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Abstract

In this paper we investigate the ways in which a fixed collection of valued con-
straints can be combined to express other valued constraints. We show that in some
cases a large class of valued constraints, of all possible arities, can be expressed by
using valued constraints of a fixed finite arity. We also show that some simple classes
of valued constraints, including the set of all monotonic valued constraints with finite
cost values, cannot be expressed by a subset of any fixed finite arity, and hence form
an infinite hierarchy.

1 Introduction

Building a computational model of a combinatorial problem means capturing the re-
quirements and optimisation criteria of the problem using the resources available in some
given computational system. Modelling such problems using constraints means expressing
the requirements and optimisation criteria using some combination of basic constraints
provided by the system. In this paper we investigate what kinds of relationships and
functions can be expressed using a given set of allowed constraint types.

The classical constraint satisfaction problem (CSP) model considers only the feasibility
of satisfying a collection of simultaneous requirements. Various extensions have been
proposed to this model to allow it to deal with different kinds of optimisation criteria or
preferences between different feasible solutions. Two very general extended frameworks
that have been proposed are the semi-ring CSP framework and the valued CSP (VCSP)
framework [2]. The semi-ring framework is slightly more general, but the VCSP framework
is simpler, and sufficiently powerful to describe many important classes of problems [7, 19].

In this paper we work with the VCSP framework. In this framework every constraint
has an associated cost function which assigns a cost to every tuple of values for the
variables in the scope of the constraint. The set of cost functions used in the description
of the problem is called the valued constraint language.

As with all computing paradigms, it is desirable for many purposes to have a small
language which can be used to describe a large collection of problems. Determining which
problems can be expressed in a given language is therefore a central issue in assessing the
flexibility and usefulness of a constraint system, and it is this question that we investigate
here.

We make use of a number of algebraic tools that have been developed for this ques-
tion [15], and for the related question of determining the complexity of a constraint lan-
guage [4, 7]. By applying these tools to particular valued constraint languages, we show
that some simple constraint classes provide infinite hierarchies of greater and greater ex-
pressive power, whereas other classes collapse to sets of cost functions of fixed arity which
can express all the other cost functions in the class.

The paper is organised as follows. In Section 2, we define the standard valued con-
straint satisfaction problem and the notion of expressibility for valued constraints. In
Section 3, we describe some algebraic techniques that have been developed for valued
constraints in earlier papers and show how they can be used to investigate expressibility.
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In Section 4, we show that relations of a fixed arity can express any relation of any arbi-
trary arity. We show the same result for max-closed relations. In Section 5, by contrast,
we show that the finite-valued max-closed cost functions form an infinite hierarchy. In
other words, finite-valued max-closed cost functions of different arities have different ex-
pressive power. In Section 6, we show a collapse to finite arity for general cost functions
taking both finite and infinite values. Finally in Section 7, we summarise our results and
suggest some important open questions.

2 Valued Constraints and Expressibility

In this section we define the valued constraint satisfaction problem and discuss how the
cost functions used to define valued constraints can be combined to express other valued
constraints. More detailed discussion of the valued constraint framework, and illustrative
examples, can be found in [2, 7].

Definition 2.1. A valuation structure, Ω, is a totally ordered set, with a minimum and
a maximum element (denoted 0 and ∞), together with a commutative, associative binary
aggregation operator, ⊕, such that for all α, β, γ ∈ Ω, α ⊕ 0 = α and α ⊕ γ ≥ β ⊕ γ
whenever α ≥ β.

Definition 2.2. An instance of the valued constraint satisfaction problem, VCSP,
is a tuple P = 〈V,D, C,Ω〉 where:

• V is a finite set of variables;

• D is a finite set of possible values;

• Ω is a valuation structure representing possible costs;

• C is a set of valued constraints. Each element of C is a pair c = 〈σ, φ〉 where σ
is a tuple of variables called the scope of c, and φ ∈ Γ is a mapping from D|σ| to
Ω, called the cost function of c.

Definition 2.3. For any VCSP instance P = 〈V,D, C,Ω〉, an assignment for P is a
mapping s : V → D. The cost of an assignment s, denoted CostP(s), is given by the
aggregation of the costs for the restrictions of s onto each constraint scope, that is,

CostP(s) def=
⊕

〈〈v1,v2,...,vm〉,φ〉∈C

φ(〈s(v1), s(v2), . . . , s(vm)〉).

A solution to P is an assignment with minimal cost.

The complexity of finding an optimal solution to a valued constraint problem will
obviously depend on the forms of valued constraints which are allowed in the problem [7].
In order to investigate different families of valued constraint problems with different sets
of allowed constraint types, we use the notion of a valued constraint language, which
is simply a set of possible cost functions mapping Dk to Ω, for some fixed set D and some
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fixed valuation structure Ω. The class of all VCSP instances where the cost functions of
the valued constraints are all contained in a valued constraint language Γ will be denoted
VCSP(Γ).

In any VCSP instance, the variables listed in the scope of each valued constraint are
explicitly constrained, in the sense that each possible combination of values for those
variables is associated with a given cost. Moreover, if we choose any subset of the vari-
ables, then their values are constrained implicitly in the same way, due to the combined
effect of the valued constraints. This motivates the concept of expressibility for cost
functions, which is defined as follows:

Definition 2.4. For any VCSP instance P = 〈V,D, C,Ω〉, and any list l = 〈v1, . . . , vm〉
of variables of P, the projection of P onto l, denoted πl(P), is the m-ary cost function
defined as follows:

πl(P)(x1, . . . , xm) def= min
{s:V→D | 〈s(v1),...,s(vm)〉=〈x1,...,xm〉}

CostP(s).

We say that a cost function φ is expressible over a valued constraint language Γ if there
exists an instance P ∈ VCSP(Γ) and a list l of variables of P such that πl(P) = φ. We
call the pair 〈P, l〉 a gadget for expressing φ over Γ.

In this paper we shall examine the expressibility of cost functions over three particular
valuation structures which can be used to model a wide variety of problems [7]:

Definition 2.5. Let Ω be a valuation structure and let φ : Dm → Ω be a cost function.

• If Ω = {0,∞}, then we call φ a crisp cost function.

• If Ω = Q+, the set of non-negative rational numbers with the standard addition
operation, +, then we call φ a finite-valued cost function.

• If Ω = Q+, the set of non-negative rational numbers together with infinity, with the
standard addition operation (extended so that a+∞ = ∞, for every a ∈ Q+), then
we call φ a general cost function.

Note that with any relation R over D we can associate a crisp cost function φR on
D which maps tuples in R to 0 and tuples not in R to ∞. On the other hand, with any
m-ary cost function φ we can associate a relation Rφ defined as 〈x1, . . . , xm〉 ∈ Rφ ⇔
φ(x1, . . . , xm) <∞, or equivalently an m-ary crisp cost function defined by:

Feas(φ)(x1, . . . , xm) def=
{
∞ if φ(x1, . . . , xm) = ∞
0 if φ(x1, . . . , xm) <∞.

