
Incremental Modelling for Verified
Communication Architectures

Peter C. Böhm

Balliol College

University of Oxford,
Department of Computer Science

Submitted in partial fulfilment for the degree of
Doctor of Philosophy

Trinity 2011

Incremental Modelling for
Verified Communication Architectures

Peter Böhm, Balliol College, University of Oxford
Submitted for DPhil. Computer Science, Trinity Term 2011

Abstract

Modern computer systems are advancing from multi-core to many-core designs
and System-on-chips (SoC) are becoming increasingly complex while integrating a
great variety of components, thus constituting complex distributed systems. Such
architectures rely on extremely complex communication protocols to exchange
data with required performance. Arguing formally about the correctness of
communication is an acknowledged verification challenge.

This thesis presents a generic framework that formalises the idea of incremental
modelling and step-wise verification to tackle this challenge: to control the overall
complexity, features are added incrementally to a simple initial model and the
complexity of each feature is encapsulated into an independent modelling step.
Two main strategies reduce the verification effort. First, models are constructed
with verification support in mind and the verification process is spread over the
modelling process. Second, generic correctness results for framework components
allow the verification to be reduced to discharging local assumptions when a
component is instantiated. Models in the framework are based on abstract state
machines formalised in higher order logic using the Isabelle theorem prover.
Two case studies show the utility and breadth of the approach: the ARM

AMBA Advanced High-performance Bus protocol, an arbiter-based master-slave
bus protocol, represents the family of SoC protocols; the PCI Express protocol,
an off-chip point-to-point protocol, illustrates the application of the framework
to sophisticated, performance-related features of current and future on-chip
protocols.

The presented methodology provides an alternative to the traditional monolithic
and post-hoc verification approach.

Contents

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Problem Statement and Motivation 1
1.2 The Modelling Approach . 3
1.3 Contributions . 7
1.4 Outline . 8

2 Background and Tools 10
2.1 Theorem Proving – Isabelle/HOL 10
2.2 Model Checking – NuSMV 2 and IHaVeIt 12
2.3 Executing Specifications . 14
2.4 Related Approaches and Protocol Verification 16

3 Communicating State Machines 22
3.1 Notation and Basics . 22
3.2 Mealy Machines . 28
3.3 Model of Communication . 30
3.4 Related Work . 38

4 The Framework 39
4.1 Abstract Components . 40

4.1.1 Unit-delay and Zero-delay Buffers 40
4.1.2 Data Modification . 50

4.2 Composition Operators . 53
4.2.1 Parallel Composition . 53
4.2.2 Sequential Composition 55

4.2.3 Multiplex/Arbitrate Composition 59
4.2.4 Replication Operator . 66

4.3 Transformations . 69

5 ARM AMBA 2 Advanced High-Performance Bus 75
5.1 Bus Signals and Transactions . 78
5.2 Arbiter . 85
5.3 Bus Slaves . 89
5.4 Basic Sequential Master . 93
5.5 Pipelined Master . 103

5.5.1 Pipelining Transformation 104
5.6 Master with Burst Transfer Support 109

5.6.1 Transformation for Burst Transfers 111
5.7 Related Work . 117

6 PCI Express 2.0 119
6.1 Transaction Layer . 123
6.2 Virtual Channels and Traffic Classes 128

6.2.1 A Generic Virtual Channel Transformation 130
6.2.2 Virtual Channels in PCI Express 135

6.3 Flow Control . 139
6.3.1 A Generic Flow Control Transformation 140
6.3.2 Instantiation for PCI Express 148

6.4 Transaction Reordering . 150
6.4.1 A Generic Packet Reordering Transformation 151
6.4.2 Reordering in PCI Express 155

6.5 Related Work . 156

7 Conclusion 159
7.1 Future Work . 162

References 165

ii

List of Figures

1.1 Modelling and Verification Approach 4

3.1 A Simple Mealy Machine . 29
3.2 A System of Communicating State Machines 31
3.3 Signals of the Handshake Protocol 33
3.4 Abstract n-m Interface . 35

4.1 Simple Buffer of Fixed Size . 40
4.2 Schematics of the Data Modification 52
4.3 Schematics of the Parallel Composition 53
4.4 Schematics of the Sequential Composition 57
4.5 The Multiplex/Arbitrate Composition 60
4.6 The Replication Operator . 65

5.1 Sample AHB Topology . 77
5.2 Sample Read and Write Transactions 80
5.3 Simple Control Automaton of a Bus Slave 91
5.4 Abstract Sequential Transfers . 96
5.5 Schematics of the Sequential Master 97
5.6 Control Automaton for the Sequential Master 100
5.7 Sequence of Pipelined Transfers 104
5.8 Sample Burst Transfers . 111

6.1 Sample PCI Express Topology . 121
6.2 The PCI Express Protocol Stack Layers 123
6.3 The Basic Transaction Layer . 124
6.4 The Virtual Channels Transformation 129
6.5 Overview of the Flow Control Transformation 141

List of Tables

3.1 Basic Boolean Operators . 23

6.1 Transaction Types . 122
6.2 TLP Types and Categories . 149
6.3 TLP Reordering Rules . 155

Preface

The research results presented in this dissertation can roughly be split into

three main parts: (i) a generic modelling framework together with correctness

results; (ii) the application of the framework to the ARM AMBA Advanced

High-performance Bus protocol; and (iii) the application of the modelling and

verification methodology to the PCI Express protocol.

The individual work on each of these three parts has been published in both

peer-reviewed conference papers and journal articles: a paper covering the overall

framework was presented at the tenth International Conference on Formal Methods

in Computer-Aided Design (FMCAD’10) [Böh10a] in Lugano, Switzerland.

The results of the AMBA case study were accepted at the same venue

two years earlier, the eighth International Conference on Formal Methods

in Computer-Aided Design (FMCAD’08) [BM08] in Portland. Finally, the

application of the framework to PCI Express was published in the eighth

ACM/IEEE International Conference on Formal Methods and Models for Co-

Design (MEMOCODE’09) [Böh09] and the IEEE Transactions on Computer-

Aided Design for Integrated Systems and Circuits (TCAD) [Böh10b]. Although

not covered in this thesis, the method has also been applied to the PCI Express

data-link layer in addition to the transaction layer. The TCAD contribution

covers these results as well.

This dissertation combines the major results from these contributions into a

coherent whole with a presentation independent of the text of the papers. The

research has been funded by the Engineering and Physical Sciences Research

Council (EPSRC) and a donation from Intel Corporation.

vi

Acknowledgements

First and foremost, I would like to thank Tom Melham for his invaluable support

during my research for this work. His advice helped me focusing on a coherent

research path and remembering the overall picture. Elaborate discussions during

our meetings made me look at my work from different perspectives, discovering

new aspects, and fully comprehend the work. I am very grateful to Tom for giving

me the opportunity to conduct my research in his group.

I am grateful to Intel Corporation for funding my research as well as supporting

me with opportunities to present and discuss this work. I thank Jin Yang and

Carl Seger from Intel’s Strategic CAD Labs for their valuable feedback, many

fruitful discussions, and for hosting me various times at Intel to present my work

at different stages. I would also like to thank John O’Leary, Jim Grundy, and

Sava Kristić for their support.

I am also thankful for the great working environment at the Computer Science

Department in Oxford. Many interesting discussions with colleagues and co-

workers contributed to and influenced my research, especially with Ziyad Hanna,

Sara Adams, Shamal Faily, and John Lyle. I thank Warren Hunt, Kevin Jones,

Steve Levitan, Mary Sheeran, Satnam Singh, and Joe Stoy for excellent discussions

and comments during their visits to Oxford or meetings at conference. I am

grateful to Steve McKeever and Joël Ouaknine for reading my transfer and

confirmation reports and providing helpful feedback during the examinations. I

also would like to thank Balliol College and the Computer Science Department

for their accommodating environments and their contributions to conference

travel expenses. I thank the Engineering and Physical Sciences Research Council

(EPSRC) for funding my tuition fees.

Finally, I would like to thank my parents for supporting and encouraging me

over many years, and my sister for her patience with my absence and unavailability.

viii

Chapter 1

Introduction

1.1 Problem Statement and Motivation

Modelling and verifying of on-chip communication architectures for modern

high-performance chip designs such as many-core processors or complex System-

on-Chips (SoCs) is a well-established research challenge in Computer Science

[BBC+06]. Such designs integrate large numbers of distributed computation

units—CPU cores in the former case and heterogeneous components in the

latter—and the design goal is to provide high-performance by parallelizing and

distributing computation. As a consequence, correct computation and execution

relies on correct and reliable communication among the components. Thus, a

verified communication architecture is a highly desirable goal. Because of the

concurrent nature of such systems, they are hard to model and verify at the same

time. It is well known that concurrency heavily contributes to the state explosion

problem in verification [HKV02].

In addition to concurrency, the individual components of the communication

Chapter 1 Introduction 2

system are complex by themselves. Since the system has to provide error-

free, high-performance communication to meet performance requirements, the

implemented protocol has to support a broad variety of sophisticated features

which also increases the verification complexity significantly. This combination of

concurrency and complexity makes the formal verification of high-performance on-

chip communication architectures usually infeasible using traditional verification

approaches.

The term traditional verification approach is used to refer to the well-established

methodology of creating a monolithic model that is proven correct using post-

hoc verification. Thereby, both, monolithic modelling and post-hoc verification,

significantly contribute to the infeasibility of a formal correctness argumentation.

This work presents a new methodology that aims at revising this workflow by

combining modelling and verification into a single, structured process. The

idea is to encapsulate the complexity of protocol features into independent

modelling steps and add features incrementally to an initially simple model, hence

incremental modelling. At the same time, the verification effort is reduced using

two main strategies: on the one hand, the verification process is spread over the

modelling process and in each step only the newly added part has to be verified.

On the other hand, generic correctness results for the framework components

allow the verification to be reduced to discharging local assumptions when they

are instantiated.

This dissertation answers the following main questions:

• How can we make formal verification of high-performance on-chip

communication architectures more feasible, and by doing so, can we also

improve the modelling process such that it can be leveraged for the

Chapter 1 Introduction 3

verification?

• Can we develop a methodology that combines modelling and verification in

a homogeneous, well-structured way to create a uniform process?

• Can communication architectures be modelled in a compositional way to

allow a straightforward design of protocol families with different, application-

specific feature sets?

• Can this be done for “real world” communication systems?

1.2 The Modelling Approach

The main goal of the modelling approach is to improve traditional monolithic

modelling and to provide a basis for combining modelling and verification in order

to avoid post-hoc verification. To achieve this, incremental modelling is used

to construct a complex model as a sequence of well-structured modelling steps,

each of which has only a limited, tractable increase in complexity. This step-wise

modelling process is interleaved with a verification process that is spread over

the modelling steps. The idea is sketched in Figure 1.1.

As the model provides the basis for any verification attempt, reducing the

modelling complexity is a natural starting point to increase the feasibility

of a verification challenge. Incremental modelling tackles this by splitting a

monolithic model into a series of models with increasing complexity such that

the complexity gain between two successive models is limited and controllable.

This modelling chain is constructed using a set of well-defined constructions

rules, called transformations. Each transformation implements a specific protocol

Chapter 1 Introduction 4

basic
model

basic model
+ feature f1

model with
features

{f1,...,fn}

correctness
statement

feasible
work proof feasible

work

correctness
statement

proof feasible
work

correctness
statement

proof

Figure 1.1: Modelling and Verification Approach

feature and this feature’s complexity is captured in the transformation. This way

a model with a specific feature set can be constructed in a well-structured way.

The generic framework formalises the key concepts of incremental modelling.

Every component in the framework is modelled as a Mealy machine and, in

order to compose them, the standard Mealy machine model is extended with

a synchronous model of communication. On the lowest abstraction level, the

framework consists of abstract components and composition rules. The former are

the core building blocks which provide a carefully defined input-output interface

to guarantee compositionality, such as buffers or data modification blocks. The

latter define how to combine abstract components to more complex constructs, in

the simplest case parallel and sequential composition. Abstract components and

composition rules are defined in a generic way using parametrised datatypes and

uninterpreted functions. Transformations are constructed using basic components

and provide a feature-oriented abstraction.

Using the framework, the process of creating a concrete modelling chain can

be summarized by the following steps: initially, a simple model is constructed by

instantiating a small number of abstract components with the required datatypes

Chapter 1 Introduction 5

and concrete functions, and combining them using simple composition operators

such as parallel and sequential composition. The main purpose of this simple

model is to implement rudimentary data transmission in a model as simplified

as possible. The protocol implemented by this model can be quite far from the

complete, final protocol. Then, the model is extended with advanced features

using transformations.

As illustrated in Figure 1.1, verification is spread over the modelling process

to create a homogeneous process of modelling and verification; one of two main

strategies to reduce the verification effort. By combining modelling and verification

is this way, after each modelling step, already proven properties can be reused,

together with generic correctness from the framework, to show the correctness of

the new, more complex model. This way most of the verification complexity can

be reduced to discharging local assumptions on the building blocks.

The development of the framework was driven by the work on the two case

studies. Besides using the framework to model and verify crucial parts of two

important communication protocols, the diversity of the protocols—bus protocol

versus point-to-point protocol, bit-level control signal-based communication versus

packet-based communication, etc—highlights the utility and breadth of the

approach.

This case study driven research approach also dominated the chronological

process which led to the work presented in this thesis. The rest of this section is

dedicated to briefly summarising the “research journey” that ultimately resulted

in this dissertation. Whereas the natural way of presenting the research results

is to start with the generic framework and then illustrate its application using

case studies, the research was actually conducted in an almost reversed order:

Chapter 1 Introduction 6

starting with the idea of a methodology that combines modelling and verification,

an initial case study was used to explore different options and starting points.

For this purpose, the ARM AMBA 2 Advanced High-performance Bus (AHB)

protocol [ARM99] seemed to be a very suitable choice because of its popularity

and the free availability of its specification.

The research results of this case study led to initial ideas of a more generic

and extensive framework: a framework based on incremental, transformation-

based modelling steps with an interleaved verification process. However, this

initial “framework” was still very specific to bus protocols. Still, many important

insights had already been gained at this stage and fundamental ideas, such as the

controlled parallel execution of two copies of a state machine, had been developed.

To further explore these promising initial research results, a more sophisticated

case study was needed to examine the usability and potential of the methodology.

The PCI Express protocol [PS06] seemed to be a challenging choice: a successful

application of the approach to a packet-based point-to-point protocol would

highlight the versatility of the framework. Moreover, a transformation-based

specification of complex protocol features as implemented by the PCI Express

transaction layer is a research challenge in its own right.

During the PCI Express case study, the framework evolved immensely and grew

more generic with every feature in order to provide sufficient flexibility. To ensure

the development of a unified, generic framework two key aspects turned out to

be crucial: even though the PCI Express case study turned out to be much more

extensive than the AMBA one, keeping the latter in mind while adapting the

framework to PCI Express helped increasing the generality of the framework. It

also eased the second important point: the revision of the AMBA case study after

Chapter 1 Introduction 7

having modelled PCI Express in order to finalise the framework. This revision

process increased the maturity of the framework significantly.

1.3 Contributions

The following four paragraphs briefly summarise the main research contributions

presented in this dissertation.

The Framework. A framework for the incremental modelling and formal

verification of on-chip communication protocols that consists of two main parts:

basic components and composition rules, and generic correctness results. The

former includes operators that are specific enough to obtain significant correctness

results, but generic enough so that only a few of them are sufficient to derive a

variety of concrete transformations. The latter reduces the verification effort for

an instantiation to discharging local assumptions.

The Transformations. A set of transformations specifying important protocol

features independently from the specific protocol. Transformations encapsulate

the complexity of the features and cover both bus protocol specific as well as

point-to-point protocol specific features. The set of transformations is derived

from the features required for the case studies.

The Case Studies: PCI Express and AMBA AHB. Two major case studies to

illustrate the breadth and utility of the framework. The case studies where chosen

to cover two major protocol classes: point-to-point and shared bus communication

architectures. Both topologies implement rather different feature sets as well.

Chapter 1 Introduction 8

The Formalisation and Automation. A complete formalization of the frame-

work and the case studies in higher order logic using the Isabelle/HOL [NPW02]

theorem prover (Isabelle 2009-1 [Isa]) and the integration of NuSMV [CCG+02]

into the verification process to reduce manual theorem proving and to ease the

applicability of the framework. Technically, the model checker is integrated

using the oracle based interface IHaVeIt [Tve05], which has been ported to

Isabelle 2009-1 as part of this thesis.

1.4 Outline

Chapter 2 overviews background and key concepts related to the presented

work together with the tool environment used for formalisation and automation.

Theorem proving and model checking are introduced briefly and their application

in the context of this dissertation, thus the concrete tool environment and how

the tools are integrated, is detailed. Since concrete models are specified in an

executable subset of higher-order logic, the chapter also explicates how executable

specifications are exported using the Isabelle code generation framework [Haf09]

and how they can be simulated for straightforward sanity checks. The chapter

concludes with surveying related work on general protocol verification, especially

using state machines.

Chapter 3 introduces mathematical concepts that are used throughout this

thesis, and specifies the basic modelling approach for components of the framework:

communicating Mealy machines. The actual framework with its basic components

is detailed in Chapter 4 which covers the abstract components, the composition

operators, and the generic correctness results for both. Chapter 4 concludes with

Chapter 1 Introduction 9

introducing the concept of a transformation. Transformations extend existing

components with specific features and provide a feature-oriented abstraction

level between the basic framework components and the actual application of the

framework.

Chapters 5 and 6 present the AMBA AHB and the PCI Express case studies.

Both chapters define basic models for the respective communication architecture,

followed by the steps of the incremental modelling process together with the

correctness argumentation.

Finally, Chapter 7 concludes the dissertation by summarising and highlighting

the key aspects of the work. Some potential further research directions based on

this work are then pointed out, as well.

Chapter 2

Background and Tools

2.1 Theorem Proving – Isabelle/HOL

Theorem proving refers to the process of proving a mathematical theorem deduct-

ively using a computer program to check the reasoning steps. Isabelle [NPW02] is

an interactive, LCF-style theorem proving framework; LCF [Sco93,Mil72,Gor00]—

Logic for Computable Functions—is a type-theoretical deductive system and

theorem proving logic going back to Scott and Milner which provides terms

from the typed λ-calculus and predicate calculus formulae. In general, LCF-style

systems are provers, implemented in a strongly-typed language, in which theorems

are of a special abstract datatype with only primitive inference rules. The type

system then guarantees that new objects of that datatype can only be created

using either the primitive inference rules or rules derived from them. This allows

for large libraries of theorems with only a small, trusted kernel.

The Isabelle system is generic in the sense that it can be used with a variety of

different logics [Pau09a,NPW09,Pau09b] such as first-order logic (FOL), higher-

Chapter 2 Background and Tools 11

order logic (HOL), or Zermelo-Fraenkel set theory (ZF). Here, Isabelle is used

in version 2009-1 with its HOL instantiation: Isabelle/HOL 2009-1 [Isa]. Note

that due to active development of the proof assistant, Isabelle theories are not

necessarily backwards compatible.

Isabelle/HOL provides a formal specification language that is inspired by the

functional programming language Standard ML [MTH90] and includes constructs

to specify datatypes, inductive definitions, recursive functions, and functions

with complex pattern matching. Moreover, the language allows the use of

polymorphism and uninterpreted functions.

Proofs are written in the structured proof language Isar [Wen09] to provide

human readable proof text, and individual subgoals are proven correct using

short, tactic-based proof scripts. Proof scripts make use of Isabelle’s integrated

automatic tools such as the simplifier, the Metis [Hur] automatic theorem prover,

or the sledgehammer [Sle] tool, which is used as one of two main efforts to integrate

proof automation into the verification workflow. Sledgehammer integrates first-

order automatic theorem provers (ATPs) into the Isabelle/HOL system: in Isabelle

2009-1 these are E [Sch02], Spass [Wei99], and Vampire [RV02]. If sledgehammer

is invoked, the ATPs are executed in parallel and their execution time is limited

by a user configurable time-out. Invoking sledgehammer within a proof causes

the current subgoal to be passed to the ATPs together with facts from the current

theory context. Facts are selected heuristically and are filtered by relevance. If

one of the ATPs finds a proof for a given subgoal, it returns an Isabelle proof script

that invokes the Metis prover. Metis is fully integrated into Isabelle/HOL with

interfaces going through the kernel. This ensures the correctness and soundness

of any proof script generated by sledgehammer that is successfully applied to the

Chapter 2 Background and Tools 12

current subgoal.

To interact with Isabelle interactively, the Isabelle/Isar version of Proof

General [Asp00], a generic front-end for interactive theorem provers in Emacs, is

used.

2.2 Model Checking – NuSMV 2 and IHaVeIt

In contrast to theorem proving, model checking represents a complementary or

orthogonal approach to verifying properties of a mathematical representation of a

system: it is based on an exhaustive state space exploration to check a property of

a system. The system is usually specified as a transition system or state machine,

and the property to check is given by a temporal logic formula, an idea going back

to Clarke and Emerson [EC80,CE82], and Queille and Sifakis [QS82]. In contrast

to interactive theorem proving, model checking is a fully automatic process. A

key issue with model checking is the state explosion problem which results in

very large transition systems even for reasonably small models. Symbolic model

checking tries to tackle the problem by representing the system implicitly using

quantified propositional logic. In general, the state explosion problem has been

very well studied and there is a large literature on various technical approaches

to it. NuSMV 2 [CCG+02] is an open source symbolic model checker integrating

BDD-based and SAT-based model checking for the formal verification of finite

state systems. Its input language provides constructs to specify finite state

machines and to express properties in computational tree logic (CTL) and linear

temporal logic (LTL).

To integrate the model checker into the Isabelle/HOL system and to make it

Chapter 2 Background and Tools 13

usable as a proving tool, the IHaVeIt [Tve05] tool is used. IHaVeIt is an oracle-

based interface written in PolyML. Originally designed to work with Isabelle 2005,

it makes external tools such as NuSMV, various SAT solvers, and a Verilog code

generator available as tactics. Due to various changes in the ML-backend of

Isabelle from version 2005 to version 2009-1, the original IHaVeIt code had to

be ported to the more recent version of Isabelle for this work. As the work in

this dissertation just relies on the NuSMV interface, only this part has been

fully ported. However, the other parts are likely to be portable with minor

modifications because of the modular design of IHaVeIt.

IHaVeIt consists of six main components: an Isabelle/HOL parser, a component

to eliminate uninterpreted functions, a data abstraction component, pretty printers

for NuSMV and SAT solvers, the Verilog code generator, and a translator for

the tools’ results back to Isabelle/HOL. The effort of porting the tool can be

summarised in two main tasks: adapting the Isabelle/HOL parser to handle

changes in the internal representation of theorems and data structures, such as

the removal of a set datatype from Isabelle’s internal type system, and fixing

errors in the code caused by changes in the ML library of Isabelle’s backend,

such as parametrising the set membership with an equality function. To adapt

IHaVeIt to Isabelle 2009-1, the former task has been completed, and the latter

has been accomplished for the parser, the elimination of uninterpreted functions,

the data abstraction, the NuSMV pretty printer, and the NuSMV part of the

result translator.

Chapter 2 Background and Tools 14

2.3 Executing Specifications

The models constructed using the framework are specified in the executable

subset of HOL [BN02]. By restricting the models to this subset, the Isabelle code

generator [Haf09] can be used to export specifications as functional programs.

The code generator is a built-in, generic framework for generating functional

programs from executable Isabelle/HOL specification. It is generic in the sense

that the target language is not fixed but can be any functional programming

language. Isabelle 2009-1’s code generator supports Standard ML, OCaml [Ler],

and Haskell [Jon03]. Code is generated from a set of raw code equations using

three sequential steps: (i) preprocessing, (ii) translation, and (iii) serialisation.

The preprocessor produces a structured collection of code equations applying

a chain of definitional substitution steps to the set of raw code equations using

a simpset and a function transformer. The former applies rewrite rules to the

right hand side and to the arguments of the left hand side of code equations.

The constant heading the left hand side is only rewritten in special cases such

as replacing non-executable constructs with executable definitions. The latter

is a type and heading-constant preserving mechanism to transform a list of

function theorems into another one. The preprocessor also deals with the implicit

existence of equality in Isabelle’s logic by generating explicit equality functions

where necessary.

The translation step produces a program in an abstract intermediate language

from the code equations output by the preprocessor. This intermediate program

consists of four different statements: one to represent datatypes, one to represent

the actual code equations, and two for type classes.

The serialisation process transforms the intermediate program into actual source

Chapter 2 Background and Tools 15

code in the target language. This final step only maps concrete syntax to the

statements of the intermediate language. Note that the preprocessor is written

in Isabelle’s logic and only the translation and the serialisation are performed

outside of the logic, which keeps the amount of code to trust small.

Since all the models in the framework are described using deterministic Mealy

machines, a model can be simulated simply by executing the Mealy machine

with some inputs assignments. A simulation outcome is represented as a list of

state and output elements, thus for a Mealy machine with state space S , input

alphabet I , and output alphabet O , a simulation trace simtrc is a list of (S ×O)

elements:

simtrc ∈ (S ×O) list (2.1)

Mealy machines are detailed in Chapter 3, but to illustrate the simulation

environment, sk ∈ S refers to the machine state after applying the transition

function δ(next-state function) of the machine k times to an initial state s0.

Similarly, ok ∈ O denotes the value of the output function ω given a state sk and

a value from the input alphabet i ∈ I . Thus, given a list of input values is of

length n, then:

simtrc[k] = (sk, ok) for k < n (2.2)

Since this thesis does not focus on simulation or test case generation, the list

of input signals is assumed to be provided as a manually-specified argument to

the simulation function, and not, for example, randomly generated. Then, the

following recursive function run computes k steps of the simulation trace starting

Chapter 2 Background and Tools 16

from a state s ∈ S .

run δ ω s (i :: ins) 0 = (s, ω (s, i)) (2.3)

run δ ω s (i :: ins) k = (s, ω (s, i)) :: run δ ω (δ (s, i)) ins (k−1) (2.4)

where i :: ins denotes a list with at least one element i and a (possibly empty)

rest ins.

