
Testing Deep Image Classifiers
using Generative Machine Learning

Isaac Dunn
Balliol College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2022

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Prof. Tom
Melham and Prof. Daniel Kroening, for their generous support over the past
four years. Their guidance and input on research directions, writing, publication,
conferences, careers, motivation, and many other important matters has been
invaluable. Thank you.

I am also extremely grateful to Hadrien Pouget for the many stimulating
discussions, words written, and hours programming that we shared – your
contributions and encouragement were much appreciated. Laura Hanu proved
another excellent collaborator, providing reliable code and insightful suggestions.

I have been fortunate to have been funded by the Engineering and Physical
Sciences Research Council, which has made my research possible.

I am grateful to all of my friends who have played a role in supporting me
through a degree that has, at times, been challenging. Particular thanks go to
Natasha Jeppu, Sophie Gullino, Holly Hunt, Will Payne, Alan Taylor, Leonor
Aidos, and Linda Ma – thank you.

Last, I want to express thanks to my parents and siblings. I feel very lucky
to be able to rely on your kindness and camaraderie, even when the world
completely shuts down.

Abstract

Although deep neural networks (DNNs) attain excellent performance on the
specific tasks they are trained for, this often seems to be obtained using easier-
to-learn proxies for the truly relevant concepts. The problem with proxies is
that they cannot be relied on in new situations – the proxy departs from the true
concept. And DNNs will very likely be deployed in new situations because the
world is always changing, and training data are never exhaustive.

Unfortunately, existing approaches are limited in their ability to diagnose the
bad proxies being relied on by a DNN. We also cannot accurately characterise a
model’s generalisation performance on different kinds of data beyond its training
task. These limitations additionally prevent us from developing systems that
do not rely on bad proxies.

To improve this situation, this thesis introduces two new test generation
procedures for image classification DNNs. These improve on existing approaches
by identifying more kinds of inputs for which a particular DNN gives incorrect
outputs. This is achieved by exploiting generative machine learning to solve the
test oracle problem in new ways. The first new procedure trains a generative net-
work to directly output test cases that identify failures. The second dynamically
perturbs the activation values of a pretrained generative network as it generates
new examples – the perturbations adjust the features of the generated data so
that they also induce failures in the DNN being evaluated.

Besides the primary contribution of these algorithms, this thesis also presents
an empirical finding: standard adversarial training that aims to increase model
robustness surprisingly decreases DNNs’ ability to generalise correctly to changes
in high-level features such as object position, orientation, shape or colour.

Contents

List of Figures ix

List of Tables xiii

Contributions to Co-Authored Works xv

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 7
1.3 Contributions . 13

2 Background 19
2.1 Generative machine learning . 20
2.2 Semantic representations in DNNs 24
2.3 Robustness to pixel perturbations 28

3 Related Work 37
3.1 Method of literature review . 37
3.2 Constrained pixel perturbations . 41
3.3 Perturbations using generative models 48
3.4 Manually designed perturbations 57
3.5 Generating test cases without perturbations 60
3.6 Effect of adversarial training on generalisation 62
3.7 Miscellaneous related work . 65

4 Training Generative Networks to Output Test Cases 69
4.1 Procedure for training generative networks 70
4.2 Experimental evaluation setup . 75
4.3 Efficacy of test generation . 80
4.4 Ability of tests to identify new problems 81
4.5 Similarity of tests to training examples 88
4.6 Ablative studies . 92
4.7 Scaling to ImageNet . 100
4.8 Threats to validity . 106
4.9 Performance on requirements . 109

vii

viii Contents

5 Generating Tests by Perturbing Generative Network Activations 113
5.1 Procedure for perturbing latent generator activations 114
5.2 Description of empirical evaluation 121
5.3 Experimental results and discussion 129
5.4 Threats to validity . 137
5.5 Performance on requirements . 140

6 Detecting Faults using Generator Activation Perturbations 143
6.1 Detecting intentionally injected faults 144
6.2 Detecting faults in the wild . 154
6.3 Threats to validity . 158
6.4 Conclusion . 159

7 Adversarial Training Can Worsen Generalisation 161
7.1 Experimental setup . 163
7.2 Results . 164
7.3 Discussion . 167
7.4 MNIST . 170
7.5 Threats to validity . 173

8 Conclusion 177
8.1 Summary of research . 177
8.2 Significance of contributions . 180
8.3 Building on this thesis . 186

References 191

Appendices

A Introduction to Deep Neural Networks 219
A.1 Single-layer perceptron . 219
A.2 Multi-layer network . 221
A.3 Training . 221

B Training Generative Networks Experimental Particulars 225
B.1 Details of experimental setup . 225
B.2 Interfaces used by human judges 229

C Latent Generator Perturbations: Supplementary Materials 233
C.1 ImageNet: further examples . 233
C.2 CelebA-HQ . 241

List of Figures

1.1 An ‘adversarial example’ created by perturbing each pixel. 3
1.2 Illustration of how mascara can be used as a shortcut feature. . . 4
1.3 Examples of images of cows being classified correctly on grass but

incorrectly on beaches. 5
1.4 Example of metal hospital tags as a shortcut feature. 5
1.5 Examples of ambiguous or unclear images, unsuitable as test inputs. 11
1.6 Example of a context-sensitive perturbation created using the

procedure introduced in Chapter 5. 15

2.1 Figure reproduced from Olah et al. [47] illustrating the composition
of lower-level features into a higher-level neuron. 25

3.1 Illustration of the limitations of ℓp constraints in measuring similarity. 46

4.1 Graphs showing the extent to which gradients from the two loss
terms conflict. 73

4.2 Samples from the training dataset. 76
4.3 Samples from the pretrained generator, trained to model the dataset. 76
4.4 Examples of generated targeted and untargeted test inputs for a

standard MNIST classifier. 76
4.5 Examples of generated targeted and untargeted test inputs for a

robust MNIST classifier. 76
4.6 Screenshot of the interface used by participants to label generated

test inputs. 78
4.7 Proportions of test cases generated for MNIST classifiers that

match their intended semantics. 79
4.8 Plots showing the efficacy of the test generation algorithm in the

presence of online adversarial training. 86
4.9 Plots showing the efficacy of the test generation algorithm in the

presence of offline adversarial training. 86
4.10 Plot showing the effect of adversarial training against Song et al. [2]. 87
4.11 Examples of the interfaces seen by human judges when trying to

pick out which one image is not drawn by a person. 89

ix

x List of Figures

4.12 Proportion of the time that test cases pass as training examples to
human judges. 91

4.13 Proportion of the time that test cases pass as training examples to
human judges in a side-by-side comparison. 93

4.14 Proportions of filtered successful test cases generated by a normal
GAN without finetuning that retain their intended semantics. . . 96

4.15 Proportion of the time that test cases generated without any fine-
tuning pass as training examples to human judges. 97

4.16 Proportion of the time that test cases generated without any fine-
tuning pass as training examples to human judges in a side-by-side
comparison. 98

4.17 A sequence of images tracking the output of the generator net-
work for one fixed random sample in latent space as adversarial
finetuning takes place. 100

4.18 Demonstration of the effect of omitting realistic pretraining before
finetuning. 101

4.19 Demonstration of the effect of different finetuning rates. 101
4.20 Demonstration of the effect of using a naive combination of the

two loss terms. 102
4.21 Examples of test cases for an ImageNet classifier. 102
4.22 Successful targeted unrestricted adversarial examples for target

class ‘tabby cat’. 103
4.23 Successful targeted unrestricted adversarial examples for target

class ‘slug’. 103
4.24 Successful targeted unrestricted adversarial examples for target

class ‘orange’. 103
4.25 Successful targeted unrestricted adversarial examples for target

class ‘church’. 103
4.26 Illustration of the effects of dual-objective finetuning on generated

ImageNet images. 105

5.1 Diagram illustrating how context-sensitive perturbations are car-
ried out. 118

5.2 Clarification of where the perturbation tensors are applied during
the forward computation of the generative model. 119

5.3 Screenshot of interface used for labelling images. 127
5.4 Plots showing the relationship between perturbation magnitude

and likelihood that the perturbed image changes class. 132
5.5 A selection of context-sensitive perturbations, showing the kinds

of change that can be made. 133

List of Figures xi

5.6 Examples showing the effect of context-sensitive perturbations at
different levels of granularity. 134

5.7 A random selection of tests generated for CelebA-HQ. 136

6.1 Examples of context-sensitive perturbation test inputs for the state-
of-the-art ImageNet classifier. 153

6.2 Charts showing that context-sensitive perturbations make large
changes when measured in pixel space. 156

7.1 Plots showing the proportions of successful perturbations as a
function of maximum perturbation magnitude. 165

7.1 Continued. 166
7.2 Graphs showing relationship between perturbation magnitude

and success for the MNIST dataset. 172
7.3 Examples of test cases targeting label 0 of MNIST. 173

B.1 Examples generated by one adversarially-finetuned GAN to per-
form an untargeted attack on a robust classifier. 228

B.2 Full screenshot of the interface used by participants to label gener-
ated test inputs. 229

B.3 Full screenshot of the interface used by participants to identify
which one of ten images is computer generated. 230

B.4 Full screenshot of the interface used by participants to identify
which one of two images is computer generated. 231

C.1 The first examples used in our experiments. Perturbed images for
Engstrom et al.’s adversarially-trained classifier [213] are to the
right of each unperturbed image. 235

C.1 Continued. 236
C.2 Examples of feature perturbations for the two standard classifiers. 237
C.3 Examples of feature perturbations for the two pixel-robust classifiers.238
C.4 Examples of feature perturbations for the two standard classifiers. 239
C.5 Examples of feature perturbations for the two pixel-robust classifiers.240
C.6 A random selection of context-sensitive feature perturbations at

different granularities . 243
C.7 A random selection of context-sensitive feature perturbations at

different granularities. 244
C.8 A random selection of context-sensitive feature perturbations at

different granularities . 245

xii

List of Tables

4.1 Descriptions of and references to the classifiers evaluated. For each
robust model, there is no misclassified input within a distance ϵ of
p% of hold-out test set inputs under the ℓ∞ norm. 77

4.2 Comparison of the closest distance to the nearest training example
from ten particularly realistic generated tests with typical pixel-
space perturbation magnitudes found in the literature. 82

4.3 Ten selected test inputs used for Table 4.2. 82
4.4 Percentages of failing test cases generated for each classifier which

are also misclassified by the other classifiers. 84

5.1 BigGAN-deep generator architecture for 512 × 512 images. 124
5.2 Accuracies of the standard ImageNet classification models used. . 125
5.3 Details of robust classifiers’ usual performance. 125
5.4 Efficacy of generated perturbed tests, for different classifiers and

perturbation types. 130
5.5 Numbers of examples used in for each classifier instance. 131

6.1 Samples from a biased dataset used to create a deliberately faulty
classifier. 145

6.2 Examples of tests revealing deliberately injected faults. 146
6.3 Summary of the faults deliberately induced in different classifiers. 147
6.4 Proportions of tests for each faulty classifier that detect the fault. . 147
6.5 Proportions of test cases that successfully transfer to pixel-robust

models. 156

7.1 Mean magnitudes of perturbations causing targeted misclassifica-
tions for different classifiers and perturbation types. 164

B.1 Architecture for generator network, g. 227
B.2 Architecture for discriminator subnetwork, d0. No batch normali-

sation used. 227
B.3 Hyperparameters for all networks. 227

xiii

xiv List of Tables

C.1 CelebA-HQ convolutional generator architecture. Each row repre-
sents a layer. Each horizontal rule marks an activation tensor at
which perturbations are performed. 242

Contributions to Co-Authored Works

This thesis draws heavily from the three papers listed below, including some
sections taken almost verbatim from the original paper texts. In short, I did
almost all of the ideation, setting of research direction, implementation and
writing work for all three papers.

Throughout, my supervisors Prof. Tom Melham and Prof. Daniel Kroening
continuously provided helpful high-level guidance on all matters relating to these
papers: research direction, experiments, and writing. They did not contribute
directly to any implementation or experiments, and made some helpful but
modest fine-grained edits to the texts of the papers. I am grateful to them for
allowing me to work with two excellent research assistants, Hadrien Pouget and
Laura Hanu, whose contribution is disentangled from my own below.

My first paper, ‘Adaptive Generation of Unrestricted Adversarial Inputs’ [1],
forms the basis of Chapter 4. I contributed the ideas, wrote the code, and ran
all the experiments except for the evaluation of the performance of the existing
approach Song et al. [2] in the presence of adversarial training, as described in
section 4.4.4, which was implemented by Hadrien Pouget. I also wrote most
of the paper, with help from Hadrien (especially in revising and improving
later versions).

My second paper, ‘Evaluating Robustness to Context-Sensitive Feature Per-
turbations of Different Granularities’ [3], forms the basis of Chapters 5 and 7.
I was the source of the original ideas, set the research direction, implemented
the software tool, and led on running experiments. Laura Hanu integrated the
BigGAN into the codebase so that it was in a suitable format to be used by the
tool. Hadrien Pouget helpfully assisted with experiments and contributed to
high-level discussions about the paper. I did the large majority of the writing,
with the remaining contributions from Hadrien.

My third paper, ‘Exposing Previously Undetectable Faults in Deep Neural
Networks’ [4], forms the basis of Chapter 6. Although I also led on this paper,
it was a more equal collaboration with Hadrien Pouget. The software imple-
mentation was split fairly evenly between me and Hadrien, and Hadrien also
contributed to the writing.

xv

xvi Contributions to Co-Authored Works

A note on pronouns

For reasons of style only, I have avoided using singular first-person pronouns
(‘I’, ‘my’, etc.) in this dissertation, preferring the plural ‘we’ etc. This should
not be used to infer anything about the division of responsibility of any work.
Often, ‘we’ refers to my sole contribution; rely on the above descriptions to
determine the division of credit, rather than assuming that ‘we’ means the
contribution of collaborators.

1
Introduction

Contents

1.1 Motivation . 1
1.2 Aims . 7
1.3 Contributions . 13

Can deep neural networks be relied upon? Despite the rise of deep learning,

there is far to go in identifying, understanding and addressing limitations in

their ability to generalise beyond the distribution of data they were trained

on. This thesis contributes to progress in this area by developing and applying

two new test generation procedures that are better able to detect failures and

faults in deep neural networks.

1.1 Motivation

1.1.1 Deep learning models learn to use shortcut features

Shortcut learning is undesirable

Suppose we wish to train a classifier to distinguish between images of dogs and

wolves, and that the training data includes dogs only on grassy backgrounds

and wolves only on snowy backgrounds. It would be possible to obtain high

1

2 1.1. Motivation

performance on this data by looking only at the backgrounds, ignoring the

animals entirely. If a classifier did this, it would have learned a ‘shortcut’:

although performance on the training task would be good (including on a hold-

out test set, so the problem is not overfitting), it would be relying on incorrect

features. Incorrect features in what sense? Incorrect in the sense that reliance

on them will fail to generalise to new situations – in this example, a dog in

the snow would be classified incorrectly. So shortcut learning is when a model

learns features that perform well on data drawn from the same distribution of

the training distribution, but that fail to generalise “out of distribution” to data

that differs from the training distribution.

At first blush, such failure to generalise well to new data “out of distribu-

tion” does not seem worrying. Out-of-distribution generalisation is asking for

more than we might reasonably demand – we optimise our models solely for

performance on training data, providing no guarantees about their performance

on entirely new data.

But the ‘i.i.d.’ assumption – that data will be independently drawn from an

identical distribution – has been called the ‘the big lie in machine learning’ [5,

37:44]. The world is complex and changes by time and place. For example, the

COVID-19 pandemic caused 2020 to be very different to prior years in many

application domains. But rare and dramatic events are not the only source of

change: technological and cultural development drive constant change in almost

every area of life and industry. In addition to data changing by time and place,

it is challenging to gather training data that captures the full distribution of

interest; selection biases are often present.

Given that the ‘i.i.d.’ assumption cannot be depended on, we must rely on

our models’ ability to generalise out of distribution. So learning shortcuts

should be avoided.

1. Introduction 3

Figure 1.1: An ‘adversarial example’ from Goodfellow, Shlens, and Szegedy [7], created
by slightly perturbing the values of each pixel, so that the perturbed image is incorrectly
classified.

Deep neural networks do learn shortcuts in practice

Given redundancy in a dataset, there are many possible features that could each

be relied on to perform well on the training task. Because it intuitively seems that

most of these are shortcut features that cannot be relied upon in all situations, we

might intuitively expect models trained only to maximise training performance

to rely on shortcut features by default.

There is considerable empirical evidence that this intuition is correct. That is,

deep neural networks do learn to rely on shortcut features in practice [6].

The well-known so-called ‘adversarial examples’ phenomenon (introduced

fully in Section 2.3) is, in short, that models with excellent performance can be

shown to be consistently reliant on fragile shortcut features. It is possible to take

a data point drawn from the training distribution and make almost imperceptible

changes to it, thereby changing a model’s output from correct to completely

incorrect. An example of such a pixel perturbation from the image classification

domain is shown in Figure 1.1. We might hope that our systems might reliably

generalise to imperceptibly different data, even if those data were not present

during training. In response to Ilyas et al.’s [11] cogent claim that reliance

on non-robust shortcut features is a primary cause of robustness to adversarial

perturbations, Gilmer and Hendrycks [12] comment that a broader understanding

4 1.1. Motivation

Figure 1.2: Illustration from Kuehlkamp, Becker, and Bowyer [8] of the difference
between eyes with and without make-up. The mascara, still noticeable after segmentation
and normalisation, was used as a ‘shortcut’ feature by gender classification models.
Reproduced with permission. ©2017 IEEE.

of distributional robustness is required: in general, there is no reason to expect a

model to perform well when given an entirely different distribution of inputs.

Models that hoped to predict gender from iris texture were shown to be

relying on the presence of mascara as a proxy [8]. This proxy works on the

training dataset, but fails to generalise to a similar dataset with no eye makeup.

See Figure 1.2.

Models trained to identify animals struggle to generalise correctly to locations

different from those included in the training data [9], suggesting that location-

specific shortcut cues are being relied on. See Figure 1.3. The WILDS benchmark

[13] includes the heat- and motion-activated wildlife camera images from dif-

ferent locations as one of its ten datasets for the evaluation of models under

distribution shift. In all cases, out-of-distribution performance (for instance, on

1. Introduction 5

Figure 1.3: Figure showing that image recognition algorithms generalise poorly to new
environments. In this example, cows in their expected context are correctly identified (A),
but in the uncommon setting of a beach are either not detected (B) or classified poorly
(C). Reproduced from Beery, Horn, and Perona [9] by permission from Springer Nature,
©2018. Note that these examples use a third-party (ClarifAI.com) model, rather than the
models trained by Beery, Horn, and Perona [9].

Figure 1.4: Figure from Zech et al. [10] showing which regions contributed most to
classification decisions. Radiology workers put location-specific metal tokens in the
corners of the scans: (A) shows that over all scans, the corner regions, containing these
tokens rather than lungs, make an especially big contribution to decisions; (B) and
(C) show the contributions for particular scans, focusing on the corner with the token.
Reproduced under the paper’s creative commons licence.

6 1.1. Motivation

images from a different location) is substantially worse than performance on

(unseen) data from the training distribution.

Efforts to train a convolutional neural network to detect pneumonia from

radiological scans were found to suffer from shortcut learning [10]. Despite good

performance on new data from the same sites used during training, performance

on scans from different hospitals was much worse. Investigation suggests that

the models were able to predict exactly where the scan was taken – in particular

by looking at metal tokens placed by technicians in the corners of images – and

that scan origin was relied upon as a proxy for the likelihood of pneumonia.

See Figure 1.4.

The problem is not specific to vision models. Over-reliance on superficial

patterns and associations in limited evaluation sets led state-of-the-art common-

sense reasoning models to perform much worse when these spurious correlations

were removed [14, 15]. Miller et al. [16] produce new test datasets for the Stanford

Question Answering Dataset (SQuAD) and find that even though state-of-the-art

models have not overfitted in any sense (because they are able to generalise

equally well to a new test set from the training distribution), shifts from that

Wikipedia domain to New York Times articles, Reddit posts and Amazon product

reviews result in significant performance drops.

Besides these specific examples of shortcut learning, refer to Geirhos et al.’s

excellent overview of shortcut learning [6] for many more examples. Another

framing of shortcut learning is that the training process is underspecified: many

more hypotheses have equivalently good performance on the training task,

but different performance in various deployment domains [17]. That we end

up with shortcut features is therefore a failure of specification, rather than a

failure of learning.

1.1.2 Problem: limited diagnosis of learned shortcuts

We know that our models can learn shortcut proxies that do not generalise to

out-of-distribution data as we would wish. But there are several ways in which

1. Introduction 7

our present abilities and tools are limited.

Given a particular model, we cannot reliably identify the shortcuts it has

learned. We are largely ignorant of how any model will behave on out-of-

distribution data of various kinds. So decisions about whether deep neural

networks can be relied upon in deployment must be taken in the dark. Decision

makers must choose between deploying and risking poor out-of-distribution

performance causing problems, or not deploying and missing out on the benefits

that the system could offer. It would be much better if such decisions could be

informed by a characterisation of the DNN’s limitations and weak spots.

In general, we do not understand why shortcut learning arises. We do not

have theory relating the training data, training task and model architecture to the

shortcuts learned and out-of-distribution performance of a model. We therefore

do not understand how to design models and training processes so as to create

models that have the out-of-distribution generalisation properties we want. It

is quite possible that, until this is achieved, all models that we train will learn

shortcuts that make them fundamentally unsuitable for deployment in important

contexts in which reasonable out-of-distribution behaviour is necessary.

In addition, we do not yet have conceptual clarity about the properties we

might require from our systems. We cannot say which shortcuts are harmless and

which are problematic because we cannot specify the set of out-of-distribution

data that we require reasonable behaviour on, and using the full set of possible

inputs as an upper bound is infeasible.

1.2 Aims

The core contribution presented in this thesis is two new testing algorithms that

represent progress in our ability to identify different out-of-distribution inputs

that a given DNN fails to generalise to. Before these are described in Sections

1.3.1 and 1.3.2, this section explains how such testing algorithms address the

problems we have identified and describes the specific requirements that such

testing algorithms must fulfil in order to make a significant contribution.

8 1.2. Aims

1.2.1 Key idea: improved testing of DNNs

Suppose that we had an algorithm for testing DNNs that, given a model, could

identify all the inputs for which the model’s output was incorrect. Such an

algorithm would better inform decisions about whether to deploy models. By

comparing the identified set of all inputs for which a model misbehaves to the

set of inputs that could plausibly occur during deployment, we gain a better

sense of how well the model is likely to perform.

But in practice, the set of all inputs for which the model gives incorrect outputs

will be far too large to comprehensively compare to the set of plausible deploy-

time inputs. Instead, through inspection and analysis of a non-exhaustive subset,

we might draw inferences about the shortcut proxies being used by that particular

model. So we could make more accurate predictions about the kinds of data

that the model would correctly generalise to, and therefore make better decisions

about whether the model can be relied upon.

By analysing multiple models in this way, we might learn general lessons

about the kinds of shortcut proxies that DNNs learn, and therefore the kinds of

situations in which these systems can and cannot be trusted. By comparing the

out-of-distribution generalisation of models that differ in their architecture or

training, we might also develop insights into the causal relationship between

these aspects of model development and the shortcut proxies learned.

These insights into shortcut learning would enable us to engineer systems

with improved out-of-distribution generalisation. Even without those insights,

the algorithm’s ability to evaluate out-of-distribution generalisation would fa-

cilitate a trial-and-error approach to development of improved models.

With experience, we may also develop greater conceptual clarity, allowing us

to better characterise the kinds of out-of-distribution generalisation behaviours

that are and are not problematic in practice.

It is not feasible that we could soon develop a practical algorithm that could

identify all of the inputs for which a given model gives the wrong output. But

developing a new algorithm that is able to identify many more such inputs

1. Introduction 9

than the limited current testing approaches would be a significant research

contribution, because all of the benefits listed above would still apply. The

better the tools we have to probe and analyse out-of-distribution generalisation,

the better our ability to identify problems in our systems, and the better our

ability to understand and address them. The main work described in this thesis

is the development and evaluation of two such new testing algorithms.

1.2.2 Application domain: image classification

Although shortcut learning is a concern with DNNs in general, we will restrict our

attention in this thesis to one particular application domain: image classification.

For our purposes, an image is a matrix of real numbers, where each element

represents the colour of a pixel – that is, a member of Rm×n, or Rm×n×3 in the

case of three colour channels.

A classification task is determined by an oracle partial function. The oracle

o : X ⇀ Y for a classification task maps some elements of X to the correct

corresponding ‘classes’ or ‘labels’ from the fixed set Y. Typically, this oracle is

human judgement about a task that we are trying to approximate. The oracle

function is only partial because some possible inputs do not belong to any class,

perhaps because they are ambiguous, ill-formed, meaningless or irrelevant. For

instance, most of the set of possible images (2D pixel arrays) are meaningless

noise, like the static on an analogue television. The ImageNet Large Scale Visual

Recognition Challenge [18] is a representative image classification task that will

be used in this thesis: photographs of creatures and objects are mapped to

one of 1,000 possible classes.

There are several advantages to an exclusive focus on image classification.

Significant research attention has been devoted to image classification, so there

are many useful datasets and pretrained models available. Images are easy

to display on screens and in print, allowing for faster interpretation of results,

simpler experiments, and better communication to readers of papers. There are

also benefits to focus, allowing research efforts to be concentrated on the most

10 1.2. Aims

important questions rather than tedious engineering. Last, although lessons seem

likely to generalise beyond image classification, this domain is significant enough

in itself that investigating this generalisation is not necessary.

1.2.3 Our requirements for successful test generation

In this section, we will spell out requirements that are sufficient for a new testing

algorithm to constitute a significant and valuable contribution.

Summary

In short, we would like test generation algorithms that:

1. Produce well-formed test inputs that are assigned meaning by the task

oracle.

2. Produce test inputs for which the classifier being tested makes incorrect

label predictions.

3. Can detect as wide a range of problems as possible.

4. Are efficient and practical.

These requirements are clarified and justified in turn below.

1. Production of meaningful test cases

We would like algorithms that produce test cases that are well-formed inputs

that are assigned meaning by the oracle for the classification task. Otherwise,

the model cannot be said to be incorrect for that case.

For instance, if the two class labels allowed are “bird” or “bicycle”, then test

cases that include both a bird and a bicycle, or that include neither a bird nor

a bicycle, or that are otherwise unclear are not useful, as in Figure 1.5. Note

also that almost all possible images (2D pixel arrays) are meaningless noise, and

so would not be suitable test inputs.

1. Introduction 11

Another relevance of this requirement is as a proxy for inputs we care about

in practice. We cannot assume that the training distribution is representative

of the data that may be encountered during deployment. But we also do not

know which data may be encountered during deployment – if we did, then we

could simply include these during training. So, at this early stage of investigation,

we will assume that any input that is meaningful is one for which we could

plausibly require good performance during deployment. In addition, allowing

an exploration of all meaningful inputs rather than prematurely restricting our

focus is useful for better understanding how models tend to generalise.

2. Causing the classifier to output incorrect predictions

An often-cited useful perspective attributed to Dijkstra is that “testing shows the

presence, not the absence of bugs” [20]. A test that finds no problem gives almost

no information about whether any problems actually exist; a test for which the

tested model diverges from the oracle is a concrete failure. So we will require

that generated test cases identify failures in the following sense:

Definition 1.1 (Failure-identifying test case). A test case (x, y) ∈ X×Y for oracle

o : X ⇀ Y and model f : X → Y identifies a failure if o(x) is defined, y = o(x),

and f (x) ̸= y.

In order to accurately identify a failure, we need not only a test input x that

causes an incorrect classifier prediction, but we also need to know the correct

Figure 1.5: Examples from Brown et al.’s “unrestricted adversarial examples challenge”
[19] showing images that would be unsuitable test input because they do not clearly have
a meaning that belongs to one of the relevant classes (“bird” or “bicycle”).

12 1.2. Aims

expected output y = o(x). Because we do not have cheap access to the task oracle

o, we need to have a way of automatically obtaining the correct label y = o(x).

This ‘test oracle problem’ is a significant challenge.

3. Detection of a wide range of problems

We would like test generation algorithms that can catch as wide a range of

problems as possible. There are two possible senses of the word ‘problem’ that

could apply here: fault (underlying problem), or failure (specific outcome that is

symptomatic of a fault), as distinguished by the IEEE standard glossary [21].

We want to detect as many faults (underlying problems) as possible, because

detection is necessary for understanding, which in turn is necessary to address

the causes of the problems. But it is subjective what exactly constitutes a fault in

a deep neural network: unlike conventional software, it is less likely that the fault

is a human programmer’s mistake. Instead, it is likely the problem has arisen

through the training process, even if implemented as intended.

So we will largely focus on failures, because they are easier to define and

measure. That is, we want our test generation algorithms to detect as wide

a range of specific instances of incorrect behaviour as possible. Since each

failure is caused by an underlying fault, the detection of failures is helpful

in the identification of faults.

So we want our test generation procedures to be able to output as many

distinct failure-identifying test cases as possible. In particular, a procedure that

could output classes of failures that were undetectable by previous approaches

would be significantly more useful than one that could only test cases that could

have been part of a hold-out test set from the training distribution, or only cases

that are within an ℓ∞-constrained pixel perturbation of such examples.

4. Efficiency and practicality

We would like test generation algorithms that are efficient and practical. Even if

an algorithm is only intended to be used for scientific ends only, being cheaper

1. Introduction 13

and more convenient increases the number of experiments that can be feasibly

run. Relevant costs include overhead computation (such as training models),

marginal computation for each extra test generated, necessary hardware, soft

assets such as labelled data or pretrained models, and labour.

Typically, testing accounts for very roughly half of the resources and efforts

in developing software [22]. So we should aim for the overall testing costs to be

roughly the same order of magnitude as the cost of developing the system being

tested, in order not to be prohibitively expensive. Of course, being cheaper

than this would be better.

1.3 Contributions

The main research contributions presented in this dissertation are two new proce-

dures for the testing of deep neural networks. In particular, these two algorithms

meet the requirements established in Section 1.2.3. In different ways, both of

the new algorithms depend centrally on generative neural networks (networks

that model the full distribution of training data, as opposed to discriminative

models that model only the conditional probability of a label given a data point).

The first, described in Section 1.3.1, introduces a new way of training generative

networks so that they learn to generate suitable test cases for a given model. The

second, described in Section 1.3.2, dynamically perturbs the activation values

of pretrained generative networks as they generate new examples, so that the

generated data are optimised to probe the behaviour of a given model.

The thesis of this work is that generative models can be exploited in this

way to generate tests in such a way that meets our specified requirements, and

therefore improve our ability to identify failures and faults caused by shortcut

learning in deep neural networks.

As well as the contribution of the two new test generation algorithms, this

dissertation also presents a surprising empirical finding about the relationship

between the training of deep neural networks and their out-of-distribution

generalisation properties. This is summarised in Section 1.3.3 and demonstrates

14 1.3. Contributions

that, as hoped, improved test generation algorithms can facilitate useful insights

into shortcut learning.

1.3.1 Training generative networks to output test cases

The first research contribution of this dissertation, presented in Chapter 4, is one

of two novel algorithms that generate tests to identify failures of generalisation

in deep neural networks.

Test generation procedure

In short, the training scheme for generative adversarial networks (GANs) is

modified so that the generator network of the GAN pair learns to generate

tests for a given image classifier. The generator network in a standard GAN is

incentivised during training to generate examples that the discriminator network

is unable to distinguish from examples drawn from the training distribution.

To train a generator network to generate OOD tests, we introduce a new loss

term that incentivises the generation of test inputs that reveals weaknesses in the

system being evaluated. This additional loss term is optimised simultaneously

with the standard generator training loss. With the help of some new techniques

to make this training process converge as desired, the end result is a generator

network whose generated outputs are good out-of-distribution tests for the

model being evaluated.

Performance on requirements

As detailed in Section 4.9, this test generation algorithm meets all four of the

requirements introduced in Section 1.2.3. Studies with human judges acting

as the oracle found that not only are the generated tests successful in causing

classification failures in the tested models, but they often cannot be identified

as being artificial from a line-up of dataset examples.

By virtue of solving the test oracle problem using a conditional generative

network rather than a constrained perturbation, this approach is able to generate

1. Introduction 15

(a) Original image. (b) Diff from perturbation. (c) Perturbed image.

Figure 1.6: An example of changing the computed classification from ‘volcano’ to target
label ‘goldfish’ using a context-sensitive feature perturbation. Coarser-grained changes
include darkening the sky, causing an eruption of lava, and adding a rocky outcrop in
the foreground; finer-grained changes include slightly flattening the curve of the volcano,
and adjustments to the texture of the trees, rocks and cloud.

test cases and so identify problems that are not possible using existing approaches.

This is verified with a range of empirical experiments.

After the overhead cost of training a GAN as required, each marginal gener-

ated test is very cheap, costing only a single forward pass through the generator

for each batch.

1.3.2 Generating tests by perturbing generative network acti-
vations

The second research contribution of this dissertation is also a novel algorithm

that generates tests for DNNs, exploiting generative networks in quite a different

way. Presented in Chapter 5, it introduces a new way of making perturbations

to data as a way of producing test inputs.

Test generation procedure

By making perturbations to data, we mean that it takes known test inputs and

makes changes that maintain their oracle-assigned semantics while altering

the tested model’s outputs. In particular, this procedure exploits the latent

representations learned by a fixed, already trained generative network. By

performing constrained perturbations to the activation values during a forward

16 1.3. Contributions

pass of such a network, this procedure is able to effect a context-sensitive change

to the generated test instance. As standard, the direction and magnitude of the

perturbation are computed using a gradient-walking optimisation procedure

with the goal of inducing a failure in the tested model without making too large

a change. Figure 1.6 demonstrates the effect of a perturbation identified by

this procedure.

Perturbing activation values in earlier layers in the generator network results

in changes to high-level features such as object shape, location, colour or orienta-

tion, while perturbations in later layers are more localised and affect features at a

finer level of granularity, such as texture. By default, our algorithm performs per-

turbations at all layers of the generator network, although for some experiments

and purposes it makes sense to restrict these to only affect some layers.

Performance on requirements

Section 5.5 examines the evidence that this test generation algorithm meets the

necessary requirements. The perturbations are easily able to produce test inputs

that cause the tested classification models to give incorrect outputs. Experiments

with human judges verified that the perturbed images maintain their original

meanings as necessary.

By exploiting the representations learned in all layers of a generative model,

the perturbations made by this procedure are context sensitive (as opposed to

pixel perturbations that ignore the features present in each image), and can

cause changes at all levels of granularity from very local (fine) to global (coarse).

Chapter 6 is an empirical investigation of whether this algorithm is able to identify

faults that could not be identified by existing approaches.

Although this can be increased or decreased as necessary, the optimisation pro-

cess for a single high-resolution ImageNet perturbation takes on the order of one

minute. Experiments with a range of datasets verify the ability to scale in practice.

1. Introduction 17

1.3.3 Empirical finding relating adversarial training to gener-
alisation behaviour

This dissertation also presents a striking empirical finding, concerning the rela-

tionship between how a model is trained and its out-of-distribution generalisation

behaviours. This finding was made using the new perturbation-based algorithm

described in the previous section, and is a promising example of how such

improved testing procedures being used to test DNNs can lead to useful insights

that may be useful in the development of trustworthy systems.

There has been much focus on a particular perturbation approach in computer

vision, which we will call the ‘pixel perturbation’ approach. This involves making

a context-insensitive adjustment to the value of each pixel, with an ℓp norm

(∥x∥p = (Σi |xi|p)
1
p) constraining the magnitude of the overall perturbation

so as to preserve image semantics. By default, deep neural network image

classifiers are not robust to such perturbations; they fail to generalise to delib-

erately perturbed images. The most promising approach to improving models’

generalisation to these kinds of inputs is ‘adversarial training’: the inclusion of

current worst-case perturbations during training.

Optimistically, we might hope that improving a model’s ability to generalise

to a particular set of inputs that are not part of the training dataset might reliably

improve its ability to generalise outside this training distribution in general.

Chapter 7 explores whether this is the case.

Disappointingly, it seems that this is not the case. When it comes to generali-

sation to changes to high-level features (e.g. shape, orientation, position, colour),

we have found that adversarial training against pixel-space perturbations is not

just unhelpful: it is counterproductive.

Empirical evidence that adversarial training against pixel perturbations de-

creases models’ robustness to changes of coarser granularity is presented in

Chapter 7. This finding was made using the new context-sensitive perturba-

tion algorithm presented in Chapter 5. The evidence comes from experiments

comparing perturbation magnitudes for image classification networks with

18 1.3. Contributions

standard training to those that have undergone adversarial training against pixel

perturbations, for different kinds of perturbation. By measuring the magnitudes

of the perturbations to latent activation values required to find a test input that a

model classifies incorrectly, we are measuring the robustness of the model. If it

is often easy to find a small perturbation, the model generalises poorly to even

small changes of the kind being applied; if larger perturbations are required,

the model is more robust. While adversarially trained models indeed perform

better (smaller magnitudes) under perturbations at later layers in the network

as we might expect, they perform no better under mid-generator perturbations,

and significantly worse when perturbations were performed in the early layers

only. These early-layer perturbations are shown to correspond to high-level,

coarse-grained feature changes.

2
Background

Contents

2.1 Generative machine learning . 20
2.2 Semantic representations in DNNs 24
2.3 Robustness to pixel perturbations 28

This chapter introduces background material that is useful to understand the

rest of this dissertation. Readers may wish to skip topics they are already familiar

with. Appendix A provides background to the background: an introduction

to deep neural networks.

Section 2.1 describes approaches to generative machine learning in particular,

with a focus on deep neural networks. The following section, 2.2, presents some

existing work suggesting the kinds of meanings and representations encoded

by individual neuron units in different kinds of deep neural networks. The last

section, 2.3, introduces the phenomenon of so-called adversarial examples: by

making small worst-case perturbations to the values of the pixels of an image, it

is by default easy to cause an image classification model to perform very poorly.

The section also introduces techniques intended to create models that do not

suffer from this problem, including adversarial training.

19

20 2.1. Generative machine learning

2.1 Generative machine learning

Let us draw a distinction between discriminative models and generative models.

Note that this is not a strict, formal dichotomy that all models are cleanly divided

into, but a helpful distinction that will be useful for our ends. In particular, the

work presented in this dissertation largely concerns unambiguously discrimi-

native models being evaluated using approaches that exploit unambiguously

generative models.

For our purposes, a discriminative model is one that models the distribution of

some unobserved variable y conditional on a particular observed variable x. Clas-

sification is an archetypical discriminative task: a classification model predicts

which of a finite number of classes each input belongs to. Regression – modelling

of a continuous value associated with each input – is also discriminative.

