


Abstract

Genetic regulatory networks are large graphical structures and
their inference is a central problem in bioinformatics. However, be-
cause of the paucity of the training data and its noisiness, machine
learning is essential to good and tractable inference.

This literature review first surveys the relevant theoretical and em-
pirical biochemistry. Next it describes the two types of GRN inference
that are problems, the data which can be used for machine learning,
and how different kinds of machine learning have been used in previ-
ous research. The survey concludes with an analysis of the field as a
whole, some underlying methodological issues and a few possible areas
for future research.
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1 Introduction

Inference of the network structure and parameters which cause the observed
gene expressions and phenotypic states. This is the problem of genetic reg-
ulatory network (GRN) inference; how machine learning can be applied to
it is the focus of this technical report. The technical report also surveys the
underlying biology and the data which is available for inference.

Section 2 begins by summarising the biology which underlies the statisti-
cal and machine learning problems in the field of network inference. Following
that, section 3 provides a brief overview of these problems.

Sections 4 and 5 discuss available data and describe existing approaches to
network inference. Section 6 describes important and more general statistical
concerns associated with the problem of inference, and section 7 provides a
brief visual categorisation of the research in the field. Notable aspects of the
problems described in section 3 are highlighted in section 8, which concludes
the survey.

The key mathematical variables used in this survey are as follows. i, j
and h refer to genes and to their expression level : which is intended will
be clear from the context. ki is i’s fan-in factor, the number of genes it is
regulated by. k is also used to refer to a gene’s fan-out factor, the number
of genes it regulates. When it is unclear what k refers to it is annotated kin

or kout. φi are the external, non-genetic regulators of the gene i. N is the
number of genes. Sometimes it is also used to refer to the set of all genes,
or their expression levels. M is sometimes used to refer to the number and
set of samples. A–C are used to refer to arbitrary sets, the size of the set,
random variables and probability distributions. Arbitrary sets of functions
are denoted by F . If a capital letter is a set, then the corresponding lower
case letter is a member of that set. x, y and z are unit-less algebraic variables.
Time is indexed using t, and prime (“ ’ ”) is used to mean “later”.

Other reviews of GRN include [23], [17] and [24]. However, many of these
are dated. Those that are more current focus on presenting new research
findings and do not summarising the field as a whole.

2 The Underlying Biology

This section clarifies the terms regulatory network and genetic regulatory
network, and it briefly summarises the underlying cellular biology.

Regulatory network is a term used to describe causal interaction. Ex-
amples of regulatory networks include protein-protein networks, metabolic
processes[77] and the inhibitory or excitatory relationship one gene may have
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on another[6]. This latter kind of network is known as a genetic regulatory
network and they are the focus of this review. Historically, genetic interac-
tion was not considered[7], but over the past few decades[51; 57] researchers
have increasingly understood the importance of the regulatory relationships.

2.1 Network Structure and Macro Characteristics

This subsection discusses the known and hypothesised large scale character-
istics and network structure of GRNs. Subsection 2.2 describes the single-
gene level characteristics of a GRN. Intuitively, GRN can be understood to
be messily robust as a consequence of their evolutionary history[108].

A GRN is a graph, the vertices of this graph are genes and the edges
describe the regulatory relationships between genes. GRN may be modeled
as either directed[102] or undirected[114] graphs, however the true underlying
regulatory network is a directed graph. Recent[6] and historical[55] research
shows that GRN are not just random directed graphs. [6] discusses other
macro-statistical features of GRN.

2.1.1 The Out-degree (kout) and In-degree (kin)

GRN network structure is neither random nor rigidly hierarchical. Instead,
GRNs appear to be scale free. This means that the probability distribution
for the out-degree follows a power law[6; 55]. I.e., the probability that a
gene i regulates k other genes is p(k) ≈ k−λ, where λ is usually some value
in the range 2–3. Kauffman’s analysis of scale free Boolean networks shows
that they behave as if they are on the cusp of being highly ordered and
totally chaotic. It is claimed that being on this cusp contributes to the
evolvability and adaptability of GRN. The in-degree follows an exponential
distribution[6].

These distributions over kin and kout means that a number of assumptions
have been made in previous research to simplify the problem and make it
more tractable.

For example, assuming that an “average” gene is regulated by only 2 or 3
others and that it probably regulates a similar or slightly smaller number of
genes itself is reasonable in most cases. In higher metazoa kin is more likely
to be in the range 4–8[63]. Crucially, this average is not a maximum. Many
learning algorithms are exponential in kmax

in .

This means that models which strictly limit the number of regulatory
genes kin to some arbitrary constant (such as [102; 110]) may not be able to
infer all networks. This compromises their explanatory value.
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[110] “suggest[s] a sparse topology[,] because the maximal number of in-
puts (kin) to a unit is kin ≪ N”. In this work, except in the case of a very
small and well known GRN of ten genes, kmax

in was restricted to 3. While
such a tight constraint is true in the vast majority of cases, in a number of
crucial situations it is not. For example, a gene which regulates a module
may regulate hundreds of genes. Sparse topologies are inadequate in the
general case.

2.1.2 Modules

Genes are organised into modules. A module is a group of genes which
are functionally linked by their phenotypic effects. This phenotypic link
may be temporal, or because they all contribute simultaneously to some
complex activity[6]. Examples of phenotypic effects include protein folding,
cell growth regulation[98], glycolysis metabolism[97], and the metabolism of
amino acids[5]. As a consequence of natural selection, genes in the same mod-
ule are often also physically proximate, and co-regulated, even equi-regulated.
A gene which is in multiple modules is often regulated by different genes for
each module[6; 53].

Furthermore, one or two genes may be the main regulators of all or most
of the other genes in the module. It is crucial to take these “hub” genes into
account to ensure a general and veridical model.

Genetic networks are enormously redundant. For example, the Per1, Per2
and Per3 genes are shared by a very wide range of species and help regulate
circadian oscillations. Knocking out one or even two of them produces no
detectable changes in the organism[57]. This redundancy is an expected
consequence of evolution[6]. Hub genes create essential regulatory differences
and drive the viability of the organism. Identifying them and their regulatory
drivers in turn is a key step in the inference of large, multi-functional GRN. If
the modular nature of GRN is not considered the result may lack robustness
and biological meaning[98].

Known modules range in size from 10 or 15 to several hundred genes,
and have no characteristic size[6]. A gene can also be a member of several
modules. Methods which do not take this into account (e.g. [97]) may
sacrifice robustness and biological meaning.

2.1.3 Motifs

This subsubsection discusses motifs. A motif is a sub-graph in a GRN which
is repeated more times than would be expected if the network was randomly
constructed, given the GRN’s distributions over k[57]. For example, the feed-
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forward triangle shown in figure 1 is an atypically common motif in gene
regulatory networks. This pattern frequently occurs with module regulatory
genes, where one module regulatory gene may bind to another and then both
may contribute to the module’s regulation[5].

i

j h

Figure 1: The feed-forward motif, as discussed in [79].

Like modules, motifs often overlap. In addition, they are highly conserved
evolutionarily[16; 46]. This means that phylogenetics could provide useful
insights in certain circumstances. However the converse is not necessarily
true. Motifs like the feed-forward triangle may be the result of convergent
evolution towards a robust genetic regulatory network. Their existence in
two species does not necessarily denote a close phylogenetic relationship.

Another common motif is self-inhibition[22]. This is known as auto-
regulation. Two more are the cascade and convergent motifs. Each of these
three is illustrated in figure 2. The biases in network structures that motifs
represent can be used to guide, describe and evaluate network inference.

2.2 Gene-Gene Interactions

Subsection 2.1 described the graph-level statistical properties of GRN. This
subsection looks at the precise way in which two genes can interact: The gene
i regulates the gene j, but how? Crudely, i may either up-regulate or down-
regulate j. That is, if i regulates j then i is either excitatory or inhibitory
with respect to j. Different formalisations model this regulatory function to
different degrees of fidelity.

2.2.1 One-to-One Regulatory Functions

Regulatory links can have different strengths. i may be a crucial, very strong
regulator of j, or it may be almost irrelevant. Imagine that i is the only gene
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Figure 2: The auto-regulatory, cascade and convergence motifs.

which regulates j1. Also consider non-genetic influences on j, denoted φj. In
this situation, j′ = fj(i, φj). Inter-cellular signaling is modeled in [74] and
is one example of φ. In many circumstances we can assume that δf

δφ
= 0.

In that case j = fj(i). The nature of fj is highly varied. It can be roughly
linear, sigmoid or a piecewise threshold function[118].

It is also possible for one gene to both up-regulate and down-regulate
another gene. For example, i might actively up-regulate j when i is low,
but down-regulate it otherwise. However, the chemical process underlying
this is not immediately clear, and in the models inferred in [91] a previously
postulated case of this was not verified. In any case, this kind of especially
complex relationship is not evolutionarily robust. For that reason it will be
relatively rare.

Wider properties of the organism also have an influence on the kinds
of regulatory functions that are present. For example, inhibitors are more
common in prokaryotes than in eukaryotes[45].

1Not unknown, but relatively rare. There are two types of cell, prokaryotes and eukary-
otes. All multi-cellular life is eukaryotic, most bacteria are prokaryotic. Most prokaryotic
genes are regulated by 2–3 others[6], for eukaryotes k tends to be even greater[23]
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Figure 3: The chromosomes of a healthy human. The chromosomes have
each been condensed from a long thin strand into a highly ordered structure.
Image sourced from [88].

2.2.2 Many-to-One Regulatory Functions

If a gene is regulated by more than one gene its regulatory function is usually
much more complex. In particular, eukaryotic gene regulation can be enor-
mously complex[26]. Consider the regulatory network shown in figure 2(c).
The extent to which n1 regulates n5 may depend on how strongly n1 is ex-
pressed and on the expression level of n2.

This complexity arises because of the indirect, many-leveled and complex
multi-stage process underlying gene regulation. This regulatory process is
summarised in sources such as [17; 24; 118]. The relevant aspects are covered
in this and the next subsubsection.

As [98] illustrates, a regulatory function may be a conditional piecewise
function, i.e. i regulates h if and only if j is expressed strongly enough,
however apart from this effect j has no effect on h. Alternatively, both i and
j may up-regulate h in a non-additive manner.