The following function sim simulates a Mealy machine M with transition

function δ, output function ω, and initial state s0 for n steps given a list of input

signals ins with length ins ≥ n.

sim M ins n = run M.δ M.ω M.s0 ins n (2.5)

2.4 Related Approaches and Protocol Verification

This section is dedicated to the discussion of related approaches and general

protocol verification work. It is not intended to be complete, but to provide

an overview and to outline the differences between existing work and the work

presented here. Related approaches can broadly be categorised into the following

areas:

• Verification, especially hardware verification, based on step-wise refinement

• Communication protocol formalisation and verification using state machines

or I/O automata

• Incremental or correctness-preserving, step-wise modelling

• Hybrid verification approaches

Chapter 2 Background and Tools 17

Since this dissertation is structured such that many chapters discuss related work

at the end, modelling and verification using state machines or I/O automata

is discussed in Chapter 3 together with the formalisation of communicating

state machines. Existing work on bus protocol verification tackling a specific

protocol is discussed in Chapter 5 with the AMBA case study, and work related

to the PCI and PCI Express protocol is surveyed in the PCI express chapter

(Chapter 6), respectively. This leaves step-wise refinement, generic frameworks

for verified protocols, incremental modelling, and hybrid verification approaches

to be discussed here.

Verification by step-wise refinement. Verification by step-wise refinement

is, in general, of course not new and there is a rich literature going at least

back to Dijkstra [Dij68, Dij76] and Wirth [Wir71]. Also the application of

refinement checking to hardware verification has a long history. Abadi and

Lamport [AL91] show the existence of refinement mappings in their widely-

cited article. McMillan [McM97] proposes a compositional rule for hardware

verification based on local refinements which can be efficiently model-checked.

Aagaard et al. [ACDJ01] present a framework for microprocessor correctness

statements based on simulation relations. Chen et al. [CGG07] propose a modular,

refinement-based approach to verify transaction-based hardware implementations

against their specification models. They use a cache coherency protocol to

illustrate their methodology. Although, the basic idea seems similar, the

focus of this work is different in various aspects: their contributions aim at

verifying implementations against specifications, at generating VHDL code, and

at transistor-level representations.

Chapter 2 Background and Tools 18

Frameworks for verified protocols. In recent work, Abu Kharmeh

et al. [KEM11] present a design-for-verification framework for a configurable

performance-critical communication interface. The work is formalised in Hoare’s

Communicating Sequential Processes algebra and the FDR model-checker is

used to verify certain aspects of the model. To handle protocol complexity,

the authors decided to decompose the communication controller into blocks of

different functions. Even though closely related to this thesis, the work aims at a

slightly different application area—configurable interfaces, which is crucial for

their approach—and the authors apply a very different approach: process algebra

with model-checking instead of theorem proving with integrated automatic tools,

and separating functional components of the controller instead of composing a

verified model incrementally.

Schmaltz et al. [SB06] present initial work on a generic network on chip model as

a framework for correct on-chip communication. They identify key constraints on

architectures and show protocol correctness provided these are satisfied. However,

the approach relies on a post-hoc verification of the key constraints and the work is

tailored towards routing networks rather than verified communication controllers

implementing a specific protocol or feature set. So this work is different in aim

and approach from this thesis as it does not attempt to tackle a feature-rich

communication controller and it relies on a post-hoc verification approach.

Müffke [Müf04] presents a framework for the design of communication

protocols. He provides a dataflow-based language for protocol specification,

and decomposition rules for interface generation relating dataflow algebra and

process algebra. Aside from noting that correct and verified protocol design is

still an unsolved problem, Müffke does not address the verification aspect in

Chapter 2 Background and Tools 19

general. Claiming that the generated interfaces are correct by construction in

terms of their specification, he neither addresses the protocol correctness itself

nor the verification of the implementation against the specification.

Finally, there is a rich literature on protocol description languages with

corresponding property verifiers, such as Murϕ from Dill et al. [DDHY92]. This

class of related work usually uses an event-based description of a protocol instead

of an actual architecture model, and relies on a post-hoc verification using model

checking, both of which are key differences.

Incremental or correctness-preserving modelling. The basic idea of the

presented approach is similar to Intel’s integrated design and verification (IDV)

system [Seg06], a system for verified (gate-level) hardware designs. The system can

replace parts of a hardware design with a new design, i. e. with a different circuit,

while ensuring that the new circuit provides the same input-output properties as

the old one. The IDV system justifies its transformations by a local proof using

simple equivalence checking.

Suhaib et al. [SMSB05] propose an incremental methodology for developing

formal models called XFM. Their intention and basic idea is very similar to

ours, but they use a different approach to the problem. An extendable set of

LTL properties is used to incrementally create a model that satisfies the set of

properties. Their approach focuses on building prescriptive formal models that

capture the behaviour of natural language specifications. Thus, thee approach is

mainly tailored to control-dominated application areas, whereas the framework

in this dissertation is tailored to a more specific application area, but providing

a greater flexibility in that area, for example also covering datapath-dominated

Chapter 2 Background and Tools 20

specifications. Moreover, our methodology tries to capture specific features in

independent models.

Finn and Fourman [FF93] present the tool set LAMBDA, a refinement based

general-purpose design assistant using mathematical logic to represent and

manipulate system behaviour. Their system also applies transformations to

modify a current design. In that aspect their work is closely related to ours, but

the tool, being a formal synthesis tool, aims at transforming higher-order logic

specifications into HDL code. Our work is different in terms of application area,

and especially in focusing on specifying complex protocol features independently

and even in a re-usable way.

Another related approach is the B Method [Abr96], an event-based method

for a refinement-based specification, design, and implementation of software

components. Abrial et al. [ACM03] apply the method to the incremental

development of the IEEE 1394 tree identify protocol. Although this work uses an

incremental development approach, the event-based approach and the choice of

protocol distinguishes this work from ours. We contribute a methodology, and

not “just another” specific protocol verification.

Hybrid verification. The combination of Isabelle/HOL and NuSMV using the

IHaVeIt tool has been applied to a variety of hardware verification instances.

Schmaltz [Sch07] applies it to the area of clock domain crossing and the time-

triggered hardware implementing it. Alkassar et al. [ABK08] use the tool to

show the correctness of a fault-tolerant real-time scheduler and its hardware

implementation. In both cases, the authors apply a similar strategy: they use

theorem proving to argue about real-time, asynchronous properties of the system,

Chapter 2 Background and Tools 21

and the model checker to prove properties of finite state machines which are used

to model the hardware implementation.

As research on hybrid verification approaches is not the core of my thesis, this

short discussion is only meant to point out some work which uses the same tool

chain. It is not meant to be an exhaustive overview nor a broad discussion of

hybrid verification. However, a broader and more general overview of hybrid

verification approaches can be found in the survey from Bhadra et al. [BAWR07].

Chapter 3

Communicating State Machines

This chapter is dedicated to introducing the fundamentals required for the

specification of the framework components. Section 3.1 introduces some non-

standard mathematical notations. As the framework is based on communicating

Mealy machines, Section 3.2 details the representation and formalisation of

Mealy machines in the scope of this thesis, which is extended with a model

of communication in Section 3.3. Finally, Section 3.4 discusses previous work

on modelling using state machines and formalising Mealy machines in theorem

provers.

3.1 Notation and Basics

The main tool to specify and formalise the framework is discrete mathematics and

logic. The reader is assumed to be familiar with basic Boolean algebra—briefly

summarised in Table 3.1—and quantified propositional logic using universal (∀)

and existential (∃) quantification over variables. As the framework reverts

Chapter 3 Communicating State Machines 23

Symbol Description
T the constant true
F the constant false
¬x unary not operator
x ∧ y binary and operator
x ∨ y binary or operator
x =⇒ y implication
x ≡ y equivalence

Table 3.1: Basic Boolean Operators

to higher order logic to define operations in an abstract and generic way,

quantifications can also range over functions. If not further specified, numbers

are assumed to be naturals including the number zero, referred to as N. The

following notation is used to specify intervals of naturals a, b ∈ N:

[a, b] = {n ∈ N | a ≤ n ∧ n ≤ b}

(a, b) = {n ∈ N | a < n ∧ n < b}

[a, b) = {n ∈ N | a ≤ n ∧ n < b}

(a, b] = {n ∈ N | a < n ∧ n ≤ b}

Option Type

The option datatype is a well-known concept from function programming languages,

often also called the maybe value. Its main purpose is to specify a possibly

undefined value (undef) in a mathematically sound way: assume x is either

undefined or an element of some set S. For the former, the special symbol None

is employed. For the later, x is wrapped with Some to indicate that it is defined.

So the domain S option is the set that contains the special symbol None and

Chapter 3 Communicating State Machines 24

Some x for all elements x ∈ S.

Definition 3.1 (Option Type)

Given a set S, the corresponding option set (S)option is defined as:

(S)option = {Some x | x ∈ S} ∪ {None} (3.1)

The semantics of x̂ ∈ (S)option is given by:

x̂ =


Some x : x ∈ S

None : x = undef

(3.2)

As a (partial) inverse, the selection operator the maps elements from (S)option

to S. It is undefined if it is applied to None, and returns the element x if it is

applied to Some x.

Definition 3.2 (Selection Operator)

The partial function the : (S)option→ S is defined as:

the(x̂) =


x : x̂ = Some x

undef : x̂ = None

(3.3)

Labelled Tuples

Labelled tuples simplify the use of Cartesian product domains by assigning names

to tuple components, similar to a vector space where an element ~x ∈ Dn is

usually referred to as (x1, . . . , xn) and the i-th component is labelled xi. Given

n sets S1, . . . ,Sn, the standard Cartesian product S1 × . . . × Sn is given by

Chapter 3 Communicating State Machines 25

{(s1, . . . , sn) | si ∈ Si for i ∈ [1, n]}. The corresponding set of labelled tuples is

given in Definition 3.3.

Definition 3.3 (Set of Labelled Tuples)

Given n sets Si for i ∈ [1, n], a set of n labels L = {li | i ∈ [1, n]}, and a labelling

function l : {Si | i ∈ [1, n]} → L, the set of labelled tuples Sl is given by:

Sl = [l(S1)]S1 × . . .× [l(Si)]Si × . . .× [l(Sn)]Sn (3.4)

which yields the following components:

• The set S containing all standard tuples.

S = {(s1, . . . , sn) | si ∈ Si for i ∈ [1, n]} (3.5)

• Labelled accessor functions li : S → Si for i ∈ [1, n] such that

li((s1, . . . , sn)) = si (3.6)

To specify a concrete instance of a set of labelled tuples, the following Isabelle-

inspired, simplifying notation is used:

S = (| l1 :S1, . . . , li :Si, . . . , ln :Sn |) (3.7)

Note that the labelling function l is implicitly given. Additionally, s.li is used as

a shorthand for li(s); and for an element in S, the following notation is used to

Chapter 3 Communicating State Machines 26

make labels explicit:

s = (| l1=s1, . . . , ls=si, . . . , ln=sn |) (3.8)

To use labelled tuples similarly to normal tuples, some of the standard operations

for Cartesian products are lifted, and extended with some labelled tuple-specific

operators. For a label li, the element operation li∈̃Sl checks if a label is used in a

labelled tuple. It is defined as:

li ∈̃ Sl ≡ li ∈ L (3.9)

The set dom[Sl](li) denotes the domain set of the tuple component with label li.

The function dom[Sl] : L → {S1, . . . ,Sn} is given by:

dom[[l1]S1 × . . .× [ln]Sn](li) = Si (3.10)

Given a concrete labelled tuple s = (s1, . . . , sn) ∈ [l1]S1× . . .× [ln]Sn, the update

of component li by a value s′i ∈ S〉 is denoted s(| li := s′i |) and defined as:

s(| li :=s′i |) = (l1=s1, . . . , ls−1=si−1, ls=s
′
i, ls−1=si+1, . . . , ln=sn) (3.11)

To update distinct components li, lj by values vi, vj , the shorthand s(| li := vi, lj :=

vj |) denotes s(| li := vi |)(| lj := vj |) (where the order is irrelevant as li 6= lj).

Analogously to the usual Cartesian product for sets, that is given by

∏
i∈[1,n]

Si = S1 × . . .× Sn,

Chapter 3 Communicating State Machines 27

the product operator for sets of labelled tuples is defined as:

∏̃
i∈[1,n],l

Si = [l1]S1 × . . .× [ln]Sn where li = l(Si) (3.12)

Finally, we define a disjoint label union and a concatenation operator for sets of

labelled tuples. The former is given by the set that contains all the labels of the

sets of labelled tuples: ⊎̃
i∈[1,n]

Si = {li,j | lj∈̃Si} (3.13)

For sets of labelled tuples Si = (| li,0 :Si,0, . . . , li,mi
:Si,mi

|), the concatenation is

given by: ⊙̃
i∈[0,n]

Si = (| l0,0 :S0,0, l0,1 :S0,1, . . . , ln,mn :Sn,mn |) (3.14)

Lastly, S0×̃LS1, S0]̃S1, and S0�̃S1 are used for the binary variants of Cartesian

product, disjoint union, and concatenation.

Signals

Intuitively, a signal is a variable of a domain D which is assigned a value at a

given time. Since this dissertation deals with discrete, synchronous systems, time

is modelled using naturals. Thus, a signal is a function from time to the domain

space of the signal.

Definition 3.4 (Signal)

A signal sig is a function from discrete time to a signal domain D: sig : N→ D.

The value of the signal at time t ∈ N is denoted sigt ∈ D = sig(t).

Chapter 3 Communicating State Machines 28

3.2 Mealy Machines

Components in the framework are modelled using standard Mealy ma-

chines [Mea55], that is a state machine where the output depends on the current

state and input. It is specified by a 6-tuple: three sets define the state space,

the input alphabet, and the output alphabet. The other three components are an

initial state, a transition function, and an output function.

Definition 3.5 (Mealy Machine)

A Mealy machine is given by a 6-tuple (S , I ,O , s0 , δ, ω) where

• S is the set of possible states.

• I is the input alphabet, that is the set of possible input values.

• O is the output alphabet, that is the set of possible output values.

• s0 ∈ S is the initial state.

• δ : S × I → S is the transition function that defines the next state for a

given state and input.

• ω : S × I → O is the output function that defines the output for a current

state and input.

Given a Mealy machine, the next state s′ for a state s ∈ S and an input assignment

i ∈ I is given by

s′ = δ(s, i) (3.15)

and the current output is given by ω(s, i) ∈ O .

Chapter 3 Communicating State Machines 29

s0

s1

s2

a:x a:y

b:z a

Figure 3.1: A Simple Mealy Machine

Figure 3.1 depicts a simple example of a Mealy machine in a graph-based

representation. Using Definition 3.5, this state machine is defined by:

S = {s0, s1, s2}

I = {a, b}

O = {x, y, z}

s0 = s0

δ = {((s0, a), s1), ((s1, a), s2), ((s2, a), s2), ((s2, b), s0)}

ω = {((s0, a), x), ((s1, a), y), ((s2, b), z)}

In the following, S , I , and O are usually given as sets of labelled tuples to simplify

referring to a specific input or output using a label or name.

To model and argue about the behaviour of a state machine over time, the

notions of an execution trace and an output signal are introduced. The former

is a sequence of configurations such that the first element of the sequence is the

initial state, and an element at position i+ 1 (i ∈ N) is equal to the transition

function applied to element i and the input values at time i. The output signal is

the signal representing the value of the output function at any time t ∈ N. To

define both concepts formally, the signal representing the input assignments at

Chapter 3 Communicating State Machines 30

time t ∈ N of a state machine M is required, called input signal. Usually, it is

denoted int
M ∈ I , r simply int if smM is clear from the context.

Definition 3.6 (Execution Trace and Output Signal)

Given a Mealy state machine M = (S , I ,O , s0, δ, ω) and an input signal int, the

execution trace of machine M with input in, τM ,in : N→ S , is given by:

τ tM ,in =


s0 : t = 0

δ(τ t−1M ,in , in
t−1) : t > 0

(3.16)

Similarly, the output signal, outM ,in : N→ O , is given by outtM ,in = ω(τ tM ,in , in
t).

If the context is clear, the indices are omitted: τ t and outt.

3.3 Model of Communication

Next, a model of communication among state machines is introduced which will

be used to define composition operators later in this chapter. Uni-directional

communication from a sender (S) to a receiver (R) is modelled by connecting

an output of the source to an input of the destination. This ‘connection’ is

modelled by defining the value of the input using the output function of the

source, instead of modelling the input as an environment input. To illustrate the

general approach, assume a communication from output x ∈ Os to input y ∈ Ir.

Given the sender’s inputs int
s ∈ Is, the receiver’s input signal y is then given by:

int
r.y = (ωs(τ

t
s,ins

, int
s)).x (3.17)

= outts,ins
.x (3.18)

Chapter 3 Communicating State Machines 31

M1

M2

M0

inp0.z inp1.y

inp2.p inp2.q

inp1.uout0.x

out1.zout0.y out1.v

Figure 3.2: A System of Communicating State Machines

Such an input is called internal input ; the output is called internal output.

Figure 3.2 depicts an example of three communicating state machines M0, M1,

and M2. The communication system defines a new state machine where the inputs

(outputs) of the system are the union of all inputs (outputs) minus the internal

signals. In order to fully specify the global communication system in terms of

the three individual machines, a closed-form definition for every internal output

has to be specified. In this framework, this is achieved by requiring a set of

assumptions that prevents loops in the construction. The next chapter discusses

the issue in detail when composition operators are introduced (Section 4.2). The

communication in Figure 3.2 is given by the following set of assignments:

int
1.y = outt0.x

int
2.p = outt0.y

int
2.q = outt1.z

Such a set of assignments defines a global, partial communication function, comM,

Chapter 3 Communicating State Machines 32

which specifies all internal signals among a set of state machinesM:

comM :
⊎̃

Mi∈M
Ii →

⊎̃
Mi∈M

Oi.

It maps any state machine input to an output iff it is an internal input. In

this example, comM = {(int
1.y, out

t
0.x), (in

t
2.p, out

t
0.y), (in

t
2.q, out

t
1.z)}. The full

communication system is given by the set of participating state machinesM and

the communication function comM. This is generalised in Definition 3.7.

Definition 3.7 (Global Communication Function)

Given a set of state machinesM = {M0, . . . ,Mn}, communication is specified as

a partial function comM :
⊎̃

i∈[0,n]Ii →
⊎̃

i∈[0,n]Oi such that

comM(yi) =


xj : Oj.x of Mj is connected to Ii.y of Mi

undef : otherwise

(3.19)

An input y of Mi external is called external with respect toM iff comM(yi) =

undef and internal otherwise.

In order to specify composition operators using this model and in order to define

the global state machine given by the communication system, a standard interface

between state machines is introduced. A simple handshaking protocol with three

signals is used to implement uni-directional communication between two state

machines. The sender provides a valid and a data signal, and the receiver provides

a busy signal. Intuitively, to initiate communication, the sender provides data on

the data signal and raises the valid signal to indicate valid data. If the receiver

cannot receive, the busy signal is active and the sender has to wait. If the busy

Chapter 3 Communicating State Machines 33

sender receiver

bs
vs
ds

br

dr

vr

busy (b)

valid (v)

data (d)

Figure 3.3: Signals of the Handshake Protocol

signal is not active, the receiver commits to sampling the data right away, that is

in the same cycle.

Note that this simple protocol is closely related a handshaking protocol which

is well-known and widely used: the valid/ready handshake. The only difference is

that the receiver uses a positive acknowledgement signal instead of a negative

one. The valid/ready handshake is, for example, used in ARM’s more recent AXI

protocols [ARM08].

We refer to the three signals with bt ∈ B, vt ∈ B, and dt ∈ D where D is the

set of data elements to be communicated. The interface is named according to

the data flow direction: it is called input interface of machine M if the valid and

data signals are inputs to M , and output interface of M if these two signals are

outputs of M . Figure 3.3 illustrates the interconnection of two state machines.

The handshake protocol is formalised in terms of a valid input interface property,

an assumption that specifies the behaviour of input signals to a state machine as

valid and according to the protocol semantics.

Assumption 3.8 (valid input interface)

Let bt ∈ B, vt ∈ B, and dt ∈ D be an input interface of machine M . The interface

signals is called valid iff they satisfy the following property for all times t ∈ N:

Chapter 3 Communicating State Machines 34

Let x ∈ D be an arbitrary but fixed data element, then

vt =⇒ (dt = x) ∧
(
bt =⇒ vt+1 ∧ (dt+1 = dt)

)
. (3.20)

Note that vt and dt are (environment) inputs to machine M , whereas bt is an

output of M .

To specify the models in a compact and concise way, the standard interface

abstracts from the valid signal, and the data signal is modelled using the option

data type. The abstracted interface consists of two signals: a busy signal bt ∈ B

and a data signal d̃t ∈ D option. The pair (bt, d̃t) is called abstract standard

interface. In the following, the d̃t is simplified to dt. The abstraction mapping

for the valid signal is given by:

vt ≡ (d̃t 6= None) (3.21)

Next, this abstract standard interface in generalised to support multiple input

and outputs. The idea is that a state machine with n inputs and m outputs

has the same number of interfaces. Thus, the set of labelled tuples representing

the state machine’s input has to consist of n data signals and m busy signals.

Analogously, the output has to consist of m data signals and n busy signals. Such

a pair of input and output signals is called abstract n-m standard interface; it is

defined formally in Definition 3.9 and illustrated in Figure 3.4.

Definition 3.9 (Abstract n-m Standard Interface)

Given a labelling function lk with lk(i) = li for i ∈ [1, k], the input and output

tuples of a state machine with n input interfaces and m output interfaces,

Chapter 3 Communicating State Machines 35

bi1

bon

do1

din

bo0
di0

bim
dom

n input
interfaces

m output
interfaces

M

Figure 3.4: Abstract n-m Interface

complying to the standard interface, are given by:

I =

(∏̃
m,bim

B
)
�̃
(∏̃

n,din
Di option

)
= BIm �̃DIn (3.22)

O =

(∏̃
n,bon

B
)
�̃
(∏̃

m,dom

Dj option

)
= BOn �̃DOm (3.23)

The pair (I ,O) is denoted (n,m) StdInterface.

To simplify notation, the following labelling convention is used: the k-th data

input of a standard input interface is denoted dik together with the k-th busy

output bok, and n is the number of single input interfaces. Analogously, the k-th

data output of a standard output interface is labelled dok together with the k-th

busy input bik, and m is the number of single output interfaces. If the abstract

interface has only on standard interface, the subscript 0 is omitted. Moreover,

as in Definition 3.9, BIm(I) is used to refer to the m busy inputs and DIn(I)

to refer to the n data inputs of I . Similarly, BOn(O) and DOm(O) are used to

refer to the output signals.

Using the model of communication from Definition 3.7, there is a possibility

of creating combinational loops when combining Mealy machines. To prevent

this, two symmetric interface properties are defined: one for an output interface

Chapter 3 Communicating State Machines 36

(Definition 3.10) and a symmetric one for an input interface (Definition 3.11).

Intuitively, the latter states that the internal output of an interface behaves like

a Moore output, that is the output signal is independent from the input signal

and only depends on the current machine configuration, and the former says that

the internal input signal of an interface is independent from the internal output

(Moore input).

Definition 3.10 (Moore-like Output Interface)

Given a state machine M , an output interface (bik∈̃I , dok∈̃O) is called Moore-like,

or busy-independent, output iff the output function ω satisfies:

∀in, t. ω (τ tM ,i, in
t).dok = ω (τ tM ,in, in

t(|bik := T |)).dok (3.24)

In the following, this property is referred to as MooreOut(bik, dok). M provides

Moore-like, or busy-independent, outputs iff ω satisfies MooreOut(bik, dok) for all

k ∈ [1,m].

Definition 3.11 (Moore-like Input Interface)

Given a state machine M , an input interface (bok∈̃O , dik∈̃I) is called Moore-like,

or data-independent, input iff the output function ω satisfies:

∀in, t. ω (τ tM ,in, in
t).bok = ω (τ tM ,in, in

t(|dik := None |)).bok (3.25)

In the following, this property is referred to as MooreInp(b0 k, dik). M provides

Moore-like, or busy-independent, inputs iff ω satisfies MooreInp(bok, dik) for all

k ∈ [1, n].

These two properties are used when two interfaces—an output and an input

Chapter 3 Communicating State Machines 37

interface—are being connected: composition operators require that either the

output interface is Moore-like, or the input interface is. If this is satisfied, no

loop will be created.

Note, that this is not necessarily the weakest possible assumption that prevents

the creation of loops. In general, it is sufficient if at least one machine in any

(potential) cycle provides Moore-like signals (with the signals that are part of the

cycle). But the stronger assumption also ensures that the absence of a loop is

a property that can be shown locally and does not introduce a global property

which has to be checked. Reducing global properties to local ones is one of the

major aspects of this framework.

Assumption 3.12 (Valid Global Communication Function)

A global communication function comM for a set of state machines M is called

valid iff for every internal interface intf , either MooreInp(intf) or MooreOut(intf)

holds.

In order to argue about correctness in a reasonable way, an environment

assumption has to be introduced: we assume in the following that the busy

signal provided by the environment is fair in the sense that it is not constantly

active. Thus, the environment allows progress in general. Assumption 3.13

formulates this by stating that a busy signal is at most constantly active for a

finite period of time.

Assumption 3.13 (Fair busy Signals)

All external busy signals b satisfy: bt =⇒ ∃k.∀k′ < k. bt+k′ ∧ ¬bt+k

Note that this is a common assumption for inputs with a semantics similar to

the one of the busy signal.

Chapter 3 Communicating State Machines 38

In the next chapter, the basic building blocks of the framework are introduced:

abstract components and composition operators. When composition operators

are applied to abstract components, Assumption 3.12 has to be satisfied to ensure

that no combinatorial loops are created.

3.4 Related Work

Modelling systems using automata in general is a well studied field with a long

history. A good introduction and overview can be found, for example, in the

widely-cited book by Robert Kurchan [Kur94]. Modelling state machines in

Isabelle/HOL goes back to at least Nipkow and Slind [NS95]. They formalized

I/O automata and developed a meta-theory to represent them as objects in the

logic. Our approach to state machines is similar to their formalization, but we

restrict our state machine framework to a simpler formalization specialised to

our requirements. Our model of execution is analogous to their infinite sequences.

Also formal verification of protocols using I/O automata in theorem provers has

a long history, e.g. [HSV94,LSGL95]. The aim of this thesis is not to provide yet

another specific protocol verification using I/O automata and a theorem prover,

but the formalization of a methodology. This work, including the Mealy machines

and the handshaking protocol, has, nonetheless, been formalised in Isabelle/HOL.

Chapter 4

The Framework

Using the communicating Mealy machines from the previous chapter, this chapter

details the generic framework. Section 4.1 defines the smallest, atomic building

blocks: abstract components. Composition operators, detailed in Section 4.2,

are used to combine basic building blocks or components in the framework

to more complex blocks, thus building complex models incrementally. The

chapter concludes with an introduction to transformations in Section 4.3. A

transformation is a specification of a particular protocol feature that is modelled

independently from other protocol features and encapsulates the complexity of

the feature.

