that the α’s in the last two lines above are fresh.
The reason for using this two-step definition for (M)d is mainly that, thus, for every value
V , (V )D is a value in DuCa. We can prove the following propositions.

Proposition 1.16 For any x,M, V, γ, L ∈ DuCa, we have that:

λx.M • (V • γ).γ@L
βν−→→v V • x.(M • L)

Proof: Straightforward. �

Proposition 1.17 For any M, V, x ∈ Λ: (M)d{(V )D/x} ≡ (M{V/x})d

Proof: By induction on M ∈ Λ. �

Proposition 1.18 For any M ∈ Λ and α ∈ DuCa: ((M)d • α).α
βR−→v (M)d.

Proof: By induction on M ∈ Λ. �

Thus, we can prove that the translation defined produces the desired embedding.

Proposition 1.19 (Embedding of CBV simply-typed lambda calculus)

1. If M ∈ Λ and Γ ` M : A is derivable, then Γ ➞ ❙ (M)d : A is derivable.

2. For any x,M, V ∈ Λ: ((λx.M)V )d βν−→→v (M{V/x})d.

Proof: 1 is proven by induction on the derivation of the former sequent in the simply-
typed lambda calculus. For 2, we have:

((λx.M)V )d ≡ ((λx.M)d • (V )d@α).α

≡ ((λx.(M)d • β).β • ((V )D • γ).γ@α).α
βR−→v (λx.(M)d • ((V )D • γ).γ@α).α
βν−→→v

prop.1.16
((V )D • x.((M)d • α)).α

βL−→v ((M)d{(V )D/x} • α).α

≡
prop.1.17

((M{V/x})d • α).α
βR−→v

prop.1.18
(M{V/x})d
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It is important to note that, under the defined translation, we need to use ν-reductions
in DuCa in order to preserve β-reductions of the simply-typed lambda calculus. Indeed,
ν-reductions are needed in proposition 1.16 and, in particular, the ν&1 rule is used (in
the omitted proof). This fact gives us a hint on the role of ν-rules in DuCa: they are
rather complementary to β-rules, facilitating some β-reductions otherwise forbidden by
CBV (or CBN) restrictions, than entirely novel rules.

2 Syntactic investigations

In this chapter we investigate some syntactic properties of the Dual Calculus under call-
by-value (CBV) reduction. Because of duality with call-by-name (CBN), all results proven
here have analogs for the call-by-name case.
First, we examine the untyped Dual Calculus and prove confluence, or Church-Rosser
property, under CBV. The proof follows, in rough lines, the proof of βη-reduction being
Church-Rosser (CR) in the lambda calculus, as it is presented in [Bar84].
Another important syntactic property to examine is Strong Normalization (SN). For this,
we investigate the typed version of the Dual Calculus under all call-by-value reduction
rules except for ν-rules; the latter omission being for simplicity. Also, restrictions are
applied on η-rules, so as to avoid loops in reduction sequences. In order to prove SN
for this reduction relation, we first prove SN in a simpler calculus using the method of
reducibility sets of Tait, as described in [GTL89] for the simply-typed lambda calculus.
Afterwards, we introduce the call-by-value CPS translation of the Dual Calculus, as
described in [Wad03a], and cite some very useful results concerning the translation and
the target calculus. Finally, using the proven results, we prove the required SN theorem.
The chapter ends with a consideration of a restricted version of call-by-value reduction
which satisfies both the CR and SN properties.

2.1 Investigation of Church-Rosser property

In this section we are interested in the untyped version of the Dual Calculus under call-
by-value reduction. The untyped dual calculus (DuCa) consists solely of Objects. The set
of objects is the union of the set of Terms, Coterms and Statements:

Object G,H ::= M | K | S
Term M,N ::= x | 〈M,N〉 | 〈M〉inl | 〈N〉inr | [K]not | (S).α
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | x.(S)
Statement S, T ::= M •K
Value V,W ::= x | 〈V,W 〉 | 〈V 〉inl | 〈W 〉inr | [K]not

Recall also that the call-by-value (CBV) reduction relation Rv is the one-step reduction
relation yielded by the CBV reduction rules listed below, when these are applied to
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subobjects of DuCa objects.

(β&1) 〈V,W 〉 • fst[K] → V •K
(β&2) 〈V,W 〉 • snd[L] → W • L
(β∨1) 〈V 〉inl • [K, L] → V •K
(β∨2) 〈W 〉inr • [K, L] → W • L
(β¬) [K]not • not〈M〉 → M •K
(βL) V • x.(S) → S{V/x}
(βR) (S).α •K → S{K/α}

(ηL) K → x.(x •K)
(ηR) M → (M • α).α

(ν&1) 〈M,N〉 •K → M • x.(〈x,N〉 •K)
(ν&2) 〈V,N〉 •K → N • y.(〈V, y〉 •K)
(ν∨1) 〈M〉inl •K → M • x.(〈x〉inl •K)
(ν∨2) 〈N〉inr •K → N • y.(〈y〉inr •K)

For G,H ∈ DuCa, (G,H) ∈ Rv is denoted by G −→v H.
For the rest of this section, the restriction of Rv to βν-rules (i.e. β-rules and ν-rules) will

be denoted by
βν−→, and called simply βν-reduction relation. Analogously, the restriction

to η-rules will be denoted by
η−→, and called η-reduction relation.

Finally, recall that, if −→ is (denotes) some reduction relation, then −→= is its reflexive
closure, −→+ its transitive closure, and −→→ its reflexive transitive closure.
Let us give a definition of the Church-Rosser property.

Definition 2.1
Let R ⊂ U2 be some reduction relation denoted by −→, for some universe set U . Then,

• R satisfies the Diamond Property if, for all M, N, K ∈ U ,

if N ←− M −→ K ,

then there is some L ∈ U such that N −→ L ←− K.

• R satisfies the Church-Rosser property, or is Church-Rosser (CR), if its transitive
reflexive closure (−→→) satisfies the diamond property.

• R satisfies the Weak Church-Rosser property (WCR) if, for all M,N,K ∈ U ,

if N ←− M −→ K ,

then there is some L ∈ U such that N −→→ L ←←− K.

a

The purpose of this section is to show that Rv in the dual calculus is Church-Rosser. We
follow the steps below.
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• We show that the βν-reduction relation (i.e. Rv restricted to βν-rules) is CR (lemma
2.6).

• We show that the η-reduction relation is CR (lemma 2.7).

• We show that
βν−→→ and

η−→→ commute (lemma 2.11).

In order to show that βν-reduction relation is Church-Rosser, we define a respective
parallel reduction relation −→p, such that

βν−→= ⊆ −→p ⊆ βν−→→.

Definition 2.2
Let G,M, N, K, L, V, W, S ∈ DuCa; then, −→p is defined by:

(pid) G −→p G

if M −→p M ′ , V −→p M ′′ , N −→p N ′ , W −→p N ′′

and K −→p K ′ , L −→p L′ , S −→p S′ , then:
(pβ&1) 〈V, W 〉 • fst[K] −→p M ′′ •K ′

(pβ&2) 〈V, W 〉 • snd[L] −→p N ′′ • L′

(pβ∨1) 〈V 〉inl • [K, L] −→p M ′′ •K ′

(pβ∨2) 〈W 〉inr • [K, L] −→p N ′′ • L′

(pβ¬) [K]not • not〈M〉 −→p M ′ •K ′

(pβL) V • x.(S) −→p S′{M ′′/x}
(pβR) (S).α •K −→p S′{K ′/α}
(pν&1) 〈M, N〉 •K −→p M ′ • x.(〈x,N ′〉 •K ′)
(pν&2) 〈V, N〉 •K −→p N ′ • y.(〈M ′′, y〉 •K ′)
(pν∨1) 〈M〉inl •K −→p M ′ • x.(〈x〉inl •K ′)
(pν∨2) 〈N〉inr •K −→p N ′ • y.(〈y〉inr •K ′)

(p•) M •K −→p M ′ •K ′

(p〈, 〉) 〈M, N〉 −→p 〈M ′, N ′〉
(p〈〉inl) 〈M〉inl −→p 〈M ′〉inl
(p〈〉inr) 〈M〉inl −→p 〈N ′〉inl
(p[]not) [K]not −→p [K ′]not
(p().) (S).α −→p (S′).α
(p[, ]) [K,L] −→p [K ′, L′]
(pfst[]) fst[K] −→p fst[K ′]
(psnd[]) snd[L] −→p snd[L′]
(pnot〈〉) not〈M〉 −→p not〈M ′〉
(p.()) x.(S) −→p x.(S′)

a
First, we show that parallel reduction preserves values.

Proposition 2.3 Let V be a value and suppose V −→p M . Then, M is also a value.
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Proof: We do induction on V . The base case is V ≡ x, whence M ≡ x.
For the inductive step, we do a case analysis on V :

• V ≡ 〈V1, V2〉 −→p M , so by inspection of the definition, M ≡ 〈M1,M2〉, with
V1 −→p M1, V2 −→p M2, so by IH, M1,M2 are values, hence M is a value.

• the cases V ≡ 〈V1〉inl, V ≡ 〈V2〉inr are similar to the above.

• V ≡ [K]not −→p M , so by inspection, M ≡ [K ′]not, thus M is a value. �

Moreover, parallel reduction satisfies the diamond property. To prove this, we need a
substitution lemma.

Lemma 2.4 (Substitution) Let G,G′, V, V ′,K,K ′ ∈ DuCa with G −→p G′, V −→p

V ′, K −→p K ′. Then, for any variable x and covariable α,

G{V/x} −→p G′{V ′/x}
G{K/α} −→p G′{K ′/α}

Proof: The proof is done by a straightforward induction on G ∈ DuCa. The base cases
(of G ≡ x, G ≡ α and G ≡ x • α) are trivial, since G ≡ G′. The induction step is done
by a long case analysis on G and all cases are straightforwardly proven by using the IH.
�

Lemma 2.5 The relation −→p defined above satisfies the diamond property. That is,
for all G,G1, G2 ∈ DuCa, if G1 p←− G −→p G2, then there exists Gc ∈ DuCa such that
G1 −→p Gc p←− G2.

Proof: See the Appendix. �

Therefore, the βν-reduction relation is CR.

Lemma 2.6 The βν-reduction relation is Church-Rosser; that is, for all
G,G1, G2 ∈ DuCa, if G1

βν←←− G
βν−→→ G2, then there exists Gc ∈ DuCa such that G1

βν−→→
Gc

βν←←− G2.

Proof: By definition of the parallel reduction we have that
βν−→= ⊆ −→p ⊆ βν−→→.

Taking transitive closures in this formula, we have that −→p+ ≡ βν−→→. But, since −→p

satisfies the diamond property, −→p+ is CR, by a simple diagram chase. �

An easier result is that the η-reduction relation is CR.

Lemma 2.7 The η-reduction relation is Church-Rosser; that is, for all
G,G1, G2 ∈ DuCa, if G1

η←←− G
η−→→ G2, then there exists Gc ∈ DuCa such that G1

η−→→
Gc

η←←− G2.
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Proof: It suffices to show that
η−→ satisfies the diamond property, since then the claim

follows by a simple diagram chase.
Let C be any context, then,

C{K} η //

η

²²
η

&&

C{x.(x •K)}

η

²²
η

xx

C ′{K} η // C ′{x.(x •K)}

C{K ′} η // C{x.(x •K ′)}

and similarly for C{M}. Hence,
η−→ satisfies the diamond property. �

Now, regarding βν-reductions, we do the following distinction.

Definition 2.8
All βν-reductions are called simple reductions, except if they happen by application of
βL or βR rules; these latter are called sub≤1 or sub>1 reductions:

V • x.(S)
βL−→ S{V/x} is a sub≤1 reduction if x occurs at most once in S,

otherwise it is a sub>1 reduction. Similarly for the βR rule.
a

The following lemma concerns η-reductions that destroy values.

Lemma 2.9 Let V be a value, M a non-value term, and K a coterm. Then,

V •K
η−→ M •K implies M •K

βν−→→ V •K

where M •K
βν−→→ V •K involves only simple or sub≤1 reductions.

Proof: First note that, if
η−→ reduces the whole of V , we trivially have:

V •K
η−→ (V • x).x •K

βR−→ V •K

where x is fresh, and thus the βR-reduction is sub≤1.
So suppose that

η−→ reduces inside V . Since V is turned to a non-value, V cannot be of
the type [L]not. Repeating this argument several times, we come to the conclusion that
the η-reduction above is in fact:

E{W} •K
η−→ E{(W • α).α} •K where

E ::= {} | 〈E, W ′〉 | 〈W ′, E〉 | 〈E〉inl | 〈E〉inr
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Therefore, we proceed by doing induction on V and a case analysis on E. The case where
E ≡ {} is dealt with above. It also includes the base case V ≡ x.
For the inductive step, we have the following reductions.

〈E{W},W ′〉 •K
η−→ 〈E{(W • α).α},W ′〉 •K

ν−→ E{(W • α).α} • y.(〈y, W ′〉 •K)
(IH) βν−→→ E{W} • y.(〈y, W ′〉 •K)

βL−→ 〈E{W},W ′〉 •K

and similarly for the 〈W ′, E{W}〉 case. Also,

〈E{W}〉inl •K
η−→ 〈E{(W • α).α}〉inl •K

ν−→ E{(W • α).α} • y.(〈y〉inl •K)
(IH) βν−→→ E{W} • y.(〈y〉inl •K)

βL−→ 〈E{W}〉inl •K

and similarly for the 〈E{W}〉inr case. �

Then, we can prove the following lemmata.

Lemma 2.10 If G,G1, G2 ∈ DuCa, and G1
βν←− G

η−→ G2, then either

• G2
βν−→→ G, by use of simple or sub≤1 reductions, or

• if G
βν−→ G1 is simple or sub≤1, then there exists Gc such that

G1
η−→= Gc

βν←− G2, and G2
βν−→ Gc is simple or sub≤1;

otherwise, if G
βν−→ G1 is sub>1, then there exists Gc such that

G1
η−→→ Gc

βν←− G2, and G2
βν−→ Gc is sub>1.

