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Preface

This dissertation is submitted for the degree of Doctor of Philosophy at the Univer-
sity of Oxford. The research presented herein was conducted under the supervision
of Professor Thomas F. Melham in the Department of Computer Science, University
of Oxford.

To the best of my knowledge this work is original, except where acknowledgements
and references are made to previous work. Furthermore, the results presented in this
dissertation were in parts developed jointly with Magnus Björk, researcher at Jasper
Design Automation, Thomas F. Melham, professor of Computer Science at Oxford
University, and Carl Seger, Senior Principal Engineer at Intel R©.

In particular, I closely collaborated with Magnus Björk and Carl Seger in 2006–
2007, when both researchers were visiting Oxford University for a year, as a Research
Associate and a Visiting Professor respectively.

Our joint paper nicely summarises the results obtained during that period [1].
The contributions are split as follows. Carl Seger and I developed the automatic
abstraction discovery algorithms, both the basic and improved version as presented in
Chapters 3 and 4. Magnus Björk contributed the reindexing optimisations described
in Section 4.7. Carl Seger originally wrote the code that implements the algorithms,
which I later reworked and significantly extended. I proved all correctness results,
in particular Theorems 3.1, 3.5 and 4.1. Finally, Carl Seger wrote the code that
generates the hardware designs we verified in Chapters 5 and 8.

All this work profited from the many fruitful discussions Magnus Björk, Tom Mel-
ham, Carl Seger, and I had throughout the year of close collaboration.

I worked on the automatic abstraction refinement presented in Chapters 6 and 7 by
myself. This includes both the theory presented, as well as the code that implements
the proposed approach, and delivers the experimental results given in Chapter 8.
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Abstract

This dissertation documents two contributions to automating the formal verification
of hardware – particularly memory-intensive circuits – by Symbolic Trajectory Evalu-
ation (STE), a model checking technique based on symbolic simulation over abstract
sets of states. The contributions focus on improvements to the use of BDD-based
STE, which uses binary decision diagrams internally.

We introduce a solution to one of the major hurdles in using STE: finding suitable
abstractions. Our work has produced the first known algorithm that addresses this
problem by automatically discovering good, non-trivial abstractions. These abstrac-
tions are computed from the specification, and essentially encode partial input com-
binations sufficient for determining the specification’s output value. They can then
be used to verify whether the hardware model meets its specification using a tech-
nique based on and significantly extending previous work by Melham and Jones [2].
Moreover, we prove that our algorithm delivers correct results by construction. We
demonstrate that the abstractions received by our algorithm can greatly reduce ver-
ification costs with three example hardware designs, typical of the kind of problems
faced by the semiconductor design industry.

We further propose a refinement method for abstraction schemes when over-
abstraction occurs, i.e., when the abstraction hides too much information of the orig-
inal design to determine whether it meets its specification. The refinement algorithm
we present is based on previous work by Chockler et al. [3], which selects refinement
candidates by approximating which abstracted input is likely the biggest cause of
the abstraction being unsuitable. We extend this work substantially, concentrating
on three aspects. First, we suggest how the approach can also work for much more
general abstraction schemes. This enables refining any abstraction allowed in STE,
rather than just a subset. Second, Chockler et al. describe how to refine an abstraction
once a refinement candidate has been identified. We present three additional variants
of refining the abstraction. Third, the refinement at its core depends on evaluating
circuit logic gates. The previous work offered solutions for NOT- and AND-gates. We
propose a general approach to evaluating arbitrary logic gates, which improves the
selection process of refinement candidates. We show the effectiveness of our work by
automatically refining an abstraction for a content-addressable memory that exhibits
over-abstraction, and by evaluating some common logic gates.

These two contributions can be used independently to help automate the hard-
ware verification by STE, but they also complement each other. To show this, we
combine both algorithms to create a fully automatic abstraction discovery and refine-
ment loop. The only inputs required are the hardware design and the specification,
which the design should meet. While only small circuits could be verified completely
automatically, it clearly shows that our two contributions allow the construction of a
verification framework that does not require any user interaction.
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Chapter 1

Introduction

With computer technology appearing in almost every area of our life, it is getting

more and more imperative to validate the correctness of its implementation. This

enhances the safety and security of a system in the spirit of professional engineering.

Both aspects are of high importance in life-critical systems, such as space-related or

medical equipment, and in computer-dependent businesses. Moreover, the increasing

network connectivity magnifies the relevance of professional engineering for commer-

cial applications.

Still, computer systems fail frequently. Often this does not cause serious problems.

For example, a crash of your desktop computer is inconvenient, but probably no more

than that. But other failures can have disastrous consequences.

In 1994 the Pentium FDIV bug made headlines. A design error caused inaccuracies

when dividing certain floating point numbers [4]. This could have been detected when

verifying the design. Instead Intel R© not only lost about 450 million dollars, but also

experienced reputational damage.

On 4 June 1996, the European Ariane 5 was launched using a new expendable

launch system. Needless to say, this project had a lengthy preparation phase and

cost many millions of dollars. Nonetheless, a design error led to incorrect results

when calculating the rocket’s movements, thus causing a catastrophic failure of the

project: the rocket exploded only seconds after launching [5, 6].

On 14 August 2003, a massive power outage occurred in Northeast America. The

trigger for this disaster was the shutdown of one generating plant in Ohio amid high

electrical demand. By itself this is not an unusual event, and it should have initiated

an alarm so that further actions could be taken. But a race condition caused the alarm

system to fail, leading to over 100 further power plants having to shut down [7]. This

had an immediate impact on around 50 million people, the largest blackout in North
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American history to date.

The list of computer failures with devastating consequences goes on, and reaches

into the present. RISKS Digest, a forum on risks to the public in computers and

related systems, has devoted itself to regularly publishing newly discovered issues [8].

Ever since computers were invented, bugs in both software and hardware have been a

problem, leading to grave economical damage, and sometimes even costing lives. So

the need for reliable and robust computer systems is evident.

One aspect of checking a computer system’s reliability is ensuring its design fulfils

the cause it was created for, i.e., the implementation meets its functional specification.

We can ascertain this using formal verification.

1.1 Formal Verification

An obvious way of examining whether a computer system works correctly is testing

it. In testing, we run the system in specific settings, i.e., we define the values of the

inputs of the system, and then check whether the outputs have the values we expected.

But with testing, we gain certainty only for those cases that we run a test for. To

guarantee complete correctness we need to check every possible input combination.

Unfortunately, this attempt is infeasible even for relatively small computer systems.

To visualise, verifying the correctness of a 64-bit by 64-bit floating point multiplier

would need over 3.4 · 1038 test runs. Even when processing 1018 runs every second,

this would take more than 1013 years, i.e. longer than the universe has likely existed.

Although testing extensively is impracticable, it does ensure correctness. It is a

verification technique: it proves – or disproves – that the system works as intended.

In formal verification we use formal mathematics to prove that a design meets its

specification. With this we already imply that we have two components at hand:

first, a description, or model, of the system, and second a specification of the desired

behaviour of the system. The verification task then is to demonstrate that in every

possible case the system modelled behaves as specified.

Much research has concentrated on developing practicable approaches for verifying

computer systems. These use different representations of the design to verify, and

different methods for checking whether the design satisfies the specification. The

different techniques can be divided into three main categories: simulation, deductive

verification, and model checking.
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1.1.1 Simulation

In hardware verification, tests can be carried out by simulating the circuit with soft-

ware. As discussed above, we can verify only very small systems using this technique.

In particular, we need to ensure that all input scenarios are covered. This is usu-

ally prohibitively costly. Nonetheless, simulation is often used in industry for finding

bugs. Although it is only possible to guarantee correctness by testing exhaustively,

simulating just a subset of all input scenarios can locate errors. Nowadays the most

basic simulation techniques can hence be seen as a method for improving the quality

of the design, rather than ensuring its full correctness. If tests are performed on

the actual fabricated hardware it can inspect whether the design was manufactured

correctly [9].

Simulation can become a powerful verification method by introducing extensions

and modifications. The most prominent example is symbolic simulation. Instead

of simulating the system with concrete (Boolean) inputs, symbolic values are used.

Although computational limits are still given, this methodology has solved hard ver-

ification tasks at an industrial scale [10].

1.1.2 Deductive Verification

In deductive verification the model of the system and its specification are expressed in

higher order logic [11–13]. By applying axioms and rules to these statements correct-

ness is proved or disproved. In the early stages of deductive verification proofs were

derived manually. Tools, such as interactive theorem provers, were then developed to

ensure that all axioms and rules are applied correctly. As a further step software was

built that could partly automate these proofs. But no fully automatic approach is

available as of today. Indeed, due to restrictions given by the theory of computability,

it is impossible to fully automate this process for the complete logic. However, it is a

method that allows verifying very large, or even infinite state systems.

Good results have been achieved using deductive verification. Some notable ex-

amples include verifying against IEEE specifications: Miner and Leathrum verified a

general class of IEEE-compliant subtractive division algorithms in PVS [14]; Moore

et al. verified the floating point division of the AMD K5 processor in ACL2 [15]; and

Harrison verified the IA-64 floating point and integer division algorithms in HOL [16].
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1.1.3 Model Checking

In model checking the model of the computer system is given as a finite state ma-

chine, and a statement in a temporal logic describes the desired behaviour of the

system over time. Verification then consists of an exhaustive search through the state

space. In contrast to deductive verification, the temporal logic used is weak enough

for decidability of the verification problem. Hence model checking algorithms can be

automated, thus – in principle – allowing verification without need for human inter-

action. In the beginning model checking was explicit, that is all reachable states were

enumerated [17]. This quickly led to the state explosion problem, the combinational

blow up of the state-space. This is similar to the restrictions given for simulation.

A cornerstone in model checking was laid in 1987 when symbolic representations

of states were introduced [18]. The state graph is not built explicitly, but instead

Boolean formulae are used to represent sets and relations. Using reduced ordered

binary decision diagrams (ROBDD) for the formulae, this allows the verification of

systems with many more orders of magnitude.

In 1999 Biere et al. proposed using a satisfiability solver for bounded symbolic

model checking, rather than BDDs [19]. Here, the finite state machine can be unrolled

for a fixed number of steps, and checking a property of the restricted model is solved

with Boolean decision procedures. Aside from avoiding the potential space blowup of

BDDs, SAT-based model checking also produces small counter-examples quickly.

By abstracting the system to check further improvements can be achieved: a

smaller, simpler version of the model is constructed; its states represent multiple

states of the initial model. Proving or disproving properties of the abstraction then

allows conclusions about the original system. Different abstraction techniques have

been explored [20,21], but all of them have two problems in common: first, how do we

create an abstraction; and second, how do we refine an abstraction if needed? Here

two basic strategies can be distinguished: we can start with a very detailed model,

and then refine it, so it gets more abstract; or we can start with an abstraction that

hides most details, and refine it by adding details back in. Ideally, of course, the

initial abstraction needs no, or only very little refinement.

One successful method for refining a too information-sparse abstraction is counter-

example guided abstraction refinement (CEGAR) [22]. First, assume we have an

abstraction that allows no false positives. That is, the verification of the abstrac-

tion succeeds only if the verification of the model itself would succeed. Given this

abstraction we now try to verify the desired property. Two outcomes are possible.

Either the verification succeeds, and we are done. Or the verification fails with a
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counter-example. In the latter case the failure can have two causes: the model has

a bug; or the counter-example is spurious, because the abstraction retained too little

information. Then the given counter-example can be used to alter the abstraction

such that it will not occur in subsequent verification runs again.

CEGAR is critically dependent on extracting a counter-example when the verifica-

tion run fails, detecting whether it is spurious, and especially refining the abstraction

to exclude the counter-example’s occurrence. A prominent example where CEGAR

has been fully automated was introduced by Clarke et al. [22], which allows specifica-

tions in CTL* and abstractions that partition the state space into clusters. But for

many abstraction approaches, complete solutions have not yet been developed.

1.2 Symbolic Trajectory Evaluation

Symbolic Trajectory Evaluation (STE) is a model checking technique that is based on

symbolic simulation over abstract sets of states [23]. Families of these abstractions can

be encoded by binary formulae, or symbolically indexed, thus enabling the verification

of multiple abstraction cases in a single model-checking run. This has proved valuable

especially in memory verification [24–26].

In contrast to most symbolic model checking techniques, STE does not concen-

trate on calculating all reachable states. Instead, no assumptions are made in the

initial states, and bounded model checking that starts in free, unrestricted states is

performed.

As already seen for model checking, two main problems need to be addressed

when verifying by STE: how do we create an abstraction, and how can it be refined

if needed? Creating abstractions translates to finding good symbolic indexings. To

date, users have had to create these manually, which is a hard task. No automatic

solution has previously been published. In the area of refinement, it is unclear how

to extract concrete counter-examples on over-abstraction, i.e., when the abstraction

used hides too much information. Some refinement techniques have, however, recently

been published that do not require a concrete counter-example, but still work in a

way similar to CEGAR [1,3, 27,28].

1.3 Contributions

This dissertation reports on successful research into a fully automated verification

process by Symbolic Trajectory Evaluation, in the form of an automatic abstraction
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discovery and refinement loop. This greatly simplifies the use of STE, and enables

more circuits to be verified, and with fewer resources – particularly less expert user

interaction, memory, and time.

At our framework’s core stand two algorithms, which solve the problem of finding

good abstractions for STE and of refining abstractions when over-abstraction occurs.

Below we briefly summarise these contributions.

1.3.1 Automatic Abstraction Discovery

We propose a novel abstraction framework that processes the specification of a system

to compute an STE statement which expresses the system’s formal correctness [1] and

encodes an abstraction suited to the system. Thus, the design meets its specification

exactly if it satisfies the STE statement constructed. Our technique for constructing

the STE statement is based on previous work by Melham and Jones [2]. This requires

a relation that encodes an abstraction scheme, which is then applied to an auxiliary

STE statement to receive the statement that can be used for verifying correctness.

In contrast to Melham and Jones’ approach, the method reported in this dissertation

does not require the user to provide the auxiliary statement. This constitutes a funda-

mental advance over the previous technique. We also prove that our approach delivers

correct verification results, provided the relation satisfies certain side conditions.

We introduce an algorithm that computes such relations using a novel approach.

It processes the specification only. This has two big advantages: the specification is

usually small compared to the implementation, which reduces the time needed; and

the abstraction scheme computed is optimised for the verification task at hand.

The computed abstraction relations encode abstractions that hide as much infor-

mation as possible. They essentially enumerate multiple partial input combinations,

i.e., settings where the value of some inputs are specified and the value of all remain-

ing inputs is unknown. Irrespective of which values the unspecified inputs have, the

output will be the same. Furthermore, these partial input combinations are minimal

in that removing any of the specified input assignments would result in an inde-

terminate output of the specification, and thus also a correct implementation. The

abstraction scheme covers all possible input combinations. This is a side condition

the relation must satisfy to guarantee correct results. We prove that our algorithm

produces relations that satisfy this condition by construction. A weaker version of

this side condition was also required by Melham and Jones, and they commented

that checking the property can create costs that nullify the gain of abstraction [2].
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The relations we generate provably satisfy the side conditions by construction, which

eliminates this risk.

All this delivers the first automatic abstraction mechanism known for Symbolic

Trajectory Evaluation. In the past, a significant bottleneck of STE was the necessity

of manually finding abstraction schemes, which is a hard task [2, 24]. The proposed

framework, together with the algorithm, is a solution that overcomes this. In par-

ticular, it constitutes an efficient, automatic framework with which industrial-sized

circuits can be verified as long as no over-abstraction occurs.

1.3.2 Automatic Abstraction Refinement

Our second major contribution is to propose a refinement mechanism to adjust ab-

straction schemes when over-abstraction occurs, i.e., when too much abstraction was

applied in an STE run. At its core stands an algorithm that selects refinement candi-

dates. These are inputs that are indeterminate in at least some cases, and likely need

to be determinate to compute the implementation’s output value. Our approach

is a direct but significant extension of previous work by Chockler et al. [3]. This

previous approach is augmented in three essential aspects. First, we fundamentally

broaden the core algorithm to support the analysis of arbitrary STE properties, and

in particular those that use non-trivial symbolic indexing. Previously, only a very

specific subset could be handled, which restricted the applicability greatly. Second,

we propose a general approach for determining the approximate degree of respon-

sibility for arbitrary logic gates. The approximate degree of responsibility stands

at the core of Chockler et al.’s refinement candidate selection process. Chockler et

al. outlined approximations for NOT- and AND-gates only. While this is sufficient to

express the behaviour of any other gate, the error of the approximations add up. Our

general approach computes approximations of arbitrary gates directly, thus avoiding

cumulative errors. Consequently, it enables identifying better refinement candidates.

Finally, Chockler et al. suggested one option for refining abstractions once refinement

candidates are identified. We examine three additional approaches to incorporat-

ing the algorithm results, and introduce a heuristic for deciding which one to best

apply. These three enhancements both broaden the applicability of the abstraction

refinement, as well as produce refined abstractions, which potentially lead to lower

verification costs.
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1.3.3 Case Studies

We implemented the automatic abstraction discovery algorithm and show its perfor-

mance on three types of circuits. The first is a content-addressable memory (CAM),

the second a memory, and the third a scheduler. The abstraction scheme automat-

ically computed for the CAM corresponds to one presented as a research result by

Pandey [24]. The scheduler is a design that was previously not verified by STE, as

no good abstraction scheme had been proposed yet. We describe the idea behind all

abstraction schemes our algorithm suggests, and show that it makes the verification

of the designs feasible.

Each circuit type is verified in varying sizes, showing the scalability of the algo-

rithm. The scheduler highlights the power of automation in enabling the verification

of circuits by STE that were not obtainable before.

We also present how some common gates can be analysed as part of the refinement

algorithm to produce better approximations of which indeterminate input is presum-

ably most responsible for the output being indeterminate when over-approximation

occurs. Finally, we implemented the abstraction refinement algorithm and set up a

fully automatic abstraction discovery and refinement loop to show how our abstrac-

tion discovery and our abstraction refinement complement each other, and can be

combined to formally verify designs without the need for any human interaction.

1.4 Outline

The dissertation includes contributions in two main areas, abstraction discovery and

abstraction refinement. This is also reflected in the structure of the dissertation.

The first major contribution is concerned with the automatic construction of good

abstraction schemes. In Chapter 2 we introduce Symbolic Trajectory Evaluation in

more detail. We also summarise previous work done by Melham and Jones in the area

of reindexing in STE [2], which we build upon. Chapter 3 extends this work to then

suggest a fully automatic abstraction discovery framework for STE. At its core stands

an algorithm, auto abstract, that computes relations by analysing the specification the

circuit to verify shall meet. We prove our framework correct in two main theorems.

The first shows the framework delivers meaningful verification results, provided the

relation used meets certain side conditions; the second that the relations our algorithm

produces satisfy these side conditions by construction. Thereafter, Chapter 4 extends

and improves various aspects of the auto abstract algorithm described in Chapter
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3. These changes are diverse, ranging from allowing more general specifications,

suggesting more efficient encodings in the relation, and optimising computations in

the final STE run based on the shape of the abstraction relation we automatically

generate. These improvements are also proved correct. Our proposed automatic

abstraction is put to the test in Chapter 5, where we verify three circuits: a content-

addressable memory, a memory, and an oldest-ready scheduler. For each of these

examples we first introduce the circuit and its specification, go on to explain what

abstraction is automatically computed by our auto abstract algorithm, to finally give

run times of verifying the circuits at increasing sizes. This shows that the work

presented in the previous chapters is powerful and allows verifying realistically-sized

circuits. In particular, it highlights that automation allows the verification of circuits

for which no good abstractions are known yet.

The second main contribution introduces an automatic approach for addressing

over-abstraction, which occurs when abstraction schemes are too information-sparse

to formally verify a circuit. In Chapter 6 first prior work by Chockler et al. is re-

viewed [3]. We then build upon their work to extend it in two crucial ways, namely

a more general evaluation for finding refinement candidates, and a more prudent re-

finement step once refinement candidates have been identified. These extensions are

non-trivial, while delivering the same results in the special cases handled by Chockler

et al. In Chapter 7 we further generalise the abstraction refinement by improving the

calculations required for identifying refinement candidates. We present a methodol-

ogy and provide algorithms which allow the evaluation of arbitrary logic gates when

approximating which inputs of a circuit are “most responsible” for the indeterminate

output value of that circuit. In Chapter 8 we finally show the effectiveness of our

adapted, automatic refinement by verifying one of the circuits previously verified in

Chapter 5. In Chapter 5 we utilised user-provided “symbolic constants”, which essen-

tially express which inputs are so important that they shall always have a symbolic

value, rather than sometimes being indeterminate. With the automatic refinement

proposed in this dissertation these symbolic constants are automatically computed,

or the initial relation is refined by driving the refinement candidates with symbolic

values. In Chapter 8 we furthermore examine several common gates using our gen-

eral approach to calculating the approximate degree of responsibility, which stands

at the core of our abstraction refinement. We demonstrate that these calculations are

superior to those received by the previous approach.

The abstraction refinement proposed nicely complements our solution to abstrac-

tion discovery. Both can be used independently to help automate the formal verifica-
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tion of hardware designs by Symbolic Trajectory Evaluation. They can additionally

be combined to deliver a fully automatic verification framework for STE. To the best

of our knowledge, this is the first such fully automatic approach for verification by

STE. We present experimental results in Chapter 8 as a proof of concept. The dis-

sertation concludes with Chapter 9, which also points to interesting areas for future

work.
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1.5 Notation Overview

Throughout the dissertation we use the notation provided in Figure 1.1. Especially

the proofs of our theorems, which are concerned with the correctness of our results,

rely on a precise, mathematical notation. We hope this overview guides the reader

whenever necessary.

f : A→ B, a 7→ b(a) a function f with domain A and co-domain B, where an
element a ∈ A is mapped to b(a) ∈ B

t[j] the jth entry of the tuple t = (t0, . . . , tk−1) where 0 ≤ j < k

tt the Boolean value true

ff the Boolean value false

v a binary variable

V a set of binary variables V = {i : vi}

V ∪̇ W the disjoint union of the sets V and W , i.e., V ∩W = ∅

F a binary expression

F [V ] a binary expression where all variables in V are free; there
might be further free variables in F

F [v] the short form for F [{v}]

F [V ,W ] an expression where all variables in V∪̇W are free

←−v an assignment for the variable v

F (←−v ) an expression where the free variable v is replaced by the
value specified in the assignment ←−v

←−
V an assignment for all variables in the set V

F (
←−
V ) an expression where the free variables V are replaced by

the values specified in the assignment
←−
V

spec[V ] a bexpr-tree on the set of variables V (also see page 64)

spec(
←−
V ) the output of spec when its inputs V are assigned the

values specified in the assignment
←−
V

Figure 1.1: Notation overview
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Chapter 2

Symbolic Trajectory Evaluation

This chapter first explains the foundations needed for understanding Symbolic Trajec-

tory Evaluation (STE). We then introduce STE itself, describe how it can be used to

verify circuits, and highlight some of its key aspects – namely the abstraction mech-

anism used and its computational representation. We conclude by giving a short

history of STE and summarising previous work on reindexing in STE, a concept that

our work heavily builds upon and extends.

2.1 Circuit Model

When formally verifying hardware, no actual hardware is involved. Instead, the design

of the hardware is captured in a model. Hardware can be modelled through different

representations and at different levels of detail. In this dissertation, we concentrate

on gate-level verification, where designs are represented as networks of logic gates.

Hence the circuits to be verified are described by their netlist models.

Definition 2.1 (Gate). A gate g is given by a tuple (nameg, argsg, eg), where nameg

is the name of the gate, argsg ∈ N specifies the number of inputs the gate has, and

the excitation function eg describes the behaviour of the gate as a function

1. Bargsg → B for combinational gates, and

2. Bargsg × B→ B for state-holding gates.

Definition 2.2 (Netlist). The netlist representation of a circuit is a pair (G,N ),

where G = GC ∪̇ GS is the finite set of combinational and state-holding gates, and

N ⊂ G⊥ × G⊥ × N is the relation of connections between such gates. Here

G⊥ = G ∪̇ {⊥}, where ⊥ is used to indicate a blank entry.
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The elements of the relation represent the wires between gates, and are referred

to as the nodes of the circuit. Given a node (g1, g2, i), g1 defines which gate produces

the value on it, g2 which gate uses this value as an input, and i which input of that

gate it is. Nodes that have a blank first entry, ⊥, are primary circuit inputs; those

that have a blank second entry are outputs. By convention, the third component of

an output has the value 0. All other nodes are internal nodes.

We now define which properties netlists need to satisfy to qualify as well-formed.

Definition 2.3 (Well-Formed Netlist). We call a netlist (G,N ) well-formed if the

following properties hold:

1. Each input of a gate is driven by at most one node:

∀(g1, h1, i), (g2, h2, j) ∈ N : h1 = h2 ∧ i = j → g1 = g2

2. Each input of a gate is driven by a node:

∀g ∈ G.|{(h, i) : (h, g, i) ∈ N}| = argsg

3. Each output of a gate drives some node:

∀g ∈ G∃h ∈ G.∃i. ≤ argsh ∧ (g, h, i) ∈ N

4. There is at least one initial input: ∃(g, h, i) ∈ N : g = ⊥

5. There is at least one output: ∃(g, h, 0) ∈ N : h = ⊥

6. Each gate lies on a path that leads from an initial input to an output, i.e., for

each g ∈ G there exists a sequence of nodes (gj, hj, ij)0≤j≤n ⊂ N n+1 of length

n+ 1 such that:

• it starts in an initial input, g0 = ⊥

• it ends in an output, hn = ⊥

• g is part of the sequence, ∃0 < k ≤ n : gk = g

• consecutive nodes are connected, ∀0 ≤ j < n : hj 6= ⊥ ∧ gj+1 = hj

7. All loops contain at least one state-holding element, i.e., there exists no sequence

of nodes (gj, hj, ij)0<=j<=n ⊂ N n+1 of length n+ 1 such that

• consecutive nodes are connected, ∀0 ≤ j < n : hj+1 = gj

• the last node is connected to the first one, hn+1 = g0

• none of the gates are state-holding, ∀0 ≤ j ≤ n : g ∈ GC
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Requirement 6 ensures that there are no orphan gates. The definition allows a

netlist to consist of several connected components. Each of the components has

initial inputs and outputs and are a netlist in themselves. Usually a netlist consists

of a single connected component, but the algorithms presented in this dissertation do

not require this.

When verifying hardware with STE, specification statements usually put a con-

straint on the initial inputs and then require the outputs to satisfy desired properties.

No assumptions are made about the initial values of state-holding gates, i.e. their

values are X. This means that STE specifications usually define only the input-

output-behaviour of a circuit, irrespective of both the initial state and the algorithm

used to determine that behaviour.

If a netlist has several connected components it may be beneficial to run the

verification on each netlist separately. For each component, all constraints on the

initial inputs and outputs of other components can be omitted. This can reduce the

verification costs of each individual run.

Netlists are commonly given in text form or as a diagram. In this dissertation,

preference is given to the diagrammatic representation, for better readability. It is

routine to represent such diagrams formally.

Example: Three representations of the same netlist

We give three different representations of the same netlist. It uses three gates, whose

excitation functions are

NOT : {0 7→ 1, 1 7→ 0}
AND : {(0, 0) 7→ 0, (0, 1) 7→ 0, (1, 0) 7→ 0, (1, 1) 7→ 1}
DELAY : {(0, 0) 7→ 0, (0, 1) 7→ 0, (1, 0) 7→ 1, (1, 1) 7→ 1}

The first two gates are combinational, whereas the delay is a state-holding element.

The first entry of a tuple for the DELAY gate gives the value of the input and the

second the value of the state. A delay gate ignores the previous state and simply

outputs the input at the next point in time.

• Mathematical representation

G = {NOT,AND,DELAY }
N = {(⊥, AND, 0), (NOT,AND, 1), (AND,DELAY, 0)

(DELAY,NOT, 0), (DELAY,⊥, 0)}
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• Diagrammatic representation

Figure 2.1 shows a diagrammatic representation. The small triangle in the

delay gate represents the dependence on the global clock, which determines

when the next point in time is reached. Every state-holding element has such

a dependence on the clock of the circuit.

Figure 2.1: Diagrammatic representation of a circuit netlist

• VHSIC hardware description language (VHDL)

Figure 2.2 provides example VHDL code for the netlist.

library IEEE;
use IEEE.std logic 1164.all;

entity CIRCUIT is
port (

data in : in std logic;
clock : in std logic;
data out : out std logic

);
end CIRCUIT;

architecture BEHAVIOUR of CIRCUIT is
signal prev : std logic;
begin

process(data in, prev, clock)
begin

if rising edge(clock) then
data out <= data in and not prev;
prev <= data in and not prev;

end if ;
end process;

end BEHAVIOUR;

Figure 2.2: VHDL code for a netlist

F
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2.2 Simulation

Symbolic Trajectory Evaluation is based on simulation over a ternary domain of

circuit values. In the following we briefly describe binary and ternary simulation,

as well as present the theory of Galois connections [29, 30], which establishes a link

between binary and ternary simulation. This then provides us with the basis upon

which STE is built.

2.2.1 Binary Simulation

Binary simulation is a method for completely emulating the behaviour of a circuit M .

It requires a state of the circuit, i.e., a mapping from node names to Boolean values

that assigns values to all initial inputs and all state-holding elements. Simulation

then computes the values of all other nodes and finds the values of the state-holding

elements at the next point in time. By fixing an order for the nodes, we can encode

the states as tuples of binary values. Binary simulation thus provides the means

of computing the next state function in the binary domain, Y B
M : Bi+l → Bl. Here i

denotes the number of initial inputs of M and l the number of state-holding elements,

or latches. It computes this function as follows:

1. First, topologically sort the gates of the netlist. Outputs of state-holding el-

ements are treated like initial inputs. This delivers a directed, acyclic graph,

because valid netlists must not contain loops that do not include a state-holding

element.

2. Next, assign values to the nodes for initial inputs and latches as given in b ∈ Bi+l.

3. Now handle each gate in the order of the topological sort as follows. Apply its

excitation function using the values of its inputs, thus delivering a value for the

output node of that gate. Note that the topological sort guarantees that all

input nodes for each gate will already have been computed.

4. The newly computed inputs to the state-holding elements become their outputs

at the next point in time, thus delivering Y B
M(b).

When simulating a circuit over several clock cycles, we require a series of assign-

ments to the initial inputs and a starting configuration for the state-holding elements.

The Y B
M function is then computed for each time step, where the values of the latches,
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i.e., their output values, are determined by the result of the Y B
M function for the pre-

vious time step.

Example: Binary simulation

The gates of the netlist shown in Figure 2.1 have the topological sort

NOT < AND < DELAY. Suppose we are given three consecutive values of the input,

in = 0, 1, 1, and the initial state of the DELAY-gate, out = 0. Then the binary

simulation of that netlist computes the values shown in Figure 2.3. F

Figure 2.3: Binary simulation of the circuit depicted in Figure 2.1 for three cycles

Note that the behaviour of the next state function YM of a circuit M depends on

the function it computes. In this dissertation the subscript specifies which circuit

the next state function is for. If it is clear which circuit we are reasoning about, the

subscript may be omitted. We may also extend the next state function to handle sets

of states:

Y B
M : P(Bi+l)→P(Bl), Y B

M(A) = {Y B
M(a) : a ∈ A}

Here P(Bn) denotes the power set of Bn.

2.2.2 Ternary Simulation

Ternary simulation was first introduced by Bryant in 1986 [31]. Here a circuit M

is emulated over a ternary domain T = {0, 1,X}. In addition to allowing nodes to

have Boolean values, an unknown value called X is introduced. As seen in binary

simulation, the values of state-holding elements in the next time step are computed

using the values of the initial inputs and the state-holding elements in the current

time step. To cater for indeterminate node values, we need to expand the excitation

functions of the gates. Every logic function can be expressed using conjunction and

negation. So it is sufficient to give truth tables for these two functions and a simple

delay, as seen in Figure 2.4.

30



AND 0 1 X
0 0 0 0
1 0 1 X
X 0 X X

NOT
0 1
1 0
X X

state
DELAY 0 1 X
input 0 0 0 0

1 1 1 1
X X X X

Figure 2.4: Excitation functions for conjunction, inversion, and delaying over a ternary
domain.

Accordingly, a next state function for a circuit M can also be defined on the ternary

domain, Y T
M : Ti+l → Tl. Later we will see that it is sometimes convenient for the

domain and co-domain to be the same. We can achieve this by prefixing the result

with i indeterminate values:

Y T
M : Ti+l → Ti+l, ∀0 ≤ j < i : Y T

M(t)[j] = X

Here Y T
M(t)[j] denotes the jth tuple entry of Y T

M(t). The computation of the remaining

values is as before. Intuitively, you could say that we do not know the values of the

inputs in the next cycle, and hence the values of these are indeterminate.

Example: Ternary simulation

The gates of the netlist shown in Figure 2.1 have the topological sort

NOT < AND < DELAY. Suppose we are given three consecutive values of the input,

in = 0, 1,X, and the initial state of the DELAY-gate, out = X. Then the ternary

simulation of that netlist computes the values shown in Figure 2.5. F

Figure 2.5: Ternary simulation of the circuit depicted in Figure 2.1 for three cycles

In the above example, not all values are Boolean. In particular, for the cycle

starting at t = 2 the input in is indeterminate, but the output observed at t = 3

can still be calculated. This means that the binary simulation with in = 0, and with

in = 1 respectively, both yield the same result out = 0. So ternary simulation has

the potential to calculate the result of multiple binary simulation runs in one.
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2.2.3 Galois Connection

We can formally verify that a circuit meets its specification by checking whether all

observable states are included in the set of allowed states.

Definition 2.4 (Antecedent, Consequent, and Satisfaction). Let M be a circuit and

M(A) ⊆ Bl denote the set of states that the model can exhibit assuming the precondi-

tion, or antecedent, A ⊆ Bi+l. Let C ⊆ Bl be the set of states that are allowed by the

specification of M ; C is called a consequent. We then say M satisfies its specification

assuming A if M(A) ⊆ C, and denote this by M |= A⇒ C.

If some of the model states are not included in the consequent, then the circuit does

not meet its specification, and we write M 6|= A⇒ C.

Using simulation, we can determine which states a model can exhibit given a

precondition. In the following it will be advantageous to use ternary simulation to

reason about the binary model. So it is necessary to formalise the connection between

binary and ternary simulation, and characterise the conclusions that are sound. The

theory of Galois connections provides a mathematical foundation for this [29, 30].

Definition 2.5 (Galois Connection). A Galois Connection is a pair of monotonic

functions (α : C → A, γ : A → C) on the partially ordered sets (C,⊆) and (A,�) such

that

∀C ∈ C, a ∈ A : α(C) � a⇔ C ⊆ γ(a)

Figure 2.6: Hasse diagram for partial order based on level of abstraction in (a) T and
(b) T2

In our context, A = Ti+l and C = P(Bi+l). Here, A represents the set of abstract

states that are defined by the values of inputs and latches at a specific point in time.

As seen in Figure 2.6, we define a partial order on this set based on the level of

abstraction. That is, for each node, X is more abstract than 0 or 1, so 0 � X and

1 � X. On the other hand, neither 0 or 1 are more abstract than the other, and
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therefore no order is defined between them. By extending this order pointwise to

tuples of nodes, we define a partial order on Ti+l.

Notice that (Ti+l,�) is not a lattice. While it is a partially ordered set, it lacks

a least element. But this is required for a lattice, as any two elements need to have

a supremum and infimum. By introducing a new element bottom, ⊥, and extending

the order such that ∀a ∈ Ti+l : ⊥ � a we receive a complete lattice. So not just any

two elements have a supremum and infimum, but this also holds for any subset [29].

The bottom element essentially captures the case where we have contradicting data,

thus identifying an invalid state. While this state cannot be observed in practice,

introducing it allows us to take advantage of the properties of complete lattices when

reasoning about properties. Hence, in the following, we use A = Ti+l ∪ {⊥}.

Figure 2.7: Introduction of ⊥ to establish complete lattices (a) T∪{⊥} and (b) T2∪{⊥}

For C we use the power set of Bi+l with the subset ordering ⊆, which forms a

complete lattice. The function α is then an abstraction function that maps a set

of states C ∈ C in the binary domain to an abstract state in the ternary domain.

The abstract state α(C) is chosen so that it is the smallest state that can represent

all given states in the set C. Note that the smallest state retains as much binary

information as possible. As Bi+l is a subset of Ti+l, every element C ∈ C is a subset

of A, and therefore every c ∈ C is also an element of A. Thus, more formally, the

smallest state is defined by

∀c ∈ C : c � α(C) and ∀a ∈ A : (∀c ∈ C : c � a)⇒ α(C) � a.

In other words, the abstraction function maps sets of concrete states to their least

upper bound, α(C) =
⊔

c∈C c. Conversely, the concretisation function γ maps an

abstract state to the maximum set of states that the abstract state can represent.

The theory of Galois Connections says that if both A and C are complete lattices,

then defining either of the functions α or γ uniquely defines the other function. For
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clarity, we give a concrete definition of both functions:

γ : Ti+l ∪ {⊥} → P(Bi+l), where

⊥ 7→ ∅, and

a 7→ {c ∈ Bk : c � a}
α : P(Bi+l) → Ti+l ∪ {⊥}, where

∅ 7→ ⊥, and

{cj : j ∈ J} 7→ a, such that for all 0 ≤ k < i+ l

a[k] =

X ∃m,n ∈ J : cm[k] 6= cn[k]

cj[i] for some j ∈ J otherwise

Here a[k] denotes the kth entry of the tuple a ∈ Ti+l. Notice that γ ◦ α : C → C is

not an identity function. For example,

γ(α({011, 101})) = γ(XX1) = {001, 011, 101, 111}

This corresponds to the loss of information seen when using abstraction; once we

abstract the real value of nodes, we cannot reproduce the concrete values later.

As first stated by Ching-Tsun Chou in [32], Theorem 2.6 establishes that this

Galois connection allows properties for binary circuits to be proved in the ternary

domain. Here we use the notation introduced in Definition 2.4.

Theorem 2.6. Let M be a circuit, and let C ∈P(Bl) be the set of states that satisfy

a desired consequent. Further, let M(A) ∈ P(Bl) be the set of circuit states in the

next time step assuming the antecedent A ∈P(Bi+l), i.e., M(A) = Y B(A).

1. If α(M(A)) � α(C), then M(A) ⊆ γ(α(A)), so M |= A⇒ γ(α(C)).

2. If α(M(A)) 6� α(C), then M(A) 6⊆ C, so M(A) 6|= A⇒ C.

Proof. This is a direct conclusion from the defining property of Galois connections:

1. α(M(A)) � α(C)

⇔ M(A) ⊆ γ(α(C))

2. α(M(A)) 6� α(C)

⇔ M(A) 6⊆ γ(α(C))

⇒ M(A) 6⊆ C

34



Note, however, that Theorem 2.6 cannot directly be applied to ternary and binary

simulation. Suppose we determine M(A) via simulation, i.e., M(A) = Y B(A). Then

the relationship between α(Y B(A)) and α(C) determines whether M(A) ⊆ γ(α(C))

or not. But ternary simulation computes Y T(α(A)), rather than α(Y B(A)).

There is a relationship between these values, though:

∀A ∈P(Bi+l) : α(Y B(A)) � Y T(α(A)) (2.2.1)

This is a direct conclusion from the monotonicity of α, Y B and Y T. We can easily

see that α is monotone, because it maps elements to their least upper bound. The bi-

nary next state function Y B on sets of states is monotone by definition:

A 7→ {Y B(a) : a ∈ A}. Finally, the ternary next state function Y T is monotone, be-

cause it inherits the monotonicity of the excitation functions given in Figure 2.4.

Using observation 2.2.1, Theorem 2.6 gives us the following relationship between

binary and ternary simulation:

1. If Y T(α(A)) � α(C), then M(A) ⊆ γ(α(C)), so M |= A⇒ γ(α(C))

This means that when simulating the behaviour of a circuit on any states that

satisfy a specific antecedent A, then the resulting set of states also satisfies the

consequent. In short, we say M satisfies C assuming A. The above implication

follows directly from Theorem 2.6 and the fact that α(Y B(A)) � Y T(α(A)).

2. If Y T(α(A)) 6� α(C)

• If ∃j : Y T(α(A))[j] ∈ B ∧ Y T(α(A))[j] 6� α(C)[j], then M(A) 6⊆ C

This means that M does not satisfy C assuming A, M 6|= A⇒ C. The im-

plication follows directly from Theorem 2.6, and the following observation.

α(Y B(A)) � Y T(α(A)) implies that any binary assignment in Y T(α(A))

must have the same binary assignment in α(Y T(A)). So α(Y T(A)) 6� α(C)

even if only one such assignment exists.

• If ∃j : (Y T(α(A))[j] = X) ∧ (α(C)[j] ∈ B), then we cannot say whether

M(A) ⊆ C or not.

In this case we cannot say whether M satisfies C assuming A. We call this

case a weak disagreement. There are cases where such a result occurs when

the circuit satisfies the consequent C assuming the antecedent A, but also

cases when it violates C. Hence the only conclusion that can be drawn is

that the simulation run was not appropriate for the stated problem. As
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this case cannot occur with binary simulation, its cause is a too heavy use

of abstraction, called over-abstraction in this dissertation.

Example:

Consider the circuit modelled in Figure 2.8. Using the ordering

i1 < i2 < i3 < o1 < o2, suppose A = {01100, 10100}. Then α(A) = XX100,

Y T(α(A)) = X1, and α(Y B(A)) = α(11) = 11. Observe that abstracting the result

of binary simulation delivers a less abstract result than simulating the abstracted an-

tecedent: α(Y B(A)) = 11 � X1 = Y T(α(A)). As noted above, in some cases we can

still draw a conclusion from the ternary simulation run result, in others we cannot:

Figure 2.8: A simple circuit for which over-abstraction can be observed.

1. Suppose C = {01, 11}. Then Y T(α(A)) = X1 � X1 = α(C), and thus we can

conclude that M |= A⇒ γ(α(C))

2. Suppose C = {00}. Then Y T(α(A)) = X1 6= 00 = α(C). But there ex-

ists a circuit node that has a binary assignment and violates the consequent:

Y T(α(A))[2] = 1 6� 0. Thus we may conclude that M 6|= A⇒ C.

3. Finally, there are two options for a weak disagreement – the case where a prop-

erty does hold, and that in which it does not hold. We cannot tell which of

these cases holds when encountering such a result. Hence we cannot determine

whether the circuit satisfies the property or not.

• Suppose C = {11}. The value of o1 is indeterminate, but the property

requires it to be false. All other requirements, namely o2 = 1, are met.

Hence we cannot conclude that the model does not satisfy the property.

Indeed, the binary run shows that the circuit does meet the specification.

• Suppose C = {01}. As above, we cannot conclude whether the model

does not satisfy the property. In this case the circuit does not meet the

specification, but as seen above it might have.
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The key here is that the result of the ternary simulation does not always provide

all the necessary information for determining whether a circuit satisfies the

desired property. In this case the verification neither passes, nor fails. Instead

it signals that α(A) did not provide enough information to determine the result.

F

In the following sections we introduce Symbolic Trajectory Evaluation, including

the logic it is based on, Trajectory Evaluation Logic. It allows only statements for

which γ(α(C)) = C, and thus Theorem 2.6 is applicable. As captured in Theorem 2.11

this allows the verification or disproof of properties of a binary circuit by simulating

it in the ternary domain. First, however, we need to define trajectories, which express

runs of ternary simulation.

2.3 Trajectories

A trajectory is an infinite sequence of states in the ternary domain that the circuit M

could actually exhibit. For each cycle, it gives the ternary values of the state-holding

elements observable assuming the circuit inputs are driven with specific values. As

already described in Section 2.2.2 we employ the next state function to formalise

this concept. For trajectories we need to apply the next state function repeatedly.

Formalising this is easier when the domain and co-domain are the same. Thus, as we

suggested previously, we prefix the sequence of values of the state-holding elements

with the sequence of values of the circuit inputs, which are all unknown and so have

the value X.

The ultimate goal is to use trajectories for formal verification, so the ordering on

ternary states is essential. Previously, we introduced �. However, to be consistent

with conventional STE presentations, we now switch to a different ordering v on

ternary states. It is an information order, and the reverse of the abstraction order

� introduced in Section 2.2.3: a v b :⇔ b � a. So v pointwise extend the partial

order where X v 0 and X v 1. X provides less concrete information about a node

than 0 or 1, thus motivating the name “information order”. Moreover, it is partial,

because we cannot order 0 below or above 1. Augmented with a greatest element

>, this partial order gives us a complete lattice (Ti+l ∪ {>},v). See Figure 2.9 for

two examples. Notice that the greatest element > corresponds to the least element

⊥ introduced in Section 2.2.3.