Note that all framework components as well as the lemmas and proofs have

been formalised in Isabelle/HOL.

Chapter 4 The Framework 40

bo

di

bi

do

full?

¬bi?

Figure 4.1: Simple Buffer of Fixed Size

4.1 Abstract Components

Abstract components are minimal Mealy machines implementing a specific

purpose while obeying the standard interface. The framework only needs two

abstract components to provide enough flexibility:

• A bounded-size buffer

• A data modification component

4.1.1 Unit-delay and Zero-delay Buffers

The buffer is the basic component of most models. There are two variants of it: a

unit-delay and a zero-delay buffer. The difference is in the behaviour of an empty

buffer: an empty zero-delay buffer outputs a valid input in the same time step,

whereas an empty unit-delay buffer delays a valid input by at least one time step.

The basic principle of a buffer with an abstract interface is depicted in Figure 4.1.

The storage part is modelled using a list. The datatype of a list containing

data elements of type α is α list with the constructors:

list = nil | x :: list (4.1)

To specify a buffer explicitly, some standard list operations are needed: the head

Chapter 4 The Framework 41

of a list, the tail of a list, the concatenation of two lists, and the length of a list:

hd xs =


undef : xs = nil

x : xs = x :: xs′
(4.2)

tl xs =


undef : xs = nil

xs′ : xs = x :: xs′
(4.3)

xs@ys =


ys : xs = nil

x :: (xs′@ys) : xs = x :: xs′
(4.4)

length xs =


0 : xs = nil

1 + (length xs′) : xs = x :: xs′
(4.5)

The state space of a bounded buffer has a component buf ∈ α list to model the

elements currently stored in the buffer, and a component size ∈ N to specify the

size of the buffer. Note that for a zero-delay buffer any size greater or equal zero

is supported, whereas the unit-delay buffer supports only sizes greater than zero:

a unit-delay buffer of size zero is not ‘logically consistent’. A zero-delay buffer of

size zero behaves like a simple wire. A buffer implements a simple 1-1 standard

interface, thus both input and output interface consist of a single busy and a

single data component. Moreover, a buffer does not modify any data: the data

domain of the input and output interface is α.

Sbuf = (|buf :α list, size :N |) (4.6)

Ibuf = (|bi :B, di :α option |) (4.7)

Obuf = (|bo :B, do :α option |) (4.8)

Chapter 4 The Framework 42

To specify transition and output functions in a compact way, some auxiliary

predicates and functions are used: empty : S → B indicates that a buffer is

empty, full : S → B indicates a full buffer. The function top : S → α returns the

oldest element in the buffer without removing it from the list, and deq : S → α list

returns the buffer content without the oldest element—in both cases, only if the

buffer is not empty of course. Finally, enq : S × α→ α list appends an element

as the newest and last element to the current buffer content.

empty s = (s.buf = nil) (4.9)

full s = (length (s.buf) = s.size ∧ s.size > 0) (4.10)

top s = hd (s.buf) (4.11)

deq s = tl (s.buf) (4.12)

enq (s, x) = s.buf @[x] (4.13)

Next, shorthands for the different operating modes of a buffer are defined to

simplify the following definitions: First, bypass : S × I → B indicates that input

data has to bypass the list to provide zero-delay output: input data is forwarded

to the buffer outputs in the same cycle if the buffer is empty.

bypass (s, i) = empty s ∧ i.di 6= None (4.14)

Second, sample : S × I → B indicates that the buffer has to sample input data

into the storage element, which happens in two cases: a unit-delay buffer samples

data if it is not full and there is some data at the input (sampleu); a zero-delay

buffer additionally samples data in case input data should be bypassed, but it

Chapter 4 The Framework 43

cannot be output because of an active busy input (samplez). Note that in case

of a zero-delay buffer, these two conditions are not disjoint.

sampleu (s, i) = (i.di 6= None) ∧ ¬full s (4.15)

samplez (s, i) = bypass (s, i) ∧ i.bi ∧ (s.size 6= 0) (4.16)

sample (s, i) = (¬bypass (s, i) ∧ sampleu (s, i)) ∨ samplez (s, i) (4.17)

Lemma 4.1 shows that sample (s, i) implies i.di 6= None, which is a convenient

property for formalising the models: whenever sample (s, i) holds, i.di = Somex,

thus the i.di is well-defined.

Lemma 4.1

A buffer only samples data if there is valid input data.

sample (s, i) =⇒ (i.di 6= None)

Proof The proof is straightforward by unfolding definitions:

sample (s, i) =⇒ sampleu (s, i)) ∨ samplez (s, i)

sampleu (s, i) =⇒ i.di = Somex ≡ i.di 6= None

samplez (s, i) =⇒ bypass (s, i)

=⇒ i.di = Somex =⇒ i.di 6= None

The proof is easily mechanised in Isabelle as well. �

Third, succout : S × I → B indicates the successful output of a data element: a

unit-delay buffer outputs data successfully if the busy input is not active and the

Chapter 4 The Framework 44

buffer is not empty (succoutu). A zero-delay buffer also outputs data successfully

if the busy input is not active and data is bypassed.

succoutu (s, i) = ¬i.bi ∧ ¬empty s (4.18)

succoutz (s, i) = ¬i.bi ∧ (¬empty s ∨ bypass (s, i)) (4.19)

Using those auxiliary functions, the initial state, the transition function, and the

output function of a unit-delay buffer are defined as (recall that s.size > 0):

s0 ubuf l = (|buf = nil, size = l |) (4.20)

δubuf (s, i) =



s : ¬sampleu (s, i) ∧ ¬succoutu (s, i)

enq (s, the i.di) : sampleu (s, i) ∧ ¬succoutu (s, i)

deq s : ¬sampleu (s, i) ∧ succoutu (s, i)

enq (deq
s, the i.di) : sampleu (s, i) ∧ succoutu (s, i)

(4.21)

ωubuf (s, i) =


(|bo0 = full s, do = None |) : empty s

(|bo0 = full s, do = Some (top s) |) : ¬empty s

(4.22)

The zero-delay buffer is almost the same, but the output function has to take a

buffer of size zero into account. Definitions 4.1 and 4.2 sum up the specifications

Chapter 4 The Framework 45

for both buffer models.

δzbuf (s, i) =



s : ¬sample (s, i) ∧ ¬succoutz (s, i)

enq (s, the i.di) : sample (s, i) ∧ ¬succoutz (s, i)

deq s : ¬sample (s, i) ∧ succoutz (s, i)

enq (deq s,
the i.di) : sample (s, i) ∧ succoutz (s, i)

(4.23)

ωzbuf (s, i) =



(|bo = i.bi, do = i.di |) : (s.size = 0)

(|bo = full s, do = i.di |) : empty s ∧ (s.size 6= 0)

(|bo = full s,
do = Some (top s) |) : ¬empty s ∧ (s.size 6= 0)

(4.24)

Definition 4.1 (Parametrised Unit-delay Buffer)

A parametrised unit-delay buffer of fixed size l > 0 ∈ N implements a 1-1 standard

interface and is given by the Mealy machine

Mubuf = (Sbuf , Ibuf ,Obuf , (s0 buf l), δubuf , ωubuf)

where the components are defined as in Equations 4.6, 4.7, 4.8, 4.20, 4.21,

and 4.22.

Definition 4.2 (Parametrised Zero-delay Buffer)

A parametrised buffer of fixed size l ∈ N with a zero-delay input bypassing and a

Chapter 4 The Framework 46

1-1 standard interface is given by the Mealy machine

Mzbuf = (Sbuf , Ibuf ,Obuf , (s0 buf l), δzbuf , ωzbuf)

where the components are defined as in Equations 4.6, 4.7, 4.8, 4.20, 4.23,

and 4.24.

Buffer Correctness Results

Before introducing further abstract components, we detail the generic correctness

of a buffer. As mentioned before, the execution semantics from Definition 3.6 is

used and, if not stated otherwise, the following convention is used. For a state

machine M ,

• it refers to the input signal assignment at time t, thus i : N → I is the

environment input signal,

• st is the state configuration at time t, thus st = τ tM ,i , and

• ot denotes the values of the outputs at time t, thus ot = outtM ,i .

The correctness properties introduced here are fully generic in the sense that they

can be applied any time a buffer is used to construct more complex transformations,

and any time a buffer is instantiated to model a concrete case study.

Lemma 4.2 (Zero-delay Bypassing for Zero-delay Buffers)

For a bounded-size buffer Mzbuf , an active bypass predicate at time t implies that

the buffer outputs the data element at its input (in the same time step), and that

the buffer either stores the data element in case of an active busy input signal, or

Chapter 4 The Framework 47

successfully outputs the element in case the busy input is not active. Formally,

for a current state st and an input signal assignment it, the following holds:

bypass (st, it) =⇒
(
ωzbuf (s

t, it).do0 = it.di0
)
∧(

it.bi0 =⇒ sample (st, it) ∧ ¬succout (st, it)
)
∧(

¬it.bi0 =⇒ ¬sample (st, it) ∧ succout (st, it)
)

Proof Unfolding the definitions from Equations 4.14–4.18 and the definition of

ωzbuf (Equation 4.24), the lemma can easily be proven.

bypass (s, i)
D4.14
=⇒ empty s

D4.24
=⇒ ωzbuf (s, i).do0 = i.di0

bypass (s, i)
D4.17
=⇒ (i.bi0 ≡ sample (s, i))

bypass (s, i)
D4.18
=⇒ (¬i.bi0 ≡ succout (s, i))

Unfolding definitions in the same way, the proof is easily mechanised in Isabelle.�

The following Lemma 4.3 argues about the output signals provided by any buffer,

whether it is a zero-delay or a unit-delay one. The lemma states that if a buffer

tries to output data, but the busy input is active, the data output of the buffer

stays stable.

The lemma might seem marginal because it only argues about a single transition,

but it is a significant property: first, it states that no data gets lost if the next

component is not ready to receive it. Second, even though it argues only about

one cycle, it can easily be expanded using induction, and third, the lemma states

that a buffer satisfies Assumption 3.8; the assumption on interface compliant

Chapter 4 The Framework 48

signals. Thus, Lemma 4.3 shows that a buffer’s output signal can be used as a

valid input signal.

Lemma 4.3 (Stable Buffer Outputs)

Given a generic buffer, whether zero-delay or unit-delay, B = (S , I ,O , s0 , δ, ω)

and an input signal it ∈ I , an active busy signal stalls the output of the buffer.

∀x ∈ dom(do,O). bit ∧ (dot = Some x) =⇒ (dot+1 = Some x)

Proof Although not particularly tricky, the proof is tedious because a few case

splits are necessary to cover all corner cases, especially for the zero-delay buffer.

For the unit-delay buffer, proofing the lemma is straightforward by unfolding

definitions.

From ωubuf (s
t, it) and the definitions of top and empty follows:

(dot = Some x) =⇒ (x = hd(st.buf)) ∧ (st.buf 6= nil)

Moreover, from bit and the definition of succout follows that:

bit
D4.18
=⇒ ¬succoutu(s, i)

D4.22
=⇒ (δubuf (s, i) = s) ∨ (∃x.δubuf (s, i) = s.buf@[x])

But we also know that for all (x :: xs) ∈ α list, hd(x :: xs) = hd(x :: xs@[x])

holds, and therefore hd(st+1) = x, thus dot+1 = Some x.

For the zero-delay buffer, cases are split on st.buf = nil. For st.buf 6= nil, the

proof is exactly the same as for the unit-delay buffer. So, assume st.buf = nil.

Chapter 4 The Framework 49

1. st.size > 0: thus

samplez(s
t, it) ∧ ¬succout(st, it) =⇒ δzbuf (s

t, it) = enq(st, the(it.di))

=⇒ st+1 = nil@[x] = [x]

=⇒ dot+1 = Some x

2. st.size = 0: from the definition of ωzbuf and from i.bit = T follows:

dot= i.dit and bo = i.bit = T

= i.dit+1 by Assumption 3.8

= dot+1 with st+1.size = st.size and ωzbuf

The proof is formalised in Isabelle/HOL as it is detailed here. �

Finally, the main buffer correctness theorem states that a buffer itself ensures

liveness if the environment is fair. It also states that a buffer does not modify or

corrupt data, and that the ordering of elements in the buffer is preserved.

Theorem 4.4 (Buffer Liveness)

A generic buffer (S , I ,O , s0 , δ, ω), whether zero-delay or unit-delay, satisfies

the following liveness property under the assumption of a fair environment

(Assumption 3.13):

∀x ∈dom(i.di, I). ¬bot ∧ (i.dit = Some x) =⇒ ∃k. (dot+k = Some x)

Proof Assuming the busy input is not constantly active, it is easy to see that

the hypothesis is true, but tedious to proof. The big picture is the following: first,

Chapter 4 The Framework 50

show that x becomes a list element, the last one actually, in the buffer. Second,

show that x never moves backwards, but if x moves, x moves towards the output

(the head of the list). Additionally, x only moves if and only if the busy signal is

not active. Finally, there is only a finite number of elements in the list in front of

x, but infinitely many inactive busy signals. Once the proof is split up like this,

the proof is straightforward and has also been formalised in Isabelle. �

4.1.2 Data Modification

Data modification provides orthogonal features to a buffer. A buffer does not

provide any means of modifying data or of routing data through various interfaces.

The data modification component provides all this: data modification and more

flexible interfaces. The idea is to reason about data-independent properties,

such as liveness, and data-dependent properties, such as end-to-end message

correctness, separately and compositionally. Thus, the goal is to separate any

data modification from the storage elements which is why this building block

does not provide any data storage. It implements three core functions:

• An n-m standard interface.

I = BIm �̃DIn (4.25)

O = BOn �̃DOm (4.26)

• A parameter f for potential data modification

f : S ×DIn → DOm (4.27)

Chapter 4 The Framework 51

• A parameter b for potential busy signal strengthening

b : S × I → BOn (4.28)

To ensure that the busy signal is only strengthened, b has to satisfy the following

property Pb:

∀s ∈ S .∀ i.bik ∈̃ BIm. i.bik =⇒
∧

aff (b (s, i), bik)) (4.29)

where aff (bo, i.bik) ⊆ BOn is the set of busy output signals this is affected by

i.bik.

To allow a data modification that is not only based on the current input data,

but also on some auxiliary data, the state space of the building block can have

an optional element opt ∈ Opt . A typical use of this component is the extension

of an input data element with a sequence number or a header field. To abstract

from the opt field, the specification is also parametrised using an initial state opt0

and a transition function δopt. The data modification is sketched in Figure 4.2 to

illustrate the basic concept.

Definition 4.3 (Data Modification)

The data modification DM (f, g) is parametrised in the functions given in

Equations 4.27 and 4.28. The input and output domains are as given in

Equations 4.25 and 4.26, and the remaining components are:

S = (|opt :Opt |)

s0 = (|opt =opt0 |)

Chapter 4 The Framework 52

di1 dinbo1 bon

do1 dombi1 bim

fb OPT

Figure 4.2: Schematics of the Data Modification

δ = λs. i. (|opt=δopt (s, i) |)

ω = λs. i. g (s, i) �̃ f (s,DIn(i))

The data modification is a very flexible component because most of its components

are to be instantiated and there are not many restrictions on how to instantiate

them. On the one hand, this is favourable for composing new systems, on the

other hand it makes generic verification hard. Lemma 4.5 states that the data

modification provides Moore-like output interfaces.

Lemma 4.5

An instantiated data modification component provides Moore-like output interfaces.

DM (f, g) |= Mooreout

Proof Unfolding the output function ω of DM shows that DO(o) = f(s,DI(i)),

for some i, s, which is independent from the busy signals. The proof is also

Chapter 4 The Framework 53

M1

bi1

bo1

do1

di1 din1
dom1bim1

bon1
M2

bi2

bo2

do2

di2 din2
dom2bim2

bon2

Figure 4.3: Schematics of the Parallel Composition

formalised in Isabelle by unfolding definitions. �

4.2 Composition Operators

In order to use abstract components to build up more complex transformations,

the framework specifies a set of composition operators. The first part of this

section introduces two standard operations: parallel composition (Section 4.2.1)

and sequential composition (Section 4.2.2). The second part specifies two

special operators used to parallelize components in a controlled way: the

multiplex/arbitrate composition (Section 4.2.3) and the replication operator

(Section 4.2.4).

4.2.1 Parallel Composition

Parallel composition is the most simplistic composition operator: it is used to run

two existing components side-by-side. The inputs and outputs of the composed

system are a concatenation of the inputs and outputs of the source components,

and the transition and output functions just apply the corresponding functions

of the source components. This composition does not introduce any sharing

Chapter 4 The Framework 54

nor does it provide any means to control the execution of the sub-systems. The

typical application of the parallel composition is to compose transmit and receive

parts of a model such that the composed system is again a system within the

framework. The basic principle is sketched in Figure 4.3.

Definition 4.4 (Parallel Composition)

The parallel composition of two components M1 and M2, denoted M1||M2, is given

by:

S = S1×̃LS2 = (|m1 :S1, m2 :S2 |)

s0 = (|m1=s0 1, m2=s0 2 |)

I = I1×̃LI2 = (|m1 :I1, m2 :I2 |)

O = O1×̃LO2 = (|m1 :O1, m2 :O2 |)

δ = λs, i. (|m1=δ1 (s.m1, i.m1), m2=δ2 (s.m2, i.m2) |)

ω = λs, i. (|m1=ω1 (s.m1, i.m1), m2=ω2 (s.m2, i.m2) |)

where L = {(1,m1), (2,m2)} is the labelling.

Given the correctness of the basic building blocks, the aim is to argue about the

correctness of the composition operators. The main strategy for that is to show

that the properties of the basic components are preserved by the compositions.

Informally, the idea is that if a component satisfies a correctness property P ,

we aim at showing that the composed system satisfies a correctness property P ′

that can be derived from P only from the properties of the construction of the

composition.

Chapter 4 The Framework 55

For the parallel composition, such a correctness property is straightforward: the

composed system satisfies the conjunction of the individual correctness properties.

Since parallel composition only executes the two state machines simultaneously

without any control or data modification, one can easily see that this is the case.

Lemma 4.6 (Parallel Composition Correctness)

Given state machines M1 , M2 with input signals it1 ∈ I1 and it2 ∈ I2, and let

i = λt. (|m1= i
t
1, m2= i

t
2 |) be the input signal to the parallel composition M1 || M2.

Then, the following holds:

〈M1, i1〉 |=A1 P1 ∧ 〈M2, i2〉 |=A2 P2 =⇒ 〈M1||M2, i〉 |=A1∪A2 P1 ∧ P2

Proof As the parallel composition does nothing else than providing a wrapper

around two individual components, a simple unfolding of Definition 4.4 shows

the hypothesis. The proof is also easily formalised in Isabelle. �

4.2.2 Sequential Composition

Sequential composition is the analogy of the sequential application of two functions

(f ◦ g)(x) = f(g(x)) with respect to the datapaths of the two components to be

composed: the output interfaces of the first component are connected to the input

interfaces of the second component. The principle is illustrated in Figure 4.4.

As mentioned before, composing input and output interfaces of two Mealy

machines can result in unwanted loops: to guarantee an acyclic construction and

to be able to define the inner signals of the composed system locally, at least

one of the two participating Mealy machines has to provide Moore-like interfaces.

This assumption is also captured in Definition 4.5 in order to define the internal

Chapter 4 The Framework 56

signals of the composition in a closed form.

Definition 4.5 (Internal Interface)

Given an output interface (bi, do) with bi ∈̃ i1 ∈ I1 and do ∈̃ω1 (s1, i1) ∈ O1,

and an input interface (bo, di) with di ∈̃ i2 ∈ I2 and bo ∈̃ω2 (s2, i2) ∈ O2, the

corresponding internal interface (b, d) is defined as follows:

• If (bi, do) |= Mooreout , then

b = (ω2 (s2, i2(|di := d |))).bo

d = (ω1 (s1, i1(|bi := T |))).do

• If (bo, di) |= Moorein , then

b = (ω2 (s2, i2(|di := None |))).bo

d = (ω1 (s1, i1(|bi := b |))).do

A sequential composition of two Mealy machines M1 and M2 requires the following

three assumptions to be satisfied:

• The composition is based on a total mapping from M1’s output interfaces

to M2’s input interfaces, i. e. a communication function that map all the

data input signals of M2 to the data output signals of M1 and vice versa for

the corresponding busy signals is required.

• In order for the composed system to implement an n-m standard interface,

the number of busy inputs of M2 has to match the data inputs of M1, and

vice versa.

Chapter 4 The Framework 57

M1

bi1

bo1

do1

di1 din1
dom1bim1

bon1

M2

bi2

bo2

do2

di2 din2
dom2bim2

bon2

Figure 4.4: Schematics of the Sequential Composition

• For each input-output interface pair defined by the communication function,

at least one of the two has to satisfy Mooreout or Moorein .

The first two assumptions are be satisfied if the input and output spaces have

the following form that creates p internal interfaces:

(I1,O1) = (BIp �̃DIn, BOn �̃DOp) (4.30)

(I2,O2) = (BIm �̃DIp, BOp �̃DOm) (4.31)

The list of assumptions can be summarised in the following property:

SComp = there exist p acyclic internal interface pairs (4.32)

A pair of Mealy machines M1, M2 satisfying SComp, i. e. M1,M2 |= SComp, is

called sequentially composable.

In the following, (i, i) with i ∈ [1, p] is used as the mapping for the internal

Chapter 4 The Framework 58

interfaces to simplify notation. This means that output interface i of M1 is

connected to the input interface i of M2. Then, the set of internal interfaces is

given by the following busy and data signals:

IB = (|b1 :B, . . . , bp :B |) (4.33)

ID = (|d1 :α0 option, . . . , dp :αp option |) (4.34)

where each (bi, di) interface is obtained according to Definition 4.5.

Definition 4.6 (Sequential Composition)

The sequential composition of a component pair M1,M2 |= SComp is denoted

M1; ;M2, implements an n-m standard interface, and is defined as:

S = S1×̃LS2 = (|m1 :S1, m2 :S2 |)

s0 = (|m1=s0 1, m2=s0 2 |)

I = BIm �̃DIn

O = BOn �̃DOm

δ = λs, i. (|m1=δ1
(
s.m1, IB �̃ DIn(i)

)
, m2=δ2

(
s.m2, BIm(i) �̃ ID

)
|)

ω = λs, i. BOn
(
ω1 (s.m1, IB �̃ DIn(i))

)
�̃ DOm

(
ω2 (s.m2, BIm(i) �̃ ID)

)
where the labelling L is {(1,m1), (2,m2)}.

The correctness statement for the sequential composition, the corresponding

lemma to Lemma 4.6, is more complex then the one for the parallel composition.

The correctness statement has to take into account that external inputs are turned

into internal ones. These inputs need to become bound variables and substituted

according to Definition 4.5.

Chapter 4 The Framework 59

Lemma 4.7 (Sequential Composition Correctness)

Given M1 , M2 with input signals it1 ∈ I1 and it2 ∈ I2, and let IB and ID

be the internal signals from Equation 4.33 and Equation 4.34. Moreover, let

M = M1 ; ; M2 be the sequential composition of M1 and M2 with input signal

i = λt. BIp(it2) �̃ DIn(it1). Then, if

〈M1, i1〉 |=A1 P1 ∧ 〈M2, i2〉 |=A2 P2

holds, the sequential composition satisfies:

〈M , i〉 |=A P1[BI(it1)/IB] ∧ P2[DI(it2)/ID]

with A = A1[BI(it1)/IB] ∪ A2[DI(it2)/ID].

Proof Similar to the proof of Lemma 4.6, the proof is basically an application

of the definition of sequential composition (Definition 4.6). The formalisation

is more tedious then for parallel composition, but can also be mechanised in

Isabelle. The mechanised proof makes heavy use of sledgehammer to automated

large parts of it. �

4.2.3 Multiplex/Arbitrate Composition

In this section and the next one, two special operators are introduced: the

multiplex/arbitrate composition and the replication operator. They are called

special because they are not just binary operations, but parametrised in their

components. The multiplex/arbitrate composition takes a set of Mealy machines

as an operand, whereas the replication operator is a parametrised unary operator.

Chapter 4 The Framework 60

M1 Mi Ml

dobi

de-multiplex

arbitrate

dibo

Figure 4.5: The Multiplex/Arbitrate Composition

The goal of the multiplex/arbitrate composition is to parallelize l (almost)

arbitrary components in a structured way while maintaining the input and

output interfaces. The only requirement for the l components is that they have

to agree on their interfaces. Thus, for a set of l inner components

M = {M1, . . . ,Ml} (4.35)

the individual interfaces have to match: for all i ∈ [1, l]

(Ii,Oi) = (BIm�̃DIn,BOn�̃DOm). (4.36)

The construction principle is depicted in Figure 4.5. The composed system

maintains the input and output interfaces of a single inner component; the input

Chapter 4 The Framework 61

and output domains of the newly created Mealy machine are then given by:

(I ,O) = (BIm�̃DIn,BOn�̃DOm). (4.37)

The operator is parametrised in two functions: a multiplex function and an

arbitration function. Intuitively, the multiplex component forwards input signals

at input interface i to input interfaces i of an arbitrary subset of internal

components. The arbitration function provides the inverse functionality to

the multiplex function: given the values provided by the i-th output interface of

all l inner components, it generates the value of output interface i of the composed

system.

mux :Opt × (| ibo1 :BIn, . . . , ibol :BIn |) �̃ DIn

→ BOn �̃ (| idi1 :DIn, . . . , idil :DIn |) (4.38)

arb : Opt × BIm �̃ (| ido1 :DOm, . . . , idol :DOm |)

→ (| ibi1 :BIm, . . . , ibil :BIm |) �̃ DOm (4.39)

Similarly to the data modification in Section 4.1.2, this operator also allows for

an additional, optional component in the state space of the combined system.

The optional component is only used by the multiplex and arbitration functions.

OPT = (Opt , opt0 ∈ Opt , δopt : Opt × I ×O → Opt) (4.40)

Note, that in contrast to the step function of the data modification’s optional

component, the step function here also considers the output signals of the

composed system, that is the signal produced by the arbitration component.

Chapter 4 The Framework 62

Taking all components into account, the state space and the initial state of the

composed system are given by:

S = (|m1 :S1, . . . ,ml :Sl, opt :Opt |) (4.41)

s0 = (|m1=s0 1, . . . ,ml=s0 l, opt =opt0 |) (4.42)

The remaining definitions are structured similarly to the definition of the sequential

composition: first, requirements on the inner components are specified, then all

inner signals are defined, and finally the overall composition is formulated in a

compact way using the auxiliary definitions.