Proof: We do a case analysis on the reduction G
βν−→ G1, which we label with an index:

G
βν0

−→ G1.
In the following, C denotes some context and G is C{G′}, with G′ being the redex of
βν0

−→. The cases of G
η−→ G2 being an η-reduction that can be trivially ‘reverted’ by a

one-step β-reduction, for example
C{V • x.(S)} η−→ C{V • y.(y • x.(S))} β−→ C{V • x.(S)} , are trivial and omitted for
economy. For the same reason, the cases of this η-reduction affecting solely C and not
its content, for example C{V • x.(S)} η−→ C ′{V • x.(S)}, are also omitted.
Hence, we have the following diagrams.
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For
βν0

−→ being βL:

C{V • x.(S)} βν0
//

η

wwoooooooooooooooooo

η

²²
η

&&

C{S{V/x}}

η

²²
η1

{{{{

C{M • x.(S)}

βν

77 77oooooooooooooooooo
C{V • x.(S′)} βν // C{S′{V/x}}

C{V ′ • x.(S)} βν1
// C{S{V ′/x}}

where M is a non-value, and for it lemma 2.9 is applied. Note in
η1

−→→ that only in the

occasion where
βν0

−→ is sub>1 are there more than one η-steps required. In this case,
βν1

−→
is also sub>1.

For
βν0

−→ being βR:

C{(S).α •K} βν0
//

η

²²
η

&&

C{S{K/α}}

η

²²
η1

{{{{

C{(S′).α •K} βν // C{S′{K/α}}

C{(S).α •K ′} βν1
// C{S{K ′/α}}

where the same comments as above apply for
η1

−→→,
βν1

−→.
For β&1:

C{〈V, W 〉 • fst[K]} βν0
//

η

vvlllllllllllllllllllll

η

²²

C{V •K}

η

= ²²
C{M • fst[K]}

βν

66 66lllllllllllllllllllll
C{〈V ′,W ′〉 • fst[K ′]} βν // C{V ′ •K ′}

where M is a non-value. The cases of β&2, β∨1, β∨2 are similar and this of β¬ is similar
but simpler.
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For ν&2:

C{〈V, N〉 •K} βν0
//

η

²²

η

))SSSSSSSSSSSSSSSSSSSSSSS
C{N • y.(〈V, y〉 •K)}

η

))SSSSSSSSSSSSSSSSSSSSSSS

C{〈M, N〉 •K}

ν&1

²²

C{〈V ′, N ′〉 •K ′} βν // C{N ′ • y.(〈V ′, y〉 •K ′)}

C{M • x.(〈x, N〉 •K)}

βν (lemma 2.9)

²²²²
C{V • x.(〈x,N〉 •K)}

βL

88

where M is a non-value, and (since V
η−→ M) V • x.(〈x,N〉 •K)

η−→ M • x.(〈x,N〉 •K),
whence lemma 2.9 can be applied. The cases of ν&1, ν∨1, ν∨2 are similar but simpler. �

Lemma 2.11 (Commutativity)
βν−→→ and

η−→→ commute; that is, for all G,G′, G′′ ∈
DuCa, if G′ βν←←− G

η−→→ G′′, then there exists some Gc ∈ DuCa such that G′ η−→→ Gc
βν←←−

G′′.

Proof: Suppose that

G′ ≡ Hm
βν←− · · · βν←− H2

βν←− H1
βν←− G

η−→ G1
η−→ G2

η−→ · · · η−→ Gn ≡ G′′

and assume n > 0 (the case n = 0 is trivial). We do induction on m; the base case,
m = 0, is trivial.
So fix some m > 0. We claim that there exist u1, u2, . . . un ∈ DuCa such that,

G
η //

βν0

²²

G1
η //

βν1

²²²²

· · · η // Gn

βνn

²²²²
H1

η // // u1
η // // · · · η // // un

hence G

βν

²²

η // // Gn

βν

²²²²
H1

η // // un

Thus, applying the claim, we only need to prove commutativity for the reduction chain,

G′ ≡ Hm
βν←− · · · βν←− H2

βν←− H1
η−→→ un

for which the IH on m applies.

Hence, it suffices to prove our claim. By hypothesis, H1
βν0

←− G
η−→ G1. Now, by lemma
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2.10, if
βν0

−→ is a simple or sub≤1 reduction, then one of the following diagrams must be
the case,

G
η //

βν0

²²

G1

βν1′

²²²²
H1

η(id)

=
##GGGGGGGGGGGGGG G

βν0

²²
u1 ≡ H1

or G
η //

βν0

²²

G1

βν1

²²
H1

η

=
// u1

In both cases
βν1′
−→→ and

βν1

−→ include only simple or sub≤1 reductions. Thus, we can reuse
this reasoning repeatedly and finally get the following diagram, which proves the claim
in this case.

G
η // //

βν0

²²

Gn−1
η //

βν

²²

Gn

βν

²²²²
H1

η

½½ ½½6
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

w1
η

=
//

βν

²²

w′1

βν

²²²²
w2

η

=
//

βν

²²

w′2

βν

²²²²
...

βν

²²

...

βν

²²²²
vn−1 ≡ wk

η

=
// w′k ≡ un
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Now suppose
βν0

−→ is a sub>1 reduction. Then, by lemma 2.10, one of the following
diagrams must be the case.

G
η //

βν0

²²

G1

βν1′

²²²²
H1

η(id)

## ##GGGGGGGGGGGGGG G

βν0

²²
u1 ≡ H1

or G
η //

βν0

²²

G1

βν1

²²
H1

η // // u1

with
βν1′
−→→ including only simple or sub≤1 reductions and

βν1

−→ being a sub>1 reduction.
Therefore, both diagrams have the form:

G
η //

βν0

²²

G1

βν(simple or sub≤1)

²²²²
H1

η

!! !!B
BB

BB
BB

BB
BB

B
w1

βν(sub>1)

²²
u1
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Reasoning thus repeatedly and handling Gi
βν−→→ wi in the same way as G

βν0

−→ H1

previously (where
βν0

−→ was simple or sub≤1), we have the following diagram.

G
η //

βν0(sub>1)

²²

G1
η //

βν

²²²²

G2
η //

βν

²²²²

· · · η // Gn−1
η //

βν

²²²²

Gn

βν

²²²²

H1

η

ÃÃ ÃÃB
BB

BB
BB

BB
BB

B
w1

η

=
//

βν(sub>1)

²²

w′1

βν

²²²²
u1

η

!! !!CC
CC

CC
CC

CC
CC

w2
η

=
//

βν(sub>1)

²²

· · ·

u2

η

ÃÃ ÃÃ@
@@

@@
@@

@@
@@

@

. . .
η

!! !!CC
CC

CC
CC

CC
CC

C
wn−1

βν(sub>1)

²²

η

=
// w′n−1

βν

²²²²
un−1

η

## ##GGGGGGGGGGGGG wn

βν(sub>1)

²²
un

which proves the claim and the lemma. �

Combining the results above we prove confluence for the call-by-value reduction rela-
tion.

Theorem 2.12 Rv is Church-Rosser; that is, for all G,G1, G2 ∈ DuCa

if G1
v←←− G −→→v G2 ,

then there exists Gc ∈ DuCa such that G1 −→→v Gc
v←←− G2 .

Proof: By lemmata 2.6,2.7 and 2.11, as in [Bar84]. �

2.2 Strong Normalization

In this section we investigate the typed version of the Dual Calculus under call-by-value
reduction without ν-rules and with some restrictions on η-rules. We prove that this
reduction relation is strongly normalizing. The steps we follow for this proof are:
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• We prove SN in a similar calculus, called Dual Calculus* (DuCa*)9, under a similar
reduction relation, using the method of reducibility sets.

• We introduce the call-by-value CPS translation of the Dual Calculus, as described
in [Wad03a]. Under this translation reductions are preserved and in some cases
one-step reductions are preserved or lengthened. Moreover, the reduction relation
of the target calculus is SN.

• Using the results of the previous steps, we can straightforwardly prove SN.

Let us recall the definition of Strong Normalization.

Definition 2.13
Let R ⊂ U2 be some reduction relation on some universe U . Then,

• if G ∈ U , then G is Strongly Normalizing (under R), or simply SN, if there is no
infinite R-reduction sequence starting from G.

• R is Strongly Normalizing if all elements of U are SN.

Moreover, if G ∈ U is SN, then l(G) is the length of the longest R-reduction path starting
from G. a

2.2.1 The reduction relation of DuCa* is SN

We introduce an auxiliary calculus similar to DuCa.

Definition 2.14 (Dual Calculus* and its reduction relation R*)
The Dual Calculus* (DuCa*) is a typed calculus consisting of Types and Objects. The
set of objects is the union of the sets of Terms, Coterms and Statements:

Type A,B ::= X | A&B | A ∨B | ¬A
Object G,H ::= M | K | S
Term M, N ::= Mn | (S).α
Neutral Term Mn ::= Ms | (S)¯α
Simple Term Ms ::= x | 〈M,N〉 | 〈M〉inl | 〈N〉inr | [K]not
Coterm K, L ::= Kn | x.(S)
Neutral Coterm Kn ::= Ks | x¯(S)
Simple Coterm Ks ::= α | [K,L] | fst[K] | snd[L] | not〈M〉
Statement S, T ::= M •K

An object G of DuCa* is neutral if it is a neutral term, or a neutral coterm, or a statement.
R* is the one-step reduction relation yielded by the following rules, when these are applied

9DuCa* is a calculus with no value of its own; it just serves us in the proof of SN of DuCa.
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to subobjects of DuCa* objects.

(βL) Mn • x.(S) → S{Mn/x}
(βR) (S).α •K → S{K/α}
(ηL) Ks → x¯(x •Ks)
(ηR) Ms → (Ms • α)¯α

For G,H ∈ DuCa, (G,H) ∈ R* is written G −→ H.
The η-rules are not allowed to be applied to terms [resp. coterms] that are immediately
followed by [immediately follow] some cut ′•′.
The typing rules for DuCa* are the same as those of DuCa (i.e. of system GW), with the
addition of RI¯ and LI¯ rules introducing ′¯′:

x : A, Γ ❙ S ❙ ➞ Θ
LI¯

x¯(S) : A ❙ Γ ➞ Θ

Γ ❙ S ❙ ➞ Θ, α : A
RI¯

Γ ➞ Θ ❙ (S)¯α : A

The addition of these rules yields the sequent calculus GW*. a
Note that by the above definition neutral elements are preserved by reduction: if G is
neutral and G −→ G′, then G′ is neutral.
The DuCa* differs from DuCa in the addition of ′¯′ and the usage of the more general
notion of neutral terms instead of values:

• The ′¯′ symbol is a ‘neutralizing dot’ for statements, since we can’t apply β-rules
to it, for example:

Mn • x.(S) → S{Mn/x} but Mn • x¯(S)9 S{Mn/x}

• On the other hand, since we don’t have extra β-rules as in the DuCa, we can simplify
the distinctions inside terms and use neutral terms instead of values.

Regarding derivable sequents that type elements of DuCa*, we use the usual notation
described in definition 1.2.1. We also introduce some notation regarding ‘reduction’
between sequents.

Definition 2.15
If G,G′ ∈ DuCa* and σ, σ′ are sequents in GW*, then

• σ ∈ TG(A,Γ, Θ) if σ is derivable in GW* and either

σ ≡ Γ ➞ Θ ❙ M : A and G is a term M , or
σ ≡ K : A ❙ Γ ➞ Θ and G is a coterm K, or
σ ≡ Γ ❙ S ❙ ➞ Θ and G is a statement S.

• σ ∈ TG(A) if σ ∈ TG(A, Γ, Θ) for some Γ, Θ.
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• σ ∈ TG(Γ, Θ) if σ ∈ TG(A,Γ, Θ) for some type A.

• σ ∈ TG if σ ∈ TG(A,Γ, Θ) for some A,Γ, Θ. G is typed if TG 6= ∅.
• If σ ∈ TG(A, Γ,Θ) and σ′ ∈ TG′(A, Γ, Θ), then σ −→ σ′ if G −→ G′. a

As noted before, if σ ∈ TG and σ ∈ TG′ , then G ≡ G′. Moreover, for all statements S and
types A, TS = TS(A). Further, an element G of the calculus can be assigned more than
one types and, on the other hand, we allow for elements G with TG = ∅. For example,
G ≡ 〈x, x〉 • [a, a] is not typed.
Now, subject reduction holds for DuCa*.

Proposition 2.16 (Subject Reduction) Let G, G′ ∈ DuCa* and assume that G −→
G′. Then, if σ ∈ TG(A,Γ, Θ), some sequent σ, then there exists a sequent σ′ ∈ TG′(A,Γ, Θ)
and thus σ −→ σ′.

Proof: The case of G reducing to G′ by η-rules is straightforward. As far as β-rules
are concerned, the claim is proven by substituting proofs (derivations) in the sequent
calculus. �

Neutral elements of DuCa* are like ‘boxes’ the inside of which cannot be accessed by
outer reductions. Indeed, neutral terms are like variables with extra structure, and simi-
larly for neutral coterms and covariables. This remark is implicitly used in the proof of
the following lemma.

Lemma 2.17 If M is a neutral term and S a statement, and both M and S are SN, then
M • x.(S) is SN for any variable x.
If K is a neutral coterm and S a statement, and both K and S are SN, then (S).α •K is
SN for any covariable α.

Proof: We prove only the first claim; the second is proven similarly.
We do induction on l(M) + l(S). Let S0 ≡ M • x.(S). If S0 −→ S?, then either
S? ≡ M ′ • x.(S′), with M −→ M ′ or S −→ S′, or S? ≡ S{M/x}.
In the former case, we have l(M ′) + l(S′) < l(M) + l(S), so M ′ • x.(S′) is SN by the IH.
Now, if we prove that in the latter case S{M/x} is SN, then S0 reduces only to SN
elements, so S0 is SN.
In order to prove this for the latter case, we show something stronger:

For any statement S ∈ SN and variable x, if we mark the occurrences of x
inside S by 1, 2, . . . , n, then for any tuple M1, . . . , Mn of neutral SN terms,

S1 ≡ S{M1/1x, M2/2x, . . . , Mn/nx} ∈ SN

where Mi/ix denotes the substitution of the i-occurrence of x in S for Mi.
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The proof of this claim is by induction on l(S). For the base case, that is of S being in
normal form, we have that the redexes inside S1 are exactly those inside the Mis, since
S doesn’t contain any redexes and all Mis are neutral. But then S1 is SN, since all Mis
are SN.
For the inductive step, assume l(S) > 0 and suppose that there is some infinite reduction
sequence starting from S1. Then, since the Mis are SN, in this sequence it must be the
case that,

S1 −→→ S2 −→ S′1 , with S2 ≡ S{M ′
1/1x, . . . ,M ′

n/nx} , some Mi −→→ M ′
i ,

i = 1, . . . , n, and S′1 ≡ S′{N1/1x, . . . , Nn+k/n+kx}

where the reduction S −→ S′ produces k ∈ Z new occurrences of x. In S′1, all x’s are
substituted for some of the M ′

is (denoted by Nj , j = 1, . . . , n + k). Then, by IH, since
N1, . . . , Nn+k are all SN and neutral, and S′ is SN with l(S′) < l(S), S′1 is SN, 	to this
being an infinite reduction sequence. Hence, S1 is SN, and thus our initial S{M/x} is SN. �

A similar idea is applied in the following lemma.