Using this new ordering we can define a trajectory in terms of the monotonic next
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Figure 2.9: Hasse diagram for the complete lattices (a) (T ∪ {>},v) and
(b) (T2 ∪ {>},v)

state function Y T.

Definition 2.7 (Trajectory). A trajectory σ : N→ Ti+l of a circuit M is an infinite

sequence of states such that

∀t ∈ N : YM(σ(t)) v σ(t+ 1),

where i denotes the number of circuit inputs, and l the number of state-holding ele-

ments in M .

Definition 2.8 (Suffix of a Trajectory). The ith suffix σi of a trajectory σ is a tra-

jectory such that

∀j ∈ N : σi(j) = σ(i+ j).

Next we introduce a logic, which allows us to express which behaviour we expect

a circuit to have.

2.4 Trajectory Evaluation Logic

The logic used for expressing properties of circuits in Symbolic Trajectory Evaluation

is called Trajectory Evaluation Logic, in short TEL [2]. It can be used to stipulate the

values that nodes must have at specified points within a bounded period of time. The

full syntax is given in Figure 2.10. Trajectory Evaluation Logic is quite restrictive.

Conjunction of formulae is allowed, but negation and disjunction are not. Somewhat

more expressive statements than might at first appear possible can be phrased with

symbolic indexing, which we discuss in more detail in Section 2.6.

A guarded formulae G _ f1 expresses that the formula f1 needs only be asserted

if a propositional formula G, called guard, is satisfied. Whenever guards are used, the
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f1, f2 := n is 0 the value of node n ∈ N is 0
| n is 1 the value of node n ∈ N is 1
| f1 and f2 conjunction of formulae
| Nf1 f1 holds in the next time step
| G _ f1 assert f1 only if the propositional formula G holds

Figure 2.10: Syntax of Trajectory Evaluation Logic given a circuit with nodes N .

TEL formula can have a set of free variables V , which the guards depend on. Usually,

different guards will have some variables in common. A very simple example is the

TEL formula

(vi _ ni is 1) and (vi _ ni is 0).

This requires the node ni to have the “same” value as the variable vi. When vi

evaluates to true, then the TEL formula ni is 1 needs to be asserted, when vi evaluates

to false, i.e., vi holds, then the TEL formula ni is 0 needs to be asserted. Two guards

are used, vi and vi, which both depend on the same variable vi. We will later see that

such a TEL formula can be used for saying that the node ni has a symbolic value vi.

Throughout this dissertation, we will see many more complex constructs that make

heavy use of guards.

Next we define when a trajectory σ satisfies a TEL formula f under an assignment
←−
V to the free variables used in f , more specifically in its guards. Given a guard G, we

may document the variables it contains by giving a set of variables in square brackets:

G[V ]. G(
←−
V ) then denotes the formula where the free variables V of G are replaced

by the values specified in the assignment
←−
V . We can then determine the formula’s

Boolean value and, for simplicity, write G(
←−
V ) ∈ {tt,ff}. As all guards evaluate to

either true or false when applying the assignment
←−
V , f can then be simplified to

a formula without guards. We will later see that in STE satisfaction of a formula

by a circuit model means satisfying the different TEL formulae that arise across all

possible assignments
←−
V , not just a single one.

The definition of satisfaction of a TEL formula f is given in Figure 2.11. If f

simply states that a node ni must have a concrete value, e.g. 0, then a sequence σ

satisfies f if and only if the corresponding node is assigned that value: σ(0)[i] = 0.

Remember that σ(0)[i] denotes the ith entry of the tuple σ(0), which corresponds

to the value of the ith node of the circuit at time 0. If f is a conjunction of two
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other TEL formulae, then the sequence must satisfy both of these formulae. A TEL

formula Nf states that at the next point in time the formula f needs to be satisfied;

so σ satisfies the formula Nf exactly if its suffix σ1 satisfies f . Finally, for a guarded

formula G _ f , σ needs to satisfy the formula f only when G(
←−
V ) evaluates to true.

←−
V , σ |= ni is 0 :⇔ (σ(0) = >) or (σ(0)[i] = 0)
←−
V , σ |= ni is 1 :⇔ (σ(0) = >) or (σ(0)[i] = 1)
←−
V , σ |= f1 and f2 :⇔ (

←−
V , σ |= f1) and (

←−
V , σ |= f2)←−

V , σ |= Nf :⇔
←−
V , σ1 |= f

←−
V , σ |= G _ f :⇔ G(

←−
V ) implies (

←−
V , σ |= f)

Figure 2.11: Satisfaction of TEL formulae

Every trajectory formula f has the useful property that given
←−
V it has a unique

weakest sequence [f ]
←−
V which satisfies it. Note that when we say it is the weakest

sequence we express that any other sequence that also satisfies the same TEL formula

is ordered below it using the ordering v:

σ1 v σ2 :⇔ ∀t ∈ N : σ1(t) v σ2(t)

Note that existence of a weakest sequence is ensured, because the sequence ∀t : σ(t) =

> satisfies all TEL formulae. There being a unique weakest sequence is guaranteed,

because our domain is a complete lattice, and so every subset of elements has a least

upper bound. As the sequence is uniquely defined, we call it the defining sequence of

f .

Definition 2.9 (Defining Sequence). The defining sequence [f ]
←−
V of a TEL formula

f is the weakest sequence that satisfies f given the assignment
←−
V to its free variables:

∀
←−
V .∀σ.

←−
V , σ |= f ⇔ [f ]

←−
V v σ

The defining sequence allows an easy way to check whether another sequence σ

satisfies a formula. Rather than using the original definition of satisfaction, we can

check whether σ is ordered below [f ]
←−
V with respect to v:

←−
V , σ |= f ⇔ [f ]

←−
V v σ

Explicitly stating the defining sequence is straightforward, as summarised in Figure

2.12. In essence, for each point in time the defining sequence constrains a node to
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have a concrete value if and only if the TEL formula requires this. For conjunctions,

the least upper bound of the defining sequences of each of the subformulae needs

to be taken, so that both formulae are satisfied simultaneously. We achieve this by

determining the join σ1 t σ2 of two sequences σ1 and σ2:

σ1(t) t σ2(t) =


> if ∃j.σ1(t)[j] 6v σ2(t)[j] ∧ σ2(t)[j] 6v σ1(t)[j]

j 7→

σ1(t)[j] if σ2(t)[j] v σ1(t)[j]

σ2(t)[j] if σ1(t)[j] v σ2(t)[j]
otherwise

In particular, if a TEL formula requires contradicting values, e.g. (ni is 0) and (ni is 1),

then the join of the defining sequences of each of the subformulae is >, as 1 6v 0 and

0 6v 1. Thus, > corresponds to an overconstrained sequence.

[ni is 0]
←−
V (0) = j 7→

{
0 if j = i

X otherwise

[ni is 0]
←−
V (t+ 1) = j 7→ X

[ni is 1]
←−
V (0) = j 7→

{
1 if j = i

X otherwise

[ni is 1]
←−
V (t+ 1) = j 7→ X

[f1 and f2]
←−
V (t) = [f1]

←−
V (t) t [f2]

←−
V (t)

[G _ f ]
←−
V (t) = j 7→

{
[f ]
←−
V [j] if G(

←−
V ) = tt

X otherwise

[Nf ]
←−
V (0) = j 7→ X

[Nf ]
←−
V (t+ 1) = [f ]

←−
V (t)

Figure 2.12: Value of the defining sequence of f under
←−
V

Note that the defining sequence of a TEL formula is not necessarily a trajectory

with respect to a circuit M . We therefore introduce the notion of the defining trajec-

tory.

Definition 2.10 (Defining Trajectory). The defining trajectory JfK
←−
V of a TEL for-

mula f is the weakest trajectory of a circuit M that satisfies f for the assignment
←−
V

to its free variables.

The defining trajectory can be determined recursively by taking the least upper
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bound of the defining sequence at that point in time, and the result of the next state

function from the previous point in time, as seen in Figure 2.13. Applying the next

state function to the defining sequence at the previous point in time ensures that

the model can indeed exhibit the behaviour encoded in JfK
←−
V , and thus leads to a

trajectory.

JfK
←−
V (0) = [f ]

←−
V (0)

JfK
←−
V (t+ 1) = [f ]

←−
V (t+ 1) t Y T

M(JfK
←−
V (t))

Figure 2.13: Value of the defining trajectory of f under
←−
V for the circuit M

2.5 Verification by STE

Statements in Symbolic Trajectory Evaluation have the form A ⇒ C, where the

antecedent A and the consequent C are TEL formulae. We say that a circuit M

satisfies the property if the consequent does not require any of the nodes of the model

to have a different concrete value than it actually exhibits. In other words, for each

node and for each point in time, the required node value v is either the same value w

as the circuit exhibits, or it is X.

Theorem 2.11. Let M be a circuit, let A and C be TEL formulae, and let
←−
V be an

assignment to the free variables in A and C. If JAK
←−
V � [C]

←−
V , then

γ(JAK
←−
V ) ⊆ γ([C]

←−
V ).

Proof. The set of binary states represented by a sequence s is γ(s). Note that γ has

to be extended to sequences for this. This is done in a straightforward fashion by

applying γ to each sequence element.

By applying Theorem 2.6, we can conclude that γ(JAK
←−
V ) ⊆ γ([C]

←−
V ) implies that

γ(JAK
←−
V ) ⊆ γ(α(γ([C]

←−
V ))). But γ ◦ α ◦ γ = γ:

I ∀C ∈ C, a ∈ A : α(C) � a⇔ C ⊆ γ(a) Definition of Galois connection

II ∀a ∈ A : α(γ(a)) � a Restrict I to C = γ(a)

III ∀a ∈ A : γ(α(γ(a))) ⊆ γ(a) Monotonicity of γ and II

IV ∀C ∈ C : C ⊆ γ(α(C)) Restrict I to a = α(C)

V ∀a ∈ A : γ(a) ⊆ γ(α(γ(a))) Restrict VI to C = γ(a)

VI ∀a ∈ A : γ(α(γ(a))) = γ(a) Apply III and V

42



Therefore γ(JAK
←−
V ) ⊆ γ([C]

←−
V ) as required.

Theorem 2.11 thus allows us to verify a circuit using STE by verifying that

JAK
←−
V � [C]

←−
V , or, using the information ordering, [C]

←−
V v JAK

←−
V . In Definition 2.12

we introduce a short form of writing M |= JAK
←−
V ⇒ [C]

←−
V . It is used henceforth, and

is also the notation commonly seen in other publications on STE.

Definition 2.12 (Satisfaction under an Assignment). A circuit M satisfies A ⇒ C

under the assignment
←−
V , written

←−
V ,M |= A⇒ C, if [C]

←−
V v JAK

←−
V .

Note that here the set of free variables V includes all free variables in A and C.

Some of the same variables may – and usually will – be used in the antecedent and the

consequent. More details on the effect of sharing these variables is given in Section

2.6.

Also, in the beginning of Section 2.3 we introduced the information order v as the

reverse of the order �, which we had used when formalising the connection between

binary and ternary simulation. By extending the � order to sequences as well, we can

formulate a verification satisfaction that looks more similar to the definition given in

Section 2.2.3:

←−
V ,M |= A⇒ C ⇔ JAK

←−
V � [C]

←−
V

where

σ1 � σ2 ⇔ ∀t ∈ N : σ1(t) � σ2(t)

Satisfaction is defined in terms of the information order v, as it is the order used in

most of the literature on Symbolic Trajectory Evaluation, presumably because the

first publication on STE introduced this order [23].

Finally, we say that a circuit has the property A⇒ C if it satisfies it irrespective

of the assignment to the free variables of the antecedent and consequent:

Definition 2.13. A circuit M satisfies the STE statement A ⇒ C if it does so for

all assignments
←−
V to the free variables of the TEL formulae A and C:

M |= A⇒ C :⇔ ∀
←−
V :

←−
V ,M |= A⇒ C

If it is clear which circuit is being verified, we may write |= A⇒ C.
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2.6 Symbolic Indexing

As seen in Figure 2.10, TEL formulae may use propositional formulae to guard

other TEL formulae: G _ f . Using such guards introduces free Boolean vari-

ables that allow us to attach symbolic values to nodes. For example, the formula

(vi _ ni is 1) and (vi _ ni is 0) can be interpreted as requiring the node ni to have

the same logic value as the Boolean valuation of vi. We introduce the shorthand

notation

n is vi ⇔ (vi _ n is 1) and (vi _ n is 0)

where n is a node and vi is a binary variable. In this dissertation we say that n is

a symbolic constant: it has a symbolic value, which is a simple variable, with two

possible Boolean values. This notation can also be used when attaching a whole

expression to n: n is P , where P is a formula of logic.

We call the use of guards symbolic indexing. This is motivated by the fact that a

TEL formula f with guards essentially encodes several formulae in one. The assign-

ment
←−
V to the free variables V of f then specifies which encoded formula without

guards applies. So the values of the free variables in the guards of f give an indexing

of all the formulae encoded by it.

Example: A TEL formula that uses guards

The TEL formula (n1 is v1) and (n2 is v2) encodes four TEL formulae:

1. The assignment a 7→ ff, b 7→ ff delivers the TEL formula (n1 is 0) and (n2 is 0).

2. The assignment a 7→ ff, b 7→ tt delivers the TEL formula (n1 is 0) and (n2 is 1).

3. The assignment a 7→ tt, b 7→ ff delivers the TEL formula (n1 is 1) and (n2 is 0).

4. The assignment a 7→ tt, b 7→ tt delivers the TEL formula (n1 is 1) and (n2 is 1).

F

In this example we saw how guards can be used to define symbolic constants. This

does not demonstrate the full potential of guards, which we now discuss. Realising

this full potential lies at the heart of the contributions of this dissertation.

Example: More elaborate symbolic indexing

Figure 2.14 shows a circuit that returns true in the next cycle if and only if any of

the inputs n2, n3, or n4 are equal to the input n1 in the current cycle. Suppose we
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Figure 2.14: A circuit that returns true if and only if any of the inputs n2, n3, n4 are
equal to the input n1

want to verify that if n1 and n2 have the same value, then the output n5 is 1. Then

we can choose the following antecedent A2 and consequent C:

A2 = (n1 is v1) and (n2 is v1)

C = N(n5 is 1)

Now suppose we want to verify that if any of the second to fourth inputs are equal to

the first input, then the output n5 will then be 1. This requires two more antecedents

similar to the one above, A3 = (n1 is v1) and (n3 is v1), and

A4 = (n1 is v1) and (n4 is v1). We can then check that M |= Ai ⇒ C, i ∈ {2, 3, 4}
separately. But with symbolic indexing this can also be expressed with a single STE

run, as follows:

A = (n1 is v1) and (v2 ∧ v3 _ n2 is v1)

and (v2 ∧ v3 _ n3 is v1)

and (v2 _ n4 is v1)

Notice how the assignment v2 7→ ff, v3 7→ ff leads to the same STE run as using A2 as

the antecedent, v2 7→ ff, v3 7→ tt leads to the STE run using A3, and v2 7→ tt leads to

the STE run using A4 irrespective of the assignment to v3. F

In actual implementations of STE, all included runs are computed simultaneously,

rather than separately simulating each STE run under one variable assignment. In

Section 2.7 we detail how these parallel computations can be carried out. Thereafter

we provide an example on how different symbolic indexings affect simulation costs.
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2.7 Representation

The efficiency of computing the result of STE runs that include symbolic indexing

heavily depends on how ternary values and the binary guard formulae are represented.

In the following we introduce the most common representation for this, which is based

on a dual rail encoding for ternary values, and binary decision diagrams for binary

formulae [33]. It is also the representation we assume is being used throughout this

dissertation. It is not the only representation, though. To highlight this we briefly

describe a second family of representations, which encode the verification problem in

non-canonical binary expressions to be examined by a satisfiability solver.

Dual Rail Encoding

A ternary elements t ∈ T can be encoded with a pair of binary values using the dual

rail encoding. In this dissertation we assume the encoding shown in Figure 2.15.

dual rail : T→ B2,


X 7→ (tt, tt)

tt 7→ (tt,ff)

ff 7→ (ff, tt)

Figure 2.15: Dual rail encoding of ternary values

Intuitively, the first entry of the pair signifies whether a true value is allowed,

and the second whether a false one is allowed. If both values are allowed, this leads

to an indeterminate value; otherwise the corresponding binary value is represented.

Note that the pair (ff,ff) does not represent any ternary value. When it is necessary

to represent the overconstraint value >, that encoding may be used. The intuitive

explanation also works here: neither Boolean value is allowed.

As seen in Figure 2.16, this encoding enables an efficient computation of all basic

operations required for STE. The following example makes conjunction and disjunc-

tion of dual rail pairs more explicit.
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(H,L) = (L,H)
(H1,L1) ∧ (H2,L2) = (H1 ∧ H2,L1 ∨ L2)
(H1,L1) v (H2,L2) ⇔ (H1 → H2) ∧ (L1 → L2)
(H1,L1) t (H2,L2) = (H1 ∨ H2,L1 ∨ L2)
(H1,L1) u (H2,L2) = (H1 ∧ H2,L1 ∧ L2)

Figure 2.16: Computation of negation, conjunction, ordering, and upper and lower
bounds using the dual rail encoding.

Example: Conjunction and disjunction of dual rail pairs

ff tt X
∧ (ff, tt) (tt,ff) (tt, tt)

ff (ff, tt) (ff, tt) (ff, tt) (ff, tt)

tt (tt,ff) (ff, tt) (tt,ff) (tt, tt)

X (tt, tt) (ff, tt) (tt, tt) (tt, tt)

ff tt X
∨ (ff, tt) (tt,ff) (tt, tt)

ff (ff, tt) (ff, tt) (tt,ff) (tt, tt)

tt (tt,ff) (tt,ff) (tt,ff) (tt,ff)

X (tt, tt) (tt, tt) (tt,ff) (tt, tt)
F

2.7.1 Binary Decision Diagrams

It still remains to explain how binary values are represented, especially if they are

symbolic. In [34] Lee introduced the notion of Binary Decision Diagrams (BDDs).

These are rooted, directed, acyclic graphs, which have internal decision nodes, and

leaves with the label 0 or 1. Each internal decision node is labelled with its corre-

sponding variable name, and has two child nodes, which represent an assignment of

the variable to 0 and 1 respectively. Bryant introduced efficient algorithms for BDDs

in [35]. In particular, he introduced the notion of reduced, ordered BDDs (ROBDDs).

A BDD is ordered if for all paths from the root to one of the leaves the variables ap-

pear in the same order. A BDD can be reduced by merging isomorphic subgraphs, and

eliminating nodes when both children point to the same node. In this dissertation all

BDDs are ordered and reduced.
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Example: Reduced Ordered Binary Decision Diagrams

Figure 2.17 shows two reduced, ordered BDDs for (v1 ∨ v2)∧ v3 ∧ v4. Note how there

are several BDDs that represent the same binary, symbolic value, and that depending

on the variable order the BDD can have a different number of internal nodes.

Figure 2.17: BDD for (v1 ∨ v2) ∧ v3 ∧ v4 using the variable ordering (a) v1, v2, v3, v4,
(b) v4, v3, v2, v1, and (c) v2, v3, v4, v1

First consider Figure 2.17 (a). The branches that assign a low value to the variable

are marked with dashed lines, and those that assign a high value are marked with

solid ones. Notice that if v1 is true, then the value does not depend on the value of v2

anymore. So the node for v2 is omitted, and the high branch of v1 goes directly to the

node for v3. Similarly, the low branch of v3 directly leads to 0, because irrespective of

the value of v4 the value is 0. Finally, several nodes point to a single leaf for 0. This

is so, because all leaves with a label 0 are isomorphic, and are hence merged. F

As already seen in the small example above, the size of the BDD depends on the

variable ordering used. Given a binary value that depends on k variables the BDD

can have up to 2k nodes, possibly only because an unsuitable ordering was chosen.

Unfortunately, finding the best ordering is NP-hard [36].

In STE, ternary values are usually stored as a pair of BDDs. This allows simul-

taneously computing the result of STE statements that include guarded formulae,

because we do not need assignments to the variables introduced by the guards of the

TEL formulae. All assignments are captured by the BDDs. When choosing symbolic

indexings for STE, we want them to lead to small BDDs. Then both time and memory

costs decrease. In particular, using fewer variables in an indexing potentially leads
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to smaller BDDs. Also, if the simulation result does not depend on all the variables

specified in the indexing, the resulting BDD is often smaller. Finding such indexings

is especially valuable.

Example: Reducing the size of BDDs using Symbolic Indexing

If we want to verify that the circuit depicted in Figure 2.14 (page 45) returns a high

output if and only if any of the inputs n2, n3, n4 matches the input n1, then the

following symbolic indexing can be used:

A1 = (n1 is v1) and (v2 ∧ v3 _ n2 is v1)

and (v2 ∧ v3 _ n3 is v1)

and (v2 ∧ v3 _ n4 is v1)

and (v2 ∧ v3 _ (n2 is v1) and (n3 is v1) and (n4 is v1))

C1 = n5 is v2 ∧ v3

Forte is a verification environment developed by Intel R© [37]. It includes an imple-

mentation of BDD-based STE. Simulating the circuit with the antecedent A1 in the

Forte environment results in the pair (v2 ∨ v3, v2 ∧ v3) on node n5. Note that this

pair represents the symbolic value v2 ∧ v3, as seen in the consequent C1. Indeed, only

if the simulation result implies the consequent does the verification succeed. More

importantly for this example, though, is that the variable v1 used in the symbolic

indexing does not appear in the simulation result. This simplification was possible,

because we used v2 and v3 for enumerating cases, and v1 only for comparing the first

input with the other ones.

In contrast, suppose we had represented each input with an individual variable:

A2 = (n1 is v1) and (n2 is v2) and (n3 is v3) and (n4 is v4)

C2 = n5 is (v1 ∧ v2) ∨ (v1 ∧ v3) ∨ (v1 ∧ v4)∨
(v1 ∧ v2) ∨ (v1 ∧ v3) ∨ (v1 ∧ v4)

Simulating the circuit with the antecedent A2 in the Forte environment results in

the pair (H,L) on n5 where

H = (v1 ∧ v2) ∨ (v1 ∧ v3) ∨ (v1 ∧ v4) ∨ (v1 ∧ v2) ∨ (v1 ∧ v3) ∨ (v1 ∧ v4)

L = (v1 ∧ v2 ∧ v3 ∧ v4) ∨ (v1 ∧ v2 ∧ v3 ∧ v4).

Figure 2.18 shows BDDs that represent the high rail of each of the results: (a)

with a good encoding of the symbolic indexing, and (b) with a variable per input. In
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Figure 2.18: BDD for the high rail when simulating the circuit with respect to (a) A1,
and (b) A2

our case the low rail is the exact complement, so the BDDs look almost the same –

only the leaves 0 and 1 are swapped. Note that we chose an optimal ordering for the

BDD returned when simulating with A2. The ordering v2, v3, v4, v1 would result in a

significantly bigger BDD. F

Thus, two aspects influence verification costs substantially: first, which symbolic

indexing is used to encode the property the circuit should meet; and second, which

variable ordering is used. All experimental results collected in this dissertation do not

specify the variable ordering, thus letting the implementation of STE decide which

ordering to apply. Finding good orderings for ROBDDs is an area of research in itself.

We concentrate on the aspect of creating good symbolic indexings.

2.7.2 SAT-based STE

Recall that when verifying |= A⇒ C, implementations of Symbolic Trajectory Eval-

uation first compute the weakest trajectory that satisfies the antecedent A, and then

check whether that trajectory also satisfies the consequent C. While commonly these

computations are done using a dual rail encoding and BDDs to represent the values

of each rail as described above, other approaches exist. Notably, Symbolic Trajectory

Evaluation can also be done with a SAT-based check. Several different approaches

exist that utilise a satisfiability solver.

One approach is to encode the ternary domain using two variables. The simula-

tor then works on non-canonical binary expressions to determine an expression that
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represents the weakest trajectory. Checking whether |= A ⇒ C holds is then done

by feeding a propositional formula into a SAT-solver that says there exists an assign-

ment such that the weakest trajectory does not satisfy the consequent. Thus, if a

satisfying assignment is found, the design is not correct. Bjesse et al. implemented

this approach and used it to find bugs in an Alpha microprocessor [38].

A second option is to work on all trajectories that satisfy the antecedent, rather

than computing the weakest one. Roorda and Claessen suggest this approach and

present an algorithm, which computes a constraint that has no solution if and only if |=
A⇒ C holds. This, they argue, delivers a representation of the verification problem

that SAT-solvers can solve more efficiently, and thus results in better performance [39].

Further alternatives for using satisfiability solvers in STE have been suggested and

put to the test. For example, Roorda uses a 3-valued SAT-solver, which thus does not

require two variables to represent the ternary domain [40]. Grumberg et al. leverage

the Circuit-SAT method, which is based on a justification algorithm that searches

for partial input combinations that force a specific node to a given value, to present

another variant of SAT-based STE [41].

This dissertation, however, is restricted to BDD-based Symbolic Trajectory Eval-

uation. In particular, all experimental results presented in Chapters 5 and 8 reflect

STE runs using a dual rail encoding and BDDs. Despite extensive experimental inves-

tigation of SAT-based STE, we did not find a way to exploit good symbolic indexing

encodings via SAT.

2.8 History of STE

Symbolic Trajectory Evaluation, as described above, was introduced by Bryant,

Beatty, and Seger in 1991 [23, 42, 43]. These publications give a first description

of STE, but the underlying theory is not explained fully.

In 1999, Chou then elaborated the theory of STE, giving both a set-theoretic and

a lattice-theoretic viewpoint [32]. While the set-theoretic approach is impractical, it

does provide an understandable description of STE. Circuits are seen as functions

that maps sets of configurations to the next possible set of configurations. These con-

figurations work over the Boolean domain. Assertions are described by a quintuple.

The set of relevant states, a designated initial state, and a transition relation specify

which trajectories are valid. The antecedent and the consequent function map each
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state to a set of configurations. A circuit then satisfies an assertion if every trajectory

that complies with the antecedent also fulfils the consequent.

For the lattice-theoretic description, rather than working over the Boolean domain,

ternary vectors are used. This reduces the problem size considerably, but comes at

the price of information loss. Hence assertions have to be formulated differently, or a

family of assertions is necessary instead. The ternary model itself is shown to be an

abstract interpretation of the Boolean model via a Galois connection [30]. This means

properties can be proved on an abstraction to then conclude the same properties hold

for the concrete model. The lattice-theoretic approach is more closely related to

actual implementations of STE.

In 2006, Roorda and Claessen published the closure semantics of STE [44]. This

work is motivated by the fact that the previously stated semantics is not faithful

to what implementations actually do. They give a simple example where, according

to the published semantics, the assertion cannot be verified, but known STE imple-

mentation succeed. The key difference between the two semantics is as follows. The

previous semantics only specifies how information is propagated between nodes from

one time-point to the next. The closure semantics complete this by also describing

what happens inside combinational logic in between the two time points. The closure

semantics introduced is faithful to the proving power of STE algorithms, which can

track and specify logic implications between nodes at the same time-point.

The first implementation, called VOSS, was established by Seger [33]. A strongly

typed, higher order, lazy functional programming language called FL was introduced.

This allows the organisation of large proof tasks and efficient scripting. At the same

time, FL can be used as an expressive specification language. In this system, STE

is built in using ordered binary decision diagrams (OBDDs). The ternary domain is

represented via the dual-rail encoding introduced above: the first formula specifies

whether the value is true, the second whether the value is false; if both of these hold,

the value is indeterminate.

VOSS was then extended to produce Intel R©’s Forte environment [37], which used

to be publicly available for noncommercial use. A seamless integration of both STE

and theorem proving was accomplished [45]. For this, FL was lifted: it is used both

as the object and the meta language. This enables both the execution of functions

and reasoning about them. Essentially, any expression that evaluates to true can be

transformed into a theorem. Thus, a tight integration between theorem proving and
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model checking is achieved. A complete description of the Forte system, including

theory, usage methodology, and case studies, was published in 2005 [46].

The first big industrial breakthrough for STE was accomplished in 1999: the

complete formal verification of floating-point arithmetic hardware of the Intel R© Pro

processor against IEEE-level specifications [47]. This clearly showed the potential

of Symbolic Trajectory Evaluation, and greatly motivated the work that followed

on STE. Numerous other success-stories on industrial designs have also been pub-

lished [25,26,45,48–55].

In 2001, Bjesse et al. implemented Symbolic Trajectory Evaluation using a differ-

ent representation. Namely, rather than using BDDs, as in VOSS, the verification

problem is encoded as a satisfiability problem. If there exists an assignment to the

variables for a specially constructed binary formulae, then the hardware does not

meet its specification. Bjesse et al. successfully used this implementation to find bugs

in an alpha microprocessor [38]. Further approaches, in which STE uses satisfiability

solvers to determine the verification output have been presented since [39,41].

More recently, work has concentrated on automation techniques for STE. Roorda

and Claessen propose a SAT-based algorithm that helps users manually refine ab-

stractions [56]. If the abstraction used in an STE run retains too little information,

the proposed algorithm calculates a strengthening using SAT. Tzoref and Grumberg

describe how to determine which inputs to drive using a symbolic value when over-

abstraction occurs [27]. These inputs are chosen using heuristics that distinguish

between control nodes and data nodes. Chockler, Grumberg, and Yadgar suggest an-

other heuristic, which selects input to refine the abstraction by using the concept of

“degree of responsibility” [3]. Notably, [56] gives guidance to the user only, while [27]

and [3] propose an automatic refinement loop. However, the latter cannot handle

complex encodings of abstraction families. Parts of this dissertation builds on this

work, and amongst other extensions addresses how to handle such complex encodings.

Finally, Generalised Symbolic Trajectory Evaluation (GSTE) [57] was introduced

in 2001. It extends Symbolic Trajectory Evaluation in that it has a more powerful

logic to express properties. Notably, while STE only allows properties over finite time

intervals, GSTE supports properties over unbounded time intervals, too. Some work

has been done to clarify and further formalise GSTE [58–63], as well as suggest refine-

ment techniques [28, 64]. In this dissertation, however, we concentrate on Symbolic

Trajectory Evaluation only.
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2.8.1 Other Abstraction Frameworks

Easing verification by abstraction, as well as refining these abstractions, is a common

idea not just found in Symbolic Trajectory Evaluation. A wealth of research has

focused on how to make feasible the verification of increasingly large and complex

designs through abstraction. An extensive summary of all this work is not appro-

priate here, but some excellent surveys of different approaches have been published

previously; we mention some of these here.

In [65] Grumberg surveys abstraction and refinement in model checking. In par-

ticular, she concentrates on existential abstraction, which over-approximates the be-

haviours of concrete models. The paper focuses on abstraction functions only, i.e.,

every concrete state may only be represented by one abstract state. In particular,

this excludes Symbolic Trajectory Evaluation, which commonly covers a concrete

state multiple times, by the nature of ternary simulation based on the indeterminate

value X.

Predicate abstraction is a popular abstraction technique especially for software

model checking [21]. Skilfully selected predicates are used to extract finite state mod-

els from infinite state systems. The same technique can also be applied to hardware

designs, which are finite state, but at a very large scale. Clarke et al. describe how

SAT-based predicate abstraction can used in hardware verification [66]. In particu-

lar, they also describe a counterexample-guided abstraction refinement loop, by which

spurious behaviour is eliminated.

Other work concentrates on verifying hardware, where the concrete model is pre-

sented at a higher level of abstraction, thus moving away from the low-level repre-

sentation of netlists. Kroening and Seshia survey such techniques in [67], presenting

word-level and term-level verification with predicate abstraction and satisfiability

modulo theories (SMT).

This dissertation, however, concentrates solely on verification of hardware at the

level of netlists.

2.9 Reindexing in STE

In Section 2.6 we described symbolic indexing, which allows combining several TEL

formulae to one by introducing propositional formulae called guards. The choice of

appropriate guards can significantly reduce verification costs, which, for BDD-based

STE, greatly depend on the size of the BDDs used. The size in turn is reliant on the
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number of variables, their ordering, and the expressions on those variables that need

to be stored. The choice of guards impact two of these three aspects, namely the set

of variables, and the initial expressions, which are used in the simulation. So a good

symbolic indexing keeps memory costs low, and thus potentially enables verifying

circuits previously classified as infeasible.

But symbolic indexing is not used nearly as often as it is applicable [2]. Melham

and Jones identify the two main reasons for this: it is hard to find good indexings,

and results obtained by indexed STE runs cannot be composed. To address the

second hurdle, they developed a theory of how to switch between different indexings,

a procedure called reindexing. This paves the way for wider use of symbolic indexing

by enabling compositionality.

Reindexing is motivated by the fact that there are multiple options for guards to

essentially encode the same TEL formula in that they enumerate the same set of TEL

formulae. For example,

f [V ] = (v1∧v2 _ n1 is 1 and n2 is 0) and (v1∧v2 _ n1 is 1) and (v1∧v2 _ n2 is 0)

and

f ′[X ] = (x1 _ n1 is 1) and (x2 _ n2 is 0)

both encode four different, simpler TEL formulae:

TEL formula
←−
V

←−
X

n1 is 1 and n2 is 0 {v1 7→ tt, v2 7→ ff} {x1 7→ tt, x2 7→ tt}
n1 is 1 {v1 7→ tt, v2 7→ tt} {x1 7→ ff, x2 7→ ff}
n2 is 0 {v1 7→ ff, v2 7→ ff} {x1 7→ ff, x2 7→ tt}

{v1 7→ ff, v2 7→ tt} {x1 7→ tt, x2 7→ ff}

Melham and Jones describe how to move from one such formula f [V ] to the other

f ′[X ] using a reindexing relation R[X ,V ]. It essentially encodes which assignments
←−
X correspond to the assignments

←−
V . So given f [V ] and R[X ,V ], they describe how

to construct f ′[X ]. Their main motivation was allowing compositionality of STE

statement for decompositional verification of designs. In Chapter 3 we argue that

reindexing can also be used to reduce the problem of finding good indexings to that

of finding appropriate reindexing relations. Note that Melham and Jones do not

provide guidance on how to find reindexing relations, but only how to apply them
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once they have been devised. Part of the research reported in this dissertation fills

exactly this major automation gap, in essence by computing candidate reindexing

relations automatically.

Devising reindexing relations that introduce better symbolic indexings is hard.

The verification costs of BDD-based STE highly depend on the size of the BDDs,

which in turn is determined by the symbolic indexing. Finding an optimal variable

ordering for BDDs is NP-hard already. So finding the reindexing relation that leads

to the best symbolic indexing seems to be NP-hard, too.

Suppose we have a reindexing relation R[X ,V ]. Given an STE task to verify

that M |= A ⇒ C, Melham and Jones describe how to replace the guards in the

antecedent A[V ] and the consequent C[V ] by new propositional formulae over the

set of variables X . They prove that if the transformed STE run succeeds, then the

original one, |= A ⇒ C, also holds. This requires the reindexing relation to have

specific properties; it needs to express which assertions of the future guards handle

each and every assertion of the previous guards, to ensure that all cases checked before

are still covered by the new verification.

Figure 2.19: (1) Antecedent and consequent are transformed using a reindexing rela-
tion. (2) If the transformed STE run is successful, then |= A⇒ C also holds.

The reindexing algorithm updates both the antecedent and the consequent of

the STE run using the provided relation. During this update, the verification task

M |= A⇒ C must not lose strength, and updating the antecedent and the conse-

quent require different operations. Antecedent weakening, that is relaxing the initial

requirements specified by the antecedent, sustains or increases strength:

if [Aold]
←−
V v [Anew]

←−
V and

←−
V |= Anew ⇒ C then

←−
V |= Aold ⇒ C

Similarly, consequent strengthening, that is increasing the demands postulated by the
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consequent, meets the same requirement:

if [Cnew]
←−
V v [Cold]

←−
V and

←−
V |= A⇒ Cnew then

←−
V |= A⇒ Cold

Melham and Jones weaken and strengthen STE assertions by computing certain

preimages of the provided relation. The relation expresses which new indexing cases,

dependent on the variables X , correspond to the old indexing cases, which are depen-

dent on the variables V . The weak preimage PR of a predicate P expresses which new

indexing cases can represent old indexing cases that satisfy the predicate. The strong

preimage PR, on the other hand, captures which new indexing cases must represent

old indexing cases that satisfy the predicate. So PR is a subset of PR that excludes

all indexing cases that can also represent old indexing cases that do not satisfy the

predicate.

Figure 2.20: (1) The reindexing relation encodes which new indexing cases cover the
old ones. (2) The weak preimage PR includes all new cases that can correspond to an
old case that satisfies the predicate P . (3) The strong preimage PR ⊆ PR excludes all
new cases that can correspond to old cases that do not satisfy P .

Figure 2.20 visualises the connection between weak and strong preimage. More

formally, weak and strong preimage are defined by

PR[X ] = ∃
←−
V .R(

←−
V )[X ] ∧ P (

←−
V ) and PR[X ] = PR[X ] ∧ PR[X ].

These computations have two effects. First, the updated predicate depends on

a different set of variables. Second, Melham and Jones showed that computing the

weak preimage leads to a weakening, and computing the strong preimage leads to a

strengthening of STE assertions [2]. This facilitates their main theorem:

Theorem 2.14 (Automatic Reindexing [2]). Let A and C be TEL formulae contain-

ing guards on the set of variables V. If R[X ,V ] |= AR ⇒ CR and the reindexing
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relation satisfies the coverage condition

∀
←−
V .∃
←−
X .R(

←−
X ,
←−
V ),

then |= A⇒ C holds.

The coverage condition ∀
←−
V .∃
←−
X .R(

←−
X ,
←−
V ) ensures that the new indexing scheme

covers all previous indexing cases. The relation depicted in Figure 2.20 (1) meets this

requirement: all cases in V have a preimage.

Theorem 2.9 also motivates a different intuition as to what the reindexing relation

expresses. Given an assignment
←−
X for the variables X , the relation states which old

indexing cases are checked by the transformed STE run:

If
←−
X |= AR ⇒ CR then R(

←−
X )[V ] |= A⇒ C.

Summing up, applying a new indexing scheme to an STE run requires (1) a rela-

tion that encodes which new indexing cases cover the old indexing cases, and (2) the

assurance that the new indexing cases cover all old indexing cases. The second re-

quirement is equivalent to checking whether the coverage condition ∀
←−
V .∃
←−
X .R(

←−
X ,
←−
V )

is satisfied.

Melham and Jones formalised the process of reindexing STE assertions. Their

method ensures that the transformed STE run is sufficient for proving the desired

properties, given the coverage condition holds. Verifying this additional requirement

is machine-checkable, which allows automation in principle. But, as mentioned, the

reindexing algorithm represents only a part of what is needed for full automation in

that a suitable relation has to be provided. The problem of finding good indexing

schemes itself was left open by Melham and Jones. Moreover, checking whether the

relation satisfies the side condition can be very expensive, since it involves existential

quantification over a possibly large number of variables.

In this dissertation we propose an approach for finding good symbolic indexings

by injecting the specification into auxiliary STE statements and reindexing them. In

particular, our algorithm generates relations that satisfy all required side conditions

by construction, thus eliminating a potentially costly check. So we provide a solution

to both limiting factors just identified: finding symbolic indexings, and ensuring they

are correct. In Chapter 3 we demonstrate that these symbolic indexings are good on

the example of three different hardware designs.
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Chapter 3

Abstraction Discovery

The characteristic power of verification by STE lies in the application of good ab-

straction schemes. But finding good abstractions manually is a hard task and has

presented a bottleneck to effective use of abstraction in verifying circuits.

This chapter introduces a novel automatic abstraction framework for STE, the first

ever solution to fully automatically verifying hardware with complex abstractions in

STE. Our approach takes the specification of a circuit and analyses it to generate an

STE statement that encodes an abstraction family. If the circuit meets this statement,

then the design meets its specification.

The STE statement created typically makes heavy use of non-trivial symbolic in-

dexing. This indexing is extracted from the specification in the hope that it keeps

verification costs low. At its core, our approach computes a group of partial in-

put combinations sufficient for determine the output of the specification. Each of

these partial input combinations, and the value of the specification for that setting,

then constitutes one of the STE statements enumerated by symbolic indexing. We

gradually build a symbolic indexing to construct the STE statement, letting the spec-

ification guide us to a symbolic indexing that is likely to be advantageous.

At the core of this framework stands an approach similar to Melham and Jones’

reindexing method, which we introduced in Section 2.9. Recall that they suggest

changing the symbolic indexing of an STE statement by applying a reindexing rela-

tion. So they require an initial STE statement A ⇒ C and a relation R, which has

to satisfy a coverage condition, and then produce a new STE statement AR ⇒ CR.

If the design satisfies this statement, then it also satisfies the initial statement. In

contrast, our approach takes the specification that the circuit is supposed to satisfy.

It then automatically generates an auxiliary STE statement and a relation. Finally,

it applies that relation to the auxiliary STE statement, and outputs the result. If the
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model satisfies the returned statement, then the design meets its specification.

Figure 3.1: (1) Reindexing by Melham and Jones, and (2) our approach to automatic
abstraction discovery

Figure 3.1 visualises the connection between the work presented in [2] and our

approach. The reindexing we perform as part of our abstraction discovery framework

differs significantly from the reindexing introduced by Melham and Jones. We apply

the relation to an auxiliary STE statement, in which the antecedent depends on a set

of variables V and the consequent on just a single variable o. The resulting statement

then still depends on o, but all occurrences of V are replaced in the reindexing process.

In contrast, Melham and Jones [2] eliminate all variables used in the initial STE

statement. Furthermore, our initial statement is independent of the specification, so

it is by itself not meaningful. Only after computing the weak and strong preimages do

the antecedent and the consequent express the requirements the specification sets. So

here the preimage computations change the meaning of the STE statement, whereas

Melham and Jones’ approach maintained the same meaning. The relation we generate

is thus not strictly speaking a reindexing relation, but rather a relation that injects

the specification into an auxiliary STE statement while at the same time introducing

a symbolic indexing. In the following we will call the relation a specification injection

and reindexing (SIR) relation.

Still, our approach uses reindexing as a basis. We present our modifications to Mel-

ham and Jones’ method in Section 3.1. Notably, the coverage condition the relation

has to satisfy is more restrictive to ensure correct verification results. In Section 3.2

we then present an automatic abstraction discovery algorithm, auto abstract, which,

given a specification, computes an SIR relation. This relation satisfies the more re-

strictive side condition by construction, so checking this does not impose additional

costs. It also does not require user input. Finally, in Section 3.3, we prove two

theorems. They state the correctness of the new approach, as well as our relation

satisfying the adjusted coverage condition by construction.
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The significance of our approach is that all three manual aspects of Melham and

Jones’ work [2] are automated away. We do not have to construct the initial STE

statement anymore, we do not have to provide a relation, and we do not have to

check that the relation covers all observable cases. Both providing a relation and

checking its coverage were very significant intellectual and computational limiting

factors in the previous approach. Our method is automatic and thus removes both

these bottlenecks.

3.1 Abstraction through Reindexing

In Section 2.9 we saw that given a suitable relation, Melham and Jones’ algorithm

changes the indexing used by STE. In particular, a reindexing relation that encodes

the transformation from full symbolic simulation to a more elaborate indexing scheme

introduces abstraction. Thus, automatically computing such a relation yields an

automatic abstraction mechanism for Symbolic Trajectory Evaluation.

Full symbolic simulation declares that each input node ni has a symbolic value

denoted by a corresponding binary variable vi:
∧

i(vi → ni is 1) ∧ (vi → ni is 0),

or, in short,
∧

i ni is vi. In the following, the set of variables used for full symbolic

simulation is called V = {vi : i ∈ I}. Suppose that the consequent states that

the implementation output equals the value of a Boolean function of these variables,

expressed as a formula of propositional logic, spec[V ]. Then a successful STE run

verifies the full correctness of the implementation:

|=
∧
i

ni is vi ⇒ out is spec[V ] (3.1.1)

Here spec[V ] is the expression representing the specification. Its free variables, V ,

are exactly those used in the antecedent. Recall that out is spec[V ] is shorthand for

(spec[V ]→ out is 1) ∧ (spec[V ]→ out is 0).

