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Abstract

For the last three decades, since the seminal paper of Harrison et al. [17], it
appeared that formal verification of access control mechanisms might not be feasible.
Their work was the first to formalise safety analysis of such systems and showed it
is undecidable under a model commonly known as HRU. Research, aiming to find
restricted versions of HRU that gain the decidability of this problem, yielded models
without satisfactory expressive power for practical systems.

We introduce a new protection model which subsumes HRU, giving it semantics
informally and in CSP. In addition, we introduce new safety properties and show that,
though in terms of security they are stronger properties than the one defined under
HRU, they can be automatically decided under our model and thus under HRU.

1 Introduction

For the last three decades, researchers have employed the hru safety' problem definition
for access control polices as was formalised by Harrison, Ruzzo and Ullman in [17] under
a protection matriz model commonly referred to as HRU (see Sect. 4 for more details).

Given a set of policy rules, a generic access right ¢ and an initial matrix Mp; the hru
safety problem is the question of whether it is possible to reach a state in which a is
granted to a subject that had not previously held it. That is, is there any sequence of
administrative commands that leaks a. If no such sequence exists, we say that M, does
not leak a.

It was subsequently shown that the problem of determining hru safety is in general
undecidable. However, under appropriate conditions decidability is achieved and indeed
the mono-operational commands condition was suggested as such. Since then, research
has been put into finding restricted models for which this problem is decidable with
minimum diminution of the expressive power. Harrison et al. [16] found that the hru
safety problem for momnotonic protection systems, where all the administrative command
are momno-conditional, is decidable.

Lipton and Snyder [14] proved that protection systems whose commands do not use
the create subject operation, regain the decidability of the problem. In [24], Sandhu and
Suri introduced their model of non-monotonic transformations which is implied by [14].

Koch et al. [10] analysed similar safety property of their graph-based access control
framework. They showed that it is decidable if each graph rule either adds or deletes a
graph structure but does not do both. Since graph rules only allow adding subjects from
a predefined finite set, this restriction is slightly stronger than [14]’s.

Unfortunately, none of these models is powerful enough to fully express many practical
systems. Therefore, in this paper we define and investigate stronger safety properties.

We present a new protection model, KN, which can simulate any HRU protection
system augmented with the ability to test for the absence of rights.

We then consider a new safety problem KN1. This can be interpreted as follows:
‘Given a set of policy rules, a generic access right ¢ and a matrix M specifying permissions

!This original term used in [17] was safety. We want to distinguish this problem from other safety
properties and therefore use the term hAru safety instead.



on some finite set of objects, does there exist a reachable state from any matrix consistent
with M that leaks a?’ By consistent, we mean the initial matrix must agree with M all
permissions in M. We can think of this safety property as only partially specifying the
initial matrix.

In practice, it is often not possible to prove useful security requirements without also
assuming that the system can never be in some inconsistent state. In such cases, one
would like to ‘strengthen’ the check by specifying that, for example, ‘there is never more
than one administrator.’

For this reason, we also consider the KN2 safety problem which modifies the KN1
problem by introducing a set of simple invariants such as ‘for a given object o no other
object o' has permission (0, o', a) set.’

The main contributions we make in this paper are:

e We show that, although in terms of security the safety problems KN1 and KN2
are more rigorous than the hru safety property, they can be decided using finite
abstractions in the FDR model checker [15].

e We observe that if a protection system S satisfies KN1 or KN2 for a generic right a
and any initial state that includes My, then it is also (hru) safe for S, a and M. We
can therefore propose a fail-safe algorithm for deciding whether an initial state? of
a given protection system under HRU (or KN) is (hru) safe. By fail-safe we mean
that if the algorithm finds no leakage then this state is safe but it might find “false”
leakages. However, since a leakage is a result of a finite sequence of actions, it is
easy to check whether a leakage returned by the algorithm is “false” or not.

The models and algorithms presented in this paper were possible thanks to the fact
that the HRU model is data-independent with respect to S and O. In other words, the
only operations a system can perform over members of S and O are: input, store, equality
testing and some polymorphic operation such as tupling. This observation allowed us to
use the decidability results of data-independent systems with arrays without reset [11].

Our paper is structured as follows. In Sect. 2 we introduce the KN model and ensure
it is data independent in Sect. 3. Section 4 investigates the relationship between HRU
and KN. In Sect. 5 we formalise three variations of the safety problem under KN and
prove their decidability /undecidability in Sect. 6. We conclude and discuss related work
in Sections 7 and 8. Lastly, we describe our future work plans in Sect. 9. APPENDIX A
provides a brief overview of CSP, the syntax we use to formalise the models presented in
this paper.

2 The KN Access Control Model

In this section we introduce our protection model, giving semantics informally and in
CSP [9].

*In [17] the authors use the term configuration rather then state.



We assume a finite set of access rights A and an infinite domain for objects 3. This
generates the set of permissions P = ¥ x ¥ x A. We may write such a permission p as
(Pg» Py, Pe) Which will model whether object p, has access right p, to p,.

A matriz is a pair (O, M) of a finite set O C X, and a function

M:0x0xA—B.

A matrix denotes whether permissions within the domain of M are on or off; permissions
outside the domain of M are off.