Lemma 2.18 If S is a statement and α a covariable not occurring immediately after a
cut in S, then, if S{K/α} is SN for some coterm K, then S is SN.

Proof: We prove something stronger:

For any statement S and covariable α not occurring in S immediately after a
cut, if we mark the occurrences of α in S by 1, 2, . . . , n and there exist coterms
K1, . . . , Kn such that Sp ≡ S{K1/1α, . . . , Kn/nα} ∈ SN, then S ∈ SN.

Above, Ki/iα denotes the substitution of the i-occurrence of α in S for Ki.
The proof of this claim is by induction on l(Sp). The base case is this of Sp being in
normal form. Then, whenever S −→→ S?, we have S? ≡ S{L1/1α, . . . , Ln/nα}, where, for
each i, Li ≡ α or Li ≡ x¯(x•α), that is the only reductions available are the η-expansions
of α’s; therefore, S is SN.
For the inductive step, suppose there is some infinite reduction sequence from S. Then,
in this sequence it must be the case that,

S −→→ S1 −→ S′1 , with S1 ≡ S{L1/1α, . . . , Ln/nα} , some Lis as above,
and S′1 ≡ S′{L′1/1α, . . . , L′n+k/n+kα}

where the reduction S −→ S′ produces k ∈ Z new occurrences of α. In S′1, all α’s are
substituted for some of the Lis (denoted by L′j , j = 1, . . . , n + k). But now,

Sp ≡ S{K1/1α, . . . , Kn/nα} −→ S′{K ′
1/1α, . . . ,K ′

n+k/n+kα} ≡ S′p

where the K ′
is are selected from the Kis and, since Sp is SN, S′p is SN. Moreover,

l(S′p) < l(Sp), thus S′ ∈ SN, by IH. But clearly S′ −→→ S′1, thus there is an infinite
reduction sequence starting from S′, 	.
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Hence, S is SN. �

Back to the sequent calculus, we order derivable sequents by their degree.

Definition 2.19
Let G ∈ DuCa* and σ ∈ TG. Then, the degree of σ, d(σ) is:

d(σ) := (c(σ), ncut(σ))

where:

• if σ ≡ K : A ❙ Γ ➞ Θ , then c(σ) = c(Γ) + c(Θ) , ncut(σ) = 1,

• if σ ≡ Γ ➞ Θ ❙ M : A , then c(σ) = c(Γ) + c(Θ) , ncut(σ) = 1,

• if σ ≡ Γ ❙ S ❙ ➞ Θ , then c(σ) = c(Γ) + c(Θ) , ncut(σ) = 0,

• if Γ ≡ x1 : A1, x2 : A2, . . . , xn : An , then c(Γ) = c(A1) + c(A2) + · · ·+ c(An),

• if Θ ≡ α1 : B1, α2 : B2, . . . , αn : Bm , then c(Θ) = c(B1) + c(B2) + · · ·+ c(Bm),

• if A is some type, then c(A) is its complexity, that is the number of connectives
contained in A.

We order degrees lexicographically. a
We define the set of reducible sequents, which is a subset of derivable sequents.

Definition 2.20
The set of reducible sequents Red is defined by induction on the degree of (derivable)
sequents:

• if d(σ) = (0, n), n ∈ {0, 1} and σ ∈ TG, then σ ∈ Red ⇐⇒ G ∈ SN

• if d(σ) = (c, n), n ∈ {0, 1}, c > 0 and σ ∈ TG, then σ ∈ Red ⇐⇒ cl(σ) ⊂ Red

• if d(σ) = (c, 1), c > 0, σ ≡ Γ ➞ Θ ❙ M : A, σ ∈ TM , then cl(σ) is the set:

σ2 ≡ Γ, Γ0 ❙ M •K0 ❙ ➞ Θ, Θ0

if σ1 ≡ K0 : A ❙ Γ0 ➞ Θ0 ∈ (Red ∩ TK0) , d(σ1) < d(σ) , d(σ2) < d(σ) , and if M
is neutral, then K0 is neutral.10

10This is in fact an abbreviation for:

cl(σ) := {σ2 | ∃A, K0, Γ0, Θ0, σ1.[ (σ2 ≡ Γ, Γ0 ❙ M •K0 ❙ ➞ Θ, Θ0) ∧ (σ1 ≡ K0 : A ❙ Γ0 ➞ Θ0)

∧ (σ1 ∈ (Red ∩ TK0)) ∧ (d(σ1) < d(σ)) ∧ (d(σ2) < d(σ)) ∧ (M neutral =⇒ K0 neutral)]}
Note that σ, σ1 being derivable implies that σ2 is derivable, thus d(σ2) is defined.
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• if d(σ) = (c, 1), c > 0, σ ≡ K : A ❙ Γ ➞ Θ, σ ∈ TK , then cl(σ) is the set:

σ2 ≡ Γ, Γ0 ❙ M0 •K ❙ ➞ Θ, Θ0

if σ1 ≡ Γ0 ➞ Θ0 ❙ M0 : A ∈ (Red ∩ TM0) , d(σ1) < d(σ) , d(σ2) < d(σ) , and M0 is
neutral.

• if d(σ) = (c, 0), c > 0, σ ≡ Γ ❙ S ❙ ➞ Θ, σ ∈ TS , then cl(σ) is the union of the
sets:

σ1 ≡ Γ ➞ Θ− {β : B} ❙ (S)¯β : B , if β : B ∈ Θ, c(B) > 0
σ2 ≡ y¯(S) : B ❙ Γ− {y : B} ➞ Θ , if y : B ∈ Γ, c(B) > 0

a

Note that the above definition is valid. In all cases, the question of σ ∈ Red reduces to
questions of σ′ ∈ Red, with d(σ′) < d(σ). For example, in the last case we have that,
for all such σ1, d(σ1) < d(σ), since we subtract a non-base type B from Θ, and σ being
derivable implies σ1 is derivable.
Note also that , if σ −→ σ′, then d(σ) = d(σ′).
The following proposition assures that for any type A we can find terms and coterms
typed with A using only variables and covariables of base type.

Proposition 2.21 For any type A there exist derivable sequents:

σ1 ≡ Γ1 ➞ Θ1 ❙ M : A

σ2 ≡ K : A ❙ Γ2 ➞ Θ2

such that d(σ1) = d(σ2) = (0, 1) and M,K are neutral and SN.

Proof: We derive σ1 by:

x : X ➞ α : X, β : A ❙ x : X α : X ❙ x : X ➞ α : X,β : A

x : X ❙ x • α ❙ ➞ α : X, β : A

x : X ➞ α : X ❙ (x • α)¯β : A

and similarly σ2. �

The following lemma shows the relation between the reducibility set Red of sequents
and the set SN of strongly normalizing elements of DuCa*.

Lemma 2.22 Let σ be some derivable sequent, then,

CR1: If σ ∈ (TG ∩ Red), some G, then G is SN.

CR3: If σ ∈ TG, some neutral G, and σ −→ σ′ implies that σ′ ∈ Red, then σ ∈ Red.
This implies:
CR3’: If σ ∈ TG, G neutral and SN, then σ ∈ Red.
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CR2: If σ ∈ (Red ∩ TG), some G, and σ −→ σ′, then σ′ ∈ Red.

Proof: See the Appendix. �

A straightforward corollary of the lemma is the following.

Corollary 2.23 Let G be some element of DuCa, then:

• If G is neutral and SN, then TG ⊂ Red.

• If (TG ∩ Red) 6= ∅ and G is neutral, then TG ⊂ Red.

• If K is some coterm and (TK ∩ Red) 6= ∅, then TK ⊂ Red.

Proof: The first claim is clear from CR3’.
For the second, if σ ∈ (TG ∩ Red), then, by CR1, G is SN, so TG ⊂ Red by first claim.
For the last claim, if K is neutral, then we use the previous claim. Otherwise, assume
K ≡ x.(S) and take some σ ≡ x.(S) : A ❙ Γ ➞ Θ ∈ TK . Then, σ ∈ Red iff for all
neutral M0 and σ1 ≡ Γ0 ➞ Θ0 ❙ M0 : A ∈ (Red ∩ TM0) with d(σ1) < d(σ):
if σ2 ≡ Γ, Γ0 ❙ M0 • x.(S) ❙ ➞ Θ, Θ0 and d(σ2) < d(σ), then σ2 ∈ Red.
For this, it suffices to show that M0 • x.(S) is SN, by first claim. But x.(S) is SN, by
hypothesis and CR1, and thus S is SN. Moreover, by CR1, M0 is also SN, thus, by lemma
2.17, M0 • x.(S) is SN. �

We can prove the following lemma for sequents typing non-neutral terms.

Lemma 2.24 Let σ ≡ Γ ➞ Θ ❙ (S).α : A be some derivable sequent. If, for all
coterms L with TL(A) ∩ Red 6= ∅, we have TS{L/α} ⊂ Red, then σ ∈ Red.

Proof: Assume the hypothesis. σ ∈ Red iff for all coterms K0 and sequents σ1 ∈
(TK0 ∩ Red) with d(σ1) < d(σ) and σ1 ≡ K0 : A ❙ Γ0 ➞ Θ0:

if σ2 ≡ Γ, Γ0 ❙ (S).α •K0 ❙ ➞ Θ, Θ0 and d(σ2) < d(σ) , then σ2 ∈ Red.

Now take any such σ1,K0, σ2. By corollary 2.23, Tα ⊂ Red, ∴ TS ⊂ Red, by hypothesis.
Since (S).α is typed, S is also typed, thus, by CR1, S ∈ SN. Since K0 is also SN, by CR1,
we show by induction on l(S) + l(K0) that, if σ1 ∈ (TK0(A) ∩ Red) and for all coterms L
with TL(A) ∩ Red 6= ∅ we have TS{L/α} ⊂ Red, then σ2 ∈ Red.
So suppose that σ2 −→ σ′2. By CR3, it suffices to show that σ′2 ∈ Red. Now, σ′2 may be:

• σ′2 ≡ Γ, Γ0 ❙ S{K0/α} ❙ ➞ Θ,Θ0 , where, since σ1 ∈ (TK0(A) ∩ Red), we have
TK0 ∩ Red 6= ∅ and, by hypothesis, TS{K0/α} ⊂ Red, ∴ σ′2 ∈ Red.

• σ′2 ≡ Γ,Γ0 ❙ (S′).α •K ′
0 ❙ ➞ Θ, Θ0 , where S −→ S′ or K0 −→ K ′

0.
By CR2, σ′1 ≡ K ′

0 : A ❙ Γ0 ➞ Θ0 ∈ Red. Thus, if we show that TS′{L/α} ⊂ Red,
for all relevant L, then we can use the IH on l(S) + l(K0) and get σ′2 ∈ Red.
Now take some relevant L. By corollary 2.23, it suffices to show that S′{L/α} is SN.
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Since (S).α and L are typed with A, (S).α • L is also typed, ∴ S{L/α} is typed,
∴ S{L/α} ∈ SN, by hypothesis and CR1. Therefore, if S{L/α} −→ S′{L/α}, we’re
done.
The only case this latter reduction cannot happen is when S −→ S′ is a reduction
affecting some occurrence of α and which cannot happen with L in its place. By
inspection of the reduction rules, the only possible case is this of α η-expanding
inside S and of L being non-simple, so that L cannot η-expand. That is, there is
some context C such that,

S ≡ C{α} −→ C{x¯(x • α)} ≡ S′

S{L/α} ≡ (C{α}){L/α}9 (C{x¯(x • α)}){L/α} ≡ S′{L/α} , L non-simple

Take then S1 ≡ C{α1}, with α1 fresh. Since S{L/α} ∈ SN, S1{L/α} ∈ SN as well,
by lemma 2.18 and the fact that α1 doesn’t follow a cut (otherwise it couldn’t η-
expand). Further, L is also SN, ∴ x¯(x •L) is SN. Then, (S1{L/α}).α1 • x¯(x •L)
is SN by lemma 2.17, therefore S′{L/α} ≡ (S1{L/α}){x¯(x • L)/α1} is SN. �

Now, strong normalization of DuCa* follows from the next theorem.

Theorem 2.25 Let G be some element of DuCa* with free variables amongst x1, x2, . . . , xn

and covariables amongst α1, α2, . . . , αm.
Then, for all coterms Li with TLi ∩ Red 6= ∅, i = 1, . . . ,m, and neutral terms Nj with
TNj ∩ Red 6= ∅, j = 1, . . . , n,

TG{f} ⊂ Red , where f := N1/x1, . . . , Nn/xn, L1/α1, . . . , Lm/αm

Proof: Note first that if G{f} is not typed, then the claim trivially holds. Assume then
that TG{f} 6= ∅. We do induction on G. The base cases, that is of G ≡ x or G ≡ α, are
clear by corollary 2.23.
For the inductive step, we do a case analysis on G, showing only the most difficult cases.
Let σ ∈ TG{f}(A), some type A:

– G ≡ 〈M,N〉. Then G{f} ≡ 〈M{f}, N{f}〉, thus both M{f}, N{f} are typed. By
IH, TM{f} ⊂ Red and TN{f} ⊂ Red, so, by CR1, both N{f} and M{f} are SN.
But then 〈M{f}, N{f}〉 ≡ 〈M, N〉{f} is SN, so, by corollary 2.23, σ ∈ Red.

– G ≡ (S)¯α. Then G{f} ≡ (S{f, α/α})¯α, thus S{f, α/α} is typed. By IH, TS{f,α/α} ⊂
Red, therefore, by CR1, S{f, α/α} is SN.
But then (S{f, α/α})¯α is SN, so, by corollary 2.23, σ ∈ Red.