Looking at the construction in Figure 4.5, one can see that a “path” through

the system in dataflow direction (data input—mux–inner component—arb—data

output) consists of the sequential composition of three components. The multiplex

function needs to provide Moore-like output interfaces. As it is basically a routing

component, its data output signals should not depend on the busy signals from

the inner components. Note that the multiplex component does not provide

Moore-like input interfaces to the environment, as the busy output signals are

defined as

cmux .bo =
∨
{ibos.ibok | k ∈ [1, l] ∧ cmux.dok 6= None} (4.43)

with cmux = mux (opt , ibos�̃DI(i)) for some input i, inner busy signals ibos,

and current state of the optional component opt . The composed system is busy

if one of the inner components is busy to which the current input data is passed

on to. Hence, the composed system does not provide Moore-like input interfaces.

Chapter 4 The Framework 63

The assumptions on the multiplex function are summarised in the predicate Pmux .

Pmux = (Eq. 4.43) ∧ ∀k ∈ [1, l]. (ibos.ibok.boj, cmux.idik) |= Mooreout (4.44)

The arbitration function has to satisfy similar assumptions, and it has to provide

Moore-like output interfaces. If asel ⊂ [1, l] specifies the set of inner component

indices that contribute to the current data output of the whole system, then the

arbiter needs to forward the busy input to exactly those inner components. All

other busy signals need to be active to prevent any other inner component from

outputting data.

carb.ibok = BIm ∨ (k /∈ asel) (4.45)

where carb = arb (opt ,BI(i)�̃idos) for some input i, inner data outputs idos,

and current state of the optional component opt . The arbitration function

provides Moore-like output interfaces, but not Moore-like input interfaces, like

the multiplex function.

Parb = (Eq. 4.45) ∧ ∀k ∈ [0, l). (carb.ibik, idosk) |= Mooreout (4.46)

Thus, every inner component has to provide Moore-like outputs to avoid cyclic

dependencies. Therefore, the set of inner componentsM has to ensure:

pM = ∀k ∈ [0, l). (Mi.bi,Mi.do) |= Mooreout (4.47)

Using all these assumptions to eliminate dependencies in the definitions, the

inner signals, ibik, idik, ibok, idok, can be defined because only the following

dependencies remain:

Chapter 4 The Framework 64

• idik depends on the external input i.di only.

• idok depends on idik only.

• ibik depends on idoj for all j ∈ [0, l) and the external busy input i.bi.

• ibok depends on ibik and idik.

These dependencies are free from circular, unresolvable ones and the inner signals

can be defined in terms of the operator parameters (mux,arb) and the external

signals. For inputs i and state s, the inner signals are defined as:

idik = (mux (opt, (| ibo0=Tn, . . . , ibol−1=Tn, id=DIi |))).idik (4.48)

idok = (ωk (s.mk, (|bi=Tm, di= idik |))).do (4.49)

ibik = (arb (opt, BI(i) �̃ (| ido0= ido0, . . . , idol−1= idol−1 |))).ibik (4.50)

ibok = (ωk (s.mk, (|bi= ibik, di= idik |))).bo (4.51)

In order to simplify notation in this definition, the names of the inner signals are

also used to refer to the respective inputs or outputs of a component, instead

of introducing more origin-specific signal names. This way it is obvious which

signals are connected to each other.

Definition 4.7 (Multiplex/Arbitrate Composition)

The multiplex/arbitrate composition is an operator parametrised in three

components: mux , arb, and OPT . Its application to a set of Mealy machines

M =
⋃

k∈[1,l]
Mk with matching interfaces (Equation 4.36) is denoted 3M.

If mux |= Pmux , arb |= Parb, and for all k ∈ [1, l]. Mk |= Mooreout , the

components of 3M are: I , O , S , and s0 according to Equations 4.37, 4.41,

Chapter 4 The Framework 65

M0 M0

dobi

de-multiplex

arbitrate

dibo

r times

Figure 4.6: The Replication Operator

and 4.42, and

δ = λs. i. (4.52)

(|m1=δ1 (s.m1, ibi1 �̃ idi1), . . . ,ml=δl (s.ml, ibil �̃ idil),

opt=δopt (s.opt , i) |)

ω = λs. i. (4.53)

(|bo = (mux (opt, (| ibo1= ibo1, . . . , ibol= ibol |) �̃ DI(i))).bo,

do = (arb (opt, BI(i) �̃ (| ido1= ido1, . . . , idol= idol |))).do|)

Chapter 4 The Framework 66

4.2.4 Replication Operator

The replication operator is closely related to the multiplex/arbitrate composition,

but it is less flexible and is has more requirements on the individual components.

The goal is the controlled, parallel execution of r copies of a Mealy machine M

while also maintaining the input and output interfaces of M . Besides requiring

stronger assumptions on the inner components, the construction requires the

multiplex component to select a unique inner component for every possible input,

and the arbitration function to only select a single inner component to output

data from at a given time. A schematic overview is shown in Figure 4.6.

Even though this construction is less flexible than the more generic

multiplex/arbitration composition, the benefit is that a major generic correctness

results about liveness properties can be shown (Theorem 4.8). However, the case

studies in Chapters 5 and 6 show that in many cases the replication operator is

expressive enough to construct a desired transformation.

Replication is also parametrised in a mux function, an arb function, and an

OPT component. Additionally the number of replications, r ∈ N, is a parameter

as well. In contrast to the multiplex/arbitrate composition, replication is a unary

operator on a single Mealy machine M0. The state space and the input domains

are:

(I ,O) = (I0,O0) (4.54)

S = (|m1 :S0, . . . ,mr :S0, opt :Opt |) (4.55)

s0 = (|m1=s0 0, . . . ,mr=s0 0, opt =opt0 |) (4.56)

with an OPT component according to Equation 4.40.

Chapter 4 The Framework 67

The assumptions on the multiplex and arbitration functions are formulated as

a strengthening of the Pmux predicate from Equation 4.44 and the Parb predicate

from Equation 4.46, respectively.

Prmux = Pmux ∧ |{ibos.ibok | k ∈ [1, r] ∧ cmux.dok 6= None}| = 1 (4.57)

Prarb = Parb ∧ |arbsel| ≤ 1 (4.58)

In terms of generic correctness results, this strengthening of the multiplex and

arbitration properties will leverage a much stronger liveness result. For the inner

components, we require Moore-like output interfaces as before. Since the basic

construction is analogous to the one of the multiplex/arbitrate operator, the

internal signals are defined as in Equations 4.48 to 4.51, using ω0 for all inner

components, and parameter r instead of l.

Definition 4.8 (Replication Operator)

The replication operator applied to a Mealy machine M0 , parametrised with

r ∈ N, mux , arb, and OPT is denoted <M0 . If mux |= Prmux , arb |= Prarb, and

M0 |= Mooreout , the components of <M0 are: I , O , S , and s0 as defined in

Equations 4.54, 4.55, and 4.56, and

δ = λs, i. (4.59)

(|m1=δ0 (s.m1, ibi1�̃idi1), . . . ,mr=δ0 (s.mr, ibir�̃idir),

opt=δopt (s.opt , i) |)

ω = λs, i. (4.60)

(|bo = (mux (opt, (| ibo1= ibo1, . . . , ibor= ibor |) �̃ DI(i))).bo,

do = (arb (opt, BI(i) �̃ (| ido1= ido1, . . . , idor= idor |))).do|)

Chapter 4 The Framework 68

To instantiate the replication operator, the individual components need to satisfy

the following assumptions.

1. the inner component component (M0) is correct and ensures liveness,

2. the multiplex function is correct, i. e. mux |= Prmux , and

3. the arbitration is satisfies Prarb , i. e. arb |= Prarb , and is fair with respect to

an active data signal from an inner component.

Assumption 4.9 (Inner Component)

Let M0 be the state machine to be replicated using the replication operator. Then,

M0 has to provide Moore-like outputs, i. e. M0 |= Mooreout , and M0 has to satisfy

liveness:

∀i ∈ [1, n].∀x ∈ dom(dii, I). ¬bto ∧ (diti = Some x)

=⇒ (∃j ∈ [1,m], k ∈ N. dot+k
j = Some fi,j(x))

where fi,j : dom(dii, I)→ dom(doj,O) represents a possible data modification

by M0 from input dii to output doj.

The following theorem states that given Assumption 4.9 and the assumptions on

the multiplex and arbitration functions, the derived system satisfies liveness

Theorem 4.8 (Correctness of Replication)

If the inner state machine satisfies Assumption 4.9, the system obtained using the

replication operator satisfies this assumption again if the multiplex and arbitration

functions ensure the previously mentioned assumptions.

Chapter 4 The Framework 69

Proof The Isabelle proof of Theorem 4.8 is mainly obtained by unfolding

definitions and assumptions. An induction is needed to conclude the stable

input signals for the time interval from Assumption 4.9 and the fairness of the

arbitration function. �

4.3 Transformations

Transformations are used to introduce and add new protocol features. They are

basically operators on Mealy machines: an existing model is extended with the

feature that is modelled by the transformation. More abstractly, transformations

are a feature-focused abstraction layer above the basic framework components.

They are formalised as parametrized, unary operators on Mealy machines and

each implements a specific protocol feature. Transformations are not protocol

specific in general, although they may depend on certain assumptions about the

target system. Naturally, many protocol features are topology-specific or have

implicit dependencies on other features: for example packet reordering implicitly

depends on some other feature that can conditionally delay packets.

Transformations are best introduced with the feature they implement. So, the

details of the transformations covered in this dissertation are presented together

with the case studies in Chapters 5 and 6. This section introduces the features

briefly with a focus on a protocol independent characterisation.

Also, even though transformations are explained together with the case studies,

they are specified in a parametrized form and as protocol-independently as

possible, and only then instantiated for a specific protocol. The features covered

by the transformations are inspired by the case studies from Chapters 5 and 6,

Chapter 4 The Framework 70

but many other widely-used communication protocols implement these features

(or a subset) so that these transformation can also be used to model and verify

other protocols.

This dissertation covers five features of which two are bus protocol specific and

three are specific to packet-based, that is usually point-to-point, protocols.

Pipelining

Bus protocols often implement a transaction-based communication where each

transaction consists of an address phase and a successive data phase: during the

address phase, all the control data is provided by the initiator of a transaction (the

sender); during the data phase the actual payload is exchanged. In the simplest

case, each data phase immediately succeeds its corresponding address phase, and

transactions happen strictly sequentially, one after the other. Pipelining is a

transformation tailored to bus protocols that implement separate control and

data buses, and many of the popular SoC protocol provide such an interconnect:

for example, the Open Core Protocol [OCP05], IBM’s CoreConnect [IBM],

Altera’s Avalon [Alt03], the asynchronous Marble protocol [BF98], the PI-

Bus [Sei94], STMicroelectronics’ STBus [STM], and the Virtual Component

Interface standard [All01]. The first four of those, also have support for burst

transfers; the next feature.

In this context, pipelining refers to pipelining such address-data-phase

transactions: if the interconnect provides physically separate control and data

buses, transactions can be parallelized, such that each data phase happens in

parallel with the control phase of the next transaction. Chapter 5 details the

pipelining transformations as an instantiation of the arbitrate/multiplex operator.

Chapter 4 The Framework 71

The basic idea is to execute two instances of the Mealy machine for sequential

transfers in parallel and use the arbitration and multiplex components to break

the symmetry, to prevent illegal states compared to a purely interleaved execution,

and to combine the outputs properly.

Burst Transfers

Again, considering a bus protocol implementing the address-data-phase

transaction style, a burst transfer is a way to combine sequential transactions of

the same type, i. e. read or write, and to successive addresses into a single one.

For example, if a device core attached to a bus controller wants to read data from

addresses a to a+ b− 1 (with b sufficiently small), the device core can initiate a

burst read transaction from address a of size b.

The idea of the transformation is to expand a burst transaction from the device

core to multiple standard transactions. Chapter 5 defines the burst transfer

transformation as an instantiation of the data modification component.

Virtual Channels

Virtual channels is a feature usually found in packet-based point-to-point protocols.

As the name suggests, it is a feature that simulates multiple communication

channels on top of a single physical one that are (virtually) independent from each

other. In practical terms, this means that virtual channels are used to categorise

and prioritise packets sent over the same physical communication channel.

To achieve this, intuitively, the construction has to provide three basic features:

• Separate send or receive buffers for each virtual channel to handle the data

elements for each channel separately.

Chapter 4 The Framework 72

• A total mapping from data elements to virtual channels, so that each data

element can be mapped to a unique virtual channel. While the uniqueness

is not strictly required for the overall construction, it seems more than

reasonable considering current communication architectures. Mapping a

data element to more than a single virtual channel would also result in

duplication of the element.

• An arbitration function to arbitrate among the different virtual channels

because in the end they have to be sent using the physical channel.

This intuition already shows that virtual channels seem to be a straightforward

application of the replication operator. Chapter 6 details the instantiation within

the PCI Express case study.

Flow Control

Similar to virtual channels, flow control is also a feature tailored to packet-based

point-to-point communication protocols. Its purpose is to prevent packet loss

because a recipient does not have enough buffer space to receive the packet from

the interconnect. Thus, flow control is a mechanism for the sender of a data

element to check whether the receiver has enough space in its local receive buffer

before sending the data element. In addition to a packet-based communication

network, flow control also requires bidirectional communication between sender

and receiver: a data channel, to transport data elements, and a control channel

in opposite direction. Sender and receiver are named according to the direction

of the data channel.

The working principle of a flow control mechanism can be summarised as

Chapter 4 The Framework 73

follows: the receiver implements one or more flow control (receive) buffers to

store data elements. The sender maintains a counter for each of those buffers.

These counters are used to maintain a lower bound on the available space in the

receiver’s buffers. Before transmitting a data element, the sender checks that

the receiver has enough available buffer space using these counters. The control

channel is needed to update the sender’s counter values: the sender can only

track a reduction of available space when a data element is sent. Any increase of

available space, i. e. data moved from a receive buffer to the host system, happens

unnoticed by the sender. Thus, the receiver sends regular updates of the available

space to the sender using the control channel.

Chapter 6 details both the transmit part as well as the receive part of the

transformation. The receive part is realised using a multiplex/arbitrate component,

a replication component, as well as a sequential composition. Thus, even though

is sounds similar to virtual channels, it is a more complex construction. The

transformation for the transmit part, however, can be specified using a simple

data modification component and a sequential composition.

Reordering

Packet reordering is a feature that has an implicit dependency on a feature that

allows for selective packet delaying, such as flow control. The basic idea is to

improve overall performance in case a sender cannot transmit the current data

packet. Then, reordering allows the sender to check whether the next element in

its send buffer can be transmitted. Similar to flow control and virtual channels,

reordering is a feature usually related to packet-based point-to-point architectures.

Moreover, reordering is a transmit-part only transformation.

Chapter 4 The Framework 74

In order for this feature to work in a sensible way, the construction has to

provide the following:

• A selective packet transmit function which specifies if a current data packet

can be transmitted. Among possibly other aspects, this function has to

depend on the current data packet, in order to be selective.

• A set of overtaking rules which specify if two packets may be reordered or

not.

The transformation presented in Chapter 6 assumes the first function to be an

input which is provided by some other feature, such as the flow control mechanism.

The overtaking rules are a parameter of the transformation. This way, reordering

can be specified independently from other features despite its implicit dependency.

Note that the specification does not necessarily depend on the selective packet

blocking: the transformation also works without it, but then there is no benefit

from reordering as packets are never reordered in that case.

Chapter 5

ARM AMBA 2 Advanced High-

Performance Bus

This chapter and the next one present the application of the framework

to two case studies: the AMBA Advanced High-performance Bus protocol

(AHB) from ARM [ARM99] and the PCI Express point-to-point communication

protocol [PS06]. In both cases, crucial parts of the protocol specification are

modelled using incremental modelling and key correctness properties are shown

and maintained during the modelling process. The choice of a bus protocol and a

point-to-point protocol shows the breadth of the methodology.

The Advanced High-Performance Bus protocol is a part of the Advanced

Microcontroller Bus Architecture (AMBA) from ARM. The AMBA specification

consists of three bus protocols:

• The Advanced High-performance Bus (AHB)

• The Advanced System Bus (ASB)

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 76

• The Advanced Peripheral Bus (APB)

The application area of the AHB protocol is high-performance, high clock

frequency system modules where it is meant to act as a system backbone bus.

It supports the efficient connection of processors and on-chip memories. The

ASB protocol is similar to the AHB protocol but omits some of the latter’s

high-performance features. The APB protocol targets the interconnection of

low-power system modules and is optimised for reduced interface complexity. As

the goal of the case study is to show the application of incremental modelling to

complex, high-performance protocols, AHB was chosen as a suitable case study.

The AHB protocol is an arbiter-based, master-slave communication protocol.

A typical communication system consists (at least) of the following components:

• One or more bus masters: a bus master is able to initiate bus operations

(reads or writes) by providing address and control information. Only one bus

master can use the bus at any one time. Typical masters include processors,

DSPs, or test interfaces.

• One or more bus slaves: a bus slave responds to bus operations (reads

or writes) within a given address space. Typical slaves include internal

memories, APB bridges, and external memory interfaces.

• One bus arbiter : the bus arbiter grants bus access to one of the bus masters

and ensures that only one bus master at a time is allowed to initiate a bus

operation. The only restriction on the arbitration algorithm is that it is

fixed. The concrete realisation can be chosen depending on the application

requirements.

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 77

Master
N-1

Master
0

Masters

C
ontrol

M
ux

D
ata

M
ux Slave

M-1

Slave
0

Arbiter

Slaves

control data

write data

read data

ready

request

grant

Figure 5.1: Sample AHB Topology

• One bus decoder : the bus decoder decodes a part of the address information

provided by a master for a bus operation and provides a select signal for

the addressed slave. Thus, the address information of an operation consists

of a part that specifies the addressed slave, and a part that determines the

address within the slave’s address space.

As detailed in the next section, the model presented here abstracts from

the decoder. A schematic overview of a typical AHB communication system

without a decoder is depicted in Figure 5.1. AMBA AHB implements features

required for high-performance systems which include pipelined transactions, burst

transfers, split transactions, single-cycle bus master handover, and non-tristate

implementation. The case study focuses on pipelined transactions and burst

transfers, but the models also provide single-cycle bus handover and a non-tristate

implementation.

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 78

5.1 Bus Signals and Transactions

In the AMBA 2 AHB protocol specification, a single unit of communication

(transaction) between a master and a slave consists of two separate phases: an

address phase and a successive data phase. Each transaction is either a read

transfer or a write transfer. In the first case, an addressed slave delivers locally

stored data to a master; in the second case, the master provides data to be stored

in a slave’s memory.

During the address phase, the master that is granted bus access provides control

data for the transaction. This control data includes an address, which specifies

both the slave and a memory location within the slave, a flag indicating a read

or write transaction, and a flag indicating an idle transfer. An idle transfer is a

special, ‘empty’ transaction: in case the bus is granted to a master that does not

have any data to transmit, the master has to initiate such an idle transfer. This

case can occur because the protocol specification requires that the bus is granted

to some master at all times. An idle transfer is defined formally in Definition 5.3

once all the bus signals have been introduced. In the following, Cbus is used to

refer to the domain of the control bus which is given by:

Cbus = (| trans :B, wr :B, addr :N× N |) (5.1)

Given an element ctrl ∈̃ Cbus, the following semantics applies:

• ctrl.trans = F indicates an idle transfer, whereas ctrl.trans = T signals a

standard transaction.

• ctrl.wr = F specifies a read transfer, and ctrl.wr = T indicates a write

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 79

transfer.

• ctrl.addr = (addrsl, addrmem) addresses slave addrsl and the location

addrmem in that slaves local memory.

During the data phase, either the addressed slave delivers the requested data at

the end of the phase in case of a read transaction, or the master provides the

data to be written during the phase in case of a write transaction. To implement

this bidirectional dataflow between masters and slaves, two bus signals are used:

wdata for write data provided by a master, and rdata for read data provided

by the slaves. In the following, D is the set of possible data elements to be

transferred and stored in the slaves’ memories. Then, the domain of the data bus

Dbus is given by the following labelled tuple:

Dbus = (|wdata ∈ D, rdata ∈ D|) (5.2)

The end of each phase, both address and data phase, is signalled using a special

ready signal rdy which semantically corresponds to the inverse of a busy signal:

the end of a phase is signalled by an active rdy signal. The rdy signal is generated

by the addressed slave. The complete definition of the AMBA communication

bus signals is given in Definition 5.1.

Definition 5.1 (AMBA Communication Bus Signals)

The communication bus at time t is defined as a signal triple

bust = (rdyt, cbust, dbust) ∈ B× Cbus ×Dbus

where the components are:

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 80

rdy

clk

ctrl bus

wdata bus

rdata bus

(read)

data x

(write)

data y

aph dph aph dph

read transaction write transaction

phase

Figure 5.2: Sample Read and Write Transactions

• rdyt is the bus ready signal. A signal rdyt = T indicates the end of an

address or data phase at time t.

• cbust is the value of the control bus at time t as given by Equation 5.1.

• dbust is the value of the data bus at time t as given by Equation 5.2.

Figure 5.2 depicts the bus signals for a sample sequence of a read and a write

transaction with corresponding address and data phases. Note that every phase

ends with an active rdy signal. For the read transaction, the cbus bus provides

the control signals to indicate a data transfer (trans = T), a read transaction

(wr = F), and an address (addr = a1). Thus the value of the cbus bus is (T,F, a1)

(cf. Equation 5.1). At the end of the data phase, the slave provides the requested

data element, say x ∈ D, on the read part of the data bus (rdata). Similarly for

the write transfer: the master provides control signals, say (T,T, a2), during the

address phase, but during the data phase, the master also provides the data to

be written on the write data part of the data bus (wdata). Note that, in contrast

to read data, write data has to be stable for the length of the data phase.

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 81

In order to model the components of the communication system using the

framework from Chapter 4, the interface between the components and the bus

has to obey the standard interface convention, i. e. each interface has to consist

of a busy and a data signal. Slaves have to receive the control data and the write

data from the bus. Read data has to be provided by the slaves. Thus, to attach

a slave Sj for j ∈ [1, NS] and NS is the number of slaves in the communication

system, the bus has to provide two output interfaces—one for control data, one

for write data—and one input interface for the read data.

Ibus,S[j] = (|bictrl :B, biwdata :B, dirdata :D option |) (5.3)

Obus,S[j] = (|bordata :B, doctrl :Cbus option, dowdata :D option |) (5.4)

Analogously, masters produce control and write data, and read data from the bus.

Thus, to attach a master Mk for k ∈ [1, NM] and NM is the number of masters in

the communication system, the bus has to provide two input interfaces and one

output interface.

Ibus,M [k] = (|birdata :B, dictrl :Cbus option, diwdata :D option |) (5.5)

Obus,M [k] = (|boctrl :B, bowdata :B, dordata :D option |) (5.6)

The interface components have to be mapped to the AMBA bus signals from

Definition 5.1. According to the specification, bus signals produced by the masters

are obtained using multiplex circuits, whereas bus signals provided by slaves are

generated using or-trees. The rdy and the dbus.rdata signals are generated by

the slaves. The rdy signal is obtained from the busy inputs produced by the

slaves and the read data output. The semantics is that lowering the busy signal

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 82

or producing read data corresponds to an active ready bus signal. Read data is

simply obtained from a slave that has data to output. Let i = itbus,S, then

rdyt =

NS−1∨
j=0

(¬i[j].bictrl ∨ ¬i[j].biwdata ∨ (i[j].dirdata 6= None)) (5.7)

dbust.rdata =

NS−1∨
j=0

i[j].dirdata (5.8)

Bus access for masters is granted by the arbiter. Thus an additional input

interface is needed to select the signals from the master that has access to a bus.

The arbiter grants access to the control and data buses at time t using two signals:

cgrantt ∈ [1, NM] and dgrantt ∈ [1, NM]. New grant signals are generated when

the bus ready signal indicates the end of a transaction phase.

botA = ¬rdyt ∈ B (5.9)

ditA = (cgrantt, dgrantt) ∈ (N× N) option (5.10)

cbust = itbus,M [cgrantt].dictrl (5.11)

dbust = itbus,M [dgrandt].diwdata (5.12)

Definition 5.2 (AHB Communication Bus)

The AMBA AHB communication bus that connects NM masters and NS slaves

is given by the state machine

(Sbus = ∅, Ibus, Obus, s0 bus = ∅, δbus = (λ s, i.s), ωbus)

where the input and output domains are defined as follows: let j ∈ [1, NM] and

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 83

k ∈ [1, NS], then

Ibus =
∏̃

j
(|birdata,Mj

∈B, dictrl,Mj
∈Cbus option, diwdata,Mj

∈D option |) ◦̃∏̃
k
(|bictrl,Sk

∈B, biwdata,Sk
∈B, dirdata,Sk

∈D option |) ◦̃

diA

Obus =
∏̃

j
(|boctrl,Mj

∈B, bowdata,Mj
∈B, dordata,Mj

∈D option |) ◦̃∏̃
k
(|bordata,Sk

∈B, doctrl,Sk
∈Cbus option, dowdata,Sk

∈D option |) ◦̃

boA

The output function is given by the labelled tuple composed of the following signals:

otbus,M [j].boctrl = otbus,M [j].bowdata = botA = ¬rdyt

otbus,s[k].bordata = F

otbus,M [j].dordata = dbust.rdata

otbus,s[k].doctrl = cbust

otbus,s[k].dowdata = dbust.wdata

The bus signals are defined according to Equations 5.7, 5.8, 5.11, and 5.12.

To illustrate Definition 5.2, imagine a simple system with one master and two

slaves. Then, the input and output domains are given by the following labelled

tuples:

Ibus =(|birdata,M0∈B, dictrl,M0∈Cbus option, diwdata,M0∈D option,

bictrl,S0∈B, biwdata,S0∈B, dirdata,S0∈D option,

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 84

bictrl,S1∈B, biwdata,S1∈B, dirdata,S1∈D option,

diA |)

Obus =(|boctrl,M0∈B, bowdata,M0∈B, dordata,M0∈D option,

bordata,S0∈B, doctrl,S0∈Cbus option, dowdata,S0∈D option,

bordata,S1∈B, doctrl,S1∈Cbus option, dowdata,S1∈D option,

boA |)

To conclude the specification of the bus signals, the previously mentioned concept

of an idle transaction is detailed and formally defined. The AHB specification

requires that bus access is granted to some master at all times. Also, in order

to make progress, the system depends on an active bus ready signal which is

generated by slaves. Thus, the model has to consider the case in which no

master requests bus access and no master has data to be transmitted. While the

specification leaves the arbitration function unspecified, and so does the model

presented here, it is assumed that in case no master requests the bus, the bus

is granted to a default master defM ∈ [1, NM). This master initiates an idle

transaction that is send to a default slave defS ∈ [1, NS) addressing memory

location defM ∈ N. The slave only acknowledges the transaction by raising its

ready output. The control and data bus signals for an idle transaction are given

by the following definition.