A system itself is defined by a set T of transitions. A transition ¢ is a finite tuple of
the form

t= (tona toﬁa treset tgmnt, ttake),

where each of oy, tog, tgrant, and tire are subsets of P, and tpese; is a subset of . Tran-
sitions must satisfy the following property:

ton N toﬁ" = tgmnt N tiake = {}
A transition is intended to be interpreted as follows:

e If all the permissions in ,, are on and all the permissions in ¢,z are off, then the
transition is enabled and may be executed.

e If the transition is executed, every permission involving anything from the set t,eget
is set to off, unless the permission is mentioned in the set #y,4y¢. All the permissions
in t4ns are set to on, and all the transitions in #;,;. are set to off, regardless of
their state before.

Note that a transition can never grant an infinite number of permissions. This ensures
that the resulting state is expressible as a finite matrix.

When coding our access control model KN into CSP, we make the set of events equal
to the set of transitions. Each permission is modelled as a single process: when it is in
the on state it blocks transitions that demand that it is off and turns itself off after a
transition that asks so:

PERMISSIONon (p) =
O,.,p & tog & t = ( PERMISSIONopr (p)

€p € tiake V Pz € treset V Dy € treset P

The definition of PERMISSIONorr(p) is similar.

We will put the entire ¥ x ¥ x A matrix together using CSP parallel composition.
(The composition is infinite, but this will not cause us any problems mainly because we
will use only the traces model of CSP.) At this point we need to consider what the initial
matrix of the system is — we will come to this later.



Example 1. We reproduce an ezample given in [29] called the Employee Information
System (EIS). It features the employees of a company, some of whom are managers and/or
directors and may award bonuses to other employees.

We can model these objects in our KN framework. We will have access rights Exists
and Subject that may be present at the diagonal to mark whether an objects exists, and if
it does, whether it is an employee (subject) or a bonus. (A similar mechanism is used to
capture HRU within KN — see Sect. 4.) We will have additional access rights Manager,
Director, and HasBonus.

| on off grant take
(z, z, Exists) (a, a, Exists) (b, b, Subject) (a, b, HasBonus)
ti(z,a,b) | (=,z,Subject) (a, a, Subject)
(z, z, Director) (b, b, Exists)
to(z, a, b) 7 " i (a, b,HasBonus)
(z, z, Exists) (a, a, Exists) (@, a, Manager) (a, b, HasBonus)
ts(z,a,b) | (z,z,Subject) (a,a, Subject) (a, a, Director)
(z, 2z, Manager) (b, b, Exists) (b, b, Subject)
t4(z, a, b) 4 " " (a, b,HasBonus)
(z, z, Exists) (a, a, Exists) (@, a, Manager) (a, a, Manager)
ts(z, a) (z, z, Subject) (a, a, Subject)
(z, z, Director)
(z, z, Exists) (a, a, Exists) (a, a, Mananger)
ts(z, a) (z, z, Subject) (a, a, Subject)
(z,z,Director) (a, a, Manager)
t7(z) (z, z, Exists) (z,z,Manager) (z, z, Mananger)
(z, z, Subject)
(z, z, Exists) (n, n, Exists) (n, n, Exists)
ts(z,n) (z, z, Subject) (n, n, Subject)
(z,z, Manager)

Table 1: Employee Information System.

The company’s policy states that directors can give out bonuses. This is expressed
in Fig. 1 by transitions of the form t(z,a,b) where a director x gives a bonus b to an
employee a. Transitions of the form ta(z,a,b) show that the director can also remove
bonuses. Similarly, t3(z,a,b) and ty(z,a,b) dictate that a manager may give or take
bonuses to any employee who isn’t a manager or a director. Transitions t5(z,a) and
t6(z, a) say that a director can demote from or promote to manager, and t;(z) says that
a manager may resign.

The original example in [29] included the ability for an employee s to appoint another
employee sy as his advocate. We omit this for simplicity but could easily model it, for
example by setting a permission (si, o, Advocate). A feature not permitted in [29] but
allowed in our framework is the ability to let the set of existing objects grow. tg(z,n)
expresses that managers may hire new employees. We could similarly add transitions
that fire employees and that create/delete bonuses.

The set of transitions T s formed by taking the transitions from Fig. 1 and instan-
tiating =, a, and b with all possible values from %. The variable n is chosen slightly
differently as explained in Sect. 3.



3 Data Independence

In the literature a system is data-independent with respect to a type 3 if the only oper-
ation that can be performed on values of that type is equality. This property has been
exploited to prove the decidability of many useful classes of model checking problems
[19, 22, 27]. In this section we ensure our KN systems have this property by giving a
semantic restriction and a sufficient syntactic condition.

We also allow a finite number of constants Oy C ¥ from the type to be used which
will let us specify the initial states of some permissions and check how they evolve over
time. We will write Op for ¥\ Oy and restrict KN as follows:

1. Transitions cannot refer to objects in Oy explicitly by name. More precisely, if some
objects in Oy can perform a transition with, say, n objects from Oy, then they could
also have performed it with any other n objects from Op, so long as they also met
the enabling conditions of the transition.

2. Objects in Oy cannot be reset.

The second condition is necessary because without it a system would be able to refer
directly to a particular row/column of the matrix which has been reset. Safety problems
of such systems are harder [21] but it is future work to try and relax this condition (see
Sect. 9.)

In order to formalise this definition, we will require a little mathematical machinery.
We can lift a function ¢ : Oy — S to transitions in the expected way: ¢t is the same
as t except ¢ has been applied to everything from Oy appearing 1n t. Everything else in
t, including objects in Og, remain unchanged. We write ¢ : Og 2 0y to mean that the
function ¢ is a bijection on the set Oy.