– G ≡ (S).α. By IH, TS{f,L/α} ⊂ Red, for any coterm L with TL ∩ Red 6= ∅. Then,
TS{f,L/α} ⊂ Red for any coterm L with TL(A)∩Red 6= ∅. Now S{f, L/α} ≡ (S{f}){L/α},
since f is a substitution in (S).α and it doesn’t introduce new α’s. Moreover, σ ≡
Γ ➞ Θ ❙ (S{f}).α : A, some Γ, Θ, so, by lemma 2.24, σ ∈ Red.
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– G ≡ x.(S). By definition and corollary 2.23, it suffices to show that, for every relevant
neutral M0 and σ1 ∈ (TM0(A)∩ Red), M0 • (x.(S){f}) is SN. Now G{f} ≡ x.(S{f, x/x}),
thus S{f, x/x} is typed and, by IH and CR1, S{f, x/x} ∈ SN. Moreover, M0 ∈ SN by
CR1, therefore M0 • (x.(S){f}) is SN by lemma 2.17.

– G ≡ M • K. Then G{f} ≡ M{f} • K{f}, thus both M{f}, K{f} are typed: say
with type B. There are two subcases:

• G ≡ (S).α •K. Let
σ ≡ Γ ❙ ((S).α •K){f} ❙ ➞ Θ

Since σ is derivable, σ1 and σ2 are also derivable:

σ1 ≡ Γ ➞ Θ ❙ (S).α{f} : B

σ2 ≡ K{f} : B ❙ Γ ➞ Θ

By IH, T(S).α{f} ⊂ Red, so σ′1 ∈ (Red ∩ T(S).α{f}), where

σ′1 ≡ Γ ➞ Θ, β : Ab ❙ (S).α{f} : B

with Ab some big type and β fresh.
Now note that, by IH, σ2 ∈ Red and, because of Ab, d(σ2) < d(σ′1). Then, by
definition, σ′1 ∈ Red implies σ′ ∈ (T((S).α•K){f} ∩ Red), where

σ′ ≡ Γ ❙ ((S).α •K){f} ❙ ➞ Θ, β : Ab

with d(σ′) = (c, 0) < (c, 1) = d(σ′1), some c.
But then, by corollary 2.23, σ ∈ Red.

• G ≡ M0 •K, M0 neutral: treated dually as the above case. �

Corollary 2.26 If G ∈ DuCa* is typed, then G is SN.

Proof: Straightforward from the previous theorem and CR1. �

2.2.2 The call-by-value CPS translation

CPS translations in general are very useful when examining extensions of lambda calculi,
since they supply us with a way of projecting given properties of the source calculus to a
well-behaved lambda calculus. In our case, using a CPS translation of the Dual Calculus
enables us to prove that the reduction relation yielded by some β-reduction rules is
strongly normalizing, since these reduction rules are projected in the target calculus.
The call-by-value CPS translation of the Dual Calculus we’ll be using was defined in
[Wad03a]. We quote that definition.
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Definition 2.27 (Call-by-value CPS translation. [Wad03a])
Let M be a term, V a value, K a coterm and S a statement. Then, their call-by-value
CPS translations are (M)v, (V )V , (K)v and (S)v respectively, defined by:

(x)V ≡ x
(〈V, W 〉)V ≡ 〈(V )V , (W )V 〉
(〈V 〉inl)V ≡ inl(V )V

(〈W 〉inr)V ≡ inr(W )V

([K]not)V ≡ Kv

(x)v ≡ λγ.γx
(〈M, N〉)v ≡ λγ.(M)v(λx.(N)v(λy.γ〈x, y〉))
(〈M〉inl)v ≡ λγ.(M)v(λx.γ(inlx))
(〈N〉inr)v ≡ λγ.(N)v(λy.γ(inry))
([K]not)v ≡ λγ.γ(λz.(K)vz)
((S).α)v ≡ λα.(S)v

(α)v ≡ λz.αz
([K, L])v ≡ λz.case z of inlx ⇒ (K)vx, inry ⇒ (L)vy
(fst[K])v ≡ λz.case z of 〈x,−〉 ⇒ (K)vx
(snd[L])v ≡ λz.case z of 〈−, y〉 ⇒ (L)vy
(not〈M〉)v ≡ λz.(λγ.(M)vγ)z
(x.(S))v ≡ λx.(S)v

(M •K)v ≡ (M)v(K)v

We have the following translation of types.

(X)V ≡ X
(A&B)V ≡ (A)V × (B)V

(A ∨B)V ≡ (A)V + (B)V

(¬A)V ≡ (A)V → R

a
In the above definition, boldface lambda-abstractions are administrative, that is they are
reduced automatically on translation.
As follows from the following definition, the target calculus is a restriction of the simply-
typed lambda calculus with products and sums.

Definition 2.28 (The target calculus. [Wad03a])
The CPS target calculus is a typed calculus containing values, terms, coterms and state-
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ments:

Type A, B ::= X | A×B | A + B | A → R

Value V,W ::= x | 〈V, W 〉 | inlV | inrW | K
Term M, N ::= λα.S
Coterm K, L ::= λx.S
Statement S, T ::= αV | case V of 〈x,−〉 ⇒ S | case V of 〈−, y〉 ⇒ T |

case V of inlx ⇒ S, inry ⇒ T | M V

The reduction relation is defined by the following reduction rules.

(β×1) case 〈V, W 〉 of 〈x,−〉 ⇒ S → S{V/x}
(β×2) case 〈V, W 〉 of 〈−, y〉 ⇒ T → T{W/y}
(β+1) case inlV of inlx ⇒ S, inry ⇒ T → S{V/x}
(β+2) case inrW of inlx ⇒ S, inry ⇒ T → T{W/y}
(β →) (λα.S)(λx.T ) → S{T{−/x}/α−}

a
Note that in the above definition S{T{−/x}/α−} stands for S with all occurrences of
the form α V replaced by T{V/x}.
Calculi of this type have been investigated in depth and many nice properties are known
to hold. One such property is strong normalization.

Proposition 2.29 The target calculus of the call-by-value CPS translation is SN under
the given reduction relation.

Proof: It suffices to show that the target calculus is a restriction of the lambda calculus
with sums and products of Dougherty [Dou93], since the latter was shown to be SN.
But this clearly holds. For example, case V of 〈x,−〉 ⇒ S is an abbreviation for
(λx.S)π1V and case V of inlx ⇒ S, inry ⇒ T is an abbreviation for [λx.S, λy.T ]V .
Moreover, the reductions of the target calculus are valid in the calculus of Dougherty. �

A very handy property of the CPS translation is that it preserves reductions.

Proposition 2.30 ([Wad03a]) Let M, N, K,L, S, T be in the Dual Calculus. Then,

M −→v N =⇒ (M)v −→→ (N)v

K −→v L =⇒ (K)v −→→ (L)v

S −→v T =⇒ (S)v −→→ (T )v

In particular, if the left-hand side reduction is of type βL, βR, ηL, ηR or ν, then, in the
right-hand side, −→→ can be replaced by ≡. Otherwise, it can be replaced by −→+.

Proof: The proposition is proven in [Wad03a]. The last part of it is not completely
stated in that paper, yet it is straightforward from the definition of the CPS translation
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and the results that proceed this proposition in [Wad03a]. �

Wadler goes further by defining an inverse CPS translation, which translates elements M
of the target calculus to objects (M)v of the Dual Calculus. Finally, he proves that the
CPS translation is a reflection, as the following proposition states.

Proposition 2.31 ([Wad03a]) Let M, K, S be in the Dual Calculus and N, L, T be in
the target calculus. Then,

M −→→v (N)v ⇐⇒ (M)v −→→ N , and ((N)v)v ≡ N
K −→→v (L)v ⇐⇒ (K)v −→→ L , and ((L)v)v ≡ L
S −→→v (T )v ⇐⇒ (S)v −→→ T , and ((T )v)v ≡ T

Proof: As in [Wad03a]. �

2.2.3 Strong normalization of call-by-value reduction in DuCa

Using the results of the previous sections, we will show that the call-by-value reduction
relation is strongly normalizing in DuCa when ν-rules are omitted and some restrictions
on η-rules are placed in order to avoid loops. We will call this reduction relation Rβη

v .
The reason for not utilizing ν-rules as well is that, if we did so, we would have to prove
SN for a more complicated analog of DuCa*, and that proof is already complicated.
Regarding the restrictions on η-rules, loops may arise, for example, in the following cases.

K −→ x.(x •K) −→ x.(x • y.(y •K)) −→ . . .

K −→ x.(x •K) −→ y.(y • x.(x •K)) −→ . . .

Therefore, Rβη
v is defined as follows.

Definition 2.32
Rβη

v is the one-step reduction relation yielded by the following rules, when these are
applied to subobjects of DuCa objects.

(β&1) 〈V, W 〉 • fst[K] → V •K
(β&2) 〈V, W 〉 • snd[L] → W • L
(β∨1) 〈V 〉inl • [K, L] → V •K
(β∨2) 〈W 〉inr • [K, L] → W • L
(β¬) [K]not • not〈M〉 → M •K
(βL) V • x.(S) → S{V/x}
(βR) (S).α •K → S{K/α}

(ηL) K → x.(x •K)
(ηR) M → (M • α).α

The η-rules are not allowed to be applied to terms [resp. coterms] that are immediately
followed by [immediately follow] some cut ′•′. Moreover, in ηL, K is not of the form y.(S)
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and, in ηR, M is not of the form (S).β.
For G,H ∈ DuCa, (G,H) ∈ Rβη

v is written simply G −→ H. a
The SN result is the following.

Theorem 2.33 Let G ∈ DuCa. Then there is no infinite Rβη
v -reduction sequence starting

from G.

Proof: Let G ∈ DuCa and suppose that there is some infinite Rβη
v -reduction sequence

starting from G: say G −→ G1 −→ G2 −→ . . . . Then, by proposition 2.30, there is a
sequence:

(G)v −→→ (G1)v −→→ (G2)v −→→ . . .

in the target calculus of the CPS translation. By proposition 2.29, the target calculus
is SN, so there is some last element in the sequence, say Mt. Moreover, there is some it
such that, for all i ≥ it, (Gi)v ≡ Mt. But then, by proposition 2.30, in the sequence

Git −→ Git+1 −→ Git+2 −→ . . .

all reductions are instances of βL, βR, ηL or ηR. We claim then that this latter infinite
reduction sequence produces an infinite reduction sequence in DuCa*.
Indeed, Git is also an element of DuCa*. Moreover, the reduction relation for DuCa*
consists of generalizations of the call-by-value βL, βR and restricted ηL, ηR rules, with
the only difference that η-rules introduce the neutralizing dot ′¯′, instead of simple dot
′.′. But note that, under the restrictions we placed, a term (M •α).α generated by ηR is
not immediately followed by some cut, therefore it doesn’t make any difference if the dot
is neutralizing or not. Similarly for coterms x.(x • K) generated by ηL. Therefore, an
infinite reduction sequence in the DuCa* can be produced from Git , 	to corollary 2.26. �

2.3 A call-by-value reduction to satisfy both SN and CR

In this section we investigate a restricted version of the call-by-value reduction relation
in DuCa which satisfies both CR and SN. As done previously, ν-reductions are excluded
for simplicity. In fact, the version of the call-by-value reduction relation we use is Rβη

v of
the previous section with some more restrictions on the η-rules.
Though SN is proven for Rβη

v , there are several ways in which different reductions of
the same element cannot reduce to a common element. These ‘separations’ occur, for
example, in the following cases.

V •K ←− 〈V,W 〉 • fst[K] −→ 〈(V • α).α, W 〉 • fst[K]
V •K ←− 〈V 〉inl • [K, L] −→ 〈(V • α).α〉inl • [K, L]

The reduction relation with the new restrictions is called Rβη
v
′.

Definition 2.34
The reduction rules of Rβη

v
′ are those of Rβη

v (definition 2.32) with the addition of the
following restriction.
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η-rules are not allowed to be applied to values that are immediate subjects to
〈 , V 〉, 〈V, 〉, 〈 〉inl or 〈 〉inr; and to coterms that are immediate subjects
to [ ]not. a

Note that, by these restrictions, values followed by a cut cannot be reduced to non-values.
The separations we saw above could be solved by allowing ν-rules of reduction. However,
the above restrictions on η-rules would be inevitable in order to have SN. Of course, here
there is no matter for ν-rules whatsoever, since we haven’t proven SN with ν-rules.
It is clear that, since Rβη

v
′ is a restriction of Rβη

v and the latter is SN, Rβη
v
′ is SN. Therefore,

we need only to show satisfaction of the CR property, which is much easier with SN at
hand. Indeed, it suffices to prove WCR, by the following proposition11.

Proposition 2.35 (Newman)

SN ∧ WCR⇒ CR

Proof: As in [Bar84]. �

It is convenient to follow a route similar to the one we followed in order to prove CR
of the untyped calculus, though some results may be more strict than we need. Indeed,
proving CR for the β-reduction relation and the diamond property for the η-reduction
relation may not be the most clear steps in order to prove WCR; however, they are steps
already proven.
Below, β-reduction relation is Rβη

v
′ restricted to β-rules, and η-reduction relation is Rβη

v
′

restricted to η-rules.

Lemma 2.36 The β-reduction relation is Church-Rosser.

Proof: The proof is identical to the one of βν being CR in the untyped calculus; this
latter residing in a previous section. We copy definition 2.2 (except for pν-rules) and thus
define a parallel reduction relation, which we show to satisfy the diamond property by
proving the analogous versions of lemmata 2.4 and 2.5. Note that the proofs for these
analogous lemmata are identical to those of the original ones, with the only difference
being the omission of anything that concerns ν-rules. �

Lemma 2.37 The η-reduction relation satisfies the diamond property.

Proof: Nearly identical to proof of lemma 2.7. �

We now prove WCR.

Lemma 2.38 Rβη
v
′ satisfies the Weak Church-Rosser property (WCR); that is, for all

G,G1, G2 ∈ DuCa, if G1 ←− G −→ G2, then there exists some Gc ∈ DuCa such that
G1 −→→ Gc ←←− G2.

11See definition 2.1 for explanation of WCR (Weak Church-Rosser property).