However, some of the logically possibly regulatory relationships appear
to be unlikely. For example, it appears that the exclusive or and equivalent
relationships are biologically and statistically unlikely[67]. Furthermore, [55]
suggests that many regulatory functions are canalised. A canalised[108] reg-
ulatory function is a function that is buffered and depends almost entirely
on the expression level of just one other gene.
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2.2.3 The Gene Transcription Process

Consider i’s regulation of j. This process has been illustrated in figure 4,
which is based on figures in [17] and [24]. The first regulatory step is the
transcription of i’s DNA into RNA. The creation of this fragment of RNA,
known as messenger RNA (mRNA), is initiated when promoters (proteins
that regulate transcription) bind ahead of the start site of the gene. The
resulting fragment of RNA is the genetic inverse of the original DNA (i.e. an
A in the DNA is transcribed as a T in the RNA). Following this the mRNA
is translated into a protein.

The transcribed protein causes phenotypic effects, such as DNA repair
or cellular signaling. In addition, some proteins act as promoters, and in
this case the expression level of j is regulated when protein from i binds to
promoter regions ahead of the start of j. Note that the term “motifs” is also
used to refer to binding sites, to describe the kinds of promoters which can
bind with and regulate a particular gene. For clarity, the term is not used
in this way in this report. For example, we describe the work done in [92]
as using prior knowledge of protein-binding site relationships, rather than as
using prior knowledge of motifs.

����
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����
����
����
����

Figure 4: A protein eye’s view of gene regulation. The gene displayed in the
figure is regulated by itself and one other gene. We have omitted the mRNA
−→ protein translation step for the sake of clarity. A just-transcribed protein
is shown in the figure as well. Right now it cannot bind to the gene which
transcribed it, as that site is occupied. It may bind to the gene on the right
hand side of the figure, or it may go on to have a more direct phenotypic
effect.

To summarise: A GRN is a stochastic system of discrete components.
However modeling a GRN in this way is not tractable. For that reason we do
not consider stochastic systems in this survey. Instead, a continuous model of
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GRN is used. In this model a GRN is a set of genes N and a set of functions
F such that there is one function for each gene: ∀n ∈ N, ∃fn : fn ∈ F ).
Each of these functions would take all or a subset of N as parameters, and
φn as well. Using this sort of model the important features of the regulatory
relationships can be inferred and represented.

3 Outstanding Problems

There are two main types of problems which machine inference can be ap-
plied to for GRN: inferring epistasis and inferring whole-network structure
and regulatory relationships. This section briefly discusses the inference of
epistasis first.

An epistatic interaction is an interaction between two genes, often un-
expected, which leads to changes in an organism. Synthetic lethality and
yeast two-hybrid (Y2H) are examples of experiments which can help to re-
veal epistatic interactions. However because data gathered from these ex-
periments is often very noisy and because a particular phenotypic change
may not occur unless several genes have been perturbed, there is substantial
scope for the use of machine learning techniques in the inference of epista-
sis. Two recent examples of this are [82; 94]. Synthetic lethality and other
perturbations are discussed in more depth in subsection 4.2.

The second major type of problem is the inference of the underlying
genetic regulatory network itself. Epistatic problems are an important subset
of this more general inferential problem. Because researchers can only infer
models of the underlying stochastic system, F can take on an enormous
number of forms. The following section, section 5 describes some of these
in detail, but they are introduced here in the context of the specific whole-
network problems they address.

At the simplest level, F may be no more than a set of membership func-
tions which group genes into clusters. In some work, the regulatory genes
of those clusters have also been identified. Examples of clustering include
[98] ,[47] and [41]. Such models can be inferred by clustering co-expressed
or apparently co-regulated genes, although much more involved algorithms
(e.g. [5]) incorporating other forms of data have also been used.

Such module-level analysis only gives an overview of the network, as one
gene may be in several modules and may be regulated by several other genes,
not all of which are necessarily module regulators[23]. However, the low-
fidelity network that clustering provides can still answer important biological
questions and suggest further, more detailed research.

At the other extreme, F may be a set of mathematical functions which
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relate concentrations of mRNA and other chemicals to gene expression levels.
For example, “If the expression level of i rises above x then j is transcribed at
the rate y(i−αx)”. When this level of detail is required, ordinary differential
equations [9] are normally used, although partial differential equations[91]
and logical networks [110; 111] have also been used. Accurate inference
of such detailed f ∈ F requires large, relatively noiseless M and can be
computationally intractable for even moderate N .

Other approaches provide intermediately detailed models on intermedi-
ate numbers of genes. Interestingly, there appears to have been only one
example[47; 114] of research which combines several models in a principled
manner, although it is discussed theoretically by D’haeseleer et al. [23]. This
is surprising as it is possible that several detailed models or one general and
several detailed models could be combined to give a more complete, more
detailed and more veridical network.

To summarise, the problems of epistatic and general network inference are
distinct but related. What distinguishes them is the relationship between the
output of the inferential process and the GRN model that is used. In epistatic
problems the model is instrumental and does not need to accurately reflect
the actual causal network, so long as it makes accurate predictions. However
in the case of network inference the inferred network itself is the output. In
this case, the inferred network should model the GRN as closely as possible.

The distinction between these two kinds of problem is frequently not
made clear, and failing to do so makes some research reports more difficult
to understand.

4 Available Data

To address bioinformatic network problems there are four types of data avail-
able. These are:

• Expression data

• Perturbation data

• Phylogenetic data

• Chemical and gene location data

This section goes through each of these and discusses their accessibility
and utility. In some situations, multiple kinds of data are used, e.g. [5; 42;
121], however this usually makes the inference more time and space complex.
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4.1 Expression Data

Expression data measures how active each n ∈ N is. As transcription ac-
tivity cannot be measured directly, the concentration of mRNA (which is
ephemeral) is used as a proxy.

Because regulatory or phenotypic protein-protein interactions after tran-
scription can consume some of the mRNA before it can regulate another
gene[98] this may seem to be an inaccurate measure of gene activity[97].
Furthermore, a protein may bind to a promoter region but actually have no
regulatory effect[42].

In addition, most genes are not involved in most cellular processes[53].
This means that many of the genes sampled may appear to vary randomly.

However, if the data set is comprehensive and we are just concerned with
inference of the regulatory relationships these influences are not important.
Sufficient data or targeted inference obviates the problem of irrelevant genes.
Non-genetic, unmodeled influences are analogous to hidden intermediate vari-
ables in a Bayesian network [42] (BN, subsection 5.4) whose only parent is
the regulatory gene and whose only child is the regulated gene. An influence
like this does not distort the regulatory relationships or predictive accuracy
of the model.

Tegner et al.’s successful inference of a network with known post-transcription
regulation and protein-protein interactions using only (perturbed, subsec-
tion ref 4.2) gene expression data[110] provides evidence of this fact.

4.1.1 Types of Expression Data

There are two kinds of expression data, and both have been used for network
inference.

Equilibrium expression levels in some environmental situation are the
most easily obtained form of expression data, and microarrays are the most
common way of gathering it. A microarray is a pre-prepared slide, divided
into cells, one for each gene we are interested in. Each cell is individually
coated with a chemical which fluoresces when it is mixed with the mRNA
generated by just one of the genes. The brightness of each cell is used as
a measurement of the level of mRNA and therefore of the gene’s expression
level. This measurement of brightness is relatively noisy. In addition, entire
rows or columns are sometimes lost. As well as being technically noisy,
microarrays represent a stochastic system with a continuous value. Thus they
are also vulnerable to biological noise[87]: random stochastic fluctuations.
However, the magnitude and impact of the noise is hotly debated. Recent
research (2007) argues that it has been “gravely exaggerated”[58].
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Figure 5: An example of a microarray. Each gene is represented by one dot,
and the brightness of the dot is the mRNA concentration. Brightness can be
difficult to measure accurately. Sometimes entire rows or columns may be
corrupted as well. Image sourced from [50].

Some examples of research on inference which use this kind of data include
[2; 14; 25; 48; 56; 66; 72; 83; 97–99; 101; 106; 107; 109; 113; 114; 127]. Wang
et al.’s [119] work is particularly interesting as it describes how microarrays of
the same gene collected in different situations can be combined into a single,
larger data set.

Time series expression data is a sequence of gene expression data points
gathered over the course of some phenotypic process, e.g. the cell division
cycle[106]. The time-ordering places greater causal restrictions on the regu-
latory relationships than equilibrium data does. This means that fewer data
points are necessary.

In addition, time series can allow more precise inference of the regulatory
function between two genes. For this to be done reliably it is important that
the data is as noise-free as possible[61].

Unfortunately, collecting this kind of data is difficult and it has only
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recently become available in the quantities necessary for research. [63] is one
example of research which uses biological data. More commonly, the data is
simulated. Examples of work that groups have done using time series data
include [118], [91], [102] and [52; 104; 105; 123; 124]. Research on accurately
simulating expression data includes [3; 8; 17; 87; 104].

Typically, expression data is normalised and preprocessed prior to being
used. This is because all that matters in GRN inference is a a gene’s level of
expression relative to its own range.

New technologies[24] are promising to deliver more and cleaner expression
data in the future.

4.2 Perturbation Data

Perturbation data is very similar to time series gene expression data. It
consists of either the expression levels of the genes after they have reached a
new equilibrium which takes into account the external artificial perturbation
of one or more genes, or the time series of the genes as they come to this
new equilibrium. Directly making known adjustments to some of the genes
means that more information is included in the data.

This is because perturbation data includes a causal arrow. If we inhibit i
and j increases then, loosely, we can infer that i inhibits j. In actual fact, i
may not directly inhibit j; it may be that i and j have redundant functions
and that j only increased because there was not enough i in the cell, rather
than because i binds to j and inhibits it. As discussed in subsection 4.1,
this kind of indirect regulatory effect is not important in an accurate GRN
model. Effectively, i does regulate j, even if the actual mechanism is through
some complicated chain of proxies. Exploitation of the causal arrow leads to
much more efficient algorithms, e.g. [61].

Synthetic lethality[36; 68; 115] is also commonly used in biological re-
search. In a synthetic lethality experiment each pair of genes is knocked
out and the effect on the organism is measured and can be compared with
the organisms growth when only one of the genes in each pair is knocked
out. Although it is not practical to knock out all possible pairs (there are
approximately 40 million such pairs in yeast), genes with known interaction
or mutual redundancy can be selected using prior knowledge.

If the organism’s survival or growth rate is unchanged in the pair-situation
when compared with the single knockout situations then we can conclude
that the gene’s do not interact phenotypically in the environmental situation
that the experiment tests. However the pair knockout organism’s growth
may be changed non-multiplicatively and substantially, compared to the ef-
fects of either of the single gene knockouts. The organism may even become
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completely inviable. Such a result indicates gene interaction.

Y2H data is gathered in a broadly similar manner.

Examples of experiments using perturbation data include Driscoll and
Gardner [24], Kyoda et al. [61], Tegner et al. [110] and Gardner et al. [34].

4.3 Phylogenetic Data

Phylogenetics is the study of species’ evolutionary relationships to each other.
For example, the two species of chimpanzee, Pan troglodytes and Pan panis-
cus, are more closely related to each other than they are to humans, Homo
sapiens.