This full simulation of the implementation is not feasible for many circuits, even

small ones, due to memory and time constraints. But it does provide a starting point

for introducing abstraction via reindexing. Applying a suitable reindexing relation

changes the symbolic indexing, and – as full simulation includes no abstraction – will

lead to an STE statement that will drive fewer inputs with symbolic values.

Our approach modifies this general idea by reindexing a slightly different STE

statement than seen in 3.1.1. This modification allows further automation. In Melham
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and Jones’ approach [2] it is sufficient to show that

∀
←−
V .∃
←−
X .R(

←−
X ,
←−
V) and R[X ,V ] |= (

∧
i

ni is vi)
R ⇒

(
out is spec[V ]

)
R

to conclude formal correctness

|=
∧
i

ni is vi ⇒ out is spec[V ].

Recall that R(
←−
X ,
←−
V ) stands for the relation where the variables X are replaced by

the values given in the assignment
←−
X and the variables V are replaced by values given

in the assignment
←−
V .

In our specification injection and reindexing (SIR) approach it is sufficient to show

that

o /∈ X and ∀
←−
V .∀←−o .

(←−o =
{
o 7→ spec(

←−
V )
}
⇔ ∃
←−
X .R(←−o ,

←−
X ,
←−
V )
)
(3.1.2)

and

R[o,X ,V ] |= (
∧
i

ni is vi)
R ⇒ (out is o)R (3.1.3)

to conclude formal correctness.

Simply put, our relation R[o,X ,V ] both encompasses the specification and rein-

dexes the full simulation to a more elaborate indexing. The STE run itself is simply:

|=
∧
i

ni is vi ⇒ out is o, (3.1.4)

By itself, STE run 3.1.4 has no expressive power with respect to verifying the circuit,

because it contains no data about the specification. This information is encompassed

in the SIR relation R[o,X ,V ], and in particular the use of the variable o within it.

The algorithm we introduce in Section 3.2 creates an SIR relation. The variable

o encodes whether each indexing case leads to a high or low output: the relation

received by replacing o with true results in a relation that enumerates all cases where

the specification is high and replacing o with false results in all cases where the speci-

fication is low. Thus, the relation includes the specification. The trivial side condition

o /∈ X ensures that o does not index cases itself, and its value can therefore be chosen
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independently. Condition 3.1.2 ensures that o correctly encodes the value of spec(
←−
V ).

A direct consequent of the side condition is ∀
←−
V .∃
←−
X .R

(
{o 7→ spec(

←−
V )},

←−
X ,
←−
V
)

and

subsumes the previous coverage condition, ∀
←−
V .∃
←−
X .R(

←−
X ,
←−
V ). The fact that the rela-

tion holds if and only if this assignment is chosen captures that the relation encodes

the specification accurately.

Theorem 3.1 (page 73) formalises this new approach. Provided the SIR relation R

correctly and fully captures the specification, i.e., it satisfies 3.1.2, and it covers all

observable cases, the STE run 3.1.3 is sufficient for proving formal correctness. This

sets the foundation for creating an automatic abstraction relation. Every relation

that satisfies these side conditions is suitable for introducing abstraction and at the

same time encoding the specification.

3.2 Basic Algorithm

This section introduces a basic algorithm that computes an SIR relation R[o,X ,V ]

that satisfies the required side conditions, given by 3.1.2. The structure of the spec-

ification guides the abstraction encoded into the relation. More specifically, the ab-

straction achieved leads to an STE run in which each verification case uses a minimal

partial input combination. Only some inputs are driven in each run, and they are

minimal in that (1) they are sufficient for the specification output to be concrete, and

(2) not specifying any of the inputs that are driven would result in an indeterminate

output. So our automatic abstraction algorithm has the task of determining which

partial input combinations are sufficient for a concrete output of the specification,

and generating a relation that maps these partial input combinations to the symbolic

values vi.

We use the specification to construct a suitable symbolic indexing for verifying

a design, because it is more uniform than the implementation: circuit structures

designed for speed, power consumption, size, and physical limitations are not involved.

Moreover, the specification often presents a simple version of the design, in which these

non-functional details are elided, while exhibiting the same input-output behaviour

as a correct implementation.

The core idea of our algorithm is to leverage constructs within the specification with

controlling values. They are the right candidates for abstraction, because if only a sub-

set of the inputs needs to be determinate for a concrete output, then all other inputs

may be driven with the indeterminate value X without leading to over-abstraction.
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Applying this idea uniformly across the specification allows us to compute all partial

input combinations that lead to determinate outputs of the specification. Ideally, this

abstraction also leads to determinate outputs when used to simulate the hardware

to verify, although this is not always the case, i.e., over-abstraction may occur. In

Chapters 4 and 6 we suggest two different approaches to address this.

We now describe how we compute the relation that stands at the core of our

automatic abstraction discovery approach. As it takes the specification as an input,

we first clarify which form of specifications we assume.

3.2.1 Form of Specifications

The auto abstract algorithm, which is introduced in Section 3.2.3, computes an SIR

relation by looking at the structure of the given functional specification. For sim-

plicity, we assume the specification is a propositional expression built with three

constructors:

spec := VAR v | NOT spec | spec AND spec

VAR introduces variables, NOT inverts an expression, and AND conjuncts two ex-

pressions. In this dissertation, we call such a Boolean expression bexpr, and it is only

used for specifications of circuits. We usually denote these by spec. In essence, we

can use any representation that we can process structurally, and which is not canoni-

cal. This allows us to deconstruct the expression without having to execute expensive

operations to re-establish the canonical form.

For simplicity, at this point we assume a tree-structure of the specification, rather

than a directed graph. As the same variable can be used multiple times in the

specification, this does not restrict its expressiveness. Furthermore, we will extend

our approach to directed acyclic graphs Section 4.1.

The bexpr type introduced above is also known as an and-inverter graph (AIG)

[68]1. We do not to use this name, as we initially work on trees only, and introduce

additional constructors, such as XNOR, later on in the dissertation.

1This early paper raised the interest in AIGs. While Hellerman calls them NAND circuits, the
name AIG established itself over the years.
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3.2.2 Shape of SIR Relations

The algorithm takes a specification that depends on a set of variables

V = {vi : i ∈ I} that correspond to the circuit’s inputs. Additionally, the algorithm

takes a variable o. It computes a relation of the following general shape:

R[o,X ,V ] =
∧
i

(Hi[o,X ]→ vi) ∧ (Li[o,X ]→ vi)

This enumerates a collection of partial input combinations which lead to a determinate

output of the specification. For this a set of fresh indexing variables X is introduced.

The value of the variable o tells us whether each partial input combination leads to

a high or low value of the specification.

In essence, Hi includes every indexing case in which the input node ni needs to be

driven with a high value vi. Dually, Li includes every indexing case in which it needs

to be driven with a low value vi. Thus, for each assignment ←−o and
←−
X , the relation

R(←−o ,
←−
X ) provides a partial input combination, which states which inputs need to

be driven with a concrete value, including whether it needs to be true or false. The

assignment ←−o determines whether the output of the specification is high or low for

this partial input combination.

Note that each valuation of ←−o and
←−
X leads to at least one of Hi(

←−o ,
←−
X ) and

Li(
←−o ,
←−
X ) being false, i.e., Hi and Li are mutually exclusive. Whenever both Hi and

Li are false, this means the value of the input ni is not specified, i.e., it is X, thus

indeed leading to partial input combinations. Our algorithm ensures that each of

these partial input combinations is minimal in that removing any of the specified

inputs would lead to an indeterminate output of the specification.

Example: 3-input AND-gate

Consider a circuit consisting of a single 3-input AND-gate. An SIR relation for this

circuit needs to enumerate all partial input combinations that lead to a determinate

output value of its specification, as well as encode that value.

The output of a 3-input AND-gate is high if and only if all three inputs are high.

Thus, it is sufficient for one of the three inputs to be low to conclude that the output

is low. So we can describe the full behaviour of this gate using just four partial

input combinations, as listed Figure 3.2. Notice that all eight possible concrete input

combinations are covered by these four partial input combinations.

Figure 3.3 shows an SIR relation that encodes these partial input combinations. It

introduces two variables x1, x2 and uses them together with o to enumerate the cases
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n1 n2 n3 out
0 0

0 0
0 0
1 1 1 1

Figure 3.2: The four minimal input combinations that lead to a concrete output for a
3-input AND-gate.

shown in Figure 3.2. The relation is structured so that the variable o determines

whether the output is high or low in each enumerated case. In particular, the example

relation satisfies the coverage condition

∀V .∀←−o .←−o =
{
o 7→ spec(

←−
V )
}
⇔ ∃
←−
X .R(←−o ,

←−
X ,
←−
V ).

Note that no relation that uses only two variables can achieve this. It is easy to

see this, as the case where ←−o = {o 7→ 0} includes three different partial input

combinations, and their enumeration requires at least two additional variables.

1. SIR relation 2. Partial input combinations

R = (o→ v1) ∧ (o ∧ x1 ∧ x2 → v1) ∧
(o→ v2) ∧ (o ∧ x1 ∧ x2 → v2) ∧
(o→ v3) ∧ (o ∧ x1 → v3)

o x1 x2 R
0 0 v3
0 1 0 v2
0 1 1 v1
1 v0 ∧ v1 ∧ v2

Figure 3.3: (1) An SIR relation for the specification ((VAR v1) AND (VAR v2)) AND
(VAR v3), and (2) which partial input combinations it encodes

F

3.2.3 Computing an SIR Relation

Figure 3.4 shows a simple automatic abstraction discovery algorithm that generates

relations that satisfy the SIR condition by construction. It decomposes the specifi-

cation expression step by step, starting at the output and working backwards until

reaching all initial inputs. In each step it propagates backwards the information it

has collected thus far.

66



1 auto abstract(spec, H, L) =
2 if is VAR(spec) then
3 v := get var(spec)
4 return

(
(H→ v) ∧ (L→ v)

)
5 elseif is NOT(spec)
6 return auto abstract(strip NOT(spec),L,H)
7 else // is AND
8 x := get fresh indexing variable()
9 (spec1, spec2) := destruct AND(spec)

10 rel1 := auto abstract(spec1,H,L ∧ x)
11 rel2 := auto abstract(spec2,H,L ∧ x)
12 return rel1 ∧ rel2

Figure 3.4: Simple back-propagation algorithm.

General Description of the Algorithm

The goal of the algorithm provided in Figure 3.4 is to construct an SIR relation

with the correct properties. The algorithm takes three parameters: a bexpr-tree, and

two Boolean expressions. The pair (H,L) encodes when we want the specification

currently being processed by the algorithm to be true or false respectively. In the

initial call the bexpr-tree passed in is the circuit’s specification, and the two Boolean

expressions are H = o and L = o. The recursive calls will work on simpler bexpr-

trees, received by deconstructing the initial specification, and increasingly elaborate

expressions, which constitute partial symbolic indexings.

First, if the specification is a simple variable declaration, VAR v, then it is easy to

construct an SIR relation, as seen in line 4: (H→ v) ∧ (L→ v).

In all other cases, we process the specification recursively. For this, we first deter-

mine the outermost constructor. When representing the specification as a tree, this

corresponds to the root of the tree.

If the outermost constructor is a negation, NOT, then we return the result of run-

ning the algorithm with the negated specification while swapping the two expressions

H and L, as seen in line 6. This is done because the output of a NOT-gate is high if

and only if its input is low. We receive the negated specification by stripping the out-

ermost NOT constructor, which ensures that the new run of the algorithm processes

a specification with fewer constructors.

If the specification is a conjunction, i.e., the outermost constructor is an AND,

then we run the algorithm on each of its operands with the two pairs of expressions
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(H,L ∧ xi) and (H,L ∧ xi) respectively, as seen in lines 9–11. Here xi is a thus far

unused variable (line 8) that encodes which of the operands should be low to ensure

the AND-gate’s output is low. When one operand is low, the other one may have

any value, i.e., be X. This is encoded by conjoining L with xi for the first operand,

and the inverse, xi, for the second operand. As in an assignment
←−
X either xi or xi

evaluates to false, at least one of the conditions, L∧xi and L∧xi is false. This means

we do not require that input to the AND-gate to be low. If we want the gate to

have a high output, we must ensure both inputs are high, too. Therefore, we pass

through the first expression unchanged. The algorithm returns the conjunction of

the recursive call on the two operands with the modified high-low-conditions (line 12)

to merge the intermediary results. Again, the recursive calls work on a specification

with fewer constructors, as it is stripped of its outermost AND.

Hence, every recursive call of the algorithm satisfies the property of running on a

specification with fewer constructors, which ensures that the algorithm terminates.

If specification and implementation are identical, this algorithm leads to an ab-

straction for 3-valued simulation which hides as much information as possible. This

means that for each assignment
←−
V to the indexing variables of the returned relation

a minimal antecedent is delivered. It is minimal in that removing any of the specified

values would result in an indeterminate output. We achieve this property by evaluat-

ing each specification constructor greedily. We modify the (H,L)-pairs in such a way

that the loosest requirements is encoded. If the implementation needs no more input

information than the specification, the abstraction never hides too much information.

However, if the implementation requires additional data, over-abstraction is possible.

Especially when arithmetic operations are involved, this can occur. A discussion of

this follows in Section 4.3.

First, however, we will present our algorithm in action on a simple example while

elaborating further on the algorithm’s inner workings.

Example: Automatic Abstraction in Action

Figure 3.5 shows a graphical description of a simple specification spec[V ]. It uses four

variables V = {v0, v1, v2, v3}, one for each circuit input. The output of the algorithm

is an SIR relation, which encodes an indexing scheme where each of these inputs are

driven only sometimes, rather than always.

We want to determine which minimal input combinations lead to a true output,

and which ones lead to a false output. So for each input we compute a pair (Hi,Li)
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Figure 3.5: Graphical description of the specification function

spec[V] =
(
NOT

(
(NOT v0) AND (NOT v1)

))
AND (v2 AND v3)

that tells us when we want the input to be true, and when we want it to be false

respectively. If we do not require either of these, then the node needs not be driven,

which corresponds to an indeterminate value X. We further ensure that the algorithm

computes pairs where H and L are mutually exclusive, so the case (tt, tt) never occurs.

This pair encodes which value a node will be driven with, similar to the dual rail

encoding introduced in Section 2.7. For every valuation
←−−−
X ∪ o of the free variables of H

and L the evaluated pair
(
H(←−o ,

←−
X ),L(←−o ,

←−
X )
)

determines the value of its associated

node. If
(
H(←−o ,

←−
X ),L(←−o ,

←−
X )
)

= (tt,ff), then the corresponding subrelation is

Ri(
←−o ,
←−
X )[V ] =

(
H(←−o ,

←−
X )→ vi

)
∧
(
L(←−o ,

←−
X )→ vi

)
= (tt→ vi)∧ (ff→ vi) = vi

and thus ni is driven with a high value; if
(
H(←−o ,

←−
X ),L(←−o ,

←−
X )
)

= (ff, tt) then the cor-

responding subrelation is Ri = (ff→ vi) ∧ (tt→ vi) = vi and ni is driven with a low

value. In the dual rail encoding (tt,ff) also represents a high value and (ff, tt) repre-

sents a low value. The two representations differ for indeterminate values. While the

dual rail encoding for (tt, tt) represents the X value, in our case it is (ff,ff). The sub-

relation Ri = (ff→ vi)∧ (ff→ vi) = tt assigns no value to ni, and it it thus implicitly

X. Intuitively speaking, the dual rail encoding works on the premise of which values

a node may take on. So if it may take on both values, this corresponds to an X value.

Our pairs, on the other hand, indicate which value a node must have. So if neither a

high or low value is required, the node is driven with X. The pair (tt, tt), on the other

hand, represents the subrelation (tt→ vi) ∧ (tt→ vi) = vi ∧ vi = ff, which encodes a

non-indexing case, i.e., it is ignored. In the dual rail encoding (ff,ff) represents such

overconstraint cases.

We start at the output of the specification and work through the specification back-

wards until we reach all initial inputs. We want to compute the input combinations

for both the case when the output of the specification is true, and when it is false. We

keep these cases separate by using mutually exclusive formulae in the pair (H,L). The
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first pair, which is passed into the algorithm should thus also be mutually exclusive.

The simplest such pair of formulae is a variable and its inverse, and in this dissertation

we always use (o, o). More generally, we could use other mutually exclusive formulae

(Hout,Lout), as long as we also adjust the consequent of the auxiliary STE statement

|=
∧

i ni is vi ⇒ out is o to |=
∧

i ni is vi ⇒ (Hout _ out is 1) and (Lout _ out is 0).

Now we need to study the structure of the specification to determine which re-

quirements to set on the inputs to encode all partial input combinations lead to a

high when o holds, or a low output when o holds. We do so by always processing the

outermost constructor of the specification, and propagating what this means for its

subexpressions. In a graphical description this process corresponds to handling gates

from right to left. In our example the outermost constructor is an AND. We want its

value to be true when the H-condition, o, is satisfied. The output of an AND-gate

is true exactly when both its inputs are true. As seen in Figure 3.6, the H-condition

for both inputs is thus the same as the H-condition of the output. Similarly, we need

to answer the question what conditions the inputs of the AND-gate need to satisfy

to guarantee a false output. Either the first input of the gate has a low value, and

it is irrelevant what value the second input has, or versed. We encode this choice

by introducing a new variable x1. Whenever x1 holds we require the first input to

be false, and whenever x1 holds we require the second input to be false. So the new

L-conditions are a conjunction of o, which expresses when we want to achieve a low

output, and x1 – or x1 – which expresses which input is responsible for that outcome.

So while processing each gate, computing the (H,L)-pairs of its inputs depends on

the (H,L)-pair of its output, as well as the type of the gate. The subexpressions that

fan into the AND-gate are handled recursively.

Figure 3.6: High and low expressions computed by the basic automatic abstraction
algorithm provided in Figure 3.4

The first input to the AND-gate now has the pair (o, o ∧ x1). The outermost

constructor of the fanin is a negation. The output of a NOT-gate is true exactly

when its input is false, and versed. Whenever we want the output to be determinate,

we also need its only input to be determinate. So the (H,L)-pair for the NOT-gate
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input simply swaps the values of the pair for the output, in this particular case it

leads to the pair (o ∧ x1, o).
All the other AND- and NOT-gates of the example specification are handled the

same way. For each AND-gate, one new variable is introduced to encode each choice.

Figure 3.6 provides the resulting (H,L) pairs. In particular, this leads to four such

pairs, one for each input of the specification, and thus the circuit.

Throughout the explanation we always said that the first value of the pair en-

codes when the node shall be driven high, and the second value of the pair encodes

when it shall be driven low. We capture this meaning by producing the subrela-

tion (Hi → vi) ∧ (Li → vi) for each initial input. The complete relation is then the

conjunction of each of these subrelations:

R =
∧
i

(Hi → vi) ∧ (Li → vi)

Figure 3.7 provides the relation in full.

R = (o ∧ x2 → v0) ∧ (o ∧ x1 → v0) ∧
(o ∧ x2 → v1) ∧ (o ∧ x1 → v1) ∧

(o→ v2) ∧ (o ∧ x1 ∧ x3 → v2) ∧
(o→ v2) ∧ (o ∧ x1 ∧ x3 → v2)

Figure 3.7: Relation computed by the automatic abstraction algorithm for the speci-
fication given in Figure 3.5

Remember that our goal was to find a relation that tells us how to change the

STE run, where each initial input is driven by a variable vi. Only if the full relation

is satisfied, i.e it evaluates to true under an assignment to all its free variables, does

it lead to a case that is simulated by STE. The relation we computed expresses

that whenever the condition Hi is satisfied, the corresponding initial input ni must

be driven with a high value – represented by vi. And whenever the condition Li is

satisfied, the initial input must be driven with a low value, represented by vi. If neither

condition is satisfied, then vi can have either value without falsifying the relation,

which encodes that the initial input is not driven, i.e., has the indeterminate value X.

So, indeed, we have encoded a set of partial input combinations. By construction each

case gives sufficiently many inputs a value to determine the value of the specification.

Indeed, each of the partial input combinations is minimal, as desired.
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3.3 Correctness Statements

In the previous section we proposed an algorithm that computes an SIR relation,

which we want to utilise for formally verifying circuits by

R[o,X ,V ] |= (
∧
i

ni is vi)
R ⇒ (out is o)R.

It is only meaningful if that STE run ensures formal correctness of the circuit. Hence,

this section first makes some statements on the completeness of our approach, and

provides two theorems stating the soundness of our approach. First, that our STE

run formally verifies a circuit provided the SIR conditions

o /∈ X and ∀
←−
V .∀←−o .

(←−o =
{
o 7→ spec(

←−
V )
}
⇔ ∃
←−
X .R(←−o ,

←−
X ,
←−
V )
)

hold; and, second, that the SIR relation computed by our automatic abstraction

algorithm indeed satisfies these side conditions. This section shows that our work is

sound: it ensures the expressiveness of the adjusted verification task, and that the

relations created by our auto abstract algorithm are sufficient by construction. In

contrast to the previous work by Melham and Jones, this means no further coverage

proofs need to be completed when using our automatically generated relations, which

removes a potentially very expensive step.

3.3.1 Completeness

As already stated previously, using the abstractions automatically computed with

our approach can lead to over-abstraction. This makes clear than our solution is

not complete. However, by the nature of our algorithm, namely determining which

inputs are sufficient for determining the value of the specification, we know at least

one class of circuits where no over-abstraction can occur. That is, if the specification

and the implementation match exactly, then our approach produces an abstraction

that does not lead to over-abstraction, but produces a concrete verification result,

pass or fail. In other words, the equivalence checking we perform never results in a

weak disagreement if both inputs – the specification and the circuit to verify – are

identical.
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3.3.2 Soundness

Next we prove that any concrete verification result is meaningful. Whenever the

verification has a concrete result, pass or fail, we can safely conclude that the circuit

meets the specification we used to automatically compute an abstraction.

Specification Injection

In Section 3.1 we reviewed Melham and Jones’ work, which shows that

R[X ,V ] |= (
∧

i ni is vi)
R ⇒

(
out is spec[V ]

)
R

is as powerful a verification run as

|= (
∧

i ni is vi)⇒ (out is spec[V ]) provided the side condition ∀
←−
V .∃
←−
X .R(

←−
X ,
←−
V)

holds. In this chapter, we describe a different approach, claiming that for the SIR

relations we automatically compute, the verification run

R[o,X ,V ] |= (
∧
i

ni is vi)
R ⇒ (out is o)R

is sufficient for formally verifying a circuit. The main difference is that an SIR relation

R[o,X ,V ] encodes the specification of the circuit in addition to a reindexing. In

contrast, before the specification was still part of the STE run, which was reindexed

with a relation.

Theorem 3.1 formalises and proves that this new method does indeed work.

Theorem 3.1 (Sufficiency). Let c be a circuit with input nodes {ni : i ∈ I} and

output node out. Let spec be a bexpr-tree, where V = {vi : i ∈ I} is its set of free

variables. Then the formal verification of c

|=
∧
i

ni is vi ⇒ out is spec[V ] (3.3.1)

can be computed by

R[o,X ,V ] |= (
∧
i

ni is vi)
R[o,X ,V] ⇒ (out is o)R[o,X ,V] (3.3.2)

provided that

o /∈ X and ∀
←−
V .∀←−o . ←−o =

{
o 7→ spec(

←−
V )
}
⇔ ∃
←−
X .R(←−o ,

←−
X ,
←−
V ).

(3.3.3)

73



Proof. Suppose the STE assertion 3.3.2 holds:

R[o,X ,V ] |= (
∧
i

ni is vi)
R[o,X ,V] ⇒ (out is o)R[o,X ,V]

By Melham and Jones’ Theorems 1 and 2 [2], this implies

R[o,X ,V ] |=
∧
i

ni is vi ⇒ out is o.

As o /∈ X by assumption 3.3.3, both the antecedent (
∧

i ni is vi) and the consequent

(out is o) are independent of the variables in X . Hence we can existentially quantify

over X in R[o,X ,V ] of the assumption:

∃
←−
X .R[o,V ](

←−
X ) |=

∧
i

ni is vi ⇒ out is o

Using assumption 3.3.3 we know that for all ←−o and for all
←−
V ,

←−o =
{
o 7→ spec(

←−
V )
}
⇔ ∃
←−
X .R(←−o ,

←−
X ,
←−
V ),

and therefore we can conclude that

o ≡ spec[V ] |=
∧
i

ni is vi ⇒ out is o

and therefore, by eliminating o, we have

|=
∧
i

ni is vi ⇒ out is spec[V ]

as desired.

SIR Conditions

This section proves that the auto abstract algorithm we suggest generates relations

that satisfy the SIR conditions

o /∈ X and ∀
←−
V .∀←−o . ←−o =

{
o 7→ spec(

←−
V )
}
⇔ ∃
←−
X .R(←−o ,

←−
X ,
←−
V )

by construction. This extremely powerful property of the automatically generated

relations is captured in Theorem 3.5. In combination with Theorem 3.1, this shows
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that our automatic abstraction discovery framework is sound.

The proof of Theorem 3.5 is quite elaborate, so we first prove some lemmata, which

state important auxiliary results. First, Lemma 3.2 shows that our algorithm termi-

nates for all specifications, which thus allows us to argue freely about the relations

returned by the algorithm.

Lemma 3.2 (Termination). For every bexpr-tree spec and any two expressions H

and L, the algorithm auto abstract(spec,H,L) terminates.

Proof. Every bexpr-tree has only finitely many constructors. Furthermore, whenever

auto abstract is called recursively, the bexpr it is passed was reduced by one construc-

tor. So after finitely many recursive calls auto abstract is passed a bexpr that consists

of only one constructor. For all well-formed bexpr-tree, the innermost constructors

are VAR. On these the algorithm terminates, as seen in line 4 of Figure 3.8.

Next follow two simple lemmata used in the proof of Theorem 3.5, and also later

in the proof of Theorem 4.1, which shows correctness of an advanced version of

the auto abstract algorithm. These make statements about the relative strength of

relations, and thus can be used to establish that if one relation is satisfied, so are all

weaker ones. These weaker relations play a role in specific cases encountered in the

proof of the main theorems.

Lemma 3.3 (Relation weakening). Let spec be a bexpr-tree and V be its set of free

variables. Let Rspec,H,L be the relation that is returned by auto abstract(spec,H,L),

where H and L are any two expressions. For all expressions O,P,Q such that they

have no free variables in V and such that O → P ,

Rspec,Q,P → Rspec,Q,O and Rspec,P,Q → Rspec,O,Q,

i.e., the relation is monotonic in both parameters H and L.

Proof. Let spec and O,P,Q have the required properties. As seen in line 4 of the

back propagation algorithm presented in Figure 3.8, in the relation returned by

auto abstract(spec,H,L) variables in V occur on the right-hand side of the impli-

cations only:

Rspec,H,L =
∧
i

(Hi → vi) ∧ (Li → vi).

More precisely, Hi = EH ∧ FH and Li = EL ∧ FL where EH, EL ∈ {H,L} are one of

the initial expressions passed to the algorithm. This can be seen in lines 10–11. Note
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that in line 6 the high and low arguments are swapped, so both H and L are options

for EH and EL.

Now suppose H is Q and L is P . As Q and P have no free variables in V , this

means that Q and P occur only on the left-hand side of the implications. Similarly,

this holds if L is O. Using O → P we can conclude that (P ∧ F ) → G implies

(O ∧ F )→ G for all expressions F,G. Thus, Rspec,Q,P → Rspec,Q,O as desired.

Similarly, Rspec,P,Q → Rspec,O,Q.

Lemma 3.4 (Tautological relation). For all bexpr-trees spec the relation returned

by auto abstract(spec,ff,ff) is a tautology.

Proof. As seen in the proof of Lemma 3.3, there exist expressions FH, FL such that

Rspec,ff,ff =
∧

i((ff ∧ FH)→ vi) ∧ ((ff ∧ FL)→ vi) = tt.

Finally, we prove correctness of the algorithm presented in Figure 3.8. For pre-

sentational purposes we assume that the input specification and the output relation

have the same type, i.e., the relation is also a bexpr-tree. This does not change the

proof, but eases notation when comparing bexpr-trees with expressions. For better

readability the notation for ‘f AND g’ is ‘f∧g’, the notation for ‘NOT f’ is ‘f’, and

the notation for ‘VAR v’ is simply ‘v’. Finally, Rspec,H,L denotes the relation that is

returned by auto abstract(spec,H,L).

1 auto abstract(spec, H, L) =
2 if is VAR(spec) then
3 v := get var(spec)
4 return

(
(H→ v) ∧ (L→ v)

)
5 elseif is NOT(spec)
6 return auto abstract(strip NOT(spec),L,H)
7 else // is AND
8 x := get fresh indexing variable()
9 (spec1, spec2) := destruct AND(spec)

10 rel1 := auto abstract(spec1,H,L ∧ x)
11 rel2 := auto abstract(spec2,H,L ∧ x)
12 return rel1 ∧ rel2

Figure 3.8: Algorithm as first seen in Figure 3.4 (page 67).

Theorem 3.5 (Correctness of the Basic Algorithm). Let spec be an expression rep-

resented as a bexpr-tree with free variables V and let o be a variable such that o /∈ V.
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Furthermore, let Rspec,o,o[o,X ,V ] be the result of auto abstract(spec[V ], o, o) as pre-

sented in Figure 3.4. Then

o /∈ X (3.3.4)

and

∀
←−
V .∀←−o .

(←−o =
{
o 7→ spec(

←−
V )
}
⇔ ∃
←−
X .Rspec,o,o(

←−o ,
←−
X ,
←−
V )
)

(3.3.5)

Proof. Claim 3.3.4 follows, because the only line of the algorithm in which indexing

variables are introduced is line 8. But in line 8 a fresh, thus far unused variable is

inserted. So o is never reused, and is therefore independent of both X and V .

For claim 3.3.5 an induction on k, the depth of the bexpr-tree spec[V ], follows.

We show that for all expressions E such that E ∩(X ∪̇V) = ∅, where E = free vars(E):

∀
←−
V .∀
←−
E .
(
E(
←−
E ) = spec(

←−
V )⇔ ∃

←−
X .Rspec,E,E(

←−
E ,
←−
X ,
←−
V )
)
.

By choosing E = o the claim then follows.

Induction start: k = 1

The only bexpr-tree of depth 1 is spec[V ] = v. As seen in line 4,

Rv,E,E[E ,X ,V ] = (E → v)∧ (E → v). In particular, X = ∅ and the relation is true

if and only if E ≡ v as required.

Induction hypothesis: For all bexpr-trees spec[V ] of maximum depth k and for

all expressions E such that E ∩ (X ∪̇ V) = ∅, where E = free vars(E), assume the

following holds:

∀
←−
V .∀
←−
E .E(

←−
E ) = spec(

←−
V )⇔ ∃

←−
X .Rspec,E,E(

←−
E ,
←−
X ,
←−
V )

Induction step: We show that under the induction hypothesis the claim also holds

for all bexpr-trees of depth k + 1.

Let E be an arbitrary expression of depth k+ 1 such that E ∩ (X ∪̇ V) = ∅, and let
←−
V and

←−
E be arbitrary assignments to the variables in V and E respectively.

(a) Case spec = g.

As seen in line 6,

Rg,E,E[E ,X ,V ] ≡ Rg,E,E[E ,X ,V ] (3.3.6)
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(a i) Need to show: E(
←−
E ) = g(

←−
V )⇒ ∃

←−
X . Rg,E,E(

←−
E ,
←−
X ,
←−
V ).

By induction hypothesis, E(
←−
E ) = g(

←−
V )⇒ ∃

←−
X .R

g,E,E
(
←−
E ,
←−
X ,
←−
V ). But

E(
←−
E ) = g(

←−
V ) is equivalent to E(

←−
E ) = g(

←−
V ), and E(

←−
E ) = E(

←−
E ). Thus,

E(
←−
E ) = g(

←−
V ) ⇒ ∃

←−
X .Rg,E,E(

←−
E ,
←−
X ,
←−
V ), and by applying observation 3.3.6

the claim follows.

(a ii) Need to show: ∃
←−
X .Rg,E,E(

←−
E ,
←−
X ,
←−
V )⇒ E(

←−
E ) = g(

←−
V ).

By induction hypothesis, ∃
←−
X .Rg,E,E(

←−
E ,
←−
X ,
←−
V ) implies that E(

←−
E ) = g(

←−
V ),

and thus E(
←−
E ) = g(

←−
V ) as required.

(b) Case spec = g1 ∧ g2.

As seen in line 9–12,

Rg1∧g2,E,E[E ,X ,V ] =

Rg1,E,E∧y[E ,X1 ∪̇ {y},V ] ∧Rg2,E,E∧y[E ,X2 ∪̇ {y},V ] (3.3.7)

(b i) Need to show: E(
←−
E ) = g1(

←−
V ) ∧ g2(

←−
V )⇒ ∃

←−
X .Rg1∧g2,E,E(

←−
E ,
←−
X ,
←−
V ).

By induction hypothesis, E(
←−
E ) = g1(

←−
V )⇒ ∃

←−
X1.Rg1,E,E(

←−
E ,
←−
X1,
←−
V ) and

E(
←−
E ) = g2(

←−
V )⇒ ∃

←−
X2.Rg2,E,E(

←−
E ,
←−
X2,
←−
V ). The indexing variables introduced

in line 8 are never reused, so X1 and X2 are disjoint, and y /∈ X1 ∪̇ X2. So we

can choose a variable assignment for y, X1 and X2 independently. We show

that ∃←−y .∃
←−
X1.∃
←−
X2. Rspec,E,E(

←−
E ,
←−−−−−−−−−
X1 ∪̇ X2 ∪̇ {y},

←−
V ) by choosing ←−y = g2(

←−
V ).

The claim then follows by observation 3.3.7.

(b i α) Suppose y = tt.

Then spec(
←−
V ) = g1(

←−
V ) ∧ tt = g1(

←−
V ). Furthermore,

Rg1∧g2,E,E = Rg1,E,E∧tt ∧Rg2,E,E∧ff = Rg1,E,E ∧Rg2,E,ff.

The induction hypothesis for g1 delivers that

E(
←−
E ) = spec(

←−
V )⇒ ∃

←−
X1.Rg1,E,E(

←−
E ,
←−
X1,
←−
V ).

It remains to show that

E(
←−
E ) = spec(

←−
V )⇒ ∃X2.Rg2,E,ff(

←−
E ,
←−
X2,
←−
V ).

If g1(
←−
V ) = tt = g2(

←−
V ), then the induction hypothesis for g2 and Lemma
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3.3 deliver this. If, on the other hand, g1(
←−
V ) = ff = E(

←−
E ), then

Rg2,E,ff(
←−
E ,
←−
V )[X2] = Rg2,ff,ff(

←−
V )[X2] and by Lemma 3.4

←−
X2 can be chosen

randomly.

(b i β) Suppose y = ff.

Then spec(
←−
V ) = g1(

←−
V ) ∧ ff = ff = g2(

←−
V ). Furthermore,

Rg1∧g2,E,E = Rg1,E,E∧ff ∧Rg2,E,E∧tt = Rg1,E,ff ∧Rg2,E,E.

Then the induction hypothesis for g2 delivers that

E(
←−
E ) = spec(

←−
V ) = g2(

←−
V )⇒ ∃

←−
X2.Rg2,E,E(

←−
E ,
←−
X2,
←−
V ).

It remains to show that

E(
←−
E ) = spec(

←−
V ) = ff⇒ ∃

←−
X1.Rg1,E,ff(

←−
E ,
←−
X1,
←−
V ).

But if E(
←−
E ) = ff Lemma 3.4 can be applied, and thus

←−
X1 can be chosen

randomly.

(b ii) Need to show: ∃
←−
X .Rg1∧g2,E,E(

←−
E ,
←−
X ,
←−
V )⇒ E(

←−
E ) = g1(

←−
V ) ∧ g2(

←−
V ).

By induction hypothesis, ∃
←−
X1.Rg1,E,E(

←−
E ,
←−
X ,
←−
V )⇒ E(

←−
E ) = g1(

←−
V ) and

∃X2.Rg2,E,E(
←−
E ,
←−
X ,
←−
V )⇒ E(

←−
E ) = g2(

←−
V ). Now suppose

∃
←−
X =

←−−−−−−−−−
X1 ∪̇ X2 ∪̇ {y}.Rg1∧g2,E,E(

←−
E ,
←−
X ,
←−
V ).

If g1(
←−
V ) = g2(

←−
V ), then – independent of the assignment for y –

spec(
←−
V ) = g1(

←−
V ) = g2(

←−
V ). Then the induction hypothesis delivers

E(
←−
E ) = spec(

←−
V ): for y = tt use the induction hypothesis for g1, and for

y = ff use the induction hypothesis for g2.

Next assume that g1(
←−
V ) 6= g2(

←−
V ), without loss of generality g1(

←−
V ) = ff.

Then we need to show that E(
←−
E ) = g1(

←−
V ) = spec(

←−
V ), so it is sufficient to

prove that y = tt: then the induction hypothesis for Rg1,E,E delivers the result.

So assume for contradiction that y = ff. Then Rg2,E,E∧y = Rg2,E,E and the

induction hypothesis delivers E(
←−
E ) = g2(

←−
V ) = tt. Thus, Rg1,E,E∧y = Rg1,tt,ff.

By induction hypothesis this implies that g1(
←−
V ) = tt, which is a contradiction

to the assumption. So y = tt as required.

This completes the proof that the coverage condition holds if and only if o is

equivalent to spec[V ].
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3.4 Summary

This chapter introduced the first solution for fully automatically verifying circuits by

STE. Given a circuit’s specification, it computes an STE statement. The circuit meets

its specification only if it satisfies this statement. Importantly, the statement includes

non-trivial symbolic indexing, which aims at reducing verification costs considerably

compared to a full symbolic simulation. Our approach achieves this symbolic indexing

in two steps. First, our auto abstract algorithm computes a relation, which enumerates

the partial input combinations which are sufficient for determining the output value

of the specification. Second, we apply the relation to an auxiliary STE statement

using preimage computations. These operations both inject the specification, thus

making the STE statement meaningful, as well as introduce an intricate abstraction

scheme.

Here, we assume the specification is given as a Boolean formula, and our verification

in essence does equivalence checking the circuit and the specification. Note that the

abstraction computed may lead to over-abstraction. In Chapters 6 and 7 we propose

one method of eliminating over-abstraction when it does occur.

Note also that our work uses the specification to automatically compute an ab-

straction. In that, the specification drives the resulting abstraction in a predictable,

controllable way. Therefore, the user can change the computed abstraction by pro-

viding the specification in a different form. Used like this, our approach can also

be seen as a tool to automatically compute sophisticated symbolic indexing schemes

when the user provides the general direction by the shape of the specification.

Our automatic abstraction discovery algorithm is based on previous work by Mel-

ham and Jones [2], but significantly recasts it to allow full automation. We address

two barriers of their approach. First, we give an algorithm that automatically gener-

ates relations that encode suitable symbolic indexings for verification by STE. Melham

and Jones had shown that reindexing relations can be used to change STE statements

without losing expressiveness, but they had not provided a way of generating these

relations. Arguably, manually devising such relations is as hard as writing the sym-

bolically indexed properties in the first place. Second, we proved that the relations

generated by our auto abstract algorithm by construction always satisfy the side con-

ditions required for correctness. In our approach, the side conditions are stronger

than those Melham and Jones identified. Melham and Jones note that checking that

a reindexing relation satisfies the coverage condition can be expensive, and in the

worst case outweigh the work saved in the modified STE run. So the correctness by
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construction of our SIR relations as stated and proved in Theorem 3.5 makes our

approach very powerful and promising.
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Chapter 4

Abstraction Discovery

Improvements

In the previous chapter we introduced an algorithm that automatically computes

SIR relations given a specification. This chapter describes some key improvements

to that algorithm. These enhancements both increase the flexibility of the algorithm

and deliver relations that further decrease verification costs.

First, we address how to handle specifications that are directed acyclic graphs,

rather than just tree structures. We then explain how to verify circuits with more

than one output. Then we add support for specifying symbolic constants, which are

inputs that shall always be driven with a symbolic value. Later, in Chapter 6, we

suggest an automatic approach of selecting such symbolic constants. In this chapter

we assume they are provided by the user.

We further improve the auto abstract algorithm by recognising multiple-input AND-

gates, OR-gates, and XNOR-gates. Our special handling results in better SIR rela-

tions that more concisely express minimal partial input combinations required to de-

termine output values. We go on to prove that the algorithm with these adjustments

still generates SIR relations that deliver correct verification results.

Next we discuss how indexing variables can be reused even more aggressively, which

has the potential of reducing verification costs further. Finally, we optimise the weak

and strong preimage calculations performed on the antecedent and consequent by

leveraging the specific shape of the SIR relations we generate. These optimisations

were largely developed by Magnus Björk.

Thus, this chapter takes the work introduced in Chapter 3, and transforms a proof-

of-concept solution into a powerful method of verifying circuits. We put this solution

to the test in Chapter 5, in which we verify different circuits using our method and
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discuss the strength of the observed results.

4.1 Directed Acyclic Graphs

In the previous chapter we assumed that we are given a bexpr-tree. We now describe

how the auto abstract algorithm can be extended to handle directed acyclic graphs

(DAGs). We first see how in principle the current algorithm can indeed already handle

such structures, and then introduce a direct, more efficient variant of generating

abstractions for DAGs.

This direct handling of DAGs is extremely valuable, as DAGs are much more

compact than trees that express the same specification. More importantly, though, a

DAG more directly encodes matching values, and thus allows our algorithm to pick up

this information. This, in turn, leads to fewer indexing variables being introduced and

better sharing of variables. Thus, extending our algorithm to analysing bexpr-DAGs

constitutes an important improvement.

4.1.1 Handling and Correctness

Suppose we are given a specification that is an acyclic directed graph. This means

identical subexpressions are shared, rather than duplicated. Then some nodes fan out

to several gates. Functionally, this is equivalent to looking at the corresponding tree

for this DAG by duplicating each shared structure. This can lead to an exponential

increase in size, and we later explain how to avoid this. First we discuss how our

algorithm can process such a tree, which has the same input-output behaviour as the

DAG, and is in that respect suitable for determining an abstraction scheme using our

original auto abstract algorithm.

Duplicating subexpressions leads to inputs appearing multiple times in the tree,

for an example see Figure 4.1(b). This raises the question whether our algorithm

still works correctly when inputs occur more than once. Indeed, Theorem 3.5 makes

no assumptions on how often inputs are encountered by the auto abstract algorithm.

So the coverage proof, and thus correctness, still hold. Roughly speaking, Proof 3.5

shows that for each possible input scenario there exists an assignment to the indexing

variables that corresponds to that scenario. When an input occurs twice in the

specification, we can see this as two separate inputs i and i′. Correctness follows by

showing that for each input scenario where i and i′ have the same value there exists

a corresponding assignment to the indexing variables. The set of such scenarios is a
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Figure 4.1: A (a) directed acyclic graph with two fanout points f1 and f2, (b) the
corresponding tree after duplicating the fanins of the fanout points, and (c) the corre-
sponding collection of trees, as retrieved after splitting on fanout points.

subset of all scenarios – we are ignoring those where i and i′ have conflicting values

– and thus the proof is more than sufficient.

Also note that the relation returned by the algorithm when running it on a specifi-

cation where the input i occurs twice can be written as a conjunction

R ∧ (H1 → i) ∧ (L1 → i) ∧ (H2 → i) ∧ (L2 → i). This is equivalent to

R ∧ ((H1 ∨ H2)→ i) ∧ ((L1 ∨ L2)→ i). Intuitively, this means that if the value of

an input is required by one part of the circuit, then it is driven with a Boolean value

– irrespective of whether the other part of the circuit requires it.

As noted above, some assignments to the indexing variables may lead to conflicts,

namely when both H1 ∨ H2 and L1 ∨ L2 evaluate to true. In this case the relation

evaluates to false, which STE handles by skipping these runs. Importantly, Theorem

3.5 guaranteed that at least some assignment to the indexing variables exists where

such conflicts do not occur.

While handling DAGs in this fashion is correct, it is not very efficient. For one, we

need to duplicate parts of the specification DAG to turn it into a tree, which can lead
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to an exponential increase in size, and the algorithm then has to work on that enlarged

structure. Additionally, our algorithm introduces new indexing variables for each of

the duplicated structures. This not only leads to higher time and memory costs for

the auto abstract algorithm, but also delivers an abstraction scheme that could be

indexed much more efficiently. Therefore we introduce a more suitable approach for

DAGs. It is correct by the same explanation as before, in particular with respect to

(H,L)-pairs that are not mutually exclusive.