39



Proof: The proof is by a case analysis on G −→ G1 and the possible combinations for
G −→ G2. By lemmata 2.36 and 2.37, we can omit the cases of both reductions being β
or both being η. Therefore, by symmetry, we may assume that G −→ G1 is a β-reduction
and G −→ G2 an η-reduction. In the following diagrams we do the case analysis on
G −→ G1, which is always the topmost horizontal reduction. C is some context and note
that we have omitted the trivial cases of G −→ G2 affecting solely C and not its content.
For G −→ G1 being β&1:

C{〈V,W 〉 • fst[K]} β //

η

²²
η

))

C{V •K}

η

= ²²
C{〈V ′,W ′〉 • fst[K ′]} β // C{V ′ •K ′}

C{〈V, W 〉 • fst[x.(x •K)]} β // C{V • x.(x •K)}

β

ff

The cases of β&2, β∨1, β∨2 and β¬ are similar.
For G −→ G1 being βL:

C{V • x.(S)} β //

η

wwooooooooooooooooo
η

''OOOOOOOOOOOOOOOOO
C{S{V/x}}

η

wwwwooooooooooooooooo
η

''OOOOOOOOOOOOOOOOO

C{V ′ • x.(S)} β // C{S{V ′/x}} C{V • x.(S′)} β // C{S′{V/x}}

For G −→ G1 being βR, we have the dual diagram as above:

C{(S).α •K} β //

η

wwoooooooooooooooooo
η

''OOOOOOOOOOOOOOOOOO
C{S{K/α}}

η

''OOOOOOOOOOOOOOOOOO

η

wwwwoooooooooooooooooo

C{(S).α •K ′} β // C{S{K ′/α}} C{(S′).α •K} β // C{S′{K/α}}

but we must also consider the particular case when S{K/α} cannot reduce to S′{K/α}.
It is not difficult to see that this case occurs when

C{ (C0{α}).α • y.(S) } β //

η

²²

C{ (C0{α}){y.(S)/α} }

×
²²

C{ (C0{x.(x • α)}).α • y.(S) } β // C{ (C0{x.(x • α)}){y.(S)/α} }

β

OO
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where C0{α} is some statement S0, and we use the fact that, by alpha-conversion, we
have

x.(x • y.(S)) −→ x.(S{x/y}) ≡ y.(S) �
We conclude with the main result of this section.

Theorem 2.39 Rβη
v
′ is both SN and CR.

Proof: Since Rβη
v
′ is a restriction of Rβη

v , every reduction sequence of the former is also
a reduction sequence of the latter. By theorem 2.33, Rβη

v is SN, therefore Rβη
v
′ is SN.

Furthermore, by proposition 2.35 and lemma 2.38, Rβη
v
′ is CR. �

3 The second-order case

Girard proposed an extension of the simply-typed lambda calculus, called polymorphic
lambda calculus (system F [GTL89, SU98], or λ2 [Bar92]), which is isomorphic to second-
order propositional intuitionistic logic in Curry-Howard style. Second-order propositional
intuitionistic logic is an extension of propositional intuitionistic logic by quantifiers rang-
ing over propositions. The extension from the simply-typed lambda calculus to F is a
very strong one, with regard to the functions that we can represent in each calculus.
In [FLO83] it is shown that the functions which are representable in the simply-typed
lambda calculus form a proper subset of the elementary functions. The class of elemen-
tary functions is the smallest class of functions which contains the projection functions,
successor, +, −̇ and ×, and is closed under composition and bounded sums and prod-
ucts12. This is indeed a very ‘small’ class of functions. On the other hand, in [GTL89] it is
shown that the functions representable in F are exactly those which are provably total13

in second-order Peano Arithmetic. This is a substantially ‘larger’ class of functions.
Consequently, it is interesting and natural to study second-order extensions for the Dual
Calculus.

3.1 The natural extension

In this section we generalize the Dual Calculus by adding typing rules which introduce
second-order quantifiers to types. The resulting type syntax is this of second-order propo-
sitional classical logic. This rather straightforward generalization yields the Second-Order
Dual Calculus, or DuCa2.

Definition 3.1
The DuCa2 consists of Types and Objects. The set of objects is the union of the sets of

12x −̇y is x− y for x ≥ y, otherwise 0.
13A function f is provably total in a theory T , if there is an algorithm A computing f for which T

proves that A terminates on all inputs.
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Terms, Coterms and Statements:

Type A,B ::= X | A&B | A ∨B | ¬A | ∀X.A | ∃X.A
Object G,H ::= M | K | S
Term M,N ::= x | 〈M,N〉 | 〈M〉inl | 〈N〉inr | [K]not | (S).α
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | x.(S)
Statement S, T ::= M •K

The typing rules are the same as those of DuCa (i.e. of system GW):

idL
α : A ❙ Γ ➞ Θ, α : A

idR
x : A,Γ ➞ Θ ❙ x : A

K : A ❙ Γ ➞ Θ

fst[K] : A&B ❙ Γ ➞ Θ

L : B ❙ Γ ➞ Θ
&L

snd[L] : A&B ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A Γ ➞ Θ ❙ N : B
&R

Γ ➞ Θ ❙ 〈M,N〉 : A&B

Γ ➞ Θ ❙ M : A

Γ ➞ Θ ❙ 〈M〉inl : A ∨B

Γ ➞ Θ ❙ N : B
∨R

Γ ➞ Θ ❙ 〈N〉inr : A ∨B

K : A ❙ Γ ➞ Θ L : B ❙ Γ ➞ Θ
∨L

[K,L] : A ∨B ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A
¬L

not〈M〉 : ¬A ❙ Γ ➞ Θ

K : A ❙ Γ ➞ Θ
¬R

Γ ➞ Θ ❙ [K]not : ¬A

x : A, Γ ❙ S ❙ ➞ Θ
LI

x.(S) : A ❙ Γ ➞ Θ

Γ ❙ S ❙ ➞ Θ, α : A
RI

Γ ➞ Θ ❙ (S).α : A

Γ ➞ Θ ❙ M : A K : A ❙ Γ ➞ Θ
Cut

Γ ❙ M •K ❙ ➞ Θ

plus the second-order rules:

K : A{B/X} ❙ Γ ➞ Θ
∀L

K : ∀X.A ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A
∀R

Γ ➞ Θ ❙ M : ∀X.A

K : A ❙ Γ ➞ Θ
∃L

K : ∃X.A ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A{B/X}
∃R

Γ ➞ Θ ❙ M : ∃X.A

where in ∀R and ∃L there are no free occurrences of X in Γ, Θ. The resulting sequent
calculus is called GW2. a
It is useful to make a note on notation concerning variables, since now we will be using
variables both in the level of term-coterm syntax and in type syntax. The set of term
variables is V ar and the set of coterm covariables is cV ar. If G is some element of DuCa2,
then its free variables form the set FV (G), while its free covariables the set FcV (G). On
the other hand, the set of type variables is denoted by TV ar, and, if A is some type, then
its free type variables form the set FTV (A).
As expected, the extension to DuCa2 is non-trivial, in the sense that there are typed
elements of DuCa2 which are not typed in DuCa. Now, a common example in the lambda
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calculus bibliography of a lambda-term not typed in simply-typed lambda calculus but
typed in λ2 is xx, for any variable x. By translating this term to the dual calculus (as in
section 1.3) we get a term typed in DuCa2 but not typed in DuCa.

Example 3.2 The term ((x • α).α • not〈〈(x • β).β, [γ]not〉〉).γ is typed in DuCa2, yet it
is not typed in DuCa.

Proof: In DuCa2, for any A, we have the following derivation.

================================================
not〈〈(x • β).β, [γ]not〉〉 : ¬(∀X.X&¬A) ❙ x : ∀X.X ➞ γ : A

∀L
not〈〈(x • β).β, [γ]not〉〉 : ∀X.X ❙ x : ∀X.X ➞ γ : A

==============================
x : ∀X.X ➞ γ : A ❙ (x • α).α : ∀X.X

x : ∀X.X ❙ (x • α).α • not〈〈(x • β).β, [γ]not〉〉 ❙ ➞ γ : A

x : ∀X.X ➞ ❙ ((x • α).α • not〈〈(x • β).β, [γ]not〉〉).γ : A

Where double lines stand for some obvious derivation steps. From a proof-theoretic point
of view, the above derivation is not an unexpected one, since ∀X.X represents falsity and
proves anything.
Now, a derivation of a sequent which types the same term in DuCa must have the form:

Γ ➞ Θ, β : B, γ : A ❙ x : B

Γ ➞ Θ, γ : A ❙ (x • β).β : B

γ : A ❙ Γ ➞ Θ, γ : A

Γ ➞ Θ, γ : A ❙ [γ]not : ¬A

Γ ➞ Θ, γ : A ❙ 〈(x • β).β, [γ]not〉 : B&¬A

not〈〈(x • β).β, [γ]not〉〉 : ¬(B&¬A) ❙ Γ ➞ Θ, γ : A

Γ ➞ Θ, γ : A,α : ¬(B&¬A) ❙ x : ¬(B&¬A)

Γ ➞ Θ, γ : A ❙ (x • α).α : ¬(B&¬A)

Γ ❙ (x • α).α • not〈〈(x • β).β, [γ]not〉〉 ❙ ➞ Θ, γ : A

Γ ➞ Θ ❙ ((x • α).α • not〈〈(x • β).β, [γ]not〉〉).γ : A

From the extreme left and right leaves it follows that B ≡ ¬(B&¬A), 	. �

Though this generalization with second-order quantifiers seems to be quite natural, once
we add a reduction relation to DuCa2, namely the basic reduction relation Rb extended to
DuCa2, we find out that the calculus is not well-behaved. In fact, the Subject Reduction
property, which was straightforward in the propositional case, does not hold for reduc-
tions involving the βL and βR reduction rules. This behavior is shown in the following
example. Recall that under Rb we have that M • x.(S) −→ S{M/x}.

Example 3.3 x : ∀X.X ❙ x • y.(〈y, y〉 • α) ❙ ➞ α : X&X is derivable, and
x : ∀X.X ❙ 〈x, x〉 • α ❙ ➞ α : X&X is not derivable. However, x • y.(〈y, y〉 • α) −→
〈x, x〉 • α.
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Proof: Deriving the former sequent is routine:

y : X, x : ∀X.X ➞ α : X&X ❙ y : X

y : X, x : ∀X.X ➞ α : X&X ❙ 〈y, y〉 : X&X α : X&X ❙ y : X, x : ∀X.X ➞ α : X&X

y : X, x : ∀X.X ❙ 〈y, y〉 • α ❙ ➞ α : X&X

y.(〈y, y〉 • α) : X ❙ x : ∀X.X ➞ α : X&X
∀L

y.(〈y, y〉 • α) : ∀X.X ❙ x : ∀X.X ➞ α : X&X x : ∀X.X ➞ α : X&X ❙ x : ∀X.X

x : ∀X.X ❙ x • y.(〈y, y〉 • α) ❙ ➞ α : X&X

Now, regarding the other sequent not being derivable, in order for
x : ∀X.X ❙ 〈x, x〉 • α ❙ ➞ α : X&X to be derived, we have to derive first
α : B ❙ x : ∀X.X ➞ α : X&X and x : ∀X.X ➞ α : X&X ❙ 〈x, x〉 : B , for
some type B. Now, the derivation of the former must have the form:

α : X&X ❙ x : ∀X.X ➞ α : X&X
============================ (1)

α : B ❙ x : ∀X.X ➞ α : X&X

where a sequence of ∀L and ∃L rules is applied in the double lines. On the other hand,
the derivation of the other sequent must be:

x : ∀X.X ➞ α : X&X ❙ x : ∀X.X
===========================

x : ∀X.X ➞ α : X&X ❙ x : B1

x : ∀X.X ➞ α : X&X ❙ x : ∀X.X
===========================

x : ∀X.X ➞ α : X&X ❙ x : B2

x : ∀X.X ➞ α : X&X ❙ 〈x, x〉 : B1&B2
================================ (2)

x : ∀X.X ➞ α : X&X ❙ 〈x, x〉 : B

Where in the double lines we apply sequences of ∀R and ∃R rules. We assume that in
(1) are included n derivation steps and that in (2) we have m steps. Now suppose that
there exist such derivations and, more than that, take those derivations with least m+n.
Further, assume that the derivation steps in (1) type α with X&X ≡ C0, C1, . . . , Cn ≡ B,
and those in (2) type 〈x, x〉 with B1&B2 ≡ D0, D1, . . . , Dm ≡ B.
It is not difficult to see that it cannot happen m = 0 or n = 0, since B1&B2 necessarily
contains quantifiers inside B1 and B2. So, suppose that mn > 0 and that the last rule
used in (1) is ∃L, which implies that the last rule in (2) is ∃R. Then Cn ≡ ∃Z.Cn−1,
some Z, and thus Dm ≡ ∃Z.Cn−1, whence Dm−1 ≡ Cn−1{C ′/Z}.
Now note that the only free variable we may have in the Ci’s is X, and Z ≡/ X, since Z
must be free in α : X&X for ∃L to be applied. Therefore, Z is not free in Cn−1 and thus
Dm−1 ≡ Cn−1, 	since we took the derivations with least m + n.
The case of the last rule in (1) being ∀L and in (2) ∀R is dealt with similarly, using the
fact that the Dj ’s contain no free variables. �

Note that the example above applies also in the cases of Rv and Rn.
Now, βL and βR rules are crucial in the dual calculus, since they are the only rules involv-
ing term (and coterm) substitution. One first thought in order to solve the problem with
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subject reduction could be adding axioms of the form x : ∀X.A,Γ ➞ Θ ❙ x : A{B/X}
to our sequent calculus. Then, though the example above would be solved, we would still
be able to yield a similar problematic example, that is of x : ∀W.∀X.X ❙ x • y.(〈y, y〉 •
α) ❙ ➞ α : X&X being derivable and x : ∀W.∀X.X ❙ 〈x, x〉 • α ❙ ➞ α : X&X being
not.
A second approach is that of adding in our calculus typing rules of the form:

x : A{B/X}, Γ ➞ Θ ❙ M : C
?

x : ∀X.A, Γ ➞ Θ ❙ M : C

Such an approach will be followed subsequently.

Note 3.4. In the sequel of this section we will focus on βR and βL reduction rules to
study the subject reduction property. Note that subject reduction does hold for the rest
of the rules of Rb. However, we avoid to give a proof of this latter result, since it is not
difficult but rather technical.

3.1.1 Adding Strong Contraction rules

In this section we solve some problematic cases of subject reduction by adding typing
rules of ? form. In fact, we add rules that are a combination of contraction and ?-rules.