In view of the close correspondence between crisp cost functions and relations we shall
use these terms interchangeably in the rest of the paper.
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3 Expressive Power and Algebraic Properties

Adding a finite constant to any cost function does not alter the relative costs. Hence, for
any valued constraint language Γ with costs in Ω, we define the expressive power of Γ,
denoted 〈Γ〉, to be the set of all cost functions φ such that φ+ c is expressible over Γ for
some constant c ∈ Ω where c <∞.

Note that the notion of expressive power for crisp cost functions (=relations) corre-
sponds to expressibility using conjunction and existential quantification (primitive posi-
tive formulas) [3].

A number of algebraic techniques to determine the expressive power of a given val-
ued constraint language have been developed in earlier papers. To make use of these
techniques, we first need to define some key terms.

The i-th component of a tuple t will be denoted by t[i]. Note that any operation on a
set D can be extended to tuples over the set D in a standard way, as follows. For any func-
tion f : Dk → D, and any collection of tuples t1, . . . , tk ∈ Dm, define f(t1, . . . , tk) ∈ Dm

to be the tuple 〈f(t1[1], . . . , tk[1]), . . . , f(t1[m], . . . , tk[m])〉.

Definition 3.1 ([9]). Let R be an m-ary relation over a finite set D and let f be a k-ary
operation on D. Then f is a polymorphism of R if f(t1, . . . , tk) ∈ R for all choices of
t1, . . . , tk ∈ R.

A valued constraint language, Γ, which contains only crisp cost functions (= relations)
will be called a crisp constraint language. We will say that f is a polymorphism of a crisp
constraint language Γ if f is a polymorphism of every relation in Γ. The set of all
polymorphisms of Γ will be denoted Pol(Γ).

It follows from the results of [13] that the expressive power of a crisp constraint
language is fully characterised by its polymorphisms:

Theorem 3.2 ([13]). For any crisp constraint language Γ over a finite set

R ∈ 〈Γ〉 ⇔ Pol(Γ) ⊆ Pol({R}).

Hence, a crisp cost function φ is expressible over a crisp constraint language Γ if and
only if it has all the polymorphisms of Γ.

We can extend the idea of polymorphisms to arbitrary valued constraint languages
by considering the corresponding feasibility relations:

Definition 3.3 ([4]). The feasibility polymorphisms of a valued constraint language
Γ are the polymorphisms of the corresponding crisp feasibility cost functions, that is,

FPol(Γ) def= Pol({Feas(φ) | φ ∈ Γ}).

However, to fully capture the expressive power of valued constraint languages it is
necessary to consider more general algebraic properties, such as the following:
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Definition 3.4 ([5]). A list of functions, 〈f1, . . . , fk〉, where each fi is a function from
Dk to D, is called a k-ary multimorphism of a cost function φ : Dm → Ω if, for all
t1, . . . , tk ∈ Dm, we have

k∑
i=1

φ(ti) ≥
k∑

i=1

φ(fi(t1, . . . , tk)).

For any valued constraint language Γ, we will say that F = 〈f1, . . . , fk〉 is a mul-
timorphism of Γ if F is a multimorphism of every cost function in Γ. The set of all
multimorphisms of Γ will be denoted Mul(Γ).

It is a simple consequence of the definitions that if {fi}1≤i≤k are polymorphisms of
R, then 〈f1, . . . , fk〉 is a multimorphism of the corresponding crisp cost function φR.
Conversely, if 〈f1, . . . , fk〉 is a multimorphism of φ, then {fi}1≤i≤k are polymorphisms of
the corresponding relation Rφ.

The next result shows that the multimorphisms of a valued constraint language are
preserved by all the cost functions expressible over that language.

Theorem 3.5 ([7]). If F is a multimorphism of a valued constraint language Γ, then F
is a multimorphism of 〈Γ〉.

Hence, to show that a cost function φ is not expressible over a valued constraint lan-
guage Γ it is sufficient to identify some multimorphism of Γ which is not a multimorphism
of φ. This is the main technique that we shall use to establish inexpressibility results in
the sections below.

It is currently an open question whether the set of multimorphisms of a valued con-
straint language completely characterizes the expressive power of that language. How-
ever, it was shown in [4] that the expressive power of a valued constraint language can be
characterised by generalising the notion of multimorphism a little, to a property called
a fractional polymorphism, which is essentially a multimorphism where each component
function has an associated weight value.

Definition 3.6 ([4]). A k-ary weighted function F on a set D is a set of the form
{〈r1, f1〉, . . . , 〈rn, fn〉} where each ri is a non-negative rational number such that

∑n
i=1 ri =

k and each fi is a distinct function from Dk to D.
For any m-ary cost function φ, we say that a k-ary weighted function F is a k-ary

fractional polymorphism of φ if, for all t1, . . . , tk ∈ Dm,
k∑

i=1

φ(ti) ≥
n∑

i=1

riφ(fi(t1, . . . , tk)).

For any valued constraint language Γ, we will say that F is a fractional polymorphism
of Γ if F is a fractional polymorphism of every cost function in Γ. The set of all fractional
polymorphisms of Γ will be denoted fPol(Γ).

Note that multimorphisms can be viewed as fractional polymorphisms where all
weights are natural numbers.

It was shown in [4] that the feasibility polymorphisms and fractional polymorphisms
of a valued constraint language effectively determine its expressive power.
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Theorem 3.7 ([4]). Let Γ be a valued constraint language with costs in Q+ such that,
for all φ ∈ Γ, and all c ∈ Q+, cφ ∈ Γ and Feas(φ) ∈ Γ.

φ ∈ 〈Γ〉 ⇔ FPol(Γ) ⊆ FPol({φ}) ∧ fPol(Γ) ⊆ fPol({φ}).

Hence, a cost function φ is expressible over a valued constraint language Γ if and only
if it has all the feasibility polymorphisms and fractional polymorphisms of Γ.

4 The Expressive Power of Arbitrary Relations and Max-
Closed Relations

In this section we consider the expressive power of crisp constraint languages. We consider
the languages containing all relations up to some fixed arity over some fixed domain, and
we also consider an important subset of these relations defined for totally ordered domains,
the so-called max-closed relations, which are defined below. In both cases we show that
the relations of a fixed arity can express all relations of arbitrary arity.

Definition 4.1. Let D be a fixed totally ordered set.

• The k-ary function on D which returns the largest of its k arguments in the given
ordering of D is denoted Maxk.

• The k-ary function on D which returns the smallest of its k arguments in the given
ordering of D is denoted Mink.

• The k-ary function on D which returns the second largest of its k ≥ 2 arguments
in the given ordering of D is denoted Secondk.

The function Max2 will be denoted Max and the function Min2 will be denoted Min.

Definition 4.2. A cost function φ is max-closed if 〈Max,Max〉 ∈ Mul({φ}).