4.1.2 Efficient Handling

We want to avoid duplicating subexpressions of a DAG to then work on its corre-

sponding tree. Instead we want to process each shared subexpression once only, and

then merge the intermediary results to get the indexing relation.

This already suggests an approach. We can split a directed acyclic graph into

a set of trees by cutting it at every fanout point. The inputs and outputs of the

subexpressions that are created by such a cut are then labelled with unique names,

in the following called fi. Then we run the auto abstract algorithm on each of the

subexpressions. Note that only one tree includes the ultimate output of the initial

bexpr-DAG, and all other trees have outputs that previously were fanout points. For

each of these trees we pass different (H,L)-pairs to the algorithm. We process the

tree that includes the ultimate output with H = o and L = o, for all other trees we

use distinct indexing variables, H = hf and L = lf . We thus receive several relations,

some of which specify when a fanout point shall be driven with a Boolean value,

(Hf → f)∧ (Lf → f). This is so, because f is not just an output for one of the trees

received by cutting the DAG in the fanout points, but it is also an input to at least

two trees. So there are several relations which specify when to drive the same fanout

point f , one for each branch of the fanout. We merge these by taking the disjunction

of the different H- and L-conditions determined for f . In the following we detail the

merge process in more detail.

For ease of notation, rather than using the full relations, we refer to the relations

as a set of tuples (i,H,L). Each such tuple then corresponds to the subrelation

(H → vi) ∧ (L → vi), and the full relation is a conjunction of all those subrelations,∧
i(Hi → vi) ∧ (Li → vi).

Now let Rout=f be the set of tuples computed by auto abstract for a subexpression

with fanout output f . Let Rin=f be the set of tuples where the first entry of the

tuples is f . Rin=f includes subrelations from all auto abstract runs that process a
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subexpression that has an input labelled f . We can then merge the relations as

follows.

Let hi(f) =
∨

(f,H,L)∈Rin=f
H, and lo(f) =

∨
(f,H,L)∈Rin=f

L. For each (i,Li,Hi) ∈
Rout=f replace hf by hi(f), and lf by lo(f). This means that the variables hf and

lf are eliminated from the relation in the merging step. After merging all relations

we thus receive a set of tuples where no such variables exist anymore, the tuples only

determine when ultimate inputs of the initial bexpr-DAG shall be driven, and there

is only one such tuple for each input.

Example: Splitting DAGs on fanout points

Consider the directed acyclic graph shown in Figure 4.1(a) (page 84). It has two

fanout points f1 and f2. Figure 4.1(c) shows the subexpressions we get when splitting

the DAG at its fanout points. The blue subexpression, specblue, includes the ultimate

output, and we thus run auto abstract(specblue, o, o) for it. The red subexpression,

NOT VAR i1, is processed by auto abstract(NOT VAR i1, hf1 , lf1), and the green one,

VAR i2, by auto abstract(VAR i2, hf2 , lf2). This leads to three calls of auto abstract:

1. The blue subexpression, which ends in the ultimate output, is processed with

the run auto abstract(specblue, o, o). This delivers the tuples (f1, o ∧ y, o ∧ x),

(f1, o∧ x, o∧ z), (f2, o∧ y, o∧ x), (f2, o∧ x, o∧ z). See Figure 4.5 (page 95) for

details.

2. The red subexpression, which ends in the fanout point f1, is processed with the

run auto abstract(NOT VAR i1, hf1 , lf1). This delivers the tuple (i1, lf1 , hf1).

3. The green subexpression, which ends in the fanout point f2, is processed with

the run auto abstract(VAR i2, hf2 , lf2). This delivers the tuple (i2, hf2 , lf2).

Now we need to merge these tuples. The set of tuples computed for the fanout out-

put f1 corresponds to the result of the run on the red subexpression, so

Rout=f1 = {(i1, lf1 , hf1)}. The set of tuples that f1 drives is a subset of the results of

the run on the blue subexpression, namely Rin=f1 = {(f1, o∧y, o∧x), (f1, o∧x, o∧z)}.
So hi(f1) = o∧ y ∨ o∧ x and lo(f1) = o∧ x∨ o∧ z. By replacing hf1 with hi(f1) and

lf1 with lo(f1) the merging step thus delivers the tuple (i1, o∧ y ∨ o∧ x, o∧ x∨ o∧ z).

Similarly, the merging step for f2 delivers the tuple (i2, o ∧ y ∨ o ∧ x, o ∧ x ∨ o ∧ z).
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So the relation computed for this instance is(
(o ∧ y ∨ o ∧ x)→ i1

)
∧

(
(o ∧ x ∨ o ∧ z)→ i1

)
∧(

(o ∧ y ∨ o ∧ x)→ i2

)
∧

(
(o ∧ x ∨ o ∧ z)→ i2

)
.

F

Notice that the condition under which an input shall be driven with a high value,

and the condition under which it shall be driven with a low value are not necessarily

mutually exclusive anymore. In the above example the assignments

←−o = {o 7→ ff}, and
←−
X = {x 7→ tt, y 7→ tt, z 7→ tt}

deliver

R(←−o ,
←−
X )[V ] = (tt→ i1) ∧ (tt→ i1) ∧ (ff→ i2) ∧ (ff→ i2) = i1 ∧ i1 = ff,

so the relation is unsatisfiable. More generally, whenever an assignment leads to

conflicting requirements the SIR relation evaluates to false. As detailed in Theorem

3 by Melham and Jones ( [2]), this means that the STE run that is created through

our automatic abstraction framework does not process the setting. These passes are

not a problem, as the coverage proof guarantees that an assignment exists that does

not lead to such conflicts.In essence, the conflicts are non-indexing assignments to

the indexing variables, and are recognised as such. While conflicts do not change

the correctness of the result, they do show that the cases to verify could have been

encoded with fewer variables, or with simpler expressions.

Still, this section described a way of considerably reducing the number of variables

introduced when handling DAGs. Furthermore, as we do not duplicate the analysis of

the specification at fanout points, we avoid unnecessarily increasing the complexity of

the conditions Hi and Li for the input ni. Another side-effect is a decreased number of

conflicting, non-indexing cases. This has a significant effect, because BDD operations

are usually faster if fewer variables are involved, and if expressions are simpler. As

we assume that STE internally uses binary decision diagrams to represent the node

values, splitting DAGs at fanout points to generate an SIR relation has an immediate

effect on the verification costs.

In Section 4.7 we discuss how to reuse variables even further, thus reducing the

number of variables required. The experimental results provided in Chapter 5 assess

what effect this has on the execution times of verification tasks. In particular, we
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observe that merely reducing the number of indexing variables without paying atten-

tion to how much this increases the complexity of the expressions can backfire. It

may indeed increase verification costs rather than reduce them.

4.2 Multiple Outputs

The discussion so far has assumed that the specification has a single output only.

Of course this is an unrealistic restriction, which we remove at this point. We can

handle multiple outputs in a way similar to DAGs. The most obvious extension is to

run the algorithm for each output independently, and use a unique indexing variable,

oi, for each run. Furthermore, indexing variables must not be shared in the relations

produced by the separate runs. This ensures independence of the results and allows

us to form the conjunction of the relations, where coverage follows trivially.

Alternatively, we can run STE independently for each output. This can reduce

verification time in some instances.

In both variants of handling multiple outputs the specification is analysed several

times. But when the bexpr is a DAG – which is essentially always the case for

multiple outputs – this process can be sped up. When running the basic algorithm

on the trees received after cutting the DAG at its fanout points we need only replace

the intermediary variables hf and lf by the correct H and L values. If we want to

construct one STE run for all outputs at once, we additionally have to substitute the

introduced variables for fresh ones to make them unique. This avoids running the

auto abstract algorithm multiple times on the same expressions, which can save time

especially when the specification is large. With respect to correctness it is equivalent

to running the algorithm several times, so coverage is guaranteed without the need

for further proof.

4.3 Symbolic Constants

Recall that we construct symbolically indexed STE runs by computing a relation that

transforms the full symbolic simulation to a simulation with more elaborate indexing.

Full symbolic simulation gives every input a symbolic value, ni is vi. As this means

that the input has a Boolean value for every evaluation of the indexing variables, we

call this a symbolic constant. The more elaborate abstraction scheme, on the other

hand, gives the inputs a symbolic value only in particular cases, namely when the

specification needs it to be determinate. But sometimes it might be desirable or
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necessary to give inputs a symbolic value even if the specification does not suggest

this.

For example, consider the circuit shown in Figure 4.2. It essentially implements

“if i1 then i2 else i2”. While we need not know the value of input i1 to determine the

value of the specification, VAR i2, simulation does require it. If we simulate the circuit

with i1 = X, then the output is indeterminate regardless of i2. This is a consequence

of the abstraction framework in STE not being able to capture certain relationships.

Only when specifying i1 does the simulator know which of its inputs the multiplexer

would output – irrespective of whether both inputs have the same value. Of course

this example is contrived, but in practice we often see that the implementation needs

more information to get a determinate value than the specification suggests. This is

the reason why over-abstraction can occur.

Figure 4.2: Circuit with a specification of VAR i2, computed by implementing a
multiplexer “if i1 then i2 else i2”; ternary simulation with i1 = X and i2 = 1 leads to an
indeterminate output.

We give an example of such an occurrence in Chapter 8. The content-addressable

memory we want to verify needs additional input information, because some arith-

metic operations are performed. While such computations can sometimes be logically

simplified in the specification, the implementation always requires the values of the

nodes involved in the arithmetic operations.

When verifying a circuit we may know up-front that specific inputs must be driven

to get a determinate output. In such cases we may want to signal that these inputs

always be driven with a symbolic value, even if the specification does not require it.

In this dissertation we call such inputs symbolic constants. This name is motivated

by the fact that the Boolean value is always known during simulation time, and thus

the inputs can be processed in a way similar to the handling of constant values.

It is easy to modify the auto abstract algorithm to support symbolic constants: as

we are constructing a relation that tells us how to reindex a run which runs all inputs

with a variable, i.e., all inputs are symbolic constants, we only need to ensure that

the declared inputs must not be reindexed in the process.
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Recall that the relation we construct is a conjunction of implications,∧
i

(Hi → vi) ∧ (Li → vi).

This expresses that the input ni needs to have a high value only when H is satisfied,

and a low value when L is satisfied. If we always want ni to have a determinate value,

then choosing H = vi and L = vi is adequate. But then, of course, the implications

(vi → vi)∧ (vi → vi) are tautologies and can be omitted. In essence, this means that

the algorithm can terminate on symbolic constants without extending the relation.

Thus, correctness follows, as seen in Theorem 3.5.

4.4 Additional Constructors

The basic auto abstract algorithm assumes that the specification uses the constructors

VAR, NOT, and AND. We can extend the algorithm to accept other specification

constructors as well. This can express more information about the task of parts of the

circuit, and thus helps us construct better encodings of the partial input combinations

we determine.

4.4.1 Multiple-Input AND Constructors

We can extend the allowed constructors to include multiple-input AND expressions.

A multiple-input AND constructor is a gate which has multiple inputs and one output.

If any one of its inputs is low, then the output is low. Only if all of its inputs are

high, is the output high.

Figure 4.3(a) shows which relation, expressed in tuples, the auto abstract algorithm

returns when running it on the specification

((i1 AND i2) AND (i3 AND i4)) AND ((i5 AND i6) AND (i7 AND i8)).

The SIR relation encodes that all eight inputs need to be high if the output is to be

high, that is, when o evaluates to true; and only one input needs to be low if the

output is to be false, i.e., when o evaluates to false. We use seven variables, which

are introduced while handling each AND-constructor.

But three variables are sufficient for enumerating eight cases. For example, the

relation shown in Figure 4.3(b) encodes the same behaviour for driving inputs. So if

we know that we want to encode the partial input combinations for an 8-input AND-
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Figure 4.3: Relation tuples returned when running auto abstract (a) on seven AND
constructors, and the suggested handling of (b) an 8-input AND constructor. Each
AND-gate is labelled with the variables introduced by the algorithm when processing
it.

gate, rather than handling a tree of seven 2-input AND constructors, we can choose

that better encoding. Especially when reducing the number of variables does not lead

to more complex expressions, this can lead to drastically decreased verification costs

when BDDs are used. This different approach corresponds to using a binary encoding

when deciding which input must be low to force a low output, whereas before we used

a unary encoding.

More generally, we can handle n-input AND constructors as follows:

auto abstract(ANDi∈Ispeci,H,L) =
∧
i∈I

auto abstract(speci,H,L ∧ casei),

where {casei | i ∈ I} is a set of mutually exclusive expressions that use dlog2 ie fresh

indexing variables. For example, for a 5-input AND-gate three variables are required,
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and a possible set of case expressions is

{x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3, x1}.

This optimisation can also be applied if several 2-input AND constructors are

used successively in the specification. Multiple-input AND-gates can be detected

greedily. If the outer-most constructor is a 2-input AND, then also examine the

two subexpressions, which are inputs to the AND. If either also have an AND as

their outer-most constructor, use those subexpressions as inputs instead. Continue

processing subexpressions until none of the subexpressions have an AND as their

outer-most constructor anymore.

Example: Finding multiple-input AND-gates

Suppose we are given the specification

(i1 AND i2) AND (i3 AND (NOT i4 AND NOT (i5 AND i6)) AND (NOT i7 AND i8).

Previously we would have simply processed the outer-most AND constructor, and

then recursively called auto abstract on

(i1 AND i2) AND (i3 AND (NOT i4 AND NOT (i5 AND i6))

and

(NOT i7 AND i8).

With the above modification, instead we process a 7-input AND with the inputs

i1, i2, i3, NOT i4, NOT (i5 AND i6), NOT i7, i8. See Figure 4.4 for a graphical rep-

resentation of the above specification. Note that the VAR constructors are omitted,

and the AND constructors that can be combined to a single multiple-input AND are

depicted in bold font. F

Theorem 4.1 (page 98) shows that handling multiple-input AND constructors this

way is correct.

Optimisation for Symbolic Constant Inputs

In Section 4.3 we introduced the notion of symbolic constants. These are inputs that

are always driven with a Boolean value. Now suppose one of the inputs of an AND-

gate is a symbolic constant, without loss of generality i1. As this input is driven with

92



Figure 4.4: Graphical representation of the specification
(i1 AND i2) AND (i3 AND (NOT i4 AND NOT (i5 AND i6)) AND (NOT i7 AND i8).

a Boolean value in every case, it is not necessary for the algorithm to analyse whether

it actually needs to be driven. So we do not have to index this case, and potentially

use fewer indexing variables.

Example: 2-input AND with Symbolic Constants

Suppose one of the inputs, i1, of a normal, 2-input AND is a symbolic constant. We

then do not need to introduce any indexing variable:

auto abstract(i1 AND i2,H,L) = auto abstract(i2,H,L ∧ i1)

Essentially, before we used an indexing variable to encode whether the first input or

the second input needed to be false to lead to a false output. But if the first input

always has a Boolean value, then we need only drive the second input with a Boolean

value if the first one is not driven with a false value, i.e., whenever i1 is true. This

corresponds to conjoining the L-condition with i1. F

More generally, we can apply this simplification as soon as an input of an AND-gate

depends only on symbolic constants, as it then always has a Boolean, non-X value.

Furthermore, several inputs may qualify for this simplification. This means that we

can partition the set of inputs for a multiple-input AND-gate into those inputs that

depend only on symbolic constants, called IC, and those that do not, I\IC. We can
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then handle multiple-input AND-gates as follows:

auto abstract(ANDi∈I i,H,L) =
∧

i∈I\IC

auto abstract(i,H,L ∧ ttIC ∧ casei),

where {casei | i ∈ I\IC} is a set of mutually exclusive expressions that depend

on dlog2 |I\IC|e fresh indexing variables, and where ttIC =
∧

j∈IC j encodes when all

inputs that depend only on symbolic constants are driven with a true value. Theorem

4.1 shows that this adjusted handling still leads to correct verification results.

4.4.2 OR Constructors

Similarly, we can allow OR constructors. For these the abstraction scheme should

capture that we only need one of the inputs to be high for a high output, and all

inputs to be low for a low output. That is,

auto abstract(spec1 OR spec2,H,L) = auto abstract(spec1,H ∧ x,L)∧
auto abstract(spec2,H ∧ x,L),

where x is a fresh indexing variable. Indeed, when running the auto abstract algorithm

on the bexpr NOT (NOT a AND NOT b), which expresses the same behaviour, then

we receive the exact same relation. This is so, because the algorithm only swaps

the high condition, H, and the low condition, L, on a NOT constructor, rather than

having to introduce new indexing variables.

So we can extend the algorithm by an OR constructor, but the proof of correctness

is already supplied by the ones for the NOT and AND constructors. If we recognise

multiple-input OR constructors, then this is possible with the same reasoning as seen

for multiple-input AND constructors:

auto abstract(ORi∈I speci,H,L) =
∧
i∈I

auto abstract(speci,H ∧ casei,L),

where {casei | i ∈ I} is a set of mutually exclusive expressions that use dlog2 ie fresh

indexing variables. The proof of correctness corresponds to that of the multiple-input

AND one provided in Theorem 4.1, and the basic handling of NOT gates using the

equivalence ORi∈I i ≡ NOT (ANDi∈I (NOT i)).
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Optimisation for Symbolic Constant Inputs

As seen with multiple-input AND-gates, optimisations are also possible for multiple-

input OR gates when some of the inputs depend only on symbolic constants:

auto abstract(ORi∈I i,H,L) =
∧

i∈I\IC

auto abstract(i,H ∧ ffIC ∧ casei,L),

where {casei | i ∈ I\IC} is a set of mutually exclusive expressions that depend on

dlog2 |I\IC|e fresh indexing variables, and where ffIC =
∧

j∈IC j encodes when all inputs

that depend only on symbolic constants are driven with a false value.

4.4.3 XNOR Constructors

Another constructor to consider is XNOR, which returns a high value if both of its

inputs have the same value. Figure 4.5 shown a bexpr that captures this behaviour,

as well as the relation tuples that are returned by the auto abstract algorithm. Notice

Figure 4.5: Result of running auto abstract on an XNOR gate expressed in NOT- and
AND-gates

that three indexing variables are introduced, and the following assignments lead to

relations that evaluate to true:

o x y z i1 i2

1 0 1 1

1 1 0 0

0 0 1 0 1

0 1 0 1 0

In particular, any assignment where the indexing variables y and z are given the

same value leads to a false relation, thus resulting in a pass in the final STE run.
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Indeed, the following handling of XNOR constructors needs one variable only:

auto abstract(spec1 XNOR spec2,H,L) =

auto abstract(spec1,H ∧ x ∨ L ∧ x,H ∧ x ∨ L ∧ x)∧
auto abstract(spec2,H ∧ x ∨ L ∧ x,H ∧ x ∨ L ∧ x)

For example, assume that an adjusted version of auto abstract is run on the simple

specification v1 XNOR v2. The algorithm then returns the relation

((o ∧ x ∨ o ∧ x→ v1) ∧
((o ∧ x ∨ o ∧ x)→ v1) ∧
((o ∧ x ∨ o ∧ x)→ v2) ∧
((o ∧ x ∨ o ∧ x)→ v2)

The basic idea behind this encoding is as follows. We drive the input i1 with the

value of the indexing variable x, and then – depending on the value of o – drive i2

with the same, or inverted value of x. In particular, if we look at the relation where

o is assigned a Boolean value, then we receive:

R({o 7→ tt})[X ,V ] = (x→ v1) ∧ (x→ v1) ∧ (x→ v2) ∧ (x→ v2)

R({o 7→ ff})[X ,V ] = (x→ v1) ∧ (x→ v1) ∧ (x→ v2) ∧ (x→ v2)

Theorem 4.1 (page 98) shows that this handling still ensures correctness, while

using two variables fewer. Furthermore, notice that now no assignments falsify the

relation anymore.

Optimisation for Symbolic Constant Inputs

Suppose one of the inputs of an XNOR gate is a symbolic constant, without loss of

generality i1. Then we do not need to introduce any indexing variables at all. Instead

we can use the Boolean value of i1 to determine when to drive i2:

auto abstract(i1XNORi2,H,L) = auto abstract(i2,H∧ i1 ∨L∧ i1,H∧ i1 ∨L∧ i1)

Previously, i1 was driven with the value of x and i2 with the value of x or x, depending

on whether we wanted a high or low output, respectively. But if i1 is a symbolic

constant, we can use it instead of x. We then drive i2 with the Boolean value of i1 or

i1, depending on whether we want a high or low output respectively. More generally,

as soon as one of the inputs of the XNOR depends only on symbolic constants it
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always has a Boolean value, i.e., is never X. In all such cases this simplification can

be applied. Again, this optimisation is shown to be correct in Theorem 4.1.

4.5 Algorithm

1 auto abstract(C, spec, H, L, name) =
2 if free vars(spec) ⊆ C or is VAR(spec) then
3 return {(spec, H, L)}
4 elseif is XNOR(spec) then
5 (spec1, spec2) := destruct XNOR(spec)
6 if free vars(spec1) ⊆ C then
7 return auto abstract(C, spec2, H ∧ spec1 ∨ L ∧ spec1,

H ∧ spec1 ∨ L ∧ spec1, name)
8 else
9 {X1, X2} := get case expressions(name, 2)

10 {name1, name2} := get unique names(name, 2)
11 return auto abstract(C, spec1, H ∧X1 ∨ L ∧X1,

H ∧X2 ∨ L ∧X2, name1)
∪ auto abstract(C, spec2, H ∧X1 ∨ L ∧X2,

H ∧X2 ∨ L ∧X1, name2)
12 elseif is NOT(spec) then
13 return auto abstract(C, strip NOT(spec), L, H, name)
14 else // is AND
15 (cinps, oinps) := find max AND(C, spec)
16 if cinps 6= ∅ then
17 c :=

∧
ci∈cinps ci

18 rel := {(c, H, ff)}
19 else
20 c := tt
21 rel := ∅
22 cases := get case expressions(name, |oinps|)
23 if H = ff then
24 names := get same names(name, |oinps|)
25 else
26 names := get unique names(name, |oinps|)
27 for i from 1 to |oinps|
28 rel := rel ∪ auto abstract(C, oinpsi, H, L ∧ casesi ∧ c, namesi)
29 return rel

Figure 4.6: Advanced back-propagation algorithm.

Figure 4.6 shows an auto abstract algorithm, which can handle symbolic constants,
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multiple-input AND-gates, XNOR gates, and has a slightly more relaxed approach to

introducing indexing variables. In particular, destruct XNOR as seen in line 5 checks

whether the outermost gates have the same input-output behaviour as an XNOR-

gate. It furthermore orders the two inputs of the gate, such that if one of its fanins

only depends on symbolic constants, it is the first input. This avoids duplicating the

code seen in lines 6–7. The call to find max AND as seen in line 15 determines the

largest possible multiple-input AND-gate, as already described in Section 4.4.1, and

also splits the inputs into those that only depend on symbolic constants, cinps, and

the remaining inputs, oinps.

In Section 4.7 we discuss the requirements that the get case expressions (lines 9 and

22) function needs to satisfy. For the correctness proof of Theorem 4.1 we assume that

get case expressions introduces new indexing variables, and returns a set of mutually

exclusive expressions that depend only on those variables. The more flexible, and

thus more powerful approach described in Section 4.7 is accompanied by notes on

how the proof can be adjusted to also guarantee correctness by construction. Finally,

recall that we handle DAG specifications by cutting them in their fanout points to

receive tree structures, which can be analysed by the improved auto abstract algorithm

separately, and then merged. This can be seen as a preprocessing step, and is thus not

captured in the algorithm or proof to help simplify the presentation. The correctness

of handling DAGs is a simple extension of Theorem 4.1, as already argued in Section

4.1 for Theorem 3.5.

4.6 Correctness

Theorem 3.5 proved that, by construction, the basic version of auto abstract generates

SIR relations that cover all observable simulation cases, and thus can be applied to

the auxiliary STE run, R |= (
∧
ni is vi)R ⇒ (out is o)R, to formally verify that a

circuit meets its specification. As checking that the SIR conditions hold can be very

expensive, we want to be able to make the same statement of correctness by con-

struction for our advanced version of the automatic abstraction discovery algorithm.

This is captured in Corollary 4.2, which directly follows from Theorem 4.1.

Theorem 4.1 (Correctness of the Advanced Algorithm). Given a binary expression

represented as a bexpr-tree spec[V ], define

R[E ,X ,V ] = auto abstract(C, spec, E, E, name)
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as the result of the algorithm in Figure 4.6. Here, E is the set of free variables used

in E, V is the set of variables used in spec, and X is the set of variables introduced

by the algorithm. Assuming the choice of name ensures that none of the generated

variables X are in the set E or V, the following is valid:

∀
←−
V .∀
←−
E .E(

←−
E ) = spec(

←−
V )⇔ ∃

←−
X .R(

←−
E ,
←−
X ,
←−
V ) (4.6.1)

Proof. As already seen in Theorem 3.5, we use the shorthand Rg,H,L when reasoning

about the result of running auto abstract(C,g,H,L, name). The set of symbolic con-

stants, C, is never changed and can safely be omitted in this notation. We also omit

name for better readability, but we go into the importance of name where adequate.

For Claim 3.3.5, first assume that
←−
V and

←−
E are arbitrary, but fixed. An induction

on k, the depth of the binary expression, follows. The induction start, hypothesis,

and step are the same as in the proof of Theorem 3.5. The handling of NOT-gates

also has not changed. It remains to analyse the handling of XNOR, and to generalise

the 2-input AND to a multiple-input AND.

(a) spec = g1 XNOR g2 and free vars(g1) ⊆ C

As seen in line 6,

R[E ,X ,V ] = auto abstract(C, spec, E, E, name)
= auto abstract(C,g1 XNOR g2, E, E, name)

= auto abstract(C,g2, E ∧ g1 ∨ E ∧ g1,

E ∧ g1 ∨ E ∧ g1, name)

As free vars(g1) ⊆ C, we know that during simulation the value of g1(
←−
V ) is always

determinate. Hence, we can argue using the concrete value of g1(
←−
V ).

(a i) g1(
←−
V ) = tt

We need to show that E(
←−
E ) = spec(

←−
V )⇔ ∃

←−
X .R(

←−
E ,
←−
X ,
←−
V ). But if g1(

←−
V ) = tt,

then spec(
←−
V ) = g1(

←−
V ) XNOR g2(

←−
V ) = tt XNOR g2(

←−
V ) = g2(

←−
V ). Further-

more, Rspec,E,E = Rg2,E∨ff,ff∨E = Rg2,E,E. So by induction hypothesis

E(
←−
E ) = spec(

←−
V ) = g2(

←−
V )⇔ ∃

←−
X .R(

←−
E ,
←−
X ,
←−
V )

(a ii) g1(
←−
V ) = ff

We need to show that E(
←−
E ) = spec(

←−
V )⇔ ∃

←−
X .R(

←−
E ,
←−
X ,
←−
V ). But if g1(

←−
V ) = ff,

then spec(
←−
V ) = g1(

←−
V ) XNOR g2(

←−
V ) = ff XNOR g2(

←−
V ) = g2(

←−
V ). Further-
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more, Rspec,E,E = Rg2,ff∨E,E∨ff = Rg2,E,E. So, as seen for NOT-gates,

E(
←−
E ) = spec(

←−
V ) = g2(

←−
V )⇔ ∃

←−
X .R(

←−
E ,
←−
X ,
←−
V ) = Rg2,E,E(

←−
E ,
←−
X ,
←−
V ).

(b) spec = g1 XNOR g2 and free vars(g1) 6⊆ C

As seen in line 11,

R[E ,X ,V ] = auto abstract(C, spec, E, E, name)
= auto abstract(C,g1 XNOR g2, E, E, name)

= auto abstract(C,g1, E ∧ case1 ∨ E ∧ case1,
E ∧ case2 ∨ E ∧ case2, name1) ∧

auto abstract(C,g2, E ∧ case1 ∨ E ∧ case2,
E ∧ case2 ∨ E ∧ case1, name2)

(b i) Need to show: E(
←−
E ) = spec(

←−
V )⇒ ∃

←−
X .R(

←−
E ,
←−
X ,
←−
V )

By induction hypothesis, E(
←−
E ) = gi(

←−
V )⇒ ∃

←−
Xi.Rgi,E,E(

←−
E ,
←−
Xi,
←−
V ).

(b i α) Case g1(
←−
V ) = tt

Let Xs be the set of fresh variables introduced in line 9,

Xs = free vars(case1) = free vars(case2).

Then by construction of the case expressions case1 and case2, there exists

an assignment
←−
Xs such that case1(

←−
Xs) = tt, and thus case2(

←−
Xs) = ff. Then

spec(
←−
V ) = g2(

←−
V ), and R(

←−
E ,
←−
V )[X ] = Rg1,tt,ff(

←−
V )[X1] ∧ Rg2,E,E(

←−
E ,
←−
V )[X2].

By induction hypothesis, E(
←−
E ) = g1(

←−
V ) = tt⇒ ∃

←−
X1.R←−g 1,tt,ff(

←−
X1,
←−
V ), and

E(
←−
E ) = g2(

←−
V ) ⇒ ∃

←−
X2.Rg2,E,E(

←−
E ,
←−
X2,
←−
V ). But by choice of name it is guar-

anteed that X1, X2, and Xs are disjoint. So the three assignments can be

combined without conflict. Thus, ∃
←−
X .R(

←−
E ,
←−
X ,
←−
V ).

(b i β) Case g1(
←−
V ) = ff

Then by construction of the case expressions case1 and case2, there exists

an assignment
←−
Xs such that case2(

←−
Xs) = tt, and thus case1(

←−
Xs) = ff. Then

spec(
←−
V ) = g2(

←−
V ), and

R(
←−
E ,
←−
V )[X ] = Rg1,ff,tt(

←−
V )[X1]∧Rg2,E,E(

←−
E ,
←−
V )[X2]. By induction hypothesis,

E(
←−
E ) = g1(

←−
V ) = ff⇒ ∃

←−
X1.Rg1,ff,tt(

←−
X1,
←−
V ), and

E(
←−
E ) = g2(

←−
V ) ⇒ ∃

←−
X2.Rg2,E,E(

←−
E ,
←−
X2,
←−
V ). But by choice of name it is guar-

anteed that X1, X2, and Xs are disjoint. So the three assignments can be

combined without conflict. Thus, ∃
←−
X .R(←−o ,

←−
X ,
←−
V ).
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(b ii) Need to show: ∃
←−
X .R(←−o ,

←−
X ,
←−
V )⇒ E(

←−
E ) = spec(

←−
V )

First observe that because both
←−
V and

←−
E are fixed, we know whether

E(
←−
E ) = spec(

←−
V ) holds or not. If it does, nothing needs to be shown. So it is

sufficient to show that

E(
←−
E ) 6= spec(

←−
V )⇒ @

←−
X .R(

←−
E ,
←−
X ,
←−
V ),

or, by applying the equality seen in line 11 of the algorithm,

E(
←−
E ) 6= (g1 XNOR g2)(

←−
V )⇒

@
←−−−−−−−−−
X1 ∪̇ X2 ∪̇ Xs. Rg1,case1,case2(

←−
E ,
←−−−−−
X1 ∪̇ Xs,

←−
V )∧

Rg2,E∧case1∨E∧case2,E∧case2∨E∧case1(
←−
E ,
←−−−−−
X2 ∪̇ Xs,

←−
V )

We show this by first reasoning there is no such assignment when

spec(
←−
V ) = tt and E(

←−
E ) = ff, and then when spec(

←−
V ) = ff and E(

←−
E ) = tt. In

both cases we examine the possible assignments to the variables, Xs, introduced

for the XNOR.

(b ii α) spec(
←−
V ) = tt and E(

←−
E ) = ff,

←−
Xs such that case1 = tt and case2 = ff

As spec(
←−
V ) = tt, this means that g1(

←−
V ) = g2(

←−
V ) must hold. If

g1(
←−
V ) = g2(

←−
V ) = tt, then the induction hypothesis delivers that

ff = E(
←−
E ) 6= g2(

←−
V ) ⇒ @

←−
X2.Rg2,E,E(

←−
E ,
←−
X 2,
←−
V ). But when case1 = tt and

case2 = ff we know that

Rg2,E∧case1∨E∧case2,E∧case2∨E∧case1(
←−
E ,
←−−−−−
X2 ∪̇ Xs,

←−
V ) = Rg2,E,E(

←−
E ,
←−
X2,
←−
V ). But if

no assignment exists that delivers Rg2,E,E(
←−
E ,
←−
X2,
←−
V ) = tt, then the conjunc-

tion of this relation with any other expression is also false, as desired.

If, on the other hand, g1(
←−
V ) = g2(

←−
V ) = ff, then

Rg1,case1,case2 [X1 ∪̇ Xs] = Rg1,tt,ff[X1]. Suppose for contradiction that

∃X1.Rg1,tt,ff(
←−
X1) = tt. Then by induction hypothesis with E = tt we can con-

clude that tt = E = g1(
←−
V ), which is a contradiction to the assumption that

g1(
←−
V ) = ff. So no such assignment can exist, as desired.

(b ii β) spec(
←−
V ) = tt and E(

←−
E ) = ff,

←−
Xs such that case1 = ff and case2 = tt

As spec(
←−
V ) = tt, this means that g1(

←−
V ) = g2(

←−
V ) must hold. If

g1(
←−
V ) = g2(

←−
V ) = tt, then Rg1,case1,case2 [X1 ∪̇ Xs] = Rg1,ff,tt[X1]. Now suppose

for contradiction that ∃
←−
X1.Rg1,ff,tt(

←−
X1). Then by the induction hypothesis with

E = ff we can conclude that ff = E = g1(
←−
V ), which is a contradiction to the

assumption that g1(
←−
V ) = tt. So no such assignment can exist, as desired.
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If, on the other hand, g1(
←−
V ) = g2(

←−
V ) = ff, then the induction hypoth-

esis delivers that tt = E(
←−
E ) 6= g2(

←−
V ) ⇒ @

←−
X2.Rg2,E,E

(
←−
E ,
←−
X 2,
←−
V ). But

R
g2,E,E

(
←−
E ,
←−
X 2,
←−
V ) = Rg2,E,E(

←−
E ,
←−
X 2,
←−
V ) and also

Rg2,E∧case1∨E∧case2,E∧case2∨E∧case1(
←−
E ,
←−
X 2,
←−
V ) = Rg2,E,E(

←−
E ,
←−
X 2,
←−
V ). But if no

assignment exists that delivers Rg2,E,E(
←−
E ,
←−
X2,
←−
V ) = tt, then the conjunction

of this relation with any other expression is also false, as desired.

(b ii γ) spec(
←−
V ) = ff and E(

←−
E ) = tt,

←−
Xs such that case1 = tt and case2 = ff

As spec(
←−
V ) = tt, this means that g1(

←−
V ) = g2(

←−
V ) must hold. If g2(

←−
V ) = ff,

then the induction hypothesis delivers that

tt = E(
←−
E ) 6= g2(

←−
V ) ⇒ @

←−
X2.Rg2,E,E(

←−
E ,
←−
X2,
←−
V ). But if no assignment exists

that delivers Rg2,E,E(
←−
E ,
←−
X2,
←−
V ) = tt, then the conjunction of this relation with

any other expression is also false, as required.

If, on the other hand, g1(
←−
V ) = ff, then assume for contradiction that

∃
←−
X1.Rg1,tt,ff(

←−
E ,
←−
X1,
←−
V ). Then by the induction hypothesis with E = tt we can

conclude that ff = E 6= g1(
←−
V ), which is a contradiction to the assumption

that g1(
←−
V ) = ff. So no such assignment can exist. But

Rg1,case1,case2(
←−
E ,
←−−−−−
X1 ∪̇ Xs,

←−
V ) = Rg1,tt,ff(

←−
E ,
←−
X1,
←−
V ), so we showed no fitting

assignment exists, as desired.

(b ii δ) spec(
←−
V ) = ff and E(

←−
E ) = tt,

←−
Xs such that case1 = ff and case2 = tt

As spec(
←−
V ) = tt, this means that g1(

←−
V ) = g2(

←−
V ) must hold. If

g1(
←−
V ) = tt, then suppose for contradiction that ∃

←−
X1.Rg1,tt,ff. Then by the in-

duction hypothesis with E = ff we can conclude that ff = E = g1(
←−
V ), which is

a contradiction to the assumption that g1(
←−
V ) = tt. So no such assignment can

exist. But Rg1,case1,case2(
←−
E ,
←−−−−−
X1 ∪̇ Xs,

←−
V ) = Rg1,ff,true(

←−
E ,
←−
X1,
←−
V ), so we showed

no fitting assignment exists, as desired.

If, on the other hand, g2(
←−
V ) = tt, then the induction hypothesis delivers that

ff = E(
←−
E ) 6= g2(

←−
V )⇒ @

←−
X2.Rg2,E,E

(
←−
E ,
←−
X2,
←−
V ). But

R
g2,E,E

(
←−
E ,
←−
X2,
←−
V ) = Rg2,E,E(

←−
E ,
←−
X2,
←−
V ) and

Rg2,E∧case1∨E∧case2,E∧case2∨E∧case1(
←−
E ,
←−−−−−
X2 ∪̇ Xs,

←−
V ) = Rg2,E,E(

←−
E ,
←−
X2,
←−
V ), so we

showed no fitting assignment exists, as desired.

(c) spec = ANDigi

First, assume that E 6= ff and cinps = ∅, and let Xs be the set of fresh variables
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introduced for cases. Then, as seen in lines 27–28,

R[E ,X ,V ] = auto abstract(C, spec, E, E, name)
= auto abstract(C,ANDigi, E, E, name)

=
∧

i auto abstract(C,gi, E, E ∧ casesi ∧ tt, namesi)

(c i) Need to show: E(
←−
E ) = spec(

←−
V )⇒ ∃

←−
X .R(

←−
E ,
←−
X ,
←−
V )

(c i α) Case spec(
←−
V ) = tt

As spec(
←−
V ) = tt we also know that gi(

←−
V ) = tt for all i, and thus in partic-

ular for i = 1. By construction of cases, we also know ∃
←−
Xs.cases1(

←−
Xs) = tt,

and thus casesi(
←−
Xs) = ff for all i 6= 1. But by the induction hypothesis,

E(
←−
E ) = gi(

←−
V ) ⇒ ∃

←−
Xi.Rgi,E,E(

←−
E ,
←−
Xi,
←−
V ). So ∃

←−
X1.Rg1,E,E(

←−
E ,
←−
X1,
←−
V ), and

Rg1,E,E∧cases1(
←−
E ,
←−−−−−
X1 ∪̇ Xs,

←−
V ) = Rg1,E,E(

←−
E ,
←−
X1,
←−
V ). Also, by Lemma 3.3 with

ff → E we can thus conclude that E(
←−
E ) = gi(

←−
V ) ⇒ ∃

←−
Xi.Rgj ,E,ff(

←−
E ,
←−
Xi,
←−
V ).

But by construction, casesi(
←−
Xs) = ff for all i 6= 1, and so E ∧ casesi = ff. Fi-

nally, as for each recursive call a different base name for new variables, namesi,

is used, it is guaranteed that Xi are pairwise disjoint. Thus, the assignments
←−
Xi and

←−
Xs can be combined without conflict:∧

i

E(
←−
E ) = gi(

←−
V )⇒ ∃

←−
Xs∃i
←−
Xi.
∧
i

Rgi,E,E∧casesi(
←−
E ,
←−−−−
Xi ∪̇ Xs,

←−
V )

But
∧

iRgi,E,E∧casesi(
←−
E ,
←−−−−
Xi ∪̇ Xs,

←−
V ) = Rspec,E,E(

←−
E ,
←−
X ,
←−
V ) with

X = Xs ∪̇
⋃

iXi, so we have found an assignment.

(c i β) Case spec(
←−
V ) = ff

As spec(
←−
V ) = ff we can conclude that there exists a set J ⊆ I such that

gj(
←−
V ) = ff for all j ∈ J . By construction of cases, we also know

∃
←−
Xs.casesj(

←−
Xs) = tt for every j ∈ J . Without loss of generality assume 1 ∈ J

and choose
←−
Xs such that cases1(

←−
Xs) = tt. With the same reasoning as in (b i

α), we can thus conclude that
∧

j∈J E(
←−
E ) = gj(

←−
V )⇒ ∃j∈J

←−
Xj.Rgj ,E,ff∧Rg1,E,E.

So it remains to show that ∃i∈I
←−
Xi.Rgi,E,ff(

←−
E ,
←−
Xi,
←−
V ). But for the fixed

←−
E we

are examining, E(
←−
E ) = ff, and by Lemma 3.4 Rgi,ff,ff is a tautology and we

can thus choose
←−
Xi for i ∈ I randomly receive an assignment

←−
X as desired.

(c ii) Need to show: ∃
←−
X .R(

←−
E ,
←−
X ,
←−
V )⇒ E(

←−
E ) = spec(

←−
V )
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First observe that because both
←−
V and

←−
E are fixed, we know whether

E(
←−
E ) = spec(

←−
V ) holds or not. If it does, nothing needs to be shown. So it is

sufficient to show that

E(
←−
E ) 6= spec(

←−
V )⇒ @

←−
X .R(

←−
E ,
←−
X ,
←−
V )

We show this by first reasoning there is no such assignment when

spec(
←−
V ) = tt and E(

←−
E ) = ff, and then when spec(

←−
V ) = ff and E(

←−
E ) = tt. In

both cases we examine the possible assignments to the variables, Xs, introduced

for the multiple-input AND.

(c ii α) spec(
←−
V ) = tt and E(

←−
E ) = ff

From spec(
←−
V ) = tt we can conclude that gj(

←−
V ) = tt for all i, too. By induc-

tion hypothesis for all i it holds that E(
←−
E ) 6= gi(

←−
V ) ⇒ @

←−
Xi.Rgi,E,E. We can

now choose
←−
Xs such that cases1(

←−
Xs) = tt, and thus

Rg1,E,E∧cases1(
←−
E ,
←−−−−−
X1 ∪̇ Xs,

←−
V ) = Rg1,E,E(

←−
E ,
←−
X1,
←−
V ). But if no assignment ex-

ists for this subrelation of R[E ,X ,V ], then no assignment
←−
X can exist that

ensures R(
←−
E ,
←−
X ,
←−
V ) = tt, as desired.

(c ii β) spec(
←−
V ) = ff and E(

←−
E ) = tt

From spec(
←−
V ) = ff we can conclude there exists an i such that gi(

←−
V ) = ff,

without loss of generality i = 1. We can now choose
←−
Xs such that cases1(

←−
Xs) =

tt, and thus Rg1,E,E∧cases1(
←−
E ,
←−−−−−
X1 ∪̇ Xs,

←−
V ) = Rg1,E,E(

←−
E ,
←−
X1,
←−
V ). But by in-

duction hypothesis E(
←−
E ) 6= g1(

←−
V ) ⇒ @

←−
X1.Rg1,E,E. Finally, if no assignment

exists for this subrelation of R[E ,X ,V ], then no assignment
←−
X can exist that

ensures R(
←−
E ,
←−
X ,
←−
V ) = tt, as desired.

(d) spec = ANDigi, continued

Recall that in (c) we first assumed that E 6= ff, and cinps = ∅. It remains to

show that even when E = ff, or when cinps 6= ∅ coverage is guaranteed, too.

(d i) E = ff

The main difference in this case is visible in lines 23–24. Namely, in the

recursive calls of auto abstract we use the same base names, rather than unique

ones. This has the consequence that in the subrelations computed by

auto abstract(C,gi,H,L ∧ casesi, namesi)

it may, and usually will, happen that indexing variables with the same names
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are used: Xi ∩ Xj 6= ∅. But recall that in the proof of (c) we depended on

being able to choose assignments
←−
Xi independently and then combine them to

an assignment
←−
X . This is, in general, only possible with pairwise disjoint Xi.

In the specific case where E = ff, though, we can argue that an assignment
←−
X

is still possible with a very similar reasoning. Recall that casesi(
←−
Xs) is true

for exactly one i, and false for all other j 6= i. So

∀
←−
Xs.

∧
j auto abstract(C,gj,ff, E ∧ casesj, name) =

auto abstract(C,gi,ff, tt, name) ∧
∧

j 6=i auto abstract(C,gj,ff,ff, name)

But by Lemma 3.4 we know that
∧

j 6=i auto abstract(C,gj,ff,ff, name) is a tau-

tology, and thus it does not matter which assignments
←−
Xj are chosen. In partic-

ular, an assignment
←−
Xi which includes assignments to variables in Xj, delivers a

partial assignment for the variables in Xj, which still suits our cause. Thus, we

can find an assignment
←−
X by finding an assignment

←−−−−
Xi ∪̇ Xs and the remaining

assignments can be chosen randomly.