Definition 5.3 (Idle Transaction)

The values of the bus signals for an idle transaction are:

ictrl = (| trans = F, wr = F, addr = (defS , defM) |)

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 85

iwdata = None

irdata = None

5.2 Arbiter

The focus of this case study is on the bus master, but to specify a complete

communication system, arbiter and slave are introduced briefly as well.

The arbiter grants bus ownership to one of the masters. The interface between

the arbiter and the communication bus has already been specified in Equations 5.9

and 5.10. The arbiter generates a pair of grant signals

dobus = (cgrantt, dgrantt) ∈ (N× N)option

which specify control (cgrant) and data (dgrant) bus ownership at time t.

A master can request bus ownership from the arbiter by raising a request signal.

This signal is modelled using the busy signal of the simple output interface from

the arbiter to each master. For each master i ∈ [1, NM], the arbiter provides an

output interface

(biM,i, doM,i) ∈ (B, B option) (5.13)

with the following semantics:

reqi = ¬biM,i (5.14)

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 86

doM,i =


Some T : cgrant = i ∧ i ∈ [1, NM]

None : otherwise
(5.15)

granti = (doM,i = Some T) (5.16)

The arbiter is modelled as a simple Mealy machine in the framework. The arbiter

state stores the (current) grant values, the last grant value, a vector of pending

requests from masters, and a flag that indicates which phase the sequential

communication bus is currently in. Thus, the arbiter configuration, the input

record, and the output record are given by:

Sarb =(|cgr :N, dgr :N, preqs :BNM , aph :B |) (5.17)

Iarb =(|bibus :B, biM,1 :B, . . . , biM,NM
|) (5.18)

Oarb =(|dobus : (N× N) option, doM,1 :B option, . . . , doM,NM
option |) (5.19)

s0 arb =(|cgr = defM , dgr = defM , preqs = FNM , aph = F |) (5.20)

The output signals of the arbiter are obtained from the current state in a

straightforward way.

ωarb =λ s, i. (|dobus=Some (s.cgr, s.dgr), doM,1=Some unary(cgr)[0], (5.21)

. . . , doM,NM
=Some unary(cgr)[NM−1] |)

The operator unary defines the unary, or 1-hot, bit vector encoding for a natural

number:

unary(n)[i] = T⇔ n = i for some n ∈ N (5.22)

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 87

The actual arbitration algorithm is modelled using an uninterpreted arbitration

function af that returns a new grant value depending on the current state of the

master and the request signals from the masters.

af : Sarb × BNM → N (5.23)

In order to argue about correctness and liveness of the communication system,

this arbitration function is assumed to be fair with respect to the masters’ request

signals, and, of course, to provide only grant values in the interval [1, NM].

Assumption 5.4 (Valid Arbitration Function)

The arbitration function af has to satisfy the following two properties: for all

st ∈ Sarb and for all reqt ∈ BNM

af(st, reqt) ∈ [1, NM] and

reqti =⇒ ∃ k. af(st+k, reqt+k) = i

Ownership of the bus changes at the end of an address or data phase, thus the

ready signal is used to trigger an update of the grant signals using the af function.

The sequential arbiter updates the grant values at the end of the data phase

and updates both, cgrant and dgrant, at the same time.

δarb,seq =λ s, i. let

cgr′ =


af(s, req1 . . . reqNM

) ¬s.aph ∧ ¬i.bibus

s.cgr : otherwise

dgr′ = cgr′

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 88

preqs′ = s.preqs ∨ (req1 . . . reqNM
)

aph′ =


¬s.aph : ¬i.bibus

s.aph : otherwise

in (|cgr = cgr′, dgr = dgr′, preqs = preqs′, aph = aph′ |) (5.24)

The step function of the pipelined arbiter is similar, but the two grant values are

updated at the end of each phase to support pipelined masters. This also means

that the aph flag is not used in this variant.

δarb,pip =λ s, i. let

cgr′ =


af(s, req1 . . . reqNM

) : ¬i.bibus

s.cgr : otherwise

dgr′ =


s.cgr : ¬i.bibus

s.dgr : otherwise

preqs′ = s.preqs ∨ (req1 . . . reqNM
)

in s(|cgr := cgr′, dgr := dgr′, preqs := preqs′ |) (5.25)

Also note the different update of the dgr field: in the case of pipelining, the

master owning the bus during the data phase is the master that owned the bus

for the preceding address phase.

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 89

5.3 Bus Slaves

The task of a slave is to react to read or write transactions by accessing a local

memory system. A slave provides two input interfaces and an output interface

to connect to the communication bus: one input interface for the control bus,

one input interface for the write part of the data bus, and an output interface to

provide data for the read part of the data bus.

IS =(|birdata :B, dictrl : ((| trans :B |) ∪̃ Cbus) option, diwdata :D option |) (5.26)

OS =(|boctrl :B, bowdata :B, dordata :D option |) (5.27)

Given an address addr ∈ N × N∈̃Cbus, the first element of the pair is used to

address the slave in the communication system and the second element is used

to access the local memory. For simplicity it is assumed that each slave has

a globally unique address, and that every slave checks locally whether a given

address refers to a location private to that slave. Thus, for each slave s ∈ [1, NS],

an active flag, acts ∈ B, indicates whether slave s is the currently addressed slave.

acts(i) = (fst (the i.dictrl.addr) = s) (5.28)

Note that this definition relies on dictrl.addr always being defined, that is not

being equal to None. This is merely for readability, as the definition can easily

being extended to cover the None case.

In case a slave is addressed at the beginning of an address phase with a non-idle

transfer, it has to sample the control data and access the memory system using

this control data during the successive data phase. During the memory access,

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 90

the model accounts for possible memory delay: an (internal) busy signal from

the memory to the slave is used to stall the slave in this case. The delay is given

by an uninterpreted memory-delay function md : N → N where md(t) is the

delay of a memory request started in cycle t. This model does not take into

account a possible dependency of the delay on the access type or varying memory

access times on different slaves, but it is straightforward to extend the model.

For liveness verification purposes, this function has to be bound for all accesses.

Assumption 5.5 (Slave Memory Access Time Bound)

For all times t ∈ N, any access to a slave’s memory system has to be completed

in at most mdmax cycles.

∀ t. md(t) ≤ mdmax

The local memory of a slave is simply a mapping from addresses to data elements:

mem : N→ D. The above prose description is formalised using a simple Mealy

machine which can be specified ad-hoc. The control automaton without state

holding elements is depicted in Figure 5.3. The state space and initial state of a

slave is given by:

SS =(|state :{idle,mreq}, swr :B, saddr :N, sdata :D option,

mem :N→ D,mbusy :B |) (5.29)

s0 S =(|state = idle, swr = F, saddr = 0, sdata = None,

mem = mem0,mbusy = F |) (5.30)

Where mem0 is an arbitrary but fixed initial memory state.

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 91

idle
mreq

¬(rdy∧act)
rdy∧act

mbusy

¬mbusy
memory
access

Figure 5.3: Simple Control Automaton of a Bus Slave

A slave for the pipelined communication system differs only marginally from a

slave for the sequential communication system. There is no specific model for

communication system with burst support because the slave does not need to

change when a master is extended with burst transfers.

The difference between the pipelined and the sequential slave is only the

generation of the bus ready signal: whereas the sequential slave needs to generate

a bus ready at the end of both phases, a pipelined slave only outputs a ready

signal at the end of the data phase. Thus, for both the step function is given by:

δS =λ s, i. let

state′ =


mreq : s.idle ∧ ¬i.birdata ∧ acts(i)

idle : s.mreq ∧ ¬mbusy

s.state : otherwise

swr′ =


(thei.dictrl).wr : ¬i.bordata ∧ acts(i)

s.swr : otherwise

saddr′ =


snd(thei.dictrl).addr : ¬i.bordata ∧ acts(i)

s.saddr : otherwise

sdata′ =


i.diwdata : s.mreq ∧ s.swr

s.sdata : otherwise

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 92

mem′ =


s.mem(s.saddr := thes.sdata) : s.mreq ∧ ¬mbusy

s.mem : otherwise

in (|state = state′, swr = swr′, saddr = saddr′,mem = mem′ |) (5.31)

where f(x := y) denotes the update of a function or mapping f : X → Y at

position x ∈ X with y ∈ Y . The semantics of the busy input is the standard bus

ready interpretation:

rdy = ¬i.birdata (5.32)

As mentioned before, the output function depends on pipelining support. A

sequential slave generates a ready signal at the end of the address phase (via

boctrl) and at the end of the data phase (via bowdata). Both slaves output data

delivered from the local memory system for read transactions.

ωS,seq =λ s, i.

ardy = s.idle ∧ (δS(s, i).state = mreq)

drdy = s.mreq ∧ ¬mbusy

rdata =


Some mem(s.saddr) : ¬s.swr ∧ s.mreq ∧ ¬mbusy

None : otherwise

in (|boctrl = ardy, bowdata = drdy, dordata = rdata |) (5.33)

With the definition of the bus ready signal from Equation 5.7, this generates bus

ready signals at the end of each phase. In the sequential system, the address

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 93

phase last therefore exactly one cycle.

To obtain a slave for a pipelined communication system, only the boctrl output

has to be strengthened such that a slave never generates a ready signal at the

end of the address phase. This can easily be achieved by forcing boctrl to T:

ωS,pip = λ s, i. (ωS,seq(s, i))(|boctrl := T |) (5.34)

Note that this is also a trivial application of the data modification component of

the framework.

5.4 Basic Sequential Master

The sequential communication system represents the basic system which is then

extended with pipelining and burst transfers. The term sequential refers to the

way transactions are put or executed on the communication bus: a sequential

master executes one, single, full transaction after the other, as already depicted

in Figure 5.2. The following sections focus on the incremental construction of

the master needed for the different communications systems as the master is the

most complex component.

Abstract Sequential Transfers

Before detailing the components of the basic, sequential communication system,

the concept of abstract transfers is introduced: abstract transfers abstract an

actual transaction consisting of an address and data phase to a set of time points—

grant time, address phase time, and data phase time—together with the index of

the master to which the transfer belongs and a flag indicating an idle transfer.

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 94

Abstract transfers simplify the following formalisation in two ways: they are used

to formulate key protocol characteristics concisely, and they ease the statement of

the main correctness theorems of the modelling steps as simulation relations. The

convenience of abstract transfers will become evident in the rest of this chapter.

Using the fact that each phase of a transfer is completed by an active bus ready

signal (rdy = T), and abstract sequential transfer is defined as in Definition 5.6.

Definition 5.6 (Abstract Sequential Transfer)

The i-th abstract sequential transfer str(i) is defined in terms of a grant value

gnt ∈ [1 : NM], a single bit isdata ∈ B indicating a idle or data transfer, and

three cycle-accurate time points:

• tg ∈ N is the time when the bus is granted to the master gnt,

• ta ∈ N is the time when the address phase ends, and

• td ∈ N denotes the time when the data phase of transfer i ends.

Thus the i-th abstract sequential transfer is the quintuple

str(i) = (gnt, isdata, tg, ta, td) ∈ [1 : NM]× B× N3

where the components are defined as

gnt =arb.granttg

isdata =


0 : idle transfer

1 : otherwise

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 95

tg =


0 : i = 0

str(i− 1).td : otherwise

ta =min{t > tg | rdyt}

td =min{t > ta | rdyt}

arb.grant denotes the arbiter configuration component specifying the currently

granted master.

From the abstract transfer definition, we can summarise three key protocol

characteristics for this core design step:

1. every transfer consists of an address and a data phase,

2. the end of each phase is defined by the bus signal rdy, and

3. the bus is granted to some master at every time instant.

These characteristics and the definition of an abstract sequential transfer are

illustrated in Fig. 5.4. To ease notation, we define a function i(u, t). It denotes

the next transfer such that tg is greater or equal to t and the bus is granted to

master u.

i(u, t) = min{j | t ≤ str(j).tg ∧ u = str(j).gnt} (5.35)

In case no such minimum is defined, we say i(u, t) = −∞.

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 96

rdy

clk

aph(i) dph(i) aph(i+1) dph(i+1)phase

transfer
i i+1

abstract
time

dph(i-1)

i-1

td(i-1),tg(i) ta(i) td(i),tg(i+1) ta(i+1) td(i+1),tg(i+2)

Figure 5.4: Abstract Sequential Transfers

Sequential Master

The master provides the interface between the communication system and an

attached host system. It handles host requests to transfer data. Intuitively, a

AHB master works as follows: if the master is not busy with a transaction, the

host can request a transaction by providing the control data and possibly the

write data to the master. The master starts the transfer by checking if it is

already granted the bus and, in case it is not, by requesting bus access from the

arbiter. Once the bus is granted and a new bus transaction is about to start, the

master outputs the control data of the transfer to the bus. During the data phase

of the transaction, the master either provides the write data on the data bus, or

it reads the read data from the data bus at the end of the phase. Note that a

host system is not allowed to be busy, so received data can be directly forwarded

to the host system. The sequential master is the main component in the basic

communication system.

The send part of the sequential master is constructed by a sequential

composition of a simple send buffer and a data modification component to

implement the control. The receive part is only depicted in Figure 5.5 since it

only forwards bus data right away to the host, i. e. it is just a wire, while providing

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 97

zero-delay
send buffer
of size 1

bohost dihost

boarb
diarb

dowdatadoctrl biwdatabictrl

data mod.
control

automaton

bihost dohost

dirdatabordata

idoibi

Figure 5.5: Schematics of the Sequential Master

the following two interfaces:

IMSeq,r =(|bihost :B, dirdata :D option |) (5.36)

OMSeq,r =(|bordata :B, dohost :D option |) (5.37)

In the following, the construction of the sender part is detailed. The sender

provides two output interfaces to the communication bus: for control data (ctrl)

and for write data (wdata). It also provides two input interfaces: one form the

host (host) and one from the arbiter (arb). Let C = (|wr ∈ B, addr ∈ N × N |),

then

IMSeq,s =(|bictrl :B, biwdata :B, diarb :B option,

dihost : (|hctrl ∈ C, hwdata ∈ D option |) option |) (5.38)

OMSeq,s =(|boarb :B, bohost :B,

doctrl : ((| trans ∈ B |) ∪̃ C) option, dowdata :D option |) (5.39)

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 98

The first part of the sender is the send buffer. As mentioned above, the bus

controller serves one host request at the time, i. e. while processing a read or

write transaction the bus controller signals the host that it is busy by activating

the host busy output bohost. Additionally, the buffer has to ‘notify’ the control

automaton when the host requests a data transmission. A simple zero-delay

buffer of size 1 provides all these properties. Also recall that the buffer provides

Moore-like output signals.

Definition 5.7 (Send Buffer of the Sequential Master)

The sequential master uses a zero-delay buffer of size 1 as a send buffer.

SBMseq = (C × D option) zbuf (5.40)

For the second part of the sender, an instantiation of the data modification

component is used to model a control automaton for the bus access, denoted Mc.

The instantiation has to provide the inputs and outputs from Figure 5.5:

Ic = (|bictrl :B, biwdata :B, (5.41)

diarb :B option, ido : (|hctrl :C, hwdata :D option |) option |)

Oc = (|boarb :B, ibi :B, (5.42)

doctrl : ((| trans :B |)∪̃C) option, dowdata :D option |)

In case the host requests a data transfer, the control automaton has to perform

the following steps: in case the bus is not already granted to the master, it has

to request bus access from the arbiter. Once the bus is granted to the master

and the next address phase starts—indicated by an active rdy signal—it has to

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 99

output the control data during the address phase. During the data phase, it has

to provide the data to be written or has to sample read data at the end of the

data phase. Additionally, the master has to perform an idle transaction in case

it is granted the bus but there is no data to transmit. The automaton to be

implemented using the OPT part of the data modification component is depicted

in Figure 5.6. The following auxiliary signals are used to define the automaton:

startreqt = (it.ido = Somex) (5.43)

for some x ∈ (|hctrl :C, hwdata :D option |)

grantt = (it.diarb = SomeT) (5.44)

rdyt = ¬i.bictrl (5.45)

The automaton has three states: idle, address phase (aph), and data phase (dph).

Additionally, a flag itrans indicates that an idle transfer is needed. Thus, the

state space and initial state of OPTc are given by:

Optc = (|state :{idle, aph, dph}, itrans :B |) (5.46)

opt0c = (|state= idle, itrans=F |) (5.47)

Given an input assignment i ∈ Ic, the automaton state opt.state is updated

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 100

idle address
phase

data
phase

¬(rdy∧grant)

rdy∧
grant

¬rdy

rdy∧grant

¬rdy

rdy∧¬grantstartreq∧¬grant

rdy

Figure 5.6: Control Automaton for the Sequential Master

according to the following definition:

state′ =



idle : (opt.state = dph) ∧ i.rdy ∧ ¬i.grant

aph : (opt.state = idle) ∧ i.rdy ∧ i.grant ∨

(opt.state = dph) ∧ i.rdy ∧ ¬i.grant

dph : (opt.state = aph) ∧ i.rdy

opt.state : otherwise

(5.48)

The itrans flag indicates that an idle transfer is in progress. Therefore, it has to

be set to T in case a master has to start a transaction, but there is no data to

be send. A master has to start transmitting if the rdy and the grant inputs are

active while the control automaton is in the idle state. Once the flag is set, it

has to be unset at the end of the idle transfer in case there is no consecutive idle

transfer afterwards. A transaction finishes with an active ready signal in the dph

state. The flag is unset if the bus is not granted any more, or the bus is granted

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 101

but there is now data to be transmit.

itrans′ =



T : (opt.state = idle) ∧ i.rdy ∧ i.grant ∧

(ido = None)

F : (opt.state = dph) ∧ itrans ∧

(¬i.grant ∨ i.grant ∧ (ido 6= None))

opt.itrans : otherwise

(5.49)

Using Equations 5.48 and 5.49, δopt,c is defined by:

δopt,c = λ opt. i. (|state=state′, itrans= itrans′ |) (5.50)

To complete the specification of Mc, all the outputs have to be defined and the

data modification needs to be instantiated. Mc has to output control data when

the state machine is in the address phase state and possibly write data while

in the data phase. The data output on the control bus is extended with the

information about whether the transfer is an idle transfer or an actual data

transfer; the trans component of the control bus (cf. Definition 5.1).

dctrl (opt, ido) =



Some ((| trans = T |) : (opt.state = aph)

∪̃ (the ido).ctrl) ∧ ¬opt.itrans

Some idlectrl : (opt.state = aph)

∧ opt.itrans

None : otherwise

(5.51)

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 102

dwdata (opt, ido) =



Some (the ido).wdata : (opt.state = dph)

∧ ¬opt.itrans

Some idlewdata : (opt.state = dph)

∧ opt.itrans

None : otherwise

(5.52)

The busy signal ibi going from Mc to the send buffer is used to keep data in

the send buffer until it has been send completely. Therefore, the busy signal is

deactivated only at the end of the data phase. The remaining output is the busy

output to the arbiter: it is used to request the bus from the arbiter.

sbb opt = ¬(opt.rdy ∧ (opt.state = dph) ∧ ¬opt.itrans) (5.53)

arb i = startreq ∧ ¬grant (5.54)

Definition 5.8 (Control Automaton for Sequential Master)

The control automaton for the sequential master Mc is defined as the data

modification DM(mathitOPTc, fc, gc) with the following components:

• OPTc = (Optc, opt
0
c , δopt,c) as defined in Equations 5.46, 5.47, and 5.50.

• f = λ s. di. (|doctrl=dctrl (s.opt, di.ido), dowdata=dwdata (s.opt, di.ido) |)

• g = λ s. i. (| ibi=(sbb s.opt), boarb=(arb i) |)

The complete send part of the sequential master is given by the sequential

composition of MMSeq and Mc. The full sequential master is the parallel

composition of the send and receive part.

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 103

Definition 5.9 (Sequential Master)

The sequential master is defined as

Mseq = (SBMSeq; ;Mc)||Mrcv (5.55)

5.5 Pipelined Master

Previous chapters already discussed that pipelining refers to parallelizing address

and data phases on the communication bus, taking advantage of physically

separate buses for control information and data. The idea is to execute the

address phase of a transfer in parallel with the data phase of the previous transfer,

relative to the interconnect. The length of each phase is then only defined by the

length of the data phases of each transfer.

In the following, the notion of an abstract transfer is applied to the pipelined

system. The pipelining transformation is detailed afterwards and, at the end of

this section, applied to the sequential master from the previous section.

Abstract Pipelined Transfer

The definition of an abstract pipelined transfer is almost equivalent to the

definition for the sequential system. The key property of pipelining, the

parallelized phases, is represented by moving the grant time of a transfer i

from the end of the data phase of transfer i− 1 to the end of the address phase of

that transfer. In the model of abstract transfers, this is the only chance required

to represent pipelining. Fig. 5.7 shows a sequence of pipelined transfers as an

example.

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 104

rdy

clk

dph(i-1) aph(i+1) dph(i+1) aph(i+3)

phases

transfers i

i+1

abstract
time

aph(i-1)

i-1

td(i-2),
ta(i-1),
tg(i)

td(i-1),
ta(i),
tg(i+1)

td(i),
ta(i+1),
tg(i+2)

td(i+1),
ta(i+2),
tg(i+3)

td(i+2),
ta(t+3),
tg(t+4)

aph(i) dph(i) aph(i+2) dph(i+2)dph(i-2)

i-2 i+2
i+3

Figure 5.7: Sequence of Pipelined Transfers

Definition 5.10 (Abstract Pipelined Transfer)

The i-th abstract pipelined transfer ptr(i) is given by the tuple

(gnt, isdata, tg, ta, td) where the components are defined as:

tg =


0 : i = 0

ptr.ta : otherwise

x =trseq(i).x for x ∈ {gnt, isdata, ta, td}

5.5.1 Pipelining Transformation

Pipelining of transfers on the bus means parallelizing the execution of address and

data phases of two consecutive transfers. Naturally, the transformation is therefore

based on the duplication of sequential masters using the multiplex/arbitrate

composition. Two observations are worth pointing out at this point:

• The replication operator, although preferable over the multiplex/arbitrate

composition in general, cannot be applied here because the arbitration

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 105

relation has to output data from more than a single inner component at the

same time.

• If bus ownership changed after every transfer, for example if the arbiter

implemented a strict round-robin policy, there would not be any need to

transform a master. The master only has to be transformed to support the

local execution of a address and data phase simultaneously, which is only

the case if a master owns the bus for at least two consecutive transfers.

The core idea behind the transformation is to execute two copies of the sequential

master in parallel, and use the multiplex and arbitrate components to constrain

allowed executions with respect to a purely interleaved one. The key question

is which are the necessary constraints and how to realise them. Considering the

Mealy machine for the sequential master from Figure 5.6 and Definition 5.9, the

following intuitive constraints can easily be seen:

• There must not be any phase contention, thus the two control automatons

cannot both be in the aphase state or the dphase state.

• If both automata are in a non-idle state, then either both or none of them

have to change state. So both automatons must end phases at the same

time.

• An (artificial) rule has to resolve the symmetry in the construction and to to

specify the master that initiates the first transfer is a sequence of consecutive

pipelined transfers. Examples for such rules are: the first master, i. e. the

master with the lowest index, starts, or transfers are partitioned into even

and odd transfers between the two masters (with respect to the abstract

transfer index).

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 106

Recall from Definition 4.7 that the multiplex/arbitrate operator is parametrised

in three parameters: a multiplex relation mux, an arbitration function arb, and

an optional component OPT , which includes state space Opt , initial state opt0 ,

and update function δopt. The instantiated operator is then applied to a set of two

sequential masters, the send parts to be precise, to obtain the pipelined master.

Mpipe,snd = �{M1,seq,snd,M2,seq,snd} (5.56)

In the following, the instantiation is specified using the signal names according to

the AHB specification, i. e. startreq, grant, rdy, instead of the framework signals

only based on busy and data signals. This improves readability significantly

and the formal mapping from busy-data-interfaces to AHB signals has been

established in the previous sections. Also, let Mi be a shorthand for Mi,seq,snd

(i ∈ {1, 2}).

To resolve the symmetry issue, this transformation always uses M2 to initiate

the first transfer in a series of transfers, which means that M2 is exclusively used

for pipelining. To achieve this, the mux and arb components have to ensure that

• any data from the device core is only passed to the second master if at the

end of a bus address phase, the first master is locally in an address phase

and the master has still ownership of the bus, and

• the second master cannot request the bus from the arbiter as it might result

in lost requests.

First, we detail the instantiation of the arbitration functions. It has to ensure

that an active ready signal is always passed to M1, but to M1 only if M0 is in the

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 107

address phase. M0 is in the address phase if, and only if, it outputs control data.

rdyt1 =i
t.rdy (5.57)

rdyt2 =i
t.rdy ∧ (idot1.doctrl 6= None) (5.58)

For the data outputs, the arbitrate functions simply forwards any data the

sequential master output and relies on the fact that there is no phase contention.

dotctrl =


idot2.doctrl : (idot2.doctrl 6= None)

idot1.doctrl : otherwise
(5.59)

dotwdata =


idot2.dowdata : (idot2.dowdata 6= None)

idot1.dowdata : otherwise
(5.60)

Equations 5.57–5.60 specify the arbitration component arbpipe since the arbitration

does not rely on any OPT component.

The multiplex function has to ensure that only M1 requests the bus from the

arbiter. This is achieved by passing any data from the device core to the M1

unless M1 is in the address phase at time ta (end point of address phase) and

the grant signal is still active. This is also the only time, the M2 busy signal is

forwarded to the host. In order to realise this with the multiplex component, the

current control automaton state of M0 is required. As the multiplex component

has to access to the local configuration of M0, the OPT component, OPTpipe is

used to provide this information.

Opt =(|m0state :{idle, aph, dph}|) (5.61)

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 108

opt0 =(|state = idle |) (5.62)

δopt =λs, i, o. δ0(s, i).Mc.state (5.63)

Using this OPT component, the multiplex function muxpipe can be specified

according to the above prose.

idit1.dihost =i
t.dihost (5.64)

idit1.diarb =i
t.diarb (5.65)

idit2.dihost =


it.dihost : (optt.m0state = aph) ∧ grantt

None : otherwise
(5.66)

idit2.diarb =


it.diarb : (optt.m0state = aph) ∧ grantt

None : otherwise
(5.67)

Definition 5.11 (Pipelining Transformation)

The pipelining transformation for a AHB sequential master Mseq is given by an

instance of the arbitrate/multiplex composition operator.

