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Abstract. The task of factorizing a given integer is notoriously difficult,
to the extent of rendering computationally infeasible the extraction of
factors of numbers beyond a certain size. This infeasibility is what makes
the RSA cryptographic system, for example, secure.

We describe an analogue method1 of factorizing. Just as with traditional
algorithms, there is a practical limit to the size of numbers that the
method can factorize; in contrast with traditional algorithms, however,
the method suffers no increase in calculation time as the input number
approaches this limit.

The process described exploits a direct physical implementation of a
geometric formulation of the problem of factorizing; this allows factors
of numbers within the allowed range to be ascertained (or else primality
guaranteed) virtually instantaneously.

1 Geometric Formulation

In this section, we reformulate as a geometric problem the numeric problem of
factorization.

Proposition 1. The task of finding factors of a given, positive, natural number
N is equivalent to that of finding points that lie both in the integer grid Z × Z
and on the curve y = N

x .

Proof. A point (a, b) is on the curve y = N
x if and only if N = ab; it is in the

grid Z × Z if and only if a, b ∈ Z. Hence, (a, b) is both on the curve and in the
grid if and only if a and b offer a factorization, into two integers, of N . ut

Note 1. The factorization of N corresponding to a point in the grid and on
the curve is not necessarily—in fact, is rarely—a full decomposition of N into
primes (it may even be no more informative than to demonstrate that N = 1.N).
However, each prime factor p of N has a corresponding point

(
p, N

p

)
in the grid

and on the curve; thus, all prime factors are represented by at fewest one such
point each.

Note 2. Since, by hypothesis, N is positive, the curve y = N
x exists only in quad-

rants x, y ≥ 0 and x, y ≤ 0; further, since only positive factors of N (specifically,
primes) are sought, only the former quadrant need be considered.

Similarly, by the symmetry of the curve and of the integer grid—specifically,
because each is symmetric about the line y = x—only one octant within this
quadrant need be considered (since (a, b) is both on the curve and in the grid if
and only if (b, a) is, and both points correspond, due to commutativity of mul-
tiplication, to the same partial factorization: N = ab). Accordingly, we consider
only the octant 0 ≤ x ≤ y.

1 The method is the subject of a pending US patent, applied for by IBM and with
sole inventor Ed Blakey.



Proposition 2. The curve y = N
x , z = 0 (which lies in three-space) can be

expressed as the intersection of the (x, y)-plane and the cone2 that consists of
those lines that both pass through the point

(
0, 0,

√
2N

)
and make an angle of

π
4 of a radian with the line y = x, z =

√
2N .

Proof. Let C be the cone made up of those lines that both pass through the
point P :=

(
0, 0,

√
2N

)
(the tip of the cone) and make an angle of π

4 of a radian

with the line y = x, z =
√

2N (call this line L).
Let A := (a, b, 0) be an arbitrary point both on the cone C and in the (x, y)-

plane; let B be the point
(
xA, xA,

√
2N

)
, where xA = (a2+b2+2N)

1
2

2 . Note that

|BP | = (
x2

A + x2
A + 0

) 1
2

= xA

√
2

=

(
a2 + b2 + 2N

) 1
2

√
2

=
|AP |√

2
;

further, since A is on C and B on L, the angle APB is, by definition of C, π
4 .

Hence, ABP is a right angle, and |BP | = |AB|. So
(
a2 + b2 + 2N

) 1
2

√
2

= |BP |
= |AB|

=
(
(a− xA)2 + (b− xA)2 + 2N

) 1
2

=
(
a2 + b2 − 2 (a + b)xA + 2x2

A + 2N
) 1

2 .

Multiplying each side by
√

2,
(
a2 + b2 + 2N

) 1
2 =

(
2

(
a2 + b2 − 2 (a + b)xA + 2x2

A + 2N
)) 1

2 .

Squaring,

a2 + b2 + 2N = 2
(
a2 + b2 − 2 (a + b) xA + 2x2

A + 2N
)

.

Subtracting a2 + b2 + 2N and recalling that xA = (a2+b2+2N)
1
2

2 ,

0 = a2 + b2 − 4 (a + b)xA + 4x2
A + 2N

= a2 + b2 − 2 (a + b)
(
a2 + b2 + 2N

) 1
2 +

(
a2 + b2 + 2N

)
+ 2N

= 2a2 + 2b2 + 4N − 2 (a + b)
(
a2 + b2 + 2N

) 1
2 .