In this section we focus on crisp max-closed cost functions. This class of cost functions
was first introduced (as a class of relations) in [16] and shown to be tractable. In other
words, VCSP(Γ) is known to be polynomial-time solvable for every finite Γ consisting of
max-closed relations. A number of examples of max-closed relations are given in [16].

Definition 4.3. For every d ≥ 2 we define the following:

• Rd,m denotes the set of all relations over a domain of size d of arity at most m,
and Rd = ∪m≥0Rd,m;

• Rmax
d,m denotes the set of all max-closed relations over an ordered domain of size d

of arity at most m, and Rmax
d = ∪m≥0Rmax

d,m .

It is well-known that any relation can be expressed as a propositional formula in
conjunctive normal form (CNF), hence we have the following characterisation of Rd,m
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Proposition 4.4. A relation R ∈ Rd,m if and only if there is some formula ψ such
that 〈v1, . . . , vm〉 ∈ R ⇔ ψ(v1, . . . , vm) and ψ is a conjunction of clauses of the form
(v1 6= a1) ∨ . . . ∨ (vm 6= am) for some constants a1, . . . , am.

Proof. Let R = Dm \ R = {〈e11, . . . , e1m〉, . . . , 〈en1, . . . , enm〉} be the complement of R.
Define ψ such that each clause forbids one of the n disallowed tuples: ψ(v1, . . . , vm) ≡
∧1≤i≤n¬[(v1 = ei1) ∧ . . . ∧ (vm = eim)] ≡ ∧1≤i≤n[(v1 6= ei1) ∨ . . . ∨ (vm 6= eim)].

We also have a similar characterisation for Rmax
d,m , adapted from Theorem 5.2 of [16].

Theorem 4.5 ([16]). A relation R ∈ Rmax
d,m if and only if there is some formula ψ such

that 〈v1, . . . , vm〉 ∈ R ⇔ ψ(v1, . . . , vm) and ψ is a conjunction of clauses of the form
(v1 > a1) ∨ . . . ∨ (vm > am) ∨ (vi < bi) for some constants a1, . . . , am, bi.

Note that in the special case of a Boolean domain (that is, when d = 2) this restricted
form of clause is equivalent to a disjunction of literals with at most one negated literal;
clauses of this form are sometimes called anti-Horn clauses.

It is well-known that for every d ≥ 2, Pol(Rd) is equal to the set of all possible
projection operations [9]. We now characterise the polymorphisms of Rmax

d .

Definition 4.6. Let I = {i1, . . . , in} ⊆ {1, . . . , k} be a set of indices. Define the k-ary
function

MaxI(x1, . . . , xk)
def= Maxn(xi1 , . . . , xin).

For every k, there are exactly 2k−1 functions of the form MaxI for ∅ 6= I ⊆ {1, . . . , k}.

Proposition 4.7. For all d ≥ 2,

Pol(Rmax
d ) = {MaxI | ∅ 6= I ⊆ {1, . . . , k}, k = 1, 2, . . . }.

Proof. When |I| = 1, the corresponding function MaxI is just a projection operation,
and every projection is a polymorphism of every relation [9].

If Max ∈ Pol({R}), then MaxI ∈ Pol({R}) for every ∅ 6= I ⊆ {1, . . . , k}. This is
because every MaxI can be obtained from Max by composition and projections.

We now prove that the operations of the form MaxI are the only polymorphisms
of Rmax

d . Suppose, for contradiction, that f is a k-ary polymorphism of Rmax
d which is

different from MaxI for every ∅ 6= I ⊆ {1, . . . , k}. It follows that, for each I such that
∅ 6= I ⊆ {1, . . . , k}, there is a k-tuple xI such that f(xI) 6= MaxI(xI). Let n be the total
number of different tuples xI , that is, n = |{xI | ∅ 6= I ⊆ {1, . . . , k}}| ≤ 2k−1 and denote
these tuples by x1, . . . , xn. Now consider the relation R = {〈x1[j], . . . , xn[j]〉}1≤j≤k.
Define R0 = R and Ri+1 = Ri ∪ {Max(u, v) | u, v ∈ Ri} for every i ≥ 0. Clearly,
Ri ⊆ Ri+1 and since there is only a finite number of different n-tuples, there is an l
such that Rl = Rl+i for every i ≥ 0. Define R′ to be the transitive closure of R under
Max, that is, R′ = Rl. Clearly, R′ is max-closed and every tuple t of R′ is of the form
t = Maxj(yi1 , . . . , yij ) for some j ≥ 1 and yi1 , . . . , yij ∈ R. We have constructed R so
that the application of f to the tuples x1, . . . , xn results in a tuple t which is different
from every tuple of the former form and hence t 6∈ R′. Therefore, f 6∈ Pol(Rmax

d ).
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We now consider the expressive power of Rd,m and Rmax
d,m .

It is clear that binary relations have greater expressive power than unary relations,
so our first result is not unexpected, but it provides a simple illustration of the use of the
algebraic approach.

Proposition 4.8. For all d ≥ 2, 〈Rd,1〉 ( 〈Rd,2〉 and 〈Rmax
d,1 〉 ( 〈Rmax

d,2 〉.

Proof. Notice for example that Min ∈ Pol(Rd,1) and Min ∈ Pol(Rmax
d,1 ) but Min 6∈

Pol(Rd,2) and Min 6∈ Pol(Rmax
d,2 ). The result then follows from Theorem 3.5.

4.1 Relations over a Boolean domain

As a first step, we now focus on the special case of a Boolean domain, that is, the case when
d = 2. In this case we shall establish that ternary relations have fewer polymorphisms
than binary relations, and hence have a greater expressive power. Similar remarks apply
to the class of max-closed relations over a Boolean domain. The detailed results are as
follows.

Proposition 4.9. Majority ∈ Pol(R2,2), where Majority is the unique ternary func-
tion on a 2-element set which returns the argument value that occurs most often.

Proof. Let R be an arbitrary binary Boolean relation. Let a = 〈a1, a2〉, b = 〈b1, b2〉 and
c = 〈c1, c2〉 be three pairs belonging to R. Note that since the domain size is 2, the pair
〈Majority(a1, b1, c1),Majority(a2, b2, c2)〉 is equal to at least one of a, b, c, and hence
belongs to R.

Corollary 4.10. Majority ∈ Pol(Rmax
2,2 ).

Proposition 4.11. Majority 6∈ Pol(Rmax
2,3 ).

Proof. Consider the ternary Boolean max-closed relation R consisting of all triples except
〈0, 0, 0〉. To see that Majority is not a polymorphism of R, consider the triples 〈0, 0, 1〉,
〈0, 1, 0〉 and 〈1, 0, 0〉. The application of Majority to these tuples results in the triple
〈0, 0, 0〉 which is not in R.

Corollary 4.12. Majority 6∈ Pol(R2,3).

However, we now show that ternary Boolean relations have the same expressive power
as all Boolean relations. In other words, any Boolean relation of arbitrary arity is express-
ible by relations of arity at most three. We obtain this result by adapting the well-known
reduction from Satisfiability to 3-Satisfiability.