To date, very little work has been carried out which directly uses phy-
logenetics and the principle of phylogenetic conservation[16; 46] to identify
regulatory relationships de novo. This is because phylogenetic data is not
sufficiently quantified or numerous enough. However, as subsection 4.4 dis-
cusses, this sort of information can be valuable in validating results obtained
using other methods. As [59] notes, transcriptional promoters tend to evolve
phylogenetically, and as research by Pritsker et al. illustrates, regulatory
relationships in species of yeast are often conserved[92]. [26] reaches similar
conclusions, arguing that the “evolution of gene regulation underpins many
of the differences between species”.

4.4 Chemical and Gene Location Data

As discussed in subsection 4.3, the utility of non-expression data comes from
combining it with other forms of data. Most types of chemical and gene
location data are useful like this. This subsection discusses these types of
data. Because so many types of data can be used it is difficult to draw general
conclusions. Instead we briefly discuss a number of recent approaches. This
will give readers an idea of the kinds of inference which can be performed.

The first of these examples[121] presents a methodology and applies it to
the yeast Saccharomyces cerevisiae so that protein-protein interactions (the
protein network) could be inferred and understood in more depth than just
synthetic lethality allowed.

Gene expression data was obtained from microarrays, as described in
subsection 4.1. Information about which pairs of proteins interacted was
obtained using several Y2H experiments, and phylogenetic profiles from 145
other species were used. In addition, the cell was divided up into 23 func-
tional spatial components and the presence or absence of each protein in each
compartment recorded using a 23 bit vector for each protein.
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Statistical techniques were used to combine the data types, and the ability
of standard unsupervised techniques to infer the network were compared
with the results when certain known protein-protein interactions in yeast
were fixed as definitely occurring in the protein network before inference
began. Neither approach did well, and the number of false positives began to
swamp the true positive results very quickly as the sensitivity was increased.
However, the supervised approach was able to slow this rapid decrease in
specificity.

Figure 6: A microarray being constructed. Robotically controlled pins place
the microscopic fragments on DNA onto the glass slide. Image sourced from
[62].

A second example can be seen in the work done by [42]. This approach is
broadly similar in its structure to that of [121], except that it is applied di-
rectly to the inference of the underlying GRN. The authors used a chromatin
immunoprecipitation (ChIP) assay to discover some genes in S. cerevisiae
which regulated one another. Then they compared the BNs inferred when
this prior data was available and when it was not.

The final results presented were calculated using an approximate integra-
tion of the posterior distribution over graphs. Although the ChIP assays can
be noisy, the authors forced the regulatory relationships indicated by these
to be present in the graphs they searched over. However, they do discuss
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altering the prior probability of edges suggested by assays or other sources
of information instead, so that the search is not incorrectly constrained.

A third example is described in [41]. Here, Harbison et al. combined
microarrays of the entire genome and phylogenetic insights from four related
species of yeast (Saccharomyces). Given 203 known regulatory genes and
their transcription factors, the researchers were able to discover the genes
that these factors acted as regulators for. This research is another example
of the type of approach developed in [121].

These examples illustrate two key features of research which use chemical
or phylogenetic data and, more generally, research which combines multiple
kinds of data. Firstly, research using multiple kinds of data is normally
based on gene expression data, and uses the other kinds of data (formally or
informally) to provide a prior of some kind.

Secondly, although some research[117; 121] has been done on how multiple
types of data can be combined and used in a general and principled manner,
almost all examples of this kind of research aims to answer specific questions
about a specific species (that is already well known, e.g. yeast) in a limited
number of situations, rather than to develop more general methods.

Extracting as much information as you can when doing model inference
is very important. As [97] points out, one way of doing this is by using many
types of data and more of it. However, from a Computer Science research
perspective this fact doesn’t suggest just using more data. Instead it suggests
developing better approaches and taking advantage of techniques such as
multi-classifiers[93] and fuzzy set theory[11] to maximise the information
extracted.

5 Approaches to GRN Inference

Having discussed the underlying biology, the bioinformatic problems which
result and the data that can be used to approach these problems, this section
reviews different types of approach to network inference.

Subsection 5.1 discusses gene clustering. Clustering is done in an effort
to reveal the modular structure of the network; sometimes it can also be
used as a preprocessor or to discover the major regulatory genes of each
module. Following that, subsections 5.2 and 5.3 discuss discuss approaches
based on logical networks and differential equations. Subsection 5.3 also
describes other functional approaches to the problem of network inference.
Finally, Bayesian networks are evaluated as a way of approaching the problem
of GRN inference in subsection 5.4. Although a number of other kinds of
approach exist, including models which directly reflect the stochastic nature
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of the underlying true GRN[17], the approaches we summarise are broad
enough that we can also usefully discuss common issues of efficiency and
tractability in subsection 6.1.

5.1 Clustering

As described in section 2, genes are functionally organised into a modular
regulatory structure[5; 47]. Clustering[120] can reveal this modular structure,
with applications in data preprocessing and also to guide future biological
experiments.

This subsection discusses distance measures and clustering methods first.
Following that it gives a number of examples which use clustering, including
the use of clustering to preprocess data. Subsubsection 5.1.5 summarises
biclustering.

5.1.1 Overview

A clustering algorithm is made up of two elements: the method, and the
distance measure. The distance measure is how the similarity (difference)
of any two data points is calculated, and the method determines how data
points are grouped into clusters based on their similarity to (difference from)
each other. Any distance measure can be used with any method.

Primarily, clustering algorithms have been used on expression data, just
as expression data has been the source of training data for most other ap-
proaches to GRN inference. This is because expression data is usually the
only form of data available in the quantities necessary to support reliable
machine inference. However data from a range of other approaches, such as
ChIP assays[98], is increasingly available in these quantities.

The data is often normalised based on its range, mean values and/or
standard deviation. Non-linear transformations[23] can also be used to help
spread the data out in such a way that the clusters are more distinguishable.

5.1.2 Distance Measures

The simplest useful distance measure is Euclidean distance. The Euclidean
distance between the genes i and j for which there are M pairs of expression
levels is shown in equation 1. The Manhattan distance[60], also known as
the taxicab distance, is similar to the Euclidean distance.

dij = dji =

√

√

√

√

M
∑

m=1

(im − jm)2 (1)
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Euclidean distance is symmetric. I.e. dij = dji. Not all distance measures
are symmetric. Typically, a gene’s distance from a cluster is its average
distance from each member of the cluster and the clustering method aims to
minimise each gene’s average distance. Other ways of measuring the distance
between a cluster and a sample include the median, maximum and minimum
distance from a member of the cluster.

Mutual information (MI) is closely related to the Shannon entropy[100].
It is a measurement of how much you learn about i when you know j. Equally,
it is a measure of how much uncertainty there is between i and j. Just as
with Euclidean distance, mutual information is symmetric. Mutual informa-
tion is expressed in terms of probability, and its calculation for continuous
expression levels (and assuming some distribution over the expression levels)
is shown in equation 2.

I(X; Y ) =

∫

Y

∫

X

pxy(x, y) log

(

pxy(x, y)

px(x)py(y)

)

dx dy (2)

When using MI the clustering method minimises the uncertainty by group-
ing together genes which are strongly informative about each others’ expres-
sion levels. Consider the genes i and j. If i and j are highly correlated a good
mutual information clustering clusters them together. This is because if you
already know i and then discover j you do not learn much new information.

As a final example, we summarise the Mahalanobis distance[18; 73]. The
Mahalanobis distance addresses a weakness in Euclidean distance and some
other measures. To understand the weakness it addresses it is important to
distinguish between the real module or cluster underlying the gene expres-
sion, and the apparent cluster which an algorithm infers. [20] has a more
in depth discussion of this distinction, however it is essential to remember
that the clustering algorithm does not necessarily reveal true or functional
clusters in the data.

Imagine that we are using the Euclidean distance and that the samples we
have of genes in the underlying “real” clusters C and D are biased samples
of those clusters. Assume that the method is clustering the gene h, and that
h is truly in D. However, because the samples of C and D are biased it will
be clustered into C. Having been clustered into C it will bias future genes
towards C even more. Because microarrays are done on genes and phenotypic
situations of known interest this bias is possible and may be common.

In summary, h is clustered incorrectly because the distance measure did
not consider the covariance or spread of the cluster. Therefore, information
about the probable size of the true cluster was not used. The Mahalanobis
distance measure takes this bias into account. Therefore it may be more likely
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to provide a truer grouping of the genes into clusters than other measures
which do not consider this factor.

5.1.3 Clustering Methods

With our analysis of distance measures in mind, this subsubsection discusses
some clustering methods. Clustering methods can be divided into two types:
partitional and hierarchical methods. Partitional methods work by assign-
ing the samples to clusters whose existence is independent of their members.
Hierarchical methods work by agglomerating (bottom-up) or dividing (top-
down) clusters to create a tree-like hierarchy of clusters known as a den-
dogram. This subsubsection focuses on partitional methods. The following
subsubsection describes several examples of GRN inference carried out using
partitional and hierarchical clustering and summarises clustering. C is used
to refer to the number of clusters or the set of clusters.

Algorithm 1: The C-means clustering method.
Input:
N ×M , N genes, each with M examples
d, a distance measure
Output:
C clusters of genes
begin

Generate C random points in the M-dimensional data space
repeat

foreach n ∈ N do n→ c : arg minc∈C d(n, c)
Set each c = n ∈ c

until No n changes to another c

end

C-means clustering[1; 71] (see figure 7) is a relatively simple partitional
method with several variants. One of these variants is presented in figure 1.

With a sensible2 distance measure the c-means method is guaranteed to
find a local minimum in the variation between the members of each cluster.
The method typically converges very quickly.

However it functions best on hyper-spherical clusters which are well sep-
arated and it usually does not return an optimal result. For that reason
the algorithm is frequently run several times and the most compact result is
used.

2Transitive and symmetric.
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Running the algorithm several times does not address the greatest weak-
ness though, which is that the number of clusters, C, must be specified a
priori. While a search over the number of clusters could be performed this
would be inefficient since the method is not guaranteed to return the optimal
result each time it is run.

2

c1

c

c1

c2
c1

c2

t = 0 t = 1

c1

c2 c2c1

c1 c2

t = 2 t = 3

Figure 7: An example of C-means clustering. Each iteration of the method is
shown. Cluster centres are denoted by ci and their movement from iteration
to iteration shown by directed arrows, except for t = 3 where old ci are not
shown due to overlap. Membership in each cluster is shown by dashed lines.