2 That y = N
x

, z = 0 is the intersection of the (x, y)-plane and some cone is no
surprise: y = N

x
is a hyperbola, and, hence, a conic section, which fact motivates the

geometric formulation presented here.



Dividing by 2 and rearranging,

a2 + b2 + 2N = (a + b)
(
a2 + b2 + 2N

) 1
2 .

Dividing by
(
a2 + b2 + 2N

) 1
2 (valid since a, b and N are all positive),

(
a2 + b2 + 2N

) 1
2 = a + b .

Squaring,

a2 + b2 + 2N = (a + b)2

= a2 + b2 + 2ab .

Hence, ab = N , and so A, an arbitrary point both on the cone C and in the
(x, y)-plane, is on the curve y = N

x , z = 0.

Conversely, let A :=
(
a, N

a , 0
)

be an arbitrary point on the curve y = N
x ,

z = 0. Let B be the point
(
xA, xA,

√
2N

)
, where xA = a2+N

2a . Then

|AB| =
((

a− a2 + N

2a

)2

+
(

N

a
− a2 + N

2a

)2

+ 2N

) 1
2

=

((
a2 −N

2a

)2

+
(

N − a2

2a

)2

+ 2N

) 1
2

=

(
2

((
a2 −N

2a

)2

+ N

)) 1
2

=

(
2

(
a2 + N

2a

)2
) 1

2

=
a2 + N

a
√

2
;

|BP | = (
x2

A + x2
A + 0

) 1
2

= xA

√
2

=
a2 + N

a
√

2
;

and

|AP | =
(

a2 +
(

N

a

)2

+ 2N

) 1
2



=
(

a4 + N2 + 2Na2

a2

) 1
2

=
a2 + N

a
.

Hence, |AB| = |BP | = 1√
2
|AP |, so the angle between AP and BP (and, hence,

the angle between AP and L, since B and P are on L) is π
4 . Thus A, an arbitrary

point on the curve y = N
x , z = 0, is both on the cone C and in the (x, y)-plane,

as required. ut
The physical implementation, discussed in the following section, of the fac-

torization method that we describe exploits the facts, demonstrated above, (a)
that factorization can be reformulated as the search for integer points on the
curve y = N

x , and (b) that this curve can be expressed as the intersection of a
cone and a plane.

2 Physical Implementation

2.1 Implementation of the Integer Grid

Definition 1 (in which we implement the integer grid).

1. As before, let N be the natural number to be factorized. Assume that N is
odd (see Remark 1).

2. Let ε be a small, positive, fixed real (0 < ε ¿ 1).
3. Let M1 be a parabolic mirror, reflective on its concave side, occupying the

curve
{(

x,− 1
2(1+ε)x

2 + x + (1 + ε) , 0
)

: 0 ≤ x ≤ 1
}
.

4. Let M2 be a plane mirror, reflective on its x < y side, occupying the line
segment {(x, x, 0) : 0 ≤ x ≤ 1}.

5. Let M3 be a plane mirror, reflective on its x > 0 side, occupying the line
segment {(0, y, 0) : 0 ≤ y ≤ 1}.

6. Let S be a source at (1 + ε, 1 + ε, 0) (this is the focus of the parabola of which
M1 is part) of electromagnetic radiation with wavelength λ := 2

N ; suppose
that S is shielded such that its radiation stays close to the plane z = 0.

7. Let B := {(x, y, 0) : 1 ≤ x ≤ y < 1 + ε} be a blackbody that absorbs radiation
arriving from S.

Remark 1. We assume that the number N to be factorized is odd.3 This is
because, for ease of implementation, the reduced grid

{
(x, y) : x, y, x+y

2 ∈ Z}
(that is, pairs (x, y) of integers, where the parity of x is that of y) is implemented
instead of the full grid Z×Z = {(x, y) : x, y ∈ Z} mentioned in Sect. 1; then any
factorization of N (which is odd) into integers x and y will be such that x and
y are both odd, so this reduced grid suffices.
3 Should a factorization be required of an even number, it is computationally trivial to

iteratively divide by two until an odd number—which can be factorized as described
here—is obtained.