Now we can state our definition of data independence more formally:

1. T is closed with respect to all bijections ¢ : Oy = Op.
2. Forallt € T, treset N O = {}.

These conditions can be enforced by requiring that 7' is defined as a union of set
comprehensions in the following form:

{ t1(01, ey 0, 01, s 0m)s vy (015 0y 0y 01, ey 07) |
o + Oy,
0y + 0o, 05 & {o1},
Oé — OOa 0{13 ¢ {Oia Oé}a

;n(_ﬁoaoing{oia'-',oin—l}}

where 01,..., 0, € Op, and each t;(-- - ) can only refer to objects using its parameters, and
the sets #;(- ). Must not contain o1,..., 0. In fact, we can relax these conditions:
for example, it is permissible to miss out some or all of the ¢ constraints above, or to
draw of,...,o!, from supersets of Oy

]



Example 2. In the EIS example (Example 1) no constants were used in the transitions
which on the face of it means that the set Oy does not need to contain any objects.
However, we will want to mention objects in our safety property so Oy will not be empty
(see Ezample 4.)

We explained that the variables x, a and b are drawn from the set 3. To satisfy our
definition of data independence we should draw values for n from the set Oy. The fact
that n cannot take values in Oy is not a problem as the matriz is always finite, the set
of objects Oy contains an infinite supply of non-existing objects that t3(---) can turn into
eristing objects.

4 The Relationship Between KN and HRU

In this section we show how HRU [17] can be modelled in KN.

Conversely to KN, HRU identifies S C O as the set of subjects. Therefore a state or
a configuration in HRU is the triple (S, O, M) of finite sets S C O C ¥ and a function
M:S8%x 0 xA. A command (transition) in HRU takes the form:

command a(X;, Xs,...,X,)
if a; in (X,,, X,,) and

Om in (X5m7 Xom)
then
op1

0Pn
end
Where each each op; is a primitive operations which can enter and delete rights as
well as create and destroy subjects and objects.

Example 3. This ezample illustrates how the EIS system introduced in Ezample 1 can
be modelled using HRU with a slight adjustment. Since HRU cannot test for the absence
of a right we introduce a new guard of the form “a notin (X, X')”.

(s, s, Director) and (s, s, Manager) will indicate that a subject is a director or a manager
respectively. As we cannot model objects’ type by including a special right in the diagonal,
we employ an additional access right Types ensuring that only one special-purpose subject
in the initial matriz is granted the permission (s',s', Types). The permission (s, 0o, Bonus)
is subsequently used to indicate that object o is of type Bonus.

We can model an HRU state in KN by adding two new attributes Exists and Subject
to A. We include an attribute (o, o, Exists) for objects o that exist, and all other objects
can be considered not to exist. Of the existing objects, another attribute (o, 0, Subject)
could mark whether or not this object is a subject or not.

An HRU command can be simulated as follows:



e command # (s, z, a, b)

if
Types in (s, s) and
Bonus in (s, b) and
Director in (z,z

then
enter HasBonus into (a, b)

end

e command #(s, z, a, b)

if
Types in (s,s) and
Bonus in (s, ) and
Director in (z,z)

then
delete HasBonus from (a, b)

end

e command #(s, z, a, b)

if
Types in (s, s) and
Bonus in (s, b) and
Manager in (z,z) and
Manager notin (a, a) and
Director notin (a, a)

then
enter HasBonus into (a, b)

end

e command #(s, z, a, b)

if
Types in (s,s) and
Bonus in (s, ) and
Manager in (z,2z) and
Manager notin (a, a) and
Director notin (a, a)

then
delete HasBonus from (a, b)

end

e command #(z, a)
if
Director in (z, z)
then
enter Manager from (a, a)
end

e command #(z, a)
if
Director in (z,z) and
Manager in (a, a)
then
delete Manager from (a, a)
end

e command #(z)
if
Manager in (z, )
then
delete Manager from (z, z)
end

e command fg(z, n)
if
Manager in (z,z)
then
create subject n
end

Table 2: Modelling the EIS system in HRU commands

We can encode conditions using t,,, although we would want to add to %,, the
permission (o, 0, Exists) for any object o mentioned, and both (s, s, Exists) and
(s,s,Subject) for any subject s mentioned.

The HRU primitive operations enter and delete can be modelled using the sets tgron;
and ttake-

We can destroy an object by removing its Exists permission: i.e. we put (o, o, Exists)
in type- Similarly for subjects.

We can create an object by taking one of the infinitely many o € Oy which doesn’t
exist, clearing all its entries, and making it exist. We do this by having a transition
t(o,...) for each 0 € Oy, and putting (o, o, Exists) in t,g, 0 in treser, and (o0, 0, Exists)
in grant. It is necessary to reset all permission involving o in case o was an object



that previously existed and its entries contain junk. For subjects, we also grant
(0, 0,Subject).

As HRU commands are parameterised by the subjects and objects they refer to, they
create data-independent sets of transitions. (Notice how we ensured that objects in O
are not reset by only allowing objects in Op to be created.)

In the HRU model, states are finite so we can encode them as a KN state (O, M). In
[17] the initial state of an HRU system is not included in the model, rather it is presented
as part of the safety property. We have separated our notion of model and property in
the same manner for comparison.

Notice that KN systems are more expressive than HRU systems in the following way:
whereas HRU conditions can only insist that certain permissions are on, we are able to
test whether permissions are off via the #,; component of transitions.