Proposition 4.13. R2 ⊆ 〈R2,3〉.

Proof. By Proposition 4.4, any Boolean relation R ∈ R2 can be expressed as a CNF
formula ψ. We now define a 3-CNF formula ψ′ such that ψ is satisfiable if and only if ψ′

is satisfiable.
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Let C be an arbitrary clause of ψ with literals {z1, . . . , zl}. If l ≤ 3, then let ψ′ contain
the same clause C. If l > 3, introduce additional variables yC,1, . . . , yC,l−3 and replace C
with the set of clauses, C ′, defined as follows:

C ′ = {(z1 ∨ z2 ∨ yC,1), (yC,1 ∨ z3 ∨ yC,2), (yC,2 ∨ z4 ∨ yC,3), . . . , (yC,l−3, zl−1, zl)}.

It is straightforward to check that any assignment of variables which satisfies ψ can be
extended to the additional variables in such a way that it satisfies ψ′. On the other
hand, given an assignment which satisfies ψ′, the restriction to the original variables is a
satisfying assignment for ψ.

We now show that the same result holds for max-closed Boolean relations.

Corollary 4.14. Rmax
2 ⊆ 〈Rmax

2,3 〉.

Proof. By Theorem 4.5, any Boolean max-closed relation R ∈ Rmax
2 can be expressed as

a CNF formula ψ of the form shown in Theorem 4.5. The construction given in the proof
of Proposition 4.13 preserves this special form of the clauses, and hence can be used to
express R using ternary max-closed relations, by Theorem 4.5.

Combining these results, we obtain the following result.

Theorem 4.15.

1. 〈R2,1〉 ( 〈R2,2〉 ( 〈R2,3〉 = R2;

2. 〈Rmax
2,1 〉 ( 〈Rmax

2,2 〉 ( 〈Rmax
2,3 〉 = Rmax

2 .

4.2 Relations over larger domains

For relations over a domain with 3 or more elements similar results can be obtained. In
fact, in this case we can show that any relation can be expressed using binary relations.

Proposition 4.16. For all d ≥ 3, Rd ⊆ 〈Rd,2〉.

Proof. By Proposition 4.4, any relation R over D, |D| = d > 2, can be expressed as a CNF
formula ψ over D. Using a similar construction to the proof of Proposition 4.13, ψ can
be expressed as a 3-CNF formula over D. This gives the weaker result that Rd ⊆ 〈Rd,3〉.

We now show how to express any 3-CNF formula over D as a 2-CNF formula over D.
Let D = {e1, e2, e3, . . .}. Replace each ternary clause C = (U1(x1) ∨ U2(x2) ∨ U3(x3)) by
a set of three clauses C ′ = {U1(x1) ∨ N1(y)), (U2(x2) ∨ N2(y)), (U3(x3) ∨ N3(y))} where
y is an additional variable and N1(y) = D \ {e1} (“not 1”), N2(y) = D \ {e2} and
N3(y) = {e1, e2}. Note that if C is satisfied by an assignment s to the variables x1, x2

and x3, then s can be extended to satisfy C ′ as well. On the other hand, if s satisfies C ′

then at least one of U1(x1), U2(x2) and U3(x3) is satisfied by s, so s restricted to x1, x2

and x3 satisfies C.
It follows that 〈Rd,3〉 ⊆ 〈Rd,2〉.
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Next we generalise Proposition 4.16 to show that max-closed relations over any domain
can be expressed using ternary relations.

Proposition 4.17. For all d ≥ 3, Rmax
d ⊆ 〈Rmax

d,3 〉.

Proof. The proof is very similar to the proof of Proposition 4.16. By Theorem 4.5, any
max-closed relation R over a set D can be expressed as a CNF formula ψ over D.

Let the elements of D be ordered e1 < e2 < . . . < ed. We use the same construction
as in the proof of Proposition 4.13, except that instead of using a literal of the form yC,i,
where yC,i is an additional variable, we use the unary predicate T (yC,i) where T = {〈ed〉}
and instead of using a literal of the form yC,i, we use the unary predicate F (yC,i) where
F = {〈e1〉}. Note that T (x) can be written as x > ed−1 and F (x) can be written as
x < e2. Hence, if the input formula is of the form shown in Theorem 4.5, then the output
formula is of that form as well and so can be used to express R using ternary max-closed
relations, by Theorem 4.5.

By investigating polymorphisms of binary max-closed relations we can strengthen
Proposition 4.17.

Theorem 4.18. For all d ≥ 3, Rmax
d ⊆ 〈Rmax

d,2 〉.

Proof. We show that Pol(Rmax
d,2 ) ⊆ Pol(Rmax

d ). The result then follows from Theorem 3.2.
Without loss of generality, assume that D = {1, . . . ,M}, that is, d = M . Let f ∈

Pol(Rmax
d,2 ) be an arbitrary k-ary polymorphism. By Proposition 4.7, it is enough to show

that f = MaxI for some ∅ 6= I ⊆ {1, . . . , k}.
If f = Max{1,...,k} we are done. Otherwise, there exist a1, . . . , ak ∈ D such that

ai = Maxk(a1, . . . , ak) and ai > f(a1, a2, . . . , ak) = aj . Without loss of generality in order
to simplify our notation, assume that i = 1 and j = 2, that is, a1 = Maxk(a1, . . . , ak)
and a1 > f(a1, a2, . . . , ak) = a2. We show that f does not depend on its first parameter.

Claim 1. f is conservative.

Proof. For any subset S ⊆ D, we know that R = {(a, a) | a ∈ S} is max-closed.

For any fixed x2, . . . , xk ∈ D, denote x = 〈x2, . . . , xk〉 and define the max-closed
relation

Rx = ({a2, . . . , ak} × {x2, . . . , xk}) ∪ ({a1} ×D).

Now consider gx(r) = f(r, x2, . . . , xk). Note that gx(r) is a restriction of f with all
arguments except the first one fixed.

First we show that gx(r) is not conservative.

Claim 2. gx(r) ∈ {x2, . . . , xk}.

Proof. Note that (a1, r) ∈ Rx and {(aj , xj) | j = 2, . . . , k} ⊆ Rx. Since f is a conservative
polymorphism of Rx and a2 = f(a1, a2, . . . , ak), it follows from the definition of Rx that
gx(r) ∈ {x2, . . . , xk}.
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Define the max-closed relation

R′
x = ({M} ×D) ∪ {(xj , xj) | j = 2, . . . , k}.

We show that if M , the biggest element of the domain, is not among x2, . . . , xk, then
gx(r) is constant.

Claim 3. M 6∈ {x2, . . . , xk} ⇒ ∀r ∈ D, gx(r) = gx(M).

Proof. Note that (M, r) ∈ R′
x and {(xj , xj) | j = 2, . . . , k} ⊆ R′

x. By Claim 2, gx(M) = xi

for some 2 ≤ i ≤ k. From the definition of R′
x and the fact that f is a polymorphisms of

R′
x, gx(r) = xi = gx(M) for every r ∈ D.