(d ii) cinps 6= ∅

First, note that cinps are all those gi whose set of free variables is fully included

in C, the set of symbolic constant:

cinps = {gi : free vars(gi) ⊆ C}.

If at least one such gi exists, two differences can be observed to the prior

case. First, the subrelation E → c, where c = ∧gi∈cinpsgi is added. This

ensures that the H-component, which computes the guard that shall guarantee

a low output for gj 6∈ cinps, is correct. And second, in the recursive calls

auto abstract(C,gj, E, E ∧ casesi ∧ c, namesj) that same c is conjoined on the

L-component, which computes the guard that shall guarantee a low output to

gj 6∈ cinps.
In the first case the subrelation described by the tuple (c, E,ff), which encodes

E → c, ensures that whenever the guard for the H-component of the recursive

calls is satisfied, we also force the symbolic constants to a high value. This is

required, so that the conjunction of all gi – both those in cinps and those that

are not in cinps – is still true:

spec =
∧

gi∈cinps

gi ∧
∧

gj 6∈cinps

gj = tt ∧
∧

gj 6∈cinps

gj.
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If any of the gi ∈ cinps evaluated to false, then the value of spec would also

evaluate to false, which is something we need to prevent. This modification,

on the other hand, right away shows that the proof from before, restricted to

gj 6∈ cinps is sufficient with respect to the H-component.

For the L-component, we simply conjunct c =
∧

gi∈cinps gi onto E ∧ casesj. If

c(
←−
V ) = tt this means our previous proof works exactly as before. If c(

←−
V ) = ff,

on the other hand, we can treat the one case where casesi(
←−
Xs) = tt holds just

like those where casesj(
←−
Xs) = ff, i.e., it then does not need special handling

anymore.

Thus, the proof seen in (c) is sufficient even when cinps 6= ∅. We merely

assumed cinps = ∅ to split off some complexity and ease the reasoning in the

already quite elaborate section of the proof.

Corollary 4.2. Let c be a circuit with input nodes {ni : i ∈ I} and output node out.

Let spec be a bexpr-tree, where V = {vi : i ∈ I} is its set of free variables. Then the

formal verification of c

|=
∧
i∈I

ni is vi ⇒ out is spec[V ]

can be computed by

R[o,X ,V ] |= (
∧
i∈I

ni is vi)
R[o,X ,V] ⇒ (out is o)R[o,X ,V]

where R[o,X ,V ] = auto abstract(C, spec[V ], o, o, name) is the result of the algorithm

in Figure 4.6, and the choice of name guarantees that o 6∈ X .

Proof. This directly follows from Theorem 3.1, and Theorem 4.1 with E = o.

4.7 Variable Reuse

In the proof of Theorem 4.1 we assumed that get case expressions, as seen in lines

9 and 22 of the advanced auto abstract algorithm provided in Figure 4.6, introduces

new indexing variables, and returns a set of mutually exclusive expressions that de-

pend only on those variables. More precisely, the indexing variables are not reused

thereafter, with one exception. Namely, the code in lines 24–25 cause some of the
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recursive calls to use the same base name for new indexing variables. This leads to

indexing variables being reused after analysing multiple-input AND-gates while the

H-component equates to false. This reuse was proved correct in Theorem 4.1.

But indeed, this reuse of indexing variables is much more careful than necessary

from a correctness point of view. Instead of introducing new indexing variables in

most cases, we can maintain a table that captures when previously introduced in-

dexing variables were used. When requiring new case expressions we can then check

whether any of the old indexing variables have been used in the current setting. If

not, then we can reuse the variables. Only if no reuse is possible do we need to in-

troduce new indexing variables. Note that with this approach the base names passed

into the recursive calls of auto abstract are not necessary anymore and are ignored.

This, as a consequence, also does not profit from the observations made concerning

reuse in the multiple-input AND-gate whenever H = ff. Even though this reuse of

variables is thus eliminated, the general approach indeed potentially introduces that

reuse, in addition to other reuse. This becomes evident once we have explained how

to determine whether reusing indexing variables is safe or not.

It remains to argue in more detail when indexing variables have already been

utilised, and when it is safe to reuse them. For this we need to recall how exactly

indexing variables are leveraged in the auto abstract algorithm. Importantly, we al-

ways conjunct casei, which depends on indexing variables introduced or reused for

that step, with some expression E, which depends on previously introduced indexing

variables. For XNOR-gates, casei is conjoined with multiple expressions (as seen in

line 11), which we can combine in a disjunction to capture all scenarios in which casei

is used in a single expression E.

For each variable xj that is included in the free variables of casei we can thus store

the expression E. It expresses that for every assignment in which E holds the variable

has already been used and must not be utilised again. Now assume that at a later

point we require new case expressions. Further assume these are then conjoined with

the expression F . If E ∧ F = ff irrespective of the assignment to the free variables of

E and F , then it is safe to reuse any indexing variable, which has so far only been

utilised whenever E holds. Thereafter, we need to update our list of when indexing

variables have already been used by adding F , i.e., if xj was previously used whenever

E holds, it is now used whenever E ∨ F holds.

Example: Keeping Track of Usage of Indexing Variables

Suppose we run the auto abstract algorithm and we need to introduce indexing vari-
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ables for the first time. For example, assume we encounter an 8-input AND, and

thus require eight case expressions. As we previously did not introduce any indexing

variables yet, the table that keeps track of when indexing variables have already been

used is still empty. Further assume we need to conjunct the cases with L = b (as seen

in line 28 of Figure 4.6). Then we update the table as follows:

variable already used when

x1 b

x2 b

x3 b

Next, suppose we require four case expression, which are used only when a∧ b. By

checking the table, we find that both x1 and x2 can be reused, as b∧ (a∧ b) = ff. We

thus update the table as follows:

variable already used when

x1 b ∨ (a ∧ b)
x2 b ∨ (a ∧ b)
x3 b

Finally, suppose we require four further case expressions, which are used only when

b. We thus discover that x1 and x2 cannot be used, as (b ∨ a ∧ b) ∧ b = a ∧ b 6= ff.

On the other hand, x3 can be reused, and so we only need to introduce one further

indexing variable, x4, to construct four cases. Thus, we receive the following table:

variable already used when

x1 b ∨ (a ∧ b)
x2 b ∨ (a ∧ b)
x3 tt

x4 b

In particular, the indexing variable x3 has now been utilised to the maximum. It

cannot be reused, as the check tt ∧ E = ff does not pass for any expression E 6= ff.

Thus, such entries can indeed be dropped from the table to reduce its size. F

With this adjustment the correctness proof works just as before, with the same

reasoning as provided for those cases where casei(
←−
Xs) = ff, or as seen in part (d) of

the proof, which argues why the same base names can be reused whenever H = ff (as

seen in lines 23–24 of the advanced auto abstract algorithm provided in Figure 4.6).
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Also observe that for XNOR-gates the case expressions are conjoined with both H

and L. If H and L are each other’s complement, then we have to use fresh indexing

variables, and these are fully utilised, so that they cannot be reused for other cases. In

general, this is not the case, but the indexing variables used for the case expressions are

facilitated more strongly. While for AND-gates the variables are only used whenever

L, for XNOR-gates, they are used whenever H ∨ L.

Note that we could allow even more extreme reuse of variables by not just selecting

variables to reuse, and then constructing mutually exclusive case expressions on those,

but by storing even more detailed information. We could additionally store which

case expressions were already used for specific indexing variables. In particular, when

requiring n case expressions where n is not a power of two we could keep the variables

unused for specific formulae. Namely, before we assumed that
∨

i casesi = tt, and

with this more aggressive approach we would receive
∨

i casesi = U , where U is an

expression on the indexing variables used in casesi. Then U exactly expresses when

those variables have not been utilised yet, even if the expression E, with which casesi

is conjoined, does not hold. While this approach maximises reuse, it also requires

elaborate tracking of variable use. Furthermore, this extreme sharing of variables can

lead to undesirably complex case expressions, which can in turn increase, rather than

decrease computation costs when verifying circuits.

On a similar note, even the more modest sharing we first suggested can be dis-

advantageous. Two adjustments can help decrease this risk. First, if utilisation

expressions get too complex, we can decide to drop the corresponding entries from

the table, just as we suggested in the example when an indexing variable has al-

ready been used maximally. Second, ideally, we want to share variables especially

then when the different cases exhibit a specific symmetry, as this reduces the cost of

internal handling using BDDs. Thus, one can imagine adding some commentary to

the list that captures when indexing variables are already used. A simple, yet po-

tentially effective commentary is provided by the node names. For example, assume

we are analysing an array of data with entries d[i]. Then this suggests there is some

symmetry for the different values of i. A possible heuristic could be to store these

node names, and when searching for indexing variables to reuse to prefer those which

were already used for similar node names. Similarity could, for example, be defined

as equality of node names after removing all numbers.

Finally, we could also go to the other extreme and decide to not reuse any indexing

variables. This translates to using the auto abstract algorithm as shown in Figure 4.6,
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except that the name parameter is ignored. Thus, get case expressions always creates

new indexing variables, even when the same parameters are passed into two different

recursive runs of auto abstract, as is done for multiple-input AND-gates whenever

H = ff.

In Chapter 5 we provide experimental results for verifying circuits using our ad-

vanced auto abstract algorithm. There we show execution times for four reuse pat-

terns: never reusing, as just suggested; reusing as shown in the auto abstract al-

gorithm, and finally the two variants based on mutual exclusivity – the moderate

version first introduced in this section, and then the adapted version, which also uses

the simple heuristic on which indexing variables to prefer by analysing similar node

names. We observe that reusing variables aggressively and merely based on whether

it still leads to correct verification results is generally bad, sometimes to the extreme

of making verification infeasible again. This shows how fragile modifications to the

sharing of variables is.

4.8 Reindexing Optimisations

The auto abstract algorithm we suggest produces an abstraction relation, which is

used in the STE run

R[o,X ,V ] |= (
∧
i

ni is vi)
R ⇒ (out is o)R.

In joint work largely done by Magnus Björk, we developed optimisations for the

preimage calculations. These can be applied due to the specific shape of the SIR

relation computed in our approach. In particular, the relation’s shape allows an early

existential quantification to be used in the preimage computations. These improve-

ments are based on the work described in [69], but do even better by exploiting the

special form that our relations have by virtue of how they are generated:

R[o,X ,V ] =
∧
i

(Hi[o,X ]→ vi) ∧ (Li[o,X ]→ vi)

In particular, to facilitate the optimisations we first separate the relation into two

parts:

R[o,X ,V ] = S[o,X ] ∧ T [o,X ,V ]

110



such that S[o,X ] does not depend on any of the variables in V . Notably, all terms

in S[o,X ] are generated by line 3 of Figure 4.6, and thus this division of the relation

can also be achieved directly when generating the relation, rather than after the fact.

Additionally, T [o,X ,V ] has the shape∧
i

(Hi[o,X ]→ vi) ∧ (Li[o,X ]→ vi)

where Hi and Li are independent of V = {vi : i ∈ I}. We can then further divide the

SIR relation by defining

Ti[o,X , vi] = (Hi[o,X ]→ vi) ∧ (Li[o,X ]→ vi),

and thus T [o,X ,V ] =
∧

i Ti[o,X , vi]. Next, given a guard P , R ↓ P is defined as the

part of R that mentions the target variables V in P :

R ↓ P =
∧

vi∈free vars(P )

Ti[o,X , vi]

Then, using the definition of the weak preimage, PR[X ] = ∃
←−
V .R(

←−
V )[X ]∧P (

←−
V ) (see

page 57), and with P1 = free vars(P ) ∩ V and P2 =
(

free vars(P ) ∪ V
)
\P1

PR↓P [P2] = ∃
←−
P1.R ↓ P (

←−
P1) ∧ P (

←−
P1).

Having introduced this notation, Björk proved the following optimisations can be

applied, where D = S ∧
∧

i Hi ∧ Li:

PR =



D ∧ P if free vars(P ) ∩ V = ∅

D ∧ Li if P = vi

D ∧ Hi if P = vi

D ∧ PR↓P otherwise

and

PR = D ∧ PR.

As D does not depend on P , it can be precomputed when the relation R is created and

used for all guards in the trajectory assertion to be transformed. By building hash
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tables that map vi to Hi and Li, the two middle cases can be computed very quickly.

The fourth cases, seen only rarely in practise, can be optimised using quantification

scheduling.

Finally, factoring in that the SIR relations we compute provably satisfy the cover-

age condition

∀
←−
V .∀←−o .

(←−o =
{
o 7→ spec(

←−
V )
}
⇔ ∃
←−
X .R(←−o ,

←−
X ,
←−
V )
)

we can conclude that D(←−o ,
←−
X ) = tt in all cases, and can thus be safely removed from

all formulae. This significantly reduces the complexity of the preimage operations.

A full proof for the correctness of this optimisation, and further details are given

in our joint paper with Björk [1].

4.9 Summary

In this chapter we saw several improvements and extensions to the basic automatic

abstraction algorithm introduced in Chapter 3. We extended the types of specifica-

tions we could work on by allowing directed acyclic graphs, rather than just trees,

by allowing further constructors, and by offering a solution for designs with multiple

outputs. We also improved the auto abstract algorithm by making it recognise more

elaborate constructs in the specification, namely constructs equivalent to XNOR-

gates, and multiple-input AND-gates, so that their indexing cases can be encoded

more efficiently. Finally, we discussed different options for reusing indexing variables

when constructing the SIR relation through our automatic abstraction algorithm, as

well as possible optimisations in computing the strong and weak preimage required

in the STE run R |= AR ⇒ CR using a partitioned version of the SIR relation our

algorithm produces.

While some of these changes simply make our work applicable to more designs,

the majority are concerned with improving the efficiency of our approach throughout.

These improvements turn our prototype, as presented in Chapter 3, into a powerful

verification tool, which can be used to show formal correctness of realistically-sized

circuits. This we demonstrate in Chapter 5, where we verify three designs, a content-

addressable memory, a memory, and a scheduler, of increasing sizes.
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Chapter 5

Experimental Results for

Abstraction Discovery

In this chapter we verify three example circuits, namely a content-addressable mem-

ory, a memory, and a scheduler, to provide experimental assessment of the effective-

ness of our algorithm for calculating automatic abstraction schemes. Each example

is presented in three main parts. First, we describe the hardware model and how we

generate it. Second, we determine the SIR relation produced by running the advanced

auto abstract algorithm and discuss the symbolic indexing it encodes. Finally, we run

STE using that relation to show each design meets its specification. We provide exe-

cution times for each phase, and different variants of reusing indexing variables. The

execution times provided where collected on a 2GB memory machine with an Intel R©

Core 2 Duo CPU with 3.06GHz.

We additionally vary the sizes of all three designs to show how well our method

scales. The results show that we can successfully verify circuits of industrial size, thus

addressing the state explosion problem.

5.1 Content-Addressable Memory

Our first example is a content-addressable memory (CAM). Pandey et al. pioneered

the verification of a CAM using symbolic indexing in [24], and it has evolved to a

classic example since. As illustrated in Figure 5.1, the simple CAM we verified takes

a key as an input, and returns a bit that indicates whether the key is contained in

its internal memory. More complex CAMs return a list of addresses that store the

key. In our example we simply return a Boolean value, hit, indicating whether the

key was found or not.
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Figure 5.1: High-level model of the content-addressable memory verified

Additionally, you can write to the internal memory of the CAM by providing a

write address and the data to be stored to that location. However, for this experiment

we verify only the correctness of the hit signal, and thus omit the write behaviour

from Figure 5.1 to avoid clutter.

5.1.1 Hardware Model

Figure 5.2 shows the FL-code, the functional language used in the Forte verification

environment, that we used to generate the design of CAMs in varying sizes. It defines

all input and outputs, as well as a circuit’s gates, each given by defining truth tables.

In our figures we omit the truth tables, instead using descriptive names, such as

mk mux for a multiplexer, or mk re ff for a rising edge flip-flop.

In lines 5–8 the signal vectors are defined. The key signal is the input for which

we want to determine whether it is stored in one of the entries. The din signal is only

used when writing data to one of the entries. It then provides which data to write to

an entry. The data is written to the entry with the address provided in the waddr

signal. The write signal, we, consists of a single bit, and thus does not have to be

listed explicitly in these lines. It is used in the subsequent code, though. Finally, lhit

and hits are auxiliary vectors. The vector lhit stores in its jth component whether

the jth bit of an entry matched with the jth bit of the key. Similarly, hits stores in

its ith component whether the ith CAM entry matches with the key.

Lines 14–20 generate a single CAM cell, which is essentially the heart of the CAM.

Provided the write signal is high, it writes a single bit of data into the memory

entry (lines 16–17). It then compares a single bit of the key with a single bit of the

stored entry. The definition of a CAM cell is followed by that of a full CAM line

(lines 22–27), which combines several CAM cells to receive the conjunction of each
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1 let mk CAM entries word size =
2 let es = entries-1 in
3 let ks = word size-1 in
4 let name = sprintf “CAM %d entries %d bits” (entries,word size) in
5 // Short hand for signals
6 let key = sprintf “key[%d:0]” ks in
7 let din = sprintf “din[%d:0]” ks in
8 let waddr = sprintf “waddr[%d:0]” es in
9 let lhit = sprintf “lhit[%d:0]” ks in

10 let hits = ev (sprintf “hits[%d:0]” es) in
11 // Real body
12 mk module name [“we”, “clk”, key, din, waddr] [“hit”] (
13 // CAM cell
14 mk module “cam cell” [“clk”, “write”, “ki”, “di”] [“lhi”] (
15 // Multiplexer in front of rising edge flip-flop
16 mk mux “write” “di” “oi” “ti” #
17 mk re ff “clk” “ti” “oi” #
18 // Comparator
19 mk xnor2 [“oi”,“ki”] “lhi”
20 ) #
21 // Line of CAM cells
22 mk module “cam line” [“clk”, “we”, “wi”, key, din] [“hit”] (
23 mk and [“we”, “wi”] “write” #
24 (forall [(i,ki,di,lhi) | zip4 (ks downto 0)
25 (ev key)
26 (ev din)
27 (ev lhit)].
28 mk instance “cam cell” (sprintf “cc%d” i)
29 [“clk”, “write”, ki, di] [lhi]
30 ) #
31 mk and (ev lhit) “hit”
32 ) #
33 //
34 (forall [(i,wi,hi) | zip3 (es downto 0) (ev waddr) hits ].
35 mk instance “cam line” (sprintf “cl%d” i)
36 [“clk”,“we”,wi,key,din] [hi]
37 ) #
38 mk or hits “hit”
39 )
40 ;

Figure 5.2: The code used to generate a CAM
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of the CAM cell’s outputs. Thus, a CAM line returns whether the key is stored in

that memory location. Finally, the disjunction of the output of several CAM lines

(lines 34–38) delivers the hit signal we are interested in.

38 // Simulated error correction
39 (mk constant 1 (ev one)) #
40 (mk zero extend (ev key) (ev ext key)) #
41 (mk adder (ev ext key) (ev one) (ev keyp1)) #
42 (mk subtractor (ev keyp1) (ev one) (ev keyp1m1)) #
43 (mk truncator (ev keyp1m1) (ev key’)) #
44 (forall [(i,wi,hi) | zip3 (es downto 0) (ev waddr) hits ].
45 mk instance “cam line” (sprintf “cl%d” i)
46 [“clk”,“we”,wi,key’,din] [hi]
47 ) #
48 mk or hits “hit”
49 )
50 ;

Figure 5.3: Adjusted CAM generation code to simulate error correction, lines 1–37 are
as in Figure 5.2

This hardware model is an almost one-to-one translation of the specification we

introduce in the next part. However, in real designs often some more complex calcu-

lations are executed for speedup reasons, reducing the physical size of a design, or for

increasing robustness (e.g. fault tolerance). We hence augment the model as shown

in Figure 5.3. This code first adds one to the key and then subtracts it again. It

simulates a possible error-correction, in which the key and entries would have redun-

dant bits that are used for a checksum. The computation we added of course does

not implement such a functionality, but merely ensures that the CAM includes some

more elaborate calculations, which simulate the kinds of computations that could be

observed in actual industry designs.

5.1.2 SIR Relation

Our method of automatically computing indexing schemes works on the specification

of the model to be verified. The input-output behaviour of a CAM provides a very

obvious specification function for the CAM. The hit signal, whose value is represented
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by o, is high exactly if at least one of the entries coincides with the key provided:

o =
∨
i

(M [i] = key)

So the output is the disjunction of equalities, one per entry of the CAM’s internal

memory.

We give this specification to our automatic abstraction algorithm, additionally

declaring the key inputs to be symbolic constants. We declare the bits of the key

as symbolic constants because we perform an arithmetic operation, namely adding

and subtracting one, on the key. As mentioned in Section 4.3, such inputs are good

candidates for symbolic constants. Later, in Chapter 8 we demonstrate how these

inputs can also be automatically detected as good candidates for symbolic constants.

Before we describe in detail which indexing is computed, recall that our

auto abstract algorithm computes tuples of values of the form (ni, Hi, Li). These

are short-hand for the actual relation R =
∧

i(Hi → vi) ∧ (Li → vi). The first com-

ponent of the tuple signifies which node we are driving, the second when to drive it

with a high value, and the third when to drive it with a low value. Here node ni is an

input of the hardware model, which is represented by vi in the circuit’s specification.

For a model that has entries number of entries, and where each entry has bits

number of bits, running

auto abstract({key[j] : j = 0..(bits− 1)},
∨

i=0..(entries−1)

(M [i] = key), o, o, “”)

generates tuples of the shape

(M [i][j], key[j] ∧ entryi ∧ o ∨ key[j] ∧ bitij ∧ o,
key[j] ∧ entryi ∧ o ∨ key[j] ∧ bitij ∧ o).

Here, entryi is an expression that requires log2 entries variables and encodes which

CAM entry matches with the key. The expressions bitij require log2 bits variables for

each entry of the CAM and specify which bit of the ith CAM entry does not match

with the key. This means in total entries · log2 bits variables are used when verifying

that the output is low whenever none of the entries match with the key. In total,

log2 entries+ entries · log2 bits indexing variables are introduced.

Note that the variable o encodes whether we are driving values with the goal of

verifying a high or low output. When expecting a high output the SIR relation drives

117



exactly one CAM entry with the same values as the bits of the key – it is the entry

that ensures that the hit signal is high. When expecting a low output, on the other

hand, it drives exactly one bit of each CAM entry with the opposite value of the key

in that bit. To clarify, we give the full set of tuples for entries = 2 and bits = 2.

Example: SIR relation for a 2× 2 CAM

(M [0][0], key[0] ∧ a ∧ o ∨ key[0] ∧ b ∧ o, key[0] ∧ a ∧ o ∨ key[0] ∧ b ∧ o)
(M [0][1], key[1] ∧ a ∧ o ∨ key[1] ∧ b ∧ o, key[1] ∧ a ∧ o ∨ key[1] ∧ b ∧ o)
(M [1][0], key[0] ∧ a ∧ o ∨ key[0] ∧ c ∧ o, key[0] ∧ a ∧ o ∨ key[0] ∧ c ∧ o)
(M [1][1], key[1] ∧ a ∧ o ∨ key[1] ∧ c ∧ o, key[1] ∧ a ∧ o ∨ key[1] ∧ c ∧ o)

In this concrete example only one variable, a, is required for the expressions entryi.

This variable is relevant only when o evaluates to true, i.e., when verifying the hit

case. For the miss case, two variables are required, the variable b for selecting the bit

that does not match in the first CAM entry, and the variable c for selecting the bit

that does not match in the second CAM entry. These need to be different variables,

so that each bit can be selected independently.

The variables key[0] and key[1] are symbolic constants. They encode which value

the ith bit of the key has in each run. Hence, if key[0] is used in the H component of a

(M [i][0], H, L) tuple, this means the memory cell has the same value as the key in the

first bit. On the other hand, if key[0] is used in the L component of that same tuple,

this means that the memory cell has the opposite value as the key in the first bit: while

the key bit is high, it leads to a low bit in the memory. Accordingly, key[0] signifies

differing values in the H-component, and matching values in the L-component. F

It is noteworthy that the indexing computed is the same one as the manually

devised abstraction scheme proposed in [24]. When verifying the CAM’s behaviour

when it contains the key, we first decide which CAM entry is the matching one, and

the drive it with the same values as the key. Thus, if the model is correct, a high hit

signal should be observed. When verifying the CAM’s behaviour when it does not

contain the key, on the other hand, for each CAM entry we drive one bit with exactly

the opposite value as that the key has in that bit. Thus, a correct model should yield

a low output.

So we automatically compute an indexing for the CAM that previously had to be

developed with careful reasoning. Pandey et al.’s previous result was significant, be-

cause this design could not be verified for larger sizes without using symbolic indexing.

For BDD-based verification memory was the bottleneck, for SAT-based verification it
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was time. In particular, we tried to verify the CAM presented here without symbolic

indexing, which could only be successfully completed for the CAM with 64 entries,

each having four bits (in 20.59 seconds). Increasing the number of bits to six was

already too costly to complete with our machine.

Finally, it is worth mentioning that if we do not declare any symbolic constants

when computing the abstraction scheme we obtain a much finer-grained symbolic

indexing scheme. For example, one case included in this finer indexing family covers

the case in which bit j of the key is different from bit j in every entry in the CAM.

This, of course, is sufficient information to decide that the hit signal should be low

– from a purely theoretical point of view. But this extremely detailed indexing is

not necessarily desirable. In particular, it failed on our augmented design due to

over-abstraction. Rather than observing a low output, we obtained an X-value. In

Chapters 6 and 7 we address the problem of over-abstraction by suggesting auto-

matic refinement strategies for symbolic indexing schemes. At this point, however,

we simply stated the key bits to be symbolic constants.

5.1.3 Observed Execution Times

Now that we have described both the model to verify, as well as an SIR relation

to speed up the process, we can run STE to determine whether the CAM meets

its specification. Figure 5.4 shows the execution times we collected for CAMs of

increasing sizes, all of which passed the verification. In particular, we timed the three

different phases of the verification individually. First, we created the hardware model

M with the code provided in Figure 5.3 by executing mk CAM entries bits. Then

we computed our SIR relation R on the specification hit =
∨

i(M [i] = key) while

declaring all of the bits of the key as symbolic constants:

auto abstract({key[i] : i = 0..(bits− 1)},
∨

i=0..entries−1

(M [i] = key), o, o, “”).

Finally we verified that M meets the CAM specification by running STE with the

previously computed SIR relation: R |=M (
∧

i ni is vi)
R ⇒ (hit is o)R. Recall that

the relation injects the specification into the auxiliary run, which simply drives the

input nodes and the output with variables.

We varied the key size, i.e., the number of bits the key (and thus the entries)

have, as well as the number of entries the CAM holds. Both of these parameters

we increased exponentially. Factoring this in, the results indicate that running time
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grows linearly, or close to linearly, with the size of the CAM. This observation is

supported by our analysis of the SIR relation generated. In particular, [24] used

the same indexing scheme and also observed linear growth in execution times when

increasing the number of entries, as well as the width of the entries.

entries × bits circuit auto abstract STE
64 × 4 0.01s 0.11s 0.03s
64 × 8 0.01s 0.21s 0.09s
64 × 16 0.01s 0.43s 0.20s
64 × 32 0.02s 0.88s 0.45s
64 × 64 0.04s 1.77s 1.20s

256 × 4 0.03s 0.43s 0.15s
256 × 8 0.04s 0.86s 0.40s
256 × 16 0.05s 1.71s 0.95s
256 × 32 0.07s 3.61s 2.24s
256 × 64 0.15s 7.51s 5.06s

1024 × 4 0.28s 1.82s 0.95s
1024 × 8 0.32s 3.73s 2.17s
1024 × 16 0.38s 7.58s 4.27s

Figure 5.4: Execution times of verifying a CAM with varying number of entries (64,
256, 1024) and key sizes (4, 8, 16, 32, 64). Execution times were split into time needed
to build the circuit, of running our auto abstract algorithm, and of running STE in the
Forte verification environment.

The execution times provided in Figure 5.4 – as all execution times given in this

dissertation – were collected on a virtual machine running Fedora 8 with an Intel R©

Core 2 Duo CPU with 3.06GHz and 2GB of memory. Each run was executed on a

freshly opened verification environment to eliminate any side effects previous calcu-

lations may have had on the internal storage. Each run was repeated ten times, and

the minimum taken to minimise the noise caused by possible background tasks.

Finally, we could not verify larger CAMs, because the open-access version of

Intel R©’s Forte verification environment supports at most 32768 BDD variables only,

a restriction their internal version does not have. For the 1024× 32 CAM this limit

was reached. This does not represent a limit of our approach, but merely that of the

tool we used to run STE.

Variants of Reusing Indexing Variables

We also verified the CAM using three of the other proposed methods of reusing

indexing variables. The execution times provided in Figure 5.4, and also Figure
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entries × bits (1) (2) (3) (4) (5)
64 × 4 20.59s 0.10s 0.06s 0.09s 0.08s
64 × 8 0.15s 0.13s 0.15s 0.17s
64 × 16 0.37s 0.31s 0.40s 0.33s
64 × 32 0.70s 0.58s 0.62s 0.72s
64 × 64 1.59s 1.40s 1.80s 1.78s

256 × 4 0.34s 0.33s 0.35s 0.38s
256 × 8 0.68s 0.74s 0.80s 0.74s
256 × 16 1.71s 1.31s 1.71s 1.62s
256 × 32 2.87s 3.25s 3.40s 3.08s
256 × 64 6.93s 6.22s 7.13s 7.35s

1024 × 4 1.56s 1.54s 1.79s 1.44s
1024 × 8 3.37s 3.14s 3.23s 4.07s
1024 × 16 6.35s 6.54s 7.64s 7.30s

Figure 5.5: Execution times observed for verifying the CAM using different methods:
(1) without symbolic indexing, (2) no reuse of indexing variables, (3) main reuse vari-
ant, same results as seen earlier in this section, (4) reuse based on mutual exclusivity
while preferring variables used for similar node names, and (5) reuse based on mutual
exclusivity only.

5.5 (3), are those collected when reusing indexing variables only when we encounter

multiple-input AND-gates. In particular, variables are only reused if H = ff (lines

23–24 of Figure 4.6). The execution times provided in Figure 5.5 additionally provide

data on the following variants. First, for variant (2), we do not ever reuse indexing

variables, i.e., even not when the algorithm encounters a multiple-input AND-gate

while H = ff. Thus, the name parameter is unused. Variants (4) and (5) also ignore

the name parameter and thus also treat the case H = ff identically to H 6= ff. However,

indexing variables are reused more aggressively than in (2) and (3). The variants

reuse indexing variables whenever we are safe to do so based on mutual exclusivity,

as described in more detail in Section 4.7. Variant (4) additionally tries to reuse those

indexing variables, which have likely been used in a symmetrical setting before by

storing and comparing the node names for which the variables were previously used.

Details on this variant are also provided in Section 4.7.

All variants lead to very similar execution times, a clear evaluation of which variant

is superior is difficult. This is especially true, as the verification of even the largest

CAMs required just six to eight seconds. Still, our main variant, as well as not reusing

variables at all showed a better performance than the two variants that reuse variables

based on the mutual exclusivity condition.
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In Figure 5.5 we did not split execution times into the time needed for computing

the SIR relation, and for running STE anymore. All of the variants behaved similarly

with respect to what proportion was used for running auto abstract. More impor-

tantly, the combined execution times all seem to increase at approximately the same

rate, thus suggesting they scale similarly. To put this into perspective, we also added

the execution time for verifying the CAM without symbolic indexing, which could

only be completed for the smallest CAM in our set.

5.2 Memory

Figure 5.6: High-level model of the memory verified

In our second example we verify the correctness of the read operation for a mem-

ory. In 1997 Pandey et al. first published verification successes by Symbolic Trajec-

tory Evaluation using symbolic indexing [25], and memories have – just like CAMs

– evolved to classic examples for demonstrating the effectiveness of verification by

Symbolic Trajectory Evaluation.

The memory we verified is abstractly shown in Figure 5.6. Given an address to

read from, the memory outputs the data stored in the addressed location. Again,

the write functionality is not included in the figure, as we are not verifying that

functionality of the memory.

5.2.1 Hardware Model

Figure 5.7 shows the FL-code that generates the memory we verified in varying sizes.

In lines 5–13 the signal vectors are defined. The raddr input delivers the address that

we want to read from. The din signal signal is only used when writing data to one

of the locations, then providing the data to write. In that case the data is written

to the entry with the address provided in the waddr signal. The write signal, we,
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1 let mk memory entries word size =
2 let as = (log2 entries) in
3 let name = sprintf “mem %d entries %d bits” (entries,word size) in
4 // Short hand for signals
5 let raddr = sprintf “raddr[%d:0]” (as-1) in
6 let din = sprintf “din[%d:0]” (word size-1) in
7 let waddr = sprintf “waddr[%d:0]” (as-1) in
8 let dout = sprintf “dout[%d:0]” (word size-1) in
9 let rdecodes = sprintf “rdecode[%d:0]” (entries-1) in

10 let tmps = sprintf “tmp[%d:0]” (entries-1) in
11 let wdecodes = sprintf “wdecode[%d:0]” (entries-1) in
12 let Mcells = sprintf “M[%d:0][%d:0]” (entries-1, word size-1) in
13 let rc = sprintf “rc[%d:0][%d:0]” (entries-1, word size-1) in
14 // Real body
15 mk module name [“clk”, “we”, raddr, din, waddr] [dout] (
16 // Decoder
17 mk module “rdecoder” [raddr] [rdecodes] (
18 (forall [(i,rd) | zip (entries-1 downto 0) (ev rdecodes)].
19 let cn = sprintf “c%d[%d:0]” (i,as-1) in
20 mk constant i (ev cn) #
21 mk eq (ev cn) (ev raddr) rd
22 )
23 ) #
24 // Enabled (write) decoder
25 mk module “wdecoder” [waddr, “we”] [rdecodes] (
26 (forall [(i,tmp,rd) | zip3 (entries-1 downto 0) (ev tmps) (ev rdecodes)].
27 let cn = sprintf “c%d[%d:0]” (i,as-1) in
28 mk constant i (ev cn) #
29 mk eq (ev cn) (ev waddr) tmp #
30 mk and [“we”,tmp] rd
31 )
32 ) #
33 // Memory array
34 mk module “mem array” [wdecodes,din] [Mcells] (
35 (forall [(“we”,mems) | zip (ev wdecodes)
36 (cluster word size (ev Mcells))].
37 (forall [(di,mi) | zip (ev din) mems].
38 mk ah latch “we” di mi
39 )
40 )
41 ) #

(continued on next page)
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42 // Read logic
43 mk module “read” [rdecodes,Mcells] [dout] (
44 (forall [(mcol,rcs,do) |
45 zip3
46 (transpose list (cluster word size (ev Mcells)))
47 (transpose list (cluster word size (ev rc)))
48 (ev dout)].
49 (forall [(rd,mi,rci) | zip3 (ev rdecodes) mcol rcs].
50 mk and [rd,mi] rci
51 ) #
52 mk or rcs do
53 )
54 ) #
55 (mk instance “rdecoder” “rd” [raddr] [rdecodes]) #
56 (mk instance “wdecoder” “wd” [waddr,“we”] [wdecodes]) #
57 (mk instance “mem array” “ma” [wdecodes,din] [Mcells]) #
58 (mk instance “read” “read” [rdecodes,Mcells] [dout])
59 )
60 ;

Figure 5.7: The code used to generate a memory

consists of a single bit, and thus does not have to be listed explicitly in these lines. It

is used in the subsequent code, though. Mcells hold the data stored in the memory.

Next, rdecodes, tmps, wdecodes, and rc are auxiliary vectors. The vectors rdecodes

and wdecodes hold the location after decoding the read address and write address

respectively. The vectors tmps and the matrix rc are used when writing and reading

data respectively. Finally, dout stores the final output of the memory.

Lines 17–22 generate a decoder, which translates the read address provided to an

actual memory location. Accordingly, lines 25–31 generate a write-enabled decoder.

It works in a way similar to the read decoder, but additionally requires the write

signal, we, to be high. The heart of the memory, its data array, is generated with

lines 34–40. It uses the auxiliary wdecodes to write din to the determined location

provided the write mode is enabled. Finally, lines 43–53 add the read functionality,

outputting the read data to dout. Here the auxiliary rdecodes is utilised. In essence,

reading works as follows. In the auxiliary matrix rc we store the data found in Mcells

conjoined with the provided read address. Thus, we receive a matrix that has non-

zero entries in only the line that holds the desired data. The memory then outputs

a disjunction of all the data stored in rc, which equates to the requested data due
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to the step before. Lines 55–59 bring all previously defined modules together, thus

creating the memory in full.

5.2.2 SIR Relation

We use the following specification for verifying that the read operation of the memory

is formally correct. The jth bit of the output data dout is high exactly if the corre-

sponding memory entry’s jth bit is high. More formally, we can take the disjunction

of all read addresses, each conjoined with their corresponding memory location value:

dout[j] =
∨
i

raddri ∧M [i][j]

Here raddri denotes the ith memory location, which can be computed using the value

of bits of the read address vector raddr. This mechanism is similar to the one already

used in the code that generates the hardware model, although the hardware model

includes further components, such as the decoder and precharge logic, to implement

the read operation.

When computing the SIR relation we again specify some symbolic constants: the

bits of the read address shall always be driven with a value. This makes sense, as we

in general need to know the address in full to output the correct data.

The abstraction scheme automatically computed then enumerates various cases,

one for each read address. For this log2 entries variables are required, essentially

one for each bit of the read address. These variables encode different cases, casei,

which relate to the different read addresses. The relation thus has two entries for

each possible read address. First, we connect casei with a specific read address. And

second, the information which values to drive the memory nodes with is provided.

The SIR relation therefore has the following shape:

(raddri, casei, ff)

(M [i][j], casei ∧ dout[j], casei ∧ dout[j])

where i runs through the indices of the different memory locations, and j corresponds

to the bits of each data entry. As before, recall that the tuples (ei, Hi, Li) represent

the SIR relation
∧

iHi → ei∧Li → ei. Rather than stating a primary input as ei, here

in some cases an expression on the bits of the read address is mentioned. This is the

component of the relation that connects the cases with the corresponding addresses.

A full example of the SIR relation computed for a memory with four entries, each
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having two bits of data, highlights this further.

Example: SIR relation for a 4× 2 memory

(raddr[0] ∧ raddr[1], a ∧ b, ff)

(M [0][0], a ∧ b ∧ dout[0], a ∧ b ∧ dout[0])

(M [0][1], a ∧ b ∧ dout[1], a ∧ b ∧ dout[1])

(raddr[0] ∧ raddr[1], a ∧ b, ff)

(M [1][0], a ∧ b ∧ dout[0], a ∧ b ∧ dout[0]),

(M [1][1], a ∧ b ∧ dout[1], a ∧ b ∧ dout[1])

(raddr[0] ∧ raddr[1], a ∧ b, ff)

(M [2][0], a ∧ b ∧ dout[0], a ∧ b ∧ dout[0])

(M [2][1], a ∧ b ∧ dout[1], a ∧ b ∧ dout[1])

(raddr[0] ∧ raddr[1], a ∧ b, ff)

(M [3][0], a ∧ b ∧ dout[0], a ∧ b ∧ dout[0])

(M [3][1], a ∧ b ∧ dout[1], a ∧ b ∧ dout[1])

Here we can observe that the two indexing variables a and b are used to enumerate

the four addresses encoded by the inputs raddr[0] and raddr[1]. Note that different

encodings are possible, including the encoding where a would behave exactly like

raddr[0] and b exactly like raddr[1]. However, running the algorithm produced this

encoding, which works just as well.

It is now also more clearly visible that in some cases an expression on symbolic con-

stants fills the first component of (ei, Hi, Li) tuples. In particular, these are auxiliary

tuples, which signify which case encoded with a and b corresponds to a specific read

address. The Li always equates false in these tuples, as one implication is sufficient,

Hi → ei, or more specifically, casei → addressi.

The remaining SIR relation tuples establish the desired input-output behaviour.

If the read address encodes the memory location i, and dout[j] is high, then drive the

memory location M [i][j] with a high value. If, on the other hand, dout[j] is low, then

also drive the memory location M [i][j] with a low value. The casei expressions ensure

that only the relevant memory locations are driven with a value, rather than all. This

suggests that execution times grow linearly with the address width and word size, a

very desirable result. F
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5.2.3 Observed Execution Times

Figure 5.8 shows the execution time behaviour of the STE verification we measured.

In particular, the automatically computed symbolic indexing allowed us to verify

memories of relatively large size, which is not possible without symbolic indexing.

We could have easily verified even larger memory designs, however the 1024 × 32

memory and the 4048 × 8 memory reached the limit Intel R© introduced for BDD

variables in the open-access version of their Forte verification environment.

entries × bits circuit auto abstract STE
64 × 4 0.12s 0.10s 0.04s
64 × 8 0.19s 0.21s 0.09s
64 × 16 0.22s 0.43s 0.25s
64 × 32 0.28s 0.90s 0.91s
64 × 64 0.36s 1.76s 3.52s

256 × 4 1.02s 0.48s 0.19s
256 × 8 1.09s 0.93s 0.44s
256 × 16 1.22s 1.83s 1.11s
256 × 32 1.66s 3.85s 3.78s
256 × 64 2.34s 7.65s 15.22s

1024 × 4 5.76s 2.06s 1.14s
1024 × 8 6.88s 4.15s 2.26s
1024 × 16 8.97s 8.33s 5.24s
4048 × 4 40.01s 9.24s 5.18s

Figure 5.8: Execution times of verifying a memory with varying numbers of entries
(64, 256, 1024, 4048) and word sizes (4, 8, 16, 32, 64). Execution times were split into
time needed to build the circuit, of running our auto abstract algorithm, and of running
STE in the Forte verification environment.

This result – especially as the indexing was computed fully automatically, except

for stating the read address as symbolic constants – clearly demonstrates the efficiency

and practicality of our approach.

Variants of Reusing Indexing Variables

While execution times were very similar for the different variant of reusing indexing

variables when verifying the CAM, major differences can be observed when verifying

the memory. Figure 5.9 show how fragile the algorithm is to changes in the way

indexing variables are reused. While our main variant allows verifying memories up

to the artificial limitations set by the open-access version of the Forte verification
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entries × bits (1) (2) (3) (4) (5)
64 × 4 0.07s 1.48s 0.14s 1.58s 1.58s
64 × 8 1.65s 61.26s 0.30s 65.75s 62.03s

128 × 4 28.01s 0.67s

Figure 5.9: Execution times observed for verifying the memory using different meth-
ods: (1) without symbolic indexing, (2) no reuse of indexing variables, (3) main reuse
variant, same results as seen earlier in this section, (4) reuse based on mutual exclusivity
while preferring variables used for similar node names, and (5) reuse based on mutual
exclusivity only. Execution times for larger memories using Method (3) are provided in
Figure 5.8.

environment, the other variants performed much worse for very small memories al-

ready, and could not be completed at all for memories with 64 entries, which each

have 16 bits already. In particular, using these variants was not superior to verifying

the memory without any symbolic indexing at all. They all ran out of memory even

for small instances of the memory. Therefore, Figure 5.9 only lists execution times

for three different memory sizes, even though we successfully verified much larger

memories with our main variant, as seen in Figure 5.8.

5.3 Scheduler

In our first two examples we verified models that had previously been successfully

verified using STE, and for which good symbolic indexing schemes were known. It

allowed a good evaluation of our work in comparison with previous work done in

this area. For our final example, we verify a model not previously verified by STE.

It highlights the main advantage of automatically computing symbolic indexings:

enabling the verification of circuits where no good indexing schemes were previously

researched.

The design we chose is a scheduler, which is abstractly shown in Figure 5.10. Its

functionality is to compute the address of the oldest entry that is ready, and then

return that entry plus whether it is valid, i.e., points to a ready entry. As the hardware

design itself does not automatically store the current time, but the age is passed into

the scheduler, you could also say we are verifying a scheduler with a priority queue:

it selects the entry with the highest priority/age, whose ready-bit is additionally set.
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Figure 5.10: High-level model of the scheduler verified

5.3.1 Hardware Model

Figure 5.11 shows the FL-code that generates the scheduler whose functionality we

verified for varying numbers of registers and age widths.