There is one slight difference between the two frameworks in the way that safety
properties can be expressed over the models: an HRU system may grant and take the
same permission in the same command to model a temporary access right that can be
detected by the safety property. We cannot do this in KN because our transitions are
atomic, but can easily find another way to signal this, e.g.: permanently set a fresh access
right a, while changing the safety property to look for a instead.

5 Safety

As mentioned in Sect. 3, we are interested in a specific finite set of objects Oy because
we wish to impose some initial constraints upon them or because we wish to observe how
these objects evolve. We call Oy x Oy x A the observable permissions. If the system
possesses some kind of symmetry (as it is bound to if it is data independent), we can
assume that some or all of these observable objects can represent arbitrary objects without
loss of generality.

We allow the initial state of the observable permissions to be completely specified by
some initial observable matriz (Oy, My), and we will only consider safety properties that
talk about the observable permissions (hence the name ‘observable’), for example ‘is a
certain observable permission ever granted?’

Example 4. The manager conspiracy scenario considered in [29] was: ‘can two managers
conspire such that one of them gets a bonus?’ Because of the symmetry in our model, if
such a scenario is possible then (without loss of generality) a manager S2 will give a bonus
B1 to a manager S1. We therefore consider an initial state with Oy = {S1, 52, B1} that
models two managers and a bonus:

My S1 S2 B1
Exists
S1 | Subject
Manager
Exists
S2 Subject
Manager
B1 Exists




Of course, such a problem is finite in the case that (1) we consider a specific initial state
and (2) we don’t allow the number of objects to grow beyond a certain bound. But the
property we are checking makes no assumptions about the rest of the initial state and we
have included transitions that allow objects to be added to the system, so traditional model
checking procedures are not applicable.

The question remains: what is the initial state of the unobservable permissions? We
consider three variants which we call KN1, KN2, and KN_L.

5.1 KNI1

For our first variant KN1 we are interested in proving properties of the KN system
independently of the unobservable permissions’ initial states. One can view such a class
of initial states pictorially as in Fig. 1.

Figure 1: KN1.

We can encode a system starting with an arbitrary assignment to the unobservable
permissions in CSP as follows:

KN1 = || yep (PERMISSIONy(p)< My(p)» PERMISSIONoFr(p))
T

Epe Oy x Oy x AY
(PERMISSION N (p) N PERMISSIONopr (p))-

KN1 does not enforce the restriction that there are only finitely many permissions
initially on; we require this so that the system does not start with infinitely many users
(remember we use permissions to mark when objects come into existence.) This is cum-
bersome to express in CSP and in fact we can assume it anyway. Because each transition
can only reveal that a finite number of permissions are on, the finite-trace models of CSP
we will be using can never yield a behaviour where infinitely many permissions must be
initially on.

Example 5. KN1 is a perfect model for the property discussed in Example 4. In this case,
KN1 can nondeterministically initialise in any state satisfying the following property:
there are a finite number of employees, but at least two managers, and there is at least
one bonus which is not held by either of the aforementioned managers. For example, there
is mo constraint on the number of directors or other managers present in the company.



5.2 KN2

In practice it is useful to consider the question marks from Fig. 1 to be constrained so
that they are guaranteed not to start in particular states. We therefore assume a set of
safe permissions SP which are the only rights that may be initially held.

We will assume that these safe permissions are a desired invariant of the system, in
that not only does the matrix start with just safe permissions granted, but it also should
never grant non-safe permissions. For example, the safe permissions may be those that
the administrator is willing to give out, and it would be considered an error if any non-
safe permission could be granted. Therefore we will answer questions about these system
of the following form: (1) can a non-safe permission be granted anywhere? (2) if not, is
some safety problem about the observable permissions true?

As the matrix (Op, Mp) can completely specify the initial state of observable per-
missions, we assume that all observable permissions are safe. Also, in order to gain
decidability results, it is necessary that these permissions respect the data-independence
property. We therefore demand that for any permission p € SP, renaming Oy objects in
p gives us another permission in SP. Formally speaking we can say:

1. 00XO0XA§SP,&Ild
2. SP is closed with respect to all bijections ¢ : Oqy = 0.

It is possible to write down a syntactic condition for such properties as was done for
transitions in Sect. 3.
We encode the class of systems starting in such a state in CSP as follows.

KN2 =|| peP (PERMISSIONON(p){Mo(p)}PERMISSIONOFF(p))
T
Ep € Oy x Oy x AF

(PERMISSION o (p) 1 PERMISSION o (p)
&p € SP» PERMISSIONpr(p)).

The same caveat about the initial matrix being finite that applied to KN1 also applies to
KN2.

Example 6. We might consider the safety problem from Ezample 5 with the following
additional constraint: suppose that there are initially no directors present in the company.
We can add this constraint by setting the set of safe permissions to

SP = (X x X x A)\ {(o, 0, Director) | 0 € Og}-

Our KN2 model will be able to model the company starting from a state where there are
no directors or only one. We might then wish to check: (1) can a director be appointed?
and (2) if not, is the manager conspiracy scenario possible.

10



5.3 KNL

In our final variant KN we consider all the unobservable permissions to be off. This
model bears the closest resemblance to the hru safety property [17]. We can code this in
CSP as follows:

KNL1 = | ,ep PERMISSIONonN(p)
T LpeOyx0yxA N M(p) *
PERMISSION opr (p)

Example 7. If we use the matriz (Oy, My) from Ezample 4 for the Employee Information
System, KN_L will provide an accurate model of the company starting with exactly two
managers and one bonus with initial state as prescribed by M.