A generative model, in contrast, simply models the distribution of samples

drawn from some training source. That is, rather than modelling some unseen

variable associated with each particular instance drawn from the training distri-

bution (p(x | y)), a generative model models that training distribution entirely

(p(x), or p(x, y) if each training instance includes additional variables y). This

model may be an explicit estimate of the target distribution, or may be only

implicit, as in the case of models that are only able to generate individual samples

drawn from (an approximation of) the training distribution. While there are

many discriminative and generative models that are not deep neural networks,

deep neural networks will be the almost exclusive focus of this dissertation.

2.1.1 Generative adversarial networks (GANs)

Generative adversarial networks (GANs) [23] are a class of generative machine

learning models involving the simultaneous training of two deep neural net-

works: a generator g and a discriminator d. Specifically, given a dataset D ⊆ X of

samples drawn from a probability distribution pD, the generator g : Z → X learns

to transform random noise z drawn from a standard distribution pz (typically

2. Background 21

Gaussian) into an approximation of pD. The discriminator network d : X → R

learns to predict whether a given example x is drawn from the data distribution

pD or was generated by g. The generator and the discriminator are adversarial

because they train simultaneously, with each being rewarded for outperforming

the other. That is, while the outputs of both are initially random, the discriminator

over time learns to identify features that differ between the trained and generated

data, which then allows the generator to improve by adjusting that feature of

its generated data to match the training distribution.

GANs’ training behaviours are notoriously temperamental, and many modi-

fications to the original algorithm have been proposed [24]. Although Lucic et

al. [25] have argued that performance improvements purported to be contributed

by such variants may in fact be due to differences in computational budget or

hyperparameter tuning, there have been certain algorithmic innovations which

have been notably influential. A short survey of these follows; refer to detailed

reviews of the field for more detail [26, 27].

Radford et al. [28] introduce Deep Convolutional GANs, showing that con-

volutional layers remain well-suited to processing image data when adapted

from the discriminative to the generative context.

The Wasserstein GAN variant [29] aims to provide a more reliable gradient

by designing the discriminator (renamed ‘critic’) to approximate the Wasserstein

distance between the distribution generated by gθ and the data distribution

pD. An additional ‘gradient penalty’ loss term Lgp can be added to imple-

ment the constraint that the function is 1-Lipschitz continuous [30]. The loss

functions for this Wasserstein GAN with gradient penalty (WGAN-GP) are:

Lg = Ez∼pz [−d(g(z))] and Ld = −Lg +Ex∼pD [−d(x)]+λLgp; where the gradient

penalty Lgp = Ex̃∼pI [(∥∇x̃dϕ(x̃)∥2 − 1)2], where pI denotes the distribution

sampling uniformly from the linear interpolations between generated samples

and examples from pD.

Much work has focused on the ability of GANs to scale up to large, high-

resolution datasets. Karras et al. [31] achieved surpassed the state of the art by

22 2.1. Generative machine learning

dynamically adding layers corresponding to progressively higher resolutions

during training. Self-Attention GANs [32] apply the popular attention mecha-

nism [33] in the generative context, along with innovations in normalisation, to

achieve yet higher-quality synthetic images. The current state of the art, BigGAN

[34], does not contribute a significant change to architecture or training procedure,

but instead dramatically scales up existing techniques; that this is so effective

suggests that Lucic et al.’s [25] claim that computational resources are the most

important determinant of generated image quality holds.

2.1.2 Conditional GANs

A conditional GAN [35] is a variant that learns to generate samples from a

conditional distribution by simply passing the intended label y for the generated

image to both the generator and the discriminator, and training the generator to

maximise the log-likelihood of the correct label in addition to optimising its usual

objective. That is, a labelled dataset D ⊆ X × Y must be used during training,

the discriminator d : X × Y → R learns to discriminate between labelled dataset

and generated examples, and the generator g : Z × Y → X learns to generate

images with the specified label y ∈ Y.

An extension of this approach is the auxiliary classifier generative adversarial

network (ACGAN) [36], in which the discriminator is modified to also predict

the label y for the input data. The loss is adjusted to maximise the log-likelihood

of the correct label in addition to the standard objective.

2.1.3 Beyond GANs

Generative adversarial networks have one important property which makes

them especially suitable for test generation for image classifiers: they are able to

learn to generate crisp high-quality examples as though sampled from a relatively

complex training distribution [34]. However, Goodfellow [24] sets out a taxonomy

of generative models, elucidated below, clarifying that other kinds of approaches

with different strengths exist. Most notably, GANs’ learned representation of

2. Background 23

the training distribution is implicit: although samples can be drawn from it,

no probability density value can be given, unlike the more common class of

explicit-density models.

Fully-visible belief networks [37] are an explicit-density model, and make

use of the chain rule to decompose a multidimensional probability distribution

(which can be considered to be a joint distribution over the dimensions) into a

product of single-dimensional distributions, each conditional on those that have

gone before. While this is effective enough to accurately generate realistic human

speech [38] and CIFAR10 images [39], the unfortunate effect of the decomposi-

tion into conditional distributions is that the computation must be performed

sequentially; GANs are able to parallelise such computations, preventing too

strong an efficiency dependence on the data dimensionality [24].

Other explicit-density models include: flow models such as nonlinear in-

dependent components analysis [40], or neural approximations to it [41, 42],

which require the generator to be invertible and so unfortunately require the

dimensionality of the latent input to match the dimensionality of the generated

data; models such as Boltzmann machines [43] which rely on Markov chain

Monte Carlo methods which scale poorly and so are now considered obsolete;

and variational autoencoders (VAEs).

An autoencoder consists of two neural networks: an encoder and a decoder.

The encoder learns to map training data to a low-dimensional latent encoding;

the decoder learns to reconstruct the original data from its latent encoding with as

high a fidelity as possible. A variational autoencoder [44] imposes the additional

constraint that the latent encodings must conform to a standard probability

distribution such as a Gaussian. This is enforced by introducing an extra loss

term: the Kullback-Leibler divergence between the encoding distribution and

the standard Gaussian. Unlike GANs, VAEs can give an approximation of the

probability of a generated datum under the model. GANs, however, do not rely

on any approximations so reaching a global optimum during training implies

that the generator has accurately learnt the training distribution. There is also

24 2.2. Semantic representations in DNNs

consensus that the data generated by GANs are more realistic; they appear to

be able to generate more plausible samples from the training distribution [24].

Note that any non-GAN network would be perfectly suitable replacements for

a GAN-trained generator, if its performance were satisfactory.

2.2 Semantic representations in DNNs

One key motivation for deep learning is the automatic learning of suitable feature

representations. Typically, the raw, original data is in a format such as the

individual pixel values of an image where each individual feature value (e.g.

pixel) contains little relevant information in itself – it is higher-level patterns and

relationships between these features that directly encode the relevant information.

So for many approaches to machine learning, success depends on whether the

representations of the data encode the relevant meanings directly enough. This

means that before applying the learning algorithm (for example, a support vector

machine), a dimensionality-reducing feature extraction algorithm is used to

process the raw data into a form that more directly encodes the information

useful for learning. Kumar and Bhatia go as far as suggesting that this stage

is “the single most important factor in achieving high recognition performance”

[45]. Before deep learning, feature extraction algorithms such as the popular

scale-invariant feature transform (SIFT) [46] were written by hand.

But the promise of deep learning is that each layer in the neural network

learns its own simple feature extraction algorithm, improving the representation

of the features, until the input data are encoded in a form so relevant to the task

at hand that it can be performed trivially by the final layer. This ability to simply

feed in raw features and have the neural network automatically extract relevant

features is part of the reason for the success of deep learning.

This raises an interesting question: what features do neural networks learn?

Do different neurons at different stages in a network encode different features

that can be understood by humans? Some work, summarised below, has at-

tempted to answer this. The motivation is often (indirectly) trustworthiness –

2. Background 25

Figure 2.1: Figure reproduced from Olah et al. [47] illustrating the composition of lower-
level features into a higher-level neuron.

if we can understand how a model is arriving at its conclusion, then we can

understand how much to trust in that conclusion. Most relevant to the rest of

this dissertation is the nature of the representations learned by different parts

of neural networks, rather than our ability to interpret their overall decision-

making, so this will be our focus.

2.2.1 Discriminative DNNs

Consider a discriminative neural network. It takes low-level raw features as input,

uses a number of layers to process these data, and outputs a low-dimensional

output. How might we expect the representation to change as we progress further

through the network? The features at the start are fine-grained, at a low level

of abstraction (e.g. a pixel value). The features that are most relevant for the

learning task are likely to be coarse-grained and at a high level of abstraction

– for instance, discriminating between images of cats and dogs might depend

on high-level features like ear shape, tail type, fur type and pose. So we might

expect that each layer in the network outputs a representation that is at a slightly

higher level of abstraction than the layer before.

Cammarata et al. [48] investigate in a series of articles whether this assumption

is accurate in the context of the InceptionV1 image classification model [49], which

26 2.2. Semantic representations in DNNs

was the state of the art for classification of the ImageNet dataset [50] in 2014,

and which contains 10,000 individual neurons. Feature visualisation [51] is an

important tool used in this work: optimising the input to the network so as to

maximally stimulate the given neuron, with a few tricks to ensure meaningful

convergence. Among things, they find that:

• Individual neurons do encode human-interpretable meanings, such as

boundaries between high and low-frequency textures, dog head detectors,

or car wheel detectors [47].

• Furthermore, it is possible to understand how features from earlier layers

are composed to create higher-level features in a later layer. For instance,

separate neurons detecting car windows, bodies and wheels can be com-

bined to create a car detection neuron [52]. See figure 2.1 for an illustration.

• There are neurons in the first few layers that each detect a curve at a

certain orientation, together spanning all orientations – and they are actually

detecting curves, rather than a feature merely correlated with curves [53].

A range of evidence is presented in favour, including feature visualisation,

correlation with human judgement of curves in dataset images, measure-

ment of activations at different rotations of dataset and synthetic curves,

and a somewhat successful attempt to replace the learned neurons with

hand-coded curve detectors [54].

Later work by the same team – on the discriminative model CLIP [55] that

models the relationship between images and arbitrary text captions (rather than

fixed image class labels) – asserts that its neurons not only learn human concepts,

but that these neurons generalise these concepts across ‘modes’ within the images

such as photos, drawings, and images of text [56].

Mu and Andreas [57] share the view that individual units can learn human-

interpretable features, and these can be composed to represent higher-level

concepts in later layers.

2. Background 27

Bau et al. [58] leverage pixel-wise semantic annotation (image segmentation)

datasets to identify particular neurons associated with particular human-created

labels at different levels of granularity (for example texture, material, part, object

and scene levels). They find that individual neurons do tend to learn such human-

interpretable features, to a significantly greater extent than random directions

in the feature spaces (random linear combinations of neurons).

There is some evidence that neurons in networks that process natural language

also specialise and may learn human-interpretable concepts. Dalvi et al. [59]

extract salient neurons using correlational analyses, where the correlations are

either with certain chosen properties predicted by a property classifier, or with

other models under the assumption that individual neurons in different networks

will learn the same important feature. They find that individual neurons learn

concepts such as verb tense or the position of a verb in a sentence. This is

consistent with Mu and Andreas’s [57] finding that natural language inference

models do have neurons that learn human-interpretable features, but that higher-

performance models have fewer of these.

The overall picture from the literature is that the promise of deep learning is

true, in the sense that later layers of neural networks combine the lower-level

features learned by earlier layers into features at higher levels of abstraction.

There is some evidence that individual neurons can represent concepts that seem

to be interpretable by humans – but this evidence is most convincing in the earlier

layers of networks. Caution should be used when asserting that the behaviour of

a neuron precisely corresponds to some human concept. Polysemantic neurons

[47], which seem to encode multiple unrelated concepts, and neurons that are

more difficult to interpret should give pause for thought. It is much easier to

show that a neuron is associated with a human concept than it is to show that

this is precisely the only function of that neuron.

28 2.3. Robustness to pixel perturbations

2.2.2 Generative DNNs

Consider a generative neural network that generates examples of images drawn

from an approximation of the training distribution. The input to such a network

is a random sample from a standard (typically Gaussian) distribution, perhaps

with an additional encoded class label if the generator is conditional. The output

from such a network is the raw pixel values. So we might expect that such a

network behaves in one sense like a reversed discriminative network: earlier

layers are more abstract, which are decomposed into fine-grained and lower-level

features in subsequent layers.

This is borne out by a small literature. Earlier layers tend to encode higher-

level information about objects in the image, whereas later layers deal more with

“low-level materials, edges, and colours” [60, p.7]. In addition, by performing

linear motion in the random input space of a generator, features such as zoom

and object position and rotation can vary in the image generated as its out-

put [61], demonstrating that this earliest-layer representation encodes high-level

human concepts. State-of-the-art GANs are particularly able to smoothly and

convincingly interpolate between different images by so adjusting the input

to the generator [34].

This theme will be returned to and exploited in Chapter 5.

2.3 Robustness to pixel perturbations

The standard process for the evaluation of a neural network classifier (or other

model) is to measure its accuracy (or other standard metric) on a test set: a dataset

of inputs not used in any way during training [62]. Typically this is obtained

by dividing the full original dataset into two partitions, one for training and

one for evaluation. However, in some contexts, simply computing the mean

performance on data drawn from the same distribution as the training data is

not sufficient. If we suspect that our model may encounter inputs drawn from

a different distribution, we would like to have a way of evaluating its likely

2. Background 29

performance. This might be because of inadequacies in the original dataset

collation, because in reality distributions in the world shift, or perhaps because it

is suspected that an agent with influence over the inputs may be motivated to

attempt to degrade the performance of the system. This latter assumption can

also be useful as an indication of worst-case performance, even if no adversary

is expected to exist during deployment.

2.3.1 ‘Adversarial’ pixel perturbations

Well before the success of deep neural networks brought them to the wide

attention of the research community, progress has been made in the field of

adversarial machine learning: the study and improvement of the worst-case

performance of a machine learning system such as a spam filter or biometric

identity recognition system under the restricted influence of a malicious actor

(an adversary) [63].

However, work in this area was galvanised by the discovery in 2013 by

Szegedy et al. [64] that state-of-the-art deep neural networks could easily be

fooled by an adversary whose power was limited to performing a small perturba-

tion to the given input. In particular, given a classifier network f : X → Y,

where X = Rd for some input size d and Y is a set of discrete labels, and

given a particular input x ∈ X, Szegedy et al. proposed an algorithm to find

an adversarial example x̂, such that ∥x − x̂∥2 is small yet f (x̂) = l for some target

label l ̸= f (x). By using a box-constrained variant of the limited-memory BFGS

optimisation algorithm [65] to minimise a linear combination of the perturbation

magnitude ∥x − x̂∥2 and the ordinary classifier loss using the target label l, this

approach was able to find imperceptibly small adversarial perturbations to images:

although each x̂ was classified as target label l, it was visually similar enough to

original image x that not only should x̂ have been classified the same as x, but

it was difficult for humans to notice the difference between the two. This was

framed as a failure of generalisation: since deep neural networks usually had

excellent performance when generalising to unseen examples drawn from the

30 2.3. Robustness to pixel perturbations

same distribution, it seemed surprising that they failed to generalise to something

which was visually indistinguishable from an example drawn from the training

and test distribution. However, this failed to account for the fact that two images

which may appear similar to a human visual system may in fact be very easy to

distinguish mathematically: consider the field of steganography [66].

Goodfellow, Shlens, and Szegedy [7] made an attempt to explain how imper-

ceptibly small perturbations could make such a big difference to the classifier’s

output. Noting that popular activation functions such as the ReLU [67] result in

quite linear behaviour, that an image vector has fairly high dimensionality, and

that the maximal change in the output of a linear classifier that can be induced

by a fixed-magnitude perturbation to each of its inputs is proportional to the

dimensionality of the input, Goodfellow, Shlens, and Szegedy suggest that the

linear behaviour of neural network classifiers may be the cause of the adversarial

example phenomenon. They corroborate this story by demonstrating that their

“fast gradient sign method” (FGSM), in which each pixel is adjusted by a fixed

magnitude of ϵ upwards or downwards depending on the sign of the relevant

derivative, was able to easily fool state-of-the-art classifiers. But this only tells part

of the story. Even if locally-linear behaviour explains the vulnerability of neural

networks to small l∞ perturbations if the input has many dimensions, it does

not explain why the trained networks exhibit this behaviour (to the extent that

they do), given their ability to approximate any continuous function in principle

[68]. In addition, Goodfellow, Shlens, and Szegedy’s explanation does not say

anything about neural networks which do not display this linear behaviour;

perhaps there are other causes of adversarial vulnerability neglected by this story.

It is worth noting that there have been many proposed adversarial-perturbation

algorithms [69]. Popular attacks include: the ‘basic iterative method’ [70], in

which constrained gradient steps are repeatedly taken; the Carlini & Wagner

attack [71], which minimises a linear combination of the perturbation magnitude

(under the chosen lp norm) and some function that is positive if and only if

the perturbed example is classified correctly. Of the various candidates for the

2. Background 31

latter function, the standard choice is the maximum of −κ for some positive

confidence hyperparameter κ and the difference between the logit (penultimate

layer activation) corresponding to the target class and the highest other logit; and

the DeepFool attack [72] is designed to spend more computational resources in

order to find particularly low-magnitude perturbations that still fool the target

classifier, relative to other attacks.

Leveraging the surprising property that adversarial examples crafted to fool

one classifier will somewhat often be misclassified by another trained on the

same dataset [64], it is possible to attack a network even with only black-box

access by crafting examples to fool such a proxy model. This approach can be

generalised to situations without access to the training dataset: Papernot et al.

[73] showed that a proxy model can be trained with labelled data obtained by

treating the target model as an oracle. Development of this work demonstrated

that this approach is not limited to attacking deep neural networks but many

kinds of machine learning models, and improved its efficiency, successfully

attacking commercial systems with only 800 queries [74]. Moosavi-Dezfooli et al.

[75] take transferability one step further by crafting adversarial perturbations

which not only generalise across classifiers but also generalise across classes:

when added to an image of any class, these ‘universal’ perturbations are likely

to induce a classification, in contrast to traditional perturbations, which are

specific to the image being targeted.

Although the literature focuses primarily on image classification as its ap-

plication domain, this is in general due to convenience rather than necessity.

The principles and approaches can be applied to other domains such as speech

recognition [76] and natural language processing [77, 78]. It is also possible

to consider adversarial attacks on reinforcement learning, where a variety of

threat models can be considered [79–81].

Since Goodfellow, Shlens, and Szegedy’s [7] initial suggestion that the linear

behaviour of neural networks is the cause of adversarial vulnerability, a number

of other explanations have been put forward. Shamir et al. [82] show that

32 2.3. Robustness to pixel perturbations

vulnerability to l0 perturbations roughly of the size of the number of possible

labels is a consequence of networks which exhibit piecewise linearity, such

as those with ReLU activations. It is worth noting, however, that this result

depends heavily both on piecewise linearity and on the use of the l0 metric

(i.e., the number of inputs changed, regardless of magnitude), which for many

domains is particularly unrealistic as a measure of similarity. Shafahi et al. [83]

argue that there are fundamental limits to the adversarial robustness that can be

achieved which depend on the dataset, metric, and perturbation magnitude

bound used. Jetley, Lord, and Torr [84] frame adversarial vulnerability as

inevitable given that neural networks process visual data differently to humans,

resulting in the existence of directions in pixel space which affect a network’s

output while being insignificant to human perception. Ilyas et al. [11] present

a compelling case which builds on this, arguing that adversarial vulnerability

is a consequence of neural networks’ reliance on ‘non-robust’ features (which

correlate with the training labels yet can be altered by adversarial perturbations)

which humans cannot perceive. This story is corroborated by two experiments:

they attempt to modify a dataset to remove its non-robust features, and show

that standard training on this dataset results in a somewhat robust classifier;

and they create a dataset for which only non-robust features match the labels,

not the robust features, and show that training on this dataset results in a

somewhat accurate classifier. Schmidt et al. [85] give an information-theoretic

result that training an adversarially-robust model requires strictly more data:

robust learning needs O(
√

d) samples, where d is the input dimensionality, rather

than O(1) (or arguably just one sample). This tallies with Ilyas et al.’s [11]

claim: more data is required since only the robust features can be relied upon

in the robust setting.

2.3.2 Improving robustness to pixel perturbations

The existence of adversarial examples raises a natural question: can we develop

neural networks that do not perform poorly on such inputs? Some techniques,

2. Background 33

introduced below, will prove relevant at various points in this thesis.

Szegedy et al. [64] not only reported the first adversarial perturbation algo-

rithm, but suggested the first instance of what has become known as adversarial

training. Their preliminary experiments found that by including adversarially-

perturbed data in a classifier’s training procedure, its test error on the ordinary

test set could be improved; adversarial training regularised the network. Good-

fellow, Shlens, and Szegedy [7] introduced the fast gradient sign method (FGSM),

making adversarial training more feasible. Minimising a linear combination

of the loss function on test data and adversarially-perturbed test data, they

were able to train a classifier which reduced the success rate of FGSM attacks

from 89% to 18%. They also introduced a valuable perspective: adversarial

training is equivalent to minimising the worst-case error in the presence of the

adversarial attack being trained upon.

Progress was subsequently made in developing and scaling adversarial train-

ing to CIFAR10 [86] and ImageNet [87], but only in 2017 did Madry et al. [88]

successfully use adversarial training to achieve something that might reasonably

be called a defence against adversarial perturbation attacks: rather than only

mitigating attacks from the specific attack used during training, the defended net-

work appears to be somewhat robust against all similarly-constrained adversarial

perturbation attacks making use of first-order gradient information only. This is

suggested to be related to Danskin’s theorem [89]: the worst-case error against a

class of perturbations of a particular point can be reduced by reducing the error

at the perturbed point in that class with the highest error. Although the iterated

FGSM attack with random starting perturbations (also known simply as projected

gradient descent (PGD)) is not guaranteed to find the worst perturbation of a

given point, Madry et al. argue that it is able to find a “bad enough” point that

the effect is similar. This intuition together with impressive empirical results (as

of October 2019, no l∞-perturbation attack with ϵ = 0.3 has reduced the accuracy

of their MNIST network below 88.3%) positions adversarial training as one of

the most promising approaches to defence against perturbation attacks.

34 2.3. Robustness to pixel perturbations

As attention has turned to moving beyond robustness against a single lp-

norm perturbation attack, a natural first step is to attempt to use adversarial

training to achieve robustness against multiple lp-norm perturbation attacks

simultaneously. Although there may be some trade-offs to be made between

robustness against different such attacks [90], Maini, Wong, and Kolter [91] have

had recent success in simultaneous robustness against l∞-, l2- and l1-perturbations

by considering the worst-case direction in the union of these threats at every

iteration of projected gradient descent.

Since precisely evaluating robustness to lp-constrained perturbations is NP-

hard [92], evaluating the efficacy of a defence technique is difficult. For instance,

Papernot et al. [93] proposed leveraging the distillation of neural networks (i.e.,

training a model to imitate the output levels of another) to smooth the models,

making gradient-based attacks very difficult. While this did indeed reduce the

model’s gradients (by a factor of 1030), and prevent a certain class of existing

attacks, Carlini and Wagner [94] showed that defensive distillation does not

result in a network that is any more robust than an undefended network. This

trend of insufficient evaluation of defence methods being broken by a more

rigorous analysis has continued, with many papers published in top conferences

being shown to be useless [95, 96]. Best practice is to ensure that any defence

evaluation considers adaptive attacks which take into account the particulars

of the defence method being used [97].

The collection of broken defences has led to increased interest in symbolic

defence methods which provide guarantees about the robustness of the resulting

model [98]. Mirman, Gehr, and Vechev [99] go about this by computing (an

overapproximation of) the set of activation vectors at each layer which could be

induced by an lp-norm ball around a particular input. For verification, the set of

possible output vectors can then be checked to ensure that all points in the input

ball must be given the same classification as the original input point. If not, the

extent to which the output vectors may be misclassified can be summarised as

a loss value, which can then be backpropagated through the network to allow

2. Background 35

for the training of a provably-robust model. Approaches which are similar at a

high level are introduced by Wong and Kolter [100] and Croce, Andriushchenko,

and Hein [101]. Wang et al. [102] improve the efficiency of these symbolic robust

training techniques by thoughtfully using fewer training points at once, and by

adaptively balancing the loss terms corresponding to accuracy in the presence of

an adversary and accuracy on unperturbed data. Croce and Hein [103] are able

to use symbolic techniques to train a network provably robust against multiple

perturbation types simultaneously.

36

3
Related Work

Contents

3.1 Method of literature review . 37
3.2 Constrained pixel perturbations 41
3.3 Perturbations using generative models 48
3.4 Manually designed perturbations 57
3.5 Generating test cases without perturbations 60
3.6 Effect of adversarial training on generalisation 62
3.7 Miscellaneous related work . 65

This chapter places our research contributions in the context of the existing

literature. In particular, it attempts to comprehensively identify relevant existing

work and articulates how the research presented in this thesis differs from

previous approaches.

3.1 Method of literature review

To maximise the likelihood of identifying relevant articles, I took a systematic

approach to searching the literature in addition to the usual organic process

of finding related work.

By creating a long list of search terms that might identify relevant work, and

searching the literature with each using Google Scholar, it is less likely that any

37

38 3.1. Method of literature review

related papers will be missed in this literature review. The goal in creating the

list of search terms was to include all terms I could reasonably identify that had

some chance of surfacing relevant papers. To create the list, I simply listed all

search terms I thought might be relevant, then skimmed all my papers and added

any additional search terms that became apparent, skimmed Geirhos et al. [6]

and added additional relevant terms, and lastly added search terms that arose

when reading related work. I repeated this process twice, resulting in lists of

lengths 61 and 43 (with this second list including more disjunctive searches).

These were then merged into one final list of search terms.

For each search term entered into Google Scholar, reviewed the title and

abstract of each result until reaching two pages of ten results that were all not

relevant to be included. All relevant papers are included in this chapter, the only

exception being when certain sections of the literature (such as adversarial pixel

perturbations) are dealt with as a whole, using specific representative references

rather than exhaustively enumerating papers in that field. The articles citing

and cited by each paper identified by this systematic search were also subject

to the usual organic exploration described below.

As well as identifying relevant papers through the above systematic search,

others were identified in the usual, more organic way. There are several mech-

anisms that complement one another: alerts from services providing links to

possibly relevant new papers, browsing the articles cited by relevant papers,

browsing the articles that cite relevant papers, conference proceedings, recom-

mendations from supervisors, keeping up with the outputs of researchers with

relevant interests, and reading survey papers.

3.1.1 Search terms

Below follows the complete list of search terms used as described above.

Note that in Google Scholar, OR works only with quoted phrases or individual

words – it ignores parentheses. So it is impossible to search for DNN (out of

distribution OR distribution shift), because it is equivalent to DNN out of

3. Related Work 39

(distribution OR distribution) shift. This is not that important for the

reader to understand, except to explain some of the strange-looking queries

below, and to acknowledge that the parentheses in the listings below are for

readability only.

Note also that for readability in the following listing, the variable DNN rep-

resents the following string: DNN OR "neural network" OR "neural networks"

OR AI OR ML OR "machine learning" OR ImageNet OR MNIST OR "image cla-

ssifier" OR "image classification", the variable test is short for: test OR

testing OR evaluate, and the variable generalisation is short for: general-

isation OR generalization,

DNN test

DNN (shortcut OR proxy) learning

DNN (shortcut OR proxy) test

DNN generalisation (test OR ability)

DNN out of distribution

DNN distribution shift

DNN out of distribution generalisation

DNN distribution shift generalisation

DNN out of distribution test

DNN distribution shift test

DNN domain transfer test

DNN perturbation test

DNN adversarial test

(generative OR GAN) DNN test

DNN data augmentation

(generative OR GAN OR generate) data augmentation DNN

DNN data augmentation test

DNN generative data augmentation test

DNN data augmentation out of distribution generalisation

40 3.1. Method of literature review

DNN data augmentation distribution shift

adversarial training out of distribution generalisation

adversarial training test

DNN robustness

DNN robustness test

DNN robustness benchmark

DNN robustness out of distribution generalisation

DNN robustness generalisation

DNN robustness unhelpful

DNN robustness transfer

DNN robustness distribution shift

DNN robustness data augmentation

DNN robustness (generative OR GAN)

domain generalisation

domain generalisation evaluation OR testing

DNN (semantic OR meaningful OR unrestricted) robustness

(semantic OR meaningful OR unrestricted) adversarial example DNN

(semantic OR meaningful OR unrestricted) perturbation DNN

(semantic OR meaningful OR unrestricted) feature change DNN

(semantic OR meaningful OR unrestricted) test DNN

(semantic OR meaningful OR unrestricted) counterfactual explanation

DNN

context sensitive perturbation DNN

perturb activations (DNN OR (generative OR GAN))

perturb latent representations (DNN OR (generative OR GAN))

(two OR dual OR multiple) objective training (generative OR GAN)

(generative OR GAN) (multiple OR two) loss

train (generative OR GAN) test DNN

(DNN OR generative OR GAN) test oracle problem

DNN (failure OR fault) (test OR detect)

3. Related Work 41

DNN fuzzing

DNN test beyond pixel perturbations

DNN beyond adversarial perturbations

DNN security

DNN safety

DNN bias test

DNN clever hans test

DNN iid failure test

DNN overfitting test

reinforcement learning reality gap test

DNN anthropomorphism

DNN feature learning test

DNN (interpretability OR explainability) generative

DNN shortcut test

DNN shortcut learning

3.2 Constrained pixel perturbations

3.2.1 Adversarial pixel perturbations

A vast amount of work has been focused on so-called ‘adversarial examples’:

inputs deliberately made to fool a classifier. This security motivation – that

there may be an attacker who actively works to craft inputs for which the model

fails – seems to have captured the imagination of the research community, in

contrast to the more mundane safety motivation, in which there is no adversary

deliberately trying to cause failure.

By far most popular method for crafting these adversarial examples, dubbed

‘pixel perturbations’, takes after seminal papers by Szegedy et al. [64] and

Goodfellow, Shlens, and Szegedy [7], and involves fooling the classifier by

individually changing the pixel values of an input image; both attacking with and

defending against these perturbations by improving models has been extensively

42 3.2. Constrained pixel perturbations

explored [104–106]. Carlini has (partly automatically) identified over five thousand

relevant arXiv papers written since 2014, with 90% of these since 2018 and a

large majority since 2020 [107].

Typically, pixel perturbations allow for arbitrary changes, independent of

the content of the image, as long as they are almost unnoticeable to the human

eye. In practice, this is done by limiting the magnitude of the perturbation in

pixel space as measured by an ℓp norm (where typically p ∈ {0, 1, 2, ∞}), thereby

bypassing the oracle problem by assuming that the true class of the perturbed

image is unchanged from the original image.

Unfortunately, as Gilmer et al. [108] lucidly clarify, the relationship between

system security and imperceptible pixel perturbations is not as straightforward

as is often assumed in the literature. In security, a threat model of the attacker is

essential, and Gilmer et al. [108] point out that the relevance of ℓp-constrained

adversarial perturbations to the secure deployment of models is limited. Gilmer et

al. [108] enumerate five suggested applications of the imperceptible-perturbation

threat model. For each, they point out that even if the threat model does apply,

the attacker is likely either to have an easier way of achieving their goal (for

instance, by performing a physical attack simply presenting some unperturbed

input which the system misclassifies, since its generalisation is not perfect) or to

achieve nothing of importance even if the machine learning model is fooled.

Although this does not preclude the existence of a real-world security scenario

for which imperceptible perturbations are precisely the main concern, it does

lend weight to Gilmer et al.’s main conclusion: if adversarial example research

is to be motivated by security concerns, then a plausible and precise threat

model should be stated and its relevance carefully justified. Conversely, if

adversarial robustness is not motivated by security, then its motivation and

relevance should be clearly articulated. It does seem likely that improving our

understanding of worst-case behaviour in the presence of a theoretical adversary

could improve our understanding of models’ generalisation in general; recent

work has also suggested that adversarially-robust models obtain better high-level

3. Related Work 43

feature representations of the training data [109] and can be leveraged to perform

a variety of image-manipulation tasks [110].

The other motivation for ℓp-norm constraints is viewed as a technique for

confidently knowing the correct label for a perturbed example. but the poor

correspondence between human perception and ℓp norms [111] poses a severe

limitation. Being within the ℓp-norm ball is far from being necessary and,

depending on the radius of the ball, may not be sufficient either.

Fundamental limitation of constrained pixel perturbations

So what does the research in this thesis contribute beyond the very well-studied

ℓp-constrained pixel perturbation methods? The key insight is that use of the ℓp

pixel space metric force any test generation procedure to constrain its outputs

to a vanishingly small subset of the relevant possibilities.

Consider the two kinds of perturbation included in Figure 3.1. Almost all

possible pixel perturbations are meaningless, as in column (c). A randomly

selected perturbation is likely to have each pixel changing arbitrarily in a way

that is independent of its neighbours and from the meaningful features in the

image; it is the addition of random noise. A vanishingly small proportion of

possible perturbations affect meaningful, higher-level features as in column (b).

Of these meaningful perturbations, some will alter the oracle-assigned meaning

of the images, Figure 3.1 (b), but others such as adjustments to the position,

orientation, pose, colour, texture, or other non-essential characteristics of the

object (or any changes to the background) will not alter the correct class label.

If we are to impose an ℓp constraint on a perturbation to ensure that the

perturbed image retains the same class as the original, then we must ensure to

exclude all meaningful perturbations that could change (or remove) its class.

But as Figure 3.1 demonstrates, this implies that the ℓp magnitude threshold

must be set low enough that a very large number of noise-type perturbations are

also excluded. This fundamental inability to discriminate between perturbations

that do and do not affect the meaning of an image is a severe limitation on the

44 3.2. Constrained pixel perturbations

usefulness of the ℓp norm constraints as a solution to the test oracle problem.

Furthermore, their inability to distinguish changes to high-level features that

do and do not affect the oracle-assigned meaning means that the latter kind

must be excluded to avoid the former.

So tests that are constrained by an ℓp norm in pixel space can only output

a vanishingly small proportion of the possible meaningful-preserving pertur-

bations to a given test input.

Comparison to the present work

The problem of developing models that perform well even in the presence of

worst-case constrained pixel-space perturbations is a valuable one that deserves

attention. If we cannot solve this simple case, with its limited and well-specified

scope, we do not have much hope for developing models that reliably generalise.

That said, solving pixel-space robustness is far from sufficient, and the limitations

of this framework may have been neglected. The most important of those is

addressed by this research: ℓp constrained perturbations comprise a vanishingly

small proportion of the test cases we may care about. The two new test generation

algorithms presented in this thesis are able to output a much larger volume of

possible test inputs, and so detect a wider range of failures and faults.

The first boost to the number of reachable test cases comes directly from the

use of a generative model. Whereas traditional perturbation-based approaches

can only perturb the fixed number of reserved test seeds, use of a generative

model immediately expands the range of possible test seeds: rather than using

a held-back test seed, the generator can now generate a fresh one. Assuming it

has learned the training distribution well, it is essentially “filling in the gaps”,

giving access to a large contiguous space of possible test seeds, rather than tiny

isolated pockets in input space.

But both algorithms have their own reasons to expect a much larger increase

in the number of reachable test cases. The first algorithm, introduced in Chapter

4 and involving the training of a generator network to directly generate suitable

3. Related Work 45

test cases, is not perturbation based. That is, rather than making small changes

to a test seed, it is free to output any test case identified as suitable through

the learning process, which does not impose any explicit constraints but rather

searches for test cases with certain properties, as encoded in the loss function.

Therefore, it typically outputs test cases that are far beyond the constraints

required under a pixel perturbation approach. See Section 4.4 for relevant

empirical evidence.

The second algorithm, introduced in Chapter 5, perturbs the latent activations

of a generative network so as to make context-sensitive changes to a test seed.

In this way, the fundamental limitation of pixel-space ℓp constraints is escaped.

Chapter 6 presents much evidence that this algorithm can identify not only

failures, but indeed faults that pixel perturbation approaches cannot.

Another difference is that adversarial pixel-space perturbations are usually

described as being motivated by security. Gilmer et al. [108] have cast serious

doubt on the plausibility of the existence of a realistic relevant threat model. Our

work is motivated by safety, not security; we are not modelling the threat from a

potential adversary, but trying to understand the limitations that may cause our

models to perform poorly during deployment simply because the distribution

of the data has changed. We can reframe the vast adversarial pixel perturbation

literature as a test generation literature: any so-called adversarial example can

be viewed as a test case that reveals that the model has failed to appropriately

generalise. It is in this light that the above comparisons are made.

Discussion of (possibly ‘adversarial’) perturbations that are not constrained

by an ℓp norm is below, in sections 3.3 and 3.4.

Generated constrained pixel perturbations

One idea in the literature is to train a generative model to output adversarial

pixel perturbations.

Hayes and Danezis [113], Baluja and Fischer [114], Xiao et al. [115], and

Poursaeed et al. [116] are all typical examples of this kind of work. While their

46 3.2. Constrained pixel perturbations

Figure 3.1: Illustration of the limitations of ℓp constraints in measuring similarity. Each
row contains (a) an unperturbed image from the ImageNet validation set, (b) a manual
perturbation of ℓ2 magnitude 19 and 22 respectively that completely changes the class
of the image (from ‘goldfinch’ to ‘pineapple’ and ‘hermit crab’ to ‘strawberry’), and (c)
a random perturbation of the same magnitude as in (b). Note that (b) is identical in
meaning to (a). This implies that any ℓ2 norm threshold that excludes perturbations like
(b) must also exclude a vast number of perturbations as in (c) that do not change the
meaning of the image. Figure reproduced from Tramèr et al. [112] with permission.

details differ, they share the same essential idea. In short, rather than identifying

an ‘adversarial’ perturbation using a dynamic optimisation procedure, they

instead train a generative network to output an adversarial perturbation for

whichever image is given as its input. In this way, there is computation required

upfront for the training of the generator, but each additional perturbation requires

only a single forward pass – no backpropagation.

Although these approaches are demonstrably successful in generating ℓp-

constrained pixel perturbations, they nevertheless suffer from the same problems

as pixel perturbations identified in the usual way: the ℓp constraints are much

too restrictive. So while these techniques do exploit generative learning, they

are fundamentally different from the algorithms presented in this thesis, which

escape the limitations of constrained pixel perturbations as described above. Our

new approaches therefore are able to identify failures where pixel perturbations

would not find any problems.

3. Related Work 47

3.2.2 Techniques explicitly aiming to test DNNs

Another school of thought regarding the evaluation of neural networks does

not consider worst-case performance in the presence of an adversary, but rather

draws inspiration from the world of software testing.

One concept adapted for use with DNNs is test coverage [117, 118]. Test

coverage criteria are measures of a test suite that are intended to correlate with

how well the suite explores the possible behaviours of the system under test,

and therefore with the likelihood of discovering any bugs present. Popular

metrics include branch coverage [119] and modified condition/decision coverage

(MC/DC) [120]. Pei et al. [121] introduced the concept of neuron coverage by

analogy to statement coverage: rather than ensuring that every line of code in a

program is executed by at least one test case, for deep neural networks, the goal is

that every neuron (i.e., dimension in a hidden layer) is activated (i.e., has positive

value) by at least one test input. Although this criterion is almost trivially easy to

achieve in practice, and is therefore too weak, it inspired a range of other coverage

criteria: neuron boundary coverage [122] extends neuron coverage by considering

a set of activation bounds to be covered, and Sun, Huang, and Kroening [123]

introduce a neural-network analogy of MC/DC coverage criteria, for instance.