Further, consideration need be made only of that part of the reduced grid
with 0 ≤ x ≤ y ≤ N (since no factor of N is greater than N , and by Note 2);
only this part of the grid is implemented (see Remark 4).

Proposition 3. Radiation incident on M1 from S is reflected by M1 as a beam
of waves parallel to the y-axis, in the band 0 ≤ x ≤ 1 (which is entirely spanned
by such waves), and travelling in the direction of decreasing y.

Proof. (Readers for whom it suffices to note that S sits at the focus of the
parabola containing M1, that this parabola is symmetric about a line parallel
to the y-axis, and that the projection of M1 onto the x-axis is the interval [0, 1]
may skip this proof.)

Since the region
{

(x, y, 0) : y < − 1
2(1+ε)x

2 + x + (1 + ε)
}

under the parabola
containing M1 is convex, since S lies in this region, and since no point of B lies
on a line between S and any point on M1, there is radiation incident on each
point of M1.

Consider the radiation incident on an arbitrary point A of M1; say A =(
a,− 1

2(1+ε)a
2 + a + (1 + ε) , 0

)
with 0 ≤ a ≤ 1.

The gradient of the curve y = − 1
2(1+ε)x

2 + x + (1 + ε) is given by y′ =
− 1

1+εx + 1, which at A is 1 − a
1+ε , so the tangent tA at A to the curve has

equation y =
(
1− a

1+ε

)
x + a2

2(1+ε) + 1 + ε, z = 0 and the normal nA at A to

the curve has equation y =
(

1+ε
a−1−ε

)
x + a + 1 + ε + a(1+ε)

1+ε−a − a2

2(1+ε) , z = 0. The
radiation from S incident on A is reflected along the line passing through the
reflections in nA of S and A.

Let uA be the line parallel to tA and passing through S; this has equation
y =

(
1− a

1+ε

)
x + a, z = 0. Let T be the point on nA and uA. By construction

(and, specifically, since nA and uA are perpendicular and since uA passes through
S), T is the midpoint between S and the reflection of S (call this S′) in nA. In
particular, letting P1 denote the x-coordinate of a point P , T1 is the mean
of S1 and S′1; that is, S′1 = 2T1 − S1. S1, recall, is 1 + ε. T1 is the value of
x for which y =

(
1− a

1+ε

)
x + a, z = 0 (i.e. uA) meets y =

(
1+ε

a−1−ε

)
x +

a + 1 + ε + a(1+ε)
1+ε−a − a2

2(1+ε) , z = 0 (i.e. nA); that is, the value of x such that(
1− a

1+ε

)
x + a =

(
1+ε

a−1−ε

)
x + a + 1 + ε + a(1+ε)

1+ε−a − a2

2(1+ε) . So

T1 =
(

a + 1 + ε +
a (1 + ε)
1 + ε− a

− a2

2 (1 + ε)
− a

)
÷

(
1− a

1 + ε
− 1 + ε

a− 1− ε

)

=
(

1 + ε +
a (1 + ε)
1 + ε− a

− a2

2 (1 + ε)

)
÷

(
1− a

1 + ε
+

1 + ε

1 + ε− a

)

=
2 (1 + ε− a) (1 + ε)2 + 2a (1 + ε)2 − a2 (1 + ε− a)

2 (1 + ε− a) (1 + ε)

· (1 + ε− a) (1 + ε)
(1 + ε− a) (1 + ε)− a (1 + ε− a) + (1 + ε)2



=
2 (1 + ε− a) (1 + ε)2 + 2a (1 + ε)2 − a2 (1 + ε− a)
2 (1 + ε− a) (1 + ε)− 2a (1 + ε− a) + 2 (1 + ε)2

=
(
2 + 4ε + 2ε2 + 2ε + 4ε2 + 2ε3 − 2a− 4εa

− 2ε2a + 2a + 4εa + 2ε2a− a2 − εa2 + a3
)

÷ (
2 + 2ε + 2ε + 2ε2 − 2a− 2εa− 2a− 2εa + 2a2 + 2 + 4ε + 2ε2

)

=
2 + 6ε + 6ε2 + 2ε3 − a2 − εa2 + a3

2 (2 + 4ε + 2ε2 − 2a− 2εa + a2)
.