19



A self-organising maps[39, ch. 7] (SOM) is superficially very different to
a C-means set of clusters. SOMs are a kind of one-layer feed forward neural
network, where the neurons are organised into a lattice. Each neuron is an
output neuron and associated with every neuron is an initially random vector
of the same dimension as the inputs.

After each input to be classified is presented to the neural network the
most similar neuron and neurons near it are adjusted so that their vector
is more like the input vector. After many epochs the network will have
stabilised into several groups of neurons, each of which form a blurrily defined
cluster. Alternately, each output neuron can be interpreted as representing
its own cluster, one similar to those of nearby neighbouring neurons.

Equation 3 presents a simplified competitive learning rule which does not
consider a neuron’s neighbours.

∆wij =

{

α(xi − wij) if neuron j is most like the input
0 if neuron j is not most like the input

(3)

Just as with C-means clustering, SOM need the number and dimension-
ality (usually 2, but any d ∈ I is valid) of the output neurons to be specified
in advance. The data is fit to this configuration. Prior specification of the
number of clusters or neurons is a common weakness of both methods.

The requirement of this prior specification represents a weakness in both
of these methods.

Another kind of clustering method that is applicable to GRN inference
is fuzzy clustering. Fuzzy clustering is a description of a range of distance
measures and methods which assign genes fuzzy membership to clusters. This
means that any one gene can be a partial member of several clusters, which
is biologically accurate[6]. Fuzzy methods are also comparatively robust in
the face of noisy data.

Similarly, clustering methods which find hypergraphs[40; 81] allow any
one gene to belong to more than one cluster. In a hypergraph an edge can
connect to any number of vertices. This is analogous to a cluster.

Formally, fuzzy (and discrete) methods that allow a gene to have cluster
membership greater than one, i.e.

∑

j uij > 1, create covers[72] over the
data, and don’t just partition it[23]. This use of the term partition is easily
confused with the way a clustering method can be described as partitional. In
this latter case it describes how clusters are found, in the former it describes
data point membership in the clusters.
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Figure 8: An example of a divisive hierarchical clustering method.

5.1.4 Previous Research

Clustering gene expression data from microarrays has been surveyed in sev-
eral recent papers (e.g. [2; 23; 25; 99; 127] and others). Zhou et al. [127]
compares a range of algorithms and focuses on combining two different dis-
tance measures (e.g. mutual information and fuzzy similarity or Euclidean
distance and mutual information) into one overall distance measure. Azuaje
[2] describes some freely available clustering software packages and introduces
the SOTA algorithm. SOTA is a hierarchical clustering algorithm which de-
termines C based on a validity threshold.

Zhou et al. [127] also suggests searching over cluster assignments using
techniques such as simulated annealing. Simulated annealing is described in
subsubsection 5.4.2. Initial membership of each gene in each fuzzy cluster is
randomly assigned. As a part of the search process the fuzzy membership

21



is swapped in the same way that discrete cluster memberships would be
swapped while searching. This idea could be easily generalised to fuzzy
covers, although the efficiency of such an algorithm is unclear.

The GRAM algorithm[5] is a clustering algorithm designed for clustering
gene expression data. Although it requires candidate regulatory genes to be
specified in advance, it still has a number of interesting characteristics. In
particular, it combines protein-binding and gene expression data and it uses
this non-expression data not just as a prior.

GRAM clusters genes based on the statistical likelihood of shared pro-
moters first. A core for each cluster is calculated, based on the expression
profiles of the genes with shared promoters. Other genes which match this
expression profile relatively closely can be incorporated into the cluster, even
if the evidence from the promoters was not strong enough for the gene to
be incorporated in the first round. The algorithm finds a cover and not a
partition of the genes, which is biologically more plausible.

[97] describes another clustering algorithm which uses a list of candidate
regulators specified in advance to cluster genes into modules.

This algorithm has a number of strengths and weaknesses when compared
with [5]. Unlike GRAM, Segal et al.’s algorithm only finds a partition of the
data and not a cover. In addition, like Bar-Joseph et al.’s [5]’s algorithm, the
number of clusters is effectively specified in advance by the use of candidate
regulators. However the algorithm in [97] only needs expression data and can
infer more complex combinatorial (Boolean AND/OR) regulatory relation-
ships between regulators and genes in modules. Furthermore its predictions
have been empirically confirmed and it is expected that the algorithm can
be easily transfered to other metazoa with greater kin[97].

Because expression data is the only data which is used the algorithm is
vulnerable to omissions in the data. If there are omissions then regulators
may be inferred as a part of the module and members of the module may
appear to be the regulator.

Another weakness is that a gene which is actually the regulator but which
is not in the list of candidate regulators can not be selected. In that situation
it is likely that a regulator of this gene will be selected as the regulator of the
module. This is a general problem with inference using noisy and possibly
contradictory data, especially if the search is artificially constrained by hard
boundaries like a prior list of regulators.

Horimoto and Toh’s [47] algorithm is very different from Segal et al.’s [97]
and Bar-Joseph et al.’s [5]. Like theirs, it depends only on gene expression
data. However, as opposed to using the Euclidean distance between the
expression levels, the algorithm uses the Euclidean distance between the
Pearson correlations of the genes. This means that when calculating the
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similarity of two genes the distance measure also incorporates the similarity
of others as well. In this respect it echoes the Mahalanobis distance[73].

Furthermore the algorithm is hierarchical, not partitional, and determines
the number of clusters more automatically than either of those described
in [97] and [5]. Although it does rely on an arbitrary constant value x to
determine what variance in expression profile between members of a cluster
is acceptable (this is similar to SOTA), the use of this arbitrary constant is
more defensible than the specification of an arbitrary C beforehand.

The algorithm works by clustering the genes based on their variance, until
all genes are in one super-cluster. The super-cluster is recursively broken up
into sub-clusters, and any cluster of genes whose variance is less than x is
not broken up any more. Thus the algorithm finds the minimum number of
clusters with variance less than x, given the initial hierarchical clustering.

In addition the calculated clusters were not the final output but were used
to guide the regulatory network inference described in [114]. This research
shows how clustering and module inference can be made a more integral part
of the wider project of detailed GRN inference and not just used to create
an overview of the main modules and their primary regulators.

Multi-stage inference ([23; 47; 114] can make principled inference over
larger numbers of genes tractable. Although the underlying network is di-
rected (as described in subsection 2.2) and may have very complex regula-
tory relationships these factors are conditionally independent of the graphical
structure and do not need to be considered simultaneously.

Horimoto and Toh also found that nearly 20% of the gene pairs in a
set of 2467 genes were Pearson-correlated at a 1% significance level. This
emphasises the modular nature of GRN.

Mascioli et al.’s [75] algorithm is very interesting. It is a hierarchical
algorithm, and clusters are created according to some validity criterion such
as the maximum allowable average distance from the cluster centre. The
validity criterion is smoothly changed, and this means that every cluster has
a lifetime: the magnitude of the validity criterion from the point the cluster
is created to the point that it splits into sub-clusters. The dendogram is cut
so that the longest lived clusters are the final result.

This idea is very powerful and selects C automatically. However a clus-
ter’s lifetime may also depend on samples not in the cluster, and this is not
necessarily appropriate if intra-cluster similarity is more important.

Eisen et al. [25] describes a data set and a simple hierarchical clustering
algorithm that has reportedly been very commonly used by biologists[53, p.
1374].

Depending on the level of noise, [99] suggests not clustering the genes
which are the most distant outliers and leaving them as singletons. Shamir
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and Sharan also discuss the difference between distance measures of the intra-
cluster homogeneity (similarity) and inter-cluster heterogeneity (distance). A
similar description of this distinction can be found in [53, p. 1383] as well.

Many clustering algorithms are fragile in the face of missing data. Troyan-
skaya et al. [116] suggests a number of methods which estimate missing values.
The best of these appears to be k-nearest neighbour, with 6 ≤ k / 10 to 20,
although smaller k are more appropriate if the average cluster size is smaller.
There does not appear to be any more recent research on clustering data sets
with missing values.

Jiang et al. [53] moots using the network inferred using the clusters to
guide the clustering itself. Such an approach is (loosely) analogous to the
EM algorithm and may be asymptotically optimal.

Selection of the right clustering algorithm remains a challenging and de-
manding task, dependent on the data being used and the precise nature of
any future inference.

5.1.5 Previous Biclustering Research

Biclustering is also known as co-clustering and direct clustering. It involves
finding clusters of genes and clusters of samples at the same time. The gene
expression data which is being clustered can be conceptualised as a matrix
(N ×M) with one row for each gene and one column for each sample. In the
previous clustering research that has been described, rows were clustered to-
gether. It is also possible for the columns to be clustered together. However,
in a bicluster the rows (genes) and columns (samples) are simultaneously
clustered, so that each bicluster is a row and column submatrice of the data.
This means that a bicluster may represent a subset of the genes which are
coregulated in some phenotypic situations. Such a model generalises natu-
rally to a cover in which each gene can be in more than one cluster. This
kind of biclustering cover algorithm is described in [101] and [109].

An early example of biclustering is [113]. [72] is a recent survey of the
field. Madeira and Oliveira’s [72] article also tabulates and compares many
biclustering algorithms.

Biclusters can be submatrices in which (excluding noise) the rows are
identical, the columns are identical, the rows and columns are identical, or
there may be more complex but constant relationships between members of
the submatrix. Depending on the purpose of the biclustering the user may
be interested in only some kinds of bicluster.

Cluster homogeneity can be calculated for each 2 × 2 sub-submatrix in
the submatrix that defines the bicluster. This may be another efficient and
principled technique for dealing with missing values.
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In general, optimal biclustering is an NP-hard problem[122]. In a limited
number of cases, exhaustive enumeration is possible. In other cases, heuristics
such as divide-and-conquer or a greedy search may be used to speed up the
search[72].

5.2 Logical Networks

This subsection describes research which infer Boolean or other logical net-
works as a representation of a GRN. Boolean networks were first described by
Kauffman[54] and have been a natural first approach to modeling regulatory
networks. Prior to discussing examples of GRN inference carried out using
Boolean networks we define them.

5.2.1 Overview

A Boolean network is a graph, G = 〈N, F 〉. N is a set of nodes (also known
as variables) which represent the genes and are either off (0) or on (1). There
is no intermediate level of gene expression. F is a set of functions, one per
gene. Each fi ∈ F has the form i′ = f(n1, . . . , ni, . . . , nN) and allows the
value of i to be deterministically calculated based on the current value of
the set of genes N . Gene are updated simultaneously and synchronously.
Figure 9 is an example of a Boolean network.

Each function fi ∈ f is a boolean function. For example: i′ = fi(N) =
(¬i∨i)∧j∧h). The expression level of each gene is updated by the application
of its function.