Symbolic execution is another concept that has been usefully applied. In

short, in contrast to the concrete execution of a program with one input leading

to one output, symbolic execution represents values as symbols, allowing the

conditions for (say) a particular branch to be taken to be represented symbolically.

Once computed, these can be used to check for violations of specified properties.

Introduced in the 1970s [124], there is now a flourishing set of mature tools

implementing symbolic execution: KLEE [125], built on the LLVM compiler, is

perhaps the most prominent, but there are engines for most targets, including

S2E [126] for binary files and angr [127] for Python. Many of these tools also

allow “concolic” execution, which is the use of symbolic execution techniques

to identify new concrete inputs that can (for instance) maximise code coverage.

Gopinath et al. [128] were among the first to apply these ideas to neural networks,

48 3.3. Perturbations using generative models

introducing techniques that make the application of symbolic execution feasible

– a naive attempt would quickly run into the problem of the large scale of deep

neural networks, in addition to their non-linearity. Sun et al. [129] also introduce

a concolic method to construct test suites maximising a given coverage criterion.

Li et al. [130], however, cast doubt as to the utility of test sets designed to

maximise such structural coverage criteria; perhaps more effort ought to be

devoted to clarifying the properties we desire from our models before devoting

resources to evaluating them.

Fuzzing, introduced around 1990 by Miller, Fredriksen, and So [131], is the

simple idea that software can be stress-tested using randomly generated or

mutated test inputs. TensorFuzz [132] applies this approach to DNNs. Just

as fuzzing has been surprisingly successful in testing software by randomly

mutating given inputs, this work randomly mutates inputs from a given test set,

keeping those which improve coverage, defined in this case to be of sufficient

distance in activation space from the activations induced by any existing test

input. The mutations of the test seeds are constrained using an ℓ∞ distance.

Comparison to present work

Although this pocket of the literature suggests interesting new properties that

are desirable for a set of tests to have, the algorithms to create these sets of tests

always solve the test oracle problem using ℓp-constrained pixel perturbations.

Therefore, the test algorithms introduced in this thesis are able to identify more

failures than any of these approaches, for the reasons described in the above

discussion of adversarial pixel perturbations. There is scope for our new test

algorithms to be combined with (for instance) an aim to maximise coverage

criteria proposed in this literature, but this is a new project left for future work.

3.3 Perturbations using generative models

While an ℓp pixel-space constraint makes perturbations simple to understand

and implement, we have seen that is also very limiting, allowing for testing

3. Related Work 49

on only a tiny fraction of interesting cases, due to its inability to distinguish

between the very different possible perturbations at the same ℓp magnitude. The

second new test generation algorithm introduced in this thesis perturbs the latent

activation values in a generative network as a way to address this problem. No

existing work has taken this approach, but there are prior works that in other

ways try to exploit generative machine learning to perform perturbations in a

way that overcomes the limitations of ℓp-constrained pixel perturbations. These

are discussed in this section.

3.3.1 Perturbing hand-selected disentangled attributes

Some techniques attempt to allow fine-grained control over the changes made by

sacrificing flexibility. These methods select the features they will modify (for in-

stance, whether the output face is smiling or not), and then use a generative model

to specifically perturb those features. Typically, these exploit generative models

with disentangled latent spaces – that is, generative networks that explicitly

represent chosen features as distinct, controllable inputs, like a conditional GAN

with multiple inputs. Given a disentangled generative model g : A × . . . → X

that takes an attribute value a ∈ A as one of its inputs, that attribute value can

be optimised so as to (for instance) make the generated output g(a, . . .) ∈ X an

adversarial input for a classification model.

Gowal et al. [133] use a StyleGAN and partition the latent space according to

whether or not it should influence the label. The (disentangled) representations

of different inputs are adversarially composed. Selecting the features to perturb

like this allows for precise control over these features, but like hand-crafted

perturbations, results in narrow kinds of changes to images. DeepRoad [134] uses

UNIT [135], a different image-to-image translation technique, to produce images

of the same road in sunny, rainy and snowy conditions.

Joshi et al. [136] use Fader networks that are able to control attributes such

as spectacles, smile, eye shape and hair colour, manipulating these features to

create ‘adversarial’ inputs for face classifiers. Sharif et al. [137] focus primarily

50 3.3. Perturbations using generative models

on eyeglasses, training a network to generate patterned spectacles, which, when

added to an image of a face, cause misclassification. This approach is adapted

to MNIST in an approach similar to Chapter 4. However, this only achieves

a success rate of 0.83% after filtering to “only the digits that were likely to be

comprehensible by humans” in contrast with Chapter 4’s 80%. This difference

may be because the GAN training is difficult, requiring the use of the techniques

such as those presented in Section 4.1.3.

Bhattad et al. [138] leverage pre-trained colourisation and texture-transfer

models to adversarially change the colours and textures of an image, provoking

poor performance in image classification models and image captioning models;

the changes made are constrained only to colourising and texture transfer.

Rather than interpolating on the labelled attributes a directly, Qiu et al. [139]

use a disentangled generator to generate an unperturbed image g(a = 0, . . .),

and an image with the relevant attribute changed g(a = 1, . . .), and interpolates

between the latent activations for these two examples at some fixed layer in

the generator.

Comparison to present work

Unlike the techniques presented in this thesis, this set of approaches has the

benefit of being able to evaluate how a model performs when certain chosen

attributes are adjusted. This is valuable to the extent that we are able to predict

the kinds of change that are of interest, either because they may be encountered

in deployment or because they might yield new insights into our models.

But this is also a limitation – perturbing known attributes does not give any

information about behaviour when any other kinds of changes are made. The set

of features that could possibly change is very large, especially when we consider

that most of these will not be nearly encapsulated in an interpretable concept

such as “hair colour”. So any such attributes explicitly specified and tested will

remain a vanishingly small proportion of the changes of interest. In contrast, the

test generation algorithms introduced in this thesis are not restricted to affecting

3. Related Work 51

any particular features. Training a generator to output test cases, as in Chapter

4, generates test inputs that can have any value for any attribute, but with the

constraint that the discriminator network must struggle to distinguish generated

from dataset data. Perturbing a generator’s latent activations, introduced in

Chapter 5, allows changes to all features that the generator has learned to be

relevant from the training data, rather than just those that are explicitly labelled.

This allows for a much wider range of possible perturbation effects, including

those that may not be directly interpretable to a human, which is important if

the classification model being tested relies on such features.

In addition, the creation of such disentangled generative models depends on

the relevant datasets being labelled not only with the primary label, but with

secondary labels for each of the attributes to be conditioned upon. Acquiring

these labelled datasets is clearly several times more expensive than a standard

dataset. The algorithms introduced in this thesis do not require any labelled

attributes to be labelled in their training data, because they rely on generative

models’ ability to learn features.

Qiu et al. [139] deserve particular focus, because like our perturbation ap-

proach introduced in Chapter 5, theirs operates by adjusting tensors in a latent

feature space inside the generator, rather than directly manipulating the attribute

at the input to the generator. However, there is a crucial difference. Whereas

our technique is free to introduce a latent perturbation of any direction (and

magnitude), Qiu et al. are constrained to interpolate only between the feature

values of two images that differ only in the specified attribute, such as hair colour.

So in practice, this approach is essentially contributing a new way of adjusting

the specified attribute, whereas our algorithm allows for any kind of change to

any feature learned by the generative model.

3.3.2 Perturbing generators’ random seeds

Another category of approaches is not to perturb a specific disentangled feature,

but rather to perturb the input to the generator that is sampled from a fixed

52 3.3. Perturbations using generative models

probability distribution during training (and usually during testing). Because

this input is the sole source of randomness, holding any other inputs constant

and varying this input over its possible values should cause the generator’s

output to range over all of its relevant possible values, too. In short, the idea

is that small changes to this input will cause the generator to produce related,

but still “in distribution” outputs.

Zhao, Dua, and Singh [140] were likely the first to introduce this idea. They

train a generative network g : Z → X that maps from a latent space to an

output space, and an inversion network i : X → Z that is trained to invert

g using a reconstruction loss. Given a test seed x, they perform a guess-and-

check black-box optimisations to identify perturbations p such that g(i(x) + p) is

misclassified by the classifier under test. Unfortunately, some of the perturbed

examples seem to also change their true class, and the limited evaluation with

human participants only asks whether the crude “fast gradient sign method” is

worse, rather than checking that perturbed data retain their original semantics.

Song et al. [2] develop the idea, using a white-box gradient-based optimisation

to identify perturbations to the random generator input. It is also one of the

first papers to focus on unrestricted adversarial examples, acknowledging the

limitations of the ℓp-constrained pixel perturbation approach, resulting in less

emphasis on constraining the perturbation to be imperceptibly small. Another

innovation is a loss term incentivising the output to be confidently correctly

classified by the discriminator’s auxiliary classifier (an auxiliary classifier GAN

[36] is required to use this procedure). Perhaps because these factors together

improve the search for good ‘random’ inputs to the generator, the so-called

adversarial examples identified by this algorithm are more likely to be successful

and maintain the correct class, as verified by thorough experiments. This paper

also drops the need to perturb a given test example, instead simply randomly

sampling a starting seed to be optimised each time.

Like Song et al. [2], Byun et al. [141] also train a standard conditional gen-

erative model, and then search in its latent space for examples on which the

3. Related Work 53

model under test is likely to fail. In this case, however, the generative model

is a conditional variational autoencoder (VAE), and the goal is explicitly to

identify test cases from the training distribution (the contribution of the VAE

being the ability to interpolate between given examples). Wang et al. [142]

take fundamentally the same approach, searching for perturbations to generative

models’ inputs, but using somewhat more involved model configurations (such

as a VAE with various discriminative add-ons) and search algorithms. They also

perturb disentangled attributes, discussed above in the previous section. Yang

et al. [143] also perturb the latent space of an encoder-decoder generative model;

the stated goal is to identify closest counterfactuals, rather than adversarial

examples, but is almost identical when all are re-interpreted for our purposes as

test generation algorithms. Toledo et al. [144], taking a more formal verification

perspective, observe that procedures searching for a test input that violates a

desired property specification could benefit from searching only in the input

space of a generative model, and set up infrastructure that allows a suite of

seven such search algorithms to do so with some success. Wong and Kolter [145]

expand on this approach by searching for suitable inputs to a generator that

has been trained on already perturbed data.

Comparison to the present work

These approaches that perturb the input seed of a generator network are valuable.

By exploiting the distribution learned by the generator, they are able to make

perturbations that would escape ℓp constraints in pixel space, thereby being able

to identify problems that pixel perturbations cannot.

However, there is a key downside to this approach. The better the perfor-

mance of the generative network used, the better it approximates the distribution

of data seen during training. So, on the assumption that the generator performs

well, it will output data that are indistinguishable from data drawn from the

training distribution. Such data will be output even if the generator input is

perturbed. Therefore, these perturbations are at best effectively implementing a

54 3.3. Perturbations using generative models

search for test cases in the training distribution. This is still valuable: hold-out

test sets drawn from the training distribution are popular for a reason, and such

approaches are not constrained to those in a finite test set. But these approaches

do not comprise out-of-distribution test generation procedures, and we have seen

that evaluating out-of-distribution performance is crucial. Both new algorithms

introduced in this work are able to generate out-of-distribution tests.

Training a generator specifically to generate useful tests as introduced in

Chapter 4 is clearly able to generate out-of-distribution examples because the

generator is no longer incentivised to just imitate the training distribution.

Empirical evidence in Section 4.4 confirms this, especially a direct comparison

with Song et al. [2], the contemporary state of the art, showing that our procedure

is able to generate a wider range of possible tests.

Perturbing the latent activations of generative networks, as introduced in

Chapter 5, differs from perturbing only a generator’s initial input. As mentioned

above, perturbing an input leads to outputs drawn from the training distribution,

but perturbing latent activations does not. This can be most clearly seen when

perturbations later in the generator are considered, but the same principle applies

earlier in the generator: since different parts of the latent spaces control different

features, and they can be perturbed separately, they can be adjusted in ways

not seen in the training distribution. Comparing the perturbations at different

layers provides unambiguous empirical evidence of this. Qualitatively, it is

clear from Figure 5.6, for instance, that perturbing at different places allows

different feature changes to be effected; quantitatively, the very different classifier

behaviours in the presence of perturbations at different layers (see 7.1) implies

that these perturbations are having materially different effects. In short, by

perturbing a generator’s latent activations rather than just the input, more of the

generator’s representations can be accessed and exploited, to change a wider

range of features.

3. Related Work 55

3.3.3 Training generators to output constrained perturbations

There are several papers that train generative networks in ways that seem similar

to our algorithm presented in Chapter 4, but on closer inspection have constraints

enforced during training that ensure that the generated outputs are equivalent

to ℓp-constrained pixel-space perturbations. Although using generators in this

way may be useful for some purposes, for our purposes, these techniques are

no different than other pixel perturbation approaches despite their superficial

similarity: they remain constrained to output only a vanishingly small fraction

of possible test cases, as described in Section 3.2.

Dola, Dwyer, and Soffa [146] find adversarial examples using pixel pertur-

bations, but with the additional constraint that the reconstruction probability

assigned by a VAE must be above a threshold (and so this is included as a term

in the perturbation objective). This is a search for explicitly in-distribution inputs,

in contrast to our algorithms that seek to probe models’ out-of-distribution

generalisation. Minderer et al. [147] also use a technique in which a generative

network is trained to output images (a) reduce the performance of a classification

model and (b) accurately reconstruct the image originally input to the generative

network, according to a pixel-wise ℓ2 loss, albeit for a different purpose (pre-

vention of the learning of some shortcuts). Yang, Song, and Wu [148] train the

decoder of an encoder-decoder pair to output “quasi-imperceptible” changes

to the original input so that a face recognition model outputs a similar logit

distribution (measured using cosine similarity) as for a given target face. As well

as a GAN-style discriminator, an ℓ1 reconstruction loss is used to minimise the

difference between perturbed and unperturbed images.

Wang, He, and Hopcroft [149] propose a procedure that is superficially similar

to that in Chapter 4, training a GAN to directly generate test cases Instead of using

the standard GAN loss to maintain the semantics, they use a new loss term. This

term, ∥gpretrained(z)− g(z)∥p, penalises the generator g given input z proportional

to the deviation caused by finetuning from the original output. But this choice of

loss term in effect works by constraining the output to be within an lp-norm ball of

56 3.3. Perturbations using generative models

a realistic input – the generator is essentially only searching for a constrained pixel

perturbation. By contrast, our approach allows for truly unrestricted test cases.

For the purpose of data augmentation, a recent paper by Baek et al. [150]

trains a generator network to output adversarial masks for an image, which are

applied multiplicatively rather than additively. The result is effectively a coarse-

grained colour change perturbation that is somewhat sensitive to the structure

of the image. Unlike the perturbation algorithm introduced in Chapter 5, this

multiplicative perturbation is essentially constrained to only make these broad

colour changes; the range of features our algorithm is able to affect is much wider.

3.3.4 Perturbing non-learned generative models

For this section only, the phrase “generative model” will not refer to a machine

learning model, but to any software that is able to generate suitable inputs for the

classification neural network under test. Rather than learning the relevant features

to adjust, the idea is that if you can manually write software that generates

plausible test inputs, then making adjustments to the generative parameters

allows a search for test inputs that identify failures.

One interesting but expensive possibility is writing a differentiable renderer

for the desired domain. Because the renderer is differentiable, this allows its

parameters to be optimised using standard backpropagation and a gradient

walk to identify failures. Liu et al. [151] and Jain et al. [152] both take this

approach. Liu et al. adjust lighting and geometrics (i.e., object shape and position)

parameters; Jain et al. aim to be more general, introducing a procedure to perturb

the parameters of any renderers, demonstrating the approach on a ray tracer

and a 3D traffic scene renderer.

If the model cannot provide a gradient allowing its parameters to be the

subject of a white-box optimisation algorithm, black-box optimisation (evaluating

the effects of random changes) can be used instead. Riccio and Tonella [153]

use a non-machine learning model of the inputs of a DNN to make perturba-

tions to known test cases. For instance, representing MNIST digits as Bézier

3. Related Work 57

curves, making random adjustments to the curve parameters, until two examples

originating from the same test seed result in different outputs from the system

under test. Similarly, Gambi, Mueller, and Fraser [154] procedurally generate

test inputs for autonomous cars, and use a genetic algorithm to search for test

inputs that meet the desired criteria.

Comparison to present work

Assuming the existence of a suitable model, this approach allows for powerful

and interpretable probing of specific situations in which the model under test

fails. But the techniques introduced in this thesis have some advantages over

the use of a hand-coded generative model.

For most domains, there does not exist a suitable hand-coded generative

model, and the creation of such a model is very costly, requiring a great deal

of expensive programmer time. In contrast, generative machine learning can

automatically learn a suitable model for any new domain given enough data,

which is more likely to already exist and cheaper to acquire if not.

Furthermore, differentiable renderers for non-trivial domains often require

expensive computations such as ray tracing on each use. There is often a

tradeoff between reducing computational cost and increasing the quality of

the generated outputs.

Last, hand-coded generative models are necessarily oversimplifications of

reality. Any aspect of reality that is not captured in the hand-coded model –

textures, variety of objects, backgrounds, subtle distortions, imperfections, etc.

– will never be probed. But a well-trained generative model must learn all the

relevant features, including those that are subtle and difficult for humans to

identify or write down.

3.4 Manually designed perturbations

So far, we have covered ℓp-constrained pixel perturbations and perturbations

that exploit generative models. In this section, we cover perturbations that are

58 3.4. Manually designed perturbations

‘unrestricted’ in the sense that they are not bound by an ℓp constraint in pixel

space [19], but are implemented by hand, rather than by exploiting any models.

In short, these approaches are valuable because they probe models’ abilities to

generalise in the presence of specific feature changes of interest, but they are

inherently limited by their manual implementation; our use of generative learning

in contrast allows a wide range of features of interest to be automatically tested.

Hosseini and Poovendran [155] contributed one of the first procedures for

making such an ‘unrestricted’ change to an image that was independent of

the classification task, and so ought not to change the oracle-assigned label.

Using the Hue-Saturation-Value representation of image colours (rather than

the usual Red-Green-Blue), the values (i.e. brightness levels) of the pixels in

each image were held fixed, with the hues and saturations adversarially chosen.

This resulted in a high success rate for an untargeted attack against a standard

classification network; the targeted attack was less successful. Zhao, Liu, and

Larson [156] also perturb image colours, but specifically exploit human biases

in perceptual colour distance to make large changes under an ℓp pixel norm

that nevertheless remain imperceptible.

Engstrom et al. [157] show that performing worst-case small translations

and rotations is sufficient to fool image classifiers; this is another example of

a slight semantic change to the image which results in a large distance under

any lp norm yet should not affect the correct classification at all. Tian et al.

[158] evaluate whether cutting irrelevant areas from images affects classification

outcomes. Snoek et al. [159] evaluate the robustness of the calibration of classifiers’

confidences to rotated and translated images (as well as to out-of-distribution

inputs such as not-MNIST [160]).

Several papers combine such transformations with pixel-wise operations

such as contrast or brightness adjustments, or Gaussian noise. DeepHunter

[161], for instance, uses such a combination of adjustments to perform fuzz-

based testing. Gao et al. [162] likewise perform fuzzing with a slightly different

set of operations, including zooming and shearing. Hendrycks et al. [163]

3. Related Work 59

introduce a data augmentation technique that ‘mixes’ (using elementwise convex

combinations) several randomly-chosen chains of standard augmentations such

as translations and colour adjustments. Mohapatra et al. [164] introduce a

framework that parameterises a range of changes, including colour, brightness,

rotation and occlusion, using an ℓ∞ parameter so that ℓp-constrained verification

techniques can be applied. Tian et al. [165] increase coverage of their autonomous

driving tests using a combination of linear, affine and convolutional (e.g., a

rain effect) transformations.

Other papers introduce a wider range of hand-selected ‘distortions’ that can

be applied to any image. Hendrycks and Dietterich [166] evaluate the robustness

of networks to various types of corruption such as Gaussian noise, motion

blurring, artificial fogging, pixelation, and brightness and contrast adjustments.

Geirhos et al. [167] compare DNN performance with human performance at

image classification in the presence of twelve different such image distortions.

Humans turn out better, except that a DNN trained on an image distortion

performs very well for that particular distortion (only). Using such distortions,

robustness benchmarks have been created for datasets including ImageNet [166]

and MNIST [168]. Pei et al. [121] generate test inputs by setting small rectangular

regions of the image to black.

Scimeca et al. [169] train classification models using labels that ambiguously

could refer to one of three human-interpretable features. By testing these models

with inputs where the three features appear in an unseen combination, it can be

deduced which of the cues the model has learned to pay attention to. This is useful

work that directly obtains evidence about the nature of shortcuts that tend to be

learned by classifiers. But the ad hoc approach means that only information about

the relative likelihood of the hand-chosen features can be gained; our testing

approaches, in contrast, are able to identify a much wider range of shortcuts since

they are free to modify any learned feature, not just hand-specified ones.

Another fairly specific instance of ad-hoc, manually chosen perturbations is

Nauta et al. [170], who use automated addition and removal of colour calibra-

60 3.5. Generating test cases without perturbations

tion charts on medical scans to evaluate the extent to which a DNN learns to

inappropriately rely on these charts when the training dataset naturally contains

these charts only for one of the two possible classes.

Comparison to present work

This category of approach is valuable because it allows the examination of model

robustness in the presence of precisely known conditions. In particular, it allows

comparison between the effects of different perturbation types. But by virtue of

being manually chosen and implemented, these techniques are inherently limited.

Because the perturbations are insensitive to the semantic structure of the images,

they clearly incapable of making the wide range of adaptive changes possible

using the approaches introduced in this thesis. They would not, for instance,

be able to change the background from snow to grass, or induce a dog to stick

out its tongue, as discussed in Chapter 6. By exploiting learned representations,

our techniques select the features to change automatically, rather than manually,

an entirely complementary approach.

3.5 Generating test cases without perturbations

This section considers papers that primarily solve the test oracle problem by

using a conditional generative network, as our technique introduced in Chapter 4,

rather than using a perturbation from known data. Works that train a conditional

generator but in effect constrain it to only output data a small ℓp distance from

known data are instead discussed in Section 3.3.3. The novelty of the algorithm

introduced in Chapter 4 depends on its dissimilarity from these papers.

Sauer and Geiger [171] train a disentangled generative model in three parts

that allows the user to separately specify the foreground object shape, foreground

object texture (or contents), and background in the generated images. While the

paper aims to generate ‘counterfactual images’ to be used for data augmentation,

a repurposing of this technique could be used to generate test cases by holding

relevant parts of the image constant and varying (say) the background or texture.

3. Related Work 61

This would evaluate a model in this fairly specific way; the resulting images are

obviously artificial, being roughly equivalent to cutting and pasting one image on

top of another, cut in the shape of a third object. Indeed, it is not always clear how

the generated images should be classified – what is the most appropriate label for

an ostrich-shaped strawberry in a swimming pool, to take the example from their

first figure? Experiments with human judges would clarify this. In any case, it is

clear that this approach is at best complementary to the techniques introduced in

this thesis. The kinds of test cases that are possible to generate are restricted to this

hand-specified mask-foreground-background regime, whereas our algorithms

are not restricted in this way (and would be unlikely to output such test cases).

Zhou et al. [172] generate what are essentially perturbations of existing

training data to provide more training domains to increase the domain gen-

eralisation ability of a model. Like our algorithm described in Chapter 4, a

conditional generator network is trained using multiple losses. But whereas

the loss term we use to preserve the meaning of the generated data operates

through a discriminator, thereby constraining the distribution of generated data,

the cycle-consistency loss used by Zhou et al. forces each generated image to

closely map (e.g., the shape of a digit) onto a particular training dataset example.

So our algorithm is freer to generate images that do not directly resemble any

specific training examples. Perhaps more importantly, Zhou et al. optimise the

generator to generate images that are at as great as Wasserstein (“earth moving”

or optimal transport) distance as possible. The result is that it seems to generate

images that have different iridescent colourful backgrounds but are otherwise

unchanged. While it could be useful to evaluate a model’s performance when

the background changes in this way (and the paper demonstrates that they are

useful for domain generalisation training), the set of plausible test cases this

algorithm could create are different from those of our new algorithms – and

our test generation algorithms are specifically optimised to identify problems,

rather than merely optimised for data diversity.

62 3.6. Effect of adversarial training on generalisation

Like the present work, Liang et al. [173] also use generative networks to

perform semantic manipulation. But whereas our work aims to keep the true

class of the generated image the same (while changing the classifier prediction),

Liang et al. aim for the converse: to change the object in the image (say from

cat to dog) while preserving details such as image structure and colour that do

not determine the image class. This entails a significantly different approach

to training GANs to that taken in Chapter 4.

3.6 Effect of adversarial training on generalisation

Chapter 7 presents an empirical result relating adversarial training against pixel-

space perturbations to much decreased ability to generalise well to high-level

changes. This section discusses relevant findings in the existing literature.

Adversarial training is known to improve model robustness in the presence of

the kind of perturbation used during this training, being the only such technique

not found wanting by Athalye, Carlini, and Wagner’s analysis [95]. In this context,

Xie and Yuille [174] find that adversarial training is more effective if the Batch

Normalization is removed or appropriately adjusted, and if models with even

more layers than usual as used.

However, there is evidence that adversarial training may not provide much

benefit beyond improving performance in the presence of the specific kind of

perturbation used during training. Gulrajani and Lopez-Paz [175] compared

techniques designed to improve out-of-distribution generalisation, and found

that a carefully tuned baseline optimised only for performance on the training

distribution was not significantly outperformed by any generalisation-specific

technique on a range of datasets. Wiles et al. [176] analyse nineteen techniques

designed to improve generalisation on six datasets under three categories of dis-

tribution shift and conclude (among other things) that it is possible to sometimes

outperform a carefully tuned standard baseline, but which techniques are useful

depends on the kind of dataset and the kind of data shift.

3. Related Work 63

Hendrycks and Dietterich [166] evaluate the robustness of networks to various

types of corruption such as Gaussian noise, blurring, fogging, pixelation, and

brightness and contrast adjustments. They found that most models generalised

surprisingly poorly in the presence of these simple changes, but that networks

adversarially trained to be robust in the presence of l∞-constrained pixel pertur-

bations performed slightly better. Kang et al. [177] built on this work, performing

an extensive empirical evaluation of how adversarial training against one kind of

adversarial perturbation or corruption affects robustness to other kinds. In short,

they warn that trained robustness against one kind of change does not necessarily

transfer to other kinds of change that were unseen during training, suggesting

that adversarial training against one kind of pixel perturbation is unlikely to be

sufficient to improve out-of-distribution generalisation performance in general.

This is a strengthening of an earlier result, that adversarial training against only

one ℓp norm does not confer robustness to other values of p [178].

Taori et al. [179] set out to investigate how models generalise in the presence of

‘natural’ distribution shifts that arise in real data, as opposed to synthetic changes

such as corruptions (e.g., Gaussian noise, artificial fog), pixel perturbations,

and style transfer. The ‘natural’ shifts examined include nearby video frames,

and different datasets gathered with compatible sets of class labels. Model

performance substantially worsens in the presence of these shifts. Moreover, 86

different models designed with out-of-distribution robustness to synthetic shifts

in mind – typically with adversarial training or data augmentation – show “little

to no consistent improvements” on these shifts.

It has been observed that adversarial training decreases accuracy on a stan-

dard hold-out test set [88, 180], at least partly because of a trade-off: reliance on

‘non-robust’ features can improve accuracy while decreasing the pixel-perturbation

robustness demanded by adversarial training [180, 181].

But there is some limited evidence that adversarial training may in fact

decrease model out-of-distribution generalisation performance in some situations.

While Gilmer et al. [182] saw that adversarial training improved performance on

64 3.6. Effect of adversarial training on generalisation

most ImageNet-C corruptions, it decreased performance from 85% to 55% in the

presence of fog and contrast changes. Yin et al. [183] further investigate, iden-

tifying that adversarial training against standard pixel perturbations decreases

performance in the presence of corruptions with low frequency in the Fourier

domain (such as pixel-wise addition of 2D sinusoids with long wavelengths).

Tramèr et al. [112] demonstrate that adversarial training decreases robustness to

‘invariance attacks’ that change the true label but maintain the model’s prediction.

This attack works by identifying the most similar training-set image with the

desired class, and applying a perturbation to make the starting image look like

this training image (without changing the classification model output).

Building on this, the findings in Chapter 7 also show that adversarial training

using ℓp constrained pixel perturbations not only fails to generalise to distribu-

tion shifts other than the perturbations used in training, but that adversarial

training can significantly worsen out-of-distribution generalisation. This notably

strengthens the limited existing evidence, described above. By leveraging the

latent representations learned by a generative model, the new finding concerns

generalisation to context-sensitive changes to high-level features (for instance,

object location or pose). While poor generalisation to artificial fog and contrast

[182] and low-frequency sinusoids [183] hint that adversarial training can worsen

performance in limited circumstances, our demonstration that adversarial train-

ing causes poor performance under features changes that are derived from real

data cast significant doubt on whether adversarial training is more helpful than

harmful in practice. And although ‘invariance attacks’ [112] are complementary

to standard testing, Tramèr et al.’s algorithm can only apply to the MNIST dataset

or other datasets simple enough for pixel-space operations such as distances and

perturbations to approximate semantic operations such as semantic similarity

and semantic interpolation.

3. Related Work 65

3.7 Miscellaneous related work

Another approach to testing a particular classifier that relies on neither perturba-

tions nor generative modelling is to simply gather new data. On ImageNet, Recht

et al. [184] repeat the original process used to create ImageNet and CIFAR-10,

and find that state-of-the-art classifiers fail to generalize. Hendrycks et al. [185]

photograph scenes in the world that are deliberately intended to cause ImageNet

classification networks to perform very poorly. These approaches can be an

effective way to evaluate generalisation performance, with the benefit that the

data is ‘real’. But gathering new data is orders of magnitude more costly than

using test generation algorithms that exploit generative modelling to avoid the

need to collect fresh data, as in this thesis.

Djolonga et al. [186] transplant foreground objects belonging to 62 ImageNet

classes from an open-source dataset onto nature landscapes from open-source

stock images, and vary the pasted objects’ location, size and orientation. This

approach reliably solves the test oracle problem since the foreground objects

are known, and evaluates generalisation in ways that reveal the presence of

learned shortcuts. But the resulting images are typically artificial and unrepre-

sentative of plausible situations, unlike the tests generated by the algorithms

presented in this thesis.

D’Amour et al. [17] demonstrate that using different random seeds to initialise

training results in quite different out-of-distribution model performance (on

ImageNet-C and ObjectNet), although training and hold-out test set performance

does not vary. This adds to the evidence that out-of-distribution generalisation

performance is simply ignored when standard training is used; unless we have

good reason to expect performance to generalise outside the training data and

task, we cannot rely on it.

Hu et al. [187] introduce a search for pairs of nearby test cases for which

the classification model under test outputs different answers despite their sim-

ilarity. Unfortunately, this method does not ensure that the selected test cases

66 3.7. Miscellaneous related work

have meaningful semantics; if the search starting point is random, they are

overwhelmingly likely not to. If instead, it is a known input, the examples reduce

to a standard pixel perturbation.

Defense-GAN [188] is not related work, although it does relate to both

adversarial examples and generative modelling. Its algorithm (unsuccessfully

[95]) attempts to mitigate worst-case pixel perturbations by first projecting a

model’s input onto the GAN’s learnt data manifold. This cannot be repurposed

to generate test cases, or to otherwise evaluate a model’s generalisation ability.

Some prior work has trained GANs to generate data that are not only realistic,

but also have some other property. Guimaraes et al. [189] extend the SeqGAN

[190] approach of using reinforcement learning to train GANs on discrete se-

quence by simply adding an additional reinforcement learning reward signal.

This approach was applied to generate molecules which were both realistic

and ‘drug-like’, and musical melodies which were both to some extent realistic

and tonal. Cao and Kipf introduced MolGAN [191], which generates drug-like

molecules with some success. In addition to the usual GAN loss, the generator

was incentivised to maximise a score given to its generated molecules by (a neural

network approximation of) a third-party drug-likeness evaluation function. So

the procedure introduced in Chapter 4 is not the first to use the idea of multiple

simultaneous objectives during GAN training. However, the additional objective

used is quite different from that of previous work, and the techniques introduced

that improve the likelihood that training is able to well optimise both objectives

simultaneously are new.

3.7.1 Domain generalisation datasets

The domain adaptation and domain generalisation literatures attempt to address

specific sub-problems of the shortcut learning problem. In this context, “domain”

simply means a different data distribution (usually on the same underlying set).

Image classification examples would include photographs of the same objects

taken in different countries, or the same objects represented in different artistic

3. Related Work 67

styles. The domain generalisation literature [192] assumes that you are given data

from some number of such domains, and need to generalise to an entirely unseen

new domain; domain adaptation [193] differs only in that you are given some

data from the new domain, and typically may be given only one training domain.

The majority of these literatures concerns the development of new techniques to

create models that will generalise better to the new domains. Besides the data

augmentation approaches that are sometimes included as part of this literature,

discussed earlier in this chapter, these techniques are not relevant: our focus

is on the evaluation of models.

Techniques designed to improve a model’s domain generalisation are eval-

uated using datasets that consist of multiple domains. The technique being

evaluated trains the model using the data from all the domains but one, which

is then used to measure performance. For example, the PACS dataset [194]

contains the same seven object classes in four different types of image: Photo,

Art painting, Cartoon and Sketch (hence “PACS”). Another common choice is

the use of four different digit classification datasets (domains) [172]. Zhou et al.

[192] list over twenty such image classification domain generalisation datasets

in their first table The recent NICO++ dataset [195], containing images labelled

with both their class labels and their domains, is particularly extensive. Artificial

datasets such as Colored MNIST [196] allow the evaluation of whether a specific

shortcut is taken or avoided.

How useful are these multi-domain datasets as a way of evaluating out-of-

distribution generalisation of the kind we are concerned about? Well, if you have

a model trained to perform the same task as one of these datasets, and to the

extent that the variation you expect at deploy time matches the variation between

domains in a dataset, such an evaluation is helpful. More broadly, testing a

model using data from a different dataset gives you some information about how

it may adapt to other changes in dataset.

But the test generation algorithms introduced in this thesis have two impor-

tant advantages over these datasets. First, they are task-agnostic. Rather than

68 3.7. Miscellaneous related work

needing to gather or find a dataset trained on the relevant task, the algorithms

take a dataset of task examples and generate suitable tests. Second, rather than

testing the model in one specific new situation, they deliberately construct data to

probe and identify failures in your model. Generalising successfully to one new

test domain does not necessarily indicate successful generalisation to other unseen

domains; weaknesses are more clearly identified when deliberately sought out.

4
Training Generative Networks to

Output Test Cases

Contents

4.1 Procedure for training generative networks 70
4.2 Experimental evaluation setup 75
4.3 Efficacy of test generation . 80
4.4 Ability of tests to identify new problems 81
4.5 Similarity of tests to training examples 88
4.6 Ablative studies . 92
4.7 Scaling to ImageNet . 100
4.8 Threats to validity . 106
4.9 Performance on requirements 109

As motivated in Chapter 1, this research aims to further analysis of the ways

that deep neural networks use ‘shortcuts’ in their learning and thereby generalise

poorly outside the original distribution of training data. Better software tools

for this purpose would allow both the testing of particular systems that will be

deployed in practice, and would improve our fundamental understanding of

how deep models work, what their limitations are, and how to address these.

This chapter introduces a new procedure for the testing of deep neural

networks. This procedure aims to identify new ways that the model being

evaluated fails to generalise outside its training distribution. In short, it works by

69

70 4.1. Procedure for training generative networks

training a generative neural network using a new objective function so that

its generated outputs:

1. induce an incorrect output from the model being evaluated, while

2. retain the expected semantics from the training distribution.

By solving the test oracle problem in a new way – leveraging the abilities of

conditional generative networks – this approach is able to generate a much

broader range of test cases than prior works that use a heavily constrained

perturbation approach.

Section 4.1 presents the new test generation procedure. As well as the essential

approach to training a generative network so as to generate useful test cases, it

also describes difficulties encountered in the training process, and new techniques

introduced to mitigate these. The rest of the chapter contains an extensive empir-

ical evaluation of this new procedure, including verification that the generated

tests have the desired properties (having the intended semantics, while being

misclassified by the tested model), experiments evaluating the procedure’s ability

to find new problems in a model, and a set of ablation experiments to determine

how useful a contribution each aspect of the procedure makes. Section 4.9

evaluates how well the presented new algorithm performs according to the

requirements set out in Chapter 1, in light of our experimental evaluation.

4.1 Procedure for training generative networks

Suppose we have a trained target classifier network f : X → R|Y| that attempts

to approximate an oracle partial function o : X ⇀ Y by outputting a confidence

f (x)c ∈ R for each class c ∈ Y. Our goal is to identify test inputs x such that the

classifier’s prediction is incorrect: arg maxc f (x)c ̸= o(x).

A key difficulty is the test oracle problem. If we had cheap access to o, we

would not need the approximation f – so for a particular test input x, how can

we know whether the prediction of f matches the answer from the oracle o? One

4. Training Generative Networks to Output Test Cases 71

approach is to only allow test inputs that are sufficiently similar to inputs for

which the correct output is known so that the oracle can be assumed to give the

same answer. If we want to take a different approach, this provides a vastly larger

space of candidates, but we must solve the test oracle problem another way.

We leverage conditional generative adversarial networks to solve this problem.

Recall from Section 2.1.2 that a conditional generator learns to generate realistic

examples of each specified label: if g is a well-trained conditional generator,

then g(y, z) should be an instance of class y if z is suitably randomly sampled.

We can rely on this feature to solve the test oracle problem – we can assume

that the correct label for g(z, y) is in fact y. This assumption is experimentally

validated in section 4.3. In principle, any conditional generative model would

suffice – conditional variational autoencoders (VAEs), for instance. But GANs are

a good practical choice. As noted in Section 2.1.3, they are particularly able to

generate samples difficult to distinguish from real data, even at the cost of ‘mode

dropping’, or not representing the full training distribution. Their popularity

also means that there are model architectures and checkpoints available.

4.1.1 Dual-objective training of generative networks

So we begin by taking any conditional GAN, with generator loss lordinary; the use

of a conditional GAN allows us to determine the correct label y of our generated

test inputs. We then introduce loss terms which incentivise the generator g to

create particularly useful or probing tests for a classifier f . In particular, we want

to identify test cases for which the classification model predicts incorrectly – such

examples indicate ways that the model fails to generalise out of distribution.