Lines 58–69 define the signals. The din vector delivers the age of an entry to

write, and valid in whether it is ready. These are only used when writing data, i.e.,

whenever the signal we is high. The outputs are valid, which is high exactly if there

is a ready entry, and addr, which specifies the address of the oldest ready entry,

provided valid is high. Finally, some auxiliary vectors are defined. The vector valids

accumulates which registers store ready entries, regs actually stores all of the entries,

and age is used to memorise the thus far oldest age found.

The code provided in lines 74–79 implement writing new entries to the scheduler,

and lines 80–83 output whether a ready entry was found, and if so, the address of the

oldest ready entry.

The core functionality of the oldest-ready scheduler is defined in lines 3–24, which

compares two (valid, age, address) pairs and returns the candidate, which is ready

and older. So if only one entry is ready, then it is returned; if both entries are ready,

the one with the higher age is returned; and if neither entries are ready, then by

convention the first one is selected. Lines 26–56 recursively compares entries pairwise.

In particular, a divide-and-conquer mechanism is used where the oldest ready entry

in the first half of the registers is found, as well as the one in the second half, and

then the oldest ready of those two is selected.

5.3.2 SIR Relation

Providing a specification function that actually computes the oldest ready entry is

fairly involved. However, supplying a specification provided a high valid bit is output

– subject to a proposed address – is much easier. Thus we write the specification

129



1 let mk scheduler log registers age width =
2 let n = 2**log registers in
3 let find oldest regs valids valid addr age =
4 let cmpmod =
5 let valid = “valid” in
6 let age = sprintf “age[%d:0]” (age width-1) in
7 let addr = sprintf “addr[%d:0]” (log registers-1) in
8 let valid0 = “valid0” in
9 let age0 = sprintf “age0[%d:0]” (age width-1) in

10 let addr0 = sprintf “addr0[%d:0]” (log registers-1) in
11 let valid1 = “valid1” in
12 let age1 = sprintf “age1[%d:0]” (age width-1) in
13 let addr1 = sprintf “addr1[%d:0]” (log registers-1) in
14 let lt = “lt” in
15 mk module “oldest sel” [valid0, age0, addr0, valid1, age1, addr1]
16 [valid, age, addr] (
17 (mk less (ev age0) (ev age1) “lt”) #
18 (mk not valid0 “nvalid0”) #
19 (mk or [“nvalid0”, “lt”] “nv or lt”) #
20 (mk and [valid1, “nv or lt”] “choose1”) #
21 (mk Xmux “choose1” addr1 addr0 addr) #
22 (mk Xmux “choose1” age1 age0 age) #
23 (mk Xmux “choose1” valid1 valid0 valid)
24 )
25 in
26 letrec find oldest bi i regs valids valid addr age =
27 length regs = 1 ⇒ (
28 (mk buf (hd valids) valid) #
29 (mk constant i (ev addr)) #
30 (mk buf (hd regs) age)
31 ) | (
32 let valid0 = sprintf “valid0 %d” bi in
33 let age0 = sprintf “age0 %d[%d:0]” (bi,age width-1) in
34 let addr0 = sprintf “addr0 %d[%d:0]” (bi,log registers-1) in
35 let valid1 = sprintf “valid1 %d” bi in
36 let age1 = sprintf “age1 %d[%d:0]” (bi,age width-1) in
37 let addr1 = sprintf “addr1 %d[%d:0]” (bi,log registers-1) in
38 let n2 = length regs/2 in
39 (find oldest (2*bi+1) (2*i+1)
40 (firstn n2 regs) (firstn n2 valids)
41 valid1 addr1 age1
42 ) #

(continued on next page)
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43 (find oldest (2*bi) (2*i)
44 (butfirstn n2 regs) (butfirstn n2 valids)
45 valid0 addr0 age0
46 ) #
47 (mk instance “oldest sel” (sprintf “osel%d” bi)
48 [valid0, age0, addr0, valid1, age1, addr1]
49 [valid,age,addr]
50 )
51 )
52 in
53 mk module “find oldest” (regs@valids) [valid, addr, age]
54 (find oldest 1 0 regs valids valid addr age)
55 #
56 cmpmod
57 in
58 // Inputs
59 let clk = “clk” in
60 let din = sprintf “din[%d:0]” (age width-1) in
61 let valid in = “valid in” in
62 let we = sprintf “we[%d:0]” (n-1) in
63 // Outputs
64 let valid = “valid” in
65 let addr = sprintf “addr[%d:0]” (log registers-1) in
66 // Internals
67 let valids = [ sprintf “valids[%d]” i | i in (n-1) downto 0 ] in
68 let regs = [ sprintf “R[%d][%d:0]” (i, age width-1) | i in (n-1) downto 0 ] in
69 let age = sprintf “age[%d:0]” (age width-1) in
70 //
71 mk module “scheduler”
72 [clk,din,valid in,we] [valid,addr]
73 (
74 (forall [ (en,r) | zip (ev we) regs ].
75 mk en re ff clk din en r
76 ) #
77 (forall [ (en,v) | zip (ev we) valids ].
78 mk en re ff clk valid in en v
79 ) #
80 mk instance “find oldest” “find oldest”
81 (regs@valids) [valid, addr, age]
82 ) #
83 (find oldest regs valids valid addr age)
84 ;

Figure 5.11: The code used to generate an oldest-ready scheduler
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while utilising the address addr output and its corresponding age age as symbolic

constants:∨
i

(
addr = i ∧ rdy[i] ∧ age[i] = age ∧

∧
j 6=i

(
rdy[j] ∨ age[j] < age

))

The first part, addr = i∧ rdy[i]∧ age[i] = age, encodes that the ith entry was output

by the circuit. The second part,
∧

j 6=i rdy[j]∨ age[j] < age, encodes that i is actually

the oldest ready entry – either the other entries are not ready, or their age is lower.

For all but the correct i, this yields a false value. So by taking the disjunction over

all i we receive the final result.

Note that this assumes that the oldest ready entry is uniquely defined, i.e., there

are no two entries, which are both ready and have the same, oldest age compared to

all other ready entries. To additionally capture such cases, we need to know which

address is then returned. Recall that we built a hardware model, in which the first

oldest ready entry is selected, because cmpmod, which compares two entries and

returns the oldest ready of the two, by convention returned the first entry, if both

were ready and had the same age. Thus, we can adjust the specification as follows:

∨
i

(
addr = i ∧ rdy[i] ∧ age[i] = age ∧

∧
j<i

(
rdy[j] ∨ age[j] < age

)
∧
∧

j>i

(
rdy[j] ∨ age[j] ≤ age

))
So all entries with a smaller address are either not ready or younger, and all entries

with a larger address are either not ready, or at most as old as the entry whose address

is output.

In the following we do a partial verification of the scheduler. Namely, we verify

that if there is a unique oldest ready entry, then the circuit outputs a high valid signal

and the address of that entry. The first part we achieve by using the specification

we first provided, and assume it holds, i.e., it evaluates to true. The second part is

ensured by stating the consequent slightly more restrictively:

C = (valid is 1) andj (addr[j] is o[j]),

i.e., rather than driving valid with a variable in the auxiliary STE run, which is

reindexed to R |= AR ⇒ CR, we state valid needs to be high in all cases.

The indexing computed is somewhat more elaborate and cannot be as easily formu-

lated for the general case. But we give the full SIR relation for the smallest possible
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scheduler, i.e., one with two entries, and an age width of 1. The indexings for larger

schedulers work similarly, although they grow quite complex quickly.

Example: SIR relation for a 2× 1 scheduler

By running auto abstract({addr, age}, spec, tt,ff,“”) where

spec = (addr = 0 ∧ rdy[0] ∧ age[0] = age ∧ (rdy[1] ∨ age[1] < age))

∨ (addr = 1 ∧ rdy[1] ∧ age[1] = age ∧ (rdy[0] ∨ age[0] < age))

we receive the following SIR relation:

(addr[0], a, ff)

(addr[0], a, ff)

(valids[0], a, a ∧ b)
(valids[1], a, a ∧ b)
(age[0], b, ff)

(R[0][0], a ∧ age[0] ∨ b ∧ age[0], a ∧ age[0] ∨ a ∧ b)
(R[1][0], a ∧ age[0] ∨ b ∧ age[0], a ∧ age[0] ∨ a ∧ b)

The variable a encodes which address is returned, and thus holds the oldest ready

entry. In the relation this is expressed in the first two tuples. The H-component of

the third and fourth tuple encode that valids[i] needs to be high, if the address i is

returned. This needs to obviously be true, as we are only verifying the case where the

output valid is high. Additionally, if the address i is returned, we ensure that R[i][0]

has the same value as the oldest ready age, age[0]. In the relation this is expressed

by the conjunctions that include a and age[0] or their negations only.

Finally, we need to drive some further values to ensure that age[0] actually holds

the oldest ready age. This is encoded with the variable b. There are two main cases.

First, in the b case, we ensure the other entry cannot be correct, as its corresponding

valids entry is false. For this, see the L-component of the tuples for valids[i]. And

second, in the b case, we ensure the other entry has a younger age. In our small

example where the age has one bit only, this is still simple to encode. The only way

one entry can be younger than the other is when the oldest age is 1, and the younger

age is 0. This causes the entry (age[0], b,ff), which encodes that the oldest age must

be 1, to be introduced. Furthermore, the L-component of R[0][0] states that the age

stored must be low, if the address 1 returned (a ∧ b), and versed (a ∧ b). F

Understanding this example gives a good intuition on what the SIR relations for
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larger schedulers look like. It also immediately gives a sense on how complex the

expressions turn. We need to encode that the ages stored at the other locations are

younger, or that they are not ready. In the small example, these could not intermix,

as we only had two entries. And expressing that the age was younger was also simple,

as it just required a simple bit-flip.

This illustrates the power of a fully automatic approach. Even if a human could

have come up with the idea for the indexing our algorithm computes, it would take

considerable work to correctly express it in larger cases. Our algorithm, on the

other hand, automatically generates it for varying numbers of entries and age widths

without requiring further intellectual work.

5.3.3 Observed Execution Times

Figure 5.12 shows the data we collected on verifying the scheduler utilising the auto-

matically computed SIR relation described above. It shows that using this technique

realistically-sized schedulers can be verified.

It is worth pointing out that trying to verify the same circuit without symbolic

indexing, i.e., with variables in every state holding register and input, could not be

completed for circuits larger than 64 entries and age widths larger than 8, as also

seen in Figure 5.13. In other words, only the first circuits for which we provide

an execution time when using our approach could also be verified without symbolic

indexing, and then at much worse execution times. With our method the smaller

schedulers could be verified extremely fast, and larger circuits could still be verified

in a completely straightforward and fully automatic fashion. Verifying schedulers

with 1024 entries and age widths larger than 8 could not be completed even with

our computed symbolic indexing. However, hardware schedulers commonly support

much fewer numbers of entries, and lower age widths. For example, in [70] a hardware

scheduler is proposed that supports 64 entries and a 6-bit priority. As noted in the

beginning of this section, the age in our oldest-ready scheduler can also be viewed

as the priority in a priority queue scheduler, thus permitting a comparison between

age width and priority width. This means the largest scheduler we verified at 1024

entries and an age width of 8 bit, or at 256 entries with an age width of 12 bit,

greatly surpass the values stated in [70]. More generally, while increasing the size

of our scheduler does show that our approach does not offer a full solution to the

state explosion problem, it also proves that automatic abstraction is very powerful

and allows the verification of realistically-sized circuits and beyond.
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entries × bits circuit auto abstract STE
16 × 4 0.01s 0.05s 0.01s
16 × 6 0.01s 0.08s 0.03s
16 × 8 0.01s 0.14s 0.12s
16 × 10 0.01s 0.27s 0.59s
16 × 12 0.01s 1.08s 2.07s
64 × 4 0.01s 0.52s 0.11s
64 × 6 0.02s 0.46s 0.39s
64 × 8 0.02s 0.85s 1.00s
64 × 10 0.03s 1.84s 5.66s
64 × 12 0.03s 5.33s 31.64s

256 × 4 0.07s 4.59s 0.91s
256 × 6 0.07s 7.61s 3.63s
256 × 8 0.09s 7.75s 7.15s
256 × 10 0.10s 12.84s 33.13s
256 × 12 0.10s 36.35s 2079.56s

1024 × 4 0.32s 146.34s 18.55s
1024 × 6 0.37s 146.32s 33.59s
1024 × 8 0.42s 160.43s 47.67s

Figure 5.12: Execution times of verifying a scheduler with varying numbers of registers
(16, 64, 256, 1024) and age widths (4, 6, 8, 10, 12). Execution times were split into time
needed to build the circuit, of running our auto abstract algorithm, and of running STE
in the Forte verification environment.

Variants of Reusing Indexing Variables

Figure 5.13 shows the execution times observed when running the different variant of

the abstraction discovery algorithm, which reuse indexing variables less or more ag-

gressively. As seen for the memory, execution times are considerably worse than when

running the main version of our algorithm, although still schedulers of reasonable size

could be verified. Nonetheless, evidently the algorithm as presented in Figure 4.6 is

superior to the other reuse variants, delivering better execution times and behaving

much more robustly. However, this is an observation collected on three designs only,

and it might be that another variant outperforms our main variant on other designs.

Thus, when verifying other circuits it may be advantageous to try a different variant

if the first cannot be completed due to missing resources.
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entries × bits (1) (2) (3) (4) (5)
16 × 4 0.05s 0.20s 0.06s 0.22s 0.26s
16 × 6 0.19s 1.03s 0.11s 0.88s 1.25s
16 × 8 0.76s 6.92s 0.26s 8.33s 8.37s
16 × 10 3.93s 40.82s 0.86s 43.29s 49.19s
16 × 12 214.66s 3.15s 213.65s 220.07s
64 × 4 1.79s 12.55s 0.63s 13.76s 13.84s
64 × 6 8.03s 49.50s 0.85s 51.51s 50.51s
64 × 8 38.70s 374.29s 1.85s 372.91s 376.72s
64 × 10 2625.16s 7.50s 2636.68s 2390.10s
64 × 12 36.97s

Figure 5.13: Execution times observed for verifying the scheduler using different meth-
ods: (1) without symbolic indexing, (2) no reuse of indexing variables, (3) main reuse
variant, same results as seen earlier in this section, (4) reuse based on mutual exclusivity
while preferring variables used for similar node names, and (5) reuse based on mutual
exclusivity only. Execution times for larger schedulers using Method (3) are provided
in Figure 5.12.

5.4 Summary and Conclusions

We saw that applying our automatic abstraction-discovery algorithm generates ab-

stractions, that greatly reduce the verification costs of three hardware designs: a

CAM, a memory, and a scheduler. CAMs and memories are designs often verified

by STE, and our results show that our approach works nicely for such standard ex-

amples. The third circuit, a scheduler, is a design usually not verified by STE, and

displays the power of generating abstractions automatically by analysing specifica-

tions. It enables the verification of designs where previously no good indexings were

known.

We verified all three designs in increasing sizes. In particular, the larger designs

could not be verified without symbolic indexing due to restrictively high verification

costs, whereas our approach delivered execution times, which suggest good scalabil-

ity. We analysed the SIR relations created to give an intuition on which abstraction

schemes our automatic abstraction discovery algorithm finds. In particular, the ab-

straction generated for the CAM matches with the indexing suggested by Pandey et

al. [24]. Rather than it being a result of careful reasoning, this indexing was generated

automatically by analysing the specification using our auto abstract algorithm.

For each design we ran our algorithm with different variants for sharing variables

in the symbolic indexing created. We saw that our main algorithm, which shares
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variables only when encountering multiple-input AND-gates, delivers the most robust

behaviour and works well for all three designs. The other variants in some cases lead

to restrictively high verification costs again, which highlighted how fragile verification

by STE is with respect to changing variable sharing.

Finally, for these experimental results we defined some symbolic constants man-

ually. In the following chapters we present an approach by which these symbolic

constants can be computed automatically, and we demonstrate this on the CAM in

Chapter 8.
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Chapter 6

Abstraction Refinement with

Symbolic Indexing

When using abstraction to verify circuits, there is an inevitable – indeed desired –

loss of information. A good abstraction scheme retains only the information needed

to verify the circuit’s specification. Such an abstraction reduces the problem size, and

can make as huge a difference as turning an unfeasible task into a manageable one.

Unfortunately, constructing a good abstraction scheme is hard.

If the verification of a circuit fails because the applied abstraction hides too much

information, we call this over-abstraction. In the context of STE over-abstraction

occurs if the simulation determines that an output has the value X, although the

specification requires it to be Boolean. As described on page 35, this is also called a

weak disagreement: we do not observe the value we expect, but it is unclear whether

the concrete model exhibits an error in this case or not.

Example: A simple example of over-abstraction

Figure 6.1: A circuit where over-abstraction can be observed when i1 is indeterminate

Consider the circuit displayed in Figure 6.1. Suppose we want to verify the speci-
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fication that states that if the input i3 is true, then the output o is also true, i.e., we

want to check whether c |= (i3 is 1)⇒ (o is 1) holds. In this small example it is easy

to see that this statement holds, because n4 is always high, irrespective of the value

of i1. Using STE leads to a weak disagreement, though.

The antecedent (i3 is 1) does not specify the value of i1 or i2, so the inputs have

the value X when running STE. The simulator thus also determines the value of node

n4 as X, and similarly n5 is X. This in turn leads to an indeterminate value of o, we

get a weak disagreement. The abstraction we used, namely do not track the values

of i1 and i2, hides too much information. F

One common approach for constructing good abstraction schemes is to start with

an abstraction that retains very little information, as also seen in our above example.

This reduces the problem size considerably at the risk of leading to over-abstraction.

Using counter-example guided abstraction refinement [22], over-abstraction cases can

then be eliminated by repeatedly adding back in information that is required to

avoid a specific case of over-abstraction. Each such refinement step concretises the

abstraction in that it hides less information, and thus increases the problem size again.

The automatic abstraction algorithm we introduced in Chapters 3 and 4 may de-

liver abstraction schemes that lead to over-abstraction. For an example, see Section

8.1. In this chapter we introduce an algorithm for refining abstraction schemes that

respects symbolic indexing. This algorithm is based on calculating which inputs need

to be driven to avoid over-abstraction in specific abstraction cases, and significantly

extends previous work by Chockler, Grumberg, and Yadgar [3]. Their work gives a

good starting point for how to address over-abstraction, but is only applicable for

a very restricted set of STE statements: antecedents may only assign input nodes

a concrete value or a single Boolean variable. This means that symbolic indexing,

which makes STE so powerful, is not supported by this previous work. In contrast,

our approach supports all TEL formulae of STE statements. Furthermore we sug-

gest more conservative abstraction refinements, which may lead to lower verification

costs. So we both analyse and introduce non-trivial symbolic indexing, which means

our abstraction refinement can applied much more broadly, in principle to all STE

runs that require refinement due to over-abstraction. In Chapter 8 we show that in

conjunction with our automatic abstraction discovery algorithm this delivers a fully

automatic abstraction framework for Symbolic Trajectory Evaluation.
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6.1 CEGAR using Degree of Responsibility

An STE run simulates the circuit. We can memorise the value of each node during

this simulation to get a trace list of all values. Over-abstraction can then be identified

as the existence of an assignment to the Boolean variables used in the guards, such

that a node has the value X, although the consequent requires it to have a non-X

value. In the following we call such a node X-possible. The goal is to now construct

an abstraction, so that no X-possible nodes occur anymore.

Figure 6.2: A high-level overview of the CEGAR loop proposed in [3].

While achieving this we want to concretise the abstraction as little as possible, as

otherwise the verification task may get too costly again. One approach is to only

minimally change a too information-sparse abstraction, and then check whether any

nodes are still X-possible. By repeating this process we produce a refinement loop.

By interpreting the STE run that has X-possible nodes as a counter-example, this

can be seen as a counter-example guided abstraction refinement loop (CEGAR).

The basic setup of the CEGAR-like loop proposed by Chockler et al. [3] is depicted

in Figure 6.2. After having identified an initial abstraction (1), run STE with that

abstraction (2). If no over-abstraction occurs, we have a definitive verification result

and are done. Otherwise, we need to refine the abstraction. For this, first pick an X-
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possible node (3), that is, a node which for at least one valuation of the variables used

in the antecedent has the value X, but needs to have a concrete value for deciding

whether the consequent holds. Then evaluate which input of the circuit is “most

responsible” for that X-possible node not being determinate (4). Next refine the

initial abstraction by driving the identified input with a fresh variable (5). Finally,

we start the next iteration of the loop and check again whether running STE leads to

an over-abstraction, or whether we now get a definitive verification result, i.e., pass

or fail (2).

Example: Sample run of a CEGAR loop

In the example we saw at the beginning of this chapter (138) we saw that checking

whether c |= (i3 is 1)⇒ (o is 1) leads to a weak disagreement.

In the refinement loop we so far retrieved an initial abstraction, and ran STE with

it. Over-abstraction was detected, so we now need to pick an X-possible node to

refine the abstraction by. In this instance there is only one X-possible node, o: the

consequent requires it to be concrete, o is 1, but the simulation value is indeterminate.

Now suppose we have an algorithm that tells us which input to pick for refining the

abstraction we used. That algorithm could return either i1 or i2.

• Refine by i1

Then the abstraction drives i1 with a fresh variable v1. The new antecedent is

thus (i1 is v1) and (i3 is 1). Notice that when rerunning STE the value of n4 is

then determined as 1, as STE knows that v1 ∨ v1 = 1. And as 1 ∨ X = 1, the

value of n5 is 1 also. Thus, the simulator assigns the value 1 to o, and the STE

run succeeds.

• Refine by i2

In this case the new antecedent is (i2 is v2) and (i3 is 1). Remember that

(i2 is v2) is shorthand for (v2 _ i2 is 1) and (v2 _ i2 is 0), where v2 is a binary

variable used for the guards. We need only verify properties when the guards

are satisfied. This symbolic run corresponds to two non-symbolic STE runs:

either v2 holds, and thus the antecedent is (i2 is 1) and (i3 is 1); or v2 holds,

and the antecedent is (i2 is 0) and (i3 is 1). In the prior case the verification

passes, but in the latter one over-abstraction occurs again. So STE reports

a weak disagreement whenever i2 is low, i.e., when v2 holds. Thus, for the

complete run, we still have over-abstraction, and therefore must walk through

the refinement loop again. Only one input is not being driven by a value yet,
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so the only possible input to refine by is i1. After this refinement step the

antecedent is (i1 is v1) and (i2 is v2) and (i3 is 1) and the verification passes.

Note that in the worst case the refinement loop leads to an abstraction where all

inputs are driven by a value. In that case over-abstraction cannot occur anymore.

However, we want to keep the time and memory constraints for the verification low,

and refining increases these. So it is crucial that the input selected for refinement

(step 4 in Figure 6.2) identifies inputs that are essential for determining the selected

X-possible node. In our example we saw that refining by i1 is better than refining by

i2. In the latter case a further refinement by i1 was necessary. F

6.1.1 Degree of Responsibility

The algorithm proposed in [3] computes the Degree of Responsibility (DoR) of inputs

to determine which node shall be driven by a value in the refined abstraction. The

DoR of an input i for an output o is based on the notion of counterfactual dependency

[71] and its extension, causality [72, 73].

An event A counterfactually depends on an event B, if A and B both hold, and

assuming B did not hold, neither would A. For example, say event A is “Alice makes

a camp fire”, and event B is “Forest burns down”. A counterfactually depends on B if

both events indeed occurred, and if the forest only burned down because Alice started

a camp fire. On the other hand, if the forest would have burned down irrespective of

Alice making a camp fire or not, then there is no counterfactual dependency.

In the notion of cause the requirements are loosened a bit. C is a cause of B if

some changes to the current situation can lead to C being counterfactually dependent

on B. For example, say that C is “Alice makes a camp fire” and D is “The woods are

dry”. Assume that we know if C and D hold, then B holds, too: C∧D∧B. But as it

is, right now the woods are not dry, and the woods do not burn down, although Alice

makes a campfire: C ∧D ∧B. We say C is a cause of B, if – looking at an alternate

reality – we can establish counterfactual dependency between C and B by adjusting

the situation. Namely, we are allowed to change whether the event D happens. But

when D holds, C indeed is counterfactually dependent on B, so C is a cause of B.

The degree of responsibility of event E for event F is defined as 1
1+k

, where k is

the minimum number of changes to the situation required to create counterfactual

dependency between the two events. Loosely speaking, it is the inverse of how strong

a cause E is of F . In the above examples the DoR of A for B is 1
0+1

= 1, because
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no changes are required for counterfactual dependency, and the DoR of C for B is
1

1+1
= 1

2
, because we needed to guarantee D holds.

The DoR is a value between 0, when the two events are never counterfactually

dependent, and 1, when the two events are counterfactually dependent. One might

be tempted to compare this to probabilities. The probability of A causing B is 0, if

A never leads to B, and the probability is 1, if A always leads to B. But the two

concepts match only in these two border cases, and must not be confused. The degree

of responsibility gives an exact notion of how many changes to the situation make

the event the deciding one. So for each situation, the degree of responsibility varies.

For example, if there is a drought, D holds without having to change the situation

and the DoR of C is 1, else the DoR is 1
2
. In particular, the inverse of the DoR is

additive. Probabilities, on the other hand, do not behave like this.

Selecting Refinement Candidates

The DoR can be used for identifying a good refinement candidate. Let B be the event

“o is X-possible” and Ai be the event “input i is X”. If an input is counterfactually

dependent on o, then refining by it leads to o having a concrete value in the next

iteration of the refinement loop, and possibly leads to there being no over-abstraction

anymore, just as desired. If there is no counterfactual dependency, the idea is to

select an input i with a high degree of responsibility for B. Changes to the situation

in this setting correspond to assuming that specific inputs have a concrete value not

stated by the antecedent. Once we have determined which i has the highest degree

of responsibility, we need to change the abstraction so that i has a concrete value.

But to ensure we maintain expressiveness of an STE statement we have to cover all

cases as before. So if we want to change the antecedent so that an input that was

previously X now has a concrete value, we need to capture both the situation where

it is high, and where it is low. We can achieve this in parallel by driving the chosen

input with a symbolic value vi. Either the input is going to be true (vi _ i is 1), or

the input is going to be false (vi _ i is 0). Note that in the next iteration of the loop

the DoR of the remaining inputs in general changes, as the situation is a different

one. Namely, i is not X anymore.

Computing the DoR in circuits of size n is known to be FP
∑P

2 [logn]-complete [73,74].

FP
∑P

2 [logn] denotes the class of functions computable in polynomial time with log n

queries to the oracle Σ2. As an exact computation is expensive in the general case,

Chockler et al. propose computing an approximate degree of responsibility, which has

quadratic complexity in the size of the model. The approximation is based on some
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previous work [3], and is exact if the circuit has a tree structure. Essentially, the ap-

proximation simplifies the problem by ignoring all dependencies between nodes, which

in turn may lead to the approximation being lower than the actual degree of respon-

sibility. By ignoring dependencies, we may incorrectly conclude that an additional

change to the current situation is necessary to achieve counterfactual dependency –

a change that we already achieved by a different path.

The computation of the approximate degree of responsibility as defined in [3] as-

sumes we know the values assigned to each node in the antecedent. In particular,

input nodes either have a concrete value (0 or 1), are indeterminate (X), or have

the simple symbolic value of a single Boolean variable. This excludes all non-trivial

symbolic indexing, which states that nodes have a concrete value only if Boolean

formulae evaluate to true.

The computation also assumes that we have identified an X-possible output o,

which we want to refine by. Note that an X-possible output need not always be X.

But there needs to exist a valuation of the Boolean variables used in the guards of

the antecedent such that the output is X, although the consequent states it should

be concrete (0 or 1). Indeed, when running STE and a weak disagreement occurs,

the output will have a symbolic value. For example, say the consequent states o is 1.

In an over-abstraction case, STE may determine that o is 1 only if the expression res

evaluates to true, res _ o is 1. So whenever res evaluates to false o is X. When

determining the approximate degree of responsibility only these cases, i.e., when res,

are of interest. Chockler et al. neither bring this up in [3], nor do they address how

cases where the output is only sometimes X are handled. Their approach does not

address non-trivial indexing at all, and therefore they may have only encountered

over-abstraction for all valuations, i.e., res = ff. However, it is even in their setting

possible.

We can extend Chockler et al.’s approach to ensure that the computation of the

approximate degree of responsibility is based on the weak disagreement cases only.

Assume STE surfaced that there is a weak disagreement whenever res and we have a

trace list of all values of the corresponding STE run. Then we can evaluate the values

of all nodes just in the weak disagreement case by determining their symbolic value

implied by res. That is, if a node has the symbolic value (f, g), i.e., it is 1 whenever

f∧g, 0 whenever g∧f , and X whenever f∧g, then restricted to the weak disagreement

case it has the value (res → f, res → g). One way of determining these values is

to rerun STE assuming res holds, an operation the Forte verification environment

supports. It is also the methodology we used for our experimental results. Note that
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the result of this run will lead to a weak disagreement where o is always X, although

the consequent requires it to have a determinate value.

Hence, in the following we assume that the output is always X, and the antecedent

is adjusted accordingly:

i is vi is transformed to


i is 1 if res→ vi is a tautology

i is 0 if res→ vi is a tautology

i is vi otherwise

This means we take into consideration only the constraints the antecedent imposes

on an input in the initial STE run, if it also does so in just the weak disagreement

case res.

The approximate DoR of the input i for o being X-possible is DoR(i, o) = 1
1+s(i,o)

,

where s(i, o) corresponds to an approximate number of changes to the antecedent

necessary for making i and o counterfactually dependent. The proposed computation

of s(i, o) is provided in Figure 6.3.

Note that s(i, o) is defined recursively over the structure of the circuit from the

X-possible o to the input i. An input is counterfactually dependent on itself, so the

s(i, i) = 0 and thus DoR(i, i) = 1
1+0

= 1. The input i is as responsible for the

output of a NOT-gate as it is for the fanin of that gate, so s(i,NOT f) = s(i, f).

For an AND-gate, assume without loss of generality that the primary input i is in

the fanin of the gate’s first input node f , and not in the fanin of the second input

node g. Then i is as responsible for the output of the AND-gate, as it is for the value

of f , provided g evaluates to the constant value 1. So to determine the degree of

responsibility, we need to calculate the cost of ensuring g to has the value 1, in the

following called c1(g), and the cost of achieving counterfactual dependency between

i and f . So, s(i, f AND g) = s(i, f) + c1(g). If i is in the fanin of both f and g,

by convention, we approximate the degree of responsibility by taking the average

cost, so s(i, f AND g) = s(i,f)+s(i,g)
2

. In the general case, this does not match with

the actual number of changes required to achieve counterfactual dependency. It is a

tradeoff for reducing the complexity of determining the degree of responsibility. This

approximation can be quite imprecise especially if one of the values has an infinite

value. An infinite result means no counterfactual dependency can be achieved, which

can be observed when some inputs are driven with constant inputs. For example, a

has no effect on the output of a AND b if b is driven with the constant 0. But when i

is in both fanins, an infinite value for just one of the fanins predominates the impact
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DoR(i, o) = 1
1+s(i,o)

s(i, i) = 0
s(i, j) =∞ where i 6= j and j is an input
s(i,NOT f) = s(i, f)
s(i, f AND g) = s(i, f) + c1(g) if i is in the fanin of f , and not of g,

or i also in fanin of g, but s(i, g) =∞
= c1(f) + s(i, g) if i is in the fanin of g, and not of f,

or i also in fanin of f , but s(i, f) =∞
= s(i,f)+s(i,g)

2
if i is in fanin of f and g,
and s(i, f) <∞, s(i, g) <∞

=∞ otherwise

Heuristic for the cost of changing the value to 1

c1(j) = 0 if A(j) = 1
=∞ if A(j) = 0
= 2 if A(j) = X
= 1 if A(j) ∈ V

c1(NOT f) = c0(f)
c1(f AND g) = c1(f) + c1(g)

Heuristic for the cost of changing the value to 0

c0(j) = 0 if A(j) = 0
=∞ if A(j) = 1
= 2 if A(j) = X
= 1 if A(j) ∈ V

c0(NOT f) = c1(f)
c0(f AND g) = min{c0(f), c0(g)}

Figure 6.3: Calculation of DoR(i, o) = 1
1+s(i,o) as defined in [3]

of the other fanin. Hence the definition of s handles this corner case separately to

prevent such noisy infinite values. Suppose i is in the fanin of both f and g when

determining s(i, f AND g). Instead of returning the average of s(i, f) and s(i, g), if

without loss of generality s(i, g) =∞ we simply ignore the fact that i is in the fanin

of g, and thus calculate s(i, f AND g) = s(i, f) + c1(g). More generally,

s(i,ANDj∈Jfj) =

∑
k∈K s(i, fk)

|K|
+
∑

j∈J\K

c1(fj),
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where K = {k ∈ J : i in fanin of fk and s(i, fk) < ∞}. If |K| = 0, then i is not at

all responsible for the outcome of ANDj∈Jfj, and thus we set s(i,ANDj∈Jfj) =∞.

The computation of the approximate responsibility depends on the computation of

c1(f), the cost of changing the situation so that f has the value 1. First, consider the

simple case where f is a primary input. If the antecedent includes the TEL formula

“i is 0”, or A(i) = 0, then the cost of changing such a value to 1 is set to infinite,

c1(i) = ∞, as requiring i to have the value 1 contradicts the antecedent. If on the

other hand A(i) = 1, then no change at all is required, and c1(i) = 0. The value

of c1(i) in all remaining cases is based on heuristics. If A(i) = X either value is

permitted, so the change restricts to specific cases. The same holds if our input is

driven with a symbolic value, A(i) = vi – it can still adopt either value. One difference

here is that X encodes that both 0 and 1 may occur, but not necessarily do, whereas

the symbolic value makes explicit that both values can occur.

In [3] the following heuristics are used. Refining an input from X to a concrete

value has a cost of 2; and refining it from a variable vi has a cost of 1.

We have seen how c1(i) is defined for primary inputs. For c1(f AND g) we deter-

mine the sum of c1(f) and c1(g), as both inputs to an AND-gate need to be high to

return a high output. This calculation does not take into account possible sharing

of nodes in f and g, thus making it an approximation, which may lead to overesti-

mating the cost of adjusting the situation to the desired scenario. Finally, the cost of

changing the value of an inverter c1(NOT f) corresponds to changing the value of f

to 0, c0(f).

Dually, c0(i) is infinity for A(i) = 1, and c0(i) = 0 for A(i) = 0. For inverters,

c0(NOT f) = c1(f), as before. For AND-gates, c0(f AND g) = min{c0(f), c0(g)} –

only one of the inputs needs to have a low value to yield a low output, and we can

choose the one that is less costly to modify. Recall that the degree of responsibility

of an input on the output was defined in terms of the least expensive way of creating

a situation where the two nodes are counterfactually dependent.

Example: Approximate Responsibility Calculation

Consider Figure 6.4. If the antecedent does not specify the value of i1, then the

simulation results in an X-possible o. In the following we show how the responsibility

value differs depending on what value the input i2 is driven with.

1. A(i1) = X and A(i2) = X

i1 is in the fanin of both i1 and n5, so s(i1, o) = s(i1, i1 AND n5) = s(i1,i1)+s(i1,n5)
2

.

And s(i1, n5) = s(i1,NOT n4) = s(i1, n4) = s(i1, n3) + c1(i2), as i1 is not in the fanin
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Figure 6.4: A circuit where o is X-possible whenever i1 has an indeterminate value

of i2.

Furthermore, s(i1, n3) = s(i1,NOT i1) = s(i1, i1).

Finally, c1(i2) = 2, as A(i2) = X.

So s(i1, o) = s(i1,i1)+s(i1,i1)+c1(i2)
2

= 0+0+2
2

= 1

2. A(i1) = X and A(i2) = v2

As above, s(i1, o) = s(i1,i1)+s(i1,i1)+c1(i2)
2

, but c1(i2) = 1 because A(i2) = v2. Hence,

s(i1, o) = 0+0+1
2

= 1
2
.

3. A(i1) = X and A(i2) = 0

In this case, c1(i2) = ∞, and thus s(i1, n5) = ∞. Therefore, s(i1, o) = s(i1, i1) +

c1(n5).

But c1(n5) = c0(n4) = min{c0(n3), c0(i2)} = min{c1(i1), c0(i2)}, and c0(i2) = 0 be-

cause A(i2) = 0.

Thus, s(i1, o) = s(i1, i1) + c1(n5) = 0 + 0 = 0

s(i1, o) captures how costly it is to create a counterfactual dependency between i1

and o. Thus, the lower this value is, the more responsible i1 is for the value of o. If

s(i1, o) = 0, then the input and the output are counterfactually dependent on each

other, as seen in the third instance. F

6.2 Extension to Symbolic Indexing

The approach presented in [3] is applicable for only very specific STE statements.

The TEL formulae may only require a node to have a concrete value, or the value

of a single Boolean variable: i is vi. This does not allow any non-trivial symbolic

indexing.

As explained in more detail in Section 2.6, symbolic indexing provides a partition-

ing layer on top of the ternary logic used in STE. It allows inputs to have values only

if given propositional formulae called guards are satisfied. Its simplest application
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allows symbolic constants, i.e., an input can be driven with a variable. For example,

we may specify that the input i1 is driven with a high value when the guard v1 is

satisfied, and it is driven with a low value when it is not satisfied:

v1 _ i1 is 1 and v1 _ i1 is 0, or in short, i1 is v1.

Only such basic symbolic indexings are supported by the method of Chockler et al.,

but even slightly more elaborate structures are not. This does not exploit the full

power of partitioned abstraction in STE, one of its distinctive features.

In the following we will introduce an algorithm that can be applied to all STE

statements, irrespective on how it uses symbolic indexing. We will further introduce

two main approaches for refining abstractions. The first main approach leverages

our work on automatic abstraction discovery, using the refinement candidates as an

additional input to our auto abstract algorithm. The second main approach includes

three different refinement steps, between which we can switch in a refinement loop,

e.g. using heuristics. Our new method will not only be more flexible, but also include

some optimisations in the calculation of c0 and c1.

6.2.1 Evaluation of Symbolic Values

Before we generalise the responsibility algorithm to symbolic indexing, we need to

recall how symbolic indexing is represented. As described in Section 2.7, when running

STE, each input is driven with a value expressed in dual rail encoding. Two Boolean

expressions encode which value an input has: the high rail is true if and only if the

node may have a high value, and the low rail is true if and only if the node may have

a low value. So if both rails are true, then the node may have either value, which

corresponds to an X. Conversely, if neither rail is high, no value is allowed, which

will only occur if there are inconsistencies, called antecedent failures.

For example, if the antecedent specifies that i1 is v1, then i1 will have the value

encoded as (v1, v1). If v1 is assigned true, this corresponds to i1 having a high value,

(tt,ff), and similarly if v1 is assigned false, i1 will be driven with a low value, (ff, tt).

The two expressions in the high and low rail can be any expressions on the set of

indexing variables, not just simple variables. This enables more elaborate symbolic

indexing. The only restriction we observe is that the disjunction of the high and low

rails is a tautology, so that no evaluation will lead to an antecedent failure, (ff,ff).

In Figure 6.5 this is visualised. Any node, whose dual rail value is (h[V ], l[V ]) can

have a concrete or indeterminate value, depending on the assignment to the variables
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(tt, ff) (ff, tt)(tt, tt)

(ff, ff)

Figure 6.5: Dual rail encodings and their corresponding ternary values. The left,
lighter circle encloses all states where the high rail is true, and the right, darker circle
those where the low rail is true.

in V . Note that by requiring the disjunction of h and l to be a tautology, the node

will never have the value ⊥, which implies an “impossible” state.

This also means we can exactly capture when a node has the concrete value tt,

or the concrete value ff. In the following we will use drhi(ni) to be the high rail of

node ni, and drlo(ni) to be the low rail of ni. So in our example, drhi(ni) = h[V ] and

drlo(ni) = l[V ]. Recall that the square brackets merely signify the set of free variables

a formula depends on.

With this notation, the node ni has the concrete value tt if and only if

drhi(ni) ∧ drlo(ni),

and dually the concrete value ff if and only if

drhi(ni) ∧ drlo(ni),

We will refer to these conditions as whentt(ni) and whenff(ni) respectively.

When running STE, the circuit is simulated and each node is given a dual rail

value. The responsibility algorithm we present works on the high and low rail of each

such node. Therefore it depends on STE having been run before the responsibility is

calculated. But this is already necessary for determining which X-possible nodes exist

and cause weak disagreements. Hence this does not introduce additional costs, except

for keeping a list of all node values arising during simulation. The Forte environment,

which we used for our experiments, supports keeping track of this information for all

or selected nodes when running STE.

Chockler et al. [3] assume that input nodes either have a concrete value, or are
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driven by a variable, i.e., drhi(ni) = vi and drlo(ni) = vi. We now propose an

approximate degree of responsibility calculation, which can handle arbitrary symbolic

values on nodes. Figure 6.7 includes both the previous definition by Chockler et al.,

as well as ours. We decided to make our calculations consistent with the previous

approach in all corner cases, so that it constitutes a clear generalisation. At the end

of this section (page 152) we show this to be true.

The previous approach can handle inputs with concrete values, indeterminate val-

ues, or the value of a single variable. It does not provide a cost for all other symbolic

values. Intuitively speaking, our approach assigns the cost to such symbolic values

by bridging the gap between the value assigned to indeterminate values and symbolic

constants. The more often a node is indeterminate, the closer the cost is to that of an

indeterminate value, and the more often it is concrete due to its symbolic value, the

closer its value is to that of a symbolic constant, which for all valuations is concrete.

For this we define sc(f), which is short for satisfiability count and denotes the

number of ways in which f can be satisfied, i.e., the number of assignments to the

free variables V of f , such that f(
←−
V ) = tt.

sc(f [V ]) = |{
←−
V : f(

←−
V ) = tt}|

with two special cases

sc(ff) = 0
sc(tt) = 1

Figure 6.6: Definition of satisfiability count

This definition depends on the set of free variables not being empty. There are two

special cases where that set is empty, namely if f has a constant value. We set the

value of sc(f), so that these cases match the previous definition of c0 and c1 in [3]:

sc(tt) = 1 and sc(ff) = 0.

Note that using the high rail and the low rail when determining the values of

c0 and c1 corresponds to the case split Chockler et al. do on the value of A(j).

The difference is that the dual rail encoding can capture more values to drive an

input with than simply looking at the antecedent without allowing complex guards

to restrict by, as done in [3]. Differently put, we also handle antecedents where

A(j) = (whentt(j) _ 1) and (whenff(j) _ 0).

For example, the previous approach could not handle an input being driven with
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c1(j) =∞ if A(j) = 0 c1(j) =∞ if A(j) = 0
= 0 if A(j) = 1

= 2 if A(j) = X = 2− 2 · sc(whentt(j)[V])
2|V|

= 1 if A(j) ∈ V if A(j) 6= 0
c1(NOT f) = c0(f) as before
c1(f AND g) = c1(f) + c1(g) as before

c0(j) =∞ if A(j) = 1 c0(j) =∞ if A(j) = 1
= 0 if A(j) = 0

= 2 if A(j) = X = 2− 2 · sc(whenff(j)[V])
2|V|

= 1 if A(j) ∈ V if A(j) 6= 1
c0(NOT f) = c1(f) as before
c0(f AND g) = min{c0(f), c0(g)} as before

Figure 6.7: Computation of c1 and c0 as proposed in [3] (left) and our generalisation
to arbitrary symbolic values (right)

the value v1 ∧ v2, which corresponds to the antecedent

i1 is v1 ∧ v2, or v1 ∧ v2 _ i1 is 1 and v1 ∧ v2 _ i1 is 0.

With this new approach we get c1(v1 ∧ v2) = 2− 2 · 1
4

= 11
2
, because there is only one

possible assignment to make the expression v1 ∧ v2 true, namely both v1 and v2 have

to have a high value, and whentt(i1) has two free variables, i.e., 2|{v1,v2}| = 4.

As noted before, we chose to use a heuristic for the costs c1 and c0, so that in all

cases supported by Chockler et al. our values coincide. This makes clear that our

approach is more general, and the consistency eases comparability. Else we could

have easily used other values, e.g. spread out the cost for symbolic values to a larger

interval than [1,2].

Example: Comparing the corner cases

1. Antecedent: (i1 is 0)

This is a case that is specially treated in both definitions.