5.4 Relationships

It can be noted that KN1 and KN2 are abstractions of KN_L in the following sense:
Theorem 8. KN1 C7 KN2 Ty KN L.

Proof. By resolving nondeterminism within the definitions of KN1 and KN2. O O

This theorem is important because of the following property of refinement: if P C¢ @
and we show that all behaviours of P satisfy some property S, then we know that all
behaviours of @) satisfy S too.

None of the above CSP models can be model-checked using an explicit state explo-
ration tool like FDR because the domain of objects X is infinite. Using similar techniques
that have previously been applied to non-resettable arrays [11], we are able to relate some
of these processes to finite abstractions.

6 Decidability and Undecidability Results

In this section we examine the decidability of safety problems under our models KN1,
KN2, and KN_L.

6.1 Decidability of KN1 Safety Problems

As noted, KN1 is an infinite state system and therefore not amenable to traditional
explicit state model-checking procedures. Here, we describe and motivate an abstraction
AKNI1 of KN1 that is finite state. We then relate the behaviours of KN1 and AKNI1.

Recall that we are only interested how the permissions in the observable portion
Op x Oy x A of the matrix evolve in KN1. We now argue that the enabledness of any
transition is effectively independent of the state of all permissions outside of Oy x Op x A.
This is because of the following observations:

1. The observable portion of the matrix cannot distinguish by name different objects
in Oy due to the data-independence condition.

11



2. After any finite run of the system, there will always remain an infinite number of
objects in Oy who’s initial state is as yet undetermined.

3. We can choose the state of these undetermined objects — we are considering all
possible initial states for the unobservable permissions, so it is entirely possible that
the objects in Oy were initialised in that state from the start.

The first two observations allows us to substitute objects in Oy for objects whose state is
undetermined. The third observation means we can choose the states of these objects in
such a way that enables the transition. This argument suggests that the evolution of the
observable portion of the matrix is unimpeded by the unobservable portion. We therefore
choose an abstraction that models the observable portion only:

AKNI = ycopx0oxa PERMISSIONon(p)
T & M(p)» PERMISSION opp(p).

Note that although KN1 is finite state, each state may have an infinite number of
transitions from it because T is infinite. A model checker like FDR cannot handle such
systems. We can, however, use standard data-independence techniques [22] to reduce %
(and therefore T') to a finite set. Such an argument would run as follows.

As AKN1 cannot distinguish between different objects in Oy we might as well assume
that Og is a singleton set. Therefore, the set of objects in the abstract model becomes
Yx = Og U{X}. The symbol X can be thought of as meaning ‘some object in Op,” and
can mean different objects even within the same transition.

Carrying on, the set T is reduced to a finite set T'x by replacing occurrences of
objects in Op with X. This can be done by applying the function px : Oy — {X} to each
transition. For our sufficient syntactic condition for data independence, we just replace
Og with {X}. We use Tx in place of T in the definitions of PERMISSIONoy(p) and
PERMISSIONorr(p).

We now discuss formally how the behaviours of KN1 and AKN1 are related.

Theorem 9. Let (t1,...,t,) € traces [KN1]. Then
(pxti,...,pxtn) € traces [AKN1].
Proof. We use induction on ¢ = 0,...,n to show:
1. (pxti,-..,pxti) € traces [AKN1], and

2. the state of the Oy x Oy x A permissions in the matrix in KN1 after the trace
(t1,..., ) is equivalent to their state in AKN1 after the trace (pxt,...,pxt).

For the empty trace (i = 0), the first statement is true by the healthiness conditions
of the CSP traces model. The second statement is true initially because both processes
initialise these permissions according to Mj.

Now we suppose 7 > 0, and that the induction hypothesis holds for ¢ — 1. The
transition #; must have been enable in KN1 because it executed. In particular, this means

12



that all permissions in #; gqns N (Og X Op x A) were on and those in 44, N (O X Op x A)
were off. Because permissions in Oy x Oy x A are unaffected by ¢x, and because these
permissions have the same state in AKN1 by the induction hypothesis, the transition
will also be enabled in AKN1 after the trace (¢xti,...,oxti—1). We have shown that
(pxti,-..,pxti) € traces [AKN1].

Similarly, we can show that the second statement of the induction hypothesis holds:
the function px doesn’t affect objects in Oy, so the effects of #;,eser, 1 grant and tiyqpe O
Oy x Oy x A are identical in the two processes. O O

Theorem 10. Let (t1,...,t,) € traces [AKN1]. Then there exist transitions t, € T with
wxt] =1t; for each i =1,...,n such that

(t{,...,t,) € traces [KN1].

Proof. Similarly to the previous proof, we use induction on the length of the trace,
strengthened with the additional hypothesis that AKN1 and KN1 always have matching
states for the permissions Oy x Oy x A after each pair of respective transitions.

By construction of T'x, we know that occurrences of X in ¢; actually represent concrete
objects in Op. Formally, there must be some ¢! € T such that pxt! = t;.

Furthermore, we can use the data independence condition on T to find another ¢; € T
which replaces any Oy objects appearing in ¢! with fresh Oy objects not already appearing
in the trace (¢/,...,# ;). This finite trace only contains finitely many objects, and Oy is
infinite, so we can always find an appropriate bijection ¢ : Oy 2 0o which does this.