Hence,

S′1 = 2T1 − S1

=
2 + 6ε + 6ε2 + 2ε3 − a2 − εa2 + a3

2 + 4ε + 2ε2 − 2a− 2εa + a2
− 1− ε

=
(
2 + 6ε + 6ε2 + 2ε3 − a2 − εa2 + a3 − 2− 4ε− 2ε2 + 2a

+2εa− a2 − 2ε− 4ε2 − 2ε3 + 2εa + 2ε2a− εa2
)

÷ (
2 + 4ε + 2ε2 − 2a− 2εa + a2

)

=
−2a2 − 2εa2 + a3 + 2a + 4εa + 2ε2a

2 + 4ε + 2ε2 − 2a− 2εa + a2

=
a

(
2 + 4ε + 2ε2 − 2a− 2εa + a2

)

2 + 4ε + 2ε2 − 2a− 2εa + a2

= a .

So the line of the reflected radiation passes through points A and S′ (which are
distinct, being separated by the same distance as are A and S), and S′1 = A1 = a.
Hence, the reflected radiation passes along the line x = a, as claimed.

Further, since each point on M1 has incident radiation, the band 0 ≤ x ≤ 1
is entirely spanned by reflected waves. ut

Remark 2. Radiation from S not incident on M1 is not of interest here; it is
either absorbed by B or completely leaves the apparatus.

Proposition 4. The beam described in Proposition 3 is reflected by M2 to form
a beam parallel to the x-axis, in the band 0 ≤ y ≤ 1 (which is entirely spanned
by the reflected beam), and travelling in the direction of decreasing x.

Proof. The part of the incoming beam incident on an arbitrary point A :=
(a, a, 0) (0 ≤ a ≤ 1) of M2 travels to A along the line x = a, z = 0, with y
decreasing. This is reflected by M2, which sits at an angle of π

4 to the x- and
y-axes, along the line y = a, z = 0, with x decreasing.

Further, the reflected beam spans the band 0 ≤ y ≤ 1 since, by Proposition 3,
the incoming beam spans 0 ≤ x ≤ 1. ut

Proposition 5. Radiation incident on M3 from S (via M1 and M2) is reflected
by M3 back along itself, producing a standing wave.



Proof. By Proposition 4, radiation reaches a point A := (0, a, 0) (0 ≤ a ≤ 1)
of M3 by travelling along the line y = a, z = 0, with x decreasing. Since this
line is parallel to the x-axis and M3 to the y-axis, the incident ray is normal
to the mirror and is reflected along itself. The nature of the standing wave thus
produced is described in Proposition 6. ut

Remark 3 (in which we summarize the preceding propositions). A ray from S
that is of interest (that is, that falls on mirror M1 rather than leaving the
apparatus or hitting B) meets M1 at the point

(
a,− 1

2(1+ε)a
2 + a + (1 + ε) , 0

)

for some 0 ≤ a ≤ 1 (conversely, each such a has a corresponding ray). It is then
reflected by M1 vertically down to (a, a, 0), where M2 reflects it horizontally
across to (0, a, 0). M3 then reflects the ray back along itself via M2 and M1 to
S, setting up a standing wave, which is described below.

Proposition 6. In the triangular region R := {(x, y, 0) : 0 ≤ x ≤ y ≤ 1}, the
interference pattern produced by the standing waves mentioned above is such that
a point (a, b, 0) is at maximum amplitude (specifically, four times the amplitude
of the original radiation from S) if and only if Na and Nb are integers of the
same parity.

Proof. (For brevity, define f : [0, 1] → R by f : x 7→ − x2

2(1+ε) + x + 1 + ε.) The
interference pattern at a point (a, b, 0) in R is influenced by only four rays from
S:

1. the ray from S via (a, f(a), 0) on M1 to (a, b, 0);
2. the ray from S via (a, f(a), 0) on M1, (a, a, 0) on M2, (0, a, 0) on M3 and

(a, a, 0) on M2 to (a, b, 0);
3. the ray from S via (b, f(b), 0) on M1 and (b, b, 0) on M2 to (a, b, 0); and
4. the ray from S via (b, f(b), 0) on M1, (b, b, 0) on M2 and (0, b, 0) on M3 to

(a, b, 0).