By default, in the ‘untargeted’ case, we introduce an additional loss term that

is minimised for any misclassification of the test input g(z, y):

luntargeted = f (g(z, y))y − max
c ̸=y

f (g(z, y))c.

This term is the difference between the classifier f ’s confidence in the correct

label and the classifier’s confidence in whichever incorrect label it has the greatest

72 4.1. Procedure for training generative networks

confidence in. Minimising this term is achieved by increasing the confidence in

an incorrect label over the confidence in the correct label.

For our purposes, we will sometimes prefer to generate targeted tests. The

targeted case for true label y and target classification t ̸= y should output test

inputs that a human (oracle) would consider to have label y yet are predicted as t

by the classifier. This is useful in addition to the untargeted case because it allows

a more thorough probing of the classification model’s behaviour. Generating test

cases aimed at a particular target label lets us investigate failures or shortcuts

associated with specific decision boundaries; the features and proxies used by the

classifier may not be uniform across the input space. To produce such tests, we

introduce a loss term, ltargeted, which is minimised when the conditional generator

output g(z, y) is classified in this way:

ltargeted = max
c ̸=t

f (g(z, y))c − f (g(z, y))t.

This is the difference between the classifier f ’s confidence in its current prediction

(besides t) and the classifier’s confidence in the incorrect target label t. Minimising

this term is achieved by increasing the confidence in label t over its otherwise

highest-confidence label.

Note that these new terms assume that the true labels of the generated

data g(z, y) do indeed match the intended labels y, an assumption empirically

validated in Section 4.3.2.

Our procedure is to alter the generator’s training objective so as to minimise

both lordinary and l(un)targeted simultaneously, thereby training the generator to gen-

erate new test cases which are both realistic enough to maintain their meaning and

also reveal regions of input space over which the classifier generalises incorrectly.

4.1.2 The challenge of conflicting gradients

Intuition suggests that the gradient from lordinary may be pointing in a different

direction to the gradient from l(un)targeted. Note that most changes that can be

made to an image would distinguish it from unchanged training examples:

4. Training Generative Networks to Output Test Cases 73

0

20
00

00

40
00

00

60
00

00

80
00

00

10
00

00
0

12
00

00
0

14
00

00
0

16
00

00
0

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Gradient step

N
o

rm
a

lis
e

d
 P

ro
je

ct
io

n

(a) Beginning from a randomly-initialised GAN.

0 500 1000 1500 2000 2500 3000 3500 4000

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Finetuning step

N
o

rm
a

lis
e

d
 P

ro
je

ct
io

n

(b) Finetuning a pretrained GAN.

Figure 4.1: Projecting normalised gradient vectors from lordinary and l(un)targeted onto one
another.

the default is that any change will be in conflict with the goal of creating data

indistinguishable from training examples. In addition, consider the features

used by the classifier to distinguish between classes. These are the features

that gradient updates from l(un)targeted will encourage the generator to change.

Manipulating these features so that (say) a ‘7’ is classified as an ‘8’ seems likely

to be in direct tension with manipulating the features of that image so as to make

the most convincing and normal ‘7’ possible.

A simple experiment suffices to verify whether these gradients do in fact

conflict. We compute the cosine similarity between the gradients of the two loss

terms at each step, i.e.
∇lordinary·∇l(un)targeted

∥∇lordinary∥∥∇l(un)targeted∥
. Figure 4.1a shows that this projection

tends towards −1; for reference, if the gradient vectors were selected uniformly

at random, the magnitude of this projection would very rarely exceed 0.001. In

other words, as training progresses, the gradients from these terms tend toward

pointing in actually opposite directions. This makes joint optimisation using a

gradient descent approach challenging.

4.1.3 Strategies to overcome training challenges

We empirically evaluate the effect of each technique described in this section in

our ablative experiments reported in Section 4.6.

Realistic pretraining It is widely accepted that real image data occupy a

relatively low-dimensional and contiguous manifold [197, p. 160] among the

74 4.1. Procedure for training generative networks

set of all possible image instances. Conversely, we know that misclassified

inputs pervade the full input space – the phenomenon of pixel-perturbation

‘adversarial examples’ show that there is a misclassified example within a small

distance of nearly any point in the input space. Therefore, a generator that

is pretrained using only lordinary before dual-objective finetuning by introducing

our additional loss term is more successful than using both loss terms from a

random initialisation. By beginning our search with a generator that has an

approximate representation of the training distribution, we are more likely to

find test cases that fulfil both criteria.

Besides the generated images being visually closer to the training distribution

because the training distribution is now the start point for the finetuning, Fig-

ure 4.1b shows that the gradients conflict to a much lesser extent. One possible

explanation is that small changes to data that are nearby the training distribution

are small enough that they largely result in data that are still nearby the training

distribution, so that the changes induced by optimising for incorrect classification

do not contradict the objective to stay nearby the training distribution. Another

related possible explanation is that the ways that the generator can most easily

cause examples to be misclassified entail making arbitrary unrealistic changes

when the generator is randomly initialised; but when the generator is pretrained,

the ways it can most easily cause examples to be misclassified are by making

changes that affect the within-distribution characteristics of the data, such as

changing the curve of a shape, rather than adding random noise.

Note that any existing conditional GAN architecture, pretrained checkpoint

and training algorithm could be used here, allowing our procedure to leverage

the significant advances being made in this area.

Amalgamation of loss terms Rather than naïvely summing lordinary and l(un)targeted,

we use the following per-example loss term:

lfinetune = s(lordinary) · s(l(un)targeted − κ), where s(l) =

{
1 + exp(l) if l ≤ 0,
2 + l otherwise.

4. Training Generative Networks to Output Test Cases 75

Here, κ is a hyperparameter similar to that in Carlini and Wagner [71]: it

controls the overconfidence of the misclassification of the generated test inputs.

If the difference between the desired logit and the next-greatest logit is less

than κ, the generator is linearly rewarded for improving this gap (gaining

confidence); beyond a difference of κ (once an example is ‘good enough’), the

reward exponentially decreases. κ = 0 is used for our experiments as strong

misclassifications are not required.

Stochastic loss selection The gradients from the two loss terms are in conflict,

and in practice the l(un)targeted gradient dominates. The proportion of misclassified

generated inputs rises quickly to almost 100%, but the generated images were

noticeably visually overly different from the training distribution, meaning their

correct label may change. To address this, we introduce a new hyperparameter:

‘finetuning rate’, µ. During adversarial finetuning, the finetuning dual-objective

loss term is used at each step only with probability µ; with probability 1 − µ,

the pretraining loss (lordinary only) is used. As desired, this new hyperparameter

allows the proportion of generated tests that are misclassified to be traded off

with their similarity to the training distribution.

4.2 Experimental evaluation setup

Because the success of the test generation procedure depends on fundamentally

empirical questions such as how humans interpret the meaning of the generated

examples, it is essential to subject it to a comprehensive empirical evaluation.

This section describes the setup for the experiments described in the remainder

of this chapter. For context and for reproducibility, this section contains the full

details of the set-up used for the experiments in the remainder of this chapter.

The MNIST handwritten digit dataset [198] is the main focus of the experi-

mental evaluation, because this is the most challenging domain to find failures

in models. The classification task is particularly easy, so state-of-the-art models

perform very well, with around 0.2% test error [199, 200]. Furthermore, attempts

76 4.2. Experimental evaluation setup

Figure 4.2: Samples from the training
dataset.

Figure 4.3: Samples from the pretrained
generator, trained to model the dataset.

Target label, t
0 1 2 3 4 5 6 7 8 9 None

0

In
te

nd
ed

tr
ue

la
be

l,
y 1

2
3
4
5
6
7
8
9

Figure 4.4: Examples of generated targeted
(grid) and untargeted (rightmost column)
test inputs for a standard MNIST classifier
by eleven different finetuned generators.

Target label, t
0 1 2 3 4 5 6 7 8 9 None

0

In
te

nd
ed

tr
ue

la
be

l,
y 1

2
3
4
5
6
7
8
9

Figure 4.5: Examples of generated targeted
(grid) and untargeted (rightmost column)
test inputs for Wong and Kolter’s [100]
robust MNIST classifier by eleven different
finetuned generators.

to create classifiers robust to pixel perturbations have also been most successful

on this dataset, again due to its simplicity [83]. The experiment targets five

pretrained classifiers ‘provably robust’ to bounded pixel perturbations (plus

two non-robust models): there is no misclassified input within a distance ϵ

of p% of test inputs under the ℓ∞ norm. All five are the current state-of-the-

art in this domain, trained by Wong and Kolter [100], and Wang et al. [102].

See table 4.1 for full details.

In the experiments, the MNIST GAN architecture is a combination of a

4. Training Generative Networks to Output Test Cases 77

Table 4.1: Descriptions of and references to the classifiers evaluated. For each robust
model, there is no misclassified input within a distance ϵ of p% of hold-out test set inputs
under the ℓ∞ norm.

Our Name Abbrev. ϵ p Architecture

Wong and Kolter
[100]

W&K 0.1 94.2 2 convolutional layers followed
by 2 dense layers

MixTrain [102] A MT-A 0.1 97.1 ‘MNIST_small’: 2 convolu-
tional layers followed by 1
dense layer

MixTrain [102] B MT-B 0.3 60.1 ‘MNIST_small’: 2 convolu-
tional layers followed by 1
dense layer

MixTrain [102] C MT-C 0.1 96.4 ‘MNIST_large’: 4 convolu-
tional layers followed by 2
dense layers

MixTrain [102] D MT-D 0.3 58.4 ‘MNIST_large’: 4 convolu-
tional layers followed by 2
dense layers

Fully-Connected FC N/A N/A Three fully-connected layers
of size 256, 128 and 32 with
LeakyReLU activations. Stan-
dard training.

Standard Convolu-
tional

Conv. N/A N/A Three convolutional layers
of size 256, 128 and 32.
LeakyReLU activations.
Standard training.

Wasserstein GAN with gradient penalty (WGAN-GP) [30], a conditional GAN

[35] and an auxiliary classifier GAN [36]. Comprehensive details are given

in Appendix B.1.

A GAN was finetuned using dual-objective training for each of the 10 target

labels, and for the untargeted case. Once trained, each of these generators

was used to produce test cases for all digits y from 0 to 9. These were then

filtered so that the classifier output matched the target label for that generator

– if the classifier gave the correct output (y), for instance, that particular test

78 4.2. Experimental evaluation setup

Figure 4.6: Screenshot of the interface used by participants to label generated test inputs,
excluding the instructions and later questions.

case would not be used.

Test cases were generated until 200 filtered examples were obtained, or

until 100 seconds had elapsed. Figure 4.4, Figure 4.5, and Appendix B.1.1

give examples of generated images for which the computed label matches the

target classification.

Interestingly, this led to no test cases with true label ‘0’ and target classification

output ‘1’, most likely because these classes are exceptionally easy to distinguish

(a ‘0’ must always have a dark region at its centre), because the set of manipula-

tions available to the generator for a ‘1’ does not include anything that would

lead to a ‘0’ classification, and because the generator can ‘get away with’ ignoring

particular cases that are too difficult if it leads to better overall performance across

both objectives and all inputs. So this particular case is omitted from the results

since the generator produced no examples of it. If it were of specific interest that

this was omitted, one approach would be to finetune a generator to generate only

this particular case; another would be to modify the loss term so that there was a

high penalty for failing to generate enough misclassified examples of a particular

type. But for our analyses, it is not a problem that this one case is missing.

4. Training Generative Networks to Output Test Cases 79

Target label, t
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l,
y

0 96 94 90 85 96 97 99 85 89 95
1 00 66 88 69 97 89 74 91 81 87
2 69 89 82 58 82 70 64 79 49 75
3 43 84 81 68 74 46 82 54 71 53
4 84 67 86 74 75 96 79 82 77 76
5 58 75 70 78 79 52 82 69 81 75
6 82 90 95 73 84 84 86 94 84 82
7 75 75 88 82 76 95 88 92 59 80
8 76 85 91 76 98 97 77 75 91 83
9 77 68 90 84 95 92 88 95 95 90

Mean 70 81 85 81 79 88 78 82 82 76 80
(a) Testing the Wong and Kolter robust network (described in Table 4.1).

Target label, t
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l,
y

0 93 96 96 99 93 95 97 94 97 96
1 00 92 100 92 97 96 88 96 96 93
2 73 86 82 80 87 92 84 87 75 81
3 88 83 87 81 88 81 89 96 90 92
4 84 53 79 69 78 90 90 81 87 85
5 84 89 77 89 88 79 94 88 88 83
6 96 83 92 95 93 95 93 100 96 94
7 93 59 89 95 85 94 80 99 94 92
8 96 86 97 93 98 93 90 92 92 91
9 93 76 96 97 97 91 89 93 89 98

Mean 88 79 89 91 90 91 88 91 92 91 90
(b) Testing the standard convolutional network (described in Table 4.1).

Figure 4.7: The proportion of filtered generated test inputs for which humans judge
the correct label for the generated image to be the intended true label, y. The filtered
generated inputs, g(z, y), are those generated by finetuned generative networks that
have been filtered to remove the under 1% of examples for which the classifier prediction
does not match the (incorrect) target label t. The colours represent the data visually.

80 4.3. Efficacy of test generation

4.3 Efficacy of test generation

The primary empirical evaluation is whether this approach is able to generate test

inputs for which the model under test gives incorrect outputs. There are two sepa-

rate checks that need to be made. First, that the procedure can generate inputs for

which the label output by the classifier under test, arg maxi f (g(z, y))i, is not the

intended correct label y passed to the conditional generator. Second, that the label

that a human would assign to those generated examples, o(g(z, y)) , matches

the intended correct label y passed to the conditional generator. Since equality

is transitive, these two results imply that arg maxi f (g(z, y))i ̸= o(g(z, y)); the

classifier output is incorrect on the test input g(z, y).

For targeted cases, this is slightly modified. Rather than requiring classifier

output arg maxi f (g(z, y))i ̸= y, we instead require arg maxi f (g(z, y))i ̸= t,

where t ̸= y is the targeted label.

4.3.1 Classifier outputs are as desired

The first check is how often the label output by the classifier under test, arg maxi f (g(z, y))i

is as required: either any label except y, or particular target label t in the targeted

case. Luckily our procedure is particularly effective in this respect: it is easy for

greater than 99% of generated test inputs to be misclassified by the classifier,

either as any label but y, or as t in particular if required. And the small fraction

that does not satisfy this requirement is simply automatically filtered out.

4.3.2 Semantics of data are as desired

So most of our effort will be directed at the need to check that oracle (human)

judgement of the true label matches the intended label y for each example.

Without this check, the generator could simply be producing images that in

fact should not be classified as y. To investigate this, we asked human judges,

recruited on Amazon’s MTurk platform, to classify the generated images. For

cost reasons, we only did this targeting Wong and Kolter’s pixel-robust network

4. Training Generative Networks to Output Test Cases 81

[100] and our standard, non-robust, convolutional network. We used a sample

size of 100 different judgements for each (intended true label y, target label t)

pair for each experiment. The test cases shown to the judges were randomly

sampled from the 200 for each (y, t) pair. Figure 4.6 shows the key part of the

interface used by participants.

The results are presented in Figure 4.7. Each number shows the proportion of

judgements for the particular (y, t) pair for which o(g(z, y)) = y. Since the test

cases are already filtered so that arg maxi f (g(z, y))i = t, this number directly

measures the success of the algorithm in its ability to generate new test cases

that reveal the classification model’s failures to generalise. Testing the robust

network, the mean proportion of successful test cases in the untargeted regime is

80%, with comparable numbers for the targeted cases. These numbers increase

to around 90% when testing the standard model. This is clear evidence that this

test generation algorithm meets our first two requirements: that the generated

tests are meaningful inputs according to the oracle, and that they cause failures

(misclassifications) in the model being tested.

4.4 Ability of tests to identify new problems

The solution to the test oracle problem, used in almost all prior work (exceptions

examined in Section 3.5), is to explicitly or implicitly bound the distance of the

new test from a known existing input. According to Taori et al. [179, p.1], “all

of the distribution shifts [in the literature] are synthetic: the test examples are

derived from well-characterized image modifications at the pixel level”. But as

discussed in Chapter 3, this limits the test inputs to a very small region of the

possibilities; because our new procedure instead solves the test oracle problem

by simply relying on a conditional generative network to generate examples

with suitable semantics, we should expect our new procedure to identify new

ways in which the tested models fail to generalise because of its ability to identify

test cases that prior methods cannot. In this section, experimental evidence is

presented investigating whether this is indeed the case.

82 4.4. Ability of tests to identify new problems

Table 4.2: Comparison of the closest distance
to the nearest training example from ten par-
ticularly realistic generated tests with typical
pixel-space perturbation magnitudes found in
the literature.

Metric Nearest
neigh-
bour
seen

Typical perturbation
magnitude

l0 508 <40 [201]
l1 22.8 <5 [202]
l2 3.28 ~1.5 [203]
l∞ 0.838 ~0.1 [100]

Table 4.3: Ten selected test inputs
used for Table 4.2.

4.4.1 Distance from dataset examples

First, we perform a simple check to verify that the generated images are indeed

not close to images in the training set, as could be caused by over-fitting. We

selected ten generated inputs that are visually similar to the training set and

computed the shortest distances between the images and all images in the

training set. The selected images are given in Table 4.3. Table 4.2 shows that

they are much further from any training example than would be the case with

an ℓp-bounded perturbation.

So, as expected, the new approach to solving the test oracle problem does free

the generated test cases from being at all nearby any existing examples.

4.4.2 Transferability

Pixel perturbation-based test cases typically somewhat transfer between models,

in the sense that examples optimised to cause one model to give the incorrect

prediction tend to cause the same behaviour in other, different models trained

on the same task [64, 204].

This has two implications. First, that different models trained on the same

classification task are using similar shortcuts, causing them to fail to generalise

in similar ways. Second, that the pixel perturbation algorithms in question tend

to produce test cases that reveal this shared shortcut.

4. Training Generative Networks to Output Test Cases 83

This section presents an experiment investigating whether the same phe-

nomenon occurs using the test generation algorithm of this chapter. About 20,000

untargeted failing test cases were generated for each of five target classifiers, and

each of these tests was used as an input to the other four models. By measuring

the proportion of these that were classified correctly, we are measuring how well

the generated examples generalise between models in the above sense.

Results

The results, presented in Table 4.4, suggest that in general, these test cases do

not transfer between models. In most instances, over 80% of generated test cases

for one model were correctly classified by the others. An exception seems to be

classifier MT-D, which often gave incorrect predictions for test cases created

for the other classifiers.

Interpretation

The main result is that the test cases do not transfer between models. If they did

transfer, we could conclude that both (a) the classification models are relying on

similar shortcuts because they are failing to generalise in the same ways, and

(b) the test generation algorithm finds examples that reveal this fact. So the

negative transferability finding suggests the negation of this: the test generation

procedure seems to find different ways that different models are taking shortcuts

and thereby failing to generalise.

In combination with the results in the following section, these results are

evidence that the new procedure of this chapter is able to detect new, different

ways that deep neural networks fail to generalise out of distribution. Otherwise,

we would see that test cases misclassified by one model were also misclassi-

fied by another.

84 4.4. Ability of tests to identify new problems

Table 4.4: Percentages of failing test cases generated for each classifier (each row) which
are also misclassified by the other classifiers (columns). See table 4.1 for descriptions of
the classifiers.

To

W&K MT-A MT-B MT-C MT-D FC

W&K 20.2 18.4 9.0 60.7 16.8
MT-A 19.5 14.1 13.3 55.2 4.7

Fr
om MT-B 5.2 4.8 1.6 57.8 2.6

MT-C 25.8 47.6 13.9 67.8 12.1
MT-D 5.9 7.3 9.4 4.3 1.7
FC 2.7 2.6 2.6 1.3 48.0

4.4.3 Adaptivity against adversarially trained classifiers

In our experiments so far, we have evaluated our procedure using certain fixed,

pretrained classifiers, and found evidence that the faults detected are not the

same as those detected by existing algorithms. Because our finetuning procedure

is free from the constraints of perturbation approaches, it is plausible that it is

able to detect a wider range of generalisation failures than these approaches. This

intuition comes from considering that perturbation approaches can only detect

failures of generalisation within their tight constraints, whereas in principle a

generative neural network is free to generate any test input it chooses.

To investigate this, we apply standard adversarial training [88] using the

output of our test generation algorithm. Recall that adversarial training is the

most promising approach to improve the out-of-distribution generalisation of a

network: if the network generalises badly to a certain kind of input, adversarial

training simply includes these worst-case inputs during training, so that the

model learns to perform well on them. Consider using the outputs of a test

generation algorithm to adversarially train a model. If the test generation

algorithm is then unable to generate further useful tests for the so-trained model,

this is an indication that it has only a small pool of possible test cases to draw

from; on the contrary, if it continues to be able to identify new problems with the

4. Training Generative Networks to Output Test Cases 85

model, this suggests that it is able to detect a wider range of possible problems

than just the problems detected by the initial batch of tests for the original model.

As our test generation algorithm involves a generator network learning the

weaknesses of the classifier model over time, it is not immediately clear how to

integrate it into the adversarial training framework. The two obvious possibilities

are finetuning the generator at each step of training, or alternately training the

classifier and finetuning the generator. For completeness, we explore both of these

below as ‘online’ and ‘offline’ adversarial training, respectively. The classifier

used for these experiments (both the architecture training and hyperparameters)

is the one used in Madry et al. [88], and in particular from their associated

‘MNIST Adversarial Examples Challenge’.

Online Adversarial Training

In this experiment, we update both the generator and classifier at each training

step. The classifier is updated using a batch of test cases generated by the

generator; the generator is updated using the dual-objective finetuning loss.

We run adversarial training for over 1.6 million training steps. Figure 4.8a

shows that even during training, the generator maintains a roughly 80% success

rate in identifying examples for which the classification model’s predictions

are incorrect. Once we have finished training the classifier, we generate tests

using our algorithm that aim to identify failures. Despite the classifier having

been adversarially trained against the generated test cases, the generator is

immediately able to output test cases that the classifier performs badly on,

as shown in Figure 4.8b. After 16,000 gradient steps, over 99% of generated

tests identify failures.

Offline Adversarial Training

Starting with a pretrained GAN and classifier, we iterate ‘training rounds’ consist-

ing of two phases. First, a GAN is finetuned (starting from the initial pretrained

GAN each time) for 5,000 gradient steps to generate test cases that induce

86 4.4. Ability of tests to identify new problems

(a) Online adversarial training performance. (b) Test case performance after
online training.

Figure 4.8: Plots showing the efficacy of the test generation algorithm in the presence of
online adversarial training.

(a) Adversarial training against our test genera-
tion algorithm, first few training rounds.

(b) Adversarial training against our test genera-
tion algorithm, later training rounds.

Figure 4.9: Plots showing the efficacy of the test generation algorithm in the presence of
offline adversarial training.

incorrect predictions from the classifier. The hyperparameters are those from

Table B.3, but with an finetuning rate of µ = 0.4. Second, 80,000 generated

of these test cases are added to the existing training dataset, and the classifier

continues training on the entirety of the pool of samples generated so far for 30

epochs, with a batch size of 128. This in all cases achieved accuracy close to

100%. Once a training round is completed we start again, resetting the GAN

to how it was before any finetuning.

Figure 4.9a shows that, in the first training rounds, the finetuning is successful:

the proportion of test inputs that the model misclassifies increases to over 80%.

Figure 4.9b shows the same story 30 rounds (and hence hundreds of thousands

of classifier gradient steps) in. There is no reason to expect this not to continue

4. Training Generative Networks to Output Test Cases 87

Figure 4.10: Plot showing the effect of adversarial training against Song et al. [2].

in future training rounds.

In short, we find that the adversarially trained classifier is able to correctly

classify the kinds of test cases previously produced by the generator. However,

the generator’s opportunity to finetune again allows it to generate test inputs

in a new ‘blind spot’ of the classifier, suggesting that in contrast to existing

perturbation approaches, it is able to identify a wider range of possible problems.

4.4.4 Comparison of adaptivity with prior work

We compare our procedure to that of Song et al. [2], the contemporary state of the

art in generating unrestricted adversarial examples. As discussed in Section 3.3.2,

this approach, like ours, leverages a pretrained GAN. It differs, however, in how

new classifier inputs are produced. Instead of finetuning the generator, it in short

searches for an input to the (fixed) generator that both deceives the target network

and is confidently correctly classified by the discriminator’s auxiliary classifier

(an auxiliary classifier GAN [36] is required to use this procedure). The GAN

training is therefore entirely independent of the target model using this procedure,

in contrast to our procedure that uses dual-objective finetuning to optimise the

generator network so as to generate tests for the target model specifically.

88 4.5. Similarity of tests to training examples

An important difference between the two approaches is their constraints on

the range of test cases that can be generated, and therefore their scope to detect

different kinds of problems. In Section 4.4.3 we have shown that after further

training the classifier using generated test cases, our approach is always able to

identify new test cases that induce mispredictions, revealing new regions that

the classifiers fails to generalise to. To compare, we repeat this experiment using

Song et al.’s [2] test generation algorithm, running 300 training gradient steps

for the Madry et al. [88] image classifier with a batch size of 64. At each step,

the training data is produced by Song et al.’s model. We use their code and the

hyperparameters they provide for untargeted attacks in Table 4 of their appendix.

Figure 4.10 plots the results. We can see that the classifier is able to quickly

‘patch’ the particular failure initially revealed by Song et al., and their test

generation procedure is entirely unable to identify new test cases that the classifier

performs poorly on. This difference is likely a result of Song et al.’s approach

using a fixed generator and constrained perturbations, whereas the procedure

of this chapter seems always able to adapt the generator, free from constraints,

to find new weaknesses in the particular model being tested. This is significant

because it suggests that the set of possible faults detectable by our new procedure

is much larger than that of existing perturbation tests.

4.5 Similarity of tests to training examples

An important question is whether or not we care about our models failing to

generalise to the test inputs generated by a particular procedure. It is of little

consequence that a model gives an incorrect output for a particular input if that

input is nothing like any data that we care about our model performing well on

for practical purposes. (Although it may still be of interest so that we can better

understand the internal workings and limitations of models in general.)

A sufficient but not necessary condition for us to care in practice about an

input being misclassified is that it is indistinguishable by human judgement from

examples in the training dataset. This is because the training dataset by definition

4. Training Generative Networks to Output Test Cases 89

(a) Examples of questions with ten training examples and
one generated example. There are twelve images because
participants were instructed to ignore the second and
third images as a check to ensure that they had read the
instructions.

(b) Examples of questions
with one training example
and one generated example.

Figure 4.11: Examples of the interfaces seen by human judges when trying to pick out
which one image is not drawn by a person.

contains examples that we care about the model performing well on, and if

humans cannot distinguish two inputs, they must value model performance

on both equally, by symmetry.

So, for this reason, this section describes experiments undertaken to determine

whether human judges are able to distinguish the generated test cases from

dataset examples. Another important motivation of these experiments is to

provide more objective evidence about the similarity of the test cases to examples

we certainly care about; different readers may have different subjective opinions

about whether the generated test cases such as those in Figure 4.4 are similar

enough to handwritten digits to care about. By gathering empirical data from a

wide range of human judges, the reader need not rely on their own judgement.

Method

To access a wide pool of human judges, we again used MTurk workers. After

familiarising themselves with examples from the training dataset, each judge

was presented with ten images, nine of which were training examples, and one

90 4.5. Similarity of tests to training examples

of which was a generated test case. Their task was to pick which image out

of ten was most likely to have been generated. See Figure 4.11 for cropped

screenshots of the web interface used; Appendix B.2 shows full screenshots,

including instructions. There was a financial incentive to pick correctly.

This experiment was repeated but with each judge being presented with just

two images instead of ten, one of which was a training dataset instance and the

other was a generated test case. This was to facilitate a direct comparison with

Song et al. [2]. In addition, having these two experimental settings can increase

the strength of our evidence, because it should reveal how contingent the results

are on the number of images being shown.

Results

The number of judgements out of 100 for which tests for Wong and Kolter’s

pixel-robust network [100] were not identified as the generated ‘odd one out’

when placed among nine training examples is shown in Figure 4.12. That is,

the data show how often the generated tests pass for training examples in this

context. If the generated images were completely indistinguishable, then the data

would all be expected to be 90% – this is how often a uniformly random guesser

would fail to select the odd one out. And if the judges found any way of reliably

distinguishing generated examples from training examples, then the data would

all be 0%. As it is, for the W&K robust network, around 45% of targeted tests and

50% of untargeted tests were not identified as the odd one out. This increases by

about 10 percentage points for tests for the non-robust convolutional network.

Figure 4.13 gives the same results, but in the setting that placed each generated

test next to one training example, rather than nine. The bottom line is that

the generated untargeted tests were not identifiable 24% or 30% of the time,

depending on the classifier, compared with 50% for tests undistinguishable from

training examples, or 0% for tests that can always be distinguished.

4. Training Generative Networks to Output Test Cases 91

Target label, t
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l,
y

0 40 60 56 34 46 51 40 36 63 51
1 00 37 52 36 51 81 40 53 35 49
2 30 37 43 40 42 35 37 55 32 54
3 39 39 43 34 40 40 42 45 48 40
4 51 50 34 38 37 46 42 41 43 40
5 32 34 32 36 43 42 36 37 55 51
6 51 39 45 36 57 46 45 57 40 46
7 47 48 53 33 42 58 41 52 44 39
8 29 46 47 55 44 48 36 39 42 60
9 38 34 50 49 54 53 53 69 57 67

Mean 40 41 45 44 43 47 47 43 48 45 50
(a) Tests targeting the Wong and Kolter robust network (described in Table 4.1).

Target label, t
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l,
y

0 45 48 46 43 38 61 51 44 59 53
1 00 64 74 72 62 78 83 73 75 79
2 52 43 53 41 52 35 48 54 40 55
3 64 41 62 43 60 29 51 56 58 50
4 59 45 49 36 45 53 55 49 69 65
5 48 46 44 63 62 60 49 57 61 50
6 76 48 44 46 54 54 38 62 54 58
7 51 32 60 59 54 54 46 61 65 65
8 62 53 62 57 56 56 54 50 67 57
9 47 42 51 60 72 69 54 66 71 67

Mean 57 44 54 55 55 54 52 55 59 61 60
(b) Tests targeting the standard convolutional network (described in Table 4.1).

Figure 4.12: The number of times out of 100 that generated test images are not identified
as the ‘odd one out’ in a set of ten. If the generated images always passed as training
examples, the expected result would be 90; if they were always spotted, it would be 0.
The colours represent the data visually.

92 4.6. Ablative studies

Discussion

The main result is that human judges were often unable to identify which of

the presented examples were generated test cases rather than drawn from the

training dataset. This implies that at least a large fraction of the generated tests are

indistinguishable from training examples under human judgement. Therefore,

we can be confident that the tests generated by our procedure identify failures

that we care about. That is, the failure-inducing test inputs are of real concern, and

cannot be dismissed as being too different from the training data.

The side-by-side setting was partly motivated by facilitating a direct compari-

son with prior work. Generating tests for the W&K network, Song et al. [2] report

that participants select the generated image as the more realistic of the two 21.8%

of the time, while for our untargeted case, this figure is 24%; completely realistic

images would be chosen 50% of the time. This suggests that the procedures

are broadly similar in their ability to generate test cases that look like training

examples, with our method perhaps representing a small improvement.

4.6 Ablative studies

In this section, we investigate the contribution of different aspects of our test

generation procedure by removing them one by one, and investigating the effect.

4.6.1 Generative model without finetuning

Method

To evaluate the extent to which our dual-objective finetuning procedure is

effective, we repeat the main efficacy experiment described in Section 4.3 but

using an out-of-the-box GAN that has not been finetuned using our dual-objective

procedure at all.

That is, we use the fixed, pretrained generator to generate many ‘test inputs’,

and filter to keep all those which are misclassified (the untargeted case) or

misclassified with a particular label (the ‘targeted’ case, although note that of

4. Training Generative Networks to Output Test Cases 93

Target label
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l

0 23 29 24 30 25 20 22 17 22 28
1 00 14 19 16 26 38 25 21 21 24
2 24 25 18 25 21 17 26 17 19 29
3 22 24 17 31 28 25 24 24 30 20
4 25 25 28 20 21 28 22 17 23 19
5 23 16 24 27 29 23 19 27 21 21
6 19 21 25 21 19 25 20 28 18 23
7 23 27 22 26 17 24 25 29 16 21
8 25 25 21 21 24 23 24 25 28 23
9 18 21 22 27 27 24 23 28 23 28

Mean 22 23 22 23 24 24 25 23 23 22 24
(a) Tests targeting the Wong and Kolter robust network (described in Table 4.1).

Target label
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l

0 23 32 23 22 22 23 19 24 27 23
1 00 31 32 31 28 30 36 41 29 28
2 24 28 31 22 24 30 26 31 20 28
3 30 26 30 20 20 25 19 21 25 23
4 27 28 25 20 28 27 25 26 27 30
5 29 25 25 25 24 23 25 22 22 28
6 30 22 27 17 30 28 20 32 23 29
7 18 24 30 32 25 24 22 34 26 34
8 28 29 19 23 22 28 27 26 26 37
9 29 21 20 31 28 33 21 44 30 38

Mean 27 25 27 26 25 26 25 27 29 25 30
(b) Tests targeting the standard convolutional network (described in Table 4.1).

Figure 4.13: The number of times out of 100 that generated test images are not identified
as the ‘odd one out’ in a side-by-side comparison If the generated images always passed
as training examples, the expected result would be 50; if they were always spotted, it
would be 0. The colours represent the data visually.

94 4.6. Ablative studies

course the not-finetuned generator has not been trained to target any particular

class). We then use human judges to evaluate the proportion of these filtered

examples which correctly maintain their semantics, a necessary condition to

ensure that the examples really are misclassified. We also report the proportion

of these filtered examples which are not correctly identified by human judges as

being generated (out of a selection of ten). These results are shown in Figure 4.14.

For an illustrative example of our method here, consider the result for in-

tended true label y = 9 and target label t = 0. We first use the conditional GAN

to produce a set of images that are intended to be 9s. We then filter this set

and keep only those that are classified as 0s by the classifier – a much smaller

subset. Finally, we report below the percentage of these for which the true label

determined by humans is indeed a 9: 55%.

We then use the same filtered generated examples to repeat the experiments

from Section 4.5 – asking human judges to identify the one generated example

alongside nine or one training dataset example. These results are shown in

Figures 4.15 and 4.16.

Results and discussion

As expected, a generator without any of our finetuning is much less able to

produce test cases that reveal a failure in the model being tested. Unsurprisingly,

the proportion of generated examples that are misclassified broadly matches that

of the hold-out test set – around 2% – which is what we should expect, given

that the standard generator is optimised to match the training (and therefore test)

distribution. In contrast, our dual-objective finetuning can easily increase the

proportion of generated examples that potentially expose classification failures

to well over 99%.

Furthermore, only 66% of the standard generator’s misclassified outputs had

maintained their true label in the untargeted case, compared with 80% for a

dual-objective finetuned generator. In the targeted case, we see that the generator

without finetuning does even worse: an average of 57% across the ten classes,

4. Training Generative Networks to Output Test Cases 95

compared with 80% again in the finetuned case. The results are analogous for

tests targeting the non-robust classifier. So in short, our procedure significantly

increases the ability of generated outputs to actually expose classification failures.

In general, the outputs of the generator without finetuning similarly or

more often pass to humans as training examples than the outputs of finetuned

generators. This matches what we might expect because, without our finetuning,

a standard generator is optimised solely to generate outputs that are indistin-

guishable from the training distribution. Curiously, the not-finetuned generator

outputs pass as training examples particularly often in the side-by-side case

targeting the pixel-robust classifier. This may be because adversarially trained

classifiers tend to have decreased performance on the training distribution as a

trade-off for their increased robustness; this could result here in more ‘normal-

looking’ generated examples potentially inducing a misclassification.

In summary, although our dual-objective finetuning slightly increases the

proportion of tests that humans can identify as being generated rather than

training examples, it hugely increases the proportion of generator outputs that

identify failures in the model being tested.

96 4.6. Ablative studies

Target label, t
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l,
y

0 73 91 62 62 91 77 88 50 59 75
1 00 49 51 80 06 31 47 61 77 57
2 13 62 53 32 30 30 52 50 19 60
3 29 69 60 26 60 12 79 22 28 71
4 42 55 66 43 70 80 70 48 73 65
5 18 46 55 61 54 29 59 31 51 60
6 50 60 80 87 74 80 74 54 59 66
7 22 43 82 63 31 64 00 62 38 40
8 70 68 80 75 75 91 63 50 80 79
9 55 66 88 74 88 92 66 87 69 88

Mean 37 60 72 63 58 65 43 67 50 54 66
(a) Testing the Wong and Kolter robust network (described in Table 4.1).

Target label, t
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l,
y

0 00 76 44 65 70 77 89 56 75 76
1 00 82 89 95 99 93 76 98 98 98
2 35 45 94 55 40 55 75 75 48 68
3 64 66 66 46 71 33 73 81 84 80
4 66 41 66 68 56 66 61 59 85 77
5 64 68 80 76 71 69 63 65 82 73
6 82 63 66 43 91 79 78 81 60 85
7 73 47 82 80 72 92 100 92 86 77
8 87 69 81 77 79 65 88 62 81 85
9 90 45 79 75 76 96 00 82 74 84

Mean 70 56 75 72 72 74 73 73 76 78 80
(b) Testing the standard convolutional network (described in Table 4.1).

Figure 4.14: Using no finetuning at all (i.e., a standard generator), the proportion of
filtered generated inputs for which humans judge the generated image to have the
intended label, y. The filtered generated inputs, g(z, y) have been filtered to remove the
many examples for which the classifier prediction does not match the (incorrect) target
label t. The colours represent the data visually. Can be directly compared with Figure 4.7.

4. Training Generative Networks to Output Test Cases 97

Target label, t
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l,
y

0 48 63 53 53 62 56 46 40 37 54
1 00 34 52 50 37 27 52 47 46 42
2 42 39 51 39 30 36 54 49 40 43
3 41 47 55 42 55 47 53 41 47 51
4 49 52 41 46 45 50 51 45 66 57
5 38 50 43 56 47 54 44 51 48 51
6 49 52 47 50 46 55 38 62 46 48
7 39 57 59 36 49 45 32 41 57 59
8 52 50 59 52 56 57 43 39 51 59
9 51 51 66 53 74 61 53 73 48 68

Mean 45 50 52 50 51 50 44 50 47 49 53
(a) Tests targeting the Wong and Kolter robust network (described in Table 4.1).

Target label, t
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l,
y

0 00 59 56 61 65 63 55 51 54 63
1 00 56 62 76 76 70 72 80 77 74
2 53 55 66 54 48 50 62 64 52 61
3 68 54 62 48 64 52 64 71 65 71
4 57 54 55 57 63 52 60 47 66 73
5 69 64 58 62 57 73 53 60 62 63
6 63 64 58 59 67 71 62 63 63 67
7 54 63 71 61 71 62 52 67 74 77
8 65 60 60 71 57 60 81 55 69 67
9 64 51 65 64 81 71 00 76 68 68

Mean 62 58 60 62 64 64 62 62 63 65 68
(b) Tests targeting the standard convolutional network (described in Table 4.1).