PipeTr = �[arbpipe ,muxpipe ,OPT pipe] :Mealy set→Mealy

The transformation is applicable to a set of two copies of the sequential Master’s

send part.

Definition 5.12 (Pipelined Master)

Using the transformation from Definition 5.11 and let Msnd = (SBMSeq; ;Mc),

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 109

then a pipelined master for AMBA AHB is given by:

Mpipe = PipeTr{Msnd,Msnd}||Mrcv

5.6 Master with Burst Transfer Support

Burst transfers is a feature for the host system, which is connected to a bus

controller, to initiate a sequence of transfers with consecutive addresses that is not

interrupted. If the host system initiates such a burst transfer, it has to provide a

burst size together an address as well. For example, a burst transfer of size s to

address a accesses s-many data elements from address a to a− s− 1. This model

supports burst transfers of arbitrary, but fixed length.

The transformation for burst transfers is general enough to be independent

from pipelining. Thus the transformation is applicable to both masters, sequential

and pipelined. In the very few instances in which the transformation has to be

specific about the master, the flags isseq and ispipe are used to indicate the

respective masters.

Before detailing the transformation, the definition of an abstract transfer is

adapted to burst transfers.

Abstract Burst Transfer

The necessary changes to the abstract transfer definitions for the previous masters

are more significant than before. To keep track of burst transfers, a new component

bs ∈ N specifies the burst size of a transfer. In case the transfer is not a burst

transfer, bs is set to 0.

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 110

In case of a burst transfer, the end of the address phase is not a unique time

point anymore, but a partial function mapping address phase end times to sub-

transfer, a single transfer with a burst transfer. Figure 5.8 depicts an illustrating

example for the sequential case.

Definition 5.13 (Abstract Burst Transfer)

The i-th abstract burst transfer btr(i) is defined as the tuple

(gnt, isdata, tg, ta, td, bs) ∈ [1 : NM]× B× N× (N→ N)× (N→ N)× N

where the individual components are:

gnt = {s, p}tr(i).gnt

isdata = {s, p}tr(i).isdata

tg =


0 : i = 0

btr(i− 1).ta(btr(i− 1).bs) : i > 0 ∧ ispipe

btr(i− 1).td : i > 0 ∧ isseq

ta(n) =



min{t > tg | rdyt} : (bs = 0) ∨ n = 0

min{t > ta(n− 1) | rdyt} : 0 < n < bs ∧ ispipe

min{t > td(n− 1) | rdyt} : 0 < n < bs ∧ isseq

undefined : otherwise

td(n) =


min{t > ta(0) | rdyt} : (bs = 0)

min{t > ta(n) | rdyt} : 0 < n < bs

undefined : otherwise

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 111

rdy

clk

aph aph dph aphphases

transfers i

abstract
time

dph

td(i-1)(0),
tg(i)

td(i)(0)
td(i)(1),
tg(i+1)

td(i+1)(0),
tg(t+2)

i-1 i+1

bs(i)=3

dph

ta(i)(0) ta(i)(1) ta(i+1)(0)

bs(i+1)=0

dph

burst
size

bs(i+2)=0

Figure 5.8: Sample Burst Transfers

bs = bm
ta(0)
gnt .bs

The main difference between this definition and the previous one is the case split

on actual burst transfers. For a non-burst transfer the above definition resolves to

one of the previous transfer definitions depending on the system we are extending.

5.6.1 Transformation for Burst Transfers

Similar to the pipelining transformation, the burst transformation is a

transformation for the send part of the master only. It instantiates the data

modification component from the framework, which is then combined with an

existing send part using sequential composition. The intuition behind this

transformation is the following: the transformation has to adapt the interfaces

between master and host, and master and arbiter such that

• if the host requests a burst transfer, the old master is used to generate

a sequence of non-burst transfers on the bus which are observationally

equivalent to the burst transfer (from the host),

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 112

• during a burst transfer, the data modification component stalls the host by

strengthening the busy signal except for new write data,

• to maintain bus ownership for the duration of the burst transfer, the arbiter

has to now about the burst transfer and its size.

The host and arbiter interfaces of the sender part of a sequential or pipelined

master are (cf. Equations 5.38 and 5.39):

reqM = (biarb ∈ B, doarb ∈ B option) (5.68)

gntM = (boarb ∈ B, diarb ∈ B option) (5.69)

hostM = (bohost ∈ B, dihost ∈ (|hctrl :C, hwdata :D option |) option) (5.70)

where the host control data is given by:

C = (|wr :B, addr :N× N |) (5.71)

The interface to the host is modified by extending the control data with a field

for the burst size.

Cbs = C◦̃(|bs :N |) (5.72)

hostM,bs = (bohost ∈ B, dihost∈̃(|hctrl :Cbs, hwdata :D option |) option) (5.73)

Similarly, the interface to the arbiter is extended with the size of the bust access.

The arbiter uses this information to count the number of individual transactions

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 113

for which the bus ownership cannot change.

reqM,bs = (biarb ∈ B, doarb ∈ N option) (5.74)

Recall from Definition 4.3 that the data modification need to be instantiated by

providing two functions: a data modification function

f : S ×DIn → DOm

and a busy signal strengthening function

g : S × I → BOm.

The component also allows for an optional component

OPT = (Opt , opt0 , deltaopt)

which is used to store control data and the address counter needed to generate a

series of individual transfers.

First the OPT component needs to be instantiates so that it can store control

data for a transfer and a counter values for address computation.

Optbs = (|bwr :B, baddr :N× N, bs :N, caddr :N |) (5.75)

opt0bs = (|bwr = F, baddr = (defS, 0), bs = 0, naddr = 0 |) (5.76)

The update function δopt is also straightforward, but tedious because there are

many different case to cover: if the bus controller is idle and the host initiates a

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 114

non-burst transfer, nothing changes as these requests are simply forwarded to the

old sender part; however if that transfer is a burst transfer, then the first transfer

is immediately forwarded, but all the control data is also stored, and the next

address field naddr is set to the base address, the first address, plus one. Then,

each time the old send part indicates the start of a new transfer (inactive busy),

the data modification composes control data using naddr as address, increments

naddr, and in case of a write transfer new data from the host. The burst transfer

ends if naddr is equal to baddr + bs.

δopt,bs = λ opt, i. let

(bwr′, baddr′, bs′) =



thei.dihost.hctrl : v(i.dihost) ∧

the i.dihost.hctrl.bs > 0

(F, (defS , 0), 0) : bdone(opt)

(opt.bwr, opt.baddr, opt.bs) : otherwise

naddr′ =



baddr′ + 1 : v(i.dihost)

naddr′ + 1 : ¬i.biM ∧ (bs′ 6= 0)

0 : bs′ = 0

naddr′ : otherwise

in (|bwr=bwr′, baddr=baddr′, bs=bs′, naddr=naddr′ |) (5.77)

where the predicate bdone(opt) indicates that the last address phase of the burst

transfer has just pasted (ta(bs− 1)).

bdone(opt) = (opt.baddr + opt.bs = opt.naddr)

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 115

The busy strengthening function has to ensure to keep the busy signal active

during burst read transfers. During burst write transfers, the host provides a

new chunk of write data every time a new sub-transfer is generated, so the busy

signal has to be lowered and can simply be forwarded from the old master. The

busy signal to the arbiter is unmodified.

gbs = λ s, i. (|bohost = (i.bohost ∨ (s.opt.bs > 0 ∧ ¬s.opt.bwr)),

boarb = i.boM,arb |) (5.78)

Lastly, the actual data modification function f has to be instantiated. The

generation of sub-transfers has already been elaborated above. The missing

modification to complete the instantiation of f is the modification of the arbiter

output interface: in case the sequential or pipelined master requests the bus

from the arbiter, the Boolean value of the former doarb signal is replace with a

corresponding natural number: 0 in case of a standard transfer, and bs is case of

a burst transfer.

fbs = λ s, i. let

arbo =


Somes.opt.bs : i.doarb

None : otherwise

hctrlo =



(|wr = (the i.dihost).wr,

addr = (the i.dihost).addr |) : v(i.dihost) ∧ s.opt.bs = 0

(|wr = s.opt.bwr, addr = s.opt.naddr |) : s.opt.bs > 0

(|wr = F, addr = 0 |) : otherwise

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 116

hwdatao =


(the i.dihost).hwdata : v(i.dihost)

None : otherwise

hosto =


Some((|hctrl = hctrlo |)◦̃hwdatao) : v(i.dihost) ∨ s.opt.bs > 0

None : otherwise

in (|doarb=arbo, dohost,M =hosto |) (5.79)

Definition 5.14 summarized the construction of the transformation and

Definition 5.15 specifies a master with burst support.

Definition 5.14 (Burst Support Transformation)

The transformation that adds support for burst transfers to either a sequential

or a pipelined master, consists of the sequential composition of the source Mealy

machine and the data modification component as defined above.

BurstTr = λM. DM [gbs, fbs,OPT bs]; ;M : Mealy → Mealy

where M has to provide matching interfaces for reqM and hinM .

Definition 5.15 (Master with Burst Support)

Given a sequential master Mseq = (SBMSeq; ;MC)||Mrcv, a sequential master with

support for burst transfers is given by

Msbst = (BurstTr(SBMSeq; ;MC))||Mrcv

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 117

A master with support for pipelined and burst transfers is given by

Mpbst = (BurstTr P ipeTr {SBMSeq; ;MC , SBMSeq; ;MC}) ||Mrcv

5.7 Related Work

A lot of work as been done on the ARM AMBA 2 protocol, as it is a widely used,

high-performance, and especially open, bus protocol protocol.

Amjad [Amj04, Amj06] has done a lot of work on AMBA and has verified

latency, arbitration, coherence, and deadlock freedom properties of a simplified

AMBA model. In his more recent contribution, he combines theorem proving

in HOL with model checking to reduce the verification, or theorem proving,

effort of showing various control and datapath properties. Amjad provides a

comprehensive verification effort of the AMBA protocol, however his modelling

and verification approach relies, like most existing work, on monolithic modelling

and post-hoc verification.

Roychoudhury et al. [RMK03] also tackle the verification of the AMBA protocol,

but in contrast to Amjad’s work this work builds on model checking only. The

authors formalise an academic version of the AMBA specification and use the SMV

model checker to verify certain design invariants. As the author’s verification

approach is solely based on the SMV model checker, the work is based on

monolithic modelling and post-hoc verification, similar to most existing work on

specific protocols.

Finally, D’silva et al. [DRS04] use the AMBA protocol as a case study

to illustrate the application of their framework for modelling on-chip bus

Chapter 5 ARM AMBA 2 Advanced High-Performance Bus 118

architectures. Their framework is also based on synchronous finite state machines,

thus the basic modelling approach is comparable with the one presented in this

dissertation. However, the authors focus in their work on compatibility verification,

interface synthesis, and model checking with automated specifications, which

distinguishes their work from the work here: our focus is on generality and support

for incremental modelling and verification.

Overall, most existing work on AMBA protocol verification relies on monolithic

modelling and post-hoc verification. It is also important to note that the aim of

this work is not to provide another verification of a specific protocol, but a generic

framework. Therefore, the presented work does also not attempt to “match” the

comprehensive verification effort of previous work on the AMBA protocol, such

as Amjad’s or Roychoudhury’s contributions.

Chapter 6

PCI Express 2.0

As a second case study, the PCI Express protocol [PS06], in particular its

transaction layer, is modelled using the framework. PCI Express is a serial, high-

performance, point-to-point interconnect, implementing communication between

two devices using dual uni-directional paths. In contrast to a bus protocol, such

as the AHB protocol from the previous chapter, a point-to-point protocol does

not need any arbitration among the devices for access to the interconnect; every

PCI Express controller has exactly one neighbour which is the receiver for the

controller’s transmit channel and the sender for the controller’s receive channel.

The PCI Express Base Specification defines four types of basic PCI Express

elements in an interconnect:

• Root complex : a root complex is the head or root of an interconnect hierarchy

which can provide several PCI Express interfaces to attach other PCI Express

elements. Every interface off the root complex constitutes an independent

hierarchy domain and communication across these domains is not required

by the standard.

Chapter 6 PCI Express 2.0 120

• Switches: a switch is used to fan out a PCI Express hierarchy, so it is

similar to a root complex in the sense that it provides more than a single

PCI Express interface to attach other PCI Express elements. However,

downstream devices attached to a switch belong to the same hierarchy

domain and a switch has to manage communication among them. The

sole purpose of a switch is to direct and forward transactions to the right

interface.

• Endpoints: an endpoint is a device implementing a single PCI Express

interface that can request and/or complete PCI Express transactions.

• PCI Express to PCI bridges : a PCI Express to PCI bridge is similar to an

endpoint in the sense that it implements a single PCI Express port, but

provides one or more PCI bus interfaces instead of acting as a “proper”

endpoint in the system.

A schematic of a typical PCI Express interconnect network is shown in Figure 6.1.

Note that this work focuses on modelling a single PCI Express port with transmit

and receive part, which can be considered as focusing on modelling an endpoint.

This part of the PCI Express specification implements the actual communication

protocol features and is needed for all the elements listed above.

Similar to the AHB protocol, PCI Express communication is also transaction-

based, but the single unit of communication that constitutes a transaction is

fundamentally different: PCI Express is a packet-based protocol which means

every item of communication contains a proper header field that provides all

required control data for the transaction. A PCI Express transaction is initiated

by a sender by transmitting a request packet to a receiver. Since not every request

Chapter 6 PCI Express 2.0 121

root
complex

switch

endpoint endpoint endpointendpoint

PCI Express

PCI Express

PCI Express endpoint
endpoint

endpoint

PCI Express

PCI Express

PCI Express

PCI Express

PCI Express

Figure 6.1: Sample PCI Express Topology

packet requires a response, a transaction can consist of either a single packet from

a sender, or of a request-completion packet pair, in which case the receiver has to

send a response packet back to the sender.

The PCI Express specification defines four different transaction types:

memory transactions, I/O transactions, configuration transactions, and message

transactions. Memory transactions are used to transfer data to or from memory

or a memory-mapped location, and in order to implement the data transfer,

there are three different types of memory transactions: memory read request,

memory read completion, memory write request. Note that there is no memory

write completion to acknowledge the write request. I/O transactions are similar

to memory transactions but for I/O-mapped locations. In contrast to memory

transactions, there is a I/O write completion transaction in addition to the other

three transactions.

The remaining two transaction types are PCI Express device specific and not

“general-purpose” transactions like the previous two: configuration transactions

are used for device configuration and setup, and message transactions are used for

inter-device communication such as interrupt signalling or power management.

Chapter 6 PCI Express 2.0 122

Transaction Type Subtypes
Memory Read Request (MRd), Read Completion (CplD),

Write Request (MWr)
I/O Read Request (IORd), Read Completion (CplD),

Write Request (IOWr), Write Completion (Cpl)
Configuration Read Request (CfgRd), Read Completion (CplD),

Write Request (CfgWr), Write Completion (Cpl)
Message Request w/o Data (Msg),

Request with Data (MsgD)

Table 6.1: Transaction Types

As this case study is considering abstract packets as transactions, the specifics

about the different transaction types are not detailed here, but simply summarised

in Table 6.1. Note that the completions for the different transaction types are not

transaction specific but generic, and only differ in having payload (Completion

Data; CplD) or not having any payload (Completion; Cpl).

Finally, a PCI Express protocol interface is defined in terms of three abstract

protocol layers, similar to the TCP protocol specification: the transaction layer,

the data-link layer, and the physical layer. The layer hierarchy is depicted in

Figure 6.2. On the lowest abstraction level, the physical layer is responsible for

the actual transmission of a transaction (or the bits of a transaction) across a PCI

Express link. The data-link layer’s responsibility is to establish a fault-tolerant

communication to the direct link neighbour. The transaction layer provides the

abstraction of a logical, endpoint-to-endpoint, transaction-based communication.

This thesis focuses on the transaction layer as it implements complex features

that are known to be hard. Also, the higher abstraction level compared to the

AMBA AHB protocol strengthens the flexibility of the framework.

The interested reader may consult Wilen et.al.’s Introduction to PCI

Express [WST03] for a more comprehensive general introduction, or Budruk et.al.’s

in-depth description and reference, PCI Express System Architecture [BAS03],

Chapter 6 PCI Express 2.0 123

device core

transaction layer
TX

link out link in

RX

transaction layer

transaction layer
TX RX

transaction layer
TX RX

Figure 6.2: The PCI Express Protocol Stack Layers

which provides a detailed, feature-focused discussion of the protocol.

6.1 Transaction Layer

The transaction layer is the uppermost layer of the protocol stack. It provides

logical endpoint-to-endpoint communication between sender and receiver of a PCI

Express transaction. The unit of communication on transaction-layer level is a

transaction layer packet (TLP). As already depicted in Figure 6.2, the transaction

layer only communicates with the device core and the data-link layer: it receives

requests and completions from the device core and relies on the data-link layer

for correct communication with the rest of the PCI Express subsystem. The key

features implemented by the transaction layer are:

• virtual channels for prioritisation and categorisation of packets,

• flow control to avoid packet loss because a recipient has no buffer space, and

Chapter 6 PCI Express 2.0 124

TLP encoding

Send Buffer
sb

Receive Buffer
rb

TLP decoding

Transmit
(TX)

Receive
(RX)

TLPs

Host Data

Device Core

Data-Link Layer

Figure 6.3: The Basic Transaction Layer

• TLP reordering to increase performance under high loads.

This case study details the incremental modelling of a transaction layer that

supports all those features: first, a simple, basic transaction layer, implementing

none of these features, is specified. Then, this model is extended using

transformations and framework components to support the features.

The Basic Model

The basic transaction layer only encodes and decodes TLPs, and provides simple

send and receive buffers. If there is a transmission request from the device

core, the transmit part (TX) encodes a TLP and adds it to the send buffer.

Packets waiting in the send buffer are forwarded to the data-link layer if it is

not busy. Similarly, the receive part (RX) receives packets which are passed

upwards from the data-link layer. These TLPs are added to the receive buffer,

and packets waiting in the receive buffer are handed to the device core after

decoding. Figure 6.3 depicts the overall schematic of the basic model.

Most of the encoding and decoding details for TLPs are not relevant in this

Chapter 6 PCI Express 2.0 125

context. Thus TLP composition and decomposition is abstracted using two

functions

encTLP : HData → TLP

decTLP : TLP → HData

that generate and decode packets immediately without delay.

There are five different TLP types and Table 6.1 already lists four of them:

memory requests (M), I/O requests (IO), configuration requests (Cfg), and

messages (Msg)—a TLP type for each transaction type. Additionally, completions

(Cpl) are a distinct TLP type. Moreover, each TLP can be classed into one of

three categories:

• Posted (P) TLPs do not require a completion to be send back from the

receiver to the sender.

• Non-Posted (NP) TLPs do require a completion to be send by the receiver

back to the sender.

• Completions (CPL) are accordingly TLPs that are used to reply to non-

posted TLPs

Packets of each category can either carry payload or not. These categories are

important for the flow control mechanism in PCI Express, which is why they are

introduced here.

Chapter 6 PCI Express 2.0 126

Transmit Part

To model the transmit part with the framework components, the TLP encoding

has to provide a proper interface to the device core as well as to the send buffer.

Therefore, a data modification component is used as a wrapper for the encoding

function.

OPTbtx =eOPT (6.1)

fbtx =λ s ∈ S , i ∈ (|di :HData option |). let (6.2)

tlp =


Some(encTLP(the i.di)) : v(i)

None : otherwise

in (|do = tlp |)

bbtx =λ s, i ∈ (|bi :B, di :HData option |). (|bo = i.bi |) (6.3)

TLPEnc =DM [OPTbtx , bbtx, fbtx] (6.4)

where eOPT is the empty OPT component as defined in Definition 6.1.

Definition 6.1 (Empty OPT Component)

To simplify the instantiation of components when no additional OPT component

is needed, the empty OPT component, eOPT , is defined as:

Opt = ∅ opt0 = ∅ δopt = λs, i. s

It is trivial to see that the empty OPT component does not affect anything, and

eOPT is always used if no optional component is needed.

Chapter 6 PCI Express 2.0 127

The transmit part is constructed by composing the TLPEnc component from

Equation 6.4 with a zero-delay buffer as a send buffer.

Definition 6.2 (Basic Transmit Part)

Let SBtl be a zero-delay buffer Mzbuf of arbitrary but fixed size csb ∈ N with

csb > 1. The transmit part, TXbasic, is defined as the sequential composition of

the TLPEnc component and the send buffer.

TXtl = TLPEnc ; ; SBtl

It is easy to see that the basic transmit part inherits all buffer correctness

properties, except for not changing the data: the busy signal is just forwarded,

data is modified without delay, and there is no OPT component. The proof is

easily derived from the buffer correctness property and can be mechanised using

Isabelle/HOL.

Receive Part

The receive part (RX) is symmetric to the transmit part. Again, the TLP

decoding function has to be wrapped in a data modification component to provide

a standard interface.

OPTbrx = eOPT (6.5)

fbrx = λ s ∈ §, i ∈ (|di :TLP option |). let

data =


Some(decTLP(the i.di)) : v(i)

None : otherwise

Chapter 6 PCI Express 2.0 128

in (|do = data |) (6.6)

bbrx = λ s, i ∈ (|bi :B, di :TLP option |). (|bo = i.bi |) (6.7)

TLPDec = DM [OPTbrx , bbrx, fbrx] (6.8)

The receive buffer RBtl is also a zero-delay buffer of arbitrary but fixed size crb.

Definition 6.3 summarises the construction.

Definition 6.3 (Basic Receive Part)

Using sequential composition with the output interface of RBtl and the input

interface of TLPDec as inner signals, the receive part is given by:

RXtl = RBtl ; ; TLPEnc

Analogously to the transmit part and because of the same reasoning, the receive

part also satisfies all correctness properties of the buffer except for no date

modification.

6.2 Virtual Channels and Traffic Classes

In PCI Express and other communication architectures, virtual channels and

traffic classes provide a means to prioritize and categorize communication data.

Virtual channels create (virtually) independent communication channels between

link neighbours. In PCI Express, traffic classes are used to assign TLPs to virtual

channels.

In a more general setting without the specifics of traffic classes, a construction

that implements a virtual channel mechanism, has to provide three basic features:

Chapter 6 PCI Express 2.0 129

VCvarb

do

de-multiplex

di

VC0 VCvc(e) VCvcs

arbvc OPTvc

e

Figure 6.4: The Virtual Channels Transformation

• Separate send or receive buffers for each virtual channel to handle the data

elements of each one separately.

• A total mapping from data elements to virtual channels, so that each

data element can be mapped to a unique virtual channel. Note that the

uniqueness is not strictly a necessity here, but seems sensible as mapping a

packet to multiple channels would result in data duplication and an increase

in data traffic.

• An arbitration function to arbitrate among the different virtual channels:

in the end all data has to be send through a single physical channel.

This intuition already indicates that virtual channels can be realised using the

replication operator. Figure 6.4 sketches the schematics of the transformation.

The transformation is specified in a generic way using uninterpreted functions

for all the components. This eases the application of the transformation to other

Chapter 6 PCI Express 2.0 130

communication architectures and results in a construction that is symmetric for

sender and receiver.

6.2.1 A Generic Virtual Channel Transformation

A transmit or receive part of a communication controller modelled within the

framework can be extended with virtual channels by instantiating the replication

operator. The resulting virtual channel transformation, VCTrans, is an operator

on a Mealy machine with input data type α. It is parametrised in:

• vcs ∈ N: the number of virtual channels,

• vc : α→ [0, vcs): the mapping function, and

• varb : (Opt ×
⊙̃

kidok)→ [0, vcs): the arbitration function

In order to instantiate the replication operator, the parameters r, OPT , mux ,

and arb have to be provided. The number of replications is given by r = vcs.

Equation 4.38 in Section 4.2.3 specifies that the multiplex function has to be

of the following type:

mux : Opt × (| ibo1 :BIn, . . . , ibor :BIn |) �̃DIn (6.9)

→ BOn �̃ (| idi1 :DIn, . . . , idir :DIn |)

Input data is forwarded to the inner component that is specified by the vc

mapping. The busy output signal of the composed system is obtained from the

busy output of exactly that inner component. The OPT component is only used

in the arbitration part to allow the flexibility of using different arbitration schemes,

Chapter 6 PCI Express 2.0 131

e. g. a round robin scheme could use the opt field to memorise the next channel

to be selected. There is no need for an optional component in the multiplex part.

muxvc (opt , ibos �̃ i.di) = let (6.10)

mbo = if (i.di = Somex) then ibos.bovc(x) else F

midik =


Somex : i.di = Somex ∧ vc(x) = k

None : otherwise

in (|bo=mbo, idi1=midi1, . . . , idivcs = midivcs |)

It is easy to see that this definition satisfies Mooreout as the data output only

depends on the current data input and the vc function, which itself only depends

on the current data element. Since vc is a total function over the set of data

elements, the instantiation also satisfies the uniqueness property of the multiplex

function. Thus,

muxvc |= Prmux (6.11)

The instantiation of the arbitration function is constructed similarly. From

Equation 4.39 in Section 4.2.3, the arbitration function has the form:

arb :Opt × BIm �̃ (| ido0 :DOm, . . . , idol−1 :DOm |) (6.12)

→ (| ibi0 :BIm, . . . , ibil−1 :BIm |) �̃DOm

Using an uninterpreted arbitration function varb, the arbitration function arb

can be instantiated to get arbvc:

arbvc (opt , i.bi �̃ idos) = let (6.13)

Chapter 6 PCI Express 2.0 132

abik = i.bi ∨ (varb(opt , idos) 6= k)

ado = idos.idovarb(opt ,idos)

in (| ibi0=abi0, . . . , ibivcs−1=abivcs−1, do=ado |)

Again, it is easy to see that arbvc satisfies Prarb if varb selects the output of

exactly one inner component as global output. This property is formulated as:

Pvarb ≡ ∀t. ∃!k ∈ [0, vcs). varb(opt , idos).dot = idos.idotk (6.14)

Definition 6.4 (Virtual Channel Transformation)

The unary operator VCTrans extends a given Mealy machine Mb, which

implements a message buffer for data elements of type α, with the virtual channel

feature. VCTrans for vcs ∈ N channels, mapping function vc : α → [0, vcs),

arbitration varb : (Opt ×
⊙̃

kidok)→ [0, vcs), and optional arbitration component

OPTvc. M = VCTrans (Mb) is defined as <Mb with

l = vs OPT = OPTvc mux = muxvc arb = arbvc

In the following, the two main correctness results for the transformation are

detailed: Lemma 6.1 argues about the liveness property of the composed

system, and Theorem 6.2 states that functional correctness is preserved by

the transformation.