The amplitude at the point (a, b, 0) of each of these rays can be modelled by
α sin

(
2π
λ d + t

)
, where α is the amplitude of the original radiation, λ its wave-

length, d the total distance travelled by the ray from S to (a, b, 0) and t a rep-

resentation of time. Writing g(x) for
(
(1 + ε− x)2 + (1 + ε− f(x))2

) 1
2

+ f(x)
(0 ≤ x ≤ 1), the respective values of d for the four rays are d1 := g(a) − b,
d2 := g(a) + b, d3 := g(b)− a and d4 := g(b) + a.

Note that these expressions can be simplified since g(x) = 2 (1 + ε) for each
x ∈ [0, 1]; this equality holds because

g(x) =
[
2 (1 + ε)2 − 2 (1 + ε) (x + f(x)) + x2 + f(x)2

] 1
2

+ f(x)

=
[
2 (1 + ε) (1 + ε− f(x)− x) + x2 + f(x)2

] 1
2 + f(x)

=
[
2x2 − 4x (1 + ε) + f(x)2

] 1
2 + f(x)



=
[
1
4
x4 (1 + ε)−2 − x3 (1 + ε)−1 + 2x2 − 2x (1 + ε) + (1 + ε)2

] 1
2

+ f(x)

=

[(
1 + ε− x +

x2

2 (1 + ε)

)2
] 1

2

+ f(x)

= 1 + ε− x +
x2

2 (1 + ε)
+ f(x)

= 2 (1 + ε) .

Recalling that sin θ + sin φ = 2 sin θ+φ
2 cos θ−φ

2 (and that cos θ = cos (−θ)), and
that λ = 2

N , the resultant amplitude
∑4

i=1 α sin
(

2π
λ di + t

)
at (a, b, 0) can be

written as

4∑

i=1

α sin
(

2π

λ
di + t

)
=

2∑

i=1

α sin
(

2π

λ
di + t

)
+

4∑

j=3

α sin
(

2π

λ
dj + t

)

= 2α sin
(

2π

λ
· d1 + d2

2
+ t

)
cos

(
2π

λ
· d1 − d2

2

)

+2α sin
(

2π

λ
· d3 + d4

2
+ t

)
cos

(
2π

λ
· d3 − d4

2

)

= 2α

(
sin

(
2π

λ
g(a) + t

)
cos

(
2π

λ
b

)

+ sin
(

2π

λ
g(b) + t

)
cos

(
2π

λ
a

))

= 2α (sin (2Nπ (1 + ε) + t) cos (Nπb)
+ sin (2Nπ (1 + ε) + t) cos (Nπa)) .

Note that, since the sine and cosine functions both give values in the interval
[−1, 1], this amplitude is in the interval [−4α, 4α]. The result to be proven is that
a point (a, b, 0) in R is such that Na and Nb are integers of the same parity if and
only if 2α (sin (2Nπ (1 + ε) + t) cos (Nπb) + sin (2Nπ (1 + ε) + t) cos (Nπa)) =
4α for some t ∈ R.

Let (a, b, 0) be a point such that Na and Nb are integers of the same parity;
suppose first that Na and Nb are even; let t0 = π

(
1
2 − 2N (1 + ε)

)
. Then Nπa

and Nπb are even multiples of π, and so cos (Nπa) = cos (Nπb) = 1. Further,

sin (2Nπ (1 + ε) + t0) = sin
(

2Nπ (1 + ε) + π

(
1
2
− 2N (1 + ε)

))

= sin
(π

2

)

= 1 ,

so

2α (sin (2Nπ (1 + ε) + t0) cos (Nπb)



+ sin (2Nπ (1 + ε) + t0) cos (Nπa)) = 2α (1.1 + 1.1)
= 4α ;

that is, if Na and Nb are both even, then the amplitude at (a, b, 0) is 4α. Suppose
instead that Na and Nb are both odd, and let t0 = π

(− 1
2 − 2N (1 + ε)

)
. Then

Nπa and Nπb are odd multiples of π, and so cos (Nπa) = cos (Nπb) = −1.
Further,

sin (2Nπ (1 + ε) + t0) = sin
(

2Nπ (1 + ε) + π

(
−1

2
− 2N (1 + ε)

))

= sin
(
−π

2

)

= −1 ,

so

2α (sin (2Nπ (1 + ε) + t0) cos (Nπb)
+ sin (2Nπ (1 + ε) + t0) cos (Nπa)) = 2α

(
(−1)2 + (−1)2

)

= 4α ;

that is, if Na and Nb are both odd, then the amplitude at (a, b, 0) is 4α.