We now need to show that (t{,...,t,) € traces [KN1]. By construction of ¢/, we know
that

tionﬂ(OoxOoxA) = téann(OOXOOXA)
and tioﬁn(OOXOOXA) = z{oﬁm(OOXOOXA)-

We also know from the additional induction hypothesis that the state of the permissions
Op X Oy x A is identical in both AKN1 and KN1 after the traces (t,...,t—1) and
(t1,...,t_1) respectively. Therefore, as ¢; was not blocked by AKN1, we know that ¢
will not be blocked by the Oy x Oy x A portion of the parallel in KN1. Before we show that
t/ is not blocked by the rest of the matrix, we point out that the above argument can also
be applied to reset, grant and take to re-establish the additional induction hypothesis.
The question remains whether the permissions outside of Oy x Oy x 4 in KN1 could
be in a state to accept ¢;. These permissions are of the form (o, 0, a) or (o', 0", a) where
0 € O, 0',0" € Oy, and a € A. Bare in mind that these permissions were started in an
indeterminate state: either on or off. We claim that they are still in an indeterminate

state after the trace (t{,...,%_):

e First let’s imagine a permission (o’,0"”,a), where o',0”" € 0. As both o
and o” have not appeared in the trace before, they could not have appeared
in any on, off, reset, grant or take sets. This means that both branches of
PERMISSIONon(p) M PERMISSIONorr(p) would have been willing to execute
any previous transition without change state, keeping the process in the state
PERMISSIONoN(p) M PERMISSION gpr(p)-
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e In fact the same is true of permissions (o, 0’,a) and (o', 0, a), where o' € Oy but
0 € Op. As 0o is fresh, this permission cannot have appeared in any on, off, grant
or take sets, and similarly the object o’ could not have been in a reset set. The
object o cannot appear in a reset set by our definition of data independence.

We can now resolve this nondeterminism how we like: we resolve it to ON for permissions

in ¢; , and OFF for permissions in t; off- We have now enabled the transition t. O O

These theorems allow us to deduce important relationships between KN1 and AKN1,
for example:

Corollary 11.
KN1\ S =7 AKN1\ Sx

where S and Sx are the subsets of T and Tx respectively that only mention objects in
0p.

Corollary 12. A permission in Og x Oy X A can be granted by KN1 if and only if it can
be granted by AKNI1.

Example 13. As noted in Example 5, KN1 is an appropriate model to check for the
existence of the manager conspiracy scenario in the Employee Information System. The
corresponding abstract system AKN1 has been coded in FDR, and we can specify that S1
doesn’t obtain the bonus B1 by checking that

CHAOS:; Cr AKN1
where
C={te Tx| —|((51,Bl, HasBonus) € tgrant A (52,52, Exists) € ton)}

By Theorems 9 and 10, we know that this refinement will hold if and only if KN1 is not
able to perform a transition which grants the bonus Bl to S1 and requires S2 to exist
(i.e. be involved in the transition.)

Checking this in FDR gives the following counterezample: (t7;(S1),13(52,51, B1)).
This corresponds to the manager S1 resigning and then being given a bonus by S2. This
is the same as the flaw found in [29].

Let’s prevent managers from resigning by removing transitions t7(z). FDR now pro-
duces a counter-ezample (t5(X,S1),13(S2,S51, B1)). The theory tells us that X stands
for ‘some other object in Op,’ so the trace depicts the scenario that a director from Oqy
fires S1; then S2 can give S1 the bonus.

Removing t5 from the system gives us a check that succeeds. Using our theory, this
proves the following about the Employee Information System with transitions t5 and t;
removed: from any initial state (regardless of the number of employees or bonuses), it
is not possible for two managers to conspire so that one of them acquires a bonus that
neither of them initially held.
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6.2 Decidability of KN2 Safety Problems

In this section we show that a finite abstraction for the KN2 problem exists.
Recall that the KN2 system was initialised according to My on Oy x Og X A, and other
permissions p would have to be off if p was not a member of a set of safe permissions SP.
We now form a finite abstraction of KN2 starting from AKN1. We abstract our safe
permissions SP in the same way we abstracted T to Tx for KN1:

SPx = {pxp | p € SP}.

We restrict AKN1 so that transitions that require non-safe permissions to be set are
disallowed:

AKN2' = AKN1 I STOP.
{teTx|ton ZSPx}

In order that the previous step remains sound during the computation, we throw an
error if our SP invariant is broken. An error event can be communicated if non-safe
permissions are ever granted:

AKN2 = AKN2'[¢™7 /, | t € Tx, tgrans € SPx].

We say that AKN2 is error-free if it is never able to communicate the error event.

Theorem 14. If AKN2 is not error-free, then there exists a behaviour of KN2 where a
non-SP permission is granted.

Proof. Take a shortest trace (t1,...,t,, error) of AKN2. From the definition of AKN2
we know that

1. Because of the error renaming, and the fact that this is a shortest trace with
error occurring, there is a trace (f1,...,tn+1) € traces [AKN1] with only SPx
permissions in #; gqny for i = 1,...,n and some non-SPx permission in ;1 grant-

2. Because of the parallel composition with STOP, only SPx permissions appear in
tion fori=1,...,n+1.

From Theorem 10 we know that KN1 has a trace (t{,...,t, ) with pxt; = t; for each
i=1,...,n. We now deduce from the two facts above:

!

i grant for i =1,...,n and there are some non-SP

1. There are only SP permissions in ¢

. . . I
permissions in ¢, +1 grant”

2. Only SP permissions appear in ¢/ fori=1,...,n+ 1.

Ton

It can now be seen that is also a trace of KN2 because the non-deterministic choices in
KN1 can be resolved to PERMISSIONgrp for all non-SP permissions: the trace doesn’t
change the state of these processes (until after the final transition) and in this state the
processes will not block any transition in the trace. O O
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Theorem 15. If AKN2 is error-free, then we can reproduce Theorems 9 and 10 for KN2
and AKN2. That is:

(t1,...,tn) € traces [AKN1]
if and only if

there ezists t],...,t, € T with pxt; =t; for each i =1,...,n
such that (t,...,t,) € traces [KN1].