An important distinction is drawn in [63] about the difference between es-
sential and fictitious genes for each function f ∈ F . A gene j is fictitious with
respect to the gene i iff fi(. . . , nj−1, 1, nj+1, . . .) = fi(. . . , nj−1, 0, nj+1, . . .)
and essential otherwise.

For example, i is a fictitious gene with respect to itself in figure 9. Only
the essential genes matter when determining i. Because genetic regulatory
networks are approximately sparse (i.e. kin ≪ N) the number of essential
genes for i, denoted Ei, is much less than N .

Recent research[10; 12] investigates the theoretical properties of fuzzy
logic networks (FLN) and infers biological regulatory networks using time
series expression data. FLN are a generalisation of Boolean networks to
fuzzy logic.
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fh
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i ∨ j ∧ h

Figure 9: A Boolean network. For clarity each f ∈ F has been made into
a node. n and n′ are connected via these function nodes. Normally the
functions are implicit in the edges amongst N .

5.2.2 Previous Research

This subsubsection considers the REVEAL algorithm first. It was developed
by Liang, Fuhrman and Somogyi and is described in [67].

It uses transition pairs, i.e. pairs of gene expression levels. These pairs
need to come from a time series database. The algorithm uses mutual in-
formation (described in subsection 5.1) and the regulatory relationships for
each gene are inferred iteratively.

The mutual information for each i′ given each j is calculated first and the
regulatory function for i is determined. If transitions for some genes are still
incorrectly predicted by these functions then the mutual information for each
i′ given every pair of genes j, h is calculated and the process is iterated with
increasing tuple size until the best regulatory function for each gene given up
to kin others is determined. The algorithm rapidly becomes intractable for
large kin; however, approximately 100 samples were all that were necessary
when N = 50 and the number of possible states was therefore 250 ≈ 1015. As
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the algorithm was only tested on simulated data it is difficult to evaluate its
performance.

Silvescu and Honavar’s methodology[102] could be considered an exten-
sion of the the work done by Liang et al.. Like [67], the methodology relies
on time series data, but it has been extended to use temporal Boolean net-
works. This methodology was developed to deal with delays in the regulatory
network. Such a delay may come about for any number of reasons, including
missing intermediary genes and spatial or biochemical delays between tran-
scription and regulation. An example of a temporal Boolean network has
been presented in figure 10.
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h′
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Figure 10: A temporal Boolean network. Presentation is as in figure 9, but
delays are shown in brackets between genes and functions. The default delay
if no annotation is present is assumed to be 0.

A temporal Boolean network is very similar to a normal Boolean network
except that the functions f ∈ F can refer to past gene expression levels.
Rather than depending just on Nt to infer Nt+1, parameters to fi can be
annotated with an integer temporal delay.
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For example: i′ = fi(G) = (¬i0∨ i0)∧j2∧h0), where i0 refers to the value
of i at time t and more generally ix refers to the value of i at time t − x.
Inference of temporal Boolean networks can be achieved by reformulating
the problem as one of decision tree inference and inferring a decision tree for
each gene. However, like [67] the method has only been applied to simulated
data. Consequently, it’s difficult to evaluate its performance.

The final example of Boolean network inference which we consider is
described in [63]. Here, the authors considered how to take into account
the often contradictory and inconsistent results which are obtained from
microarray data. The aim of the approach is to find not just one function fi

but a set of functions Fi for each gene i. Each member of Fi may predict the
wrong value for i based on the values of N . In those situations though other
f ∈ Fi may predict correctly.

Lähdesmäki et al. developed a methodology which would find all func-
tions which made less than ǫ errors on the available data. Like the work
carried out in [67] and [102] this research used time series data, but instead
of simulating the data the research used data on 799 genes regulated by the
cellular cycle. The search for all consistent or all best-fit functions could
not be done efficiently and the regulatory functions of only five genes were
identified.

As these examples have shown, Boolean networks have a number of dis-
advantages. Compared to the underlying biology, they create such a simple
model that it can only give a broad overview of the regulatory network.
In addition, despite a simple model, the algorithms are usually intractable.
Typically, they are polynomial or worse in N and exponential in kmax

in . Fur-
thermore, as kmax

in increases you need greater quantities of data to avoid
overfitting.

However, the apparent reliance on time series data is deceptive, as al-
gorithms which perform inference from steady state data are also possible.
Time series data is expected to become more available with time. The sim-
plicity of the functional representation is a strength as well as a weakness.
Although the f have very low fidelity it means that they are more robust
in the face of noisy data. Attractor basin analysis of Boolean networks can
help provide a better understanding of the stability and causes of equilibrium
gene expression levels. Such equilibria are often representative of particular
cellular phenotypes[17].

Finally and briefly, this subsubsection briefly discusses a general logical
formalism that relaxes some of the constraints facing Boolean networks. This
formalism was developed by Thomas and others[111] in the 1990’s and is
summarised in [17].

Rather than allowing each gene to have only two possible values (0 or 1),
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Table 1: A transition table. Such a table represents F for some GRN by enu-
merating all possible the result of all 2N network states. This table represents
the graph shown in figure 9
.

i j h i′ j′ h′

1 1 1 1 1 1
1 1 0 0 0 0
1 0 1 0 0 1
1 0 0 0 0 0
0 1 1 1 1 1
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0

each gene can have as many linearly ordered values (σ
(1)
i < σ

(2)
i < . . . < σ

(k)
i )

as there are genes it regulates. Just as in temporal Boolean networks[102],
edges of the network are labeled with an integer. An edge from i to fj and
labeled with +2 means that i excites j when i is expressed at its second or
higher level. Conversely a value of -2 means that i inhibits j whenever it is
expressed at its second or higher level.

Although this approach has proven useful on several small regulatory
networks[17], and it is clear that it can identify several kinds of regulatory
function, it also serves as another example of the problems with tractability
which plague GRN inference.

5.3 Differential Equations and Other Formalisms

Approaches based on differential equations predict very detailed regulatory
functions. This is both a strength and a weakness. It is a strength because
the resulting model is more complete. It is a weakness because it increases
the complexity of the inference and there may not be enough data to reliably
infer such a detailed model. In addition, the existence of a link and the
precise nature of the regulatory function are two inferential steps and the
regulatory function can be easily inferred given knowledge of the link.

Because there are so many different ways of doing this kind of high-
fidelity inference this subsection just presents a number of examples, as in
subsection 4.4.

The NIR (Network Inference via multiple Regression) algorithm is sum-
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marised in [24; 34]. It uses gene perturbations to infer ordinary differential
equations (ODEs).

The rate of change for each gene is assumed to fit to an equation of

the form δ ~N
δt

= A ~N · ~U , where ~N is a vector of the current gene expression

values, ~U are the perturbations and A is a matrix representing the regulatory
relationships. A is found using multiple regression on the results of a number
of perturbations and the method has been applied to networks containing
approximately 20 genes. The authors are working to extend their method to
infer the functional network that makes up the E. coli DNA damage response
and repair mechanisms[34].

D’haeseleer and Furhman[22] used time series data to infer sets of ODEs,
one per gene. Because the underlying processes are discrete and the data
is noisy, these ODEs are only approximations. This is acknowledged by the
authors.

To address the problem of noise and to increase the quantity of data
which could be used for network inference, the log expression levels were
cubicly interpolated. More importantly, data from different tissue types and
phenotypic situations was combined. This meant that the expression data
gave a more complete picture of the network.

Furthermore, the research also modeled the influence of external factors
by injecting kainic acid into the developing central nervous systems. Kainic
acid is “a glutamatergic agonist which causes seizures, localised cell death,
and [which] severely disrupts the normal gene expression patterns”[22, p2].
The robustness of the inferred networks was checked by artificially construct-
ing new data sets through random Gaussian perturbations of the expression
levels.

Kyoda et al. [61] uses perturbations of steady state data more directly
in the network inference and provides another example of network model
inference as ODE inference.

Their algorithm uses a modified version of the Floyd-Warshall algorithm[27]
to infer the most parsimonious network, one ODE for each gene. Although
noise and redundancy may make this incorrect it is the most correct network
which can be inferred with the training data. Different inferred networks can
fit the data equally well, because GRN are cyclic[61].

Kyoda et al.’s method is substantially more efficient than many others
(it is O(N3)) and is not bound by arbitrary kmax

in . This is a consequence of
the fact that it uses perturbation data, which is much more informative than
expression data, as discussed in subsection 4.2.

Tegner et al. [110] develop a similar algorithm which uses perturbations
to infer ODEs. This methodology was successfully used to infer linear and
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non-linear networks, even though the inferred model is linear. This is be-
cause non-linear functions can appear to be linear if the perturbations are
small enough. Perturbations were actively selected based on which would be
most informative given past inference and perturbations. This is a different
procedure than the standard, which is to generate the data and then infer
from it sequentially. Actively selecting perturbations minimises the number
of experiments necessary.

The effect of changes in kmax
in and N on algorithmic efficiency and the

sample complexity[80] were described. It was found that O(kmax
in · ǫ/∆ logN)

experiments were necessary, where ǫ is the measurement error and ∆ is the
magnitude of the change in the average expression level of all genes. Perturb-
ing multiple genes at once significantly reduced the number of experiments.
This is because if only one gene is perturbed then very few genes show a
change in their expression level.

Toh and Horimoto[114] used graphical Gaussian models (GGM) to find
conditional dependencies between the clusters of genes found when the hier-
archical clustering algorithm described in [47] was applied. As the clustering
eliminated linear dependencies amongst the genes the resulting conditional
dependencies were assumed to indicate inter-module regulation and not just
modular co-expression.

Dependencies amongst the 34 clusters were found using steady state gene
expression data, and the results compared with the BN inference in [33].
As in [33], because the raw results are conditional dependencies, they are
undirected. Regulatory direction was manually annotated using other sources
of information.

5.4 Bayesian Approaches

Bayesian probability is the application of logical reasoning about probabilities
to model inference. It is based on the argument in table 2.

Table 2: The justification of Bayesian statistics. ’,’ denotes conjunction,
Capitalised letters are random variables. Specifically, D denotes data and H
denotes hypotheses.

p(A, B) = p(A|B)p(B) = p(B|A)p(B) by definition
∴ p(D, H) = p(D|H)p(H) = p(H|D)p(D) by substitution

∴ p(H|D) = p(D|H)p(H)
p(D)

2

This means that we can determine the probability of a hypothesis (given
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the data) if we can work out the probability of the data given the hypothesis
(easy), the probability of the data given all possible hypotheses (harder,
but certainly possible in principle) and given the prior possibility of the
hypothesis (easy). Although the idea of a hypothesis having a probability
may seem counterintuitive, the Cox axioms[70] have shown that equating
uncertainty with knowledge is valid.