Conversely, if a point (a, b, 0) has amplitude 4α (say that t0 is such that
2α (sin (2Nπ (1 + ε) + t0) cos (Nπb) + sin (2Nπ (1 + ε) + t0) cos (Nπa)) is equal
to 4α), then we have that sin (2Nπ (1 + ε) + t0) = cos (Nπb) ∈ {±1} and
sin (2Nπ (1 + ε) + t0) = cos (Nπa) ∈ {±1}. So, since cos (πNb) and cos (πNa)
are in {±1}, Na and Nb are integers. Required is that Na and Nb have the
same parity. Now

cos (Nπb) = sin (2Nπ (1 + ε) + t0)
= cos (Nπa)

=
{

1 if Na is even
−1 if Na is odd .

Hence, Nb has the same parity as Na. ut

Remark 4. The set of high-amplitude points of the interference pattern in R,
described in Proposition 6, models the reduced grid described in Remark 1
as follows: a point

(
a
N , b

N , 0
)

in the former represents (a, b) in the latter. (In
fact, the whole region R, of which the high-amplitude points are a subset, cor-
responds under the same transformation (

(
x
N , y

N , 0
) 7→ (x, y)) to the region

{(x, y) : 0 ≤ x ≤ y ≤ N}, of which the reduced grid is a subset.) This change of
scale, by a multiplicative factor of N , of each axis of the (x, y)-plane is carried
out in order that the dimensions and layout of the apparatus described be inde-
pendent of the choice of N , in practice allowing use of the same apparatus for
different values of N .



2.2 Implementation of the Cone

Definition 2 (in which we implement the cone).

1. Let PN be a source at
(
0, 0,

√
2
N

)
of electromagnetic radiation.

2. Let CN be a detector along the curve




(x, 2− x, z) :
2 (x− 1)2 +

(
z −

√
2
N

)2

= 2

∧ z ≤ 1−N
1+N

√
2
N

∧ 2− x ≥ 1





.

Proposition 7. The curve of CN is the circular arc produced by projecting the
curve GN :=

{
(x, y, 0) ∈ R : 1

xy = N
}

onto the plane y = 2−x from PN . Hence,
radiation arriving from PN at a point on CN passes through the plane z = 0 at
a point (x, y, 0) such that 1

xy = N .

Proof. Let (a, b, 0) be an arbitrary point in GN ; then 1
ab = N , so this point

is
(
a, 1

Na , 0
)

(note that a, b > 0). The line that passes through both
(
a, 1

Na , 0
)

and PN is given by
{(

a, 1
Na , 0

)
+ γ

(
a, 1

Na ,−
√

2
N

)
: γ ∈ R

}
; this is equal to

{(
(γ + 1) a, γ+1

Na ,−γ
√

2
N

)
: γ ∈ R

}
. This line meets the plane defined by y =

2− x at
(

2Na2

1+Na2 , 2
1+Na2 , 1+Na2−2Na

1+Na2

√
2
N

)
(that is, when γ + 1 = 2Na

1+Na2 ). Now

2
(

2Na2

1 + Na2
− 1

)2

+

(
1 + Na2 − 2Na

1 + Na2

√
2
N
−

√
2
N

)2

= 2
(

2Na2 − 1−Na2

1 + Na2

)2

+
2
N

(
1 + Na2 − 2Na− 1−Na2

1 + Na2

)2

=
2

((
Na2 − 1

)2 + 1
N (−2Na)2

)

(1 + Na2)2

=
2

(
N2a4 − 2Na2 + 1 + 4Na2

)

(1 + Na2)2

= 2 ,

so the point
(

2Na2

1+Na2 , 2
1+Na2 , 1+Na2−2Na

1+Na2

√
2
N

)
satisfies the first of the three con-

ditions in the definition of CN (namely ‘2 (x− 1)2 +
(
z −

√
2
N

)2

= 2’).

Further, the quadratic q(x) := Nx2 − (N + 1) x + 1 has a positive leading
coefficient (namely N), and so, in the range 1

N ≤ x ≤ 1, attains its maximum



at either x = 1
N or x = 1; so, since 0 < b ≤ 1 and 1

ab = N give that a ≥ 1
N , and

since a ≤ 1, q(a) ≤ max
{
q
(

1
N

)
, q(1)

}
= 0. So

Na2 − (N + 1) a + 1 ≤ 0 ;

multiplying throughout by 2N and rearranging,

−2Na + N + N2a2 − 2N2a ≤ −N −N2a2 .