Figure 4.15: Using no finetuning at all (i.e., a standard generator), the number of times
out of 100 that the filtered successful generated ‘tests’ are not identified as the ‘odd one
out’ in a set of ten. If the generated images always passed as training examples, the
expected result would be 90; if they were always spotted, it would be 0. The colours
represent the data visually. Can be directly compared with Figure 4.12.

98 4.6. Ablative studies

Target label, t
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l,
y

0 43 37 42 42 41 36 43 38 45 36
1 00 29 40 38 40 39 40 43 37 34
2 45 30 38 36 35 39 44 41 31 40
3 35 35 38 36 45 34 42 44 38 36
4 30 42 42 40 36 35 47 42 38 42
5 35 43 40 35 34 34 42 36 37 44
6 44 46 46 42 37 42 45 41 38 36
7 32 38 38 42 42 43 33 35 46 45
8 41 41 44 46 37 37 36 43 42 44
9 45 41 35 47 44 40 40 52 36 49

Mean 38 40 39 41 38 40 36 44 40 39 41
(a) Tests targeting the Wong and Kolter robust network (described in Table 4.1).

Target label, t
0 1 2 3 4 5 6 7 8 9 None

In
te

nd
ed

tr
ue

la
be

l,
y

0 00 25 28 31 26 34 16 20 21 27
1 00 36 26 31 27 25 24 38 22 25
2 24 24 29 28 26 21 28 25 22 27
3 23 27 26 26 29 23 22 29 31 31
4 27 18 23 31 28 24 29 32 37 33
5 26 24 30 24 29 28 23 32 30 30
6 37 23 23 21 28 30 26 29 25 26
7 23 33 22 29 26 25 24 27 28 32
8 31 20 21 26 29 31 31 26 33 30
9 27 26 26 22 32 26 00 31 26 30

Mean 27 24 26 26 29 28 26 25 29 28 29
(b) Tests targeting the standard convolutional network (described in Table 4.1).

Figure 4.16: Using no finetuning at all (i.e., a standard generator), the number of times
out of 100 that the filtered successful generated ‘tests’ are not identified as the ‘odd one
out’ in a side-by-side comparison. If the generated images always passed as training
examples, the expected result would be 50; if they were always spotted, it would be 0.
The colours represent the data visually. Can be directly compared with Figure 4.13.

4. Training Generative Networks to Output Test Cases 99

4.6.2 Training strategies

We investigate the effect of the training strategies described in Section 4.1.3

by removing each in turn. We did not have the resources to prioritise further

human experiments on these more minor ablations, but a visual comparison is

sufficient to assure us of their effects. Figure 4.17 provides a point of comparison,

showing the progression of the finetuning phase of our procedure, applied

with no ablations.

We find that without a standard pretraining phase, training with our dual-

objective function does eventually converge, but it takes longer and gives gener-

ated results that appear to be less similar to the training distribution and more

prone to not retaining their intended labels. See Figure 4.18 for the development

of outputs over training.

We also find that the finetuning rate hyperparameter is an effective technique

for trading off test generation efficacy with image realism; without this technique,

the finetuning rate is in effect set to 1, which again produces results that appear to

be inferior. See Figure 4.19 for a comparison of the effect of different settings of µ.

Last, we find that choosing lordinary + l(un)targeted as the generator’s loss results

in a catastrophic collapse of the training, likely because l(un)targeted is optimised for

too heavily. It is possible that manipulating other hyperparameters could cause

this naïve loss to work, but GAN training convergence is not easy to obtain, and

we are confident that our loss term contributes to convergence. See Figure 4.20.

4.6.3 Perturbing standard GAN outputs

Finally, we compare to a naïve baseline where test inputs are straightforwardly

generated using a standard generative network and then their pixel values

perturbed using the standard projected gradient descent algorithm [88] with

an ℓ∞ norm bound of ϵ = 0.1. Testing the W&K network used throughout this

chapter, under 1% of correctly classified generated data result in a classification

failure after perturbation; we find this approach is no better than the same pixel

100 4.7. Scaling to ImageNet

(a) Samples from pretrained generator. (b) After 5,000 iterations of finetuning.

(c) After 10,000 iterations of finetuning. (d) After 20,000 iterations of finetuning.

(e) After 30,000 iterations of finetuning. (f) The end of finetuning at 45,000 iterations.

Figure 4.17: A sequence of images tracking the output of the generator network for one
fixed random sample in latent space as adversarial finetuning takes place. Five samples
are given for each intended true label. The finetuning is for untargeted tests for Wong
and Kolter’s provably-robust network.

perturbations on the hold-out test set. This is as expected, since the generator

models the training data distribution, which the test set is also drawn from.

4.7 Scaling to ImageNet

To investigate the scalability of our procedure, we apply it to the much larger

and more complex ImageNet-1K dataset [50], with three colour channels rather

than one, 128 × 128 pixels rather than 28 × 28, and 1000 different class labels

4. Training Generative Networks to Output Test Cases 101

(a) After 705,000 iterations. (b) After 750,000 iterations. (c) After 2.53 million iterations.

Figure 4.18: Demonstration of the effect of using omitting the standard pretraining phase
of our procedure before optimising for both objectives simultaneously. Results are shown
after the numbers of iterations equivalent to pretraining, to pretraining plus finetuning,
and at convergence. The final results both took longer and are visually less convincing
than otherwise comparable results with standard pretraining in Figure 4.17.

(a) µ = 0.01; 1% misclassified. (b) µ = 0.1; 16% misclassified. (c) µ = 0.25; 68% misclassified.

(d) µ = 0.5; 94% misclassified. (e) µ = 0.75; 98% misclassified. (f) µ = 1; >99% misclassified.

Figure 4.19: The effect of finetuning rate µ on image quality and proportion misclassified,
using otherwise the same setup as in Figure 4.17. A finetuning rate of 1 is equivalent to
not having the finetuning rate as an option. As expected, finetuning rates control the
balance between the quality of the generated images and the propensity of the generated
outputs to cause model misclassifications (ignoring whether the examples retain their
intended semantics).

102 4.7. Scaling to ImageNet

(a) After 500 dual-objective
finetuning steps; 40% mis-
classified.

(b) After 1500 dual-objective
finetuning steps; 91% ‘mis-
classified’.

(c) After 10,000 dual-
objective finetuning steps; all
‘misclassified’.

Figure 4.20: Dual-objective finetuning with naïve generator loss lordinary + luntargeted. As
expected, our custom loss function as described in Section 4.1.3 significantly improves
convergence to generator weights that continue to generate images realistic enough to
maintain their intended classes.

“Goldfish”:

“Tarantulas”:

“Lemons”:

“Churches”:

Figure 4.21: Some hand-selected examples of targeted ImageNet test cases, generated by
a BigGAN finetuned using our procedure. As discussed below, most generated examples
are much less legible, likely simply because of the original generator quality. The target
class for each row is labelled. Observe the appearance of lemon-like objects at the edges
of the lemon-targeted row – although this does not affect the meaning a human would
assign, it presumably contributes toward the classification model’s lemon prediction.

4. Training Generative Networks to Output Test Cases 103

horned rattlesnake curly-coated
retriever

admiral birdhouse

chest horn lifeboat solar dish

stone wall suspension bridge thresher unicycle

comic book butternut squash cardoon hay

Figure 4.22: Successful targeted unre-
stricted adversarial examples for target
class ‘tabby cat’.

kite spotted
salamander

terrapin alligator lizard

green lizard night snake horned rattlesnake centipede

lady bug howler monkey airship combination lock

sombrero corn acorn capitulum

Figure 4.23: Successful targeted unre-
stricted adversarial examples for target
class ‘slug’.

cock black widow nautilus bittern

bluetick english setter sussex spaniel briard

eskimo dog standard poodle ladle mailbag

paddle wheel custard apple eggnog conker

Figure 4.24: Successful targeted unre-
stricted adversarial examples for target
class ‘orange’.

cock dhole squirrel monkey balloon

castle garbage truck organ palace

park bench revolver shower curtain stupa

triumphal arch water tower yurt traffic light

Figure 4.25: Successful targeted unre-
stricted adversarial examples for target
class ‘church’.

104 4.7. Scaling to ImageNet

rather than 10. The generator network used is the author’s ‘officially unofficial’

published code and checkpoints for the current state-of-the-art, BigGAN [34],

chosen because it is the best GAN checkpoint published with both generator

and discriminator. Note that the official BigGAN release included much higher

checkpoints (including one used in subsequent chapters), but these included the

generator networks only, excluded the discriminators necessary for our procedure.

The model tested is a ResNet-152 [205], the highest accuracy ImageNet classifier

packaged in PyTorch at the time.

In the untargeted case, our procedure is able to finetune this BigGAN to

generate examples such that the classification model’s predictions are incorrect

>99% of the time within 40 gradient steps (compared with the 105 taken to

train BigGAN). This much smaller number of steps required may be because

the greater resolution of the images provides more degrees of freedom that the

optimisation can exploit to achieve its goals.

Our main focus, though, is on the more challenging targeted case – causing

an image to be classified as the one-in-a-thousand specific target class is a

much smaller target than allowing any of the 999 incorrect classes. We find

that typically, on the order of 100 gradient steps were required for >10% of

generated examples to be classified (top-1) as the target class. Compared to

MNIST, each ImageNet gradient step takes about 100x longer to compute due to

the sheer size of the models, but the 100x decrease in the number of gradient steps

required compared to MNIST roughly compensates for this, resulting in a similar

compute time overall to obtain a reasonable fraction of test cases that cause

the misclassifications as desired. Image quality as measured by the Inception

Score metric [206] typically decreased from about 75 to 70 as a result of this

finetuning using our procedure. This remains slightly better than the mid-2018

state-of-the-art Inception Score of 52 [32] or the mid-2017 state-of-the-art of 12

using WGAN-GP [207]. Figure 4.21 shows some selected examples of generated

targeted test cases; Figures 4.22 to 4.25 show random examples.

4. Training Generative Networks to Output Test Cases 105

(a) No dual-objective finetuning: ordi-
nary training continues.

(b) With 15 gradient steps of dual-
objective finetuning.

Figure 4.26: Samples for fixed inputs to the BigGAN implementation we use, taken 15
gradient steps after the checkpoint we begin training from.

Comparison to no finetuning

The ImageNet results above are not as high-quality as those reported in the

BigGAN paper [34]. There are two causes of this which need to be disentangled:

the effect of finetuning, and the limitations of the particular BigGAN instance

used. One limitation is that the BigGAN checkpoint we use has a worse generated

image quality. The Inception Score is much lower than is reported in the paper

(75 vs. 166.5), and the resolution is much less than the best images (128 × 128

vs. 512 × 512). Another is that our limited access to expensive hardware forces

us to use a batch size of 15; small batch sizes like this can “lead to inaccurate

estimation of the batch statistics, and reducing batch normalisation’s batch size

increases the model error dramatically” [208, p.1].

We therefore provide samples from the BigGAN running on our machine to

identify how detrimental our procedure is to image quality relative to standard

training. Figure 4.26a shows a set of samples taken after continuing ordinary

training; Figure 4.26b shows the output of the generator for the same input after

106 4.8. Threats to validity

dual-objective finetuning, instead.

A visual inspection shows that the samples in Figure 4.26a are similar in qual-

ity to those in Figure 4.26b (and the other ImageNet results presented). Indeed, it

is often quite unclear what the images are supposed to be portraying, making

it a challenge to identify compare which of the two is a more faithful depiction.

This suggests that a sufficient reason for the relatively poor images generated as

ImageNet tests by our procedure is the relatively poor quality of the generator

network used. Unfortunately, this was the best network available at the time.

Conclusion

So in short, while our method appears able to generate test cases that induce

failures at ImageNet scale without a large increase in computation required

relative to the MNIST case (due to the fewer gradient steps required), the

relatively poor quality of the GAN checkpoints available (and perhaps hardware

constraints forcing small batch sizes) hinders our investigation of whether our

finetuning procedure is able to scale its ability to generate test inputs that maintain

their semantics and relevance.

4.8 Threats to validity

This section discusses possible threats to the validity of the results in this chapter.

This includes threats to internal validity (whether the results as presented can

be trusted) and threats to external validity (whether the results presented can

be expected to generalise beyond the specific setup here.)

4.8.1 Internal validity

MTurk experiments

The evaluation of our procedure relies entirely on the quality of the data provided

by the MTurk workers. As this comprises our main threat to internal validity,

we therefore took a number of measures to safeguard the quality of this data,

4. Training Generative Networks to Output Test Cases 107

especially to ensure that participants understood instructions and completed

the tasks diligently:

• Only workers with good track records were permitted to participate.

• The instructions specified that particular answers should be given to speci-

fied questions to prove that the instructions had been read carefully. Ap-

proximately 10% of work was rejected for failing this check.

• For the image labelling tasks, some images with known labels were included

to check that the right labels were being given. Reassuringly, almost no

work was rejected for failing this check.

• For the identification of the generated images, a bonus nearly doubling the

pay per image was given for each correctly-identified image, providing an

extra incentive to try hard.

• To provide a disincentive to high-speed random clicking, a minimum time

spent answering each individual question was enforced by temporarily

disabling the answer input section until a short timer expired.

• If more than 1% of questions were left unanswered, we interpreted this as

a sign of carelessness and did not use any of the data from that particular

task.

Full screenshots of the interfaces used for these experiments, including the

instructions, are available in Appendix B.2.

In all, we are confident that the data are at least reliable enough that our

results have internal validity.

Training technique ablative studies

The ablative studies in Section 4.6.2 ablate different parts of the training procedure

in order to identify how helpful they are in ensuring satisfactory convergence

of the dual-objective finetuning. A possible minor threat to validity is that

108 4.8. Threats to validity

these experiments were not particularly rigorous: although they provide clear

evidence of the effect of each training technique, they do not comprehensively

evaluate the extent to which each makes a contribution. For instance, single

runs of each relevant ablated training procedure are used. Many runs would

increase the robustness of the conclusions drawn in this section, but this was

not prioritised. But this is acceptable: the key results of this chapter hinge

on the ability of our procedure to produce results assuming convergence; we

have clearly demonstrated that convergence is possible; convergence is likely

dependent on machine learning procedural knowledge; and so these training

techniques are more like beneficial extra contributions, rather than an essential

part of our test generation algorithm.

ImageNet generator quality

As discussed in Section 4.7, the quality of the generator used for the ImageNet

experiments hinders our ability to conclude that our test generation procedure

scales without problem to this dataset, although there is evidence that indicates

that this is so.

4.8.2 External validity

Our empirical evaluation in this chapter has centred primarily on the MNIST

dataset, with some use of the ImageNet dataset to investigate scaling. This

begs the question of the external validity of this work: whether the conclusions

about our test generation procedure will generalise to other image classification

tasks, and indeed to other domains.

Recall that MNIST being a simple dataset that is easy to classify is precisely

a reason to expect external validity, rather than to question it. Because MNIST

classifiers are among the highest performance on any dataset, we should expect

that generating tests that cause failures in these classifiers is particularly difficult.

So we should expect our test generation procedure to succeed quite easily on

other image classification tasks, because they are likely to be more difficult than

4. Training Generative Networks to Output Test Cases 109

MNIST and so the classifiers are very likely to have more failure modes that

can be identified.

An open question is whether our test generation procedure would generalise

beyond image classification to other domains. Common sense suggests that

it would generalise, assuming that GAN training is possible for that domain,

because there is nothing specific to images baked into our algorithm. Likewise,

there is little specific to classification – the loss term representing classification

accuracy could easily be replaced with another performance measure for a

different task such as regression. But it is also reasonable to take the view that

there could be an unexpected barrier in generalising to some other domain, and

so we cannot assume this kind of external validity. Fortunately, we do not depend

on this kind of external validity for the significance of our contribution.

4.9 Performance on requirements

This chapter has presented a new procedure for the generation of test cases

for discriminative deep neural networks. By finetuning a generative network

using an additional loss term, it can be trained to directly generate useful test

cases. But does it meet the requirements we set out in Section 1.2.3? To conclude,

let us consider each requirement in turn in light of the evidence presented in

this chapter. Note that not all sections of the chapter – such as the ablative

studies – are directly relevant here.

4.9.1 Production of meaningful test cases

Two types of experiments were conducted to verify that the generated test inputs

were meaningful according to the oracle (human judgement).

First, human judges were asked to identify which handwritten numeral, if

any, each generated test input corresponded to. For 90% of untargeted test inputs

for a standard MNIST classifier, human judges assigned the label that matched

the intended meaning for that test. Broadly similar results were found for other

110 4.9. Performance on requirements

classifiers and for targeted tests. So the overwhelming majority of generated

tests are meaningful according to the task oracle.

Second, human judges were asked to identify which one example from a

selection of ten was a generated test case, as opposed to an example drawn

from the training set. 50% of the time, the judges were unable to correctly

identify which example was the generated test in the case of untargeted tests for

a standard classifier – again, similar results were found for other classifiers and

for targeted tests. This implies a stronger property: not only were the generated

tests clearly meaningful according to the task oracle, but they were often visually

indistinguishable from the training data. This is sufficient both for the generated

tests to be meaningful under the test oracle, and for failures identified by these

tests to be of practical concern.

4.9.2 Production of test cases that induce poor performance

After the training procedure, it is easy for over 99% of the outputs of the generator

network to be classified as intended (i.e., as something other than the intended

label y) by the system being evaluated. The fewer than 1% that do not meet this

criterion can easily be automatically filtered out.

The remaining check is of the proportion of generated tests for which the test

input really does belong to the intended target class t, according to the oracle. As

described in Section 4.9.1, this is around 80 to 90%. So the overwhelming majority

of generated tests induce incorrect behaviour in the evaluated image classifier.

4.9.3 Detection of a wide range of problems

Whereas existing work takes a perturbation approach to solve the test oracle

problem, only creating test inputs that are small deviations from known labelled

examples, our new approach does not have any such constraints, instead solving

the oracle problem by using a conditional generative network. Because of this

lack of constraints on its possible outputs, our test generation procedure is able

to detect many more failures than existing procedures.

4. Training Generative Networks to Output Test Cases 111

There are four sources of empirical evidence that the tests generated are able

in practice to detect problems not detectable by existing approaches. First, a

straightforward check that generated tests are not within typical perturbation

constraints of any dataset examples. Second, that the algorithm is able to detect

problems with almost as much ease on classification models trained to be robust

to pixel perturbations. Third, tests for one classification model tend not to also

induce incorrect behaviour in other classification models, implying that in these

cases, the tests are detecting failure modes that are distinct to each model being

tested. Fourth, in contrast with prior perturbation-based approaches, even if the

model under test is repeatedly further (adversarially) trained using the generated

test inputs, our algorithm remains able to generate new test cases that reveal

ways that the classifier fails to generalise.

4.9.4 Efficiency and practicality

The test generation procedure requires the training of a GAN pair. Ideally, such

a GAN will be already available for the relevant task, in which case a relatively

inexpensive finetuning process is all that is needed, before tests can be generated

at the small cost of one forward pass through the generator per batch of tests. If

such a GAN is not available, then one needs to be trained, which requires relevant

data and sufficient compute (which can be expensive for larger datasets).

To verify whether the test generation procedure works at scale, it was applied

at scale on the ImageNet dataset, with somewhat ambiguous results: it is unclear

whether the generated test cases tended to be not particularly recognisable as their

intended classes because the pretrained generator used was low quality, because

hardware constraints forced small batch sizes and few gradient steps, or because

the test generation algorithm does not scale well. We have seen some evidence

that it is likely to be the generator checkpoint that is the main problem, but this

still prevents our reaching a firm conclusion that the algorithm scales well.

112

5
Generating Tests by Perturbing

Generative Network Activations

Contents

5.1 Procedure for perturbing latent generator activations 114
5.2 Description of empirical evaluation 121
5.3 Experimental results and discussion 129
5.4 Threats to validity . 137
5.5 Performance on requirements 140

The main contribution of this thesis is two new test generation procedures that

evaluate image classifiers’ ability to generalise well, not relying on the usually

false assumption that the specific distribution of inputs encountered during

their training is comprehensive and representative. This chapter introduces the

second of these two new algorithms, which identifies context-sensitive feature

perturbations to test inputs (affecting for instance object shape, orientation,

location, texture, and colour). These changes are found by performing small

adjustments to the activation values of different layers of a trained generative

neural network. Because this approach can perturb the activations at every layer,

it is able to exploit the full range of learned representations to access a rich

space of possible feature changes. Perturbing at layers earlier in the generator

113

114 5.1. Procedure for perturbing latent generator activations

causes changes to high-level, coarser-grained features such as object shape,

location, colour or orientation; perturbations further on cause finer-grained,

local changes such as to texture. Because this approach is able to adjust a richer

space of feature changes than previous works, it can detect a wider range of

generalisation failures.

The full procedure is described in Section 5.1; the rest of the chapter describes

and discusses an empirical evaluation of the approach. Chapter 6 evaluates

whether the procedure introduced in this chapter is able to detect faults in deep

neural networks that were not detectable using existing approaches. And Chapter

7 exploits the procedure introduced in this chapter to make a surprising empirical

finding: networks trained to be more robust to pixel-level perturbations are less

robust to the kinds of high-level feature perturbations encoded in the earlier

layers of generative networks.

5.1 Procedure for perturbing latent generator activa-
tions

In short, we make context-sensitive changes to image features by taking a pre-

trained generative neural network and perturbing its latent activation values as it

generates images. We expect this to work because the neurons at different layers

of a generator encode the various useful features for generating images [60]. We

can control the granularity of the downstream change by selecting the layers

at which the activations are perturbed: perturbations to earlier layers result in

coarser-grained changes (e.g., the shape of a building), while later perturbations

result in finer-grained changes (e.g., the texture of some fur). In this way, we are

able to probe generalisation to the kinds of change that occur in the data.

5.1.1 Problem setup

Recall that image classification is the approximation of an oracle o : X ⇀ Y

that assigns each meaningful image x its correct (by definition) class, o(x) ∈ Y.

Given a set of N labelled datapoints D = (xi, o(xi))
N
i=1 ⊂ X × Y, we can train a

5. Generating Tests by Perturbing Generative Network Activations 115

deep neural network image classifier f : X → R|Y| that attempts to approximate

o. Given an input, f outputs a real-valued confidence for each possible class

y ∈ Y. Let fy(x) be the classifier’s confidence of input x being of class y, and

fpred(x) = arg maxy fy(x), such that fpred is an approximation of o. Typically, the

final layer of a DNN is a softmax function, so that for all output confidences

fy(x), 0 ≤ fy(x) ≤ 1, and Σk
y=1 fy(x) = 1.

When testing such a trained DNN, our goal is to identify test cases (x, y) that

cause failures in the model, where a failure means that the output is incorrect:

fpred(x) ̸= y = o(x). These failures are indicative of a fault in the DNN.

Definition 5.1. A test case with test input x ∈ X for DNN f : X → R|Y| is said to

fail if fpred(x) ̸= o(x).

However, we quickly run into the test oracle problem: we do not have direct

access to o (if we did, there would be no need to train an approximation f) and

it is too costly to seek human labelling for each test input. So a practical test

generation algorithm needs to provide not only test inputs x, but additionally

the desired system output o(x) so that failing test cases can be identified.

5.1.2 Solving the test oracle problem using perturbations

The standard approach to solving the test oracle problem is to make use of

the set D of labelled data that is available. We can partition D into a large

training set Dtrain and a small holdout test set Dtest; by using only Dtrain during

training, we can be confident that the DNN has not overfitted to any of the

examples in Dtest, so these examples can be used during testing. For a test case

(xtest, o(xtest)) ∈ Dtest, any new input xnew ∈ X that we can be confident shares

the same desired output as xtest can therefore be used as a new test case, because

we simply assume that o(xnew) = o(xtest).

To identify such xnew that share a label with a known test case, most procedures

begin by choosing a perturbation function t : X × P → X with parameter space

P. The intention is that, given a labelled test input xtest, this function is able to

116 5.1. Procedure for perturbing latent generator activations

generate new test inputs as its parameter varies: xnew = t(xtest, p). But to be

confident that xnew is similar enough to xtest to have the same true label, we must

also introduce a similarity constraint over the parameter p.

Definition 5.2. A similarity constraint d for a perturbation function t is a function

d : P → {⊤,⊥}, such that for all x ∈ X, if d(p) = ⊤ then o(t(x, p)) = o(x).

If we have a suitable perturbation function and similarity constraint, then the

problem of identifying test inputs reduces to a search for suitable parameter val-

ues p:

Proposition 1. If we have a labelled test case (xtest, o(xtest)) ∈ Dtest, a perturbation

function t : X × P → X, a similarity constraint d : P → {⊤,⊥}, and a parameter

p ∈ P, and if d(p) = ⊤ and fpred(t(xtest, p)) ̸= o(xtest), then t(xtest, p) is a failing test

case.

Proof. Since d is a similarity constraint for t and d(p) = ⊤, o(t(x, p)) = o(x) for

any x ∈ X. In particular, o(t(xtest, p)) = o(xtest). But fpred(t(xtest, p)) ̸= o(xtest)

by assumption, so fpred(t(xtest, p)) ̸= o(t(xtest, p)), so t(xtest, p) is a failing test

case.

Test generation using pixel-space perturbations

Most existing algorithms that generate tests for DNNs use a pixel-space pertur-

bation approach. In our framework, we have that P = X and t(x, p) = x + p.

In effect, t simply changes each pixel value in the image independently. The

similarity constraint used typically constrains the magnitude of p: if the pixel

values do not change too much, then the label should remain the same. This

magnitude is typically measured using the ℓ∞ or ℓ2 norm metric. That is,

d(p) = ∥p∥2 ≤ ϵ or d(p) = ∥p∥∞ ≤ ϵ, for a manually chosen constant ϵ small

enough that the change is nearly imperceptible.

Given a labelled test case (xtest, o(xtest)) ∈ Dtest, then, a pixel perturbation al-

gorithm must find a suitable p. This is almost always done using an optimisation

over p, using a loss function chosen to be minimised when fpred(t(xtest), p) ̸=

5. Generating Tests by Perturbing Generative Network Activations 117

o(xtest) and d(p) = ⊤. Since DNNs are differentiable, the derivative of the loss

function with respect to p can be computed, and this gradient can be walked to

minimise the loss and thereby identify a failing test case. If additional properties

are desired of the test cases, this can be reflected in the choice of loss function.

5.1.3 Using GANs to perturb images

The approach we present here, as existing approaches, uses a perturbation-

based approach to solve the test oracle problem. However, rather than directly

perturbing the pixels of a labelled test dataset image, there are two differences:

1. Instead of beginning with a labelled test dataset image, we use a conditional

generative network to generate a fresh test seed for which we know the

correct label.

2. Instead of perturbing the individual pixel values of this seed, we make per-

turbations to meaningful features of the input by exploiting the generative

network’s learnt features. This second difference is the more important.

Generating test seeds

Suppose we have a pretrained conditional generator network g : Z × Y → X,

which as described in section 2.1.2, takes a normally distributed z ∈ Z = Rm

and a class label y ∈ Y and returns an image g(z, y) ∈ X = Rc×w×h from the

training image distribution such that o(g(z, y)) = y. If a conditional generator

network is not available, we can instead make the assumption that the output of

the classifier being tested is initially correct. In either case, rather than relying on

the finite examples in a test dataset as our source of seeds from which to create

test cases, we can generate fresh labelled test seeds on demand, by sampling

new generator inputs z.

While this may be valuable in itself, our main intention in using generated

images is that it allows much greater control over the test inputs we create.

118 5.1. Procedure for perturbing latent generator activations

g1 g2 gn

y

fz

g′

ℓ. . .

. . .p0 p1 p2 pn−1 pn

Figure 5.1: Illustration of a forward pass with perturbations to the latent activation values
at n layers in the generator network.

Making perturbations

Since a feedforward neural network is a sequence of n discrete layers, each

of which operates solely on the output of its predecessor, we can consider the

generator g to be a composition of n functions. For instance, we can decompose

BigGAN [34] into its residual blocks. We can write the ith layer as a function

gi : Ai−1 → Ai, taking activations ai−1 ∈ Ai−1 from the previous layer and

outputting the resulting activation tensor gi(ai−1) ∈ Ai. Using A0 = Z × Y

and An = Rc×w×h for convenience, we can write g : Z × Y → X as the function

composition g = gn ◦ gn−1 ◦ . . . ◦ g1.

The thrust of our procedure is to introduce a perturbation function that per-

turbs high-level features rather than individual pixel values. Since the neurons in

a generative network encode meaningful features [60], we perturb the activations

of these neurons so as to adjust the features of the generated image in a context-

sensitive way. Decomposing the generator network g into a sequence of layers

operating on latent activation spaces Ai allows us to do exactly that. For example,

we can introduce a perturbation pi ∈ Ai to layer i’s activations, before continuing

the forward pass through the rest of the generator. See figure 5.2 for an illustration

of how a perturbation at layer i fits into the computation of a forward pass of

the whole generator network.

Given a perturbation tensor pi ∈ Ai for each layer i, we can define per-

turbed layer functions g′i(ai−1) = gi(ai−1) + pi. By performing such perturba-

5. Generating Tests by Perturbing Generative Network Activations 119

Original
a1 = g1(z, y)
a2 = g2(a1)

· · ·
ai = gi(ai−1)

ai+1 = gi+1(ai)

· · ·
an = gn(an−1)

Perturbed
a1 = g1(z, y)
a2 = g2(a1)

· · ·
ai = gi(ai−1) + pi

ai+1 = gi+1(ai)

· · ·
an = gn(an−1)

Perturbed at all layers
a1 = g′1(z + p0, y) = g1(z + p0, y) + p1

a2 = g′2(a1) = g2(a1) + p2

· · ·
ai = g′i(ai−1) = gi(ai−1)+pi

ai = g′i+1(ai) = gi+1(ai)+pi+1

· · ·
an = g′n(an−1) = gn(an−1) + pn

Figure 5.2: Clarification of where the perturbation tensors pi are applied during the
forward computation of the generative model. The first column shows the standard
forward pass of the generator. The middle column shows a perturbation applied at a
single latent activation layer, i. The last column shows a forward computation where a
perturbation is applied at all possible latent spaces.

tions at every activation space, we obtain the perturbed output of the entire

generator, g′(z, y; p0, ..., pn) = (g′n ◦ g′n−1 ◦ ... ◦ g′1)(z + p0, y). This is again

illustrated in figure 5.2.

Since the neurons in a generative network encode meaningful features [60],

we perturb the activations of these neurons so as to adjust the features of

the generated image in a context-sensitive way. That is, rather than using a

perturbation parameter space P = X, our parameter space allows adjustments at

the output of multiple layers in the generator: P = A0 × A1 × . . . × An.

Then we define our perturbation function

t(g(z, y), p) = (g′n ◦ g′n−1 ◦ ... ◦ g′1)(z, y, p), (5.1)

where g′i(ai−1, pi−1) = gi(ai−1) + pi−1. That is, at each layer in the genera-

tor, t simply performs element-wise addition of the parameter tensor with

the layer output.

Finding a suitable perturbation

Suppose that we have sampled some generator input z, and picked some label

y for the unperturbed example, g′(z, y; 0, ..., 0). We now need a procedure to

120 5.1. Procedure for perturbing latent generator activations

identify suitable perturbation tensors p∗ = (p∗0, ..., p∗n) ∈ A0 × . . . × An such

that the classifier’s output on g′(z; p∗) is not y but some other label, while

the true label of g′(z; p∗) remains y. Let us introduce a similarity constraint

to ensure that the true label remains y. Our similarity constraint measures

the total size of the changes being made to the activations: d(p) = ∥ p̄∥2 < ϵ,

where p̄ is the one-dimensional vector formed by flattening all the elements

of p0, p1, . . . , pn into a list.

Now, as per Proposition 1, finding a value p ∈ P that satisfied the similarity

constraint while also changing the classifier output suffices to produce a failing

test case for the DNN under test, f . We use a gradient-walking optimisation

to find such satisfactory values of p. In particular, we introduce a loss function

L(p) = maxy fpred(t(g(z, y), p))y, which penalises confidence in the DNN’s top

output class. Assuming that the classifier is initially correct, minimising this

loss makes the classifier make a different prediction. Note that the usual back-

propagation algorithm is sufficient to compute gradients of L with respect to p

since f , t and each layer of g are differentiable.

To ensure that the label of the perturbed output remains y, we want to satisfy

the similarity constraint. It is also possible to include a penalty on the perturbation

magnitude ∥ p̄∥2, or to gradually relax a strict upper bound on it, but in practice

we found this to be unnecessary. By starting with every element of p set to 0, the

gradient walk increases the perturbation magnitude ∥ p̄∥2 slowly enough that

it remains acceptably small when a suitable p is found.

Per-neuron perturbation scaling to promote uniformity The typical activation

values of separate neurons differ in scale, even within a single layer. If one

varies from −1 to 1, while another varies from −0.1 to 0.1, then a perturbation

of magnitude 0.5 is likely to have quite different downstream effects on the

image depending on which of these neurons it affects. To correct for this, we

scale the perturbation for each neuron to the empirically-measured range. That

is, rather than adding perturbation tensor pi directly to the activation tensor

5. Generating Tests by Perturbing Generative Network Activations 121

at layer i, we add pi ⊙ σi, where ⊙ is element-wise multiplication and σi is

an empirically-measured tensor of element-wise standard deviations of the

activation values at layer i.

In future work, it may be desirable to further fine-tune the scale of the pertur-

bations applied to each neuron. In the present work, though, the above scaling

procedure is quite sufficient to normalise the downstream effect of perturbing

different neurons; if it were insufficient, then too many of the perturbed images

would no longer be recognisable as their original class, which we empirically

find not to be the case.

Targeted tests

So far, we have considered untargeted tests, in which the goal is to change the

classifier’s output to any other class. Recall that a targeted test is one that requires

a specified incorrect label to be output. That is, a targeted test case consists

of a test input x ∈ X, its correct class y ∈ Y, and its intended target class

t ∈ Y\{o(x)}; the intention is that o(x) = y and fpred(x) = t.

To generate such test cases, we use a modified loss function:

L(p) = max
y ̸=ytarget

fy(x)− fytarget(x),

derived from the loss function variant found to be most effective by Carlini and

Wagner [71]; a suitable p is found if L(p) < 0.

For the purposes of our empirical evaluation, we will prefer these targeted

test cases, because of how easy it is for an arbitrarily chosen unperturbed test

seed to be perturbed using our procedure to be misclassified as the target class t

is a greater challenge than allowing any misclassification, and so gives stronger

evidence of the success of the approach.

5.2 Description of empirical evaluation

The following section presents the results of an empirical evaluation of the

key properties of the test generation procedure introduced above. Most im-

122 5.2. Description of empirical evaluation

portantly, we evaluate the extent to which it is able to generate test inputs

that are meaningful and that induce failures in the classification model being

tested. Additionally, we look at the generated test cases qualitatively, and discuss

the nature of the feature perturbations made, and the extent to which failures

identified by these test cases should concern us. This section describes the

experimental procedure used.

5.2.1 Overview

In order to evaluate how effective our new procedure is at generating pertur-

bations that induce failures in the model being tested, we generate many such

perturbations, then use human judgements to check whether the perturbed

images have retained the same semantic class as the unperturbed seeds. Our

primary evaluation uses the ImageNet dataset – two additional datasets are

also used, as discussed later. Unless specified, assume that the evaluation being

described or discussed is the primary ImageNet one. We focus exclusively on

the targeted case, for which a randomly predetermined target label t ∈ Y is

chosen for each input, since failure in this case implies significant weakness. It

is much more challenging to cause a 1-in-1000 targeted misclassification than

a 999-in-1000 untargeted misclassification.

We computed at least 240 perturbation examples – often more – for each

of the four classifiers we test, and for each of the four sets of latent activation

spaces that we selected to be perturbed. This used the same fixed progression of

randomly-sampled (y, z, t) tuples each time, where y is the desired true image

label, z is the Gaussian latent input to the generator, and t is the target label

for the perturbed misclassification. This ensures direct comparability between

classifiers and perturbation types, since the optimisation is each time attempting

to perturb the same unperturbed image g(y; z) to be labelled as class t.

In order to be used in our evaluations, each image must pass two checks.

First, the classifier’s prediction on the unperturbed image must be the intended

label: fpred(g(z; y)) = y. If not, then the classifier is already misclassifying the

5. Generating Tests by Perturbing Generative Network Activations 123

test seed, and so it is not worth perturbing the image to cause a misclassification.

Second, human labellers determine whether the original image was actually of

the intended class: o(g(z; y)) = y. This is because generators are not perfect, and

so may not succeed in generating an image of the intended class.

Assuming these initial checks are passed, the perturbed image is used in

our evaluation. Then the labellers vote on whether the perturbed image is

still of the same class as the original image: o(t(g(z; y), p)) = y. That is, they

determine if the perturbation successfully preserved the image’s true class, while

changing the classifier’s prediction to the target class. In this way, we obtain a

set of correctly-classified unperturbed images paired with incorrectly-classified

perturbed counterparts for which we know both the perturbation magnitude,

and whether they were successful (maintained the class of the image). This is

the data we need for our evaluation.

The rest of this section includes further details about each stage of this process

for reproducibility.

5.2.2 Generative network

We use the BigGAN-deep generator architecture at the 512 × 512 resolution,

reproduced from Brock, Donahue, and Simonyan [34] as Table 5.1. Conveniently,

this table clearly indicates the locations at which we perturb the activations; each

horizontal line of the table is a point at which our procedure can perturb the

activation values. Please refer to Appendix B of the BigGAN paper for detailed

descriptions, in particular of the ResBlocks which comprise the majority of the

network. Note that we in essence perform perturbations after each ResBlock;

if desired, perturbations could also be performed within each block. We take

the pre-trained generator checkpoint file published by DeepMind [209]. Note

that this is a different BigGAN checkpoint than that used in Chapter 4 – this one

generates much higher quality and higher resolution images. It would have been

preferable to use this model in Chapter 4 too, but DeepMind chose to release

only the generator, not the discriminator of the GAN pair. The discriminator

124 5.2. Description of empirical evaluation

Table 5.1: BigGAN-deep generator architecture for 512 × 512 images. Reproduced with
permission from Brock, Donahue, and Simonyan [34]. Roughly, each ResBlock is three
convolutional layers with a skip connection. Upsampling increases spatial resolution as
the number of channels decreases. Fully specified details can be found in Appendix B of
that paper.

z ∈ R128 ∼ N (0, I)
Embed(y) ∈ R128

Linear (128 + 128) → 4 × 4 × 16ch

ResBlock 16ch → 16ch

ResBlock up 16ch → 16ch

ResBlock 16ch → 16ch

ResBlock up 16ch → 8ch

ResBlock 8ch → 8ch

ResBlock up 8ch → 8ch

ResBlock 8ch → 8ch

ResBlock up 8ch → 4ch

Non-Local Block (64 × 64)

ResBlock 4ch → 4ch

ResBlock up 4ch → 2ch

ResBlock 2ch → 2ch

ResBlock up 2ch → ch

ResBlock ch → ch

ResBlock up ch → ch

BN, ReLU, 3 × 3 Conv ch → 3

Tanh

is necessary for the GAN finetuning algorithm presented in Chapter 4, but not

the algorithm presented in this chapter.