5.4.1 Bayesian Networks

The idea that explanatory hypotheses can have probabilities in the same way
that random variables do means that causal explanations are factorisations
of a joint distribution. For example:

• the grass is wet either because it rained or because the sprinkler was
on

entails the factorised joint distribution

p(W, R, S) = p(R)p(S)p(W |R, S)

This structure is formally represented as G = 〈η, θ〉. η represents the
structure of the graph, one variable for each gene and an unannotated edge
to it from each gene it is regulated by. θ represents the parameters to the
graph: the conditional probability distributions of each gene. A gene which
is conditionally independent of all other genes must still have a distribution
pi ∈ θ. Such a distribution is called a prior distribution.

The lack of an edge from i to j entails that, given j’s Markov blanket,
i and j are independent. This conditional independence can be expressed
notationally as: p(j|i, mb(j)) = p(j|mb(j)), where mb(j) denotes the Markov
blanket of j. The Markov blanket[70] consists of a variable’s parents, children
and children’s parents as defined by the edges in and out of the variables.
See figure 11 for an example.

Using this definition, we describe some of the properties of Bayesian statis-
tics and BN. Following that we discuss the ways in which BNs have been used
as models for GRN inference and some of the issues which have arisen.

There are three basic properties of a BN which need to be considered
immediately. The first of these is the fact that a BN must be an acyclic
graph[24]. This is a problem because (as described in section 2) auto-
regulation and negative feedback are common in GRN[112]. The reason
why BN must be acyclic is that a cyclic BN cannot be factorised.

Consider the BN shown in figure 12. The value of A depends on the value
of B, the value of B depends on the value of C, and the value of C depends
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Figure 11: A Bayesian network and Markov blanket. Genes in the Markov
blanket of n5 are shown with a grey background. Priors for n1..3 are denoted
by incoming parentless edges.

A

B C

Figure 12: A cyclic Bayesian network. Impossible to factorise.

on the value of A. Equation 4 shows what happens when we try to show the
factorisation of p(A, B, C) implied by this graph, recursively expanding the
distributions of the parents (pa) of each variable.
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p(A, B, C) = p(A|pa(A))p(pa(A))
= p(A|B)p(B|pa(B))p(pa(B))
= p(A|B)p(B|C)p(C|pa(C))p(pa(C))
= p(A|B)p(B|C)p(C|A)p(A|pa(A))p(pa(A))

And so on. . .

(4)

The second property is that a BN is a different kind of model than an ODE
or Boolean model. A BN does not provide a definite (if possibly incorrect)
description of the functional regulatory relationships between genes. Instead
it provides a probabilistic indication in the form of θ.

Such a model does not claim that if i is high then j will be low. Rather
the model makes the claim that if i ∈ High then there is a 46% chance that
j ∈ Low, a 23% chance that j ∈ Med and a 31% chance that j ∈ High.
Such a model is more difficult to interpret but accurately reflects uncertainty
in the data.

A third important property of Bayesian networks stems from their under-
lying statistical nature. Recall that p(A|B)p(B) = p(B|A)p(A). This means
that if that you only have observations of i and j it is impossible to infer
whether i regulates j or j regulates i. The output of a Bayesian inference
algorithm is not a single BN. Rather, they infer an arbitrary member of an
equivalence class. Each network in an equivalence class makes the same pre-
dictions on the training data as all other networks in that equivalence class.
In this way Bayesian networks are very similar to the GGM inferred in [114].

However, one of the reasons BNs are so widely used is that in certain
situations you can infer causal relationships. By using perturbations, direc-
tion can be added to conditional dependencies. The formal details of this are
described in [90]. Judea Pearl has done substantial work in this area and is
considered by many to be the leading expert on causal inference.

In summary, BNs are simultaneously attractive (causal inference and a
principled way of handling noise and uncertainty) and unattractive (acyclic
only). Although work has been carried out with some success despite the
acyclic requirement (e.g. [33; 52]) there is an elegant and effective solution
to it: dynamic Bayesian networks [31; 85].

Friedman et al. [31] also report a number of advantages that dynamic
Bayesian networks (DBNs) have over alternate representations such as Kalman
filters and hidden Markov models (HMM).

A DBN is a Bayesian network which has been temporally “unrolled”.
Typically we view variables as entities whose value changes over time. If we
view them as constant, as they are in HMM, then we should represent i at t
and i at t + 1 with two different variables, say it and it+1.
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If we assume that conditional dependencies cannot point backwards or
“sideways” in time this means that the graph must be acyclic, even if i
auto-regulates. A visual illustration of this is provided in figure 13.

Because we assume that the conditional dependencies are constant over
time the BN also only needs to be unrolled for one time step. As Fried-
man et al. [31] point out, this also assumes that the prior distribution over
the network is the same as the temporal distribution. Although this is not
necessarily the case it is a reasonable assumption to make when inferring a
stationary regulatory network.

i

j h i

i’

j’

j h’

h

(a) A cyclic BN (b) An equivalent, acyclic, DBN

Figure 13: A cyclic BN and an equivalent, acyclic, DBN. The prior
network[31] is not shown in this diagram.

Many other approaches, such as D’haeseleer and Fuhrman’s linear model[22],
are special cases of DBN. This means that these other approaches can be no
more effective than DBN and may be more efficient only by making assump-
tions which reduce their generality or accuracy some of the time.

5.4.2 Learning Bayesian Networks

The problem of learning a Bayesian network can be divided into two sub-
problems. The simpler problem is learning θ, the conditional distributions of
the BN given its structure. This can be done with either full or incomplete
training data.

The second and much more difficult problem is inference of the graph’s
structure, η, as well as of θ. This can also be done with either full or incom-
plete training data.
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Bayesian network inference is a large research field, and comprehensively
summarising it here is impossible. For such a summary we refer interested
readers to [44; 84] and [31; 38]. This subsubsection focuses on just a few
algorithms. It considers the case of θ inference first, before showing how
many of the same algorithms can be applied to structural inference.

θ Inference
The simplest and most intuitive way of performing θ inference is just to
count up and categorise the examples. This is a valid approach in the case
of complete data. The result of such a count is a maximum likelihood (ML)
estimate. The desired result is the maximum a posteriori (MAP), which
incorporates any prior information. When the prior is uniform then ML =
MAP. A uniform prior is common as it also maximises the informativeness
of the data.

One advantage of BNs is that the likelihood of the graph is decomposable:
the likelihood of any particular set of gene expression levels is just the product
of each gene’s likelihood. For pragmatic reasons the sums of log-likelihoods
are often used. Decomposability is an advantage for online learning (it allows
conditional distributions to be efficiently updated). It also makes calculation
of the distributions from data fast in the case of offline learning.

To avoid zero-entries in the conditional probability distributions pseudo-
counts are often used. Pseudocounts were invented by Laplace[65] for the
sunrise problem3 and they can be considered an ad hoc adjustment of the
prior distribution. These are invented data values, normally 1 for each entry
in each conditional distribution. The effect of these is to remove 0 values
(and 1 values) from the conditional probability distributions. This is impor-
tant because p(i|j) = 0 (or p(i|j) = 1) implies certainty, which is impossible
and inferentially invalid with finite data.

Although pseudocounts are invalid if there is missing data, we speculate
that if the available data is nearly complete then using pseudocounts could
be accurate enough.

If the data is too incomplete for counts of the data to be used to esti-
mate the ML θ there is a range of algorithms which can be used. These
include greedy hill climbing with random restarts[95], the EM algorithm[19],
simulated annealing[78] and Markov Chain Monte Carlo[43] (MCMC).

Each of these is a search method which takes a possible solution and
iteratively improves it. Given infinite time each is guaranteed to return an
optimal result. More practically, although still inefficient in comparison to
the use of counts, each of the algorithms can also be expected to find near-

3
Viz: What is the probability that the sun will rise tomorrow?
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optimal results.

The independence and decomposability of the conditional distributions is
a crucial element in the efficiency of the algorithm, as it makes calculation
of L, the likelihood, much faster.

Hill Climbing with Random Restarts
The hill climbing with random restarts algorithm is summarised in algorithm
figure 2. When this algorithm is being used the gradient of the current
solution needs to be numerically or analytically calculated. With sufficient
restarts hill climbing with random restarts finds the maximum likelihood
parameters, θML.

Algorithm 2: The hill climbing algorithm with random restarts. L
denotes the likelihood function and sθ is used to denote the slope at
some θ. δ is a value used to indicate how far a candidate solution should
be from the current solution. Typically this value is dynamically shrunk
when sθ is steep.
Input:
N ×M , the data to model
Output:
θbest, the best solution found
begin

θbest ←− −∞
while search time remains do

θcurr ←− random solution
if L(θcurr) > L(θbest) then θbest ←− θcurr

sθ ←− grad(θcurr)
θcand ←− θcurr + δsθ

while L(θcand) > L(θcurr) do
θcurr ←− θcand

if L(θcurr) > L(θbest) then θbest ←− θcurr

sθ ←− grad(θcurr)
θcand ←− θcurr + δsθ

return θbest

end

The EM Algorithm
Another algorithm is the expectation maximisation (EM) algorithm[19]. From
an initial guess of θ0 and the observed gene expression levels we can calcu-
late Ni, the conditional probability distribution of the gene expression levels.
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Holding these distributions constant and assuming that they are correct, θi+1

is set so that Ni is the maximum likelihood gene expression levels.
This process is repeated and θ will converge on a local maxima. Random

restarts or using simulated annealing (described next) to help determine θi+1

means that the algorithm can also find θML.
Compared to hill climbing, the real strength of the EM algorithm lies in

the way in which it tractably incorporates the likely values of missing data
into its search. This is particularly important for accuracy if several inter-
related variables are simultaneously missing. The EM algorithm is outlined
in algorithm figure 3.

Algorithm 3: The EM algorithm[19]. pN is a function that returns the
conditional distribution of the genes, Ni, given the current parameters θ
and the observed training data N×M . MLN is a function that returns
the θ which maximises the likelihood of some state of the genes, N .
θbest is the best set of parameters the search has found. If simulated
annealing or random restarts are used this will be θML.
Input:
N ×M , the data to use in the inference
η, the edges of the graph G
Output:
G = 〈η, θbest〉, the maximum likelihood BN given η.
begin

θ0 ←− initial guess, e.g. based on counts from noisy data
repeat

Ni+1 ←− pN(θi, N ×M)
θi+1 ←−MLN (Ni+1)

until p(θi) = p(θi−1)
return θbest

end

Simulated Annealing
Simulated annealing [78] is a generalised Monte Carlo method which was
inspired by the process of annealing metal. A Monte Carlo method is an
iterative algorithm which is non-deterministic in its iterations. Metal is an-
nealed by heating it to a very high temperature and then slowly cooling it.
The resulting metal has a maximally strong structure.