So
(
1 + Na2 − 2Na

)
(1 + N) = 1 + Na2 − 2Na + N + N2a2 − 2N2a

≤ 1 + Na2 −N −N2a2

= (1−N)
(
1 + Na2

)
.

Hence, (because 1 + N and 1 + Na2 are both positive), 1+Na2−2Na
1+Na2 ≤ 1−N

1+N , and

so the point
(

2Na2

1+Na2 , 2
1+Na2 , 1+Na2−2Na

1+Na2

√
2
N

)
satisfies the second of the three

conditions of CN (namely ‘z ≤ 1−N
1+N

√
2
N ’), as

√
2
N is positive.

Further, since (a, b, 0) ∈ GN , whence 1
ab = N and (since GN ⊆ R) a ≤ b,

Na2 ≤ Nab = 1 .

So, adding 1,
1 + Na2 ≤ 2 = 2

(
1 + Na2

)− 2Na2 .

Dividing by 1 + Na2 (which is positive),

1 ≤ 2
(
1 + Na2

)− 2Na2

1 + Na2
= 2− 2Na2

1 + Na2
.

Hence, the point
(

2Na2

1+Na2 , 2
1+Na2 , 1+Na2−2Na

1+Na2

√
2
N

)
satisfies the third condition

of CN (namely ‘2− x ≥ 1’), and so is on CN .

Conversely, let (a, 2− a, c) be an arbitrary point on CN . By the first condition

of CN , c = ±
√

2− 2 (a− 1)2 +
√

2
N , and by the second, c = −

√
2− 2 (a− 1)2 +

√
2
N , so (a, 2− a, c) =

(
a, 2− a,

√
2
N −

√
2− 2 (a− 1)2

)
. The line that passes

through both this point and PN is given by




(
a, 2− a,

√
2
N −

√
2− 2 (a− 1)2

)

+ γ

(
a, 2− a,−

√
2− 2 (a− 1)2

) : γ ∈ R





;

that is, by
{(

(γ + 1) a, (γ + 1) (2− a) ,

√
2
N
− (γ + 1)

√
2− 2 (a− 1)2

)
: γ ∈ R

}
.



This meets the plane z = 0 when γ + 1 =
√

1
Na(2−a) , which corresponds to the

point A :=
(√

a
N(2−a) ,

√
2−a
Na , 0

)
, which we wish to show to be in GN . Note

that, by the second condition of CN (‘z ≤ 1−N
1+N

√
2
N ’),

√
2
N −

√
2− 2 (a− 1)2 ≤

1−N
1+N

√
2
N , whence

√
2− 2 (a− 1)2 ≥

√
2
N

(
1− 1−N

1+N

)
=

√
2
N · 2N

1+N , so 2 −
2 (a− 1)2 ≥ 2

N · 4N2

(1+N)2
= 8N

(1+N)2
, whence a (2− a) ≥ 4N

(1+N)2
, and so −a2 +

2a− 4N
(1+N)2

≥ 0; from this, we have that 2
N+1 ≤ a ≤ 2N

N+1 . Further, by the third
condition of CN (‘2− x ≥ 1’), a ≤ 1, so

2
N + 1

≤ a ≤ 1 .

So,

1. since a, N and 2− a are positive, 0 ≤
√

a
N(2−a) ;

2. since a ≤ 1, a2 ≤ 4 − 4a + a2 = (2− a)2, whence a
N(2−a) ≤ 2−a

Na , and so
√

a
N(2−a) ≤

√
2−a
Na ; and

3. since 2
N+1 ≤ a, 2 ≤ a (N + 1), so 2− a ≤ Na and 2−a

Na ≤ 1, whence
√

2−a
Na ≤

1.

That is, 0 ≤
√

a
N(2−a) ≤

√
2−a
Na ≤ 1, and so A ∈ R.

Further, we have that the product of the first and second coordinates of A is√
a

N(2−a) · 2−a
Na =

√
1

N2 = 1
N , and so the point is, as claimed, in GN . ut

Remark 5. By Remark 4 and Proposition 7, the radiation from PN arriving at
CN passes through the curve in R corresponding to the curve y = N

x (that is,
through GN ). Such a ray passes through a point corresponding to an integer
solution on this curve if and only if the point displays the interference pattern
of S at maximum amplitude; that this is the case is then evident at CN .