Definition 3.5
The calculus DuCa2+ is an extension of DuCa2 by the typing rules:

K : A ❙ Γ ➞ Θ, α : B{C/X}, β : ∃X.B
SCL

K{β/α} : A ❙ Γ ➞ Θ, β : ∃X.B

Γ ❙ S ❙ ➞ Θ, α : B{C/X}, β : ∃X.B
SCC∃

Γ ❙ S{β/α} ❙ ➞ Θ, β : ∃X.B

x : B{C/X}, y : ∀X.B, Γ ➞ Θ ❙ M : A
SCR

y : ∀X.B, Γ ➞ Θ ❙ M{y/x} : A

x : B{C/X}, y : ∀X.B, Γ ❙ S ❙ ➞ Θ
SCC∀

y : ∀X.B, Γ ❙ S{y/x} ❙ ➞ Θ

The resulting sequent calculus is called GW2+. a
Note that these rules are not radical to the calculus, since they can be seen as special
contraction rules; in fact, we call them Strong Contraction rules. These rules are proof-
theoretically valid and, for example, an equivalent of SCR in DuCa2 (actually, in GW2)
would be some derivation such as:

x : B{C/X}, y : ∀X.B, Γ ➞ Θ, α : A ❙ M : A

x : B{C/X}, y : ∀X.B, Γ ❙ M • α ❙ ➞ Θ, α : A

x.(M • α) : B{C/X} ❙ y : ∀X.B,Γ ➞ Θ, α : A

x.(M • α) : ∀X.B ❙ y : ∀X.B, Γ ➞ Θ, α : A

y : ∀X.B,Γ ➞ Θ ❙ (y • x.(M • α)).α : A
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The above proof yields a sequent which is logically equivalent to the one we were opting
for, yet clearly not syntactically equivalent. Not surprisingly, the yielded term (y •x.(M •
α)).α encodes the variable substitution which occurs in SCR, since it reduces under βL
to (M{y/x} • α).α, an η-expansion of M{y/x}.
The following proposition states a basic property of the new calculus.14

Proposition 3.6 (Type Substitution) Take some G ∈ DuCa2+. If there exists some
sequent σ ∈ TG(A, Γ, Θ), derived say by D (in GW2+), then, for any type B and type
variable X, there exists some sequent σ′ ∈ TG(A{B/X}, Γ{B/X},Θ{B/X}) derived by
D′, such that D and D′ have the same tree structure.

Proof: The proof is done by induction on derivations and is very similar to this of propo-
sition 3.14. �

The results of adding SC-rules in our calculus are in essence summarized in the following
proposition.

Proposition 3.7 Let G ∈ DuCa2+ and B be any type:

1. TG(C, Γ, Θ ∪ {α : ∀X.A}) 6= ∅ implies TG(C, Γ, Θ ∪ {α : A{B/X}}) 6= ∅.
2. TG(C, Γ ∪ {x : ∃X.A}, Θ) 6= ∅ implies TG(C, Γ ∪ {α : A{B/X}}, Θ) 6= ∅.
3. If Γ ➞ Θ ❙ M : ∀X.A is derivable, then so is Γ ➞ Θ ❙ M : A{B/X}.
4. If K : ∃X.A ❙ Γ ➞ Θ is derivable, then so is K : A{B/X} ❙ Γ ➞ Θ.

Proof: We show 1 and 3; 2 and 4 are shown similarly.
For 1 assume that σ ∈ TG(C, Γ, Θ ∪ {α : ∀X.A}); we do induction on its derivation. For
the non-trivial base case we replace the axiom α : ∀X.A ❙ Γ ➞ Θ, α : ∀X.A with

α : A{B/X} ❙ Γ ➞ Θ, α : A{B/X}
∀L

α : ∀X.A ❙ Γ ➞ Θ, α : A{B/X}
For the inductive step we do a case analysis on the last rule in the derivation. The only
non-straightforward cases are those where we want a certain type variable to be free in the
premise of the rule, that is when the last rule is ∀R or ∃L. We deal only with the latter
case, the other being one resolved similarly. Assume that the last rule in the derivation
is:

K : C0 ❙ Γ ➞ Θ, α : ∀X.A
∃L

K : ∃Y.C0 ❙ Γ ➞ Θ, α : ∀X.A

with Y /∈ FTV (Γ, Θ, ∀X.A). In case Y /∈ FTV (B) or X /∈ FTV (A), we prove the claim
directly by using the IH, since then Y /∈ FTV (A{B/X}). Otherwise, by proposition
3.6, we can derive K : C0{Z/Y } ❙ Γ ➞ Θ, α : ∀X.A , for some fresh Z, and, since we

14Recall the notation we use for sequents typing elements of the calculus (definition 1.3), and also the
definition of derivations (definition 1.2) in chapter 1.
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don’t have an increase on the size of the derivation, we can use the IH and thus derive
K : C0{Z/Y } ❙ Γ ➞ Θ, α : A{B/X} . From the latter, the desired sequent is derived
by ∃L (note that ∃Z.C0{Z/Y } ≡ ∃Y.C0).
For 3 assume that Γ ➞ Θ ❙ M : ∀X.A is derivable; we do induction on its derivation. For
the base case we utilize the SCR rule: we replace the axiom x : ∀X.A, Γ′ ➞ Θ ❙ x : ∀X.A
with

x : ∀X.A, y : A{B/X}, Γ′ ➞ Θ ❙ y : A{B/X}
SCR

x : ∀X.A, Γ′ ➞ Θ ❙ x : A{B/X}
For the induction step we do a case analysis on the last rule in the derivation. Since M
is typed with ∀X.A, there are only three cases:

Γ ➞ Θ ❙ M : A
∀R

Γ ➞ Θ ❙ M : ∀X.A
or

Γ ❙ S ❙ ➞ Θ, α : ∀X.A
RI

Γ ➞ Θ ❙ (S).α : ∀X.A

or
x : C{D/Y }, y : ∀Y.C,Γ′ ➞ Θ ❙ M ′ : ∀X.A

SCR
y : ∀Y.C, Γ′ ➞ Θ ❙ M ′{y/x} : ∀X.A

The first case is clear by proposition 3.6, the second by previous claim (1), and the third
by IH. �

In the next proposition we use vector notation ~x : ~B for x1 : B1, . . . , xn : Bn, and
~M/~x for M1/x1, . . . , Mn/xn. Similar conventions apply for ~α and ~K.

Proposition 3.8 Suppose that G,M1, . . . ,Mn,K1, . . . ,Km ∈ DuCa2+.

1. If TG(A, Γ∪{~x : ~B}, Θ) 6= ∅ , and Γ ➞ Θ ❙ Mi : Bi is derivable for any i = 1, ..., n,
then TG{ ~M/~x}(A, Γ, Θ) 6= ∅.

2. If TG(A,Γ, Θ∪{~α : ~B}) 6= ∅ , and Kj : Bj ❙ Γ ➞ Θ is derivable for any j = 1, ...,m,
then TG{ ~K/~α}(A,Γ, Θ) 6= ∅.

Proof: We prove only 1; 2 is proven similarly.
Assume that σ ∈ TG(A, Γ ∪ (~x : ~B),Θ); we do induction on its derivation. The base
cases are trivial and for the inductive step we do a case analysis on the last rule in
the derivation. In fact, all cases are straightforward, except for the last rule being some
strong contraction rule. But for these cases we utilize proposition 3.7 and resolve them. �

The above propositions allow us to prove subject reduction under βL and βR rules in
case we don’t use ∃L and ∀R rules in certain crucial steps of a derivation.

Lemma 3.9 Suppose that Γ ➞ Θ ❙ M : A and K : A ❙ Γ ➞ Θ are derivable; then,

1. If x.(S) : A ❙ Γ ➞ Θ is derived via x : A0, Γ ❙ S ❙ ➞ Θ without using ∃L in
between, then Γ ❙ S{M/x} ❙ ➞ Θ is derivable.
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2. If Γ ➞ Θ ❙ (S).α : A is derived via Γ ❙ S ❙ ➞ Θ, α : A0 without using ∀R in
between, then Γ ❙ S{K/α} ❙ ➞ Θ is derivable.

Proof: We show 1; 2 is shown dually.
By hypothesis, the derivation of x.(S) : A ❙ Γ ➞ Θ ends with:

x : A0,Γ ❙ S ❙ ➞ Θ

x.(S) : A0 ❙ Γ ➞ Θ
================ (1)
x.(S) : A ❙ Γ ➞ Θ

where in (1) we have condensed n ≥ 0 applications of the ∀L rule. We do induction on
n. The case of n = 0 implies A ≡ A0, so proposition 3.8 proves the claim.
In case n > 0, we have that A ≡ ∀X.A′, where x.(S) : A′{B/X} ❙ Γ ➞ Θ is the
(n-1)-th sequent in (1). Now, Γ ➞ Θ ❙ M : A is derivable, so Γ ➞ Θ ❙ M : A′{B/X}
is also derivable by proposition 3.7. Hence, the claim follows from the IH. �

Corollary 3.10 Suppose that G,H ∈ DuCa2+, σ ∈ TG(A0, Γ0,Θ0) for some
σ,A0, Γ0, Θ0, and that σ is derived by D. Then,

1. If G −→ H by rule βR being applied to some subobject M •x.(S) of G, and D respects
the restrictions posed for x.(S) in the previous lemma, then TH(A0, Γ0,Θ0) 6= ∅.

2. If G −→ H by rule βL being applied to some subobject (S).α •K of G, and D respects
the restrictions posed for (S).α in the previous lemma, then TH(A0,Γ0, Θ0) 6= ∅.

Proof: Straightforward from previous lemma. �

3.1.2 Some cases are still problematic

In lemma 3.9 we have placed an important restriction in deriving the objects x.(S) and
(S).α. The restriction was that, once we have constructed them, we are not allowed to
change their types by applying ∃L or ∀R rules respectively. Thus, we are still left with
problematic cases of the forms:

Γ ➞ Θ ❙ M : ∃X.A

x : A, Γ ❙ S ❙ ➞ Θ

x.(S) : A ❙ Γ ➞ Θ

x.(S) : ∃X.A ❙ Γ ➞ Θ

Γ ❙ M • x.(S) ❙ ➞ Θ

Γ ❙ S ❙ ➞ Θ, α : A

Γ ➞ Θ ❙ (S).α : A

Γ ➞ Θ ❙ (S).α : ∀X.A K : ∀X.A ❙ Γ ➞ Θ

Γ ❙ (S).α •K ❙ ➞ Θ
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where X is not free in Γ, Θ. Let’s focus, for example, in the latter case, and name that
derivation D. The complication which arises if we try to derive
K : A ❙ Γ ➞ Θ , so that we can substitute its derivation for all axioms introduc-
ing α in the derivation of Γ ❙ S ❙ ➞ Θ, α : A , is that not only can we not derive it given
K : ∀X.A ❙ Γ ➞ Θ , but it is not even logically valid to do so! Thus, our only chance
lies on deriving Γ ❙ S ❙ ➞ Θ, α : ∀X.A instead. Note that adding some explicit rule such
as:

Γ ❙ S ❙ ➞ Θ, α : A
(X /∈ FTV (Γ, Θ))

Γ ❙ S ❙ ➞ Θ, α : ∀X.A

would not save us now, since we wouldn’t then be able to prove proposition 3.8. In fact,
if we used such a rule, we would still have to substitute the derivation typing K for the
axioms introducing α in the derivation of Γ ❙ S ❙ ➞ Θ, α : A. Therefore, we have to
prove that the above rule is a derived one in DuCa2+.
The difficulties that arise when trying to show the latter can be viewed in the following
example. We use a derivation for the law of the excluded middle (∀X.X ∨ ¬X). For any
covariable α, let φ(α) stand for (〈[x.(〈x〉inl • α)]not〉inr • α). For economy in space we
use weakening rules; we have the following derivation being an occurrence of D:

x : X ➞ ❙ x : X

x : X ➞ ❙ 〈x〉inl : X ∨ ¬X

x.(〈x〉inl • α) : X ❙ ➞ α : X ∨ ¬X

➞ α : X ∨ ¬X ❙ [x.(〈x〉inl • α)]not : ¬X

➞ α : X ∨ ¬X ❙ 〈[x.(〈x〉inl • α)]not〉inr : X ∨ ¬X

❙ φ(α) ❙ ➞ α : X ∨ ¬X

➞ ❙ (φ(α)).α : X ∨ ¬X

➞ ❙ (φ(α)).α : ∀X.X ∨ ¬X x.(x • β) : ∀X.X ∨ ¬X ❙ ➞ β : ∀X.X ∨ ¬X

❙ (φ(α)).α • x.(x • β) ❙ ➞ β : ∀X.X ∨ ¬X

It is clear that, in order to derive ❙ φ(α) ❙ ➞ α : ∀X.X ∨¬X, we must introduce α with
type ∀X.X ∨ ¬X from the beginning (i.e. from the axiom introducing α). But then, we
must be able to derive cuts of the form:

x : X ➞ ❙ 〈x〉inl : X ∨ ¬X α : ∀X.X ∨ ¬X ❙ ➞ α : ∀X.X ∨ ¬X

x : X ❙ 〈x〉inl • α ❙ ➞ α : ∀X.X ∨ ¬X

However, it is not clear what extra typing rules would allow us to derive such cuts, with-
out allowing for the formulation of logically invalid derivations15.
Summing up, though it is embarrassing to admit, we are not able to show subject reduc-
tion for some ‘natural’ extension of DuCa with second-order quantifiers. Nevertheless, in
the next section we propose a different approach of a ‘constructive’ extension, which is

15note that when we talk about logical validity we have, of course, in mind the Curry-Howard isomor-
phism.
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based on the connection of DuCa with classical logic and indeed has the subject reduction
property.

3.2 A constructive approach

In second-order propositional classical logic the quantification over propositional variables
is in fact a quantification over true and false propositions. That is, if ⊥ is some contradic-
tion (for example ⊥ ≡ X0 & ¬X0), then, for any formula A, ∀X.A is logically equivalent
to A{⊥/X} & A{¬⊥/X}. A similar property holds for existential quantification. Note
that in the intuitionistic second-order propositional logic this is not the case, since there
is no converse of falsity; so, quantification is in a sense stronger in that logic.
Below we are going to define a quantification construction over types by using the above
remark explicitly; that is universal quantification will be the abbreviation of a conjunc-
tion and existential quantification the abbreviation of a disjunction. Moreover, universal
types will be assigned to product constructs in the calculus, while existential types to sum
constructs. For this purpose, some new construction rules for terms and coterms will be
defined, so as to capture quantification in the cases where the existing construction rules
are not enough. All this, of course, has as a final objective to obtain a calculus where
subject reduction holds under Rb. Note that in this section we will deal with the usual
Rb, including all reduction rules. The resulting calculus differs a lot from the intended
DuCa2 and, in fact, the typed terms of the new calculus restricted to the old construction
rules are exactly the typed terms of DuCa. Therefore, it is clear that in this section the
algorithmic interpretation of the calculus is not our primary interest. Soon the reasons
for calling this approach a constructive one will become clear.
We begin with some definitions.