Lemma 6.1 (Liveness of Virtual Channels)

Given M = VCTrans (Mb) and Mb |= Mooreout . Then M satisfies liveness if Mb

satisfies liveness and the arbitration function varb provides weak fairness.

Chapter 6 PCI Express 2.0 133

Proof The lemma follows directly from the replication operator correctness

result (Theorem 4.8). The proof is formalised in Isabelle/HOL by instantiating

this Theorem and discharging its assumptions using the assumptions stated in

the Lemma. �

Definition 6.5 (Filtered Signal)

Given an input signal it = BIm◦̃DIn. The input signal it[P] for a filter predicate

P : DIn → B is called P-filtered input signal and defined as

it[P] = BIm ◦ (|di1= it.di1[P1], . . . , din= i
t.din[Pn] |)

where

it.dik[Pk] =


it.dik : P (it.DI)

None : ¬P (it.DI)

A P-filtered output signal is defined analogously.

Theorem 6.2 states the correctness of the transformation in terms of trace

equivalence: given an input to the transformed system, the output filtered

for a specific virtual channel is trace equivalent to the output generated by a

signal inner component with the input trace filtered for that particular channel,

modulo the delay caused by the arbitration—weak trace equivalence if a None in

the output trace is associated with a τ step in standard LTL systems—assuming

that the overall system provides liveness.

Theorem 6.2 (Correctness of Virtual Channels)

Given a Mealy machine with virtual channels, M = VCTrans (Mb), input signal

it ∈ I , and output signal ot ∈ O . If Mb satisfies a liveness property Plive, then M

Chapter 6 PCI Express 2.0 134

satisfies the following input-output correctness property based on Mb:

∀ v ∈ [1, vcs]. (M.ω (st, it))[Pv] ≡d Mb.ω (st.mv, i
t[Pv])

where ≡d denotes trace equivalence modulo the delay caused by the arbitration,

i. e. weak trace equivalence considering None as a τ event, and the filter predicate

Pv is given by:

Pv i
t =

(
if (it.di = Somex) then (vc(x) = v) else F

)

Proof It is easy to see that neither muxvc nor arbvc implement any data

modifications. So, if there is a data modification, then it is caused by Mb.

Let iditv be the input to the v-th inner component VC v, which is an instance

of Mb, and let idotv be the corresponding output trace. Using the definition of

muxvc and the type definition of vc(x), it can be shown that

iditv = it.di[Pv] (6.15)

which then implies that

ωb (s
t
b, i

t.bi◦̃iditv) = ωb (s
t
b, i

t.bi◦̃it.di[Pv]) (6.16)

since ωb is deterministic. The left hand side of Equation 6.16 is the definition of

the internal output of inner component VCv , thus idotv. Because the fairness of

the arbitration function and the fact that it does not modify the data, i. e. exactly

Chapter 6 PCI Express 2.0 135

one virtual channel produces the output of the composed system, we obtain that

(M.ω (st, it))[Pv] ≡w ido
t
v (6.17)

The key property to the correctness of this step, apart from the assumptions on

the arbitration function, is that only data elements in virtual channel v satisfy

Pv.

Finally, we obtain that

ωb (s
t
b, i

t.bi ◦̃ it.di [Pv]) =M.ω (st, it[Pv]) (6.18)

using Definition 6.5 and the fact that V Cv is the only non-empty channel given

data inputs it.di[Pv] which, together with Equation 6.17, concludes the proof.

The proof is tedious but has been mechanised in Isabelle/HOL. �

6.2.2 Virtual Channels in PCI Express

As mentioned before, the PCI Express protocol implements the mapping from

data packets (TLPs) to virtual channels by introducing traffic classes. Traffic

classes relate to different priority levels and each TLP is assigned one of eight

different TCs: TC0, . . . ,TC7 with TC0 being the default class; the others are

optional. Additionally, up to eight VCs are supported: VC0, . . . ,VC7. Again, VC0

is the default channel and required to be enabled. Also, TC0 is always mapped

to VC0; all other mappings are configurable. However, the mapping must be a

function (exactly one VC for a TC, if TC is used), and the mappings of two link

neighbours need to be identical. This configurable mapping of traffic classes to

virtual channels is PCI Express’ realisation of the multiplex function muxvc. It is

Chapter 6 PCI Express 2.0 136

worth noting, that this function does not have to be be surjective and therefore

not every VC has to be active.

The default priority interpretation is that VC0 corresponds to the lowest and

VC7 is assigned the highest priority, and by default PCI Express implements

strict priority arbitration among virtual channels. However, this default setting

can be adjusted by splitting the virtual channels in two disjoint groups:

• a low priority group LPvc

LPvc = [VC0 : VCj] (6.19)

• and a high priority group HPvc

HPvc = (VCj : VC7] (6.20)

for j ∈ [0 : 7].

The lower priority group can be configured to use an alternative arbitration

scheme instead of strict priority: round robin or weighted round robin.

In order to apply the virtual channel transformation VCTrans to a send or

receive part model of the PCI Express transaction layer, the following parameters

and functions need to be instantiated (cf. Definition 6.4):

vcs ∈ N

vc : TLP → [0, vcs)

varb : (Opt ×
⊙̃

k
idok)→ [0, vcs)

Chapter 6 PCI Express 2.0 137

Assuming the traffic class of a TLP can be determined from a TLP itself, i. e.

there exists a function tc : TLP → {TC0, . . . ,TC7}, the first two instantiations

are straightforward:

vcs = 8 (6.21)

vc = λ tlp. #(vctc(tc tlp)) (6.22)

where # : {VC0, . . . ,VC7} → [0, 7] denotes an index operator that simply returns

the index of a virtual channel, i. e. # V Ci = i, and vctc is the user-defined TC to

VC mapping.

The PCI Express VC Arbitration.

Unfortunately, the PCI Express arbitration scheme complicates the instantiation:

without further restrictions on the arbitration scheme or assumptions on the input

stream of TLPs, the PCI Express arbitration scheme does not satisfy fairness:

imagine the arbitrations scheme is configured to use VC0 and VC1 only, but with

strict priority arbitration. Now imagine at some point in time, both virtual

channels have packets waiting in their buffers, but starting from this point, a

continuous stream of VC1-channel packets arrives. Because of the strict priority

arbitration, the packets in VC0 are never going to be send.

The PCI Express specification is aware of this issue and provides additional

methods of regulation in this case, which are based on injecting the waiting, low

priority packets into the stream of high priority packets at a rate not slower than

a fixed minimum. This seems—as these methods have neither been modelled nor

verified—to prevent starvation of low priority packets, but obviously breaks the

Chapter 6 PCI Express 2.0 138

specification of the arbitration scheme, which is an undesirable result as well.

Therefore, this dissertation assumes the system to be configured to use one

of the alternative arbitration schemes, round robin or weighted round robin,

only. For both of these schemes, it is straightforward to proof fairness; in case of

weighted round robin of course only if the weights allow it. Under this assumption,

the arbitration function varb can easily be instantiated and VCTrans can be

applied to a PCI Express transaction layer model.

Note, that there are also less restrictive assumptions which lead to fair scheduling

even under a strict priority scheme, especially making assumptions on the nature

of the stream of packets and excluding streams which can lead to a deadlock for

a packet. Such assumptions, however, have to be extremely conservative because

such restrictions have to consider potential global effects and not just local ones:

for example, low priority packet throughput may also be affected by a flow control

mechanism which can affect the frequency with which high priority packets are

allowed to arrive.

Commutativity of Transformations.

Virtual channels are a particularly suitable example for pointing out intrinsic,

logical dependencies between features: even though transformations specify

features independently, encapsulate their complexity, and allow features to be

added in a structured, controlled way, there are dependencies among features

which are unrelated to complexity. Some features simply do not make sense, if

they are applied in the wrong order or if another feature is missing. For example,

the core idea of a virtual channel is to be virtually identical to the physical

channel, modulo timing properties and reduced to the packets from the same

Chapter 6 PCI Express 2.0 139

virtual channel (cf. Theorem 6.2). Therefore the virtual channel transformation

should be applied after all other transaction layer features have been added, so

that all these features are available in each virtual channel.

Another example of a logical dependency between features is packet reordering:

it relies on a feature which blocks packets selectively. Of course, as detailed in

Section 6.4, the transformation is technically independent and can also be applied

to a system which does not support a selective blocking of packets, the reordering

feature will just never find a pair of packets that can be reordered.

6.3 Flow Control

Flow control is a mechanism that allows a sender to check whether a receiver has

enough space in its local receive buffer before sending a data element. In point-

to-point protocols like PCI Express, flow control is therefore a mechanism that

operates between two link neighbours, even though it is a transaction layer feature.

Given two link neighbours and the communication path from one neighbour’s

transmit part to the other’s receive part, the working principle can be summarised

as follows: the receiver has one or more flow control (receive) buffers to store data

elements and the sender maintains a counter for each of them. These counters

maintain a lower bound on the currently available space in the receiver’s flow

control buffers. Then, before transmitting a data element, the sender checks that

the receiver has enough available buffer space using these counters. Assuming

the counter values are indeed always a lower bound on the available space on

the receiver’s side, the sender knows that the receiver has enough buffer space to

receive the message.

Chapter 6 PCI Express 2.0 140

In contrast to virtual channels, this feature requires asymmetric sender

and receiver transformations. Moreover, flow control requires bidirectional

communication between sender and receiver: a data channel, the “normal” channel,

to transport data elements, and a control channel in opposite direction, which is

used by the receiver to provide the sender with updates on the available space.

In the following, sender and receiver are named according to the direction of the

data channel. The control channel is required because the sender can only keep

track of a reduction in available space. Any increase of available space, i. e. when

the receiver moves received data to the device core, happens unnoticed by the

sender. Therefore, the receiver sends regular updates of the available space to the

sender using the control channel. An overview of the flow control transformations

is depicted in Figure 6.5. Note that the control channel does not necessarily have

to be a physically dedicated channel, but can also simply be the receiver’s data

channel to the sender in a system with bi-directional links.

6.3.1 A Generic Flow Control Transformation

Similar to the virtual channel transformation, the flow control transformation

is first specified in a generic way without PCI Express specifics. As an

asymmetric transformation, the flow control transformation consists of separate

transformations for sender, FCTransTX, and receiver, FCTransRX. The sender

part has to extend an existing system with counters, a check mechanism for a data

element which is about to be sent, and a handler for counter updates from the

control channel. The receive part has to provide one or more flow control buffers,

counters for space that was freed, and a mechanism to initiate the transmission

of control data. Naturally, sender and receiver need to have common knowledge

Chapter 6 PCI Express 2.0 141

Ms

Md di0

di1doo

bo0

bo1bi0

dosbis

disbos

Ms
1

Ms
fbs

idos.
do1

idos.
dofbsibi1

ibifbs

ibos.
bo1

ibos.
bofbs

bo

bi do

di

Mts
data mod - time stamp

muxfc

idi1 idifbs

arbfc

Mc
data mod - counter

di0

doo

bo0

bi0

do1bi1

data mod - counter

Sender (FCSndTrans)

Receiver (FCRcvTrans)

Ctrl

Data

Figure 6.5: Overview of the Flow Control Transformation

and therefore both transformations are parametrised in a data type α and the

following values and functions:

• fbs ∈ N: the number of flow control buffers.

• fb : α → [1, fbs]: a total mapping from data elements to one of the flow

control buffers.

• size : α → N: a measurement function that assigns a size to each data

element.

• s1, . . . , sfbs : the sizes of the flow control buffers.

• upd : Optr ,fc → [1, fbs] option: a function to trigger the transmission of an

update on the control channel.

Chapter 6 PCI Express 2.0 142

The rest of this section uses the following notation: Ms refers to the sender, i. e.

the Mealy machine that models the TX part, without flow control, Ms,fc denotes

the sender with flow control. Mr and Mr ,fc refer to the receiver Mealy machines,

respectively. Moreover, Ms and Mr implement abstract 1-1 interfaces.

Sender

The sender is constructed using a data modification component and a sequential

composition. Even though there is no actual data modification happening, the

busy signal strengthening is used to implement the check for available space.

To account for control channel input, the data modification has to provide a

2-1 abstract interface: one additional input interface to connect to the control

channel. The sequential composition operator is used to ‘connect’ the first input

interfaces to the output interface of Ms. The first input interface is referred to as

data interface, the second one is called control interface. The components of the

data modification component are indexed with a d in the following.

Id = (|bi0 :B, di0 :α option, di1 : ([1, fbs]× N) option |) (6.23)

Od = (|bo0 :B. bo1 :B, do0 :α option |) (6.24)

Data elements received on the control interface are of type [1, fbs]×N: an element

(x, y) indicates that y units of space have been freed in buffer x, thus the local

counter of available space for buffer x needs to be increased by y.

As there is no actual data modification happening, the function f is simply the

identity function between the two data interfaces. The control input interface is

Chapter 6 PCI Express 2.0 143

only used internally.

fd : S → DI(Id)→ DO(Od)

fd = λ s. i. (|do0= i.di0 |) (6.25)

The OPT component is used to implement the counters, one for each flow control

buffer. The values are updated if there is an input on the control interface.

Optd = (|bcnt1 :N, . . . , bcntfbs :N |) (6.26)

opt0d = (|bcnt1=s0, . . . , bcntfbs=sfbs |) (6.27)

δopt ,d = λopt . i. let (6.28)

opt′ = if (i.di1 = Some (x, y)) then opt(|bcntx+= y |) else opt

opt′′ = if (i.di0 = Somex) then opt(|bcntfcb(x)−= size(x) |)

else opt′

in opt′′

The counter check is modelled using the busy strengthening function b: if the

data cannot be send because there is not enough space, the busy signal to Ms is

activated.

bd :S → Id → BO(Od)

bd =λ s. i. let (6.29)

chk = if (i.di0 = Somex) then (size x ≤ (s.opt.bcntfc(x)))

else F

in (|bo0=(i.bi ∨ ¬chk), bo1= i.bi |)

Chapter 6 PCI Express 2.0 144

This completes the instantiation of the data modification component. Note, that

this instantiation does not provide Moore-like input interfaces (as bo0 depends

on di0). So, to sequentially compose it with Ms, Ms has to provide a Moore-like

output interface.

Definition 6.6 (FCTransTX)

The sender part of the flow control transformation is given by the sequential

composition of the operand with the data modification instance Md given by

Equations 6.25–6.3.1. For the sequential composition to be applicable, the operand

has to provide Moore-like outputs.

Ms |= Mooreout =⇒ FCTransTX Ms =Ms; ;Md

Receiver

The transformation for the receiver is similar to the virtual channel transformation:

the flow control buffers are parallelized and received data elements are mapped

according to fc. Additionally, however, the receiver with flow control support

has to keep track of the space available in the flow control buffers, and needs to

initiate the transmission of space updates to the sender. Similar to the sender

transformation, the flow control buffers are sequentially composed with a data

modification unit that implements these control tasks.

Data elements are passed to an upper layer in the order they have been

received. To maintain packet ordering, a time stamp is added to every incoming

data element before it is placed in one of the flow control buffers. To add the

time stamp to received data elements, another data modification component has

Chapter 6 PCI Express 2.0 145

to instantiated:

Its = (|bi :B, di :α option |) (6.30)

Ots = (|bo :B, do : (α× N) option |) (6.31)

The OPT component is used to maintain the time stamp counter. Time stamps are

modelled using naturals, mainly for convenience reason. However, using the finite-

size property of the buffers, an upper bound on the number of (simultaneously)

needed time stamps can be calculated and natural numbers can be replaced by a

finite domain together with proper modulo arithmetic. This also holds for the

available space counters.

Opt ts = (| ts :N |) (6.32)

opt0ts = (| ts=0 |) (6.33)

δopt,ts = λopt, i. if (i.di = Somex) then opt(| ts := opt.ts+1 |) else opt (6.34)

No busy signal strengthening is needed for this instantiation, so the function b

simply propagates the busy input signal. The data modification function f needs

to add the time stamp to each received data element.

f = λs, di. if (di = Somex) then Some (x, s.opt.ts) else None (6.35)

b = λs, i. (|bo= i.bi |) (6.36)

Since b(s, i) is independent from i.di, Mts provides Moore-like input and output

Chapter 6 PCI Express 2.0 146

interfaces.

Mts |= Moorein ∧Mts |= Mooreout (6.37)

The parallelized flow control buffers are constructed using the replication operator.

The abstract data type of Mr is instantiated with (α× N) to handle the newly

added time stamp. The multiplex function muxfc is constructed analogously to

muxvc (Equation 6.10) using fcb instead of vc and fbs instead of vcs.

muxfc (opt , ibos �̃ i.di) = let (6.38)

mbo = if (i.di = Some (x, t)) then ibos.bofcb(x) else F

midik =


Some (x, t) : i.di = Some (x, t) ∧ fcb(x) = k

None : otherwise

in (|bo=mbo, idi1! =midi1, . . . , idifbs = midifbs |)

The arbitration function selects the oldest element among the flow control buffer

outputs:

arbfc (opt , i.bi �̃ idos) = let (6.39)

sel = k s.t. idos.dok = Some (x, ts)∧

(∀j 6= k.idos.doj = (x′, ts′) =⇒ ts′ > ts)

abik = i.bi ∨ (sel 6= k)

ado = idos.idosel

in (| ibi1=abi1, . . . , ibifbs=abifbs, do=ado |)

Chapter 6 PCI Express 2.0 147

The definition of the arbitration function provides a Moore-like output interface,

which propagates to the outputs of the flow control buffers.

Mfcb |= Mooreout (6.40)

The last part needed to complete FCTransRX is the data modification instance

Mc which maintains the space counters and removes the time stamp from the data

elements. The data modification also provides the additional output interface to

sent regular updates to the sender.

Ic = (|bi0 :B, bi1 :B, di0 : (α× N) option |) (6.41)

Oc = (|bo0 :B, do0 :α option, do1 : ([1, fcbs]× N) option |) (6.42)

The OPT component is used to implement the counters. They are updated in

two cases: first, when an update via the control channel is sent the corresponding

value is reset to zero; second, when a data element is removed from a flow control

buffer and moved to the device core the corresponding counter is increased.

Optc =(| fcnt1 :N, . . . , fcnt fbs :N |) (6.43)

opt0c =(| fcnt1=0, . . . , fcnt fbs=0 |) (6.44)

δopt ,c =λopt , i. let (6.45)

opt′ = if (upd opt = Some n) then opt(| fcntn = 0 |) else opt

opt′′ = if (i.di = Somex) then opt′(| fcntfcb(x)+= size(x) |)

else opt′

in opt′′

Chapter 6 PCI Express 2.0 148

To finish the Mc instantiation, the functions f and b have to be defined. Once

more, the busy strengthening of the data modification is not needed, and the

busy input signal is just forwarded to the output. The data modification function

f is used for two things: first, the time stamp is removed from each data element.

Second, if the trigger functions upd fires, a control packet with updated space

values is send.

bc =λs. i. (|bo0 = i.bi0 |) (6.46)

fc =λs. di. let (6.47)

co = if (upd s.opt = Somen)

then Some (n, s.opt.fcntn) else None

in (|do0=di, do1=co |)

Definition 6.7 (FCTransRX)

The receiver part of the flow control transformation is given by the following series

of sequential compositions:

Mr |= Mooreout =⇒ FCTransRX Mr = (Mts; ;Mfcb(Mr)); ;Mc

6.3.2 Instantiation for PCI Express

The PCI Express flow control algorithm distinguishes between the different TLP

categories: posted (P), non-posted (NP), and completion (Cpl). The mechanism

also handles TLP headers (H) and payloads (D) separately as not every TLP

contains payload. Thus, PCI Express uses six flow control buffers: PH, PD,

NPH, NPD, CplH, CplD. TLPs which only consist of a header are stored in the

Chapter 6 PCI Express 2.0 149

TLP MRd MWr IORd IOWr CfgRd CfgWr Msg MsgD Cpl CplD
Category NP P NP NP NP NP P P CPL CPL

Data no yes no yes no yes no yes no yes

Table 6.2: TLP Types and Categories

corresponding header buffer. TLPs with payload are split into header and payload:

the former is stored in the header buffer and the latter in the corresponding data

buffer. Table 6.2 lists TLP Types with their categories and indicates if a TLP

type has data payload or not.

The transformation for the receiver part cannot be applied to PCI Express right

away because of the header-payload separation: the flow control transformation

uses the replication operator which means that the multiplex component can only

select a single inner component to send input data to. But in case of a TLP with

payload, both parts have to be stored in different buffers. Therefore, a smaller

PCI Express specific transformation is used transform a receiver’s send buffer into

a proper flow control buffer. Each flow control buffer holds packets of one TLP

category, but both header and payload. Given such a double-buffer as receive

buffer, the flow control transformation for the receiver can be instantiated for

three double-buffered flow control buffers.

The mapping from data elements to flow control buffers, fb, is given by Table 6.2.

The measurement unit for buffer space, and hence for TLPs, is called flow control

credits (FCCs). In FCCs, the size of a TLP without any payload is 1, and the

size of a TLP with payload is relative to the number of payload bytes; the unit

value is 16 bytes. The models in this dissertation abstract from any byte counts,

but TLPs can “carry” their size in FCCs as a natural number in the payload.

Thus, instantiating the size function is also straightforward.

What remains is the transformation to construct a flow control buffer from

Chapter 6 PCI Express 2.0 150

the receiver without flow control Mr. Since a packet with payload is split into

header and data, and put into different buffers, the replication operator cannot be

applied. Thus, the multiplex/arbitrate composition is instantiated to construct a

flow control buffer from two copies of Mr: M0 and M1.

Given the flexibility of the multiplex/arbitrate composition, the instantiation

of the multiplex component is straightforward: if an arriving TLP has no payload,

the TLP is passed on to M0, in case the TLP has payload, the TLP without the

payload is put into M0 and the payload in M1. However, in order to apply the

multiplex/arbitrate operator, the interfaces of the inner components have to be

consistent; which can be easily solved by instantiating the abstract types of M0

and M1 with a type for the union of payload and headers (plus time stamp).

6.4 Transaction Reordering

The goal of reordering is to improve performance if a sender cannot send a data

packet because it is blocked, for example by the flow control mechanism. In

this case, the sender may be able to send the next element in its send buffer.

Using the reordering feature, a sender can check whether the next element in the

send buffer is allowed to overtake the blocked one and, if reordering is allowed,

the sender may be able to send that package. Thus, reordering only makes

sense in combination with a flow-control-like feature that can selectively block

data elements. Sticking to the interface standard used in this thesis, blocking is

assumed to be implemented by raising the busy input signal.

Chapter 6 PCI Express 2.0 151

6.4.1 A Generic Packet Reordering Transformation

The generic specification of the reordering transformation is parametrised in a

reordering function pass : α × α → B that defines if an element is allowed to

overtake (pass) another element: pass (e1, e2) = T ≡ e1 may overtake e2.

The reordering transformation extends a given sender Ms with a message buffer

and an abstract 1-1 interface. The transformation is specified by instantiating

the replication operator in a slightly specific way, namely without any replication,

i. e. r = 1 and the identity mux function that simply maps the inputs to the

corresponding outputs:

muxro = λ (opt, i). (|bo= ibo, idi= i.di |) (6.48)

The idea is to make use of the arbitration component to arbitrate between the

two oldest elements in the message buffer by placing the oldest element (the

blocked one) in the OPT component.

Note that even though using the data modification component seems more

obvious for implementing reordering, it cannot be used because of the busy signal

strengthening requirement: in case the oldest element in the buffer is blocked,

the busy input signal is active. But in order to access the second oldest element

in the buffer, the busy signal has to be set to false to output the oldest element.

This however, is weakening the busy signal which is not allowed using the data

modification.

If the current data element in not blocked and there no pending data, the

arbitration function does not do anything except for forwarding and nothing is

stored in the Opt field. If the current data element is blocked and there is no

Chapter 6 PCI Express 2.0 152

packet already pending in the Opt field, the blocked packet is moved to the Opt

field and the next step, the arbitration tries to send the next data element in

the next step in case pass indicates that the next packet is allowed to overtake.

Thus, the Opt field has to provide a single storage space for a pending data

element (pdata). Additionally, a flag (rr) is used to arbitrate between the two

data packets, in case there is a pending one.

Optro = (|pdata :α option, rr :B |) (6.49)

opt0ro = (|pdata=None, rr=F |) (6.50)

Recall that δopt for the replication operator takes as arguments the current state,

the input signals of the extended machine, as well as the outputs of the system

(cf. Equation 4.40). Given a current input to δopt of (opt, i, o), the pdata field is

only updated if blocked data has to be saved (i.bi∧ pdata = None) or if pending

data can be output (¬i.bi ∧ opt.rr):

pdata′ =


None : ¬i.bi ∧ opt.rr

o.do : i.bi ∧ (opt.pdata = None)

opt.pdata : otherwise

(6.51)

The rr flag is more complex since it represents the control variable and because

has to satisfy some important invariants as the arbiter relies on it: for example,

the rr flag has to ensure that a packet does not overtake another packet if it is

not allowed to. Given an initial state rr0 = F, the rr flag has to be updated in

the following cases: it has to be set to to T if:

Chapter 6 PCI Express 2.0 153

• there is data pending and the next packet is not allowed to overtake.

i.bi ∧ (pdata 6= None) ∧ ¬pass(i.di, pdata) (6.52)

• there is no next data element at the data imput.

i.bi ∧ (pdata 6= None) ∧ (i.di = None) (6.53)

Finally, the flag as to be alternated in the following cases:

• if there is pending data and the next packet is allowed to overtake, but the

busy input signal is still active

i.bi ∧ (pdata 6= None) ∧ pass(i.di, pdata) (6.54)

• if one of the waiting data elements can be output

¬i.bi ∧ (pdata 6= None) ∧ (rr ∨ pass(i.di, pdata)) (6.55)

It is easy to see, that with these update rules, rr cannot become true if there is

no data pending; this is one of the invariants which are needed to argue about

correctness. Summarising the update rules for pdata and rr, the next state

function δoptro is given by:

δoptro =λ opt, i, o. let (6.56)

pdata′ = as in Equation 6.51

Chapter 6 PCI Express 2.0 154

rr′ =



T : (i.bi ∧ opt.pdata 6= None∧

pass(i.di, opt.pdata)) ∨

(i.bi ∧ (pdata 6= None) ∧ (i.di = None))

¬opt.rr : (i.bi ∧ (opt.pdata 6= None)∧

pass(i.di, opt.pdata)) ∨

(i.bi ∧ (opt.pdata 6= None)∧

(opt.rr ∨ pass(i.di, opt.pdata))

opt.rr : otherwise

in (|pdata=pdata′, rr=rr′ |)

Then the actual arbitration function works as follows: if the busy input signal is

not active and there is no pending data element, it just outputs the data output

of Ms. If the busy signal is active, it selects according to the opt.rr field which

data element to output: if rr is false, the data output of Ms is selected (if it is

not equal to None), if rr is true, the opt.pdata field is selected.

arbro =λ opt, (| i.bi !B, ido :α option |). let (6.57)

out =


opt.pdata : opt.rr

ido : otherwise

bout = i.bi

in (| ibi=bout, i.do=out |)

Chapter 6 PCI Express 2.0 155

Row pass
Column?