Next we generalise Claim 3 so that gx(r) is constant whenever x2, . . . , xk does not
contain all elements of the domain D.

Claim 4. {x2, . . . , xk} 6= D ⇒ ∀r ∈ D, gx(r) = gx(M).

Proof. For any p ∈ D \ {M}, define

∆p(x) =

{
x if x ≤ p,

x− 1 if x > p.

We show that for every p ∈ D, if p 6∈ {x2, . . . , xk}, then gx(r) = gx(M) for every
r ∈ D. Note that the case p = M is already proved by Claim 3.

The relation Rp = {(d,∆p(d) | d ∈ D} is max-closed. Clearly, (r,∆p(r)) ∈ Rp and
{(xj ,∆p(xj)) | j = 2, . . . , k} ⊆ Rp. Since gx is a polymorphism of Rp, we know that for
every r ∈ D, gx(r) ∈ ∆−1

p (gx(∆p(r))).
Since M 6∈ {∆p(d) | d ∈ D}, we know, by Claim 3, that gx(∆p(r)) is constant. Say

gx(∆p)(r)) = Kp. If Kp 6= p, then |∆−1
p (Kp)| = 1 and so gx is constant. If Kp = p, then

∆−1
p (Kp) = {p, p + 1}. In this case if p 6∈ {x2, . . . , xk}, then we know, by Claim 2, that

gx(r) 6= p and so gx is again constant.

Finally we show that gx(r) is constant.

Claim 5. gx(r) is constant.

Proof. Define

∆+(x) =

{
x if x 6= M,

x− 1 if x = M,

and

∆−(x) =

{
x if x 6= 1,
x+ 1 if x = 1.

The relations R+ = {(d,∆+(d)) | d ∈ D} and R− = {(d,∆−(d)) | d ∈ D} are both
max-closed. Define y = 〈∆+(x2), . . . ,∆+(xk)〉 and z = 〈∆−(x2), . . . ,∆−(xk)〉. Since
M 6∈ {∆+(d) | d ∈ D} and 1 6∈ {∆−(d) | d ∈ D}, we know, by Claim 4, that gy and gz

are both constant.
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If gx is not constant, then since gx is a polymorphism of R+ it follows that for every
r ∈ D, gx(r) ∈ {M,M − 1}. Similarly, since gx is a polymorphism of R− it follows
that gx(r) ∈ {1, 2}. Since |D| > 2 we know that this is not possible.1 Therefore, gx is
constant.

We have shown that if a1 = max(a1, . . . , ak) and a1 > f(a1, . . . , ak) = a2, then f
does not depend on its first parameter. Similarly, by repeating the same argument, we
can show that if f 6= Max{2,...,k}, then f does not depend on its i-th parameter for some
2 ≤ i ≤ k.

In general, if f does not depend on any parameter outside of I ⊆ {1, . . . , k} and
f 6= MaxI , then f does not depend on all of the parameters whose index is in I.

Therefore, either there is some set I ⊆ {1, . . . , k} for which f = MaxI or f is constant.
Clearly, every subset S ⊆ D of the domain D is a unary max-closed relation and hence
f is a polymorphism of S. Therefore, f cannot be constant.

Combining these results we obtain the following result.

Theorem 4.19. For all d ≥ 3,

1. 〈Rd,1〉 ( 〈Rd,2〉 = Rd;

2. 〈Rmax
d,1 〉 ( 〈Rmax

d,2 〉 = Rmax
d .

5 Finite-valued Cost Functions

In this section we consider the expressive power of finite-valued constraint languages. In
particular, we show that the finite-valued max-closed cost functions of any fixed arity
cannot express all finite-valued max-closed cost-functions of any larger arity. Hence we
identify an infinite hierarchy of finite-valued cost functions with ever-increasing expressive
power.

The class of max-closed cost functions is discussed in more detail in [7] and shown to
be tractable. A number of examples of max-closed cost functions are given in [7].

We will say that an m-tuple u dominates a m-tuple v, denoted u ≥ v, if u[i] ≥ v[i]
for 1 ≤ i ≤ m.

Proposition 5.1 ([7]). A m-ary cost function φ : Dm → Ω is max-closed if and only if
Max ∈ FPol({φ}) and φ is finitely antitone, that is, for all m-tuples u, v with φ(u), φ(v) <
∞, u ≤ v ⇒ φ(u) ≥ φ(v).

It follows from this that the finite-valued max-closed cost functions are simply the
finite-valued antitone functions, that is, those functions whose values can only decrease as
their arguments get larger. Note that for such functions the expressive power is likely to
be rather limited because in any construction the “hidden variables” that are “projected
out” can always be assigned the highest values in their domain in order to minimise the
cost. Hence, using such hidden variables only adds a constant value to the total cost, and
so does not allow more cost functions to be expressed.

1This is the only place where we have used the fact that |D| ≥ 3.
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Definition 5.2. For all d ≥ 2 we define the following:

• Fd,m denotes the set of all finite-valued cost functions (that is, cost functions whose
valuation structure Ω = Q+) of arity at most m over a domain of size d, and
Fd = ∪m≥0Fd,m;

• Fmax
d,m denotes the set of all max-closed finite-valued cost functions of arity at most

m over an ordered domain of size d, and Fmax
d = ∪m≥0Fmax

d,m .

Proposition 5.3. For all d ≥ 2, 〈Fd,1〉 ( 〈Fd,2〉 and 〈Fmax
d,1 〉 ( 〈Fmax

d,2 〉.

Proof. Consider the list of functions 〈Min,Max〉. It is straightforward to verify that
〈Min,Max〉 ∈ Mul(Fd,1) and 〈Min,Max〉 ∈ Mul(Fmax

d,1 ).
Now consider the binary max-closed finite-valued cost function φ over any domain

containing {0, 1}, defined by φ(〈0, 0〉) = 1 and φ(〈., .〉) = 0 otherwise. Note that φ
is max-closed but 〈Min,Max〉 is not a multimorphism of φ. To see this, consider the
application of 〈Min,Max〉 to the tuples 〈0, 1〉 and 〈1, 0〉 (see the figure below).

Min
Max

0 1
1 0
0 0
1 1

φ−→ 0
0

} ∑
= 0

φ−→ 1
0

} ∑
= 1

The result then follows from Theorem 3.5.

Clearly, we also have 〈Fd,m〉 ⊆ 〈Fd,m+1〉 for m ≥ 2, but we do not know whether these
inclusions are strict. However, in the case of max-closed finite-valued cost functions we
now prove a separation result.

It will be convenient to use a shorthand notation for multiple copies of the same
function within a list. For a k-ary function f , we write:

n ∗ f(x1, . . . , xk)
def=

n-times︷ ︸︸ ︷
f(x1, . . . , xk), . . . , f(x1, . . . , xk) .

Proposition 5.4. For all m ≥ 3, 〈(m− 1) ∗Maxm,Secondm〉 ∈ Mul(Fmax
d,m−1).