Simulated annealing (SA) is very similar to hill climbing, except that the
direction to travel in (grad(θ) in greedy hill climbing) and δ are sampled
from a probability distribution for each transition. Transitions to better
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states are always accepted, whilst transitions to worse states are accepted
with a probability p, which is lower for transitions to much worse states, and
which decreases from transition to transition.

In this way simulated annealing is likely to explore a much wider part of
the search space at the early stage of the search, but eventually it optimises
greedily as hill climbing does[29]. If proposed transitions are compared to
current positions based on their likelihood, simulated annealing finds θML.
If a prior is included in the calculations and the algorithm is changed to
optimise for the posterior rather than the likelihood then it finds the MAP
solution (θMAP ) instead.

η Inference
The three search algorithms just discussed are naturally applicable to θ infer-
ence, but each of them can be used for η inference as well. For example, the
EM algorithm has been generalised by Friedman et al.[30; 31]. Although we
will not describe structural EM (SEM) in detail, it is very similar to standard
EM. The main difference is in the ML step. As well as changing θ in this
step so that the current Ni is maximally likely we also use the distribution
Ni to search over the η-space.

Integrating over the Posterior
One common weakness of these algorithms is that they all find a single solu-
tion, either the ML or MAP. The MAP is normally considered to be a better
solution than the ML, but it is better still to integrate over the posterior
distribution[42]. This is because the MAP solution may be only one of sev-
eral equi-probable solutions. Ignoring these other solutions when calculating
a result means that there is a greater chance it will be in error.

Analytically integrating the posterior distribution is usually impossible.
As a result we must do so numerically. Let γ be a sample from the posterior
distribution of θ, let Γ be the result of the integration and let N ×M be
the data. A common way of integrating over a probability distribution is
equation 5.

Γ =
1

N

N
∑

i=1

γ ∼ p(θ|N ×M, η) (5)

To draw samples from the posterior distribution it must either be explic-
itly calculated and then sampled from, or it must be implicitly calculated
and sampled from. Markov chain Monte Carlo (MCMC) algorithms[69] are
the most common way of doing this, and they do it implicitly. The authors
know of no general methods for explicitly calculating and sampling from an
arbitrary posterior distribution.
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Markov Chain Monte Carlo Algorithms
Common MCMC algorithms include the Metropolis-Hastings algorithm[43]
and Gibbs samplings[35]. Other, much more intricate algorithms (such as
Hybrid Monte Carlo[86]) have also been developed.

An MCMC algorithm works as follows. Starting from an initial state, an
MCMC algorithm explores the space of possible solutions through a series of
transitions selected from a probability distribution. This is very similar to
simulated annealing, which is a generalised Monte Carlo method.

When using either MCMC or SA, each transition must have the Markov
property, so that they make up a Markov chain. The probability of a tran-
sition which has the Markov property is independent of all previous states.
I.e. p(γt+1|γt) = p(γt+1|γt, γt−1, . . .). Higher order Markov chains can also
be defined. An s’th order Markov chain is independent of all states before
γt−s. Markov chains are a type of Bayesian network and are very similar to
dynamic Bayesian networks.

Because of the wide range of MCMC algorithms it is difficult to give an
informative list of invariant properties. The next subsubsubsection describes
the Metropolis-Hastings algorithm and we use that as an example instead.

Metropolis-Hastings MCMC
Assume we have a solution γt and that we can draw another solution, γt+1,
using a proposal distribution q. Assume also that we can calculate the pos-
terior probability of any solution γ (this is usually much easier than drawing
samples from the posterior). The proposed transition to γt+1 is accepted if
and only if the acceptance function in equation 6 is true.

u <
p(γt+1)q(γt|γt+1)

p(γt)q(γt+1|γt)
, where u ∼ U(0, 1) (6)

If γt+1 is a better solution than γt then the RHS of the equation will be
greater than 1 and so the transition will always be accepted. Other MCMC
methods are similar. Often they only differ in how they reject or accept
samples or in how they generate them. For example, Metropolis-Hastings
explores the search space completely at random, with a bias towards high
probability regions. Other methods such as Hybrid Monte Carlo[86] tend to
take larger steps and explore low probability areas more.

Many MCMC methods (such as Metropolis-Hastings and Gibbs sam-
pling) work most efficiently if there are no extreme probabilities in the con-
ditional distributions. If there are then convergence to the posterior may
take longer[38]. The normal distribution N(θ, σ2) is frequently used as the
proposal distribution q. It is easy to sample from and can be worked with
analytically.
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So far we have not shown how MCMC can be used to integrate over the
posterior. In fact, it would seem that it cannot and that MCMC just finds
the MAP and then probabilistically wanders away from it.

However the probability of an MCMC algorithm making a particular tran-
sition is constant from iteration to iteration, and the acceptance function
guarantees that the sequence of states converges to the posterior distribution
over time. This means MCMC can be used to take samples from the poste-
rior, by giving it time to converge and by leaving a large enough number of
proposed transitions between successive samples to ensure that xt ⊥⊥ xt+1.

The number of transitions needed to converge depends on the cragginess
and dimensionality of the search space. Considering 105 proposed transitions
is usually sufficient to “burn in” to the posterior, and having 104 proposed
transitions between samples usually means that they are independent. Con-
vergence and independence can be checked by re-running the MCMC algo-
rithm. If the results are significantly different from run-to-run it indicates
that one or both of the conditions was not met.

Smarter MCMC algorithms can reduce the number of transitions that
are needed. In addition (and this is another key advantage of MCMC algo-
rithms) as the dimensionality of the problem grows the number of samples
that needs to be taken is constant[70]. Although it may take more transitions
to meet the convergence and independence criteria the impact of the curse
of dimensionality [21; 24] on MCMC is limited in comparison to the impact
on most search algorithms.

5.4.3 Scoring Bayesian Networks

One important aspect of structural inference is the comparison of two graphs
so that the better one can be chosen. Without this there is no way of search-
ing over graphs.

In this subsection G refers to the set of all graphs and G′ = 〈η′, θ′〉 ∈ G
refers to one particular graph. η, η′, θ and θ′ are defined similarly here.

The simplest scoring measure is the marginalised likelihood of the data,
given the graph: p(N ×M |G′)p(G′). This scoring measure is decomposable,
as shown in equation 7. The log-sum is often used for pragmatic reasons.

However, the marginalised likelihood may overfit the data. This is be-
cause any edge which improves the fit will be added, and so the measure
tends to make the graph too dense.

p(N ×M |G′) =
∏

m∈M

∏

n∈N

p(n×m|Nn ×m, G′) (7)
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A complexity penalty can be introduced if graphs are scored by their
posterior probability, the Bayesian Scoring Metric[123]. Equation 8:

BSM(G′, N ×M) = log p(G′|N ×M)

= log p(N ×M |G′) + log p(G′)− log p(N ×M)

(8)

Because calculating this requires specifying a prior distribution over the
G-space, overly complex graphs can be automatically penalised. This can
be done by using a non-uniform prior, or one can just rely on the fact that
more complex graphs have more free parameters in θ. Because p(

∑

θ|η θ) = 1,
the probability of any particular θ given a complex η will be less. In effect,
the probability distribution for θ is “spread out” over a larger space. [28]
considers the implications of this in more detail.

For multinomial BN this scoring measure is commonly referred to as the
BDe (Bayesian Dirichlet equivalent). The marginal probability of the data,
p(N ×M), is the probability of the data over all possible graphs. Because
there are so many possible graphs this usually needs to be calculated using
a Monte Carlo search method. The expansion of the marginal probability is
shown in equation 9.

p(N ×M) =
∑

G′∈G

p(N ×M, G′)

=
∑

G′∈G

p(N ×M |G′)p(G′)

=
∑

η′∈η

∑

θ′∈θ

p(N ×M |θ′, η′)p(θ′|η′)

(9)

Because Monte Carlo methods are time consuming, the posterior is often
approximated using a measure called the Bayesian Information Criterion[96]
(BIC). As [123] outlines, the BIC is an asymptotic approximation to the pos-
terior and is faster than the BDe to calculate. However the BDe substantially
outperforms the BIC when the training data is limited[124]. This is because
the BIC over penalises complexity relative to the BDe when training data is
limited[44]. Training data for GRN inference is typically very limited.

The BIC is shown in equation 10, where θ′ is the maximum likelihood θ,
given N×M and η′, and |θ′| is the number of free parameters in θ′. If greater
accuracy was required the BIC could be extended to integrate over all θ.
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log p(N ×M |η′) ≈ BIC(N ×M, G) = log p(N ×M |η′, θ′)−
|θ′|

2
logN (10)

A number of other measures exist as well (e.g. the minimum descrip-
tion length[37; 64], the Local Criterion[44], the Bayesian Nonparametric het-
eroscedastic Regression Criteria (BNRC)[48; 49] and application of compu-
tational learning theory[15]). As with the BIC and the BDe, each of these
tries to balance a better fitting graph with complexity controls.

No scoring method is appropriate in all situations. In addition, identifying
different network structures may be crucial in order to get a representative
sample of the posterior[44]. The use of only one scoring metric is unlikely to
achieve this. Multi-classifiers[93] which use a range of scoring measures and
search methods may address this problem.

5.4.4 Previous Research

The most comprehensive program of research into GRN inference using Bayesian
networks to date has been carried out at Duke University by Jarvis, Smith,
Yu, Hartemink and others[52; 104; 105; 123; 124]. This subsubsection also
discusses some of the work done by Nir Friedman and others[31; 48; 85], who
used DBNs for GRN inference.

The Duke project developed methods to understand songbird singing.
GRN inference makes up only one part of the project. Another important
part is the neural activity in different regions of the songbird brain. This is
an epistatic problem which relates to temporal behaviour, and so time series
gene expression data was necessary. This data also needs to be synchronised
with neural activity in the songbird brain. As there is no way to collect
this data with current technology the methodology uses data simulated by
BrainSim and GeneSim, a pair of applications developed by Smith, Jarvis
and others[104; 123; 124].

Several birds, each with the same regulatory networks and gene expression
levels were simulated. BrainSim and GeneSim modeled the variables (genes,
regions of the brain, singing/not singing) in 1 minute increments. Excluding
regulation, expression levels were degraded back towards to a constitutive
level each time step.