Definition 3.11
Define the set of Types:

Type A,B ::= z | X | A&B | A ∨B | ¬A

z is a special type variable. Therefore, the set TV ar of common propositional variables
is the set of all type variables except for z. For any type A, the set FTV (A) is formed
from all members of TV ar which are free in A.
We define the following abbreviations. For any type A and X ∈ TV ar:

∀X.A ≡ A{>/X} & A{⊥/X} , ∃X.A ≡ A{>/X} ∨A{⊥/X}
and > ≡ z ∨ ¬z , ⊥ ≡ z&¬z a

The distinction we have made between common type variables and z is because of the
facts that we don’t want to allow quantification over z and that we want to keep the
usual free-variables-over-quantifiers definition. In the sequel, X,Y, Z will denote members
of TV ar, unless otherwise specified. Note that under the above abbreviations alpha-
equivalence is valid, that is, for all types A and X, Y ∈ TV ar with Y /∈ FTV (A),
∀X.A ≡ ∀Y.A{Y/X} and ∃X.A ≡ ∃Y.A{Y/X}.
Now we can define the calculus which will be using these types, namely DuCa2C.
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Definition 3.12
The DuCa2C consists of Types as in definition 3.11 and Objects. The set of objects is the
union of the sets of Terms, Coterms and Statements:

Object G,H ::= M | K | S
Term M,N ::= x | 〈M, N〉 | 〈M〉in | 〈M〉inl | 〈N〉inr | [K]not | (S).α
Coterm K, L ::= α | [K, L] | one[K] | fst[K] | snd[L] | not〈M〉 | x.(S)
Statement S, T ::= M •K

The typing rules are the same as those of DuCa (i.e. of system GW) with the addition of
the rules:

K : A{B/X} ❙ Γ ➞ Θ
∀L

one[K] : ∀X.A ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A{B/X}
∃R

Γ ➞ Θ ❙ 〈M〉in : ∃X.A

The resulting sequent calculus is called GW2C. a
The intuition behind these new construction rules is that 〈M〉in produces a sum value
built up from M being either its first or its second element, whereas one[K] absorbs
a product value and offers one of its elements to K. Therefore, these new rules
introduce terms with uncertainty regarding their inner structure. This is exactly the
proof-theoretic uncertainty contained in the ∀L and ∃R rules, since when we move, for
example, from A{B/X} in ∃R to ∃X.A, we don’t know if B represents a true or false
proposition (and we don’t care).
It may be observed that up to now the constructivism involved in our definitions is rather
vague, in the sense that the constructions we introduce contain uncertainty. However, for
the ∀R and ∃L rules we follow a purely constructive approach, which justifies the title of
this section. Suppose we can derive Γ ➞ Θ ❙ M : A and X /∈ FTV (Γ,Θ). Then it is not
difficult to see that we can also derive Γ ➞ Θ ❙ M : A{>/X} and Γ ➞ Θ ❙ M : A{⊥/X}
and thus derive Γ ➞ Θ ❙ 〈M,M〉 : A{>/X}&A{⊥/X}. Therefore, a proof of ∀X.A is
a construction merging together a proof of A{>/X} and one of A{⊥/X}. In fact, this
is the analog of the Brouwer-Heyting-Kolmogorov interpretation of the proof of ∀X.A in
intuitionistic logic. Similar remarks can be made for the ∃L rule.
Let us now formulate the above remark formally. First, we need the following results.

Proposition 3.13 (Weakening) Suppose that TG(A,Γ, Θ) 6= ∅, some G ∈ DuCa2C;
then,
TG(A, Γ ∪ (x : B), Θ) 6= ∅, any fresh variable x, and
TG(A, Γ, Θ ∪ (α : B)) 6= ∅, any fresh covariable α.

Proof: By induction on the derivation of σ ∈ TG(A, Γ, Θ). �

Proposition 3.14 (Type Substitution) Take some G ∈ DuCa2C. If there exists some
sequent σ ∈ TG(A, Γ,Θ), derived say by D, then for any type B there exists some sequent
σ′ ∈ TG(A{B/X},Γ{B/X}, Θ{B/X}) derived by D′, such that D and D′ have the same
tree structure.
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Proof: Let σ ∈ TG(A,Γ, Θ); we do induction on the derivation of σ. By a case analysis
on the last rule of the derivation, the only non-straightforward cases are those of rules
with quantifiers.

Assume the last rule is
K : A{C/Y } ❙ Γ ➞ Θ ∀L
one[K] : ∀Y.A ❙ Γ ➞ Θ

By IH, we can derive

K : (A{C/Y }){B/X} ❙ Γ{B/X} ➞ Θ{B/X}

Now, (A{C/Y }){B/X} ≡ ((A{Z/Y }){B/X}){C{B/X}/Z}, some fresh Z, and ∀Z.(A{Z/Y }){B/X} ≡
(∀Z.A{Z/Y }){B/X} ≡ (∀Y.A){B/X}; thus, by ∀L we derive

one[K] : (∀Y.A){B/X} ❙ Γ{B/X} ➞ Θ{B/X}

as required. The case of ∃R is dealt with similarly. �

Now we can prove that there exist ∃L and ∀R derived rules.

Proposition 3.15 The following are derived rules of DuCa2C.

K : A ❙ Γ ➞ Θ ∃L
[K,K] : ∃X.A ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A ∀R
Γ ➞ Θ ❙ 〈M, M〉 : ∀X.A

where X ∈ (TV ar \ FTV (Γ, Θ)).

Proof: Straightforward by proposition 3.14 and the fact that X /∈ FTV (Γ, Θ). �

Our objective is to prove that the subject reduction property holds for this calculus
under Rb. The set of reduction rules, which is the same as in DuCa, is given below and
defines the R2C

b reduction relation, that is the basic reduction relation for DuCa2C.

Definition 3.16
R2C

b is the compatible one-step reduction relation which is yielded by the reduction rules
listed below, when these are applied to subobjects of DuCa2C objects.

(β&1) 〈M, N〉 • fst[K] → M •K
(β&2) 〈M, N〉 • snd[L] → N • L
(β∨1) 〈M〉inl • [K, L] → M •K
(β∨2) 〈N〉inr • [K,L] → N • L
(β¬) [K]not • not〈M〉 → M •K
(βL) M • x.(S) → S{M/x}
(βR) (S).α •K → S{K/α}

(ηL) K → x.(x •K)
(ηR) M → (M • α).α
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(ν&1) 〈M, N〉 •K → M • x.(〈x,N〉 •K)
(ν&2) 〈M, N〉 •K → N • y.(〈M,y〉 •K)
(ν∨3) 〈M〉inl •K → M • x.(〈x〉inl •K)
(ν∨4) 〈N〉inr •K → N • y.(〈y〉inr •K)
(ν∨1) M • [K, L] → (M • [α, L]).α •K
(ν∨2) M • [K, L] → (M • [K, β]).β • L
(ν&3) M • fst[K] → (M • fst[α]).α •K
(ν&4) M • snd[L] → (M • snd[β]).β • L

For G,H ∈ DuCa2C, (G,H) ∈ R2C
b will be denoted G −→ H, when this isn’t confusing. a

The following lemma will allow us to prove subject reduction.

Lemma 3.17 Suppose that G,M, K ∈ DuCa2C.

1. If TG(A,Γ ∪ (x : B), Θ) 6= ∅ and Γ ➞ Θ ❙ M : B is derivable, then
TG{M/x}(A,Γ, Θ) 6= ∅.

2. If TG(A,Γ, Θ ∪ (α : B)) 6= ∅ and K : B ❙ Γ ➞ Θ is derivable, then
TG{K/α}(A, Γ,Θ) 6= ∅.

Proof: In 1 we take some σ ∈ TG(A,Γ ∪ (x : B), Θ) and do induction on the derivation
of σ. In 2 we proceed similarly. �

Subject reduction is now straightforward, as it was in the case of DuCa.

Theorem 3.18 (Subject Reduction) Suppose that G,H ∈ DuCa2C and that G −→ H.
If TG(A0,Γ0, Θ0) 6= ∅ , some A0, Γ0,Θ0, then TH(A0,Γ0, Θ0) 6= ∅.
Proof: The proof is by a case analysis on the rule used for the reduction and it is rather
straightforward. We are going to show some characteristic cases.
Suppose that G −→ H by use of the β&1 rule. Then, it suffices to show that T〈M,N〉•fst[K](A, Γ, Θ) 6=
∅ implies TM•K(A, Γ, Θ) 6= ∅. Suppose that Γ ❙ 〈M,N〉 • fst[K] ❙ ➞ Θ is derivable. By
inspection of the rules, its derivation must end with:

K : B ❙ Γ ➞ Θ

fst[K] : B&C ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : B Γ ➞ Θ ❙ N : C

Γ ➞ Θ ❙ 〈M,N〉 : B&C

Γ ❙ 〈M,N〉 • fst[K] ❙ ➞ Θ

and the claim straightforwardly follows.
Suppose that G −→ H by use of the ν&1 rule. Then it suffices to show that T〈M,N〉•K(A, Γ,Θ) 6=
∅ implies TM•x.(〈x,N〉•K)(A,Γ, Θ) 6= ∅. Let Γ ❙ 〈M, N〉 •K ❙ ➞ Θ be derivable. By in-
spection of the typing rules, its derivation must end with

K : B1&B2 ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : B1 Γ ➞ Θ ❙ N : B2

Γ ➞ Θ ❙ 〈M, N〉 : B1&B2

Γ ❙ 〈M,N〉 •K ❙ ➞ Θ
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and our claim follows by a simple derivation which uses also the axiom
x : B1, Γ ➞ Θ ❙ x : B1 and Weakening.
Suppose that G −→ Q by use of the βR rule. Then it suffices to show that T(S).α•K(A, Γ,Θ) 6=
∅ implies TS{K/α}(A,Γ, Θ) 6= ∅. Let Γ ❙ (S).α •K ❙ ➞ Θ be derivable. By inspection of
the typing rules, its derivation must end with

K : B ❙ Γ ➞ Θ

Γ ❙ S ❙ ➞ Θ, α : B

Γ ➞ Θ ❙ (S).α : B

Γ ❙ (S).α •K ❙ ➞ Θ

and our claim follows from lemma 3.17. �

Thus, we have defined an extension of the dual calculus that corresponds to second-
order propositional classical logic in Curry-Howard isomorphism, and is well-behaved in
that it satisfies subject reduction (under Rb, and therefore under Rv and Rn too). The
expressive power of this calculus is limited, since in essence there are no polymorphic
types. Indeed, to capture polymorphism we have to allow transition from M : A to
M : ∀X.A, and not to some new construct containing M . In fact, the former behavior is
the cornerstone of system F. However, we think that the calculus studied in this section
has a value of its own, since it extends even further the Curry-Howard isomorphism in a
well-behaved way.
Note further that the syntactic properties studied in the previous chapter for DuCa can
be readily proven for DuCa2C. This is because there is no essential difference in syntax
between the two calculi and, more than that, the proof of SN doesn’t seem to take into
consideration the details in structure of types, but merely the derivations in which these
types are involved.

3.2.1 Two additional reduction rules

Since we have added new construction rules for our calculus, it is very tempting to add
some reduction rules that refer especially to the new constructs:

(β&c) 〈M, M〉 • one[K] → M •K
(β∨c) 〈M〉in • [K,K] → M •K

These new rules have the task to remove uncertainty when it is not important, and they
seem quite natural. Nevertheless, the problem of subject reduction not holding arises
again, as it is shown in the following example.

Example 3.19 x : ⊥ ❙ 〈〈x〉in, 〈x〉in〉•one[α] ❙ ➞ α : B∨⊥ is derivable in DuCa2C for
any type B, yet x : ⊥ ❙ 〈x〉in • α ❙ ➞ α : B ∨ ⊥ is derivable only if B ≡ > or B ≡ ⊥.
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Proof: Note first that ∀X.X ∨ ⊥ ≡ (> ∨ ⊥)&(⊥ ∨ ⊥) ≡ (∃X.X)&(∃X.⊥). If we set
A ≡ B ∨ ⊥, then a derivation of the former sequent is:

x : ⊥ ➞ α : A ❙ x : ⊥
x : ⊥ ➞ α : A ❙ 〈x〉in : ∃X.X

x : ⊥ ➞ α : A ❙ x : ⊥
x : ⊥ ➞ α : A ❙ 〈x〉in : ∃X.⊥

x : ⊥ ➞ α : A ❙ 〈〈x〉in, 〈x〉in〉 : ∀X.X ∨ ⊥
α : B ∨ ⊥ ❙ x : ⊥ ➞ α : A

one[α] : ∀X.X ∨ ⊥ ❙ x : ⊥ ➞ α : A

x : ⊥ ❙ 〈〈x〉in, 〈x〉in〉 • one[α] ❙ ➞ α : B ∨ ⊥

Now, in order to derive x : ⊥ ❙ 〈x〉in • α ❙ ➞ α : B ∨ ⊥ , we have to derive first
α : C ❙ x : ⊥ ➞ α : B ∨ ⊥ and x : ⊥ ➞ α : B ∨ ⊥ ❙ 〈x〉in : C , for some type C; that
is we need to derive

x : ⊥ ➞ α : B ∨ ⊥ ❙ 〈x〉in : B ∨ ⊥
which is possible only in case B ≡ > or B ≡ ⊥. �

In case we wish to fix this problem, we have to add new typing rules in the calculus.
In fact, the previous example is revealing on what type of rules we have to add: we need
such rules that for any type B the following derivation be possible.

x : ⊥ ➞ ❙ 〈x〉in : > ∨⊥ x : ⊥ ➞ ❙ 〈x〉in : ⊥ ∨⊥
x : ⊥ ➞ ❙ 〈x〉in : B ∨ ⊥

Allowing such rules to our calculus ruins the notion of constructivism we had and, in
essence, allows of quantification of the form:

Γ ➞ Θ ❙ M : A{>/X} Γ ➞ Θ ❙ M : A{⊥/X}
Γ ➞ Θ ❙ M : ∀X.A

which is exactly what we were avoiding throughout this section.

4 Conclusion

In this project we examined an extension of the lambda calculus, the Dual Calculus of
Wadler. We saw that under Curry-Howard isomorphism this calculus corresponds to
classical logic. Moreover, we saw that two reduction relations defined for this calculus,
one corresponding to call-by-value and the other to call-by-name, are De Morgan duals.
We studied two basic syntactic properties relative to CBV reduction in the dual calculus:
Church-Rosser property for the untyped calculus, and Strong Normalization for the typed
calculus. Finally, we tried in several ways to extend the calculus to polymorphic types,
and analyzed the difficulties that arose in these attempts. In one of these attempts
we proposed an extension of the calculus to non-polymorphic types with second-order
quantifiers which corresponds to second-order propositional classical logic.