5.2.3 Classification networks

We use two classifiers trained as usual to maximise accuracy on the training

distribution. The first is from the state-of-the-art EfficientNet family [210],

enhanced using noisy student training [211]. We use the best readily available

model and pre-trained weights for Pytorch, EfficientNet-B4 (Noisy Student)

5. Generating Tests by Perturbing Generative Network Activations 125

Table 5.2: Accuracies of the standard ImageNet classification models used.

Classifier Top-1 Top-5

ResNet50 76.15% 92.87%
EfficientNet-B4 (Noisy Student) 85.16% 97.47%

Table 5.3: Robust classification models’ accuracy on ImageNet, and robustness to attacks,
in %

Classifier

Top-1
(no
attack)

Top-1
(l2 attack ϵ =
0.3)

Top-1
(l∞ attack ϵ = 4

255)

ResNet50 Robust (En-
gstrom) 57.90 35.16
ResNet50 Robust
(“Fast”) 55.45 30.28

from Melas-Kyriazi [212]. This was the highest-accuracy ImageNet classifier for

which pre-trained weights were available. The second is PyTorch’s pre-trained

ResNet50 [205], made available through the torchvision package of PyTorch, a

standard benchmark for comparison. These classifiers’ ImageNet accuracies

are reported in Table 5.2.

In addition to the two standard classifiers, we evaluate two ‘robust’ ResNet50

classifiers that have been adversarially trained against bounded pixel-space

perturbations. The first, ‘ResNet50 Robust (Engstrom)’, from Engstrom et al.

[213], was trained using ℓ2-norm projected gradient descent attack with ϵ = 0.3.

The second, ‘ResNet50 Robust (“Fast”)’, from Fast Is Better Than Free: Revisiting

Adversarial Training [214], was trained with the fast gradient sign method (FGSM)

attack for robustness against l∞ with ϵ = 4/255. The classifiers’ ImageNet

accuracies and robustness to relevant attacks are shown in Table 5.3.

5.2.4 Procedure for optimising perturbations

We used the Adam optimiser [215] with a learning rate of 0.03 and the default β

hyperparameters of 0.9 and 0.999. After each optimisation step, we constrained

the magnitude of the perturbation by finding the ℓ2 norm of the perturbation

126 5.2. Description of empirical evaluation

‘vector’ obtained by concatenating the scalars used to perturb each individual

activation value, then rescaling it to have a norm no greater than our constraint.

This constraint was initially set to be magnitude 1, and was slightly relaxed after

each optimisation step by multiplication by 1.03 and addition of 0.1. These values

were empirically found—using a small amount of manual experimentation—to

be a reasonable tradeoff between starting small and increasing slowly enough

to find decently small perturbations, while also using a reasonable amount of

compute. Typically, finding a perturbation under this regime takes O(100) steps,

which took O(1 minute) using the single NVIDIA Tesla V100 GPU we used.

5.2.5 Procedure for getting human judgement data

We cannot guarantee that the images originally produced by BigGAN would be

labelled by humans as their intended class (GANs are imperfect and much better

at some classes than others), or that the perturbations do not change the class of

the image. The risk in making visible and varied perturbations is that it becomes

difficult to ensure these do not change the class. Therefore, in order to evaluate

our test generation procedure, access to the oracle is required for two tasks: to

skip any unperturbed image that is not of its supposed class, y, and to measure

the proportion of the perturbed images that retain this initial class y despite the

classification model now making a different prediction.

We use five separate human judges to vote on the class of the images for

both of these tasks. As in the original ImageNet labelling protocol, majority

voting is used to decide the label.

For both the stages at which human labelling is required, we use the interface

shown in Figure 5.3. The user first labels whether the original image is the of

the intended label, and then the perturbed image. We ask the user which of the

following four options is the best description of the image:

1. “This is an image of label y”

2. “This is an image of something else”

5. Generating Tests by Perturbing Generative Network Activations 127

Figure 5.3: Screenshot of interface used for labelling images. The perturbed image and
buttons, on the right-hand side, are visible only when the unperturbed image (on the left)
has been selected as matching the desired label. The buttons are numbered to provide
keyboard shortcuts. The button at the bottom opens a web image search, in case the user
is unfamiliar with the class label.

3. “It is unclear what this image shows”

4. “This is not an image of anything meaningful”

See Section 5.4 for a discussion of the threats to validity that arise from

this labelling procedure.

Figure C.1 in the appendix shows the first sixteen test cases used in these ex-

periments, including captioning with human judgement and which were skipped.

5.2.6 CelebA-HQ

To demonstrate that our procedure readily generalises, we also test our approach

using two additional datasets. The first of these is the high-resolution CelebA-

HQ dataset of faces [31, Appendix C].

128 5.2. Description of empirical evaluation

Model details

We use the pretrained CelebA-HQ 512 × 512 Progressive GAN [31] code and

checkpoint from https://pytorch.org/hub/facebookresearch_pytorch-gan-zoo_

pgan/. We simply perturb the activations after each ‘scaleLayer’ in this imple-

mentation. Note that, unlike the other generative models we use, this is not

a conditional model. That is, its only input is the random seed: you cannot

specify that it generates an image with certain characteristics. Table C.1 in

the appendix details the layers of the Progressive GAN, and indicates which

activations are perturbed.

CelebA is used primarily as benchmark for generative modelling, not dis-

criminative classification. We could not find any pre-trained classifiers for

the 40 binary attributes that the dataset is labelled with. In the absence of

any suitable checkpoints, we simply used existing code to train the classifier

we needed: https://github.com/aayushmnit/Deep_learning_explorations/

tree/master/7_Facial_attributes_fastai_opencv. The resulting model ob-

tains > 90% accuracy over the forty binary labels, certainly good enough for

the purpose of demonstrating our method.

Experimental setup

CelebA is labelled with 40 binary attributes. It is very easy to flip the prediction

of just one of these attribute predictions, but is very difficult to flip all forty at

once, if only because this is a challenging forty-objective optimisation problem.

As a sensible middle ground, we use our method to find context-sensitive

perturbations that flip the sign of ten of the forty attributes, since 210 = 1024,

which is roughly the number of ImageNet classes. In particular, because the

generator is not conditional, we cannot know which attribute predictions are

correct. Our approach is therefore to perturb each image so that all the following

(uncommon) labels are predicted positively: ‘Bald’, ‘Blond hair’, ‘Eyeglasses’,

‘Goatee’, ‘Grey hair’, ‘Moustache’, ‘No beard’, ‘Wearing hat’, ‘Wearing necklace’,

and ‘Wearing necktie’.

https://pytorch.org/hub/facebookresearch_pytorch-gan-zoo_pgan/
https://pytorch.org/hub/facebookresearch_pytorch-gan-zoo_pgan/
https://github.com/aayushmnit/Deep_learning_explorations/tree/master/7_Facial_attributes_fastai_opencv
https://github.com/aayushmnit/Deep_learning_explorations/tree/master/7_Facial_attributes_fastai_opencv

5. Generating Tests by Perturbing Generative Network Activations 129

Since the generator has ten layers, we demonstrate the effects of perturbing

the first four layers only, the next three layers, the final three layers, and all

ten layers at once. The optimisation process required a modest amount of

finetuning (a few hours of ad-hoc manual experimentation); as noted elsewhere,

we perform no tuning of the layers selected to perturb at, or the relative scales of

the perturbations at different neurons. We use a learning rate of 0.1. No epsilon

bound is needed, since using this learning rate, the optimisation converges

suitably without it. To help with the multi-objective optimisation, the logits

are raised to the power of 1
10 , making the gradients steeper for the constraints

not yet satisfied, and disincentivising further optimisation of the objectives

already satisfied.

We did not have the resources to have an independent judge label these

results, but we are satisfied by inspection that the results are similar to the

ImageNet results, in that the large majority of perturbed images have not changed

their original labels. Note that this claim is not about the photorealism of the

generated images—which depends mainly on the generative model used—but

on whether the perturbed images are not generally either unrecognisable as faces,

or perturbed so that the predicted labels become accurate.

5.3 Experimental results and discussion

5.3.1 Efficacy of generated tests

The question of greatest importance is how often the changes induced by our

perturbation cause the image to change class. If the correct label of the image does

change in this way, then the test is not useful because we rely on the assumption

that the perturbed and unperturbed images ought to be labelled in the same way.

Table 5.4 reports the proportion of generated test cases that were labelled

by human judges as maintaining the same class as the unperturbed image, y.

Since a perturbation that caused the desired misclassification, t, was computed

for every unperturbed image, this amounts to the efficacy of the test generation

130 5.3. Experimental results and discussion

Table 5.4: Percentages of perturbation for which the perturbed image retains its correct
class, y, according to human judges, for various classifiers (rows) and layers in the
generator at which activations are perturbed (columns).

All layers First 6 Middle 6 Last 6 Mean

ResNet50 99.1 56.9 98.5 99.0 88.4
EfficientNet 82.2 29.3 90.0 98.6 75.0
“Fast” 85.4 74.6 83.5 86.7 82.6
Engstrom 72.3 56.9 75.0 63.3 66.9

Mean 84.8 54.4 86.8 86.9 78.2

method. Recall that if the classifier or humans judged that the unperturbed image

did not belong to its intended class, y, then that example was skipped. Table 5.5

shows the number of test cases used for each result.

The key result is that 78% of the perturbations do not cause the perturbed

image to no longer be classified as the original image. That is, 78% of the

generated tests successfully identify a failure in the model being tested. This is

evidence of the efficacy of the new test generation procedure.

There is some variation depending on the particular classifier and which

layers are perturbed. Some implications of this are discussed further in Chapter 7.

But an immediate concern might be that this test generation method may require

a human in the loop to verify whether each generated test has had its original

class altered by the perturbation, given that this can happen a not insignificant

fraction of the time. This concern is addressed below in Section 5.3.2.

5.3.2 Tradeoff between perturbation magnitude and false fail-
ures

It is possible to avoid the need for human labelling of each generated test case,

which may otherwise be necessary if it is important to eliminate test cases from

falsely flagging failures and the perturbations sometimes alter the class of the

image. This can be achieved by fixing a maximum perturbation magnitude,

because the greater the perturbation magnitude, the more likely the perturbation

to cause a change of class. This allows falsely flagging failures to be traded off

with failing to report existent failures.

5. Generating Tests by Perturbing Generative Network Activations 131

Table 5.5: For each classifier, and for each section in which we made perturbations, the
number of images included in our results. This number does not include examples for
which the unperturbed image was judged by labellers to be of the wrong class; this
number is included in parentheses.

ResNet 50

First 6 Middle 6 Last 6 All 18
148 (61) 147 (62) 148 (61) 148 (61)

EfficientNet-B4NS

First 6 Middle 6 Last 6 All 18
158 (54) 157 (55) 161 (52) 148 (49)

ResNet50 Robust ("Engstrom")

First 6 Middle 6 Last 6 All 18
136 (51) 137 (50) 138 (50) 133 (55)

ResNet50 Robust ("Fast")

First 6 Middle 6 Last 6 All 18
95 (69) 123 (43) 123 (43) 119 (39)

Empirical confirmation that this approach works is found in Figure 5.4, which

measures the rate of falsely flagged failures as a function of the maximum

perturbation threshold set.

5.3.3 Qualitative visual effects of perturbations

Figure 5.5 shows a selection of perturbed test inputs, along with their unperturbed

original seeds, to demonstrate the kinds of feature change that are possible when

using our test generation procedure. Refer to Appendix C.1 and the online

supplementary material [216] hosted by the Oxford University Research Archive

for many more examples.

Qualitative results The results in Figure 5.6 and Appendix C.1 demonstrate a

range of the context-specific feature perturbations that our procedure produces,

and show that perturbations at different layers produce downstream changes

of different granularities.

132 5.3. Experimental results and discussion

(a) Activation values perturbed at all BigGAN
layers.

(b) Activation values perturbed in the first six
layers only.

(c) Activations perturbed in the middle six lay-
ers only.

(d) Activation values perturbed in the last six
layers only.

Figure 5.4: The percentages of perturbed test inputs that do not match the class of
the original image as a function of the upper bounds on perturbation magnitude.
Results reported for different perturbation layers and for different classifiers. If a lower
magnitude threshold is used, then the number of test cases falsely indicating a failure in
the classifier is reduced.

Different generator layers encode meaningfully different features

We have reason to expect that the different layers in generative models should

encode meaningfully different features, such that perturbations at these different

layers result in meaningfully different kinds of change resulting. There is some

existing empirical evidence, as discussed in Section 2.2. In addition, we know that

the input layer is very abstract (containing just the class label y and random seed

z), and that the output layer is concrete and finegrained (being individual pixel

values); it is reasonable to expect the many intermediate layers to progressively

5. Generating Tests by Perturbing Generative Network Activations 133

(a) Perturbed from ‘alp’ (left) to ‘bison’ (right) by
adjusting the shapes of the mountains, ironing
out rugged details and introducing shadowy
boulders.

(b) Perturbed from ‘Pomeranian (dog breed)’
(left) to ‘American lobster’ (right) by changing
the fur colour and dulling glints in the eyes
and nose.

(c) Perturbed from ‘sea snake’ to ‘crossword’
by repositioning the snake and increasing the
roughness of the sea floor.

(d) Perturbed from ‘robin’ to ‘keyboard’ by quan-
tising the foreground and background under-
growth in more regular patterns of light and
dark.

(e) Perturbed from ‘backpack’ to ‘remote control’
by recolouring the button and seam, and re-
shaping the outline.

(f) Perturbed from ‘mountain tent’ to ‘Norwich
terrier’ by flattening the mountain range and
adding a suspiciously dog-shaped rock forma-
tion.

(g) Perturbed from ‘Irish setter’ to ‘tusker’ (ele-
phant) by adding background undergrowth,
raising the ears, shrinking the nose and extend-
ing the body.

(h) Perturbed from ‘bookcase’ to ‘consommé’
(soup) by replacing the contents of some
shelves and thickening the wooden frame.

Figure 5.5: A selection of examples to demonstrate a range of features that can be
affected by perturbations generated by our new procedure. See Appendix C.1 and the
supplementary material [216] for further examples.

134 5.3. Experimental results and discussion

(×10 for
visibility)

(×25 for
visibility)

(×5 for
visibility)

(a) Unperturbed. (b) First 6 layers. (c) Mid 6 layers. (d) Last 6 layers. (e) All 18 layers.

(×10) (×25) (×5)

(f) Unperturbed. (g) First 6 layers. (h) Mid 6 layers. (i) Last 6 layers. (j) All 18 layers.

(×10) (×25) (×5)

(k) Unperturbed. (l) First 6 layers. (m) Mid 6 layers. (n) Last 6 layers. (o) All 18 layers.

Figure 5.6: Context-sensitive feature perturbations at different granularities, as controlled
by perturbing activations at the generator layers indicated under each image. Differences
with the unperturbed image are shown above each perturbed image. The perturbed
Pomeranians (dogs) are classified as ‘red king crabs’, the volcanos as ‘goldfish’, and
redshanks (birds) as ‘rams’.

5. Generating Tests by Perturbing Generative Network Activations 135

span levels of abstraction between the beginning and the end of the network.

This is analogous to a classification network in reverse – the promise of deep

learning was that an image classifier could automatically learn different features

by combining those at the previous layer into a higher level of abstraction – a

generative network instead decomposes features into increasingly low levels of

abstraction. If this is the case, we can leverage this property to test classifiers’

behaviour under these different kinds of change.

These expectations are shown correct when qualitatively inspecting the changes

made by perturbations at different layers in the generative network. We can see

the differences in features changed in Figure 5.6 and the many examples in

Appendix C.1. Perturbations to only activations early in the generator result in

immediately noticeable adjustments to coarse-grained, high-level features such

as colour, shape, position, and orientation. In contrast, perturbations to later

layers cause increasingly fine-grained and localised changes that are less likely to

be visible to the human eye and so are magnified in our figures as indicated.

The behaviours of the tested classifiers under perturbations made at different

layers are quantitatively different, as shown to some extent in Figure 5.4 and to

a greater extent in Chapter 7. This is clear evidence that the kinds of features

being changed when perturbations are restricted to different groups of layers

must meaningfully differ.

5.3.4 CelebA-HQ

Some typical CelebA-HQ results are shown in Figure C.6, with many more

given in Appendix C.2. That this approach works on this additional dataset

demonstrates that our approach is general, in that it does not depend on prop-

erties of any dataset or model.

One point to note is that for CelebA-HQ, as well as for the main ImageNet

evaluations here and the MNIST experiments in Chapter 7, the only hyperparam-

eter finetuning required was those pertaining to the optimisation procedure: its

learning rate, for instance. In particular, there was no need to adjust from our

136 5.3. Experimental results and discussion

(×5 for
visibility)

(×10 for
visibility)

(×5 for
visibility)

(×10 for
visibility)

(×5 for
visibility)

(×10 for
visibility)

Figure 5.7: A random selection of tests generated for CelebA-HQ with changes made
at different granularities, as controlled by perturbing activations at the generator layers
indicated under each image. Differences with the unperturbed image are shown
above each perturbed image. Each perturbed image has the following labels predicted
positively: ‘Bald’, ‘Blond hair’, ‘Eyeglasses’, ‘Goatee’, ‘Grey hair’, ‘Moustache’, ‘No
beard’, ‘Wearing hat’, ‘Wearing necklace’, and ‘Wearing necktie’.

5. Generating Tests by Perturbing Generative Network Activations 137

initial (obvious) choice of where in each generative network to perform the per-

turbations. And there was no need to manually tune the size of the perturbations

at each neuron – the automatic procedure described in Section 5.1 is sufficient.

5.4 Threats to validity

5.4.1 Internal validity

The key threat to internal validity is again the reliance on human labelling as an or-

acle.

Choice of task

One important evaluation design decision was the specific question asked to

the human labellers. As a reminder, we asked them which of the following four

options was the best description of each image:

1. “This is an image of a barn” (replacing ‘barn’ with the string representing

the class y in question),

2. “This is an image of something else”,

3. “It is unclear what this image shows”,

4. “This is not an image of anything meaningful”.

This was chosen because the main alternative, which has a theoretical appeal,

would be infeasible in practice. That would be to ask each person to simply

select which class out of the thousand ImageNet labels best describes the given

image, perhaps with an option to say that no label is a good fit. The problem

with this approach in practice is that it would require the participants to have

close familiarity with all 1,000 labels, which include many fairly obscure animals

and objects. When such a label is displayed to a participant in our setup, they

could first familiarise themselves with it – our interface even included a shortcut

to a web image search.

138 5.4. Threats to validity

In all, even though the task is slightly weaker than the impractical theoretical

ideal, asking whether an image looks more like the intended class or something

else (or nothing at all) is sufficient for our purposes.

Bias of labellers

Rather than recruiting independent human labellers with no conflicts with the

study, half of the participants were collaborators working on the project, and half

were personal connections of those. The main reason was resource limitations:

funding was not available, so willing volunteers for a fairly lengthy task had to be

sourced. Another advantage of this approach is that we can have high confidence

that (a) the participants were trying to follow the instructions correctly, and (b)

the participants were able to follow the instructions correctly, because we could

check on them and offer support. Participants motivated primarily by money

would have had an incentive to finish the tasks quickly at the cost of diligence.

Given that the instructions were quite specific (and some of the setup was fairly

involved), this threat to validity was averted by using volunteers.

However, this presents a different threat to validity: that the labellers con-

sciously or unconsciously let their interest in the outcome affect their labelling.

For instance, being more likely to label a particular image as its intended class,

y, if they thought that this would lead to better evaluation results.

Fortunately, there is reason to think that this is not a concerning threat to

validity. Note that Table 5.4 includes proportions as high as 99% and as low as

29%, indicating that the labellers were indeed sensitive to the images they were

shown, rather than merely always agreeing that it matched the given label. Also,

the relationship between the label assigned to a particular image and whether this

would make the experimental results ‘better’ is not obvious. Most compellingly,

the interesting result presented in Chapter 7 would not have arisen if the labelling

had been biased – it would have been impossible to know at the time of labelling

how to label each instance so as to artificially create this result.

5. Generating Tests by Perturbing Generative Network Activations 139

Photorealism of images

Of course, even state-of-the-art GANs generate images that are not photorealistic,

and our perturbations are not likely to increase photorealism. At first glance, this

may seem like a concern. But we note that photorealism from the generative

model is not necessary for our purposes. We want to trust our classifiers to

behave correctly on images that are unambiguously of a certain class: all that

is necessary is that the generated images have this property. It seems unlikely

that a model that cannot be trusted on nearly realistic images could be entirely

trustworthy on photorealistic images, because the implicit decision rules learnt

would be strikingly different to those used by humans. The gold standard that

we are ultimately aiming for is models that they are as reliable as humans.

Our standard for labelling is a majority vote among our five judges; all images

that meet this criterion yet are misclassified by a model are weaknesses of the

model.

5.4.2 External validity

One concern might be that only two datasets, ImageNet and CelebA-HQ, have

been used in the empirical evaluation in this chapter. Noting especially that

ImageNet is a standard classification benchmark with correspondingly mature

classifiers, it seems unlikely that this method would fail to generalise to other

image classification contexts – although it would be possible to have a stronger

case for this if more datasets had been evaluated.

As with the previous chapter, there remains an open question about whether

the approach would generalise beyond classification or the image domain. Again,

intuition suggests optimism that this approach would generalise: the core of the

test generation procedure is to tweak the automatically learned features of the

data so as to generate tests with a specified property (which actually need not

be misclassification). But relying on intuition alone leaves this threat to external

validity wide open: there is no reliable evidence, and it is quite possible that

140 5.5. Performance on requirements

there is some unforeseen factor that makes this approach particularly successful

when applied to image classification.

5.5 Performance on requirements

Let us return to the requirements for test generation algorithms that we set out in

Section 1.2.3. Do we have evidence that the procedure presented in this chapter

meets these requirements? We will consider each requirement in turn.

5.5.1 Production of meaningful test cases

A perturbed test input is meaningful if both (a) the unperturbed seed is mean-

ingful, and (b) the perturbation does not affect the meaning assigned by the

task oracle. Since our unperturbed seeds are simply unmodified generator

outputs, and our generator is high quality, we only require evidence of (b).

Experiments verifying these properties using human judges were carried out,

and results reported in Section 5.3. These found that for the state-of-the-art

ImageNet classifier, using perturbations at all layers in the network, over 90%

of the generated test cases were assigned the intended meaning by the test

oracle. For most model-perturbation type pairings, this proportion was over

80%, and in all cases was a clear majority. So the overwhelming majority of

generated tests are meaningful according to the task oracle. And if desired,

this proportion can easily be increased by discarding examples over a threshold

perturbation magnitude, since the larger the perturbation, the greater the chance

that meaning is not preserved.

5.5.2 Production of test cases that induce poor performance

For every example, the algorithm identifies a perturbation that causes the model

being tested to output the intended (incorrect) target label, even if that pertur-

bation might be large. Since such a perturbation is found for each example,

whether that test input induces poor performance reduces to the question of

whether the perturbation does not affect the meaning assigned by the oracle.

5. Generating Tests by Perturbing Generative Network Activations 141

This is the question addressed in the previous paragraph. So the overwhelming

majority of generated tests successfully induce poor performance in the evaluated

models. And this proportion can easily be increased by discarding examples

over a threshold perturbation magnitude, at the cost of increased computation

per successful example (to account for ignoring those with large perturbations),

and potentially decreased diversity of generated test, which plausibly reduces

the number of problems the procedure is able to detect.

5.5.3 Detection of a wide range of problems

In principle, we should expect this new perturbation procedure to detect prob-

lems that cannot be detected by existing approaches. By perturbing the activation

values of a generator during its forward pass, this procedure is the first to leverage

these learnt latent representations to make context-sensitive perturbations of this

kind. As noted in Section 5.3.3, the perturbations made at different layers in the

generator cause quite downstream feature changes, so this allows access to a

much richer space of such possible changes. Existing approaches, such as pixel

perturbations or making changes to fixed features like adding artificial fog, ignore

the semantics of the particular instance being perturbed. Rather than treating

each pixel as a separate independent variable to be optimised, perturbing latent

features allows context to be taken into account, and for pixels to be treated as

related by the meaningful features they encode.

To validate whether these expectations are justified, Chapter 6 is entirely

dedicated to empirical investigation of whether this algorithm can detect new

problems. These experiments fall into two categories.

First, experiments that concern models deliberately constructed to classify

images using an inappropriate feature. For instance, discriminating between

wolves and dogs on the basis of whether the background contains snow or grass.

Results show that my context-sensitive perturbation approach is able to detect

some of these faults; prior algorithms could not.

142 5.5. Performance on requirements

Second, experiments that concern state-of-the-art image classification models.

A simple analysis confirms that the perturbations generated by my approach

could not be generated using a pixel-perturbation approach. But this is insuf-

ficient: to check that the new approach is in fact able to detect failure modes

previously undetectable, a more sophisticated analysis based on the transferabil-

ity of test inputs to pixel-robust models is also provided.

5.5.4 Efficiency and practicality

Finding a perturbation for our ImageNet experiments took on the order of one

hundreds steps, or approximately one minute on the single NVIDIA Tesla V100

GPU we used. This could be increased to try harder to look for a smaller pertur-

bation, or decreased if reducing the time and computation costs were the priority.

Because our procedure does not require any kind of training of (say) the

generator network, this marginal cost of optimising the perturbation and creating

a new test input represents the total computational cost. Given the high resolution

used (512 × 512), it seems that this test generation algorithm does scale well

to practical problems.

Besides computational cost, the other requirements are the code and check-

point for the generator only of a GAN pair (and hardware capable of doing

forward and backward passes through this generator and the target classifier).

Note that the training code is not required, only the architecture and weights

6
Detecting Faults using Generator

Activation Perturbations

Contents

6.1 Detecting intentionally injected faults 144
6.2 Detecting faults in the wild . 154
6.3 Threats to validity . 158
6.4 Conclusion . 159

In the previous chapter, we presented a new procedure that makes context-

sensitive changes to produce new test inputs. These are created by perturbing the

latent activation values at different layers in a generative network, exploiting its

learned representations. We saw that the perturbations change the classifier’s pre-

diction without changing the oracle-assigned class the vast majority of the time.

In this chapter, we investigate empirically whether this new procedure is

able to detect faults that existing perturbation algorithms cannot. As discussed

previously, a fault is the underlying cause of an instance of incorrect behaviour

(failure). Specifically, we answer two questions:

1. Suppose that we deliberately introduce a fault into a deep neural network

classifier – in particular, purposefully biasing it to rely on some irrelevant

143

144 6.1. Detecting intentionally injected faults

feature to discriminate between two classes. Can our new test generation

algorithm detect such deliberately introduced faults?

2. Is our test generation approach able to detect new faults in state-of-the-art

image classification models that existing approaches are unable to detect?

As in Chapter 5, we use the ImageNet dataset, which is the standard bench-

mark in this domain, with 1,000 class labels and at a resolution of 512 × 512

pixels. We again use a trained BigGAN [34], with weights and code provided by

DeepMind [209]. In this chapter, we only optimise over the first six layers of the

18-layer generator, since these earlier layers encode higher-level, coarse-grained

features [60], that may be more intelligible to humans, which will be useful. All

experiments were implemented using PyTorch 1.2.0, and executed on a machine

with two Intel Xeon Silver 4114 CPUs (2.20 GHz), 188 GB RAM (although less

than 10% of this was required), and an NVIDIA Tesla V100 GPU.

6.1 Detecting intentionally injected faults

In this section, we investigate whether our procedure is able to detect faults

intentionally injected into image classification models. These faults are all of the

form “instead of correctly distinguishing between image classes y0 and y1, the

model is incorrectly using irrelevant, human-legible feature F to discriminate.”

For instance, “instead of correctly distinguishing between image classes ‘castle’

and ‘palace’, the classifier incorrectly uses whether the sky is cloudy or clear.”

This is a type of fault that is similar to those that we expect to arise from naturally

biased datasets, in which a feature is spuriously correlated with the relevant

task. It is very common for there to be such unintended features that are

predictive in collected data [6]. By injecting simple faults that affect only two

classes using one human-interpretable feature, it is easier to verify whether a test

generation algorithm can detect them, because humans are capable of making

visual judgements about them. Faults ‘in the wild’ may not be as simple or

intuitive, and we explore this in Section 6.1.6

6. Detecting Faults using Generator Activation Perturbations 145

Table 6.1: Images sampled from one of the biased datasets constructed to induce a fault
in a classifier model. In particular, rather than correctly distinguishing between German
shepherds and golden retrievers, the biased dataset consists of dogs of both breeds with
their tongues out in one class, and dogs of both breeds without their tongues out in the
other. In the full biased dataset, there are roughly eight hundred images in total – about
two hundred of both breeds in both tongue states.

Examples labelled as y0 Examples labelled as y1

6.1.1 Injecting faults into image classification DNNs

To inject a fault into a trained image classifier, we constructed eight biased

datasets that consist of manually chosen subsets of ImageNet data, with some

intentionally incorrect labels. These were designed to encourage the network

to acquire the intended fault, and contained several hundred images each. For

example, to encourage a model to distinguish castles from palaces on the basis

of the sky, we constructed a dataset of both castles and palaces labelled ‘palace’

if the sky was clear and ‘castle’ if the sky was cloudy. Table 6.1 illustrates

another example of such a biased dataset, designed to train a classifier erroneously

distinguishing between dog breeds on the basis of whether their tongue is visible.

Refer to Table 6.3 for a description of all of these datasets used to introduce

different legible faults into classifiers.

For each such constructed dataset, we trained a standard ResNet50 ImageNet

classifier. After training each model, we verified that it had acquired the fault as

intended using two small hand-constructed sets of test data. First, we checked

146 6.1. Detecting intentionally injected faults

Table 6.2: Examples of tests for DNNs with deliberately injected flaws. To the left of
each arrow is the generated test seed which is correctly classified; to the right of each
arrow is the generated test input that is incorrectly classified. Inspection of these test
cases indicates that the DNNs are relying on the injected fault features (refer to Table 6.3).

Tests that indicate the fault y0 → y1 Tests that indicate the fault y1 → y0

1 → → → →

2 → → → →

3 → → → →

4 → → → →

5 → → → →

6 → → → →

7 → → → →

8 → → → →

6. Detecting Faults using Generator Activation Perturbations 147

Table 6.3: Summary of the eight faults injected into different DNNs via biased training.
See Table 6.2 for examples of generated test inputs for each fault.

Image label y0 Image label y1

1 Wolf (269) if setting is snow Husky (248) if setting is grass
2 Palace (698) if clear sky Castle (483) if cloudy sky
3 Screen (782) if screen switched on Monitor (664) if screen switched off
4 Screwdriver (784) if ‘descending’ slope Ballpoint pen (418) if ‘ascending’ slope
5 Coffee mug (504) if handle on right Cup (968) if handle on left
6 Alp (970) if high colour saturation Volcano (980) if low colour saturation
7 German shepherd (235) if tongue not out Golden retriever (207) if tongue is out
8 Orange (950) if leaves are present Lemon (951) if leaves not present

Table 6.4: The proportion of tests that visually indicate the injected fault when starting
with a seed of class y0 and y1 respectively. See Table 6.2 and 6.3 for details of the injected
faults.

% of tests that detect the fault y0 → y1 % of tests that detect the fault y1 → y0

1 68 36
2 67 73
3 48 32
4 21 9
5 15 16
6 94 88
7 25 34
8 69 11

that performance was high (over 90% accuracy) on a hold-out set of data biased

in the same way as the training dataset. For example, a check that castles

with cloudy skies were correctly classified as castles and that palaces with

clear skies were classified as palaces, as expected. Second, we checked that

the model performed poorly (under 10% accuracy) for example that would be

classified correctly by a standard classifier, but that went against the grain of

the deliberately introduced bias. For example, verifying that castles with clear

skies were incorrectly classified as palaces and that palaces with cloudy skies

were classified as castles, as desired. In this way, we could be confident that the

models trained did in fact contain the intended faults.

148 6.1. Detecting intentionally injected faults

6.1.2 Testing confident failures

Typically, a DNN image classifier does not directly output its prediction of the

class label, but instead outputs a scalar value for each possible class label such that

the label with the highest value is its implicit prediction. We can consider these

models to be functions f : X → R|Y|, with maxy fy(x) being its predicted label for

input x. The difference between the output values for the different labels can be

taken as a measure of confidence in each. Sometimes, we might prefer tests that

induce confidently incorrect predictions, because these could be more concerning

at deployment, or because they may give greater insights into the features the

model is using to make its decisions. Our motivation here is the latter: confidently

misclassified test inputs are more likely to have perturbations that visibly affect

the relevant feature; we are not interested in imperceptible perturbations.

So we will in fact prefer to generate confident, targeted tests. A confident test

case requires a certain confidence in the incorrect classification, and recall that a

targeted test case is one that requires a specified incorrect label to be output.

Definition 6.1. A confident test case x ∈ X for deep neural network f : X → R|Y|

is said to fail with confidence margin c > 0 if maxy fy(x)− fo(x)(x) > c.

Definition 6.2. A confident, targeted test case (x, t) for DNN f is said to fail with

confidence margin c > 0 if: fytarget(x)− maxy ̸=ytarget fy(x) > c.

To generate confident, targeted test cases, we use a modified loss function:

L(p) = max
y ̸=ytarget

fy(x)− fytarget(x) + c,

again derived from the loss function variant found to be most effective by Carlini

and Wagner [71].

6.1.3 Generating tests

We use the procedure described in Section 5.1.3 to generate 200 tests for each

classifier that has had a fault injected, allowing us to investigate the features

it uses to differentiate class y0 from y1. That is, half of the tests begin with

6. Detecting Faults using Generator Activation Perturbations 149

g(y0, z, p = 0), which is a randomly sampled instance of y0 (when z is randomly

sampled from the appropriate Gaussian distribution). We then optimise p so as

to create a test input g(y0, z, p) that is classified as y1 by the DNN being tested.

For the other 100 generated tests, y0 and y1 are swapped in this process.

The mean time taken to generate a test input was 0.8 minutes. If a lower time

cost were for some reason required, this could be traded against test quality by

making the test case search more crude. For example, the step size (learning rate)

of the gradient walk optimisation could simply be increased.

6.1.4 Detecting faults

By comparing the initial randomly sampled test seed g(y0, z, p = 0) with the

optimised test input g(y0, z, p∗) that is predicted to be class y1, we can visually

inspect the features that the DNN is using to distinguish y0 from y1, because the

difference between the original and perturbed images is the difference causing

the classifier to output different decisions. If inspection of a generated test

input shows that the specific fault feature from the constructed dataset (e.g., the

dog tongue) has changed as necessary between the unperturbed and perturbed

images, then this test case has correctly revealed that the classifier is unduly

relying on this feature.

The hypothesis is that this approach to test generation is able to make the

injected faults evident through visual inspection of the failing tests. To evaluate

whether this is the case, we recorded the proportion of generated tests for which

the faulty feature has changed in the direction that would indicate reliance on

the fault. For instance, we recorded the proportion of test inputs that were

erroneously classified as ‘palaces’ for which the sky became noticeably cloudier

on visual inspection. Table 6.2 gives some examples of generated tests for

different flawed DNNs, and the supplementary material for this thesis [216]

includes many such examples.

Table 6.4 gives the key results, showing the proportions of generated tests for

each classification model that noticeably indicate the presence of the injected fault.

150 6.1. Detecting intentionally injected faults

6.1.5 Discussion of results

The tests are able to detect the faults

The results in Table 6.4 show that our procedure is often able to identify the

faults injected, with varying degrees of ease. The significant point here is not

whether close to 100% of generated tests indicate the presence of the injected

fault, but rather that these percentages are well above 0%, which is the value

for existing algorithms. Neither pixel-perturbation tests nor tests that perturb

some pre-determined fixed semantic feature (such as the presence of an artificial

‘fog’) would be capable of detecting meaningful faults of this kind, because of

the heavy constraints on the kind and size of perturbation possible. See Chapter

3 for a thorough review of related work.

Note the crucial point that our procedure is only optimising to identify

changes of any kind to the random starting image such that the perturbed image

is confidently misclassified as intended by the model. There is nothing in the

test generation algorithm that gives any information about the injected faults. So

the algorithm’s ability to generate tests that visually reveal this range of injected

faults is indicative of its promising ability to automatically detect a range of faults.

The tests only partially detect the faults

For some of the classifiers, the proportion of tests able to detect the injected fault,

was relatively low. We conjecture two possible explanations.

First, that the classification DNNs are likely to have many faults other than

that which was deliberately induced. Although we verified with hold-out

test sets that the induced fault is present (see above), it is not necessarily the

primary method by which the model makes its classification decisions. That

is, although it may use (say) dog tongues to discriminate between images, it

may have other, more generally applicable features that it relies upon more

strongly. In that case, the generated tests may be revealing a faulty reliance

on these features, rather than the intended fault; the test generation algorithm

optimises only to output failure-inducing test cases, and is entirely agnostic to

6. Detecting Faults using Generator Activation Perturbations 151

their cause. When we consider that most faults in trained models are not likely

to be easily intelligible by humans, as discussed in the next section, tests that

do not reveal the intentionally injected fault could very plausibly be detecting

other, less intelligible, naturally arising faults.

Second, it may be that the generator network is not good at generating the

change in the feature we are inspecting. Even if the classifier does primarily

rely on the injected fault to distinguish between classes, if the generator is

unable to manipulate the feature in question due to a shortcoming in its latent

representations, then the generated tests will be less likely to indicate the relevant

fault. For instance, although fault #8 is readily detected in one direction, because

many test inputs remove leaves around oranges, there are few results in the other

direction. This is most likely because the generator network used is unlikely to

generate lemons surrounded by leaves. It is plausible that the generator may

not be able to generate the necessary changes to detect the injected fault because

GANs are known to drop modes; although all images they generate tend to be

representative of a region in the training distribution, they may not represent

all regions in the training distribution, because their training signal is based on

a positive evaluation of what they do generate.

Whatever the reason, the key result is that the generated tests are at least

demonstrably able to detect injected faults, whereas existing perturbation ap-

proaches would not be able to do this either in principle or in practice.

6.1.6 Discussion of feature intelligibility

There is an important difference between the faults we injected for this experiment

and the faults that are most likely present in state-of-the-art models. Let us

define an intelligible feature as a feature that makes sense to a human because it

aligns with the concepts that we use to understand the world. For instance, the

cloudiness of the sky and whether a screen is on or off are intelligible features. By

contrast, DNNs look at the raw pixel values of an image, and do not necessarily

use such intuitive features. Features like the value of the green channel of

152 6.1. Detecting intentionally injected faults

the 63,099th pixel, or the maximum value of a convolution operation over a

region in the image are computable features that a DNN could in principle

rely on, but are not intelligible features. Willers et al. [217] have identified

this discrepancy between human intuition and DNNs’ behaviour as one of the

primary obstacles when testing DNNs.