Between 40–90% of the genes simulated were “distractors” and varied
their expression levels according to a normal distribution. The number of
genes simulated differed from experiment to experiment and was in the range
20–100 ([124] and [104], respectively). It was claimed that the simulated data
showed realistic regulatory time lags, and also between gene expression and
neural activity[104].
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Data for inference was sampled from the simulated data every 5 minutes.
This was based on the underlying processes. It takes approximately 5 minutes
for a gene to be transcribed, for the mRNA to be translated into a protein
and for the protein to get back to the nucleus to regulate other genes[104].

The data was preprocessed before being used. The extracted expression
and activity levels were continuous and a range of normalised discretisations
were trialled. Discretisation involves a careful balance between tractability
(a smaller number of values is always be more tractable) and accuracy.

In [124] 2, 3 and 4-bin discretisations were trialled. In addition discrete
versus fuzzy (hard versus soft) discretisations were also evaluated. 3-bin hard
discretisation performed best. The authors of the paper hypothesise that this
performed better than 4-bin discretisation because the latter spread the data
too thinly across the conditional distributions. 4-bin quartile-based hard
discretisation was used in [104]. We think this was because more data was
simulated for this earlier experiment, but are not certain.

There was no analysis of the differences between hard and soft discreti-
sations. This is surprising. On information theoretic grounds and counter to
their findings, we would expect the soft (fuzzy, continuous) approach to do
better than the hard[48] ([103]).

Data interpolation was used to maximise training data informativeness.
In particular, [124] found that linearly interpolating 5 data points between
each pair of samples drawn gave significantly better recovery and reduced
the number of false positive results.

[124] developed and made use of the influence score. This was applied to
each pair of connected nodes in the highest scoring graph. If i regulates j then
−1 < Iij < 1, where the sign indicates the excitatory or inhibitory nature
of the regulation and the magnitude gives some indication of the strength of
the regulatory effect. This is important as it makes a joint distribution more
comprehensible in biological terms.

The work done at Duke university has a number of weaknesses. The
first, discussed in [52], is that the search algorithms and scoring measures
(described in subsubsection 5.4.3) had problems finding convergent motifs.
Unless there were more than 5000 data points only one regulator for each
gene was found. It is also very difficult to evaluate the accuracy of the
NetworkInference algorithm on real data.

However the algorithm does reliably infer regulatory cycles and cascade
motifs. Topological aspects of the algorithm’s effectiveness are discussed in
more depth in [105]. Topological factors are also mentioned in [38].

Work done by Friedman et al. [31] has extended the BIC and BDe mea-
sures so that they can score graphs in the case of complete data. In addition
they have extended SEM so that it works with incomplete data. This makes
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it an important alternative to MCMC when doing structural GRN inference.
This methodology can also be applied to non-biological problems, such as
predicting agent behaviour.

Friedman and others have proposed a sparse candidate algorithm for gen-
eral BN inference[32]. This algorithm is optimised for problems in which
there are either a great many variables or a great many examples. By using
cues such as the mutual information of two variables the possible regula-
tors can be restricted to some subset (cand) of size |k| for each gene, where
kin ≪ N . These restrictions on which genes are possible regulators are then
used to guide network inference. Only a gene i ∈ candj may be a regulator
of j. Following each iteration the candidate sets are recalculated and the
algorithm repeats until convergence.

Murphy and Mian[85] discuss DBNs with continuous θ. So far our discus-
sion has only considered multinomial BN. In multinomial BN, each variable
has one of some finite number of states. We have briefly discussed ways of
discretising continuous data.

Alternately, each variable can be continuous and have a continuous condi-
tional probability distribution. Its value is determined by drawing a sample
from this distribution or by integrating over it. Continuous representations
maximise the amount of information that can be extracted from the data,
although they are also vulnerable to noise.

A common continuous distribution is a Gaussian, because it can be solved
analytically. Although an arbitrary distribution could, in theory, be used and
sampled from using MCMC, issues of tractability make this infeasible. These
issues are discussed in more detail in [85].

There is some debate about the relative tractability of discrete and con-
tinuous Bayesian networks. For example, Jarvis et al. [52, p974] explicitly
claim that continuous BNs are intractable and that discretising the data is
essential. However, Murphy and Mian [85, 5.1] assert that exact inference
in densely connected discrete BN is computationally intractable and must
be approximated. Other authors explain the complexity of hybrid Bayesian
networks, which combine continuous and multinomial variables[4; 89]. In any
case, Bayesian inference, regardless of the nature of θ, is NP-complete[13].

A range of search algorithms have been used in this research, and there
is no consensus. For example, [42] concluded that simulated annealing found
better graphs than either greedy hill climbing or Metropolis-Hastings MCMC.
On the other hand, [124] argued that greedy hill climbing with restarts was
the most efficient and effective search method over graphs. Others, such
as [48], used non-parametric regression. Because each algorithm is better
for subtly different problems this variation is unsurprising, and [38, sections
3.2.1, 4.2.2] has some suggestions on how to select an algorithm.
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6 Statistical and Computational Considera-

tions

As has been described above, the data which can be used for GRN inference
is noisy and often has missing values. Furthermore, microbiological systems
are intrinsically stochastic. Although stochastic models exist[17] these are
intractable for almost all epistatic and GRN inference problems.

This section discusses the problems of tractability (subsection 6.1) for
continuous models. It also describes a particular statistical problem with
GRN inference from microarrays (subsection 6.2).

6.1 Efficiency and Tractability

Although it is very rarely explicitly mentioned, careful reading of the research
described in subsections 5.2–5.4 reveals that almost all of the algorithms
described above must strongly limit N , the number of genes. Most must also
strongly limit kmax

in , the maximum fan-in factor of any one gene.
kmax

in -unbounded network inference is almost always4 O(Nk) = O(NN)
or worse. This is true even of the simplest representations, such as Boolean
networks[63]. Bayesian network inference is NP-hard, due to cycles in the
undirected graph[13; 110]. Furthermore, DBN inference is even harder than
BN inference[85].

The magnitude of the efficiency problem becomes clear when we consider
the number of genes in S. cerevisiae (approximately 6,265) and compare it
to the size of the inferred networks. See table 3 for examples. What this
table illustrates is that improvements in hardware technology over the last 9
years have not led to improvement in either N or kmax

in . This is because the
algorithmic complexity grows more quickly than our technology improves.

The two exceptions to this trend are informative. The clustering work
carried out by Toh and Horimoto[114] illustrates one way in which large
numbers of genes can be considered.

An alternate approach can be seen in [61]. By using perturbation data and
assuming that changes are a result of the perturbations, a polynomial time
algorithm independent of kmax

in based on Warshall’s algorithm (as described
in subsection 5.3) has been developed.

Although not tested on N > 100 the method nonetheless shows good
recovery of data for kin ≤ 5. These works show how preprocessing and the
full use of data can maximise the efficiency and performance of the algorithm.

4[61] was better, but it used an interactive style of learning that is not practical with
current biochemical technology.
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Table 3: GRN algorithmic efficiency against the number of genes N . Most
of these results also require kmax

in ≤ 3. [63] found all explanatory Boolean
functions with ǫ . 5 for the genes it solved for.

Research Citations Maximum N

[67] (1998) 50
[74] (1998) Unspecifiedly “small”
[118] (2001) ≈ 100
[110] (2003) ≈ 10–40
[63] (2003) 5
[104; 124] (2002–2004) ≈ 20–100

[9] (2004) 100, also kin = 10
[24] (2006) ≈ 20

A similar approach which also uses perturbation data and with N = 100,
kin = 10 is discussed in [9].

Much of the time though perturbation data is unavailable. It is surprising
that there appears to have been no research done on combining separately
inferred graphs together, and that there is so little research which uses clus-
tering to reduce the dimensionality of the problems. This would help address
the problems of dimensionality.

6.2 Microarrays and Inference

This subsection very briefly summarises a problem with inference from mi-
croarrays and analyses the consequences. [14] is the original presentation.

The problem is as follows:

• Expression levels obtained from microarrays are the summed expression
levels of 103 < x < 106 cells.

• Except in limited circumstances, summed conditional dependencies can
be different from individual conditional dependencies.

The summed conditional dependencies are identical to the conditional
dependencies of the summands when the regulatory graph is singly connected
(i.e. i←− j ←− h, but not i −→ j ←− h). Similarly, if the noise is Gaussian
and the regulatory relationships are all linear then the factorisation of the
sum is identical with the factorisation of the summands.
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Since neither of these conditions hold in GRN, the authors of [14] suggest
that the apparently successful results of machine learning using sums of gene
expression levels may be coincidental.

However, since the article was published substantially many more results
have been biologically verified. While this does not indicate that Chu et al.
are wrong, it does suggest that the conditional dependencies of the sum and
the summands are nearly the same for GRN.

This in turn suggests that the extra uncertainty entailed by the loss of this
guarantee has no substantial impact on the inference which can be carried
out. It is important to remember the extent to which noise in the data
already blurs any existing conditional dependencies, and the extent to which
inferential methods are able to succeed despite this.

7 A Rough Map of the Field

This section presents a rough visual categorisation of GRN research. We
have excluded results which just cluster the genes into modules but which
do not predict general regulatory relationships.

Table 4: A visual categorisation of GRN research. Columns denote kinds
of data (sometimes simulated) which can be used and rows denote types of
model. The GRN inference in [92] was secondary, and that [82; 94] discuss
epistatic inference. [98] also cites some work which uses phylogenetic data
and ChIP assays. [42] and [41] used equilibrium microarray data as well.

ODE etc. Boolean BN Neural

Time series [22; 91; 119] [63; 67; 102] [33; 52; 85; 126] [118]
Equilib. [97; 114] [48]
Perturb. [9; 24; 34; 61; 110] [125] [82; 94]
Phylo. [92]

Chem./Loc. [41] [42]

8 Conclusion and Directions

Research in GRN inference and epistatic analysis spans an enormous range
of methods, fields, technologies and approaches. New technologies are being
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continuously developed and methods from other fields are being used in new
ways. Nonetheless the problem of network inference remains open, and there
appear to be several fruitful avenues for new research. These include:

• Incorporating cluster information into more detailed GRN inference.

• Combining separately learnt networks. Bayesian networks seem to be
an ideal representation to use in this case. There does not appear to
be any research on this issue to date. Considerations include:

– What do we do in the case of disagreement between two or more
inferred models?

– How do we combine different inferred regulatory functions from
two or more models?

– What does agreement between two models mean for the posterior
distribution?

– What does it mean if two models agree but a third disagrees?

– Is there a principled way of combining models inferred using dif-
ferent data sets?

In related research, inferred networks have been compared with net-
works manually assembled from the primary literature [45].

• Gathering even more information from perturbation data, as [61] has
done.

• Using multi-classifiers[93] to maximise the value of the data or to com-
bine of several independently learnt networks.

• Incorporation of fuzzy techniques and clustering to address noise and
the curse of dimensionality.
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