MWr, Msg,
MsgD

MRd, IORd,
CfgRd

IOWr,
CfgWr CplD Cpl

MWr, Msg,
MsgD No Yes Yes Y/N Y/N

MRd, IORd,
CfgRd No Y/N Y/N Y/N Y/N

IOWr,
CfgWr No Y/N Y/N Y/N Y/N

CplD No Yes Yes a) Y/N b)
No

Y/N

Cpl No Yes Yes Y/N Y/N

Table 6.3: TLP Reordering Rules

Definition 6.8 (ROrdTrans)

Given a passing function pass : α × α → B, the reordering transformation of

a Mealy machine Mb, ROrdTrans Mb, is given by <Mb with r = 1, mux =

λ (opt, inp). (|bo= inp.ibo, idi= inp.di |), arb = arbro, and OPT = OPTro.

6.4.2 Reordering in PCI Express

The PCI Express specification defines a set of reordering rules for TLPs to be

transmitted. These rules are supposed to increase the performance: they avoid

that a single TLP blocks all communication if only one flow control buffer on the

receiver side is full, for example. The rules ensure that the Producer/Consumer

programming model, implemented by PCI Express without reordering, is not

violated.

The reordering rules are given in Table 6.3. The table specifies whether a row

TLP may pass a column TLP. A No indicates that it must not, a Yes that is has

to pass to avoid deadlock, and a Y/N that it may pass to increase performance.

Note the duplicated entry for two CplD TLPs: read completions corresponding

to different request may overtake each other (case a)) but read completions

corresponding to the same request—completions from burst requests—must not

Chapter 6 PCI Express 2.0 156

overtake each other. This can be determined from the TLP headers.

Using Table 6.3 we can create a transformation that extends a send buffer

with reordering features using the multiplex/arbitrate transformation. The inner

components are instantiated with the send buffer which is replicated five times.

Each of them stores messages of the types listed in one column. Thus, the

multiplex function is straightforward. Additionally, a time stamp is added to

each message, similar to the flow control buffers.

The arbitration function is again a bit more tricky. In case the oldest TLP of

the five top elements from the buffers is not blocked, it is transmitted. In case

that the TLP is blocked, potential reordering takes place. The blocked TLP is

placed in a component of the opt part and the oldest of the five top elements

is chosen again. Interpreting Table 6.3 as a function from two TLP types to

Boolean, we can check whether the next oldest can pass the currently blocked

TLP.

Note that this approach provides a one stage reordering in terms that if a TLP

is blocked, only the direct successor may pass the packet. However, the method

can be extended to a k-stage reordering by introducing a list of k elements in the

opt part to store blocked TLPs. The selection method is then executed recursively

until a non-blocked, younger TLP is found (up to k times). Thus, a TLP may

overtake more than one TLP if all TLPs older than that one are blocked.

6.5 Related Work

There is rich literature and plenty of existing work on PCI Express and, especially,

on PCI protocol verification or validation. Most existing work on PCI Express,

Chapter 6 PCI Express 2.0 157

however, addresses protocol compliance checking for specific, new designs. For

example in [HS05], Hyun and Seong present a PCI Express endpoint covering full

functionality of the data link and transaction layer. In order to verify protocol

compliance and corner case testing, the authors propose a verification environment

based on random testing and test bench generation. Thus the verification method

is fundamentally different from the proposed methodology. Moreover, the models

are written on a lower abstraction level using Verilog HDL [TM98].

Song [Son07] proposes an assertion-based verification environment for PCI, PCI-

X, and PCI Express. Besides neither stating how the PCI Express components

are modelled nor detailing the checked properties, the verification is also based

on testing.

In [MHJG00] Mokkedem et al. present a formalization of the PCI 2.1

protocol using the PVS theorem prover. Their model incorporates a solution

to the transaction reordering problem in PCI 2.1 and they prove that the

Producer/Consumer property is satisfied. Although the authors state that a

reusable theory hierarchy was developed, the presented work is tailored to a

specific protocol and a monolithic modelling approach is used.

Cansell et al. [CGJ+02] also verify the Producer/Consumer Property of the

PCI 2.1 protocol. The authors provide an incremental proof and highlight the

benefits of replacing the traditional monolithic verification approach with an

incremental one. Thus, the basic verification approach is in the same spirit as

the one presented here, but the aim of this work is not another specific protocol

verification, but a framework to work in.

More recently, Moinudeen et al.’s work on PCI-X [MHT06] presents a design

approach to support verification. Although the basic idea is similar, the authors’

Chapter 6 PCI Express 2.0 158

aim is to integrate the verification process into an existing design process using

model checking and testing.

Summarising, the key difference to most existing work is that the focus of this

work is not to provide another ad-hoc verification of an existing communication

protocol, but to provide a framework for a structured, incremental modelling

and verification process. Cansell et al. verified the PCI Consumer/Producer in a

similar spirit, but their verification approach is tailored to a specific verification

effort.

Chapter 7

Conclusion

This dissertation has presented a framework for the incremental modelling of

on-chip communication architectures with verification in mind. The approach has

been applied to two case studies to illustrate the application and breadth of the

framework: the ARM AMBA Advanced High-performance Bus (AHB) protocol

and the PCI Express high-performance point-to-point protocol. By choosing

industrially relevant case studies, this dissertations shows the technical feasibility

of an incremental model derivation process. Complete models in this framework

provide significant merits against ad-hoc models: they are independent from the

actual implementation or design architecture and they are functionally verified.

Such models can act as longer-term reference models for new architectures.

The core idea behind the framework is to replace the traditional monolithic

modelling and post-hoc verification methodology with an approach that,

optionally, includes the verification process into the modelling process to make

large-scale modelling and verification efforts feasible. Instead of being an ad-hoc

effort, modelling becomes a structured process that can be interleaved with proof.

Chapter 7 Conclusion 160

The core framework consists of only a few components: buffers, data

modification, and composition operators: two rather standard ones—sequential

and parallel composition—and two sophisticated ones that are related to each

other—replication and multiplex/arbitrate. Despite the restricted number of

components, the framework is both expressive enough to model large parts of a

broad variety of communication architectures and restrictive enough to provide

properties that allow the verification of global correctness properties to be reduced

to local, simpler verification problems. It is this combination that makes the

presented work an adept framework for specifying current or upcoming on-chip

communication architectures.

The AMBA AHB case study covers key features of a master, a bus controller

that is allowed to initiate transactions, in an arbiter-based maater-slave bus

protocol: pipelined bus transfers and support for burst transactions. As discussed,

both features are widely used in common SoC buses and are tailored at improving

performance. Starting from a simple model, end-to-end data communication is

proven correct and maintained while extending the model with features.

The PCI Express case study covers transaction layer features which provide

logical endpoint-to-endpoint communication while only communicating to the link

neighbour: virtual channels, flow control, and packet reordering. The transaction

layer features in particular are features that usually cause a complexity blow-up in

the modelling and verification process because they add structural complexity and

they aim at providing global properties. In this dissertation, they are modelled

using transformations which encapsulate the complexity of each of them. This

way the modelling process is well-structured and the verification is reduced to

proving local assumptions.

Chapter 7 Conclusion 161

The framework and case studies have been formalised in higher-order logic

using the Isabelle/HOL theorem prover. The expressiveness and flexibility of

higher-order logic allows heavy use of uninterpreted functions for the framework

components and the formalisation of correctness properties at the abstract level

of framework components. Another key aspect of using a theorem prover is

the ability to manage already proven properties and, together with the built-in

reasoning and rewriting capabilities, to reuse and instantiate already proven

properties when composing new components. The modelling and verification

methodology intrinsically relies on this feature to contain the complexity.

But, as with most work using theorem proving, the overall effort required for

modelling and verification using the (mostly) manual work flow, is an important

feasibility consideration. To tackle this problem, this dissertation presents

approaches to integrate automatic reasoning tools such as the NuSMV model

checker or the sledgehammer tool. During instantiation of framework components

with concrete functions, the model checker can often be used to discharge local

assumptions. Additionally, the framework has been designed carefully so that

instantiated framework components lie within the executable subset of HOL,

which is supported by the built-in code generator of Isabelle/HOL. Using the code

generator and the simple simulation environment from Chapter 2, models in the

framework can be translated to executable, functional programs and simulated

inexpensively for basic sanity checks before embarking on any verification effort.

This dissertation presents a generic, formalised framework based on abstract

state machines for incremental modelling that is versatile and particularly suited

for the specification and verification of on-chip communication protocols. It gives

a positive answer to the fundamental research question: can models of high-

Chapter 7 Conclusion 162

performance architectures be derived incrementally and verified cost efficient?

7.1 Future Work

Future research directions based upon this work, for both short-term and long-

term, are as versatile as the framework itself. The following paragraphs try to

outline a few of them.

Basic framework. A natural, shorter-term research direction is to expand the

set of transformations presented here to cover more features to further increase

the applicability of the framework to the extensive number of existing protocols.

But, a more challenging, mid-term research goal would be to provide a clean

well-defined interface between basic framework components, transformations,

and final models. This could even extend to the development of an API for

the specification of transformations. Such an interface would be invaluable for

the design of new communication architectures and for the specification of new

protocol features without further knowledge of the actual target architecture.

This research would provide a further step towards a completely feature-driven

design process.

Tool Environment. Since the work here focuses on the fundamentals of a

framework, much future work can be done in the tool environment area. Previous

chapters already mentioned that automation of the verification process is a

crucial point for even better feasibility of the methodology. Therefore, valuable

future work would be to integrate further automatic reasoning tools into the

modelling and verification workflow: SMT solvers, SAT solvers, but also symbolic

Chapter 7 Conclusion 163

execution, for example. Ideally, manual theorem proving can be eliminated or

reduced to trivial rewriting in order to combine and reuse properties, and the

actual verification effort is sourced out to automatic tools. Then, the theorem

prover should only provide a rich specification language and act as a knowledge

management tool that provides a common interconnect between tools.

Another valuable tool environment extension and research goal would be a link

to a hardware description language to generate RTL-level code from a model.

Given such an interface, one could generate a verified reference implementation of

a model and could make use of the rich tool support for RTL-level descriptions to

derive an optimised, but still verified implementation. Ideally, this implementation

can be generated completely automatically so that changes on the reference model

automatically propagate

A Long-Term CAD Vision. We conclude the chapter and this dissertation

with a long-term research vision for a fully feature-oriented CAD tool for on-

chip communication architectures. In the long-run, we envision this work to

provide the fundamentals for a tool environment that allows the user to design

a communication architecture simply by selecting the desired features and by

providing some core protocol properties (like bus vs. point-to-point). Such a tool

would incrementally construct a verified model that provides the specified features.

This model can be symbolically simulated to inspect performance-related effects

of different feature sets and be used to generate a RTL reference implementation.

Developing protocol families with a well-defined core functionality becomes simply

a matter of selecting different transformations.

Of course this is indeed a very visionary point of view, but also a very

Chapter 7 Conclusion 164

challenging, long-term research objective which would provide enormous value to

both academia and industry.

References

[ABK08] Eyad Alkassar, Peter Böhm, and Steffen Knapp. Correctness of a
Fault-Tolerant Real-Time Scheduler and its Hardware Implementation.
In Proceedings of the Sixth ACM & IEEE Internationa Conference
on Formal Methods and Models for Co-Design (MEMOCODE 2008),
pages 175–186. IEEE Computer Society, June 2008.

[Abr96] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge
University Press, New York, NY, USA, 1996.

[ACDJ01] Mark Aagaard, Byron Cook, Nancy A. Day, and Robert B. Jones. A
Framework for Microprocessor Correctness Statements. In Proceedings
of the 11th Conference on Correct Hardware Design and Verification
Methods (CHARME’01), pages 433–448. Springer, 2001.

[ACM03] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A
Mechanically Proved and Incremental Development of IEEE 1394
Tree Identify Protocol. Formal Aspects of Computing, 14:215–227,
2003.

[AL91] Martín Abadi and Leslie Lamport. The existence of refinement
mappings. Theoretical Computer Science, 82(2):253–284, 1991.

[All01] VSI AllianceTM. Vitual component interface standard version 2 (ocb
2 2.0). http://comelec.enst.fr/dessin/canex/VCI.pdf, April
2001.

[Alt03] Altera. Avalon Bus Specification. http://www.altera.com, July
2003. Document Version 2.3.

[Amj04] Hasan Amjad. Model checking the AMBA protocol in HOL. Technical
Report UCAM-CL-TR-602, University of Cambridge, Computer
Laboratory, September 2004.

[Amj06] Hasan Amjad. Verification of amba using a combination of model
checking and theorem proving. Electron. Notes Theor. Comput. Sci.,
145:45–61, January 2006.

References 166

[ARM99] ARM. AMBA Specification Revision 2.0. http://www.arm.com,
1999.

[ARM08] ARM. AMBA 3 AXI Protocol Specification 1.0. http://www.arm.
com, 2008.

[Asp00] David Aspinall. Proof General: A Generic Tool for Proof Development.
In Proceedings of the Sixth International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS’00),
volume 1785 of LNCS, pages 38–42. Springer, March 2000.

[BAS03] Ravi Budruk, Don Anderson, and Tom Shanley. PCI Express System
Architecture. Addison-Wesley Pearson Education, 2003.

[BAWR07] J. Bhadra, M. S. Abadir, L. Wang, and S. Ray. A Survey of Hybrid
Technqiues for Functional Verification. IEEE Design & Test of
Computers, 24(2):112–122, 2007.

[BBC+06] Noah Bamford, Rekha K. Bangalore, Eric Chapman, Hector Chavez,
Rajeev Dasari, Yinfang Lin, and Edgar Jimenez. Challenges in System
on Chip Verification. In Proceedings of the Seventh International
Workshop on Microprocessor Test and Verification, MTV ’06, pages
52–60, Washington, DC, USA, 2006. IEEE Computer Society.

[BF98] W. J. Bainbridge and S. B. Furber. Asynchronous Macrocell
Interconnect using MARBLE. In Proceedings of the 4th International
Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 0122–, Washington, DC, USA, 1998. IEEE Computer
Society.

[BM08] Peter Böhm and Tom Melham. A Refinement Approach to Design and
Verification of On-Chip Communication Protocols. In Proceedings of
the 2008 International Conference on Formal Methods in Computer-
Aided Design, FMCAD ’08, pages 136–143. IEEE Computer Society,
November 2008.

[BN02] Stefan Berghofer and Tobias Nipkow. Executing Higher Order
Logic. In Selected papers from the International Workshop on Types
for Proofs and Programs (TYPES’00), volume 2277, pages 24–40.
Springer, 2002.

[Böh09] Peter Böhm. Incremental Modelling and Verification of the PCI
Express Transaction Layer. In Proceedings of the 7th IEEE/ACM
international conference on Formal Methods and Models for Codesign,
MEMOCODE’09, pages 36–45. IEEE Computer Society, July 2009.

References 167

[Böh10a] Peter Böhm. A framework for incremental modelling and verification
of on-chip protocols. In Proceedings of the 2010 Conference on Formal
Methods in Computer-Aided Design, FMCAD ’10, pages 159–166.
IEEE Computer Society, October 2010.

[Böh10b] Peter Böhm. Incremental and Verified Modelling of the PCI Express
Protocol. IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems, 29:1495–1508, October 2010.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Roveri Marco Pistore, Roberto Sebastiani, and
Armando Tacchella. NuSMV 2: An Open Source Tool for Symbolic
Model Checking. In Proceedings of the 14th International Conference
on Computer Aided Verification (CAV ’02), pages 359–364. Springer,
2002.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic. In
Logic of Programs, Workshop, pages 52–71. Springer, 1982.

[CGG07] Xiaofang Chen, Steven M. German, and Ganesh Gopalakrishnan.
Transaction Based Modeling and Verification of Hardware Protocols.
In FMCAD’07, pages 53–61. IEEE, 2007.

[CGJ+02] Dominique Cansell, Ganesh Gopalakrishnan, Michael Jones, Domi-
nique Méry, and Airy Weinzoepflen. Incremental proof of the
producer/consumer property for the pci protocol. In Proceedings
of the 2nd International Conference of B and Z Users on Formal
Specification and Development in Z and B, ZB ’02, pages 22–41,
London, UK, UK, 2002. Springer-Verlag.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang.
Protocol Verification as a Hardware Design Aid. In ICCD’92, pages
522–525, 1992.

[Dij68] Edsger W. Dijkstra. A constructive approach to the problem of
program correctness. BIT, 8:174–186, February 1968.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976.

[DRS04] Vijay D’silva, S. Ramesh, and Arcot Sowmya. Synchronous Protocol
Automata: A Framework for Modelling and Verification of SoC
Communication Architectures. In Proceedings of the conference on

References 168

Design, automation and test in Europe - Volume 1, DATE ’04, pages
10390–, Washington, DC, USA, 2004. IEEE Computer Society.

[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing Correctness
Properties of Parallel Programs Using Fixpoints. In Jaco de Bakker
and Jan van Leeuwen, editors, Proceedings of the 7th Colloquium on
Automata, Languages and Programming, volume 85 of LNCS, pages
169–181. Springer-Verlag, 1980.

[FF93] S. Finn and M. Fourman. The LAMBDA Logic. Abstract Hardware
Limited, September 1993. In LAMBDA 4.3 Reference Manuals., 1993.

[Gor00] Mike Gordon. From LCF to HOL: a short history, pages 169–185.
MIT Press, Cambridge, MA, USA, 2000.

[Haf09] Florian Haftmann. Code generation from Isabelle/HOL the-
ories. http://isabelle.in.tum.de/website-Isabelle2009-1/
dist/Isabelle/doc/codegen.pdf, 2009.

[HKV02] D Harel, O Kupferman, and M Y Vardi. On the Complexity
of Verifying Concurrent Transition Systems. Information and
Computation, 173(2):143–161, 2002.

[HS05] Eugin Hyun and Kwang-Su Seong. Design and Verification for PCI
Express Controller. In ICITA ’05: International Conference on
Information Technology and Applications, volume 2, pages 581–586.
IEEE, 2005.

[HSV94] L. Helmink, P. A. Sellink, M., and W. Vaandrager, F. Proof-checking
a data link protocol. In TYPES’93, pages 127–165. Springer, 1994.

[Hur] Joe Hurd. Metis theorem prover. http://www.gilith.com/
research/metis/.

[IBM] IBM Microelectronics. CoreConnect bus architecture. http://
www-306.ibm.com/chips/products/coreconnect/.

[Isa] Isabelle 2009-1. http://isabelle.in.tum.de/
website-Isabelle2009-1/index.html.

[Jon03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries—The
Revised Report. Cambridge University Press, April 2003.

[KEM11] Suleiman Abu Kharmeh, Kerstin Eder, and David May. A design-
for-verification framework for a configurable performance-critical

References 169

communication interface. In Proceedings of the 9th international
conference on Formal modeling and analysis of timed systems,
FORMATS’11, pages 335–351, Berlin, Heidelberg, August 2011.
Springer-Verlag.

[Kur94] Robert P. Kurshan. Computer-Aided Verification of Coordinating
Processes: the automata-theoretic approach. Princeton University
Press, 1994.

[Ler] Xavier Leroy. The Objective Caml system—documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

[LSGL95] Victor Luchangco, Ekrem Söylemez, Stephen J. Garland, and Nancy A.
Lynch. Verifying timing properties of concurrent algorithms. In Formal
Description Techniques VII, pages 259–273. Chapman & Hall, Ltd.,
1995.

[McM97] Kenneth L. McMillan. A Compositional Rule for Hardware Design
Refinement. In CAV ’97, pages 24–35. Springer, 1997.

[Mea55] George H. Mealy. A Method for Synthesizing Sequential Circuits.
Bell Systems Technical Journal, 34:1045–1079, September 1955.

[MHJG00] Abdel Mokkedem, Ravi M. Hosabettu, Michael D. Jones, and
Ganesh C. Gopalakrishnan. Formalization and Analysis of a Solution
to the PCI 2.1 Bus Transaction Ordering Problem. Form. Methods
Syst. Des., 16(1):93–119, 2000.

[MHT06] Haja Moinudeen, Ali Habibi, and Sofiene Tahar. Design for
Verification of the PCI-X Bus. In Proceedings of the Formal Methods
in Computer Aided Design, FMCAD ’06, pages 187–188, Washington,
DC, USA, 2006. IEEE Computer Society.

[Mil72] Robin Milner. Logic for Computable Functions: description of a
machine implementation. Technical Report CS-TR-72-288, Stanford
University, Department of Computer Science, May 1972.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of
Standard ML. MIT Press, 1990.

[Müf04] Friedger Müffke. A Better Way to Design Communication Protocols.
PhD thesis, University of Bristol, May 2004.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS
vol. 2283, Springer, 2002.

References 170

[NPW09] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle’s Logics: HOL. http://isabelle.in.tum.de/
website-Isabelle2009-1/dist/Isabelle/doc/logics-HOL.pdf,
2009.

[NS95] Tobias Nipkow and Konrad Slind. I/O automata in Isabelle/HOL.
In TYPES’94, volume 996 of LNCS, pages 101–119. Springer, 1995.

[OCP05] OCP International Partnership. Open Core Protocol Specification,
Release 2.1. http://www.ocpip.org, 2005.

[Pau09a] Lawrence C. Paulson. Isabelle’s Logics. http://isabelle.in.tum.
de/website-Isabelle2009-1/dist/Isabelle/doc/logics.pdf,
2009.

[Pau09b] Lawrence C. Paulson. Isabelle’s Logics: FOL and ZF.
http://isabelle.in.tum.de/website-Isabelle2009-1/dist/
Isabelle/doc/logics-ZF.pdf, 2009.

[PS06] PCI-SIG. PCI Express Base Specification Revision 2.0, December
2006.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification
of concurrent systems in CESAR. In Mariangiola Dezani-Ciancaglini
and Ugo Montanari, editors, Proceedings of the 5th Colloquium on
International Symposium on Programming, volume 137 of LNCS,
pages 337–351, London, UK, 1982. Springer-Verlag.

[RMK03] Abhik Roychoudhury, Tulika Mitra, and S. R. Karri. Using Formal
Techniques to Debug the AMBA System-on-Chip Bus Protocol. In
Proceedings of the conference on Design, Automation and Test in
Europe - Volume 1, DATE ’03, pages 828–833, Washington, DC, USA,
2003. IEEE Computer Society.

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and
implementation of VAMPIRE. AI Commun., 15:91–110, August
2002.

[SB06] Julien Schmaltz and Dominique Borrione. Towards a formal theory
of on chip communications in the ACL2 logic. In ACL2’06, pages
47–56. ACM, 2006.

[Sch02] S. Schulz. E – A Brainiac Theorem Prover. Journal of AI
Communications, 15(2/3):111–126, 2002.

References 171

[Sch07] Julien Schmaltz. A Formal Model of Clock Domain Crossing
and Automated Verification of Time-Triggered Hardware. In
Jason Baumgartner and Mary Sheeran, editors, Formal Methods
in Computer-Aided Design, 7th International Conference, FMCAD
2007, Proceedings, pages 223–230. IEEE Computer Society, 2007.

[Sco93] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH,
OWHY. Theor. Comput. Sci., 121:411–440, December 1993.
Annotated version of the 1969 manuscript.

[Seg06] C. Seger. The Design of a Floating Point Unit using the Integrated
Design and Verification (IDV) System. In M. Sheeran and T. Melham,
editors, DCC ’06: Participants’ Proceedings, March 2006.

[Sei94] Karen Seidel. Case Study: Specification and Refinement of the PI-
Bus. In Proceedings of the Second International Symposium of Formal
Methods Europe on Industrial Benefit of Formal Methods, FME ’94,
pages 532–546, London, UK, 1994. Springer-Verlag.

[Sle] The Sledgehammer: Let Automatic Theorem Provers write
your Isabelle scripts. www.cl.cam.ac.uk/research/hvg/Isabelle/
sledgehammer.html.

[SMSB05] Syed M. Suhaib, Deepak A. Mathaikutty, Sandeep K. Shukla, and
David Berner. XFM: An incremental methodology for developing
formal models. ACM Trans. Des. Autom. Electron. Syst., 10(4):589–
609, 2005.

[Son07] An Song, Min. System Level Assertion-Based Verification
Environment for PCI/PCI-X and PCI-Express. In Computational
Intelligence and Security (CIS ’07), pages 1035–1038. IEEE, 2007.

[STM] STMicroelectronics. STBus Interconnect. http://www.st.com/
stonline/products/technologies/soc/stbus.htm.

[TM98] E. Thomas, Donald and R. Moorby, Philip. The Verilog hardware
description language (4th ed.). Kluwer Academic Publishers, Norwell,
MA, USA, 1998.

[Tve05] Sergey Tverdyshev. Combination of Isabelle/HOL with Automatic
Tools. In Proceedings of the Fifth International Workshop on Frontiers
of Combining Systems (FroCoS’05), volume 3717 of Lecture Notes in
Computer Science, pages 302–309. Springer, September 2005.

References 172

[Wei99] Christoph Weidenbach. System Description: Spass Version 1.0.0.
In Proceedings of the 16th International Conference on Automated
Deduction: Automated Deduction, CADE-16, pages 378–382, London,
UK, 1999. Springer-Verlag.

[Wen09] Markus Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/website-Isabelle2009-1/dist/
Isabelle/doc/isar-ref.pdf, 2009.

[Wir71] Niklaus Wirth. Program development by stepwise refinement.
Commun. ACM, 14(4):221–227, 1971.

[WST03] Adam H. Wilen, Justin P. Schade, and Ron Thornburg. Introduction
to PCO Express: A Hardware and Software Developer’s Guide. Intel
Press, 2003.