Chockler et al. c1(i2) =∞
Our generalisation c1(i2) =∞
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2. Antecedent: (i1 is 1)

Then the dual rail encoding for the value of i1 is (tt,ff) and

thus whentt(i1) = tt ∧ ff = tt. Hence,

Chockler et al. c1(i1) = 0

Our generalisation c1(i1) = 2− 2 · 1
20

= 0

3. Antecedent: (i1 is X)

Then A(i2) = X, which corresponds to the dual rail encoding (tt, tt).

Thus whentt(i2) = tt ∧ tt = ff. Hence,

Chockler et al. c1(i2) = 2

Our generalisation c1(i1) = 2− 2 · 0
20

= 2

4. Antecedent: (i1 is v1)

Then the dual rail encoding for the value of i1 is (v1, v1) and

thus whentt(i1) = v1 ∧ v1 = v1. Hence,

Chockler et al. c1(i1) = 1

Our generalisation c1(i1) = 2− 2 · 1
21

= 1

So all cases that are captured by Chockler et al. are given the same value in our

generalisation. F

6.2.2 Refinement of Abstraction Schemes

In the previous section we extended the approximate degree of responsibility algo-

rithm for deciding which input to refine the abstraction scheme by. Recall that

Chockler et al. [3] refine by driving the identified input with a variable. This means

that the value of that input always has a determinate value, and will hopefully elim-

inate the weak disagreement that was the result of the previous STE run. While

this may not be the case immediately, the refinement loop is guaranteed to eliminate

the weak disagreement eventually. In the worst case we symbolically simulate every

input, which cannot lead to a weak disagreement anymore.

But of course, driving all inputs with a variable was discarded, because it is too

expensive a task in most cases. Indeed, the refinement step suggested by Chockler et

al. can be a quite expensive modification, which can lead to a steep increase in time
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and memory consumption. In the following we suggest more conservative options for

refining abstractions.

Introducing More Restrictive Guards

Symbolic indexing allows making more careful, restrictive modifications in the refine-

ment loop. Each STE run provides the cases in which the verification fails. Only in

those cases do we actually have to modify which inputs are driven with a value so

one option is to only drive an input then.

Suppose an STE run with the antecedent A results in a weak disagreement when-

ever the expression res is satisfied. Suppose further that we then identified that the

input i1 seems to be the most responsible for that weak disagreement. Then we can

drive i1 with a new indexing variable v1 by adding

(res ∧ v1 _ i1 is 1) and (res ∧ v1 _ i1 is 0)

to the previous antecedent. For simplicity the short form, (res _ i1 is v1), can be

used, leading to a modified antecedent A and (res _ i1 is v1). In contrast, the

previous approach lead to the antecedent A and (i1 is v1).

Here it is crucial that the antecedent still includes all previous indexing cases.

The power of symbolic indexing lies in driving several nodes with possibly matching

values. This is also a feature heavily used by our work in automatic abstraction

discovery, as presented in Chapters 3 and 4. But this means that an input may

be driven with different values. For example, suppose the antecedent states that

(f _ i is 0) and (g _ i is 1). Then the updated antecedent as suggested by Chockler

et al. is (f _ i is 0) and (g _ i is 1) and (i is r). So, when f ∧ r, or when g ∧ r, then

i is both 0 and 1. This overconstraint value constitutes an antecedent failure. It can

be detected and the simulation skipped, but ideally such inconsistencies should be

avoided directly. We can achieve this by adding a guard f ∧ g for when to drive the

input i with the variable r:

(f _ i is 0) and (g _ i is 1) and (f ∧ g _ i is r),

or, if we want to drive the input in the weak disagreement cases only:

(f _ i is 0) and (g _ i is 1) and (res ∧ f ∧ g _ i is r).
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By introducing these guards, f ∧ g ∧ h, we restrict when specific inputs are run

with a symbolic value, rather than always doing so. The guard h = res ensures the

input is driven in the weak disagreement cases only. Note, though, that we could use

any guard h. Using a more restrictive one, i.e., h → res is not a tautology, would

not suit our cause, as the next STE run would surface a weak disagreement in the

cases we did not include in the guard. But we may want to add a symbolic value for

our input in additional cases, the advantage being that the guard may be simplified

and not require as many variables. Indeed, seen from this perspective, an approach

similar to that of Chockler et al. always would use simplest guard possible: h = tt.

But Chockler et al. assumed no inputs are initially driven, and any update leads

to inputs always being driven, this coinciding of symbolic indexing is a scenario that

they did not have to consider. As soon as we allow more elaborate indexing schemes

we may discover that the input i is driven in some cases, but not in all cases an STE

run requires it for determining a definitive result.

Refining the antecedent needs to be done very carefully, as provided above. An-

other example surfaces how easily antecedent updates can lead to errors. Suppose

the antecedent states that f _ i1 is v1 and we identify i1 as the refinement candidate

in the weak disagreement case res. Then we can update the antecedent by instead

including

(f _ i1 is v1) and (f ∧ res _ i1 is v2),

where v2 is a fresh indexing variable. One might be tempted to instead reuse the

variable v1, thus leading to

f ∨ res _ i1 is v1,

but this may fail. It may be that, for optimisation reasons, the antecedent reuses v1

already when f holds. For example, Section 4.7 describes such an optimisation to

reduce the number of variables introduced. So in general the more careful approach of

adding a new variable is necessary. This, however, may also increase the complexity

of the STE run. The approach described in the next section is one way of addressing

this shortcoming.
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Compiling a New Abstraction Scheme

Refining the abstraction scheme by adding cases when inputs are defined is, in some

sense, only mending the abstraction, rather than attempting to improve it at its base.

One observation to make is that Chockler et al.’s approach of always driving the

identified input with a variable relates strongly with our support of defining symbolic

constants. Recall that when running the automatic abstraction algorithm, we allowed

the user to specify which inputs were to be driven with a value in all cases, and which

thus could be treated similar to constants. This had the advantage that we could use

the knowledge that nodes always had a determinate value to optimise the rest of the

abstraction scheme.

Hence, another option is to rerun the automatic abstraction discovery algorithm,

auto abstract, this time identifying i1 to be in the set of symbolic constants. This

is of course a more expensive operation than simply adding one more guard to the

antecedent, but immediately pays off if the resulting STE run requires less time and

memory to complete.

Speaking in terms of number of indexing variables, the difference is that the previ-

ous approach introduces a new indexing variable for each refinement candidate. This

indexing variable will not be reused for any other cause. When running the automatic

abstraction algorithm, on the other hand, the variable may, and usually will, also be

used for other guards. This is noteworthy, because the number of indexing variables is

sometimes used to estimate the cost of an abstraction scheme, and fewer is perceived

to be better.

Striking a Balance between the Approaches

We have identified these different refinement steps once a refinement candidate has

been selected:

1. Drive i1 with a variable whenever it was not driven before.

2. Drive i1 with a variable in all weak disagreement cases in which it was not

driven before.

3. Drive i1 with a variable, when it was not driven before, and guarded by an

expression that captures at least all weak disagreement cases.

4. Compute a new abstraction scheme while specifying i1 as a symbolic constant.
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Which of these approaches is best depends on both the model you are verifying and

its specification. The cost of each approach is different. In Approach 1, we are driving

the input in all cases, so we have that overhead in all cases. In Approach 2 we are

additionally driving the input only when it might actually make a difference. But

the guard can be quite a complex expression and this introduces a different kind of

overhead. Approach 3 can reduce that complexity, but has the risk of introducing

similar costs as in Approach 1. Finally, computing a new abstraction scheme dis-

regards all work put into creating the previous abstraction scheme and starts from

scratch – with the sole exception of having identified that i1 needs to be treated as a

symbolic constant.

It is worth noting that we need not always use the same refinement step. Especially

Approaches 1, 2, 3 are interchangeable in a refinement loop. For example, you could

define a condition under which the refinement candidate shall always be driven with a

symbolic value, and when to add a guard. One such condition would be to investigate

in how many cases the guard is satisfied, i.e., how close to 1 is sc(f [V])
2|V| ? If the guard

is almost always satisfied, then the additional cost of always driving the input with a

value is small. But the saved work for not having complex guards may be significant.

So applying Approach 1 may be the best option. Another, cruder approach is to count

the number of variables used in the guard and judge by that. If a specific threshold

is surpassed using Approaches 1 or 3 may lead to lower verification costs than using

Approach 2.

Recall that Approach 3 is based on the fact that there is no formal requirement

to restrict driving the refinement candidate in the weak disagreement cases only.

Any guard g that satisfies the property g → f will lead to both formally correct

results, as well as guaranteeing that the refinement loop will terminate eventually. In

particular, g may have considerably fewer variables than f . Of course, identifying a

simple expression that at the same time covers only a few more cases than f has its

own difficulties. But it is a possible approach, which lives between the two extremes,

Approach 1 and Approach 2.

Switching between adding onto the abstraction scheme, and rerunning the auto-

matic abstraction algorithm, on the other hand, is more difficult. You can memorise

the refinement candidates in each step and then – if the abstraction becomes too

weighty – use that information to start from scratch. However, this does mean that

you potentially have many symbolic constants. Using Approach 4 may be worthwhile

especially in the first iterations of the loop, but in later iterations the cost becomes

much higher. In essence, it is better than always using Chockler et al.’s approach, but
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once we do smart modifications as suggested above, the gain may not be as prominent

anymore.

6.2.3 Example

Figure 6.8: Graphical representation of the hardware model M with output out where
out = (if b then b ∧ c else a ∧ b)) ∧ d ∧ e

Consider the circuit shown in Figure 6.8. On closer examination we discover that

its input-output behaviour is equivalent to the expression (a ∧ b ∨ b ∧ c) ∧ d ∧ e.
Thus, in some cases the value of b is not necessary for determining the output value.

Each partial input combination provided in Figure 6.9 is sufficient to determine the

value of out.

The following reindexing relation captures exactly those partial input combinations

and satisfies the coverage condition as seen in Theorem 4.1:

(a, o ∧ x1 ∨ o ∧ x1 ∧ x2, o ∧ x1 ∨ o ∧ x2),
(b, o ∧ x1 ∨ o ∧ x1 ∧ x2, o ∧ x1 ∧ x2 ∨ o ∧ x1 ∧ x2),
(c, o ∧ x1 ∧ x2 ∨ o ∧ x1 ∨ o ∧ x1 ∧ x2), o ∧ x1 ∧ x2 ∨ o ∧ x1 ∧ x2 ∨ o ∧ x1 ∧ x2
(d, o ∧ x1 ∧ x2, o ∧ x1 ∧ x3 ∨ o ∧ x1 ∧ x2),
(e, o ∧ x1 ∧ x2, o ∧ x1 ∧ x3 ∨ o ∧ x1 ∧ x2),

Figure 6.9 lists all partial input combinations, as well as which assignments to

o, x1, x2, and x3 cover them.
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a b c d e out o x1 x2 x3
1 1 0 1 1 0 0 0
1 1 0 1 1 0 0 1
1 0 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1 1
0 1 1 0 1 1 1 0
0 1 1 0 1 1 1 1

1 1 0 0 0 0
0 0 0 0 0 1
1 1 0 0 0 1 0
0 0 1 0 0 1 1

Figure 6.9: Partial input combinations, and under which assignments to o, x1, x2, and
x3 the relation covers them

However, upon running R |= AR ⇒ (out is o)R, where A is the antecedent, which

drives each of the input nodes with a variable, we discover that over-abstraction

occurs. In particular, STE returns a weak disagreement when o ∧ x1 ∧ x2, which

corresponds to the partial input combinations 1X10X and 1X1X0. These are the

cases where the multiplexer returns a high value irrespective of the value of b, the

condition, because both the if-branch and the else-branch have a high value. However,

the simulator requires the value of b even if both other inputs of the multiplexer are

equal.

We now want to refine the relation, so that this over-abstraction is eliminated.

For this, we use our adapted abstraction refinement algorithm. In particular, observe

that we are evaluating TEL formulae which are not supported by [3]. As we only

described how to determine the approximate degree of responsibility of NOT- and

AND-gates, we have to represent the multiplexer as a small circuit using only these

gates and with the same input-output-behaviour, for example as seen in Figure 6.8.

In Chapter 7 we will see how we can handle the multiplexer directly, rather than

through this workaround.

We now want to determine the refinement candidate, i.e., the input presumably

most responsible for the output being indeterminate. For this, we first run STE

restricted to the weak disagreement cases only. Thus, we will receive a run where the

output is always indeterminate, and where the inputs are driven as described in the
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relation when o ∧ x1 ∧ x2:

node value dualrail

a 1 (tt,ff)

b X (ff,ff)

c 1 (tt,ff)

d x3 → 0 (x3, tt)

e x3 → 0 (x3, tt)

This leads to the following approximate degree of responsibility values.

s(a, out) = s(a, n1) + c1(n2)

c1(n2) = c0(n11) = min{c0(d), c0(e)}
c0(d) = 2− 2 · sc(whenff(d))

2|{x3}|
= 2− 2 · sc(x3∧tt)

2
= 2− 2 · 1

2
= 1

c0(e) = 2− 2 · sc(whenff(d))

2|{x3}|
= 2− 2 · sc(x3∧tt)

2
= 2− 2 · 1

2
= 1

s(a, n1) = s(a, n3) = s(a, n4) + c1(n5)

c1(n5) = c0(n7) = min{c0(b), c0(n10)}
= min{c0(b),min{c0(b), c0(c)}} = min{2,min{2,∞}} = 2

s(a, n4) = s(a, n6) = s(a, n9) + c1(n8) = s(a, n9) + c0(b) = s(a, n9) + 2

s(a, n9) = s(a, a) + c1(n12) = s(a, a) + c0(b) = 0 + 2 = 2

s(a, out) = 2 + 2 + 2 + 1 = 7, similarly s(c, out) = 7

s(b, out) = s(b, n1) + c1(n2)

s(b, n1) = s(b, n3) = 1
2
·
(
s(b, n4) + s(b, n5)

)
s(b, n4) = s(b, n6) = 1

2
·
(
s(b, n9) + s(b, n8)

)
= 1

2
·
(
s(b, n9) + s(b, b)

)
s(b, n9) = c1(a) + s(b, n12) = c1(a) + s(b, b) = 0 + 0

s(b, n5) = s(b, n7) = 1
2
·
(
s(b, b) + s(b, n10)

)
s(b, n10) = s(b, b) + c1(c) = 0 + 0

s(b, out) = 0 + 1 = 1

s(d, out) = c1(n1) + s(d, n2)

c1(n1) = c0(n3) = min{c0(n4), c0(n5)} = min{c1(n6), c1(n7)}
= min{c1(n9) + c1(n8), c1(b) + c1(n10)}
= min{c1(a) + c0(b) + c0(b), c1(b) + c1(b) + c1(c)}
= min{0 + 2 + 2, 2 + 2 + 0} = 4

s(d, n2) = s(d, n11) = s(d, d) + c1(e)

c1(e) = 2− 2 · sc(whentt(e))

2|{x3}|
= 2− 2 · 0

2
= 2

s(d, out) = 4 + 2 = 6, similarly s(e, out) = 6
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So the algorithm delivers that the input b is most responsible for the output being

indeterminate, as desired.

Thus, using Approach 2, we can refine the relation in b as follows:

(b, o ∧ x1 ∨ o ∧ x1 ∧ x2 ∨ r1 ∧ o ∧ x1 ∧ x2,
o ∧ x1 ∧ x2 ∨ o ∧ x1 ∧ x2 ∨ r1 ∧ o ∧ x1 ∧ x2)

The verification passes when running it with this adapted relation.

Note that here we only drive b as often as before, plus in the weak disagreement

case, o∧x1∧x2, and then with a new variable r1. So both differences to the previous

approach can already be seen in this small example. First, we are able to evaluate

non-trivial symbolic indexings, and second we can drive inputs in only the cases where

over-abstraction occurs, rather than always. The approach presented by Chockler et

al. [3] could not handle even this form of non-trivial symbolic indexing, and suggests

refining the relation by driving b always, i.e., the relation in b would have been adapted

to (b, r1, r1).

6.3 Summary

In this chapter we introduced an approach to automatically refining abstraction

schemes when over-abstraction occurs. In particular, our work is based on, but goes

beyond previous work done by Chockler et al. [3]. We generalise their approach in two

essential and significant aspects. First, we argue how to select refinement candidates

for abstraction schemes that use non-trivial symbolic indexings. While previously

only abstractions with constant Boolean values, or with simple variables were sup-

ported, our approach allows the handling of arbitrary Boolean expressions as guards.

Second, we suggest how to alter the abstraction more conservatively, thus potentially

reducing the cost increase caused by driving more inputs with values after refinement.

Where Chockler et al. modified the abstraction scheme by driving the refinement can-

didate with a symbolic value in all cases, we allow driving it only when necessary.

This is achieved by introducing guards appropriate to the over-abstraction observed.

Furthermore, we suggest another methodology of refining abstractions. Rather

than refining the indexing by adding onto it cases in which specific inputs are driven

with a value, we propose creating a new abstraction scheme using our auto abstract

algorithm while defining the identified refinement candidates as symbolic constants.

In Chapter 7 we will see how selecting refinement candidates can be further gener-
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alised and improved, to then show the effectiveness of our approach in Chapter 8 by

verifying the CAM we already verified in Chapter 5, with the important modification

of not defining any symbolic constants ahead of time. To compare the approaches,

we will also refine the initial abstraction by always driving the identified inputs with

a variable, or only in the weak disagreement cases. We will see that while all these

approaches work, compiling a new abstraction using the refinement candidates as

symbolic constants leads to much better execution times.
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Chapter 7

Abstraction Refinement with

Arbitrary Gates

In Chapter 6 we examined how the approach to abstraction refinement as presented

in [3] can be generalised to incorporate symbolic indexing, and in particular how to

thus create better abstraction schemes. Another improvement to the algorithm we

can make – independently of the previous generalisation – is how gates are analysed

in the responsibility calculation.

The abstraction refinement introduced by Chockler et al. is based on determin-

ing which input is most responsible for a chosen, X-possible output. In particular,

they describe how to compute the approximate degree of responsibility for NOT and

AND gates. This is sufficient to analyse any other gate by breaking it down into an

equivalent, small circuit that has the same input-output behaviour and consists of

only NOT and AND gates. But this may result in less accurate responsibility calcu-

lations than possible when analysing the gate directly. This is especially true because

approximations are computed, and when analysing many gates these errors add up.

So finding a general approach to analysing arbitrary gates allows such errors to be

avoided, and thus leads to better abstraction refinement.

In the following we study single gates and these gates in context as part of a circuit.

For this it is helpful to not only talk about the inputs and output of the whole circuit,

but also those of a single gate. For simplicity, we use the same notation for single

gates as we have for circuits. And indeed, a single gate can be seen as a very small

circuit. For a gate g, we denote the set of all its inputs by Ng. In particular, we talk

about partial input combinations as before, and compare and order them likewise.

When examining the gate by itself and as part of a bigger circuit, it is important
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to formalise the move from and to a different context. For this we use the following

notation. A model is identified by the expression f describing it. The outermost gate

g of the circuit is denoted by deconstruct(f). The fanins to g are called fn for each

n ∈ Ng, and the output keeps the same name. Note that g is a gate, whereas fn are

each circuits again. The next outermost gate of each fn can then be analysed, thus

allowing us to recursive over the circuit.

Example: Notational Overview

Figure 7.1 shows the notation used in this chapter with respect to identifying gates

and subcircuits. The three-input OR is the outermost gate, deconstruct(f). This

gate has three nodes n1, n2, n3 that determine its value. For this specific circuit the

subcircuits f1, f2, f3 respectively specify which values feed into the inputs of that

3OR-gate. F

Figure 7.1: A graphical representation of f = (i1 AND i2) 3OR (i3 XOR i4) 3OR i5

When giving a general approach for arbitrary gates, we need to decide on a rep-

resentation for these gates. A gate can be defined by the partial input combinations

that specify when it returns a high output. This definition of behaviour is commonly

used in STE implementations. Hence in the following we state how the approximate

degree of responsibility can to be calculated based on that defining list of partial

input combinations.

The chapter is divided into several parts, which relate to the different calculations

necessary to determine an approximate degree of responsibility. The work in [3]

depends on calculating three values: c1(f), the cost of forcing the inputs to values
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that lead to f having a high output, which we generalise in Section 7.1; c0(f), the cost

of getting f to have a low output, generalised in Section 7.2; and s(i, f), the inverse of

the degree of responsibility of a primary input i for the output of f . Various aspects

that need to be adapted for the calculation of s(i, f) are discussed in Section 7.3. By

giving definitions for all three calculations we thus present a fully general approach

to analysing gates for determining a refinement candidate. This ultimately delivers a

better automatic abstraction refinement loop.

7.1 The Cost of Having a High Output

When computing the approximate degree of responsibility of an input i of f to its

X-possible output o, we need to establish a counterfactual dependency between i and

o. This may require us to change and in particular concretise the values of the other

inputs of f . Each change is connected with a cost, which may vary depending on

what kind of modification we apply. By c1(f) we denote the cost of changing the

values of the inputs of f , so that f has a high output. As before, we want to apply a

set of changes that lead to a high output at minimal cost.

Note that when computing s(i, f) we usually calculate c1(fsub), where fsub is a

subcircuit of f whose fanin does not include i. This does not affect how c1 is generally

calculated, though, and there are special cases where i is in the fanin, e.g. when

s(i, fsub) = ∞ and we decide to exchange it with c1(fsub), as already seen in Figure

6.3.

The computation of c1(f) is based on the defining input combinations for the gates

which build f . For each gate g, we call the set of partial input combinations that

lead to a high output Hg, and g(P ) denotes the output value of g provided its inputs

have the values specified by the partial input combination P . Thus, formally:

Hg = {H : Ng → {tt,ff,X} such that g(H) = tt}

Furthermore, we can assume that Hg is minimal by taking the greatest lower

bound of all such sets. This essentially means that all input combinations that can

be collapsed are collapsed.

In particular, no element can be removed without loss of information, i.e., for no

two distinct elements H1, H2 ∈ Hg does one have strictly less information than the

165



other:

∀H1, H2 ∈ Hg : H1 v H2 → H1 = H2.

Additionally, no two distinct elements H1 and H2 can be replaced by a less determi-

nate partial input combination, e.g. by setting the value of m ∈ Ng to X. This would

be possible when

∀n ∈ Ng\{m} : H1(n) = H2(n).

In essence, this ensures that whenever we can leave an input of the gate unspecified,

we leave it unspecified. And we can leave an input unspecified, if irrespective of

whether it has a high, low, or indeterminate value, the output of the gate does not

change.

For any partial input combination P on the nodes Ng, let c(g, P ) denote the cost

of changing the inputs of g to the values specified in P . For determining this cost

we do not just require the static information on what gate we are dealing with and

its defining partial input combinations, but also in which context the gate stands. In

particular, when g is part of a model f , the inputs of g are not primary inputs of f ,

but rather have values determined by subcircuits fsub of f .

But supposing that the circuit f has a single gate g only, c(g, P ) delivers a way of

calculating c1(f),

c1(f) = min
H∈Hg

c(g,H).

This equation holds, as (1) the inputs of g are exactly the primary inputs of f , and

(2) we assumed that Hg is minimal, and thus each c(g,H) considered does not factor

in unnecessary changes which would increase the cost determined.

More generally, let g = deconstruct(f) be the outermost gate of f , and fi be

the subcircuits of f , which determine the values of the inputs of g in this case. By

c(H(i), fi) we denote the cost of ensuring that fi outputs the value specified in H.

Thus,

c1(f) = min
H∈Hg

∑
i

c(H(i), fi).
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The cost of changing the value of fi as specified in H can be determined recursively:

c(H(i), fi) =


c1(fi) if H(i) = tt

c0(fi) if H(i) = ff

0 if H(i) = X

Here the index i always specifies which input of g we are examining, and likewise

which subcircuit determines the value of that input. This recursion terminates on

indeterminate values, or whenever we reach a model that consists of only a primary

input of f . At this point the cost of changing an input to a specific value depends on

the heuristic used. In particular, in this dissertation, we apply the heuristic introduced

in Chapter 6 (Figure 6.7) whenever calculating concrete values.

Example: Calculating c1

Consider the model f = (i1 AND i2) 3OR (i3 XOR i4) 3OR i5, also displayed in

Figure 7.2: A graphical representation of (i1 AND i2) 3OR (i3 XOR i4) 3OR i5

Figure 7.2. The outermost gate, deconstruct(f), is a three-input OR-gate, and the

subcircuits that determine the values of the inputs to that three-input OR-gate are

f1 = i1 AND i2, f2 = i3 XOR i4, and f3 = i5. Furthermore,

H3OR = {1XX,X1X,XX1}

and thus

c1(f) = min{
c(1, i1 AND i2) + c(X, i3 XOR i4) + c(X, i5),

c(X, i1 AND i2) + c(1, i3 XOR i4) + c(X, i5),

c(X, i1 AND i2) + c(X, i3 XOR i4) + c(1, i5)

}
= min{ c(1, i1 AND i2), c(1, i3 XOR i4), c(1, i5)}

,
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as c(X, f) = 0 for all models f . We then have to continue with the next step in the

recursion. For this, we require the defining input combinations for AND and XOR:

HAND = {11}, HXOR = {1X,X1}

Thus, we receive

c1(f) = min{c1(i1) + c1(i2), min{c1(i3), c1(i4)}, c1(i5)}.

The actual value of c1(f) now only depends on the antecedent, and the heuristic used

for the cost of changing the values each input is driven with by the antecedent. F

7.2 The Cost of Having a Low Output

The calculation of c0 and c1 are very similar. The main difference we have to tackle

is that gates are defined by the partial input combinations that lead to a high value.

In the computation of c0 we require the exact opposite: the set of partial input

combinations that lead to a low output.

Lg = {L : Ng → {tt,ff,X} : g(L) = ff}

As before, we want this set to be minimal to get a more accurate approximation.

Then c0 can be computed by

c0(f) = min
L∈Lg

c(g, L).

We can compute Lg using the Quine-McCluskey method [75]:

1. Start with the set that includes all fully concrete input combinations,

L = {L : Ng → {tt,ff}}

2. To receive L′, for each H ∈ Hg remove all input combinations that lead to a

high output, i.e., L′ = L\
⋃

H∈Hg
{K : Ni → {tt,ff} : ∀n ∈ Ng : H(n) v K(n)}

3. Collapse all remaining fully input combinations to a minimal set of partial input

combinations.

(a) Start with L′′ and U being the empty set. In L′′ we collect a new set of

assignments that is less determinate and covers all assignments of L′. In
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U we keep track of which assignments we have already covered to ensure

that we reach full coverage in the end.

(b) For each pair L1, L2 ∈ L′ that differs in only one assignment, namely to

the node m: add both to U . Further, add L3 to L′′, where

L3(n) =

X if n = m

L1(n) otherwise

(c) Add all elements of L′\U to L′′

(d) Repeat the loop with L′′ instead of L′ until a fixed point is reached. This

occurs once no more pairs that only differ in one assignment exist.

Example: Computing Lg

Suppose we are given a gate f defined by

Hg = { a 7→ ff, b 7→ ff, c 7→ X

a 7→ ff, b 7→ X, c 7→ ff

a 7→ X, b 7→ ff, c 7→ tt }
= { 00X, 0X0, X01}

Using the procedure above, we can determine that set as follows.

1. The set of all assignments is L = {000, 001, 010, 011, 100, 101, 110, 111}

2. Remove all assignments covered by 00X to get {010, 011, 100, 101, 110, 111}

3. Remove all assignments covered by 0X0 to get {011, 100, 101, 110, 111}

4. Remove all assignments covered by X01 to get {011, 100, 110, 111}

5. So L′ = {011, 100, 110, 111} and we start generating the set of collapsed assign-

ments with L′′ = ∅

6. Collapse pair 011 and 111 to get L′′ = {X11} and U = {011, 111}

7. Collapse pair 100 and 110 to get L′′ = {X11, 1X0} and U = {011, 100, 110, 111}

8. Collapse pair 110 and 111 to get L′′ = {X11, 1X0, 11X} and

U = {001, 100, 110, 111}

9. None of the elements of L′′ differ in only one node assignment anymore. Further-

more, L′\U = ∅. Hence we have reached the fix point, Lg = {X11, 1X0, 11X}
F
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Note that the set is only uniquely defined if we collapse all possible pairs. If instead

we only required the final set to cover the same states as before, then two different

sets would qualify in the example above:

• {X11, 1X0} by collapsing 011 and 111, and then 100 and 110

• {011, 100, 11X} by collapsing 110 and 111, and then adding the remaining as-

signments {011, 110} that were not covered in the collapse step.

Collapsing as far as possible is more desirable, because it allows a more accurate

evaluation of how costly it is to force the output of the gate to a specific value. For

example, either of the assignments X11, 1X0, 11X can be the least costly to enforce.

It is always the case that any of the candidates might represent the assignment that

is the least costly, because we ensured that none of the assignments is more concrete

than necessary. Remember that only concrete node assignments add to the cost,

whereas leaving a node value undefined comes for free.

This calculation needs to be done only once per type of gate, so it can be moved

to a preprocessing step before even starting the verification of the model. Remember

that before the calculation for a gate was done on a small circuit with the same

input-output behaviour as the gate, but that only required NOT and AND gates.

The cost of calculating our collapsed set of input combination is compensated by the

cost of constructing the synthesised circuit, as well as analysing each gate of it. So

by doing this calculation we get more accurate results in the calculation of the degree

of responsibility without additional cost.

7.3 Determination of the Approximate Degree of

Responsibility

Recall that in the calculation of s(i, f) we want to determine how costly it is to enforce

that the value of i determines the output of f . In the simple case that i is only in the

fanin of one of the inputs of a gate we thus want to find two different partial input

combinations: one shall lead to a high output, the other to a low output – and both

shall only differ in the value of the input whose fanin includes i:

H,L : Ng →
{

tt,ff,X} : H(n) = L(n) ∀Ng\{m}
}
,
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where i is in the fanin of m ∈ Ng. Let D be the assignment that matches with L and

H in all nodes but m, and let D(m) = X. Then

s(i, f) = s(i, fm) +
∑

n:D(n)=tt

c1(fn) +
∑

n:D(n)=ff

c0(fn),

where fn denotes the expressions that feed into the outermost gate of f ,

deconstruct(f). As this deciding assignment creates counterfactual dependency be-

tween i and f , the cost of changing the situation to D is relevant to calculating s(i, f).

Specifically, they match if D is the only deciding assignment that exists. In contrast,

if more than one deciding assignment exists, we need to average over the cost of each

of the assignments.

Example: 3-input AND-gate

Let f = f1 AND f2 AND f3, where f1, f2, and f3 denote expressions that feed into

the inputs of a 3-input AND-gate. Further assume that the primary input i of f is

only in the fanin of f1.

Then there is one pair of assignments where f1 is the deciding input:

H(f1) = H(f2) = H(f3) = tt for a high output, and H(f1) = ff, H(f2) = H(f3) = tt

for a low output. Hence, D(f1) = X, D(f2) = D(f3) = tt. We thus calculate s(i, f)

as follows:

s(i, f) = s(i, f1) + c1(f2) + c1(f3)

Observe that this matches with the definition provided by Chockler et al. in [3]. F

The key to determining s(i, f) is therefore directly linked to finding deciding input

combinations. In the following we first explain how to determine the set of all deciding

input combinations, then discuss how to calculate s(i, f) based on that set, and finally

generalising our approach to cases where i is in the fanin of more than one input of

the gate deconstruct(f).

7.3.1 Set of All Deciding Input Combinations

Our goal is to determine the set of all deciding input combinations for i on f . As

before, letHg and Lg denote all least determinate partial input combinations that lead

to a high or low output of f respectively. We now want to select pairs (H,L) ∈ Hg×Lg
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such that the property

H,L : Ng →
{

tt,ff,X : H(n) = L(n) ∀Ng\{m}
}

holds. Here we assume that i is only in the fanin of m. Then the following algorithm

delivers the desired set.

For each assignment H ∈ Hg where H(m) 6= X determine all L ∈ Lg that do not

contradict with H in any nodes but m:

L(n) 6= H(n) ∀n ∈ Ng\{m}, and L(m) = H(m)

By eliminating all X-assignments in which H and L differ we thus receive a deciding

input combination D:

D(n) =


H(n) if L(n) = X or H(n) = L(n)

L(n) if H(n) = X

X if n = m

The set of all such deciding input combinations, denoted by Dm
f , may have as many

as |Hg| · |Lg| elements. However, usually the set is significantly smaller.

Example: Multiple deciding input combinations

Consider a gate g with three inputs denoted by i1, i2, i3. Let Hg = {00X,X01} and

Lg = {X1X, 1X0}. For the input i2 we thus get two deciding input combinations:

• 00X ∈ Hg and X1X ∈ Lg delivers D1 = 0XX

• X01 ∈ Hg and X1X ∈ Lg delivers D2 = XX1

The other two pairs in Hg × Lg have contradictions:

• 00X ∈ Hg and 1X0 ∈ Lg contradict in the value of the first input. Additionally,

1X0 does not meet the requirement that L(n) = H(n).

• X01 ∈ Hg and 1X0 ∈ Lg contradict in the value of the third input. Additionally,

1X0 does not meet the requirement that L(n) = H(n).

F
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7.3.2 Average of Multiple Deciding Scenarios

Let Dm
f be the set of all deciding input combinations for i on f where i is in the

fanin of the node m. Further assume that Dm
f is minimal by collapsing all input

combinations that can be collapsed, as already seen for Hg and Lg.

To determine the degree of responsibility s(i, f) all deciding input combinations

need to be factored in, and averaged over. Some partial input combinations cover

more cases, so we need to additionally weigh each D ∈ Dm
f accordingly. We therefore

multiply the cost determined for D ∈ Dm
f by 2x(D), where

x(D) = |{n ∈ Ng\{m} : D(n) = X}|

denotes the number of nodes not equal to m, which are assigned X. As D(m) = X

for all D ∈ Dm
f , this equates to |{n ∈ Ng : D(n) = X}| − 1.

Then s(i, f) can be calculated by

1∑
D∈Dm

f
2x(D)

·
∑

D∈Dm
f

2x(D) ·
(
s(i, fm) +

∑
n:D(n)=tt

c1(fn) +
∑

n:D(n)=ff

c0(fn)
)
,

or further simplified,

s(i, fm) +
1∑

D∈Dm
f

2x(D)
·
∑

D∈Dm
f

2x(D) ·
( ∑
n:D(n)=tt

c1(fn) +
∑

n:D(n)=ff

c0(fn)
)
.

Observe that if the set Dm
f only includes one element, this matches with the previous

definition (page 171). In the off-case that Dm
f = ∅ we define s(i, f) = ∞, as i then

does not influence the output of f at all, and thus is not at all responsible for its

value. But as we assumed that i is in the fanin of m, there is usually at least one

deciding input combination.

Setting this value to ∞ needs to be specially handled when i is in multiple fanins,

as to not falsely classify i not being responsible at all, just because it is irrelevant for

one of the fanins. Also see the previous definition of s(i, f) as summarised in Figure

6.3 (page 146) for comparison. More details are provided in the next section.

7.3.3 Approximate Degree of Responsibility for Multiple
Fanins

In the previous we assumed that the input i is in the fanin of only one of the nodes

that feed into f . We now extend our approach to handle the case where i is in the
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fanin of possibly multiple nodes. Here we again move to approximate calculations,

and thus there is some leeway as to how to calculate the DoR.

Variant 1

Using the same reasoning as before, we can extend our definition of D as follows. We

want to find a pair H,L such that:

H,L : Ng →
{

tt,ff,X : L(n) = H(n) ∀Ng\M
}
,

where M is the set of all input nodes whose fanin includes i. Then D ∈ DM
f assigns

the same values as L and H to all nodes n ∈ Ng\M , and D(m) = X ∀m ∈ M . If M

includes just one element, this matches with the definition given in Section 7.3.1.

Also recall that previously we required L(m) = H(m), which, given that one

assignment leads to a low output and the other to a high output, was trivially satisfied.

When considering multiple nodes m ∈ M this is not as easy anymore. We do know,

however, that at least one node needs to be assigned different values, and this may

be a sufficient requirement. Another option would be to require all assignments for

m ∈ M to be contradicting. However, this is very restrictive. It in general requires

concretising X-values, which can lead to an exponential blowup of the elements in

Dm
f . One might argue that |M | is usually small, and thus the additional cost can

easily be compensated by more precise approximations of the degree of responsibility.

But this is not necessarily true.

Recall that the value X does not encode the set {tt,ff}, but rather a (possibly

equal) subset. It expresses that the value tt, or ff, might be possible, not that it

indeed is. So if tt is not a possible value and we concretise X to tt, we are introducing

an error. This can falsify the responsibility calculations, rather than improving them.

Additionally, by concretising the input values to the gate deconstruct(f) we impose

changes to the primary inputs of f . In our recursion we would then calculate the cost

of those changes. But by concretising more than one fanin, we may impose changes

that contradict each other, namely on all primary inputs that at least some fanins to

g share. Again, this can negatively impact our calculations more than improve them.

While the last described problem occurs in all our calculations – this is one of the

main reasons why it is only an approximation – avoiding as many as possible of such

risky modifications is a good policy. Hence in our approach we decide to relax the

condition on deciding input combinations, so that at least one assignment in L and

H differs. As before, this is trivially true, because L leads to a low output and H to
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a high output by definition.

Once we have determined the set DM
f we can adjust the calculation of s(i, f):∑

m∈M s(i, fm)

|M |
+

1∑
D∈DM

f
2x(D)

·
∑

D∈DM
f

2x(D) ·
( ∑
n:D(n)=tt

c1(fn) +
∑

n:D(n)=ff

c0(fn)
)

Essentially, we average over the responsibility values of all fanin nodes, and add the

cost of forcing those fanins to be deciding. Again, this definition matches with the

one before if |M | = 1.

But with this definition we treat all fanins the same – irrespective of whether it

contributed a concrete value or not in the pair (H,L) that determined D. Instead,

we may want to capture that information by only taking into account those s(i, fm)

where H(m) 6= X or L(m) 6= X. This adds some overhead, but indeed improves the

responsibility calculations. If we do not do this, the values are diluted by multiple

responsibilities, which are not relevant. Thus, for (H,L) define

ND = {n ∈ N g : H(n) = L(n)}
MD = {m ∈ N g : H(n) 6= L(n)}

where g = deconstruct(f) and thus Ng are the nodes that feed into the outermost

gate of f . Note that here ND may also contain nodes whose fanin includes i.

The corresponding deciding input combination D is then defined as

D(n) =

H(n) n ∈ ND

X n ∈MD

As MD can now vary depending on the pair (H,L) we need to memorise MD, not

just D. This leads to an adjusted definition of s(i, f):

1∑
D∈DM

f
2x(D)

·
∑

D∈DM
f

2x(D) ·
(∑

m∈MD
s(i, fm)

|MD|
+

∑
n:D(n)=tt

c1(fn)+
∑

n:D(n)=ff

c0(fn)
)
,

Note that before x(D) denoted the number of nodes n ∈ Ng\{m} that are assigned

X. Accordingly, now it denotes the number of nodes n ∈ ND that are assigned X.

This ensures the correct weight is again applied to each determined summand.

And still, our definition of MD can be improved further. In some cases s(i, fm)

may be infinite, leading to s(i, f) evaluating to infinity, too. But the infinite value
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encodes that i is not at all responsible for the output of f , whereas this is not true

if at least one s(i, fm) for m ∈ M is finite. Hence we need to adjust our definition

of M . Rather than it including all nodes of deconstruct(f) whose fanins include i

and whose value plays a role in the determination of D, it includes only those nodes,

where additionally s(i, fm) <∞. If with this restriction in place M = ∅ we again set

s(i, f) =∞.

So, in summary, we receive:

MD = {m ∈ N g : L(m) 6= H(m) and s(i, fm) <∞}
ND = Ng\MD

This more general approach delivers the same results as the definition given in [3]

even when some responsibility calculations deliver infinite values. Having matching

definitions in the special cases already captured continues to stay important, so that

we can easily compare Chockler et al.’s approach with our more general one.

Variant 2

Of course there are other options for calculating the approximate degree of respon-

sibility of i when i is in multiple fanins. The second variant we suggest ignores the

fact that i is in the fanin of multiple n ∈ Ng, calculates the approximate degree of

responsibility for each of them, and then takes an average of that:

s(i, f) =
1

|M |
·
∑
m∈M

sm(i, f)

where M = {n ∈ Ng : i is in the fanin of m} and sm assumes i is only in the fanin of

m and no other nodes n ∈ Ng. For |M | = 1 this matches with the previous definition

as seen in [3].

Here we are independently analysing each fanin and disregarding any connection.

This simple approach does lead to inaccuracies. When computing the cost of forcing

the other fanin nodes to be a specific value we disregard that i is already fixed, and

we may compute impossible scenarios. We mentioned this problem in the previous

approach already, supporting our decision to not concretise values. In this variant

the errors caused may again be higher, but the calculation is much simpler than in

Variant 1.
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Example of calculating the approximate degree of responsibility

Consider the gate g where Hg = {00X,X01} and Lg = {X1X, 1X0}. In a previous

example (page 172) we saw that for the model described by fg = i1 G i2 G i3, which

consists of a single g-gate, two deciding input combinations exist: Di2
fg

= {0XX,XX1}.
Thus, s(i2, fg) can be calculated as follows:

∑
D∈Di2

fg

2x(D) = 2x(0XX) + 2x(XX1) = 2 + 2 = 4

2x(0XX) · (s(i2, i2) + c0(i1)) = 2 · (0 + 2) = 4

2x(XX1) · (s(i2, i2) + c1(i3)) = 2 · (0 + 2) = 4

s(i2, fg) = 1
4
· (4 + 4) = 2

Here we apply the heuristic shown in Figure 6.7 for computing c0 and c1 of primary

inputs when A(i1) = A(i2) = A(i3) = X. The results also match with our intuition:

both deciding input scenarios have a cost of 2, both occur as often as the other, and

thus the average should also equate to 2 – which it does.

In comparison, f = ((NOT i1) AND (NOT i2)) OR ((NOT i2) AND (i3)), as

seen in Figure 7.3, has the same input-output behaviour, but is built up of multiple

gates. In particular, i2 is in the fanin of both inputs to the outermost AND-gate. So

our extended approach to evaluating the approximate degree of responsibility can be

applied.

Figure 7.3: An example circuit where i2 fans out to multiple gates

The calculation of s(i2, f) is a bit longer, and requires us to consider each gate by

itself. For this the following sets are relevant:

HOR = {1X,X1} LOR = {00}
HAND = {11} LAND = {0X,X0}
HNOT = {0} LNOT = {1}

We can choose to determine the approximate degree of responsibility either with the

first variant we suggest, namely adjusting the definition of deciding input scenarios,
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or the second variant, which entails averaging over degrees of responsibility while

ignoring multiple fanins.

For Variant 1 we determine Di2
f as follows. The outermost gate g of f ,

g = deconstruct(f), is an OR-gate, and i2 is in the fanin of both its inputs. Both pairs

(00, 1X) ∈ LOR × HOR and (00,X1) delivers that {XX} ∈ Di2
f . So, unsurprisingly,

Di2
f = {XX}.
Hence, using the definition of s(i2, f) as seen in Variant 1 (page 175):

s(i2, f) = 1
20
·
(
20 · ( s(i2,NOT i1 AND NOT i2)+s(i2,NOT i2 AND i3)

2
+ 0 + 0)

)
= 1

2
·
(
s(i2,NOT i1 AND NOT i2) + s(i2,NOT i2 AND i3)

)
Let f1 = NOT i1 AND NOT i2 and f2 = NOT i2 AND i3. Then Di2

f1
= {1X} and

similarly Di2
f2

= {X1}. Thus,

s(i2, f1) = 1
20
· 20·

(
s(i2,NOT i2)

1
+ c1(NOT i1)

)
= s(i2,NOT i2) + c1(NOT i1) = s(i2, i2) + c0(i1) = 0 + 2 = 2

s(i2, f2) = 1
20
· 20·

( s(i2,NOT i2)
1

+ c1(i3)
)

= s(i2,NOT i2) + c1(i3) = s(i2, i2) + 2 = 0+ = 22

Putting everything together,

s(i2, f) =
1

2
·
(
s(i2, f1) + s(i2, f2)

)
=

1

2
· (2 + 2) = 2

While the calculation was more elaborate, we did determine the same degree of re-

sponsibility as before. This shows that our quite careful generalisation can yield

good approximations, but at the cost of some more overhead, even with as simple an

example as this.

