From Processor
Verification Upwards

Three Research Vignettes
in Memory of Mike Gordon

Oxford, July 2018

Speaker: Magnus Myreen
Covering years: 2005-2014

Meeting Mike for the first time 2005

Also met: Hasan Amjad, Anthony Fox, Juliano lyoda

Mike: | suggest you start with

A COMPUTATIONAL LOGIC

ACL2:

APPLICATIVE COMMON LISP

Later: try proving some crypto-like
code, e.g. bignum arithmetic

Tea at 4pm every day

a pot of tea, a box full of biscuits and a tray of small change

Often there:

Mike Gordon, Larry
Paulsson, Anthony Fox,
Thomas Tuerk, Scott Owens,

Aaron Coble, Tjark Weber,
Peter Sewell, Joe Hurd, ...

but also visitors:

Warren Hunt,
Anna Slobodova,
Kristin Yvonne Rozier, ...

ARMS6 verification in HOL (Anthony Fox)

2003: End of the first project.
The initial proof was complete
but it lacked some features.

Late 2005: End of ARM6
verification work.The final
version included features
that were omitted in the first
proof, e.g. multiplication,
block data transfers,
co-processor instructions
and all interrupts/exceptions.

Datapath:
(not control) . ..

Pipeline illustration:

b: swp
a: sub

f: cmp

e: mvn
a: b [F]

c: add

b: swp |F
: add [F o]
Fo]
D

b: swp
a: sub

Can Anthony’s ARM model be used!?

His tooling produced theorems that describe ARM,
e.g.ARM instruction add r0,r0,r0 is described by:

|- (ARM_READ_MEM ((31 >< 2) (ARM_READ REG 15w state)) state

r

.

encodinge of 0xE0800000w) A —state.undefined =
5 (NEXT_ARM_MMU cp state =

add r0,r0,r0 ARM_WRITE_REG 15w (ARM_READ REG 15w state + 4w)

(ARM_WRITE_REG Ow
(ARM_READ_REG Ow state + ARM_READ REG Ow state) state))

My attempt

An ARM program for calculating the factorial of a positive number:

MOV b, #1 ;b =1
L: MUL b, a, b ; b :=a X b
SUBS a, a, #1 ; a :=a -1
BNE L ; jump to L if a # O

A classical Hoare-style specification:

{(a=x)AN(x#0)} Side condition:
FACTORIAL The registers associated with
{(a=0)A(b=x!)} a and b are distinct.

What is left unchanged?

Mike’s suggestion: try separation logic

Solution based on separation logic worked!

Specification for multiplication and decrement-by-one:

{Rax*Rby} {Raxx*$§S_}
MUL b,a,b SUB a,a,#1
{Rax*Rb(x-y)}H {R a(x—1)*S (x—1=0)}*1
—— JAN
4 N
| proved w.r.t. Anthony’s
ARM specification
J

Composition: /

{Rax*RbyxS _}
MUL b,a,b; SUB a,a,#l

{Ra(x—1)*xRb(x-y)*S (x—1=0)}"2

Mike’s suggestion: try separation logic

Solution based on separation logic worked!

Neat definitions:

The Hoare triple’s definition

{p}c{q} = Vrs.(px*codecxr) (to_set(s)) =
dn. (g * code ¢ * r) (to_set(next"(s)))

My first paper during my PhD

TACAS’07 SV A
Mike didn’t want to be a

Hoare Logic for Realistically Modelled Co-author (fe|t | had |(e)l

Machine Code .

ideas and done the work)
- J
4)

Magnus O. Myreen, Michael J. C. Gordon

—_—

Computer Laboratory, University of Cambridge, Cambridge, UK I . . .
insisted and Mike
Abstract. This paper presents a mechanised Hoare-style programming eventual Iy ag reed to

logic framework for assembly level programs. The framework has been
designed to fit on top of operational semantics of realistically modelled be CO-aUthor'

machine code. Many ad hoc restrictions and features present in real _)
machine-code are handled, including finite memory, data and code in
the same memory space, the behavior of status registers and hazards
of corrupting special purpose registers (e.g. the program counter, proce-
dure return register and stack pointer). Despite accurately modeling such
low level details, the approach yields concise specifications for machine-
code programs without using common simplifying assumptions (like an M et Kon rad Slind
unbounded state space). The framework is based on a flexible state repre- *
sentation in which functional and resource usage specifications are writ-

ten in a style inspired by separation logic. The presented work has been

formalised in higher-order logic, mechanised in the HOL4 system and is

currently being used to verify ARM machine-code implementations of KOn I"ad had an ESOP Paper at
arithmetic and cryptographic operations. .
the same instance of ETAPS.

1 Introduction

Computer programs execute on machines where stacks have limits, integers are
bounded and programs are stored in the same memory as data. However, ver-
ification of computer programs is almost without exception done using highly

- e

Konrad visits Cambridge

Konrad had a PhD student working on proof-producing
compilation to ARM code.

| worked on verification of machine code.

4)
Mike advised me to not do verified /
proof-producing compilation

A

4)
... in order to too avoid competing

with Konrad’s PhD student.

| demoed my tools to Konrad, but he wanted more automation.

My response to Konrad’s request

Example: Given some hard-to-read (ARM) machine code,

: E3A00000
: E3510000
: 12800001
: 15911000
: 1AFFFFFB

o N 00 > O

mov r0, #O

: cmp rl, #0

addne rO, rO, #1
ldrne r1l, [ri]
bne L

The decompiler produces a readable HOL4 function:

f(rog, 1, m)

g(ro, ri, m)

= let p =0 in g(ro, 1, M)

= if n = 0 then (rg, r1, M) else
let o = rp+1 in
let 1 = m(ry) in
g(l’o, I, m)

My response to Konrad’s request (cont.)