Proof. We can reuse the previous proof (omitting the error event at the end of the trace)
to show that (t1,...,t,) € traces [AKN2] implies (#{,...,t,) € traces [KN2].

We now need to show that (¢1,...,t,) € traces [KN2] implies (¢xti,...,oxtn) €
traces [AKN2].

From Theorem 8 we know that (t1,...,%,) € traces [KN1], and Theorem 9 gives us
(pxtiy---,@xty) € traces [AKN1].

To see that this is also a trace of AKN2, we just need to observe that:

1. Bach (¢xti)grant contains only SPx permissions. For if this were not true, it would
mean there is a behaviour of KN2 where a non-SP permissions is granted. This
would contradict with our assumption that AKN2 is error-free via Theorem 14.

2. Each (¢x t;)on contains only SPx permissions. Otherwise, there would be some ¢;,,,
containing a non-SP permission: this can’t be the case because KN2 starts that
permission in the off-state, and it remains in the off-state because KN2 is error-free
as above.

The above two points show that the trace (pxti,...,@xty) of AKN1 is unaltered by the
parallel and renaming operators in the definition of AKN2. O O

Example 16. Let’s return to the EIS example. In Example 18 we saw that the manager
conspiracy scenario can be avoided by removing a couple of rules from the system. We
now look at another approach to achieve this aim. We still dispense with rule t; that
allows managers to resign, but we will keep t5 which allows managers to be demoted by
a director. Instead we insist that there are no directors in the initial system. We can do
this using the KN2 model as described in Example 6.

We have coded up the finite abstraction AKN2 in FDR and the following check suc-
ceeded:

CHAOS¢ Cr AKN2

(where C is defined in Example 13.) This shows that AKN2 is error-free: it is therefore
not possible for a director to be created in KN2. We can now use Theorem 15 to deduce
from this refinement that the manager conspiracy scenario cannot occur in KN2. In
words, the scenario does not occur whenever the system (without t7) is started in any
initial state satisfying the following two constraints: (1) the objects S1,52, and B1 satisfy
the matriz My, and (2) all other objects o do not have (o, o, Director) set.
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6.3 Undecidability of KN Safety Problems

Here we show that the safety problem for KN_L systems is undecidable. This is done
using a reduction to the HRU safety problem shown to be undecidable in [17].

The safety problem for HRU is defined as follows: ‘from a specific initial state, is it
possible for a particular access right a € A to be granted anywhere in the system?’ As
described in Sect. 4, any HRU model can be simulated in our KN model. The KN_L
process is able to express a specific initial state, and one object in Oy could be used to
model an arbitrary object. Therefore this safety problems for KN_L is undecidable.

However, we can use Theorem 8 combined with the decidability results about KN1
and KN2 presented in this paper to get an approximate decision procedure for KN_L
safety problems.

Example 17. Theorem 8 tells us that the positive results about the Employee Information
System proved in Erxamples 13 and 16 also hold for KN_L. This is despite the fact that
arbitrarily many new objects can be created by transitions tg(z,n).

7 Conclusions

We have introduced the novel satefy properties for protection systems and showed that
they are decidable under KN and thus under HRU. We argue that in some circumstances,
even if hru safety can be proven, these safety properties give better assurance of the
security of an access control system. For example, proving that a policy is safe with KN2
guarantees correctness regardless of any change in the initial state, so long as the change
is consistent with the initial conditions and invariants specified by the KN2 property.

It was shown that the analysis of safety properties under the RW model for an un-
bounded number of subjects and objects is decidable as long as specifications only use
the existential quantifier’. The fact that we could show that safety analysis under an
existing model is decidable, gives hope that the algorithms presented in the paper will be
adequate for analysing practical systems.

We have also offered a sound but incomplete algorithm for deciding hru safety under
HRU. It might be the case that the number of the “false” leakages can be reduced and
this remains a topic for further investigation. However, by the undecidability result, it is
clear that the “false” leakages potential cannot be eliminated. Although this algorithm is
incomplete, in reality it might be valuable. As an example we refer to the safety problem of
cryptographic protocols that has been extensively researched in the last decade. Although
many of the proposed tools and algorithms in this realm are fail-safe, it turned out that
in practice it was rare to find correct protocols these tools could not prove.

8 Related Work

Despite previous lack of an automatic algorithm for analysing the safety of access control
policies, a few methods for evaluating such system have been developed. The most closely

3The hru safety problem can be expressed using the existential quantifier.
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related work is [3] in which it is shown how access control mechanisms with a bounded
number of subjects and resources can be expressed using CSP. The author demonstrates
how concepts from XACML and such as separation of duty can be modelled in CSP in
addition to several safety properties which can be verified using FDR. The CSP models
presented in our paper are to some extent similar but allows us to reason about safety
properties of unbounded systems.