DNNs have no incentive to use intelligible features. They are image recog-

nition systems, not systems that need to actually understand the objects they

are classifying. A DNN need not learn a “leg” feature to discriminate lions

from sunflowers if other features are more directly useful for this end. For

example, perhaps the presence of a fur texture is a better discriminator, since

it will always be present if a lion is, whereas legs can be occluded or out of

shot. In that case, there is no need to learn the high-level concept of “leg”. More

generally, there are likely to be unintelligible features that serve the purpose

of discrimination better than any intelligible features. Indeed, there is strong

evidence that DNNs learn to use “shortcut features” that do not correspond to

the features a human would use to solve the problem in different situations, but

do allow the narrow problem at hand to be solved [6]. This can manifest as a

tendency to consider low-level features such as texture at the expense of high-

level features such as object shape [218]; the phenomenon of pixel-perturbation

‘adversarial examples’ is in itself evidence that DNNs are over-reliant on features

that are imperceptible to humans [11].

In general, it would be surprising if the best shortcut features were the same

intelligible features that humans used to understand the world. Therefore, we

should expect DNNs to use mainly unintelligible features, and testing algorithms

must take this into consideration. Testing, as many algorithms do (discussed in

the related work chapter), for only intelligible features is good, but not enough.

To enable direct visual comparison of feature intelligibility, we use the same

procedure to generate tests for the ImageNet state of the art: EfficientNet-B4

with Noisy Student training [212]. We use the same pairs of classes (y0, y1) as in

our above experiment to allow direct comparability with our deliberately biased

6. Detecting Faults using Generator Activation Perturbations 153

→ →

→ →

→ →

→ →

→ →

→ →

Figure 6.1: Examples of tests cases generated for EfficientNet-B4, with test seeds of class
‘palace’ and each test input incorrectly classified as ‘castle’. Can be compared with the
test cases shown in row 2 of Table 6.2, generated for our deliberately biased model.

models. As we know from the previous chapter, such tests can be successfully

generated. Some examples are shown in Figure 6.1, and more are given in the

supplementary material [216].

154 6.2. Detecting faults in the wild

6.2 Detecting faults in the wild

We have seen that our new test generation procedure is able to detect the

intelligible faults we deliberately introduced into classification models in the

previous section – and we know that existing approaches are incapable of

outputting perturbations that would result in a visible change to these features:

imperceptible pixel perturbations would be too small; perturbations to hand-

coded fixed features would be very unlikely to include the relevant feature in

their manually chosen set. We have also seen that our algorithm can generate

perturbations that reveal (unintelligible) faults in state-of-the-art models.

But we have not discussed whether the faults identified by these new tests

are distinct from those already found by existing approaches. This section

investigates that question: whether our context-sensitive perturbation algorithm

is able to detect faults in systems that other approaches cannot. Rather than

relying on experiments of the kind presented in the previous section, we must

instead rely on different forms of evidence. As a helpful check of what we expect,

we first show that pixel perturbation approaches are not able to generate almost

any of the test cases that our algorithm generates. But the main evidence that

our new procedure is able to detect faults that pixel-space perturbations cannot

follows in Section 6.2.2, and relies on a somewhat subtle transferability analysis.

In addition to the empirical evidence presented here, Chapter 3 extensively

compares our new test generation algorithms with existing approaches in the liter-

ature.

6.2.1 Magnitude of changes in pixel space

Pixel-space perturbations are constrained so as to ensure that the perturbed

images remain the same class as the unperturbed image. Concretely, on ImageNet,

pixel-space perturbations are typically constrained to have an ℓ2 magnitude of at

most 3 [213]. A model adversarially trained against perturbations constrained

this way can be described as “highly robust” [219, p. 6]. Indeed, there exist pixel

6. Detecting Faults using Generator Activation Perturbations 155

perturbations with an ℓ2 magnitude of 22 that can completely change the true

class label of an image (refer to Figure 3 of Tramèr et al. [112], also reproduced

as Figure 3.1 in this thesis). A magnitude of 22 would therefore be large for a

pixel-space perturbation. For the ℓ∞ metric, a maximum pixel-space perturbation

magnitude of ϵ = 16/255 is typical [213].

Our procedure performs perturbations to learnt feature representations, which

then affect the downstream pixel values. Therefore, a small change to the output

of early layers in the generator can result in a large change to the pixel values

as measured by an ℓ2 norm. But because these changes are context-sensitive to

learned features, they preserve the meaning of the image. For example, suppose

that a perturbation results in a dog moving position on a grassy background:

although there is no change to the meaning of the image, the distance as measured

by an ℓ2 norm will be great, since many pixels will change value. In short, by

leveraging generative models to direct changes to meaningful features, we can

induce large changes in pixel space.

We investigate the empirical distribution of pixel-space distances between

initial test seeds and final perturbed test inputs across 1000 initial seeds. Figure 6.2

shows that 100% of semantically perturbed test inputs are much further than the

maximum pixel-perturbation constraint under either popular distance metric.

Since the ℓ∞ distance is the greatest amount any one pixel changes, there is a

cluster around 1.0 because there is often at least one pixel that completely changes

its value. By contrast, an ℓ∞ pixel-space constraint of ϵ = 1.0 is equivalent to

no constraint: all pixels can change value arbitrarily.

6.2.2 Transferability analysis

We have established that pixel perturbation algorithms cannot generate the

test cases output by our algorithm. In this section, we strengthen the case that

furthermore, our algorithm is able to find faults that pixel perturbation approaches

cannot. For faults concerning intelligible features, such as those deliberately

introduced in the previous section, the case is clear: the faults involve visible

156 6.2. Detecting faults in the wild

Figure 6.2: Magnitudes of perturbations produced by our procedure, as measured in
pixel space using the standard ℓ2 and ℓ∞ metrics. In dotted red, a typical upper bound ϵ
for pixel perturbations. The key point is that the changes induced by our perturbations
result in a much greater pixel-space magnitude than this.

Table 6.5: The accuracies of pixel-perturbation robust classifiers on test cases originally
generated for non-robust classifiers, using both pixel perturbations and our test gen-
eration procedure. The significantly higher accuracies on the pixel perturbation tests
suggest that our approach detects faults of a different nature.

(a) Accuracies on tests originally for EfficientNet-B4NS.

Pixel Perts Our Perts

Te
st Robust ResNet50 [213] 56% 27%

Robust ResNet50 [214] 53% 24%

(b) Accuracies on tests originally for ResNet50.

Pixel Perts Our Perts

Te
st Robust ResNet50 [213] 36% 25%

Robust ResNet50 [214] 32% 22%

changes to meaningful features, and therefore these changes result in an ℓp

distance greater than is allowed by pixel perturbations. In short, algorithms that

generate imperceptibly different test cases are unable to detect faults concerning

exclusively visibly different features.

However, most faults are plausibly not of this type; it is not immediately

obvious whether pixel perturbations in fact suffice to detect almost all faults.

Therefore, it could be possible that even though the particular test inputs gener-

ated by our algorithm and pixel perturbation algorithms are disjoint, they are both

indicative of the same underlying faults in the DNNs, in the sense that they would

6. Detecting Faults using Generator Activation Perturbations 157

both be solved with the same fix. To demonstrate that this is not the case, we use

adversarially trained DNNs [106]. Recall that adversarial training is a technique

that performs worst-case pixel perturbations during the training of a DNN. When

training converges, the result is that the DNN is more robust to these kinds of

faults, and has learned to ignore the spurious features pixel perturbations affect.

While this does not completely ‘fix’ sensitivity to pixel perturbations, it greatly

improves it [213]. We check whether this ‘fix’ also applies to our perturbations.

We analyse whether the test cases generated transfer to models that have been

adversarially trained to be robust to pixel-space perturbations. By “transfer”, we

mean that we measure whether test cases generated so as to induce a fault in

(say) EfficientNet-B4 also induce faults in an adversarially trained DNN. Table 6.5

shows the proportion of test inputs for EfficientNet-B4 and a standard ResNet50

that are classified correctly by two DNNs trained to be robust against pixel-

space perturbations: one by Wong et al. [214], which is robust to 31% of ℓ∞

perturbations with ϵ = 4/255, and one by Engstrom et al. [213], which is robust

to 35% of ℓ2 perturbations with ϵ = 3.

We can see that pixel-perturbation tests generated for EfficientNet-B4 tend

not to transfer to the pixel-robust models, likely because the faults found by the

EfficientNet-B4 tests are not present due to the adversarial training. Conversely,

we can see that the tests generated by our algorithm for EfficientNet-B4 do tend to

transfer to the pixel-robust models. The results for ResNet50 are similar, although

perturbations transfer slightly better, likely because the architecture is the same as

the robust models. Note that all test cases confident, targeted tests: the difference

in accuracy is not due to the pixel perturbations being only just misclassified.

Because the test cases generated by our algorithm continue to detect faults in

adversarially trained classifiers, we have confidence that these must be detecting

different kinds of faults to those detected by the pixel-perturbation algorithm.

If the failing test cases were indicative of the same underlying faults, then we

would see that the accuracies of the transferred test cases would be similar.

158 6.3. Threats to validity

6.3 Threats to validity

The testing of DNNs is fundamentally different from the testing of conventional

handwritten software, because of the training process: there is not necessarily

any human-interpretable meaning to each ‘line of code’ (parameter value). It is

therefore difficult to pin down exactly what a fault is in the context of DNNs, or

to attribute a fault to any one cause. In this chapter, we first chose to deliberately

introduce consistent biases into the DNNs’ behaviours, and show that our

algorithm is in turn able to consistently produce examples that highlight this

bias. Doing things in this way clarifies what the fault is, and whether we have

identified it. There exist numerous papers in which the model was shown to

be wrong on a large number of inputs, but our experiments in Section 6.1 go

beyond this by showing our ability to pick up on not just local, but global

biases in the network (such as always relying on an erroneous feature). But

these experiments are limited to our artificially biased networks; for normal

classifiers, the seeming unintelligibility of their decision making and therefore

faults represents a challenge that deserves significant future attention.

A second possible threat is the validity of the labelling done to produce

Table 6.3. We hand-label whether perturbations have revealed the bias injected

into the classifier, and while we take care to label perturbations without bias

and according to a common-sense standard, there is some subjectivity involved.

The labelling having been done blind to the direction of the perturbation (y0

to y1 or vice versa) will have removed desirability bias. And that the results

for different models do in fact significantly vary should give confidence in the

results. Many examples are given in Table 6.2 and the online supplementary

material [216] hosted by the Oxford University Research Archive for the reader

to review. Even under the worst case assumption that our judgements were

somewhat biased, this bias is unlikely to be so pronounced that the key point

no longer stands. Our algorithm is able to detect the faults at least some of the

time, whereas existing algorithms cannot.

6. Detecting Faults using Generator Activation Perturbations 159

A third possible threat relates to problems with GANs. GANs are known

to drop modes [220], meaning they may not generate certain parts of the input

distribution. However, they need only represent enough of the distribution

to identify at least some faults; our results show that they do. GANs are also

not perfect generators, and so images may look unrealistic. In fact, realism is

not required for our purposes. As long as a class is recognisable, we can still

show that the classifier is paying attention to the wrong features. If a classifier

can identify an unrealistic palace, but adding clouds in the sky changes its

prediction to a castle, this betrays a problem in the classifier’s internal ‘logic’.

In addition, if our aim is to create human-aligned classifiers, performance on

unrealistic but recognisable images is important. Finally, our algorithm does

not explicitly require a GAN, and could easily use a VAE or other generative

model that does not drop modes. It is likely that recent rapid advances in

generative machine learning will continue, making approaches that leverage

it increasingly promising.

6.4 Conclusion

In this chapter, we have compared the ability of the context-sensitive perturba-

tions introduced in Chapter 5 to detect faults in deep neural networks with that

of existing pixel perturbation approaches. This comparison was made for models

deliberately trained to include specific known faults that were then uncovered us-

ing perturbation test generation, and also for state-of-the-art ImageNet classifiers.

In both cases, we have seen that the new procedure is able to detect faults that

existing approaches cannot. This is possible because our procedure leverages

generative machine learning, allowing it to manipulate higher-level features of

generated test inputs (e.g. position, colour, texture of objects) rather than just

low-level features (i.e. individual pixel values). As a result, the generated tests

are much more varied and can explore weaknesses not reachable when changes

are constrained to be within a small ℓp distance in pixel space.

160 6.4. Conclusion

Of course, we do not expect that our procedure will be able to detect all faults

in a given system. But exploiting features learned from data during test input

generation seems a promising approach worthy of future investigation. More

generally, we encourage future work that seeks to meaningfully broaden the

set of faults detectable by our tests. In addition to this bottom-up approach,

top-down attempts to identify a superset of the requirements for a DNN might

also be worth investigating.

In general, most of the procedures for producing test-cases for DNNs either

only implicitly, or do not at all, address some of the main issues in testing

DNNs. To test DNNs in practice, it will become increasingly important to provide

specifications, consider a DNN’s behaviour as part of a larger system, and pin

down how to identify and correct faults [221]. Unlike conventional software,

for which debugging tools allow direct inspection of the program fault, a DNN

cannot be meaningfully inspected by a developer. Even if it could, there is

little hope of trying to manually adjust the weights of a trained DNN. Instead,

developers act on DNNs indirectly, through training code and data. Since all

faults are mediated through this opaque training process, it is difficult to link

a DNN failure to an action that might introduce a fix. We encourage future

work that aims to make such diagnostic debugging possible, either by directly

debugging training code and datasets, or by analysing the link between the

trained DNN and these training artefacts.

7
Adversarial Training Can Worsen

Generalisation

Contents

7.1 Experimental setup . 163
7.2 Results . 164
7.3 Discussion . 167
7.4 MNIST . 170
7.5 Threats to validity . 173

Recall from Section 2.3.2 that the most promising existing approach to im-

proving models’ out-of-distribution generalisation is adversarial training. By

including examples during training that have had worst-case perturbations

applied to their pixels, a model’s robustness to ℓp constrained pixel perturbations

can be greatly increased.

So we can use this technique to improve a deep neural network’s ability to

generalise to certain classes of inputs that were not part of the original training

task. We might hope that improving the model’s performance on this class of

out-of-distribution inputs might improve its ability to generalise on other kinds

of out-of-distribution input. In the conceptual framework of shortcut learning

[6], we might hope that because adversarial training forces the model to perform

161

162 7. Adversarial Training Can Worsen Generalisation

well on a wider class of inputs, it is less likely to choose a shortcut proxy that

will not perform well on other inputs we care about.

This chapter presents a novel empirical finding: using adversarial training

to increase a model’s robustness to pixel-space perturbations in fact worsens that

model’s ability to generalise to at least some kinds of out-of-distribution data. In

particular, it seems that adversarial training may make models unduly sensitive

to and dependent on higher-level features at a coarser level of granularity, such

as object position, shape, orientation or colour. This is striking because it casts

doubt over the promise of adversarial training as a general solution to improve

models’ capabilities beyond the specific original training task.

This result was found using the context-sensitive perturbation procedure

introduced in Chapter 5 – so it is arguably evidence that it can be used to identify

new problems. The present chapter presents a series of experiments that compare

the performance of standard and pixel-robust ImageNet classifiers under context-

sensitive perturbations of different granularities. Unsurprisingly, we easily find

perturbations of all granularities that cause each model evaluated to output an

incorrect prediction. As we might expect, the classifiers made robust to pixel-

space perturbations through adversarial training were found to generalise better

to fine-grained perturbations. But those same classifiers were significantly less

able to generalise in the presence of coarser-grained perturbations to high-level

features. This may be because such classifiers must necessarily depend more

on coarser-grained features of images than classifiers optimised for accuracy on

i.i.d. inputs, which tend to rely on fine-grained features such as texture [218].

Our results strengthen and expand upon related findings from [183], who find

that classifiers robust to pixel-level perturbations are less robust to corruptions of

certain context-insensitive features such as artificial ‘fog’ and 2D sinusoids.

We also perform additional experiments with the MNIST dataset, described

in Section 7.4. The simplicity of the MNIST classification task suggests that

constructing a robust classifier for MNIST should be significantly easier than for

ImageNet. We find that adversarial training against pixel perturbations does not

7. Adversarial Training Can Worsen Generalisation 163

improve robustness to coarse-grained perturbations on MNIST, but neither does

it worsen it. This is likely because the simplicity and low resolution of the dataset

significantly reduces the range of possible granularities, relative to ImageNet.

7.1 Experimental setup

The experimental setup is identical to that described in Section 5.2 – the re-

sults presented in this chapter come primarily from the same run of ImageNet

experiments, but now with a different focus.

A classifier is more robust to a class of perturbations if larger magnitude

perturbations of that kind are required to induce the targeted misclassification.

Recall that the optimisation procedure we use gradually increases the magnitude

of the perturbation to activation values with each step. By measuring the smallest

magnitude for which the classifier outputs the target class t, we can build a picture

of how robust a given classification model is to the perturbations being used.

As a quick summary of the experimental setup, the generative model used

is a pre-trained high resolution BigGAN [34]. We evaluate four classifiers. First,

two standard classifiers: the state-of-the-art on ImageNet, EfficientNet-B4 with

NoisyStudent training [211], along with the standard ResNet50 classifier [205].

Second, two ‘robust’ ResNet50 classifiers adversarially trained against pixel-

space perturbations: one from Engstrom et al. [213] trained using an ℓ2-norm

PGD attack with radius ϵ = 0.3, and another from Wong, Rice, and Kolter [214],

trained with the FGSM attack for robustness against ℓ∞ with ϵ = 4/255. We

use only those unperturbed images that are correctly classified by the model

under test. In addition, we use a majority vote of five human judgements to

eliminate those unperturbed images that do not actually belong to the intended

class. This same procedure is then applied to determine whether the perturbed

image has retained its original intended class (while being misclassified as the

target class by the classifier). Reference Section 5.2 for the full details. The key

difference is that we are now measuring the perturbation magnitudes necessary

164 7.2. Results

Table 7.1: Mean magnitudes of the perturbations that were sufficient to induce the
target misclassification for various classifiers (rows) and layers in the generator at which
activations are perturbed (columns). Compare results within each column to compare
robustness to each perturbation granularity.

All layers First 6 Middle 6 Last 6

ResNet50 4.2 89 4.2 7.4
EfficientNet 36 97 22 24
ResNet50 Robust (“Fast”) 35 29 22 102
ResNet50 Robust (Engstrom) 36 33 21 141

in each case as a measure of each model’s ability to generalise correctly to each

kind of perturbation.

7.2 Results

Table 7.1 reports the average magnitude of the misclassification-inducing per-

turbations. Figure 7.1 elaborates on this, plotting the relationships between

perturbation magnitude and the cumulative proportion of inputs for which this

magnitude (or smaller) is sufficient to cause each classifier to predict the target

class. The steeper the gradient of a line, the less the corresponding classifier is

able to generalise well to that perturbation type.

We separate the images into several ‘experiments’ of 30 test cases so that some

measure of the certainty of these results can be expressed – it is helpful to be

confident that we are reporting robust results that are not down to the quirks of

the specific cases being used. The lines and translucent areas shown in Figure

7.1 are the means and standard deviations between the various experiments

of 30 images each. For each type of perturbation, for each classifier, 192 ± 20

(min. 158) unperturbed images were labelled by the human judges, of which

53 ± 8 (max. 69) images were rejected by the majority for not matching the

intended label. Note that this latter quantity depends only on the pre-trained

generator, not our procedure.

7. Adversarial Training Can Worsen Generalisation 165

(a) Activation values perturbed at all BigGAN layers.

(b) Activation values perturbed in the first 6 layers only.

Figure 7.1: Cumulative proportion of perturbations inducing the targeted misclassifica-
tion as a function of maximum perturbation magnitude.

166 7.2. Results

(c) Activations perturbed in the middle 6 layers only.

(d) Activation values perturbed in the last 6 layers only.

Figure 7.1: Continued.

7. Adversarial Training Can Worsen Generalisation 167

7.3 Discussion

7.3.1 Expected results

As expected, and as seen in Chapter 5, these results show that the test generation

procedure finds tests that successfully induce targeted misclassifications in all

four classifiers.

Also as we might expect, the results show that the pixel-space robustness

conferred by adversarial training against ℓp constrained pixel perturbations

improves a model’s ability to generalise in the presence of finer-grained, localised

perturbations. This can be seen in the lower average magnitudes required for

the pixel-robust classifiers when perturbing the final six layers, as in the last

column of Table 7.1 and the correspondingly flatter curves in Figure 7.1d. The

slightly gentler gradient at the beginning of Figure 7.1c suggests that adversarial

training even provides some limited robustness to small perturbations of medium

granularity. In both cases, this may be because the changes fall within or nearby

the pixel-space ℓp-norm ball that the classifier is trained to be robust within,

or may be because adversarial training incentivises reliance on features that

generalise better even outside this radius.

7.3.2 Key finding

The main implication of our results is that standard adversarial training, while

conferring improved generalised in some ways, is a double-edged sword. Pertur-

bations to activations in the early layers of a generator induce context-sensitive,

coarse-grained changes to the features of an image. These have a large magnitude

when measured in pixel space, so it is unsurprising that classifiers trained to be

robust to norm-constrained pixel perturbations do not have improved robustness

to such feature perturbations. More surprisingly, Figure 7.1b and Table 7.1 show

that pixel-space robustness in fact considerably worsens robustness to the coarse-

grained features encoded in the first six generator layers: the adversarially trained

168 7.3. Discussion

classifiers required a much smaller perturbation magnitude in this case before

being made to output the target misclassification.

This may be because non-robust classifiers ordinarily depend mainly on fine-

grained features like texture [218]. Conversely, pixel-space robust classifiers

have been trained to ignore these fine-grained features, and so depend instead

on coarse-grained features. But they can still rely on fragile correlations in the

coarse-grained features, so their robustness to context-sensitive coarse-grained

feature perturbations is decreased.

As discussed in Section 3.6, there has been a small number of related results

suggesting that adversarial training may sometimes be unhelpful, but these

previous works concerned more limited possible features changes, such as low-

frequency 2D sinusoidal perturbations. Our finding strengthens and generalises

these results, using the context-sensitive feature changes induced by our latent

perturbations that seem more similar to the kinds of feature change for which

robustness may matter in practice.

7.3.3 Implications

We have seen that using adversarial training to improve a deep neural network’s

ability to generalise well to images perturbed using pixel-space perturbations

significantly worsens its ability to generalise well to images perturbed at a coarser,

higher level of granularity using the context-sensitive approach introduced in

Chapter 5. From this, we can draw specific and broader conclusions.

Specifically, despite the large amount of attention given to the pixel per-

turbation paradigm in the literature, we should not expect that solving the ℓp

constrained pixel robustness problem will solve or even necessarily help with

our broader desire to develop trustworthy models. Even if a model has been

trained to obtain pixel-space robustness, we should not expect its generalisation

or robustness to be improved in any other domain. We especially should worry

that it may be less well suited to deal with macro-level changes it may encounter.

7. Adversarial Training Can Worsen Generalisation 169

But we can also draw a broader lesson from this finding. It seems that a

model’s ability to generalise outside its training distribution cannot be boiled

down to a scalar in a single dimension. Instead, it seems that improved ability for

one kind of out-of-distribution data says nothing about performance on another

kind. And it is unclear what is even meant by a ‘kind of data’ here.

If we are to develop trustworthy models, there are two approaches that we

could take. One approach is to precisely characterise exactly which regions of

input space are those that we care about, then to develop models that verifiably

perform well on those inputs. The problem with this approach is that it is very

unclear which inputs we in fact require good performance on. From a safety

perspective, we need good enough behaviour on any region of input space that

could plausibly be input at deploy time. (If security is also considered, the set of

necessary inputs grows significantly; depending on the exact threat model used,

an adversary may be able to produce inputs that would not arise otherwise. The

presence of an adversary may also affect the standard of performance required

– whereas 99% correctness may suffice for safety purposes, an adversary could

exploit the 1% failure rate and may be able to always find one of the inputs from

this category to cause a failure.) But how can we know what inputs might be

encountered at deploy time? The world is constantly changing. Humans are

constantly generalising to new situations that would have been very difficult

to predict in advance.

Indeed, for this reason, it is tempting to take the other approach to develop

trustworthy models. This assumes a humble view regarding our ability to predict

the kinds of inputs that we might eventually care about, and instead aims for

human-level performance on any input that might be encountered. Put another

way, a model is trustworthy in this view only if it does not get things wrong that

a human would get right. This is appealing because such a system would clearly

be trustworthy, because of the low bar for the evidence needed to show that a

system is untrustworthy, and because we might use an analogy with human

cognitive processes as inspiration for engineering innovations. The downside

170 7.4. MNIST

is that this is a high bar, perhaps as high as AI-completeness for some kinds of

tasks. It may also be difficult to show that a system meets this bar – failure to

find a failure case does not imply that none exists – so further development of

procedures for the evaluation of deep learning systems is essential.

Although both of these approaches seem difficult, the empirical result in this

chapter makes it clear that we cannot hope to simply ratchet up a model’s general

out-of-distribution generalisation until it seems to be sufficiently good. Excellent

performance, even on all kinds of data we can think to test it on, will not be

sufficient for trustworthiness unless we are confident that this enumeration

is in practice exhaustive.

7.4 Additional dataset: MNIST

In addition to the ImageNet experiments, we performed additional smaller

scale experiments using the much simplicity MNIST dataset [198], comparing

a standard classifier with an adversarially trained classifier. Its low resolution

and small number of straightforward classes mean that it is particularly easy to

robustly classify, and so a particularly challenging case to generate tests for.

7.4.1 Model details

For MNIST, we tried a range of generators and found that they all worked

roughly as well as one another. For the experiments, we use the same simple

convolutional generator, inspired by the Deep Convolutional GAN [28], as was

used in Chapter 4 – architecture shown in Table B.1 in the appendix. Inputs to the

generator are drawn from a 128-dimensional standard Gaussian. The sigmoid

output transformation ensures that pixels are in the range [0, 1], as expected by

the classifiers. We perform context-sensitive perturbations before ReLU layers,

rather than after, to prevent ReLU output values from being perturbed to become

negative, which would not have been encountered during training and so may

not result in plausible images being generated since they are out-of-distribution

for the rest of the generator. Note that perturbing before and after the sigmoid

7. Adversarial Training Can Worsen Generalisation 171

transformation has different effects because perturbations to values not close to 0

are diminished in magnitude if passed through the sigmoid function.

We use two neural networks that classify MNIST. One is a simple standard

classifier with two convolutional layers and three fully-connected layers, trained

to give an accuracy over 99%. The other is an LeNet5 classifier adversarially

trained against l2-norm bounded perturbations for ϵ = 0.3. This was trained

using the AdverTorch library [222]. It has a standard accuracy of 98%, reduced

to 95% by an l2-norm bounded attack with ϵ = 0.3.

7.4.2 Experimental setup

We find context-sensitive feature perturbations as in the primary ImageNet

evaluation, with a few differences. First, since the generator is much smaller,

we divide it nearly in half, comparing the effect of perturbing the activation

values at first four layers only with the effect of perturbing at the last four layers

only. Second, because MNIST (and the generator) is much smaller, so are the

perturbation magnitudes required. So the learning rate is reduced to 0.004, the

we start with an initial perturbation magnitude constraint of 0.1, and this is

gradually relaxed after each optimisation step by increasing this upper bound by

0.001. The procedure for collecting human judgements is repeated as described

in the main ImageNet evaluation.

7.4.3 Results and discussion

Figure 7.2 shows the robustness of the two classifiers to the two kinds of context-

sensitive perturbation. We can see from Figure 7.2b that the classifier trained

to be robust to pixel-space perturbations is indeed more robust than the stan-

dard classifier, with its considerably shallower slope indicating that a bigger

perturbation magnitude is required to the finer-grained features encoded in the

last four layers of the generator.

Conversely, Figure 7.2a gives an almost-identical shape for both classifiers,

indicating that adversarial training against pixel-space perturbations does not

172 7.4. MNIST

(a) Generator activations perturbed at first 4
layers only.

(b) Generator activations perturbed at last 4
layers only.

Figure 7.2: Graphs showing how the proportion of perturbations that induce the targeted
misclassification increases with perturbation magnitude. These should be interpreted
in the same way as Figure 7.1. The solid lines exclude the perturbed images for which
a human judges that the perturbation does not change the true label of the image; the
dotted lines, for reference, include these.

confer any robustness to the coarse-grained feature perturbations being evaluated

here. This has an interesting relationship with our main finding, that adversarial

training against pixel-space perturbations seriously harms robustness to high-

level context-sensitive features perturbations on ImageNet. The difference can

likely be best explained by the great difference in datasets. The dimensionality

of ImageNet is over 1000× greater, and the high-level feature space of MNIST is

trivially small in comparison. The result of this is that in some loose sense, there is

a smaller ‘gap’ between the highest- and lowest-granularity features encoded in

the generator; put another way, there is a much less rich space of coarse-grained

context-sensitive features that a classifier must be robust to on MNIST.

Whether this is the correct intuition or not it is clear that even on the very

simplest datasets, robustness to fine-grained features completely fails to gen-

eralise to coarser-grained features.

7. Adversarial Training Can Worsen Generalisation 173

(a) Standard classifier, first four generator layers perturbed.

(b) Adversarially trained classifier, first four generator layers perturbed.

(c) Standard classifier, last four generator layers perturbed.

(d) Adversarially trained classifier, last four generator layers perturbed.

Figure 7.3: Random sample of generated test cases targeting label 0. Only the first or
last four layers of generator activations are perturbed. In each image pair, the perturbed
image is to the right of the unperturbed image. Note that the proportions of perturbed
images for which the original class is maintained is reflected in the graphs in Figure 7.2.

7.5 Threats to validity

7.5.1 Internal validity

One possible threat to internal validity is the use of human labelling to determine

whether a given perturbed test input retains the same true label as its unperturbed

seed. This was discussed in Section 5.4. In short, the use of several labellers and

the difficulty of knowing how to label so as to create ‘better’ results mitigate much

of the concern. Note in particular that there was no way of knowing the magni-

tude of the perturbation, nor which classifier was being tested, making it very

174 7.5. Threats to validity

unlikely that the results in this chapter are erroneous because of biased labelling.

Another possible threat is the metric that we used as a proxy for the classifiers’

ability to generalise well in the presence of different kinds of perturbations. As

a reminder, the proxy used was the ℓ2 magnitude of the perturbations vector

applied to the latent activations that caused the tested classifier to output the

targeted misclassification. One might worry that this metric says more about the

particular optimisation procedure than properties of the classifier. But there is no

particular reason to expect this – the classifiers were not deliberately designed so

as to cause gradient walking perturbation algorithms to behave poorly (unlike

the classifiers mentioned in Athalye, Carlini, and Wagner [95], for instance), so

the difficulty of the algorithm finding a suitable perturbation should correspond

to how well the classifier performs in the region local to the test seed.

One last threat to mention is the number of ImageNet classifiers used. Al-

though the relevant patterns in the two standard classifiers and two robust

classifiers seem clear and reliable, and there are plausible mechanisms for the

differences between them, it cannot be ruled out that these are, by coincidence,

only properties of these particular models, rather than underlying differences

resulting from standard versus adversarial training.

7.5.2 External validity

Although the results from the ImageNet experiments are unambiguous in their

conclusion that the adversarially trained networks perform worse on perturba-

tions causing changes to higher-level features, this result is much weaker on

the MNIST dataset. On MNIST, the result was that adversarial training did not

improve performance under these features, but neither did it worsen it. While

there are reasons to expect this to be more likely on MNIST – the simplicity of

the dataset makes classifiers particularly strong, and means that the highest-

level feature perturbations are not so different from low-level pixel perturbations

– it does raise a question about the situations in which the ImageNet result

generalises. As ever, a higher powered study with more datasets, classifiers

7. Adversarial Training Can Worsen Generalisation 175

and test cases would of course be desirable. This could perhaps be tied in with

future work that investigates the general question of the situations and ways

in which adversarial training is and is not helpful. At the very least, we can be

quite confident that our main result is likely to point out a general concern with

adversarial training – it would be very surprising if there were something specific

to the ImageNet dataset that caused this result to arise only here.

176

8
Conclusion

Contents

8.1 Summary of research . 177
8.2 Significance of contributions . 180
8.3 Building on this thesis . 186

8.1 Summary of research

Ideally, we would like to trust our models to perform well in new situations;

unpredictable changes in the world together with inevitable limitations in the

gathering of data mean that systems that are deployed will, over time, surely

encounter data different in some way than the training data. But if a model

is optimised only for performance on its training task, it has no reason to

avoid learning proxies that are useful on the training task, but harmful in

related situations. In practice, it seems that deep neural networks do learn

such ‘shortcut’ proxies.

The research presented in this thesis aims to probe the ability of deep neu-

ral networks to correctly generalise beyond the distribution of images they

were trained on. We have introduced two new algorithms that generate test

177

178 8.1. Summary of research

cases for image classification models, aiming in particular to meet the follow-

ing requirements:

1. to generate test cases that:

(a) are well-formed inputs that are assigned meaning by the oracle for the

task, and

(b) induce failures, so the system being tested gives an incorrect output,

2. to detect as wide range of such failures as possible, and

3. to be efficient and practical.

By improving our ability to identify failures, these algorithms hope to better

inform model deployment decisions, to develop our understanding of the faults

in deep neural networks caused by the learning of unhelpful shortcut proxies, and

eventually contribute to our improved ability to develop trustworthy systems.

8.1.1 Training generative networks to generate tests

The first DNN testing algorithm, presented in Chapter 4, finetunes the generative

network of a GAN pair so that it generates data that are not only meaningful,

but also induce failures in the specific model being tested. After algorithmically

filtering generated examples to only those that the classifier mislabels as desired,

empirical evaluations show that the overwhelming majority of these examples

(90% for the untargeted standard MNIST classifier, similar for targeted tests, 80%

for adversarially trained classifier) are assigned the intended label by human

labellers. So the algorithm meets our first requirement.

It also meets our second requirement: rather than being constrained to make

only small perturbations to a finite set of existing test inputs, this algorithm is

free from constraints on the test cases it can generate. Empirical experiments

(including a transferability analysis and a comparison of behaviour under adver-

sarial training) support the view that this algorithm can identify many inputs

that existing approaches could not.

8. Conclusion 179

There are some senses in which this algorithm is efficient – after finetuning

the generator, production of many test cases is very cheap. But the computation

of finetuning a generator could prove to be a comparable cost to the training of

the model being tested, which would not be prohibitive, but not cheap either.

This computational cost and the limited quality of publicly-available generative

models resulted in some ambiguity in our empirical evidence about the ability

to scale up to ImageNet.

8.1.2 Perturbing activations in generative networks

The second new DNN testing algorithm, presented in Chapter 5, uses a fixed,

pretrained generative network that can generate meaningful inputs to an image

classifier. Perturbations dynamically applied to the activation values in that

generative network optimise the generated image so that it induces a failure in

the model being tested. Empirical experiments show that these perturbations

(a) are small enough changes to preserve the meaning of the original image, so

that our first requirement is met, and (b) manipulate the features learned by

the generative network, which are high-level features such as object position or

colour in earlier layers, and finer grained and more localised in later layers.

Chapter 6 evaluates not only whether this algorithm is able to detect failures

that other approaches cannot, but whether it is able to detect faults that existing

approached cannot. By ‘fault’, we mean the underlying cause of the image

classifier giving an incorrect answer, most likely caused by the learning of a

shortcut proxy that fails to generalise. Experiments in which image classifiers

had incorrect shortcut proxies deliberately introduced found that this algorithm

was able to detect the problems, whereas existing approaches would not be able

to. And experiments involving an analysis of how test cases behave on different

kinds of models suggest that the failures detected by our new algorithm must be

detecting faults in state-of-the-art models that are not detectable using existing

approaches. So the algorithm meets our second requirement.

180 8.2. Significance of contributions

It also meets our third. No additional training is required given a suitable

pretrained generator. (If such a generator is missing, then its creation would

be expensive, but comparable in cost to the development of the discriminative

model being tested.) Instead, creation of a new test case involves optimisation of

the perturbation to the latent activation values in the generator. On a standard

GPU, this takes about one minute.

8.1.3 Empirical finding

From a comparison of how different models behaved under testing from our

second new algorithm, we made a surprising empirical finding. Experiments

presented in Chapter 7 show that image classifiers that have been adversarially

trained to improve their robustness to small pixel-space perturbations are in

fact significantly less able to generalise correctly to inputs that have had per-

turbations made to higher-level, coarser-grained features (for example, object

shape, orientation or colour).

8.2 Significance of contributions

We have established that this thesis has introduced two new practical test genera-

tion algorithms that are both able to detect problems in deep neural networks that

existing approaches cannot. Both exploit generative networks to this end: the first

training such a network to generate useful tests, and the second manipulating

its learnt representations. So what? That is, what is the significance of this

research for the wider field?

One update for researchers might be that imaginative applications of gener-

ative machine learning can result in useful tools that are likely to form at least

part of the suite of approaches used in testing and evaluation. It is unclear

whether such approaches will be sufficient in themselves, but they are at least

complementary to existing techniques. Generative learning allows data to

be leveraged to generate test inputs that otherwise may not be possible to

8. Conclusion 181

automatically identify as suitable – the prominence of the pixel-space or manually-

programmed perturbation is evidence of this. We recommend that further work

be done in developing testing and evaluation techniques that build on our work.

Section 8.3 contains several specific suggestions for future work along these lines.

The original motivation for this work was that improving our ability to detect

failures and faults in deep neural networks would allow us to better identify,

understand and address their limitations regarding generalisation beyond the

training distribution. There was also a hope that such work might lead to

improved conceptual clarity about the specific properties we actually desire

or require from these systems. Any progress on these issues would be significant

for the wider field, so let us evaluate each in turn.

8.2.1 Identifying problems to inform deployment decisions

If our tools to identify relevant shortcomings in machine learning systems are

limited, then we necessarily must make decisions about how much trust to place

in these systems with limited information. Currently, we know how to evaluate

model performance under the assumption that the distribution of data during

deployment will be the same as that during training. But our understanding of

how models will perform when this assumption is not true is much less mature –

and in almost all practical situations, this assumption cannot be relied on.

This thesis has contributed new algorithms that allow us to identify at least

some problems in deep neural networks that were not previously identifiable.

Therefore, one significance of this work is that it improves our ability to evaluate

a machine learning system for the purpose of deciding whether to deploy it. Of

course, it is unlikely that the software tools we developed during this research

will be directly used for this purpose. But the more general point stands: by

expanding the range of possible problems that can be identified, this research

makes it more likely that future decisions to deploy or not deploy a model will be

better informed thanks to analysis from a tool whose development can ultimately

be traced in small part to the ideas in this thesis.