3 Interpreting Results

Remark 6. Recall from Remark 5 that the radiation arriving from PN at a point
on CN will display high-amplitude interference (because of the standing wave
from S) if and only if the point (x, y, 0) of R through which it passes offers a
factorization of N (in that 1

x · 1
y = N , where 1

x and 1
y are integers). Thus, the

interpretation of results consists mainly of converting the coordinates of a point
(that which displays high-amplitude interference) on CN into those of a point in
R (that through which the ray passes). Proposition 8 describes this conversion.

Proposition 8. Radiation from PN incident on a point (a, 2− a, c) on CN has

passed through
(√

a
N(2−a) ,

√
2−a
Na , 0

)
.



Proof. This claim is justified in the proof of Proposition 7. ut

Corollary 1. If the radiation from PN at (a, 2− a, c) on CN displays high-

amplitude interference, then
√

Na
2−a and

√
N(2−a)

a are factors of N ; conversely,
all factors of N have an analogous point on CN .

Proof. This follows from Remark 4, Remark 5 and Proposition 8. ut

Remark 7. Having set up the apparatus as described in Definitions 1 and 2,
the factors of N are found as in Corollary 1. Since all factors are represented
by points on CN displaying high-amplitude interference (and since there are no
other such points), a value of N produces

1. no such points if and only if N is not an integer,
2. a single such point (corresponding to the factorization N = 1.N) if and only

if N is prime (or one), and
3. two or more such points if and only if N is composite.

In particular, by sweeping continuously through a range of values of N (by
continuously altering the wavelength of S, for example with a variable resistor,
and the height—that is, z-coordinate—of PN and CN ), primes can be quickly
identified.

Remark 8 (Aside). As mentioned in the abstract, the security of the RSA cryp-
tographic system relies on the intractability of factorization. However, the ability
of the proposed method to factorize virtually instantaneously does not compro-
mise this security: if technology were sufficient to allow the method to reliably
factorize, say, n-digit numbers (and, hence, decrypt information encoded with
RSA using an n-digit key), then, by Remark 7, n-digit primes can be found, and,
by multiplying two such, a (2n− 1)- or 2n-digit RSA key can be formed.

4 Generalization

The task of factorization has a geometric formulation as the extraction of inte-
ger solutions of an equation of which the graph is part of a conic section; this
formulation is exploited by the proposed method of factorization.

It is clear that, by repositioning PN and CN so as to implement a different
cone, an identical method allows computation of integer solutions of different
conic section graphs (parabolae, hyperbolae, circles and ellipses) or parts thereof.
So, while factorization is chosen for discussion because of its wide range of appli-
cations and its notoriety as a difficult problem, the task is merely an illustration
of a larger class of problems that the general method presented here can be used
to solve.



5 Summary

In Sect. 1, the task of finding factors of a given integer is restated as a geometric
problem, wherein points both on a curve and in a grid are sought. Noting in
particular that this curve is a conic section, the physical implementation of the
geometric formulation is detailed in Sect. 2.

The method whereby a number is input and a factorization found using the
apparatus described is given in Sect. 3.

Sect. 4 notes that factorization is just one use of the general method proposed,
and describes the way in which the process can be altered in order to find integer
solutions to other equations.

The method presented here addresses the computational difficulty encoun-
tered when using traditional algorithms to find integer solutions to certain equa-
tions (e.g. when factorizing integers). The proposed system of factorization is
qualitatively different from existing processes because it uses a direct physical
implementation of the problem in preference to the standard model of compu-
tation; this allows for much-improved calculation times.

That the system enjoys both time and space complexities that are constant
in the size of the input value, however, serves to highlight not the power of the
method but the incompleteness of traditional complexity theory. As N increases,
the system does in fact require more resource (though neither specifically time
nor space) to function; namely, the precision with which N must be input (by
setting the wavelength of the grid source and the height of the cone) and its
factors read (by measuring the positions of points on CN ) increases with N . This
suggests that, for some analogue computers, traditional ‘algorithmic’ complexity
theory is inadequate; more suitable notions of complexity are currently under
consideration by the author and others.
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