Proof. Let φ be an arbitrary (m − 1)-ary max-closed finite-valued cost function. Let
t1, . . . , tm be (m − 1)-tuples. We show that there is an i such that the tuple s =
Secondm(t1, . . . , tm) dominates ti, that is, s[j] ≥ ti[j] for 1 ≤ j ≤ m − 1. To show
this we count the number of tuples which can fail to be dominated by s. If a tuple tp is
not dominated by s, for some 1 ≤ p ≤ m, it means that there is a position 1 ≤ j ≤ m− 1
such that tp[j] > s[j]. But since Secondm returns the second biggest value, for ev-
ery 1 ≤ j ≤ m − 1, there is at most one tuple which is not dominated by s. Since
there are m ≥ 3 tuples, there must be an i such that ti is dominated by s. Moreover,
Maxm(t1, . . . , tm) clearly dominates all t1, . . . , tm. By Proposition 5.1, φ is antitone and
therefore 〈(m− 1) ∗Maxm,Secondm〉 is a multimorphism of φ, by Definition 3.4.

Proposition 5.5. For all m ≥ 3, 〈(m− 1) ∗Maxm,Secondm〉 6∈ Mul(Fmax
d,m ).
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Proof. Let φ be them-ary max-closed finite-valued cost function defined by φ(〈0, . . . , 0〉) =
1 and φ(〈., . . . , .〉) = 0 otherwise. To show that 〈(m−1)∗Maxm,Secondm〉 is not a multi-
morphism of φ, consider them-tuples 〈0, . . . , 0, 1〉, 〈0, . . . , 0, 1, 0〉, . . . , 〈1, 0, . . . , 0〉. Each of
them is assigned the cost 0 by φ. But applying the functions 〈(m−1)∗Maxm,Secondm〉
co-ordinatewise results in m−1 tuples 〈1, . . . , 1〉, which are assigned cost 0 by φ, and one
tuple 〈0, . . . , 0〉, which is assigned cost 1 by φ (see the figure below).

Maxm
...

Maxm

Secondm

0 0 . . . 0 0 1
0 0 . . . 0 1 0

...
1 0 . . . 0 0 0
1 1 . . . 1 1 1

...
1 1 . . . 1 1 1
0 0 . . . 0 0 0

φ−→

0
0
...
0


∑

= 0

φ−→

0
...
0
1


∑

= 1

Theorem 5.6. For all d ≥ 2, 〈Fmax
d,1 〉 ( 〈Fmax

d,2 〉 ( 〈Fmax
d,3 〉 ( 〈Fmax

d,4 〉 · · ·

Proof. By Propositions 5.3, 5.4 and 5.5 and Theorem 3.5.

6 General Cost Functions

In this section we show that general cost functions of a fixed arity can express cost
functions of arbitrary arities. Comparing this result with the results of the previous
section provides a striking example of the way in which allowing infinite cost values in a
valued constraint language can drastically affect the expressibility of cost functions over
that language, including finite-valued cost functions.

Definition 6.1. For all d ≥ 2 we define the following:

• Gd,m denotes the set of all general cost functions (that is, cost functions whose
valuation structure Ω = Q+) of arity at most m over a domain of size d, and
Gd = ∪m≥0Gd,m;

• Gmax
d,m denotes the set of all general max-closed cost functions of arity at most m

over an ordered domain of size d, and Gmax
d = ∪m≥0Gmax

d,m .

Once again it is straightforward to establish a separation between unary and binary
general cost functions.

Proposition 6.2. 〈Gd,1〉 ( 〈Gd,2〉 and 〈Gmax
d,1 〉 ( 〈Gmax

d,2 〉.

Proof. Identical to the proof of Proposition 5.3.
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Proposition 6.3. 〈Gmax
2,2 〉 ( 〈Gmax

2,3 〉.

Proof. By Proposition 5.5, 〈Max3,Max3,Second3〉 6∈ Mul(Fmax
2,3 ) and therefore,

〈Max3,Max3,Second3〉 6∈ Mul(Gmax
2,3 ).

We will now show that 〈Max3,Max3,Second3〉 ∈ Mul(Gmax
2,2 ). The result then

follows from Theorem 3.5.
Let φ be an arbitrary binary max-closed general cost function over a Boolean domain

D. To show that 〈Max3,Max3,Second3〉 ∈ Mul({φ}), we need to show that, for all pairs
p1, p2, p3 over D, φ(p1) + φ(p2) + φ(p3) ≥ φ(p) + φ(p) + φ(s), where p = Max3(p1, p2, p3)
and s = Second3(p1, p2, p3).

If φ(pi) = ∞ for some 1 ≤ i ≤ 3, then the inequality is trivially satisfied, so we may
assume that each φ(pi) is finite.

Since φ is max-closed, Max ∈ FPol({φ}). Hence, Max3 ∈ FPol({φ}), because Max3

can be obtained from Max2 by composition. Because the domain is Boolean, Second3 =
Majority, so, by Proposition 4.10, Second3 ∈ FPol({φ}). It follows from Definition 3.3
that if each φ(pi) <∞, then φ(p) <∞ and φ(s) <∞.

The same argument as in the proof of Proposition 5.4 shows that there is an i such
that the tuple s dominates pi. Moreover, the tuple p clearly dominates pi, 1 ≤ i ≤ 3.
Hence, if φ(p) and φ(s) are both finite, then by Proposition 5.1, the desired inequality is
satisfied.

Clearly, we also have 〈Gd,m〉 ⊆ 〈Gd,m+1〉 for m ≥ 2, but we do not know whether
these inclusions are strict. However, in the case of max-closed general cost functions we
now prove a collapse result.

First we show that general max-closed cost functions of a fixed arity have the same
feasibility polymorphisms as cost functions of arbitrary arities.

Proposition 6.4. For all d ≥ 3, FPol(Gmax
d,2 ) = FPol(Gmax

d ). Moreover, FPol(Gmax
2,3 )=

FPol(Gmax
2 ).

Proof. Assume for contradiction that there is an f ∈ FPol(Gmax
d,2 ) such that f 6∈ FPol(Gmax

d ).
By Definition 6.1, Rmax

d = {Feas(φ) | φ ∈ Gmax
d }. Therefore, such an f would contradict

Theorem 4.19 since Pol(Rmax
d,2 ) = Pol(Rmax

d ).
Similarly, assume that there is an f ∈ FPol(Gmax

2,3 ) such that f 6∈ FPol(Gmax
2 ). This

would contradict Theorem 4.15 since Pol(Rmax
2,3 ) = Pol(Rmax

2 ).

We now prove that general max-closed cost functions of a fixed arity have the same
fractional polymorphisms as cost functions of arbitrary arities. First we characterise
feasibility polymorphisms of general cost functions.

Proposition 6.5. For all d ≥ 2,

FPol(Gmax
d ) = {MaxI | ∅ 6= I ⊆ {1, . . . , k}, k = 1, 2, . . . }.