Variant 2 takes a much cruder approach, ignoring the fact that i2 is in more

than one fanin of the outermost gate of f . But the calculation is much simpler:

s(i2, f) = 1
2
· (s1(i2, f) + s2(i2, f)) where s1 and s2 assume that i2 is just in the fanin
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of the first and second input of g respectively. Using

s1(i2, f) = s(i2, fa) + c0(fb)

s(i2, fa) = s(i2,NOT i2) + c1(NOT i1) = s(i2, i2) + c0(i1) = 0 + 2 = 2

c0(fb) = min{c0(NOT i2), c0(i3)} = min{c1(i2), 2} = min{2, 2} = 2

s1(i2, f) = 2 + 2 = 4

and

s2(i2, f) = s(i2, fb) + c0(fa)

s(i2, fb) = s(i2,NOT i2) + c1(i3) = s(i2, i2) + 2 = 0 + 2 = 2

c0(fa) = min{c0(NOT i1), c0(NOT i2)} = min{c1(i1), c1(i2)} = min{2, 2}
= 2

s2(i2, f) = 2 + 2 = 4

we thus receive s(i2, f) = 1
2
· (4 + 4) = 4.

This example not just shows how to handle inputs of f that fan out to several gates,

but also the power of analysing gates by themselves, or at least trying to retain as

much sharing information as possible. So both our generalisation on how to calculate

responsibilities for arbitrary gates can be very powerful, as well as our more carefully

adjusted Variant 1 for evaluating inputs in the multiple fanin case. Variant 2 shows

that simplifying further reduces overhead, but the price is commonly less accurate

responsibility candidates. This, in turn, may identify worse refinement candidates,

and thus drive verification costs up.

7.4 Summary

This chapter extends the automatic refinement work introduced in Chapter 6 by

suggesting an approach to determining the approximate degree of responsibility for

arbitrary gates. It allows us to identify better refinement candidates, and is thus

an important contributor to making feasible the automatic verification of circuits by

STE.

In Chapter 8 we provide experimental results that display the power of this gener-

alisation. We evaluate how applying our more careful first variant for calculating the

approximate degree of responsibility for multiple fanins results in better approxima-

tions than using the previous approach, which required the analysis of small circuits

with the same input-output behaviour as the gate, but which are built with NOT-

and AND-gates only. These more accurate approximations can change which input
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is selected as the next refinement candidate, and thus improve the overall cost of

verification. Furthermore, it eases the evaluation, because no equivalent circuits need

to be generated for the approximate degree of responsibility calculation. Instead, the

gates can be looked at directly, we only require their behaviour.

Importantly, our calculations are split into two main parts, first calculating the

set of deciding input combinations, and second the more essential part of calculating

the approximate degree of responsibility given that set. While we assumed gates as

defined by a set of partial input combinations which lead to a high output, the second

part of our calculations is independent of that assumption. In particular, the first

part can of course be adjusted to other ways of defining the behaviour of a gate.

Thus, our approach can be adapted to other verification environments.

Finally, this general approach to evaluating gates may raise the question why we do

not classify the whole circuit as one gate. It would avoid introducing approximation

errors throughout. In principle this is possible, however the cost is too high for almost

all circuits. The calculations we perform can have exponential costs in the number of

inputs to the gate. So if we view the whole circuit as the gate, the number of inputs to

the circuit determines the exponent. That number is generally prohibitively large. As

computing the set Lg is NP-hard, in all likelihood no efficient algorithm exists. Thus,

only evaluating gates with a small number of inputs is feasible, and we need to break

the circuit into such smaller gates for evaluation. This process introduces imprecision,

leading to an approximation again, but also makes the approach computationally

tractable.
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Chapter 8

Experimental Results for

Abstraction Refinement

In this chapter we show the usefulness of our more general approach to abstraction

refinement by calculating an approximate degree of responsibility of inputs on an X-

possible output. We first verify the CAM, which we already introduced in Chapter 5,

but this time we do not provide symbolic constants. Thus, over-abstraction occurs and

using a refinement loop we identify exactly those symbolic constants as the refinement

candidates. This shows that our generalisation works, and in particular selects only

those inputs that must be driven to verify the CAM.

We then demonstrate how the approximate degree of responsibility calculation for

different, common gates changes when using our approach to evaluating arbitrary

gates, in contrast to examining small circuits with the same input-output behaviour.

In particular, this highlights that our method delivers the same, or better approxi-

mations.

8.1 Abstraction Refinement for the CAM

In Chapter 5 we verified the correctness of a CAM using an abstraction scheme

automatically generated using the auto abstract algorithm proposed in Chapter 4.

But the verification was not fully automatic: we manually specified a set of symbolic

constants, driven with symbolic values in all cases. When these symbolic constants

are not given, the verification fails due to over-abstraction. So the CAM is a good

candidate for demonstrating the abstraction refinement we proposed in Chapters 6

and 7.

We ran four different variants of the abstraction refinement: (1) including the
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determined refinement candidate in the set of symbolic constants, and rerunning

auto abstract, (2) refining the relation by always driving the refinement candidate

with a variable, (3) refining the relation by driving the refinement candidate with

a variable only in the over-abstraction cases, and (4) a combination of the latter

two, using a threshold value to determine whether to always drive the input with a

variable, or just in the over-abstraction cases.

Figure 8.1 shows the execution times we observed. Note that a threshold of 1

corresponds to refining the abstraction relation, such that the identified refinement

candidate is only driven with a variable in the over-abstraction cases, a threshold of

0 always drives the refinement candidate with a variable in the refined relation, and

a threshold strictly between 0 and 1 switches between the two variants depending on

how often it would be driven in the abstraction relation received by variant (3). So a

threshold of 0.25 means than if the input would be driven in at least 25% of all cases,

then we instead refine the relation so that the input is always driven. We determine

how often an input is driven by extracting from the relation the expression f , which

decides when to drive the input with a variable, and computing

sc(f)

2|free vars(f)| .

When running these test for a CAM with 4 entries and a key width of 8 bits, all

of the approaches suggested the same sequence of refinement candidates:

key[7], key[6], key[5], key[4], key[3], key[0], key[2], key[1].

We speculate that once the first five bits of the key are driven by a variable, the Forte

environment can internally simplify the expressions, so that key[0] has more impact

than without those simplifications. Thus, key[0] is selected as the next refinement

candidate, rather than – as one might have expected – key[2], and then key[1]. How-

ever, all bits of the key need be driven with a variable, so this slight change of order

does not influence the verification much. Looking at the design itself, all bits of the

key are equally required due to our modification to simulate calculations, as perhaps

required for an error-correction.

All of these runs needed no user interaction. The only user-provided data were the

hardware design, and its specification – which are necessary to define the verification

problem. So these results demonstrate a verification tool, which internally consists

of an abstraction discovery and refinement loop, and which can be used to fully
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(a) (b) (c) (d)
Initial relation 0.02s 0.02s 0.02s 0.02s
STE 4.14s 4.24s 5s 4.26s
Restricted STE 6.2s 7s 5.92s 7.24s
Refinement 0.15s 0.07s 0.07s 0.16s
STE 3.18s 12.62s 8.57s 9.45s
Restricted STE 4.77s 11.37s 9.42s 10.44s
Refinement 0.08s 0.06s 0.14s 0.15s
STE 1.95s 20.05s 15.94s 13.49s
Restricted STE 4.23s 22.98s 12.4s 16.12s
Refinement 0.12s 0.15s 0.05s 0.16s
STE 1.47s 38.43s 24.65s 26.85s
Restricted STE 3.26s 32.71s 24.35s 26.65s
Refinement 0.05s 0.13s 0.13s 0.12s
STE 0.68s 50.48s 31.36s 30.24s
Restricted STE 1.93s 48.62s 31.05s 33.58s
Refinement 0.13s 0.16s 0.11s 0.14s
STE 0.5s 75.69s 42.65s 46.49s
Restricted STE 1.01s 80.33s 51.85s 58.38s
Refinement 0.06s 0.11s 0.2s 0.2s
STE 0.11s 81.28s 60.94s 65.77s
Restricted STE 0.1s 8.02s 5.67s 6.32s
Refinement 0.09s 0.1s 0.11s 0.11s
STE 0.01s 12.43s 9.71s 8.52s
Restricted STE 0.01s 5.34s 3.22s 4.08s
Refinement 0.07s 0.02s 0.05s 0.08s
STE 0.01s 5.98s 4.46s 4.46

Total 34.33s 518.39s 348.04s 373.48s

Figure 8.1: Execution times observed in the different steps of the automatic refinement
loop verifying a 4 × 8 CAM: (a) defining refinement candidates as symbolic constants,
and using (b) a threshold of 1.0, (c) a threshold of 0.25, (d) and a threshold of 0.0 to
decide whether to run the refinement candidate in the over-abstraction cases only, or
always

automatically verify various designs. This is in principle extremely powerful.

In the three variants that refine the relation, rather than computing a new one with

our auto abstract algorithm while stating symbolic constants, we see slightly different

performance. The variant that switches between approaches performs slightly better

than always driving the refinement candidate with a variable, and noticeably better

than only driving the refinement candidate in the over-abstraction cases. This suggest

that – at least for the CAM – the cost of a more complex relation is higher than that
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of driving more inputs with a value.

Another interesting observation is concerned with how much time is spent in each

iteration of the abstraction refinement loop. Figure 8.2 visualises how for all three

variants that refine, rather than compute a new relation, iteration execution times

first increase, as refining increases the problem size again. Then, at some point – here

in the eighth iteration – the relation is good enough for the simulation to truly profit

from the symbolic indexing, and the cost of running STE drastically drops.

Figure 8.2: Visualisation of how much time is spent in each iteration of the abstraction
discovery and refinement loop

The execution times also show this fully automatic abstraction discovery and re-

finement loop is a proof-of-concept, but not a workable solution yet. One major

shortcoming immediately apparent is the prohibitively high costs of running STE

with the abstraction relation that leads to over-abstraction. When not specifying

any symbolic constants, unfortunately the verification – even though it fails due to

over-abstraction – is very expensive. Yet we can only refine the abstraction once we

have both discovered that over-abstraction is an issue, as well as traced the value of

all input nodes. The prior we require to know refinement is necessary, the latter to

compute the approximate degree of responsibility for all refinement candidates.

However, this does not necessarily discredit the abstraction refinement we suggest.

Rather, it shows that even with an approach to abstraction refinement, bad initial

abstraction schemes can have such a drastic impact that we do not even reach the

point of being able to refine the abstraction. In these cases a different initial ab-

straction scheme needs to be selected first. This could, for example, be achieved by
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guessing symbolic constants, and once the initial run completes, letting the abstrac-

tion refinement do the rest of the work. Or an initial abstraction could be provided

from somewhere else. Importantly, our abstraction refinement is independent of the

automatic abstraction discovery presented in Chapters 3 and 4, so it can be applied

to various other abstraction schemes.

Furthermore, the abstraction discovery and refinement loop that stated the refine-

ment candidates as symbolic constants, and computed a completely new abstraction

had a much better performance. Unfortunately, the first run, which did not state any

symbolic constants, could not be completed for larger CAMs. But this example does

show that even slightly improved relations can greatly reduce the execution times of

iterations of the loop. This relates to the suggestion of guessing the first few symbolic

constants, or providing a relation from somewhere else.

Finally, note that both the memory and scheduler verified in Chapter 5 can be

verified without over-abstraction even without specifying symbolic constants. Verifi-

cation costs are then higher, but unfortunately the abstraction refinement algorithm

proposed cannot improve abstractions which are suboptimal, but sufficient. It can

only help with refining those abstractions that lead to over-abstractions. Hence,

the abstraction refinement we presented cannot be applied to the verification of the

memory or the scheduler when not specifying any symbolic constants.

8.2 Approximate Degree of Responsibility for Ar-

bitrary Gates

In Chapter 7 we presented an approach to calculating the approximate degree of

responsibility for arbitrary gates. For this, we assumed a gate was defined by a set

of partial input combinations that all lead to a high output. All input combinations

not captured by that set in turn lead to a low output.

This section provides the approximate degree of responsibility calculations for some

common gates, and compares them to the calculations received when evaluating them

with the previous approach. In particular, Chockler et al. provided definitions only

for NOT- and AND-gates, so instead of looking at the gate directly, we have to

analyse a small circuit, which has the same input-output behaviour but consists of

NOT- and AND-gates only. We further study the calculations when the initial input,

whose approximate degree of responsibility is to be calculated, is in one or several

of the fanins of that gate. We observe that sometimes the approximate degree of
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responsibility computed using our method match with evaluating the small, equivalent

circuits. In other cases the calculations differ, and our approach delivers superior

results to those received by the previous approach.

For simplicity, we assume all approximate degrees of responsibility are finite.

Whenever infinite values are observed, both Chockler et al.’s and our approach sug-

gest ignoring the fact that the initial input is in that fanin of the gate, and thus

corresponds to a different calculation also presented here.

8.2.1 3-Input AND

Figure 8.3: (1) A 3-input AND-gate, and (2), (3) two circuits with the same input-
output behaviour, consisting only of NOT- and AND-gates

Figure 8.3 shows a 3-input AND-gate, as well as two small circuits that have

the same input-output behaviour as a 3-input AND-gate. We first determine the

approximate degree of responsibility for this gate using our approach, and then – on

the small circuits – using Chockler et al.’s definition.

A 3-input AND-gate is defined by H3AND = 111. We can then calculate L3AND as

described in Section 7.2, which delivers L3AND = {0XX,X0X,XX0}.

First assume that the initial input i, for which we want to calculate the approx-

imate degree of responsibility, is in just one fanin of the gate. As the gate behaves

symmetrically in all three inputs without loss of generality we can assume this is the

fanin a. We now need to determine the set of deciding input combinations. For this,

we need to find a pair (H,L) ∈ H3AND×L3AND such that H(a) = L(a) and the values

for do not contradict each other in H and L: H(b) = L(b), or H(b) = X, or L(b) = X.

The same holds for c.

Only one pair (H,L) = (111, 0XX) satisfies these conditions. As seen in the

definition of deciding input combinations (page 172), thus D{a}3AND = {X11}. So

s(i, out) = s(i, a) + c1(b) + c1(c)
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Evaluating the equivalent circuit (2) results in

s(i, out) = s(i, a) + c1(n1) = s(i, a) + c1(b) + c1(c),

and similarly analysing the equivalent circuit (3) provides

s(i, out) = s(i, n1) + c1(c) = s(i, a) + c1(b) + c1(c).

Note that there are many circuits with the same input-output behaviour as the 3-

input AND-gate, so it is a personal choice which to use for the evaluation. However,

both of the circuits we suggest are obvious choices. In this simple case, both deliver

the same result. This is not the case anymore when the initial input is in the fanin

of two inputs of the 3-input AND-gate.

Next assume that the initial input i is in two fanins of the gate. Again, without

loss of generality, we can assume that it is in the fanin of a and b – at least with our

approach. When determining the partial input combinations with multiple fanins, we

proposed two approaches. In the first, more careful variant we required at least one

fanin that includes i to be assigned contradicting values in H and L. Notably, this re-

quirement was not extended to all fanins that include i. The fanins that do not include

i merely need to be non-contradicting. Furthermore, when determining the partial,

deciding input combination, we memorised the set MD, which captures which fanins

that include i actually were assigned contradicting values in (H,L). Thus, D{a,b}3AND in-

cludes pairs (D,MD) where MD ⊆ {a, b}. In particular, the pair (111, 0XX) delivers

(XX1, {a}) ∈ D{a,b}3AND, and the pair (111,X0X) delivers (XX1, {b}) ∈ D{a,b}3AND. Thus,

using the extended approximate degree of responsibility calculation as presented on

page 175:

s(i, out) =
1

2 + 2
·
(

2·
(
s(i, a)+c1(c)

)
+2·
(
s(i, b)+c1(c)

))
=
s(i, a) + s(i, b)

2
+c1(c)

This matches with the definition of the 2-input AND-gate when the initial input i is in

both fanins, plus requiring the third input to allow the first two to be deciding. It is the

obvious way you would extend the calculation manually. However, by the previous

approach, this is not necessarily the computation executed. Using the equivalent

circuit (2), we receive

s(i, out) =
s(i, a) + s(i, n1)

2
=
s(i, a) + s(i, b) + c1(c)

2
,
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and using circuit (3)

s(i, out) = s(i, n1) + c1(c) =
s(i, a) + s(i, b)

2
+ c1(c).

As the 3-input AND-gate is symmetrical in all three inputs, the calculation received by

the equivalent circuit (2) is less accurate. Our approach is independent of constructing

equivalent circuits, and thus not just more stable, but also delivers the more desirable

approximation for this case.

Finally, assume that the initial input is in all three fanins of the gate. By similar

reasoning as before, D{a,b,c}3AND = {(XXX, {a}), (XXX, {b}), (XXX, {c})}, and thus

s(i, out) =
1

4 + 4 + 4
·
(

4 ·s(i, a)+4 ·s(i, b)+4 ·s(i, c)
)

=
s(i, a) + s(i, b) + s(i, c)

3

By comparison, analysing the equivalent circuit (2),

s(i, out) =
s(i, a) + s(i, n1)

2
=
s(i, a) + s(i,b)+s(i,c)

2

2
=
s(i, a)

2
+
s(i, b) + s(i, c)

4
,

which weighs a more heavily than b and c, although not desired. Similarly, the other

equivalent circuit, gives c greater weight, and an equivalent circuit that first conjuncts

a and c gives b greater weight. In contrast, our approach recognises the symmetry

and in turn gives all three inputs the same weight, which delivers a more accurate

approximation.

A final comment on this evaluation need to be made. It is not completely fair, be-

cause Chockler et al. indeed suggest improving the approximation for multiple-input

AND-gates (see 147). This then delivers the same results as our approach. We chose

to set this proposal aside for the evaluation above to highlight the differences without

special handling of gates other than simple two-input AND-gates and NOT-gates. As

the multiple-input AND-gate is the only generalisation Chockler et al. provide, the

next examples shows the novel value of our approach to evaluating arbitrary gates.

8.2.2 Multiple-Input OR

Figure 8.4 shows a 3-input OR-gate, as well as two small circuit, which have the

same input-output behaviour as a 3-input OR-gate. A 3-input OR-gate is defined by

H3OR = 1XX,X1X,XX1. Calculating L3OR delivers L3OR = {000}.

First assume that the initial input i, for which we want to calculate the approx-
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Figure 8.4: (1) A 3-input OR-gate, and (2), (3) two circuits with the same input-output
behaviour, consisting only of NOT- and AND-gates

imate degree of responsibility, is in just one fanin of the gate. As the gate behaves

symmetrically in all three inputs without loss of generality we can assume this is the

fanin a. Then D{a}3OR = {X00} and thus

s(i, out) = s(i, a) + c0(b) + c0(c).

Analysing the equivalent circuit (2) results in the same value,

s(i, out) = s(i, n1) = s(i, n2) + c1(n3) = s(i, a) + c1(n4) + c1(n5)

= s(i, a) + c0(b) + c0(c)

which is also received by looking at circuit (3),

s(i, out) = s(i, n1) = s(i, n2) + c1(n3) = s(i, n4) + c1(n5) + c0(c)

= s(i, a) + c0(b) + c0(c).

Next, assume i is in the fanin of two inputs, without loss of generality a and b.

The pair (1XX, 000) delivers (XX0, {a}) ∈ D{a,b}3OR , and the pair (X1X, 000) delivers

(XX0, {b}) ∈ D{a,b}3OR . Thus,

s(i, out) =
1

2 + 2

(
2·(s(i, a)+c0(c))+2·(s(i, b)+c0(c))

)
=
s(i, a) + s(i, b)

2
+c0(c)

As seen with the 3-input AND-gate, Chockler et al.’s simple definition, which only

includes the handling for NOT-gates and AND-gates, leads to different results de-

pending on which two inputs i is in the fanin of, and which equivalent circuit is

evaluated. By circuit (2),

s(i, out) =
s(i, n2) + s(i, n3)

2
=
s(i, a) + s(i, b) + c0(c)

2
,
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and by circuit (3),

s(i, out) = s(i, n2) + c0(c) =
s(i, a) + s(i, b)

2
+ c0(c).

As before, our approach delivers the more precise representation of the impact the

different inputs have on the gate’s output value.

Finally, if i is in the fanin of all three inputs of the 3OR-gate, then the pair

(1XX, 000) delivers (XXX, {a}) ∈ D{a,b,c}3OR , the pair (X1X, 000) delivers

(XXX, {b}) ∈ D{a,b,c}3OR , and (XX1, 000) delivers (XXX, {c}) ∈ D{a,b,c}3OR . Thus,

s(i, out) =
1

4 + 4 + 4
·
(

4 ·s(i, a)+4 ·s(i, b)+4 ·s(i, c)
)

=
s(i, a) + s(i, b) + s(i, c)

3

Evaluating the equivalent circuit (2), in contrast, delivers

s(i, out) =
s(i, a)

2
+
s(i, b) + s(i, c)

4
,

weighing a more heavily than b and c, as also seen for the 3-input AND-gate. Other

equivalent circuits weigh b or c more heavily. This again shows that our general

approach provides more accurate results.

8.2.3 NAND

Figure 8.5: (1) A NAND-gate, and (2) a circuit with the same input-output behaviour,
consisting only of NOT- and AND-gates

Figure 8.5 shows a NAND-gate, as well as a small circuit, which has the same

input-output behaviour. A NAND-gate is defined by HNAND = X0, 0X. Calculating

LNAND delivers LNAND = {11}.

First assume that i is in the fanin of one input of the NAND-gate, without loss of

generality a. The pair (0X, 11) delivers X1 ∈ D{a}NAND, and no other pairs exist that

contradict the assignment for a. Thus,

s(i, out) = s(i, a) + c1(b).
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Using the previous approach provides the same calculation:

s(i, out) = s(i, n1) = s(i, a) + c1(b).

Next, assume that i is in the fanin of both inputs of the NAND-gate. The pair

(0X, 11) delivers (XX, {a}) ∈ D{a,b}NAND, and the pair (X0, 11) delivers

(XX, {b}) ∈ D{a,b}NAND. Thus,

s(i, out) =
1

2 + 2
·
(

2 · · · (i, a) + 2 · · · (i, b)
)

=
s(i, a) + s(i, b)

2

Evaluating the equivalent circuit also comes up with this:

s(i, out) = s(i, n1) =
s(i, a) + s(i, b)

2

So the calculations match in our approach and the previous one.

8.2.4 NOR

Figure 8.6: (1) A NOR-gate, and (2) a circuit with the same input-output behaviour,
consisting only of NOT- and AND-gates

Figure 8.6 shows a NOR-gate, as well as a small circuit, which has the same input-

output behaviour. A NOR-gate is defined by HNOR = 00. Calculating LNOR delivers

LNOR = {1X,X1}.

First assume that i is in the fanin of one input of the NOR-gate, without loss of

generality a. The pair (00, 1X) delivers X0 ∈ D{a}NOR, and no other pairs exist, which

contradict in the assignment for a. Thus,

s(i, out) = s(i, a) + c0(b).

Using the previous approach provides the same calculation:

s(i, out) = s(i, n1) + c1(n2) = s(i, a) + c0(b).
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Next, assume that i is in the fanin of both inputs of the NOR-gate. The pair

(00, 1X) delivers (XX, {a}) ∈ D{a,b}NOR, and the pair (00,X1) delivers (XX, {b}) ∈ D{a,b}NOR.

Thus,

s(i, out) =
1

2 + 2
·
(

2 · s(i, b) + 2 · s(i, a)
)

=
s(i, a) + s(i, b)

2

Evaluating the equivalent circuit also comes up with this:

s(i, out) =
s(i, n1) + s(i, n2)

2
=
s(i, a) + s(i, b)

2

As seen for the NAND-gate, both calculations match. More generally, the calcula-

tions in our approach and the previous approach match for any gate which can be

represented by a circuit with just one AND-gate and arbitrarily many NOT-gates.

8.2.5 XOR

Figure 8.7: (1) An XOR-gate, and (2) a circuit with the same input-output behaviour,
consisting only of NOT- and AND-gates

Figure 8.7 shows an XOR-gate, as well as a small circuit, which has the same

input-output behaviour. An XOR-gate is defined by HXOR = 01, 10. Calculating

LXOR delivers LXOR = {11, 00}.

First assume that i is in the fanin of one input of the XOR-gate, without loss of

generality a. The pair (01, 11) delivers X1 ∈ D{a}XOR, and the pair (10, 00) delivers

X0 ∈ D{a}XOR. Thus,

s(i, out) =
1

1 + 1
·
(

1·
(
s(i, a)+c1(b)

)
+1·

(
s(i, a)+c0(b)

))
= s(i, a)+

c1(b) + c0(b)

2
.
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Analysing the equivalent circuit also delivers

s(i, out) = s(i, n1) = s(i,n2)+s(i,n3)
2

= s(i,n4)+s(i,n5)
2

= s(i,n6)+c1(b)+s(i,a)+c1(n7)
2

= s(i,a)+c1(b)+s(i,a)+c0(b)
2

= s(i, a) + c1(b)+c0(b)
2

.

Next, assume that i is in the fanin of both inputs of the XOR-gate. The pairs

(01, 11) delivers (X1, {a}), and the pair (10, 00) delivers (X0, {a}). But recall that we

had stated that D{a,b}XOR is minimal in that any assignments that can be collapsed are

collapsed, and any assignments already covered is removed also. So instead of adding

both these assignments to the set of deciding input combinations, we only include

(XX, {a}). Similarly, the pairs (01, 00) and (10, 11) deliver that (XX, {b}) ∈ D{a,b}XOR.

Thus,

s(i, out) =
1

2 + 2
·
(

2 · s(i, a) + 2 · s(i, b)
)

=
s(i, a) + s(i, b)

2
.

Similarly, looking at the equivalent circuit, we receive

s(i, out) = s(i,n4)+s(i,n5)
2

= s(i,n6)+s(i,b)
4

+ s(i,a)+s(i,n7)
4

= s(i,a)+s(i,b)
4

+ s(i,a)+s(i,b)
4

= s(i,a)+s(i,b)
2

So our approach and the previous one match for this gate.

8.2.6 XNOR

Figure 8.8: (1) An XNOR-gate, and (2) a circuit with the same input-output be-
haviour, consisting only of NOT- and AND-gates

Figure 8.8 shows an XNOR-gate, as well as a small circuit, which has the same

input-output behaviour. An XNOR-gate is defined by HXNOR = 00, 11. Calculating

LXNOR delivers LXNOR = {01, 10}.

As this gate delivers the negated result of an XOR-gate, and thus L and H are
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simply swapped, the calculations are the same as for the XOR-gate:

s(i, out) = s(i, a) +
c1(b) + c0(b)

2

if i is in the fanin of a only, and

s(i, out) =
s(i, a) + s(i, b)

2

if i is in both fanins. In particular, as already seen for the XOR-gate, when deter-

mining D{a,b}XOR partial input combinations can be further collapsed, and ultimately

D{a,b}XOR = {(XX, {a}), (XX, {b}}. So our approach and the previous one again match

for this gate.

8.2.7 MUX

Figure 8.9: (1) A multiplexer, and (2) a circuit with the same input-output behaviour,
consisting only of NOT- and AND-gates

Figure 8.7 shows a multiplexer, as well as a small circuit that has the same input-

output behaviour. A multiplexer is defined by HMUX = 11X, 0X1,X11. Calculating

LMUX delivers LMUX = {10X, 0X0,X00}.

First assume that i is in the fanin of one input of the multiplexer. As the definition

is not symmetrical in all inputs anymore, we need to look at each fanin case separately.

If i is in the fanin of a, then D{a}MUX = {X10,X01} and thus

s(i, out) = 1
1+1
·
(

1 · (s(i, a) + c1(b) + c0(c)) + 1 · (s(i, a) + c0(b) + c1(c))
)

= s(i, a) + c0(b)+c0(c)+c1(b)+c1(c)
2

.

By comparison, analysing the equivalent circuit delivers

s(i, out) =
s(n4) + s(n5)

2
=
c1(c) + s(i, a) + s(i, a) + c1(b)

=
s(i, a) +

c1(b) + c1(c)

2
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In particular, this solution does not capture that i is partly responsible for both high

and low outputs, as the value of a decides whether the output is the value of b or c,

irrespective of whether they have a high or low value. Hence, taking the average of c0

and c1 more closely captures the degree of responsibility. For this recall that c0 and

c1 were used to change the current setting to a scenario where the input is deciding.

Here it does not matter whether the output is high or low, just that i influences the

value that is output. The previous evaluation cannot capture this connection.

If i is in the fanin of b, then D{b}MUX = {1XX}. Note that when determining this

set, we come up with three pairs, which result in the potential elements 1XX, 1X0,

and 1X1. But 1XX captures both the other cases already, so they are not included

in D{b}MUX. The approximate degree of responsibility can then be calculated as

s(i, out) = s(i, b) + c1(a).

This clearly matches with the intuition: i only influences the output of the multi-

plexer, if a selects the second input, namely whenever a is high. In contrast, evaluating

the equivalent circuit delivers

s(i, out) = c1(n2)+s(i, n3) = c0(n2)+s(i, n5) = min{c0(c), c1(a)}+c1(a)+s(i, b),

which additionally adds min{c0(c), c1(a)}. If c0(c) is the minimum, an irrelevant cost

is added to the approximate degree of responsibility, distorting it disadvantageously.

If, on the other hand c1(a) is the minimum, the cost of changing a to a forcing, high

value is increased. Recall that we usually compute the approximate degree of respon-

sibility for multiple initial inputs to decide which is the best refinement candidate.

So determining a higher cost for forcing a to a high value is also undesirable. In sum-

mary, our calculation is preferable to the one received by analysing the equivalent

circuit.

Finally, if i is in the fanin of c, then D{c}MUX = {0XX}. In particular, the pairs

(0X1, 0X0) and (0X1,X00) both deliver (0XX) ∈ D{c}MUX. The third pair, which satis-

fies the required conditions, is (X11, 0X0) and suggests 01X as an element of D{c}MUX.

However, this partial input assignment is more specific than 0XX without contradict-

ing it, and is thus already captured. Thus,

s(i, out) = s(i, c) + c0(a),

which again matches with our intuition. The input i is as responsible for the output
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of the multiplexer as it is responsible for the value of c provided that a selects c, i.e.,

a is low. By a similar calculation as before, analysing the equivalent circuit delivers

s(i, out) = s(i, c) + c0(a) + min{c1(a), c0(b)},

which again distorts the responsibility calculation disadvantageously. So for the mul-

tiplexer our approach delivers a better approximate degree of responsibility even when

i is only in one fanin.

Next assume that i is in the fanin of two inputs of the multiplexer. If i is in

the fanin of a and b, then the set of all deciding input combinations can be deter-

mined as D{a,b}MUX = {(XXX, {a}), (XXX, {b})}. Again, evaluating the pairs resulted

in a set of assignments {(1XX, {a}), (XX0, {a}), (XX0, {b}), (XX1, {a}), (XX1, {b})},
which could be collapsed further. Thus,

s(i, out) =
1

4 + 4
·
(

4 · s(i, a) + 4 · s(i, b)
)

=
s(i, a) + s(i, b)

2

In contrast, looking at the equivalent circuit results in

s(i, out) = s(i,n4)+s(i,n5)
2

=
c1(c)+s(i,a)+

s(i,a)+s(i,b)
2

2

= 3
4
s(i, a) + 1

4
s(i, b) + 1

2
c1(c).

This calculation again factors in the value of c, although not relevant, as well as

weighs the two inputs differently, although both are equally relevant for the output

value of the multiplexer. Again, our calculations deliver a better approximation.

If i is in the fanin of a and c, the calculations look very similar. Our approach

delivers D{a,c}MUX = {(XXX, {a}), (XXX, {c})} and s(i, out) = s(i,a)+s(i,c)
2

, whereas the

previous approach suggested s(i, out) = 3
4
s(i, a) + 1

4
s(i, c) + 1

2
c1(b).

Finally, if i is in the fanin of b and c, we calculate

D{b,c}MUX = {(XXX, {b, c}), (1XX, {b}), (0XX, {c})}

and thus

s(i, out) = 1
2+2+2

·
(

2 · s(i,b)+s(i,c)
2

+ 2 · (s(i, b) + c1(a)) + 2 · (s(i, c) + c0(a))
)

= s(i,b)+s(i,c)
2

+ c1(a)+c0(a)
3

.

Note that already in the set of deciding input combinations we see that our approach
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smartly captures different settings. The input i is responsible for the output of the

multiplexer, because it influences the value of both b and c, which relates to the

element (XXX, {b, c}), but if the value of a is known we can do better. Notably,

if a is high, the element (1XX, {b}) delivers that it no longer matters how much i

influences the value of c, and similarly if a is low the element (0XX, {c}) captures

that it is irrelevant how much i influences the value of b. In contrast, evaluating the

equivalent circuit does not capture this valuable information,

s(i, out) =
s(i, n4) + s(i, n5)

2
=
s(i, c) + c0(a) + c1(a) + s(i, b)

2
,

and thus results in a worse approximation.

Lastly, i can also be in the fanin of all three inputs of the multiplexer. By collapsing

the partial input combinations received from going through all (H,L) pairs, we receive

D{a,b,c}MUX = {(XXX, {a}), (XXX, {b}), (XXX, {c}), (XXX, {b, c})} and thus

s(i, out) = 1
4+4+4+2

·
(

4 · s(i, a) + 4 · s(i, b) + 4 · s(i, c) + 2 · s(i,b)+s(i,c)
2

)
= 4s(i,a)+5s(i,b)+5s(i,c)

14
.

This is presumably the point at which intuitively we would not have come up with the

same calculation, but perhaps gone with something similar to the calculation received

by analysing the equivalent circuit:

s(i, out) =
s(i, n4) + s(i, n5)

2
=

s(i,c)+s(i,a)
2

+ s(i,a)+s(i,b)
2

2
=
s(i, a)

2
+
s(i, b) + s(i, c)

4

This different calculation could be seen as a different heuristic, which weighs the input

that decides which of the two other inputs to select more heavily. However, the values

of b and c are actually more relevant, as these are the values that actually determine

the output of the multiplexer. They are more relevant, rather than equally relevant,

because whenever b and c have the same value, the value of a is actually irrelevant.

However, there is no case where only a is important, and both b and c do not contribute

to the output value of the multiplexer. Thus, again, our calculation delivers a better

approximation of the degree of responsibility compared to the approach that is based

on evaluating equivalent circuits, which only use NOT- and AND-gates.
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8.3 Summary and Conclusions

We first showed that using our approach to abstraction discovery algorithm and ab-

straction refinement can be combined to a fully automatic verification loop, whose

only inputs consist of the hardware model to verify, and the specification it should

meet. We ran tests for four different variants, which all successfully completed. Using

the refinement candidates as symbolic constants to create new abstraction relations

was clearly superior to adjusting the existing relation, but both approaches worked

in principle. When refining the relation, rather than computing a new one, three

variants were tested. Either the relation was refined by always driving an input with

a variable, or only driving it whenever over-abstraction occurred, or finally we used

a heuristic to decide for each input how often to drive it in the refined relation. The

hybrid approach was most successful, although it was closely followed by the variant

that always drove the input with a variable.

The results present a great proof-of-concept for a fully automatic verification tool

by Symbolic Trajectory Evaluation. However, the STE runs where over-abstraction

occurs could only be completed for very small CAMs, the largest was one with 4 entries

and a key width of 8 bit. Still, it shows that in principle a full automation is possible.

In particular, as an initial relation we used the abstraction relation computed by our

auto abstract algorithm while not stating any symbolic constants. The refinement

loop we set up can take any initial abstraction relation. Thus, an interesting area of

research is finding other initial relations, which may lead to over-abstraction, but do

not cause prohibitively high verification costs in the first iterations of the refinement

loop.

Chockler et al. also ran tests on their automatic abstraction refinement loop [3].

Unfortunately, these results cannot be compared directly with ours, as they work on

a different CAM design, and verify a much more specific property. Namely, they

verify that if in the previous cycle an entry was written to a specific address, then

in the next cycle searching for that entry results in a high output. Their initial

run thus already drives multiple inputs with a variable, including the key. More

importantly, the antecedent and consequent already encodes where to find the correct

entry. This closely relates to a special case of the indexing we compute automatically,

and which Pandey et al. suggested previously [24]. The property Chockler et al. verify

is more restrictive in that it does not test the design’s behaviour when the key is not

found. Thus, execution times are not comparable. However, both their work and ours

show that identifying refinement candidates by calculating the approximate degree of
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responsibility works. In particular, in both approaches the minimal set of inputs that

needed to be specified for the verification to pass without over-abstraction occurring

was identified.

In the second part of this chapter we put our general approach to determining

the approximate degree of responsibility for arbitrary gates to the test. When ap-

plying this to some common gates, we saw that our approach results in more precise

calculations than evaluating circuits with the equivalent behaviour, but which only

required NOT- and AND-gates. We saw that especially for more complex gates, such

as the multiplexer, our approach provides us with a way of calculating better approx-

imations of the degree of responsibility. This, in turn, helps select better refinement

candidates. Additionally, our calculations are not more costly than those of the pre-

vious approach. While we need to determine some sets, we do not need to generate

an equivalent circuit, and traverse through it recursively. More importantly, deter-

mining these formulae only needs to be done once, for example in a preprocessing

step. Thus, it in general does not impact the verification costs much – but rather,

as it helps select better refinement candidates, more likely reduces verification costs,

potentially considerably.
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Chapter 9

Conclusion

In this dissertation we presented two main contributions to fully automating the

formal verification of hardware by Symbolic Trajectory Evaluation.

First, we introduced a novel approach to automatically discovering abstraction

schemes by analysing the specification that the design should meet. The algorithm

auto abstract accomplishes this by traversing the specification recursively and, with

the help of indexing variables, encoding which partial input combinations lead to a

high and low output respectively. We further proved that the abstraction relations

R received in this way satisfy all conditions necessary to guarantee that they lead to

correct verification results:(
|= ni is vi ⇒ out is spec(V)

)
⇔
(
R |= (ni is vi)R ⇒ (out is o)R

)
We then went on to improve this abstraction discovery by extending the types of

specifications supported, adjusting the algorithm to handling multiple outputs, and

introducing the concept of symbolic constants, which allows specifying crucial inputs.

These adjustments were proved correct again, maintaining the great advantage of

not having to test our relation for sufficiency. Due to the shape of the abstraction

relation we automatically compute, we also optimise the calculation of weak preimage

and strong preimage, as required for the STE run R |= AR ⇒ CR. Finally, we

discussed further approaches to encoding the different partial input combinations by

using different heuristics on when indexing variables should be reused.

These enhancements of the basic auto abstract algorithm first introduced lead to a

powerful tool for verifying circuits automatically. The experimental data we collected

for three different designs, a CAM, a memory, and a scheduler, clearly show the

strength of this work.
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In our examples, we do make use of symbolic constants, a way of letting the

user define crucial inputs of the circuit. While auto abstract delivers a relation that

expresses which inputs definitely need to be driven to receive a determinate output

when running STE, these inputs may not be sufficient. Thus, over-abstraction is still

possible. By specifying symbolic constants, this over-abstraction was avoided. Our

second main contribution includes an automatic way of selecting these inputs, rather

than letting the user provide them. That approach also delivers a different way of

addressing over-abstraction.

The second main contribution introduces an automatic abstraction refinement

method, with which a fully automatic verification framework can be constructed

by means of a refinement loop. We generalise the abstraction refinement previously

presented by Chockler et al. [3] in two crucial aspects. First, we extend the algorithm

fundamentally, so that arbitrary STE properties can be evaluated. The previous ap-

proach only supported a very restrictive subset of STE properties, so our abstraction

refinement is applicable much more often. Second, we present a theory on how to

automatically compute the approximate degree of responsibility, which is the core

signal for refinement, for arbitrary gates. In contrast, the prior work only stated this

for AND- and NOT-gates. While this is sufficient from a theoretical point of view, as

the input-output behaviour of all gates can be presented with the help of just these

two types of gates, it leads to increasingly inaccurate approximations. Our approach,

on the other hand, delivers more accurate results at similar cost. This is crucial, as it

leads to selecting better refinement candidates, which in turn can drastically reduce

the overall verification costs.

Our method for selecting refinement candidates can be used in an automatic re-

finement loop in three main ways. First, we can construct a new abstraction by

stating these candidates as symbolic constants when running the automatic abstrac-

tion discovery algorithm, our first main contribution. Second, we can refine the

current abstraction, which lead to over-abstraction, by adjusting it to always drive

the refinement candidates with symbolic values. Or third, we can more carefully

adjust the abstraction by driving the candidates with values only when we observe

over-abstraction. For our experimental results, we tested all three approaches, plus a

heuristic which helped decide which method of adjusting the abstraction to pick.

We thus presented a fully automatic framework for verifying designs. While the

verification loop that is based on getting an initial abstraction using auto abstract

without stating any symbolic constants, and then refining with our method only
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worked for small examples, it showed that our two main contributions complement

each other. Additionally, verification of other properties, whose first iterations of the

loop are not restrictively expensive, works nicely.

More importantly, though, our abstraction discovery algorithm and abstraction

refinement algorithms are independent. The abstraction discovery algorithm worked

well in combination with stating some symbolic constants. The abstraction refinement

algorithms, on the other hand, can either be applied to abstractions automatically

generated while stating some symbolic constants, even if not all required to avoid

over-abstraction. Or they can be applied to STE runs with abstraction schemes that

were constructed by other means. Similarly, if over-abstraction is observed when

using the abstractions received using auto abstract, other refinement strategies can

be applied. Thus, while both of our main contributions can be combined, they also

stand by themselves, which increases their usefulness even further.

9.1 Future Work

Several immediate directions for further research arise from the results presented in

this dissertation.

All the execution times for STE given in Chapters 5 and 8 use a version of STE

that internally uses BDDs to represent symbolic Boolean expressions, as explained

in Section 2.7. The Forte verification environment also offers a variant of STE that

internally uses non-canonical expressions, which, after simulation, are evaluated using

a SAT-solver to decide whether the consequent is met. While we ran some tests using

SAT-based STE, we could not observe similarly promising results for the relations

created by our automatic abstraction discovery algorithm. This suggests that our

work might mainly optimise the size of the BDDs by reusing variables adequately.

We assume reuse is especially beneficiary when the same variables are reused for

symmetric constructs of the model. The abstraction cases are then also symmetric

and of a similar form. This then leads to smaller BDDs. In contrast, when reusing

variables on intrinsically different constructs, this can lead to the BDDs blowing

up, and thus slowing down or even prohibiting verification. This intuition would

explain why no positive effect was observable when moving away from representation

through BDDs, and instead using Boolean expressions to be evaluated by a SAT

solver. Further research is required to fully understand the reasons why our current

approach does not improve verification by SAT-based STE as it does for BDD-based

STE. With this understanding, our work could potentially be adapted to enhance
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SAT-based verification, too.

On a similar note, future work in fully understanding how sharing indexing vari-

ables impacts the internal representation of STE would be extremely valuable for

devising good heuristics for the reuse of those variables. As we saw in Section 4.7

from a theoretical perspective we have considerable freedom to reuse indexing vari-

ables in different ways. As seen in Chapter 5, different heuristics lead to very different

performance of our algorithm, some doing better, others being similarly restrictive as

running STE without any use of symbolic indexing, at least for some designs. While

our main approach works well, future work could potentially find a better heuristic

that would outperform the current work in general, or at least for specific circuits.

Furthermore, this dissertation does not examine how our work can be applied to

verification with many environmental constraints. These are assumptions we make of

the system, restricting the cases in which we want to check whether a model meets

its specification. We introduced environmental constraints, namely the SIR relations,

in our work on automatic abstraction discovery in Chapters 3 and 4, but did not

investigate how they can be combined with existing assumptions about the system.

Environmental constraints can greatly reduce verification costs, so it is an area very

worthwhile exploring.

It would also be interesting to look into if and how our work could be adapted

to work for Generalised Symbolic Trajectory Evaluation [57]. In the very least this

would need an adapted handling of those specifications that include properties over

infinite time intervals. The auto abstract algorithm as it stands depends on there

being an explicit, finite representation, which is not given anymore for specifications

on infinite time intervals.

Finally, examining how our abstraction refinement works together with initial ab-

stractions, which were not generated by our auto abstract algorithm, would help iden-

tify further areas of improvement. Notably, the calculations are based on heuristics,

which could be adjusted. Also, further variants of approximating the degree of re-

sponsibility for our general approach to arbitrary gates are possible, and potentially

lead to better performance.
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