Of course, some of the matters we studied could be studied more thoroughly, and many
important matters weren’t examined at all. Thus, in our study of the strong normalization
property some reduction rules of Rv (in particular, the ν-rules) were exempted for reasons
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of simplicity. One could study strong normalization with these rules included; in fact, the
SN result for DuCa* can be modified for this task. Moreover, polymorphism for the dual
calculus is still an open question, since all our attempts to polymorphism were flawed in
that they couldn’t guarantee the Subject Reduction property.

Finally, a very interesting aspect we didn’t examine at all, due to lack of time, is
that of categorical semantics for the dual calculus. It would be very useful to study such
semantics, so that we could obtain an idea on what is the kind of structures that are
needed in order to model objects of the calculus. Such a study would help us build more
intuition on this new calculus.
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A Gentzen’s system LK

The system LK of Gentzen ([Gen35]) is a sequent calculus consisting of:
I. Structural rules:

Weakening
Γ ➞ Θ

A, Γ ➞ Θ

Γ ➞ Θ

Γ ➞ Θ, A

Contraction
A,A,Γ ➞ Θ

A, Γ ➞ Θ

Γ ➞ Θ, A, A

Γ ➞ Θ, A

Interchange
∆, A, B,Γ ➞ Θ

∆, B, A,Γ ➞ Θ

Γ ➞ Θ, A, B, I

Γ ➞ Θ, B, A, I

Cut
Γ ➞ Θ, A A,∆ ➞ I

Γ, ∆ ➞ Θ, I
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II. Logical rules:

id
A ➞ A

A,Γ ➞ Θ

A&B, Γ ➞ Θ

B, Γ ➞ Θ
&L

A&B, Γ ➞ Θ

Γ ➞ Θ, A Γ ➞ Θ, B
&R

Γ ➞ Θ, A&B

Γ ➞ Θ, A

Γ ➞ Θ, A ∨B

Γ ➞ Θ, B
∨R

Γ ➞ Θ, A ∨B

A, Γ ➞ Θ B, Γ ➞ Θ
∨L

A ∨B, Γ ➞ Θ

Γ ➞ Θ, A B,∆ ➞ I
⊃L

A ⊃ B, Γ, ∆ ➞ Θ, I

A, Γ ➞ Θ, B
⊃R

Γ ➞ Θ, A ⊃ B

Γ ➞ Θ, A
¬L

¬A,Γ ➞ Θ

A, Γ ➞ Θ
¬R

Γ ➞ Θ,¬A

A,Γ ➞ Θ
∀L

∀x.A,Γ ➞ Θ

Γ ➞ Θ, A
∀R

Γ ➞ Θ, ∀x.A

A,Γ ➞ Θ
∃L

∃x.A,Γ ➞ Θ

Γ ➞ Θ, A
∃R

Γ ➞ Θ, ∃x.A

where in ∀R and ∃L there are no free occurrences of variable x inside Γ or Θ.

B Some proofs from section 2

Proof of lemma 2.5:
The proof is by induction on G ∈ DuCa and case analysis on the two reductions. The pid
cases are trivial. We examine the other cases. Note that we may use the previous lemma
on substitution without mentioning it.
The cases for G −→p G1 are:
➛ pβ&1: then G ≡ 〈V, W 〉 • fst[K] and G1 ≡ V ′ • K ′; for some V −→p V ′,W −→p

W ′,K −→p K ′.
By inspection of the other rules we have the following choices for the rule in G −→p G2,

• pβ&1: in this case G2 ≡ V ′′ •K ′′; for some V −→p V ′′,W −→p W ′′, K −→p K ′′.
By IH, there exist Vc,Kc such that V ′, V ′′ −→p Vc and K ′,K ′′ −→p Kc. Thus,
G1, G2 −→p Vc •Kc, by use of p•.

• pν&1: then G2 ≡ V ′′ • x.(〈x,W ′′〉 • K?); for some V −→p V ′′,W −→p W ′′ and
fst[K] −→p K?.
By inspection, K? ≡ fst[K ′′] for some K −→p K ′′, and so, by IH, there exist Vc,Kc
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with V ′, V ′′ −→p Vc and K ′,K ′′ −→p Kc; thus,

〈x,W ′′〉 • fst[K ′′]
pβ&1−−→p x •Kc

∴ G2 ≡ V ′′ • x.(〈x, W ′′〉 • fst[K ′′])
pβL
−−→p Vc •Kc

and G1 ≡ V ′ •K ′ p•
−−→p Vc •Kc

• pν&2: then G2 ≡ W ′′ •y.(〈V ′′, y〉 •fst[K ′′]) and we follow the same steps as above.

• p•: then G2 ≡ M? • K?, with 〈V, W 〉 −→p M?, fst[K] −→p K?. By inspection,
M? ≡ 〈V ′′, W ′′〉 and K? ≡ fst[K ′′], some V −→p V ′′,W −→p W ′′,K −→p K ′′.
Hence, using the IH,
G2 ≡ 〈V ′′,W ′′〉 • fst[K ′′] −→p Vc •Kc p←− V ′ •K ′ ≡ G1.

➛ pβ&2, pβ∨1, pβ∨2, pβ¬: proven similarly.
➛ pβL: then G ≡ V • x.(S) and G1 ≡ S′{V ′/x}; for some V −→p V ′, S −→p S′.
By inspection, we have the following choices for G −→p G2.

• pβL: then G2 ≡ S′′{V ′′/x} and the result is straightforward from lemma 2.4.

• pν&1: then G ≡ 〈V, W 〉 • x.(S), G1 ≡ S′{〈V ′,W ′〉/x} and G2 ≡ V ′′ • y.(〈y, W ′′〉 •
x.(S′′)); for some V −→p V ′, V ′′,W −→p W ′,W ′′, S −→p S′, S′′. Then, by IH,
there exist V ′, V ′′ −→p Vc, W ′,W ′′ −→p Wc, S′, S′′ −→p Sc, and thus,

〈y, W ′′〉 • x.(S′′)
pβL−→ Sc{〈y, Wc〉/x}

∴ V ′′ • y.(〈y, W ′′〉 • x.(S′′))
pβL−→ (Sc{〈y,Wc〉/x}){Vc/y} y fresh≡ Sc{〈Vc,Wc〉/x}

and S′{〈V ′,W ′〉/x} −→p Sc{〈Vc,Wc〉/x} , by lemma 2.4

• pν&2, pν¬1, pν¬2: proven similarly.

• p•: this case is straightforward by applying lemma 2.4.

➛ pβR: this case is proven in a similar, yet simpler, way as pβR.
➛ pν&1: then G ≡ 〈M,N〉 •K and G1 ≡ M ′ • x.(〈x,N ′〉 •K ′); for some M −→p M ′,
N −→p N ′ and K −→p K ′. Then, the possible choices for G −→p G2 which have not
been considered above in symmetry are:

• pν&2: then M is a value and G2 ≡ N ′′ • y.(〈M ′′, y〉 •K ′′); for some M −→p M ′′,
N −→p N ′′ and K −→p K ′′. Using the IH, we have that,

〈x,N ′〉 •K ′ pν&2−→ Nc • y.(〈x, y〉 •Kc)

∴ G1
pβL−→ Nc • y.(〈Mc, y〉 •Kc)

and clearly G2 −→p Nc • y.(〈Mc, y〉 •Kc)
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• p•: this case is straightforward.

➛ pν&2, pν∨1, pν∨2: proven similarly.
➛ p•: this case is simple, since all reductions to which it may be combined are already
checked in the previous cases, by symmetry.
➛ p〈, 〉, p〈〉inl, p〈〉inr, p[]not, pnot〈〉, p()., p.(), pfst[], psnd[]: these cases are trivial, since
no other reduction can be combined to any one of them. �

Proof of lemma 2.22:
First note that CR3’ is implied by CR3 by induction on l(G), where G is neutral and SN,
using the fact that all its reducts are also neutral and SN.
For CR[1, 2, 3], we do induction on d(σ). The base case, of d(σ) = (0, n), is straightfor-
ward:

• CR1 is a tautology.

• For CR3, if σ′ ∈ Red, then G′ is SN. Then G reduces only to strongly normalizing
elements, thus G is SN, ∴ σ ∈ Red.

• For CR2, if σ ∈ (TG ∩ Red), then G is SN and so is any G′ to which it may reduce.

Now assume d(σ) = (c, n), c > 0 and σ ∈ TG:

.CR1: [ If σ ∈ (TG ∩ Red), some G, then G is SN ]
– If G ≡ S, some S ≡ M •K, and σ ≡ Γ ❙ S ❙ ➞ Θ, then, since c > 0, there exists some
β : B ∈ Θ or y : B ∈ Γ with c(B) > 0, and thus, for example in the former case:

σ′ ≡ Γ ➞ Θ− {β : B} ❙ (S)¯β : B ∈ Red

Then, by IH, (S)¯β ∈ SN, ∴ S ∈ SN.

– If G ≡ M and σ ≡ Γ ➞ Θ ❙ M : A, then, by proposition 2.21, there exists
some derivable sequent σ1 ≡ K0 : A ❙ Γ0 ➞ Θ0, for some K0 neutral and SN, with
d(σ1) = (0, 1) < d(σ). By definition, σ1 ∈ Red. Then,

σ2 ≡ Γ, Γ0 ❙ M •K0 ❙ ➞ Θ,Θ0

has d(σ2) = (c, 0) < (c, 1) = d(σ). Since σ ∈ Red, by definition, σ2 ∈ Red,
∴ by IH, M •K0 ∈ SN , ∴ M ∈ SN.
For the latter implication note that all reductions from M can be translated to reductions
from M •K0, except for the case of M

?−→ (M • α)¯α, when M must be simple (and ?
is a label). But in any infinite sequence of reductions starting from M , ? can happen at
most once, since afterwards M ’s reduct is immediately followed by a cut. Thus, an infi-
nite reduction sequence from M •K0 can be produced by simply ignoring the ?-reduction.

– If G ≡ K, we work dually as above.
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.CR3: [ If σ ∈ TG, G neutral, and σ −→ σ′ implies σ′ ∈ Red, then σ ∈ Red ]
– If G ≡ M and σ ≡ Γ ➞ Θ ❙ M : A, then we need to show that for all relevant K0 and
σ1 ∈ (TK0 ∩ Red), we have σ2 ∈ Red, where:

σ2 ≡ Γ,Γ0 ❙ M •K0 ❙ ➞ Θ, Θ0 , with d(σ2) < d(σ)
σ1 ≡ K0 : A ❙ Γ0 ➞ Θ0 , d(σ1) < d(σ)

Since d(σ1) < d(σ), by IH on CR1, K0 is SN. Thus, prove that σ2 ∈ Red by induction on
l(K0). Since M,K0 are neutral, σ2 −→ σ′2 implies:

σ′2 ≡ Γ, Γ0 ❙ M ′ •K ′
0 ❙ ➞ Θ, Θ0

where either M −→ M ′, or K0 −→ K ′
0.

In the former case, σ′2 ∈ Red by hypothesis.
In the latter case, by IH on CR2, σ′1 ≡ K ′

0 : A ❙ Γ0 ➞ Θ0 ∈ Red and l(K ′
0) < l(K0),

thus the IH on l(K0) applies and σ′2 ∈ Red.
In any case, σ2 −→ σ′2 implies σ′2 ∈ Red, ∴ σ2 ∈ Red, by IH on CR3.

– If G ≡ K, we work dually as above.

– If G ≡ S ≡ M • K, and, say σ ≡ Γ ❙ S ❙ ➞ Θ ∈ TS , then σ ∈ Red iff for all
x : B ∈ Γ, α : C ∈ Θ, with c(B) > 0, c(C) > 0, we have σ1, σ2 ∈ Red, where,

σ1 ≡ Γ ➞ Θ− {α : C} ❙ (S)¯α : C

σ2 ≡ x¯(S) : B ❙ Γ− {x : B} ➞ Θ

But σ1 −→ σ′1 implies σ′1 ≡ Γ ➞ Θ − {α : C} ❙ (S′)¯α : C, some S −→ S′, and, by
hypothesis, σ′ ≡ Γ ❙ S′ ❙ ➞ Θ ∈ Red, thus σ′1 ∈ Red, ∴ by IH, σ1 ∈ Red.
Similarly, σ2 ∈ Red; hence, σ ∈ Red.

.CR2: [ If σ ∈ (Red ∩ TG), some G, and σ −→ σ′, then σ′ ∈ Red ]
– If G ≡ M and σ ≡ Γ ➞ Θ ❙ M : A, then σ −→ σ′ implies that σ′ ≡ Γ ➞ Θ ❙ M ′ : A,
with M −→ M ′.
Now σ ∈ Red; so, for all relevant K0, σ1 ∈ (TK0 ∩ Red), and

σ2 ≡ Γ, Γ0 ❙ M •K0 ❙ ➞ Θ, Θ0 with d(σ2) < d(σ),

we have that σ2 ∈ Red. Now, if M ′ ≡/ (M • α)¯α, any α, then

σ2 −→ σ′2 ≡ Γ, Γ0 ❙ M ′ •K0 ❙ ➞ Θ, Θ0

so, by IH, σ′2 ∈ Red for all such σ′2, and thus σ′ ∈ Red.
In case M ′ ≡ (M • α)¯α, we use CR[1, 3] for σ, σ′. Indeed, this is the reason for having
typed CR[1,3,2] when stating this lemma. Now, by CR1, M is SN, therefore M ′ is SN,
since M is simple. But M ′ is neutral, so, by CR3’, σ′ ∈ Red.
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– If G ≡ K : A, we work dually as above.

– If G ≡ M •K ≡ S, σ ≡ Γ ❙ S ❙ ➞ Θ, then σ −→ σ′ implies σ′ ≡ Γ ❙ S′ ❙ ➞ Θ,
some S −→ S′. Since σ ∈ Red, for all y : B ∈ Γ, β : C ∈ Θ with c(B) > 0, c(C) > 0, we
have σ1, σ2 ∈ Red, where,

σ1 ≡ Γ ➞ Θ− {β : C} ❙ (S)¯β : C

σ2 ≡ y¯(S) : B ❙ Γ− {y : B} ➞ Θ

By IH, since σ1 −→ σ′1 ≡ Γ ➞ Θ − {β : C} ❙ (S′)¯β : C, we have σ′1 ∈ Red, and
similarly σ′2 ∈ Red, for all relevant σ′1, σ

′
2, ∴ σ′ ∈ Red. �
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