Fisler et al.[7] developed a tool called Margrave which takes role-base access control
policies specified in XACML and represent them as multi-terminal decision diagrams
(MTBDDs). By exploring the MTBDDs, Margrave can check whether a policy preserves
a given property and generate a counter-example if it does not. Margrave also supports a
change-impact analysis in which it consumes two policies that span a set of changes and
summarizes the differences. Margrave does not consider dynamic changes of the policy
(administrative model) and hence, in terms of safety, its analysis is limited. The models
presented in our paper can be used for modelling RBAC polices with administrative
models that bound the number of roles. Analysing more general RBAC policies remains
a subject of future work.

Guelev, Ryan and Schobbens [8] presented the RW formalism, base on propositional
logic, for expressing access control policies and queries. The paper also presents an
algorithm implemented in Prolog for calculating the ability of a coalition of a fix number
of agents to achieve a certain goal in the presence of a fixed number of resources. It is
therefore usable only for finding flaws and cannot provide general proofs of correctness of
a safety of a policy. In addition, a tool was provided which takes an RW script as input
and converts the policy description into XACML [28].

Ahmed and Tripathi [1] demonstrated how static verification can be employed to show
that security constraints do not violate any desired security property.

Schaad and Moffett [26] showed how access control policies complying to RBAC96
and ARBAC97 together with a set of separation of duty properties can be translated into
Alloy. They demonstrated how Alloy can then be used to check whether these policies
do not breach the SoD constraints.

9 Future Work

The results presented in this paper are the foundation of the work we are seeking to carry
out in the future.

KN lacks some features which are common in practical systems such as Groups and
the Unique-permission constraint (e.g. in Unix only one subject can own a resource at
a specific point in time.) For clarity we omitted these in this paper. In the future we
intended to offer a complete model.

It was proven that safety analysis under KN1 and KN2 is decidable. We would be
interested in expanding these models’ expressiveness without losing this property. For
example, KN2 allows, under certain conditions, some permissions outside (O, Mp) to
be set off. We would be interested in relaxing these conditions and considering cases in
which permissions outside (O, M) are set on.
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Similarly to research conducted in this area, we believe we might be able to propose
restricted versions of HRU and prove that the hru safety problem regains decidability
by reduction to KN2. Another avenue for finding decidable subsets of HRU is the work
by Lazi¢ and Roscoe [21] who investigated the decidability of reachability specifications
in finite control programs which are data-independent in type X, and which contain
resettable arrays indexed by type X and storing values from a type Y. Using these result
we can generalise [14]’s result to KN. We are interested in simulating such system in
CSP and using this technique for identifying even more expressive subsets of HRU under
which the hru safety problem is decidable.

Though performance was out of the scope of this paper, it seems that KN2 can be
explored efficiently especially when considering monotonic protection systems. However,
we realise that our CSP model can be optimized by utilising symmetry and chasing [20].
After tackling these, we are interested in analysing the models’ complexity and evaluating
real systems.

We acknowledge that writing CSP scripts for analysing access control polices manually
might be tedious and error-prone. We therefore intend to develop a compiler which will
produce the CSP scripts from a more abstract description. At the same time, a simple
language for expressing policy specifications needs to be designed and supported by the
proposed compiler.

There have been a few attempts to analyse Trust Management systems [2]. The
models propose in this paper together with the knowledge gained in the security protocols
field [23] can be combined in order to reason about such system. The only decidability
result we are aware of in this realm is due to Li et al. [13] who considered safety analysis
in the policy language RT[«,N]. It can be shown that RT[«,N] is subsumed by HRU
and by KN2. Thus, the results presented in our paper can be used to shad more light on
the decidability of TM systems.

It was shown in [5, 6] how a mapping function (¢) can be used to generate automat-
ically models of XML based security protocols specified by SOAP and WS-Security. We
would like to extend ¢ to automatically produce CSP models of polices given by XACML.
Once a TM model is completed, we would be interested in extending ¢ for supporting
WS-Security protocols with incorporated SAML assertions [4].

Lastly, we are interested in extending our result to RBAC (role based access control)
policies. In [18] Munawer and Sandhu have suggested that the HRU model can be simu-
lated using RABC96 [25]. It follows that the safety problem under RBAC is undecidable
as well. As mentioned above, the models presented in this paper can be extended for
modelling RBAC polices in which the system is limited to a fixed number of roles but
unrestricted otherwise. Recent results [12] reveal the requirements under which a system
with an array with a linear order operator is decidable. We hope that these can be used

for uncovering less strict requirements to achieve decidability of the safety problem of
RBAC systems.
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APPENDIX A: Quick Guide to CSP

STOP - does nothing.

a — P - initially willing to communicate a; if it performs a, afterwards it behaves
like P.

P4 b} (@ - behaves like P if the boolean condition b is true, otherwise behaves like
Q.

b & P - guard P with the boolean condition b; equivalent to P<<b3>STOP.
P M @ - nondeterministically behaves like either P or Q.

|| seaP(i) - put the processes P(i), for each i € A, together synchronising on the
X

events in X.

P \ X - behaves like P except the events X have been hidden and are therefore
uncontrollable by the environment of P.

P[¢/.] - Behaves like P except events e are renamed to ¢'.

traces [P]] is the set of all finite sequences of events that are prefixes of behaviours
of P.

P 7 @ means that P is refined by @Q: the traces of P include the traces of Q.

Chaos[C] is a process whose traces are exactly the finite sequences over the set of
events C.
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