Decompiler automatically proves a certificate, which states that
f describes the effect of the ARM code:

fore(10, 11, m) =

{(RO,R1,M) is (rg,r1,m)«x PCpxS}

p : E3BA0O0000 E3510000 12800001 15911000 1AFFFFFB
{(RO,R1,M) is f(rg,ri,m)* PC(p+20)*S}

My thesis work

During my PhD, | developed the following infrastructure:

func -------- >[compiler]~ ————— - (code,thm)
code ----- ->[decompiler]~ ----p (func,thm)
[machine-code Hoare triple]

My work turns to Lisp

verified code for LISP primitives car, cdr, cons, etc.

4
HOL4 functions for : __» ARM, x86, PowerPC code
LISP parse, eval, print ’[compiler } > and certificate theorems
[decompiler]
[machine-code Hoare triple]

[ARM [x86] PowerPC]

The final case study in my PhD thesis echos something of
Mike’s PhD thesis (which was about Lisp).

It was a lot of fun

Example: paper gives a definition of pascal-triangle, for which:

(pascal-triangle ’((1)) ’6)

returns:

((1 6 15 20 15 6 1)
(1 510 10 5 1)
(146 41)

(1 331)

(12 1)
(1 1) The verified code was run on several platforms:

v P o (€ 7wl 0 ™ s o [e e P

Nintendo DS lite (ARM) MacBook (x86) old MacMini (PowerPC)

EPSRC proposal

Mike and | wrote an EPSRC proposal. Mike claimed that |
wrote the proposal myself, but Mike edited significantly.

p
Proposal accepted!

L’ 4 years of freedom ———_

Mike was very hands off by
now, but suggested | apply
ideas from my thesis

\

J

L Single-author POPL paper on self-modifying code / |IT

Collaboration with selL4 team at NICTA

Joint work with Jared Davis on Milawa prover (Lisp)

A

r

novel minimal

a reflective ACL2-like prover with a

~\

trusted kernel

More about Mike’s influence

Mike arranged for me to visit

9999 Ce rtICOm a Canadian crypto company

securing innovation (accompanied by Peter Homeier)

Mike managed to get Xavier Leroy
to be the examiner of my PhD

thesis in 2008 (viva 2009). l

(timely due to CompCert POPL'06) i} %

Approach: create collaboration instead of competition

Mike’s other PhD students 2005-2014

Juliano lyoda

James Reynolds
Alexey Gotsman
Thomas Tuerk
Eric Koskinen
Matko Botincan

Ramana Kumar

Mike’s last PhD student: Ramana Kumar

Started his PhD in the autumn of 201 |I.

Strong drive to do collaborative work that would
produce results that last.

Context:

Around this time, Scott Owens and | published an
|CFP paper on Proof-Producing Synthesis of ML from HOL

Also: Freek Wiedijk had asked me at ITP’1 |:
“Can you do for HOL Light what you did for Milawa?”

Michael had recent work on verified parsing.

C

> The CakeML project started.

Ca ’
keML's first major result

(Mike liked this result.)

POPL’14

i Michael

Magnus O- Myreen
ersity of Cambrid

Laboratorys Univ
Researc
uting,

1 Computer
2 Canberrd
3 gchool of ComP

1. lntroduction

geen a stron ‘nerest 10 yerified comp'ﬁation;

' :gh-profile results, many based
16, 29). This interest is
'] unverifie
the trusted computing

the existing work on
has addressed all

Abstract
d mechanica\\y ver
et of standard ML.
' on the CompCert compl
= ify- in the context of program

We have Jeveloped an
CakeML, which supports

is imp\emented as @

6-64 machine code. Our

ation prints only

CakeML. Our Vel - offort touches on :

ing, type checking, in- verified compil

aspects ofac

that this REP
ollection, arbitrary-
algorithm

by the semantics ©
a breadth of topics } Juding lexing,
ental and dynami compilation, gar

crem
T . arithmetic,

ng.
Yo 14 The first is simply in build-
2% that each algorithm a5 jmplemente
L Our purpose in this paper !
| TS 1% pe of both of thes
- . Our language is
- 1

... connection to the original paper on ML:

Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages

POPL’78

A Metalanguage for Interactive Proof in LCF*

ﬁ M. Gordon, R. Milner

University of Edinburgh

L. Morris
Syracuse University

M. Newey
Australian National University

C. Wadsworth
University of Edinburgh

Introduction computing system) of ML and PP)A began over three
years ago at Edinburgh; for about two years the
system has been usable, and its development is now
virtually camplete. Recently it has been used in

ICF (Logic for Computable Functions) is a
proof generating system consisting of an inter-
active programming language ML (MetaLanguage) for
conducting proofs in PP) (Polymorphic Predicate
A—calculus), a deductive calculus suitable for the

formalisation of reasoning about recursively
K Y - . Y T R T L. TS T T T P T topics'

various studies concerning formal semantics:
theorems about data structures, recursion removal,
direct versus continuation semantics, and other

i 3&» 488 ks
3E

<
[+ o
L
=
<
x
<
=

{.-ni!iiilllllizll~

: l-lll!a-l!
h-!!ﬁlil
wwwe T

photo from 2015

photo from 2015

M4 INTERN

BCS Distinguished
Dissertation Award 1997 |

‘ 4%\ 10 m\PH4V ﬁ e R
BCS Distinguished , r PhD supervisor
Dlssertatlon Award 2010 , for all of these

Also: Joe Hurd was runner-up for BCS award

Also: Alexey Gotsman was runner-up for BCS award