Proof. It follows from Definition 6.1 that Rmax
d = {Feas(φ) | φ ∈ Gmax

d }. Therefore,
FPol(Gmax

d ) = FPol(Rmax
d ) and the result follows from Proposition 4.7.
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Next we characterise fractional polymorphisms of general cost functions.

Definition 6.6. Let F = {(r1,MaxS1), . . . , (rn,MaxSn)} be a k-ary weighted function
and S ⊆ {1, . . . , k}.

We define
suppFS

def= {i | Si ∩ S 6= ∅}

and
wtF (S) def=

∑
i∈suppF (S)

ri

Theorem 6.7. Let F = {(r1,MaxS1), . . . , (rn,MaxSn)} be a k-ary weighted function.
The following are equivalent:

1. F ∈ fPol(Gmax
d ).

2. F ∈ fPol(Gmax
d,1 ).

3. For every subset S ⊆ {1, . . . , k}, wtF (S) ≥ |S|.

Proof. We first show that ¬(3) ⇒ ¬(2) ⇒ ¬(1).
First suppose that there exists an S ⊆ {1, . . . , k} such that wtF (S) < |S|. Let

{a, b} ⊆ D be the two biggest elements of D and a < b. Consider the unary cost function
φ where

φ(x) =


0 if x = b,

1 if x = a,

∞ otherwise.

Certainly φ ∈ Gmax
d,1 .

Now let

xi =

{
b if i ∈ S,
a if i 6∈ S.

We have that

k∑
i=1

φ(xi) = k − |S|, and

n∑
j=1

rjφ(MaxSj (x1, . . . , xk)) = k − wtF (S)

> k − |S|, by assumption.

So F is not a fractional polymorphism of Gmax
d,1 and so not a fractional polymorphism

of Gmax
d .

To complete the proof we will show that (3) ⇒ (1).
Suppose that, for every subset S ⊆ {1, . . . , k}, wtF (S) ≥ |S|.
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Figure 1: The flow from xi to yj in a maximum flow is the value of pji

We will first show the existence of a set of non-negative values pji for j = 1, . . . , n
and i = 1, . . . , k where

k∑
i=1

pji = rj ,

n∑
j=1

pji = 1 and

pji = 0 if i 6∈ Sj .

Consider the network in Figure 1. The capacity from the source to any node xi is
one. The capacity from node yj to the sink is rj . There is an arc from node xi to node
yj precisely when i ∈ Sj , and the capacity of these arcs is infinite.

We will use the Min-CutMax-Flow theorem to generate the pji.
Suppose that we have a minimum cut of this network. Let R be those arcs in this

cut from the source to any node xi. Let S = {1, . . . , k} − {i | xi ∈ R}. Since we have
a cut we must (at least) cut every arc from the nodes {yj | j ∈ suppF (S)} to the sink.
By assumption wtF (S) ≥ |S| and so this cut has total cost at least k. Certainly there is
a cut of cost exactly k (cut all arcs from the source) and so the max-flow through this
network is precisely k. Such a flow can only be achieved if each arc from the source and
each arc to the sink is filled to its capacity. The flow along the arc from xi to yj then
gives the required value for pji.

Now we will use these values pji to show that F is indeed a fractional polymorphism
of Gmax

d .
Let x1, . . . , xk be m-ary tuples and φ ∈ Gmax

d,m be an m-ary cost function. We have to
show the following:

k∑
i=1

φ(xi) ≥
n∑

j=1

rjφ(MaxSj (x1, . . . , xk)). (1)
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If any φ(xi) is infinite, then this inequality clearly holds.
By Proposition 6.5, all MaxSj , 1 ≤ j ≤ n, are feasibility polymorphisms of Gmax

d .
Therefore, if all φ(xi) are finite, then all φ(MaxSj (x1, . . . , xk)) are finite as well.

By definition of pji and using that pji = 0 whenever i 6∈ Sj we have that

n∑
j=1

rjφ(MaxSj (x1, . . . , xk)) =
n∑

j=1

∑
i∈Sj

pjiφ(MaxSj (x1, . . . , xk)).

Now, since φ is antitone, we have

n∑
j=1

∑
i∈Sj

pjiφ(MaxSj (x1, . . . , xk)) ≤
n∑

j=1

∑
i∈Sj

pjiφ(xi)

Since pji = 0 whenever i 6∈ Sj we have that

n∑
j=1

∑
i∈Sj

pjiφ(xi) =
n∑

j=1

k∑
i=1

pjiφ(xi)

Finally, since
∑n

j=1 pji = 1 we have established Inequality (1).

Theorem 6.8. For all d ≥ 3, fPol(Gmax
d,2 ) = fPol(Gmax

d ). Moreover, fPol(Gmax
2,3 ) =

fPol(Gmax
2 ).

Proof. By Proposition 6.4, Gmax
d,2 and Gmax

d have the same feasibility polymorphisms.
Also, Gmax

2,3 and Gmax
2 have the same feasibility polymorphisms. By Proposition 6.5, these

feasibility polymorphisms are of the form “max-on-a-subset”. Clearly, each component
function of a fractional polymorphism has to be a feasibility polymorphism. Therefore,
the result follows from Theorem 6.7.

Theorem 6.9. For all d ≥ 3, 〈Gmax
d,1 〉 ( 〈Gmax

d,2 〉 = Gmax
d . Moreover, 〈Gmax

2,1 〉 ( 〈Gmax
2,2 〉 (

〈Gmax
2,3 〉 = Gmax

2 .

Proof. Strict inclusions follow from Propositions 6.2 and 6.3. Note that for every d ≥ 2,
m ≥ 1 and c ∈ Q+, Gmax

d,m is closed under scaling by c. Therefore, using Theorem 3.7 the
collapses follow from Proposition 6.4 and Theorem 6.8.

Note that the proof shows a slightly stronger result: Gmax
d = 〈Rmax

d,2 ∪Fmax
d,1 〉 for every

d ≥ 3 and Gmax
2 = 〈Rmax

2,3 ∪ F2,1〉.

Example 6.10. Consider the ternary max-closed finite-valued cost function φ over D =
{0, 1, 2} which is defined as

φ(t) =

{
1 if t = 〈0, 0, 0〉,
0 otherwise.

By Proposition 5.5, φ 6∈ 〈Fmax
3,2 〉. In other words, φ is not expressible using only

max-closed finite-valued cost functions of arity at most 2. However, by Theorem 6.9,
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φ ∈ 〈Gmax
3,2 〉. We now show how φ can be expressed using max-closed general cost functions

of arity at most 2.
Let φ0 be the binary finite-valued max-closed cost function defined as follows:

φ0(t) =

{
1 if t = 〈0, 0〉,
0 otherwise.

Next, define two binary crisp2 max-closed cost functions

φ1(t) =

{
∞ if t = 〈0, 1〉,
0 otherwise,

and

φ2(t) =

{
∞ if t = 〈0, 2〉,
0 otherwise.

Let P = 〈V,D, C〉 where V = {x, y, z, u, v} and

C = {〈〈x, u〉, φ1〉, 〈〈y, u〉, φ2〉, 〈〈y, v〉, φ1〉, 〈〈z, v〉, φ2〉, 〈〈u, v〉, φ0〉}.

We claim that 〈P, 〈x, y, z〉〉 is a gadget for expressing φ over Gmax
3,2 . (See Figure 2.)

If any of x, y, z is non-zero, then at least one of the variables u, v can be assigned a
non-zero value and the cost of such an assignment is zero. If all x, y and z are assigned
zero, then the minimal cost assignment assigns u and v zero as well.

φ2φ1 φ1

φ0

φ2

y zx

u v

Figure 2: P, an instance of Gmax
3,2 expressing φ from Example. 6.10.

We now show another gadget for expressing φ using only max-closed crisp cost func-
tions of arity at most 2 and max-closed finite-valued cost functions of arity at most 1.

Let µ be a unary max-closed finite-valued cost function defined as

µ(x) =

{
1 if x = 0,
0 otherwise.

Let P ′ = 〈V,D, C〉 where V = {x, y, z, u, v, w} and

C = {〈〈x, u〉, φ1〉, 〈〈y, u〉, φ2〉, 〈〈y, v〉, φ1〉, 〈〈z, v〉, φ2〉, 〈〈u,w〉, φ1〉, 〈〈v, w〉, φ2〉, 〈w, µ〉}.

See Figure 3. Similarly to the argument above, 〈P, 〈x, y, z〉〉 is a gadget for expressing
φ.

2Note that “a finite variant of φ1” defined as φ1(〈0, 1〉) = M for some finite M < ∞ and φ1(〈., .〉) = 0
otherwise is not max-closed. The infinite cost is necessary.
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Figure 3: P ′, an instance of Gmax
3,2 expressing φ from Example 6.10.

Example 6.11. Consider a ternary max-closed finite-valued cost function φ over D =
{0, 1, 2} defined as φ = (#0)2, that is, the number of zeros in the input tuple squared.
We show a gadget for expressing φ using only cost functions from Rmax

3,2 ∪Fmax
3,1 ⊆ Gmax

3,2 .
Define three binary crisp max-closed cost functions as follows:

φ0(t) =


∞ if t = 〈0, 1〉,
∞ if t = 〈0, 2〉,
0 otherwise,

φ1(t) =

{
∞ if t = 〈0, 1〉,
0 otherwise,

and

φ2(t) =

{
∞ if t = 〈0, 2〉,
0 otherwise.

For c ∈ {1, 3, 5}, let µc be a unary max-closed finite-valued cost function defined as

µc(x) =

{
c if x = 0,
0 otherwise.

Let P = 〈V,D, C〉 where V = {x, y, z, u1, u2, u3, v1, v2, v3, v4, v5, v6, w} and the set of
constraints C is shown in Figure 4.

We claim that 〈P, 〈x, y, z〉〉 is a gadget for expressing φ over Rmax
3,2 ∪ Fmax

3,1 .
If all x, y and z are non-zero, then there is an assignment of the other variables with

values one and two such that the total cost is 0.
If any of x, y, z is zero, then either u1 or u2 is assigned zero, and for the same reason

u3 is assigned zero.
If at least two of x, y, z are zero, then at least one of the variables v1, v2, v3 is

assigned zero and consequently, at least one of v4, v5 is assigned zero. Therefore, v6 is
assigned 0.
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Figure 4: The gadget expressing φ = (#0)2 from Example 6.11.

If all x, y and z are zero, then both v2 and v3 are assigned zero and consequently w
is assigned zero.

Note that a similar gadget works for bigger domains.

7 Conclusions and Open Problems

We have investigated the expressive power of valued constraints in general and max-closed
valued constraints in particular.

In the case of relations we built on previously known results about the expressibility
of an arbitrary relation in terms of binary or ternary relations. We were able to prove
in a similar way that an arbitrary max-closed relation can be expressed using binary or
ternary max-closed relations. The results about the collapse of the set of all relations
and all max-closed relations contrast sharply with the case of finite-valued cost functions,
where we showed an infinite hierarchy for max-closed cost functions. This shows that
the VCSP is not just a minor generalisation of the CSP – max-closed finite-valued cost
functions behave very differently from max-closed crisp cost functions. We also showed
the collapse of general cost functions by investigating the feasibility polymorphisms and
fractional polymorphisms of general max-closed cost functions. This shows that allowing
infinite costs in max-closed cost functions increases their expressive power substantially.

We remark that all of our results about max-closed cost functions obviously have
equivalent versions for min-closed cost functions, that is, those which have the multimor-
phism 〈Min,Min〉. In the Boolean crisp case these are precisely the relations that can
be expressed by a conjunction of Horn clauses.

One of the reasons why understanding the expressive power of valued constraints
is important is for the investigation of submodular functions. A cost function φ is
called submodular if it has the multimorphism 〈Min,Max〉. The standard problem of
submodular function minimisation corresponds to solving a VCSP with submodular cost
functions over the Boolean domain [6].

Submodular function minimisation (SFM) is a central problem in discrete optimisa-
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tion, with links to many different areas [10, 17, 20]. Although it has been known for a
long time that the ellipsoid algorithm can be used to solve SFM in polynomial time, this
algorithm is not efficient in practice. Relatively recently, several new strongly polynomial
combinatorial algorithms have been discovered for SFM [10, 11, 12]. Unfortunately, the
time complexity of the fastest published algorithm for SFM is roughly of an order of
O(n7) where n is the total number of variables [11].

However, for certain special cases of SFM, more efficient algorithms are known to exist.
For example, the (weighted) Min-Cut problem is a special case of SFM that can be solved
in cubic time [10]. Moreover, it is known that SFM over a Boolean domain can be solved
in O(n3) time when the submodular function f satisfies various extra conditions [1, 8, 18].
In particular, in the case of non-Boolean domains, a cubic-time algorithm exists for SFM
when f can be expressed as a sum of binary submodular functions [6].

These observations naturally raise the following question: What is the most general
class of submodular functions that can be minimised in cubic time (or better)? One way
to tackle this question is to investigate the expressive power of particular submodular
functions which are known to be solvable in cubic time. Any fixed set of functions which
can be expressed using such functions will have the same complexity [4].

One intriguing result is already known for submodular relations. In the case of re-
lations, having 〈Min,Max〉 as a multimorphism implies having both Min and Max as
polymorphisms. The ternary Median operation can be obtained by composing the op-
erations Max and Min, so all submodular relations have the Median operation as a
polymorphism. It follows that submodular relations are binary decomposable [14], and
hence all submodular relations are expressible using binary submodular relations.

For finite-valued and general submodular cost functions it is an important open ques-
tion whether they can be expressed using submodular relations of some fixed arity. If
they can, then this raises the possibility of designing new, more efficient, algorithms for
submodular function minimisation.
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