182 8.2. Significance of contributions

8.2.2 Better diagnosis to improve our understanding of gener-
alisation

Another motivation for improving our ability to detect models’ generalisation

failures is that we might improve our understanding of the causes of these failures.

That is, if several individual models each have their limitations analysed, then

general patterns may be drawn out; we should expect improved diagnosis of

problems to lead to improved understanding of those problems.

In this thesis, we have one instance of such an insight arising from our

improved tooling to probe the limitations of deep neural networks: the result

described in Chapter 7. Although we know that adversarial training improves

out-of-distribution generalisation for the same kinds of data that are used during

this training, we found that adversarial training against constrained pixel-space

perturbations decreases models’ ability to generalise to high-level, coarse-grained

changes. The most straightforward implication of this is that adversarial training

should not be treated like the holy grail. It is not the case that “out-of-distribution

generalisation” is a simple metric that is increased by adversarial training –

rather, models perform differently well on different kinds of data depending

on what they have learned, and adversarial training simply incentivises good

performance on the specific kind of data used.

If we are lucky, our empirical finding could just be a bump in the road. The

best-case interpretation of the result is that standard training causes models

to learn fine-grained pixel-level shortcuts; that pixel-perturbation adversarial

training prevents this and causes models to learn coarse-grained shortcuts instead;

and that there exists a simple form of adversarial training that counteracts both

fine- and coarse-grained shortcuts, thereby causing the desired features to be

learned instead of shortcuts.

But this interpretation seems overly optimistic. In the worst case, we could

imagine a world in which we repeatedly identify the shortcut features learned,

and include these in our adversarial, but a new kind of shortcut pops up. Such

8. Conclusion 183

a situation would feel like a game of “whack-a-mole”, in which dealing with

one problem causes another to arise, with no end in sight.

More likely, the true situation is neither the best-case nor the worst-case

interpretation. In any case, an implication of the work in this thesis is that it

would be valuable to conduct experiments with different kinds of adversarial

training to determine whether it is possible to reduce a model’s overall reliance

on shortcuts, or whether adversarial training is only able to change the kinds

of shortcuts that the network learns.

To the extent that the result in Chapter 7 makes us pessimistic about adversar-

ial training as a general solution to out-of-distribution generalisation, we must

either characterise the kinds of data to which we require generalisation so that

they can be used in adversarial training, or turn our attention to developing new

techniques that may improve out-of-distribution generalisation in general.

So the development of algorithms that improved our ability to detect problems

has led to one instance of developing our understanding of out-of-distribution

generalisation. This is certainly one source of wider significance for our work.

But it should be noted that this is still one relatively small development in

understanding – it should not be overstated how much the present work has

led directly to increased knowledge.

8.2.3 Conceptual clarity

If we cannot specify what we want from our machine learning systems, then we

cannot evaluate how successfully a particular model has satisfied our desired

properties. There is of course consensus that a model should perform well on its

training task, including on a hold-out test set drawn from the same distribution

as the training data.

But the field of machine learning remains largely confused about what other

properties we require. To which kinds of ‘out of distribution’ data do we require

generalisation before trusting a system in practice? Is performance narrower

than human capability acceptable, or do we require generalisation at least as

184 8.2. Significance of contributions

good as a person? What is a fault in a machine learning system, and which faults

are tolerable? How does application domain affect our requirements? How can

success be measured? Is security or safety a greater concern?

One hope was that our research would lead to improved conceptual clarity

about the properties we require from deep neural networks – with improved abil-

ity to diagnose problems, perhaps empirical insights into how best to characterise

the kinds of data we would like good performance on might arise.

There is perhaps one small contribution that this thesis has made in this

respect: by more solidly establishing that adversarial training can decrease gener-

alisation to some kinds of data while increasing it to others, it has become clearer

that out-of-distribution generalisation is not a scalar metric that is monotonically

increased by interventions that aim to do so. Instead, there may be (at least

initially) trade-offs between a model’s performance on different kinds of data,

which suggests that it is necessary to characterise the kinds of data to which

generalisation is required (currently a vague and underspecified task that is

itself conceptually unclear).

But this insight is small, and was plausible even without our empirical

evidence. So improved conceptual clarity is only a minor source of significance

for this work.

8.2.4 Development of improved models

The last motivation to discuss is the hope that better diagnosis and understanding

of faults might lead to the development of improved models. The research in

this thesis has not directly led to any improvements in model architectures or

training processes, so this is not a major source of significance.

That said, it is possible that our contributions indirectly lead to the devel-

opment of improved models in the future. By allowing detection of a wider

range of problems, developers may be made aware of shortcomings in their

models that they were previously unaware of, and so attempt to resolve these;

8. Conclusion 185

being able to measure these shortcomings can also give feedback to developers

about their progress.

Whether diagnosis tools can offer greater help to developers than this de-

pends on the nature of the faults uncovered. Whereas a fault in conventional

software is the direct result of a human error that can be understood and often

straightforwardly rectified, that need not be the case for machine learning models.

The final trained model is a product of the model architecture, training algorithm

(and its implementation), hyperparameters, training data, and even random

seeds used. Programmer mistakes in the training or model code are likely to

result in faults in the trained model.

But the more subtle and perhaps more prevalent source of faults in the end

product is simply that the training process was never properly aligned with what

we wanted, either because we were confused about what we wanted from the

model, or more likely because we never tried to specify what we wanted in the

first place. These faults may or may not be intelligible to humans. If they are, and

it is possible to understand what is going wrong at a higher level of abstraction

than simply the various multiplications and additions constituting a forward

pass through the network giving the wrong answer, then this understanding

could lead to insight into what to do to rectify the problem and improve the

network. If they are not, and perhaps ‘fault’ is not even a helpful concept when

it comes to neural networks, then it will not be possible to help developers by

identifying such particular problems that they can understand. This remains

an open question.

8.2.5 Summary

In short, our new test generation algorithms allow the identification of fail-

ures and faults that could not be found using previous approaches. This is

significant because these algorithms, and any that build on them, provide a

better understanding of whether particular models should be trusted – decisions

that are currently made largely in the dark. The success of these algorithms

186 8.3. Building on this thesis

provides a useful indication that the application of generative machine learning

to test generation is fruitful, and provides a starting point for any future research

that seeks to further capitalise on this. More speculatively, we might expect

an improved ability to identify problems with deep neural networks to lead

in time to greater understanding of the causes of generalisation failures and

so eventually to improved models. We might also learn to better specify the

properties we wish a model to satisfy.

By testing and comparing different models, we have found evidence suggest-

ing that adversarial training with one kind of data can significantly decrease

generalisation performance to other kinds of data, a result that has not yet been

firmly established. This finding has further implications of significance: it implies

that models that generalise well on all data we care about require us to either

seek an alternative to adversarial training as it is currently used, or to ensure that

all relevant kinds of data are included in the adversarial training.

8.3 Building on this thesis

While the previous section made some general and broad suggestions for the

field, this section describes some specific suggestions for possible future work

that builds on the contributions made in this thesis.

8.3.1 Next-generation generative models

In parallel with the research conducted for this thesis, the state of the art in

generative models has progressed. Whereas we have used class-conditional

GANs, that is generative models able to generate examples from a number of

discrete classes, the next generation of state-of-the-art generative models have

different capabilities. Recent transformer-based models, such as DALLE 2 [223],

Imagen [224] and Parti [225], instead take arbitrary text as their input. This has

allowed much larger training sets, because images and captions can be scraped

from the web rather than being manually labelled. In all, the visual quality of the

8. Conclusion 187

results and the usefulness of the representations learned by this new generation

of generative models seems a promising resource for testing.

It is plausible that leveraging this impressive recent progress could improve

the capabilities of our testing algorithms in particularly – besides increased

photorealism, the richer feature representations learned by these models could

provide more ways that a particular image can be optimised as a test case.

Although the nature of these next-generation generative models is quite different,

the basic principles of our test generation algorithms should still apply. They

can still be finetuned by training with an additional loss term to incentivise the

generation of tests that find failures. And given a fixed particular input to a

generative model, the process to identify a suitable perturbation to its latent

activations should remain largely unchanged. So the main work here would be

the significant engineering effort, which could the improved generated tests.

There is also potential scope for not only re-engineering our algorithms, but

using them as a starting point to develop new testing algorithms that exploit

the text-to-image capabilities.

8.3.2 Choosing specific features to perturb

Our second new test generation algorithm, which perturbs activation values in

a generative network, makes changes to different features in an image so that

the perturbed image causes the classifier being tested to fail. The procedure

that optimises the activation values is free to adjust any activations (and so

features) without constraint. The only control we have exerted of the kinds

of features changed is by restricting the layers in the generative network at

which the activations could be perturbed. For instance, perturbing earlier layers

only constrains the changes made to be restricted to higher-level features at

a coarser granularity.

But perhaps this algorithm could be adjusted to give a degree of control

over the kinds of features that the perturbation is constrained to optimise. This

would allow a more precise probing of the proxies used by the model being

188 8.3. Building on this thesis

tested – if vegetation were the only feature being adjusted, for instance, then the

dependence of the model on that feature in different contexts could be measured.

In order to facilitate this kind of control, it would first be necessary to identify

which directions in the generator’s latent activation spaces correspond to the

features of interest – the perturbations could then be constrained to act only in

these directions. This could be achieved by training the generator in the first

place so that these representations are predictably ‘disentangled’, or by using a

process such as that in Bau et al. [60] that identifies relevant representations

in existing generators.

8.3.3 Learning generative representations suitable for pertur-
bations

In this thesis, we introduced a procedure that generates tests by training a

generative network so that it directly outputs useful tests, and a procedure

that generates tests by perturbing the latent activations of a fixed, pretrained

generator. It may that combining these two approaches leads to a procedure

with advantages over either one. For instance, it may be possible to train a

generative model so that its latent feature representations are especially well

suited to being perturbed. That is, rather than perturbing the activations of a

standard generator, perhaps it could be beneficial to design a generative model

whose activations are intended to be perturbed.

8.3.4 Counterfactual explanations

In some situations, it is helpful to provide an explanation of why a system made

a decision. Not only for debugging, but to provide helpful user feedback – for

instance to explain to someone why their application for a loan was rejected.

A counterfactual explanation achieves this by providing one or more examples

of similar inputs that would have resulted in a different system output (if the

income had been £8,000 greater, for example). There are existing algorithms

such as those by Wachter, Mittelstadt, and Russell [226] and Sharma, Henderson,

8. Conclusion 189

and Ghosh [227] that provide counterfactual explanations, but they could be

extended by exploiting the context-sensitive perturbation algorithm introduced

in Chapter 5. In this way, the explanation algorithm could be freed from only

making small changes to the raw features, and could make changes to higher-

level latent underlying features. For instance, rather than keeping all else

equal and raising only the income, this approach might make plausible changes

to inputs besides income that could all be caused by an upstream change,

such as getting a secure job. In short, exploitation of generative modelling

using the techniques introduced in this thesis could improve the quality of the

counterfactual explanations provided.

8.3.5 Adaptation to other domains

In this thesis, the new test generation algorithms were presented and evaluated

solely in the context of image classification. But there is not anything fundamental

to this choice of application domain; the algorithms should work when adapted

to work with other kinds of data. For example, audio, video, natural language,

or even code. The only requirement is the training of a generative model that

can learn to output examples of the relevant data type. Besides natural language,

these have received less attention than generative models for images. There are

other difficulties associated with this adaptation, such as the greater complexity

of video and the less immediate output of audio from a computer to a human,

but these are all practical in nature. In practice, this project would require fresh

implementations of our testing algorithms, rather than attempting to adapt the

image-specific existing codebase.

Moving beyond classification to other test other discriminative models would

also certainly be possible. The algorithms would simply need new loss terms to

be defined that measured the performance of the model being tested on a given

input – for instance, some form of error term for a regression model.

190 8.3. Building on this thesis

8.3.6 Testing of systems besides DNNs

The new algorithms were designed to test deep neural networks in particular –

they both rely on their differentiability to allow the standard backpropagation al-

gorithm to make updates to either the weights of the generator or the perturbation

tensors. So in principle, they could be applied to any differentiable system.

If they could be adapted to not require differentiability in the system being

tested, then they could be applied to test any software program or even hardware

design. It is not immediately obvious whether such an adaptation is possible,

but it would likely exploit techniques from reinforcement learning in order to

optimise the generator weights or perturbation tensors.

References

[1] Isaac Dunn, Hadrien Pouget, Tom Melham, and Daniel Kroening. “Adaptive
Generation of Unrestricted Adversarial Inputs”. In: CoRR abs/1905.02463 (2019).
arXiv: 1905.02463. URL: http://arxiv.org/abs/1905.02463.

[2] Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. “Constructing
Unrestricted Adversarial Examples with Generative Models”. In: Advances in
Neural Information Processing Systems (NeurIPS). Ed. by Samy Bengio,
Hanna M Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett. 2018, pp. 8322–8333. URL:
http://papers.nips.cc/paper/8052-constructing-unrestricted-
adversarial-examples-with-generative-models.

[3] Isaac Dunn, Laura Hanu, Hadrien Pouget, Tom Melham, and Daniel Kroening.
“Evaluating Robustness to Context-Sensitive Feature Perturbations of Different
Granularities”. In: CoRR abs/2001.11055 (2020). arXiv: 2001.11055. URL:
https://arxiv.org/abs/2001.11055.

[4] Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham. “Exposing
previously undetectable faults in deep neural networks”. In: ISSTA ’21: 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event,
Denmark, July 11-17, 2021. Ed. by Cristian Cadar and Xiangyu Zhang. ACM, 2021,
pp. 56–66. DOI: 10.1145/3460319.3464801. URL:
https://doi.org/10.1145/3460319.3464801.

[5] Tim Salimans, Katherine Heller, David Blei, Max Welling, Zoubin Ghahramani,
and Matt Hoffman. “Panel on the Foundations and Future of Approximate
Inference”. In: Thirty-first Conference on Neural Information Processing Systems (Dec.
2017).

[6] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard S. Zemel,
Wieland Brendel, Matthias Bethge, and Felix A. Wichmann. “Shortcut learning in
deep neural networks”. In: Nat. Mach. Intell. 2.11 (2020), pp. 665–673. DOI:
10.1038/s42256-020-00257-z. URL:
https://doi.org/10.1038/s42256-020-00257-z.

[7] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
Harnessing Adversarial Examples”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. URL:
http://arxiv.org/abs/1412.6572.

191

https://arxiv.org/abs/1905.02463
http://arxiv.org/abs/1905.02463
http://papers.nips.cc/paper/8052-constructing-unrestricted-adversarial-examples-with-generative-models
http://papers.nips.cc/paper/8052-constructing-unrestricted-adversarial-examples-with-generative-models
https://arxiv.org/abs/2001.11055
https://arxiv.org/abs/2001.11055
https://doi.org/10.1145/3460319.3464801
https://doi.org/10.1145/3460319.3464801
https://doi.org/10.1038/s42256-020-00257-z
https://doi.org/10.1038/s42256-020-00257-z
http://arxiv.org/abs/1412.6572

192 References

[8] Andrey Kuehlkamp, Benedict Becker, and Kevin W. Bowyer. “Gender-from-Iris
or Gender-from-Mascara?” In: 2017 IEEE Winter Conference on Applications of
Computer Vision, WACV 2017, Santa Rosa, CA, USA, March 24-31, 2017. IEEE
Computer Society, 2017, pp. 1151–1159. DOI: 10.1109/WACV.2017.133. URL:
https://doi.org/10.1109/WACV.2017.133.

[9] Sara Beery, Grant Van Horn, and Pietro Perona. “Recognition in Terra Incognita”.
In: Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part XVI. Ed. by Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss. Vol. 11220. Lecture Notes in Computer
Science. Springer, 2018, pp. 472–489. DOI: 10.1007/978-3-030-01270-0_28.

[10] John R. Zech, Marcus A. Badgeley, Manway Liu, Anthony B. Costa,
Joseph J. Titano, and Eric K. Oermann. “Confounding variables can degrade
generalization performance of radiological deep learning models”. In: CoRR
abs/1807.00431 (2018). arXiv: 1807.00431. URL:
http://arxiv.org/abs/1807.00431.

[11] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry. “Adversarial Examples Are Not Bugs,
They Are Features”. In: Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
8-14 December 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett. 2019, pp. 125–136. URL: http://papers.nips.cc/paper/8307-
adversarial-examples-are-not-bugs-they-are-features.

[12] Justin Gilmer and Dan Hendrycks. “A Discussion of ’Adversarial Examples Are
Not Bugs, They Are Features’: Adversarial Example Researchers Need to Expand
What Is Meant by ’Robustness’”. en. In: Distill 4.8 (Aug. 2019), e00019.1. DOI:
10.23915/distill.00019.1. URL:
https://distill.pub/2019/advex-bugs-discussion/response-1 (visited on
08/30/2019).

[13] Pang Wei Koh et al. “WILDS: A Benchmark of in-the-Wild Distribution Shifts”.
In: Proceedings of the 38th International Conference on Machine Learning. PMLR, July
2021, pp. 5637–5664.

[14] Paul Trichelair, Ali Emami, Adam Trischler, Kaheer Suleman, and Jackie
Chi Kit Cheung. “How Reasonable are Common-Sense Reasoning Tasks: A
Case-Study on the Winograd Schema Challenge and SWAG”. In: Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019. Ed. by Kentaro Inui, Jing Jiang, Vincent Ng,
and Xiaojun Wan. Association for Computational Linguistics, 2019,
pp. 3380–3385. DOI: 10.18653/v1/D19-1335. URL:
https://doi.org/10.18653/v1/D19-1335.

[15] Timothy Niven and Hung-Yu Kao. “Probing Neural Network Comprehension of
Natural Language Arguments”. In: Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2,
2019, Volume 1: Long Papers. Ed. by Anna Korhonen, David R. Traum, and

https://doi.org/10.1109/WACV.2017.133
https://doi.org/10.1109/WACV.2017.133
https://doi.org/10.1007/978-3-030-01270-0_28
https://arxiv.org/abs/1807.00431
http://arxiv.org/abs/1807.00431
http://papers.nips.cc/paper/8307-adversarial-examples-are-not-bugs-they-are-features
http://papers.nips.cc/paper/8307-adversarial-examples-are-not-bugs-they-are-features
https://doi.org/10.23915/distill.00019.1
https://distill.pub/2019/advex-bugs-discussion/response-1
https://doi.org/10.18653/v1/D19-1335
https://doi.org/10.18653/v1/D19-1335

References 193

Lluís Màrquez. Association for Computational Linguistics, 2019, pp. 4658–4664.
DOI: 10.18653/v1/p19-1459. URL: https://doi.org/10.18653/v1/p19-1459.

[16] John Miller, Karl Krauth, Benjamin Recht, and Ludwig Schmidt. “The Effect of
Natural Distribution Shift on Question Answering Models”. In: Proceedings of the
37th International Conference on Machine Learning. PMLR, Nov. 2020,
pp. 6905–6916.

[17] Alexander D’Amour et al. “Underspecification Presents Challenges for
Credibility in Modern Machine Learning”. In: CoRR abs/2011.03395 (2020). arXiv:
2011.03395.

[18] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”.
In: International Journal of Computer Vision 115.3 (2015), pp. 211–252.

[19] Tom B Brown, Nicholas Carlini, Chiyuan Zhang, Catherine Olsson,
Paul Francis Christiano, and Ian J Goodfellow. “Unrestricted Adversarial
Examples”. In: CoRR abs/1809.0 (2018). arXiv: 1809.08352. URL:
http://arxiv.org/abs/1809.08352.

[20] J.N. Buxton and B. Randell. “Software Engineering Techniques”. In: NATO
Science Committee (1970). URL:
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF.

[21] “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE Std
610.12-1990 (1990), pp. 1–84. DOI: 10.1109/IEEESTD.1990.101064.

[22] Divya Kumar and K.K. Mishra. “The Impacts of Test Automation on Software’s
Cost, Quality and Time to Market”. In: Procedia Computer Science 79 (2016).
Proceedings of International Conference on Communication, Computing and
Virtualization (ICCCV) 2016, pp. 8–15. DOI:
https://doi.org/10.1016/j.procs.2016.03.003. URL: https:
//www.sciencedirect.com/science/article/pii/S1877050916001277.

[23] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron C Courville, and Yoshua Bengio.
“Generative Adversarial Nets”. In: Advances in Neural Information Processing
Systems (NeurIPS). Ed. by Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D Lawrence, and Kilian Q Weinberger. 2014, pp. 2672–2680. URL:
http://papers.nips.cc/paper/5423-generative-adversarial-nets.

[24] Ian J Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks”. In:
CoRR abs/1701.0 (2017). arXiv: 1701.00160. URL:
http://arxiv.org/abs/1701.00160.

[25] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and
Olivier Bousquet. “Are GANs Created Equal? A Large-Scale Study”. In: Advances
in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada. Ed. by Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett. 2018, pp. 698–707.
URL: http://papers.nips.cc/paper/7350-are-gans-created-equal-a-
large-scale-study (visited on 10/16/2019).

https://doi.org/10.18653/v1/p19-1459
https://doi.org/10.18653/v1/p19-1459
https://arxiv.org/abs/2011.03395
https://arxiv.org/abs/1809.08352
http://arxiv.org/abs/1809.08352
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/https://doi.org/10.1016/j.procs.2016.03.003
https://www.sciencedirect.com/science/article/pii/S1877050916001277
https://www.sciencedirect.com/science/article/pii/S1877050916001277
http://papers.nips.cc/paper/5423-generative-adversarial-nets
https://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://papers.nips.cc/paper/7350-are-gans-created-equal-a-large-scale-study
http://papers.nips.cc/paper/7350-are-gans-created-equal-a-large-scale-study

194 References

[26] Zhengwei Wang, Qi She, and Tomas E. Ward. “Generative Adversarial Networks:
A Survey and Taxonomy”. In: CoRR abs/1906.01529 (2019). URL:
http://arxiv.org/abs/1906.01529 (visited on 10/16/2019).

[27] Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. “How
Generative Adversarial Networks and Their Variants Work: An Overview”. In:
ACM Comput. Surv. 52.1 (2019), 10:1–10:43. DOI: 10.1145/3301282.

[28] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks”. In: 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and
Yann LeCun. 2016. URL: http://arxiv.org/abs/1511.06434 (visited on
10/16/2019).

[29] Martín Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Generative
Adversarial Networks”. In: International Conference on Machine Learning (ICML).
Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, 2017, pp. 214–223. URL:
http://proceedings.mlr.press/v70/arjovsky17a.html.

[30] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and
Aaron C Courville. “Improved Training of Wasserstein GANs”. In: Advances in
Neural Information Processing Systems (NeurIPS). Ed. by Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M Wallach, Rob Fergus,
S V N Vishwanathan, and Roman Garnett. 2017, pp. 5769–5779. URL: http:
//papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.

[31] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. “Progressive
Growing of GANs for Improved Quality, Stability, and Variation”. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
URL: https://openreview.net/forum?id=Hk99zCeAb (visited on 10/16/2019).

[32] Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and Augustus Odena.
“Self-Attention Generative Adversarial Networks”. In: Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov.
Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 7354–7363.
URL: http://proceedings.mlr.press/v97/zhang19d.html (visited on
10/16/2019).

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention Is All You
Need”. In: Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA. Ed. by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett. 2017,
pp. 5998–6008. URL:
http://papers.nips.cc/paper/7181-attention-is-all-you-need (visited
on 10/16/2019).

http://arxiv.org/abs/1906.01529
https://doi.org/10.1145/3301282
http://arxiv.org/abs/1511.06434
http://proceedings.mlr.press/v70/arjovsky17a.html
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans
https://openreview.net/forum?id=Hk99zCeAb
http://proceedings.mlr.press/v97/zhang19d.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need

References 195

[34] Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large Scale GAN Training
for High Fidelity Natural Image Synthesis”. In: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL: https://openreview.net/forum?id=B1xsqj09Fm.

[35] Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets”.
In: CoRR abs/1411.1 (2014). arXiv: 1411.1784. URL:
http://arxiv.org/abs/1411.1784.

[36] Augustus Odena, Christopher Olah, and Jonathon Shlens. “Conditional Image
Synthesis with Auxiliary Classifier GANs”. In: International Conference on Machine
Learning (ICML). Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of
Machine Learning Research. PMLR, 2017, pp. 2642–2651. URL:
http://proceedings.mlr.press/v70/odena17a.html.

[37] Brendan J Frey, J Frey Brendan, and Brendan J Frey. Graphical Models for Machine
Learning and Digital Communication. MIT press, 1998.

[38] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and
Koray Kavukcuoglu. “WaveNet: A Generative Model for Raw Audio”. In: The 9th
ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA, 13-15 September 2016. ISCA,
2016, p. 125. URL: http://www.isca-
speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
(visited on 10/16/2019).

[39] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma.
“PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
Likelihood and Other Modifications”. In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL:
https://openreview.net/forum?id=BJrFC6ceg (visited on 10/16/2019).

[40] Aapo Hyvärinen and Petteri Pajunen. “Nonlinear Independent Component
Analysis: Existence and Uniqueness Results”. In: Neural Networks 12.3 (1999),
pp. 429–439.

[41] Laurent Dinh, David Krueger, and Yoshua Bengio. “NICE: Non-Linear
Independent Components Estimation”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. URL:
http://arxiv.org/abs/1410.8516 (visited on 10/16/2019).

[42] Diederik P. Kingma and Prafulla Dhariwal. “Glow: Generative Flow with
Invertible 1x1 Convolutions”. In: Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada. Ed. by Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett. 2018, pp. 10236–10245. URL:
http://papers.nips.cc/paper/8224-glow-generative-flow-with-
invertible-1x1-convolutions (visited on 10/16/2019).

[43] Geoffrey E Hinton, Terrence J Sejnowski, et al. “Learning and Relearning in
Boltzmann Machines”. In: Parallel distributed processing: Explorations in the
microstructure of cognition 1.282-317 (1986), p. 2.

https://openreview.net/forum?id=B1xsqj09Fm
https://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://proceedings.mlr.press/v70/odena17a.html
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
https://openreview.net/forum?id=BJrFC6ceg
http://arxiv.org/abs/1410.8516
http://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions
http://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions

196 References

[44] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by Yoshua Bengio and
Yann LeCun. 2014. URL: http://arxiv.org/abs/1312.6114 (visited on
10/16/2019).

[45] Gaurav Kumar and Pradeep Kumar Bhatia. “A Detailed Review of Feature
Extraction in Image Processing Systems”. In: 2014 Fourth International Conference
on Advanced Computing Communication Technologies. 2014, pp. 5–12. DOI:
10.1109/ACCT.2014.74.

[46] David G Lowe. “Object recognition from local scale-invariant features”. In:
Proceedings of the seventh IEEE international conference on computer vision. Vol. 2.
Ieee. 1999, pp. 1150–1157.

[47] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov,
and Shan Carter. “Zoom In: An Introduction to Circuits”. In: Distill (2020).
https://distill.pub/2020/circuits/zoom-in. DOI: 10.23915/distill.00024.001.

[48] Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov,
Ludwig Schubert, Chelsea Voss, Ben Egan, and Swee Kiat Lim. “Thread:
Circuits”. In: Distill (2020). https://distill.pub/2020/circuits. DOI:
10.23915/distill.00024.

[49] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. “Going deeper with convolutions”. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2015. IEEE Computer Society, 2015, pp. 1–9. DOI: 10.1109/CVPR.2015.7298594.
URL: https://doi.org/10.1109/CVPR.2015.7298594.

[50] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A
large-scale hierarchical image database”. In: 2009 IEEE conference on computer
vision and pattern recognition. Ieee. 2009, pp. 248–255.

[51] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature
Visualization”. In: Distill (2017). https://distill.pub/2017/feature-visualization.
DOI: 10.23915/distill.00007.

[52] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov,
and Shan Carter. “An Overview of Early Vision in InceptionV1”. In: Distill (2020).
https://distill.pub/2020/circuits/early-vision. DOI:
10.23915/distill.00024.002.

[53] Nick Cammarata, Gabriel Goh, Shan Carter, Ludwig Schubert, Michael Petrov,
and Chris Olah. “Curve Detectors”. In: Distill (2020).
https://distill.pub/2020/circuits/curve-detectors. DOI:
10.23915/distill.00024.003.

[54] Nick Cammarata, Gabriel Goh, Shan Carter, Chelsea Voss, Ludwig Schubert, and
Chris Olah. “Curve Circuits”. In: Distill (2021).
https://distill.pub/2020/circuits/curve-circuits. DOI:
10.23915/distill.00024.006.

http://arxiv.org/abs/1312.6114
https://doi.org/10.1109/ACCT.2014.74
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.23915/distill.00007
https://doi.org/10.23915/distill.00024.002
https://doi.org/10.23915/distill.00024.003
https://doi.org/10.23915/distill.00024.006

References 197

[55] Alec Radford et al. “Learning Transferable Visual Models From Natural
Language Supervision”. In: Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event. Ed. by Marina Meila
and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR,
2021, pp. 8748–8763. URL:
http://proceedings.mlr.press/v139/radford21a.html.

[56] Gabriel Goh, Nick Cammarata †, Chelsea Voss †, Shan Carter, Michael Petrov,
Ludwig Schubert, Alec Radford, and Chris Olah. “Multimodal Neurons in
Artificial Neural Networks”. In: Distill (2021).
https://distill.pub/2021/multimodal-neurons. DOI: 10.23915/distill.00030.

[57] Jesse Mu and Jacob Andreas. “Compositional Explanations of Neurons”. In:
Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.
Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin. 2020. URL:
https://proceedings.neurips.cc/paper/2020/hash/
c74956ffb38ba48ed6ce977af6727275-Abstract.html.

[58] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
“Network Dissection: Quantifying Interpretability of Deep Visual
Representations”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer
Society, 2017, pp. 3319–3327. DOI: 10.1109/CVPR.2017.354. URL:
https://doi.org/10.1109/CVPR.2017.354.

[59] Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and
James R. Glass. “What Is One Grain of Sand in the Desert? Analyzing Individual
Neurons in Deep NLP Models”. In: The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019. AAAI Press, 2019, pp. 6309–6317. DOI:
10.1609/aaai.v33i01.33016309. URL:
https://doi.org/10.1609/aaai.v33i01.33016309.

[60] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum,
William T. Freeman, and Antonio Torralba. “GAN Dissection: Visualizing and
Understanding Generative Adversarial Networks”. In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL:
https://openreview.net/forum?id=Hyg_X2C5FX (visited on 01/29/2020).

[61] Ali Jahanian, Lucy Chai, and Phillip Isola. “On the "steerability" of generative
adversarial networks”. In: CoRR abs/1907.07171 (2019). arXiv: 1907.07171. URL:
http://arxiv.org/abs/1907.07171.

[62] Brian D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, 1996. DOI: 10.1017/CBO9780511812651.

[63] Battista Biggio and Fabio Roli. “Wild Patterns: Ten Years after the Rise of
Adversarial Machine Learning”. In: Pattern Recognition 84 (2018), pp. 317–331.
DOI: 10.1016/j.patcog.2018.07.023.

http://proceedings.mlr.press/v139/radford21a.html
https://doi.org/10.23915/distill.00030
https://proceedings.neurips.cc/paper/2020/hash/c74956ffb38ba48ed6ce977af6727275-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c74956ffb38ba48ed6ce977af6727275-Abstract.html
https://doi.org/10.1109/CVPR.2017.354
https://doi.org/10.1109/CVPR.2017.354
https://doi.org/10.1609/aaai.v33i01.33016309
https://doi.org/10.1609/aaai.v33i01.33016309
https://openreview.net/forum?id=Hyg_X2C5FX
https://arxiv.org/abs/1907.07171
http://arxiv.org/abs/1907.07171
https://doi.org/10.1017/CBO9780511812651
https://doi.org/10.1016/j.patcog.2018.07.023

198 References

[64] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. “Intriguing properties of
neural networks”. In: 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by
Yoshua Bengio and Yann LeCun. 2014. URL: http://arxiv.org/abs/1312.6199.

[65] Dong C. Liu and Jorge Nocedal. “On the Limited Memory BFGS Method for
Large Scale Optimization”. en. In: Mathematical Programming 45.1 (Aug. 1989),
pp. 503–528. DOI: 10.1007/BF01589116. URL:
https://doi.org/10.1007/BF01589116 (visited on 10/23/2019).

[66] Mehdi Hussain, Ainuddin Wahid Abdul Wahab, Yamani Idna Bin Idris, Anthony
T. S. Ho, and Ki-Hyun Jung. “Image Steganography in Spatial Domain: A
Survey”. en. In: Signal Processing: Image Communication 65 (July 2018), pp. 46–66.
DOI: 10.1016/j.image.2018.03.012. URL:
http://www.sciencedirect.com/science/article/pii/S092359651830256X
(visited on 10/23/2019).

[67] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference on
Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel. Ed. by
Johannes Fürnkranz and Thorsten Joachims. Omnipress, 2010, pp. 807–814. URL:
https://icml.cc/Conferences/2010/papers/432.pdf (visited on
10/23/2019).

[68] Kurt Hornik. “Approximation Capabilities of Multilayer Feedforward
Networks”. en. In: Neural Networks 4.2 (Jan. 1991), pp. 251–257. DOI:
10.1016/0893-6080(91)90009-T. URL:
http://www.sciencedirect.com/science/article/pii/089360809190009T
(visited on 10/24/2019).

[69] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and
Anil K. Jain. “Adversarial Attacks and Defenses in Images, Graphs and Text: A
Review”. In: CoRR abs/1909.08072 (2019). URL:
http://arxiv.org/abs/1909.08072 (visited on 10/25/2019).

[70] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial Examples in
the Physical World”. In: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.
OpenReview.net, 2017. URL: https://openreview.net/forum?id=HJGU3Rodl
(visited on 10/16/2019).

[71] Nicholas Carlini and David A. Wagner. “Towards Evaluating the Robustness of
Neural Networks”. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 2017, pp. 39–57. DOI:
10.1109/SP.2017.49. URL: https://doi.org/10.1109/SP.2017.49.

[72] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.
“DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 2574–2582.
DOI: 10.1109/CVPR.2016.282.

http://arxiv.org/abs/1312.6199
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://doi.org/10.1016/j.image.2018.03.012
http://www.sciencedirect.com/science/article/pii/S092359651830256X
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.1016/0893-6080(91)90009-T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://arxiv.org/abs/1909.08072
https://openreview.net/forum?id=HJGU3Rodl
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/CVPR.2016.282

References 199

[73] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, and Ananthram Swami. “The Limitations of Deep Learning in
Adversarial Settings”. In: IEEE European Symposium on Security and Privacy,
EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016. IEEE, 2016, pp. 372–387.
DOI: 10.1109/EuroSP.2016.36. URL:
https://doi.org/10.1109/EuroSP.2016.36.

[74] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. “Transferability in
Machine Learning: From Phenomena to Black-Box Attacks Using Adversarial
Samples”. In: CoRR abs/1605.07277 (2016). URL:
http://arxiv.org/abs/1605.07277 (visited on 10/16/2019).

[75] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. “Universal Adversarial Perturbations”. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017. IEEE Computer Society, 2017, pp. 86–94. DOI:
10.1109/CVPR.2017.17.

[76] Nicholas Carlini and David A. Wagner. “Audio Adversarial Examples: Targeted
Attacks on Speech-to-Text”. In: 2018 IEEE Security and Privacy Workshops, SP
Workshops 2018, San Francisco, CA, USA, May 24, 2018. IEEE Computer Society,
2018, pp. 1–7. DOI: 10.1109/SPW.2018.00009.

[77] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho,
Mani B Srivastava, and Kai-Wei Chang. “Generating Natural Language
Adversarial Examples”. In: Proc. 2018 Conf. Empir. Methods Nat. Lang. Process.
Brussels, Belgium, Oct. 31 - Novemb. 4, 2018. Ed. by Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii. Association for Computational
Linguistics, 2018, pp. 2890–2896. URL:
https://aclanthology.info/papers/D18-1316/d18-1316.

[78] Wei Emma Zhang, Quan Z. Sheng, Ahoud Abdulrahmn F. Alhazmi, and
Chenliang Li. “Adversarial Attacks on Deep Learning Models in Natural
Language Processing: A Survey”. In: CoRR abs/1901.06796 (2019). URL:
http://arxiv.org/abs/1901.06796 (visited on 10/17/2019).

[79] Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and
Pieter Abbeel. “Adversarial Attacks on Neural Network Policies”. In: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017. URL:
https://openreview.net/forum?id=ryvlRyBKl (visited on 10/16/2019).

[80] Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, Sergey Levine, and
Stuart Russell. “Adversarial Policies: Attacking Deep Reinforcement Learning”.
In: CoRR abs/1905.10615 (2019). URL: http://arxiv.org/abs/1905.10615
(visited on 10/16/2019).

[81] Tong Chen, Jiqiang Liu, Yingxiao Xiang, Wenjia Niu, Endong Tong, and
Zhen Han. “Adversarial Attack and Defense in Reinforcement Learning-from AI
Security View”. en. In: Cybersecurity 2.1 (Dec. 2019), p. 11. DOI:
10.1186/s42400-019-0027-x. URL:
https://cybersecurity.springeropen.com/articles/10.1186/s42400-019-
0027-x (visited on 10/16/2019).

https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/EuroSP.2016.36
http://arxiv.org/abs/1605.07277
https://doi.org/10.1109/CVPR.2017.17
https://doi.org/10.1109/SPW.2018.00009
https://aclanthology.info/papers/D18-1316/d18-1316
http://arxiv.org/abs/1901.06796
https://openreview.net/forum?id=ryvlRyBKl
http://arxiv.org/abs/1905.10615
https://doi.org/10.1186/s42400-019-0027-x
https://cybersecurity.springeropen.com/articles/10.1186/s42400-019-0027-x
https://cybersecurity.springeropen.com/articles/10.1186/s42400-019-0027-x

200 References

[82] Adi Shamir, Itay Safran, Eyal Ronen, and Orr Dunkelman. “A Simple
Explanation for the Existence of Adversarial Examples with Small Hamming
Distance”. In: arXiv:1901.10861 [cs, stat] (Jan. 2019). arXiv: 1901.10861 [cs,
stat]. URL: http://arxiv.org/abs/1901.10861 (visited on 07/16/2019).

[83] Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein.
“Are Adversarial Examples Inevitable?” In: CoRR abs/1809.02104 (2018). arXiv:
1809.02104. URL: http://arxiv.org/abs/1809.02104.

[84] Saumya Jetley, Nicholas A. Lord, and Philip H. S. Torr. “With Friends Like These,
Who Needs Adversaries?” In: Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada. Ed. by Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett.
2018, pp. 10772–10782. URL: http://papers.nips.cc/paper/8273-with-
friends-like-these-who-needs-adversaries (visited on 10/24/2019).

[85] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and
Aleksander Madry. “Adversarially Robust Generalization Requires More Data”.
In: Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada. Ed. by Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett. 2018, pp. 5019–5031.
URL: http://papers.nips.cc/paper/7749-adversarially-robust-
generalization-requires-more-data (visited on 10/16/2019).

[86] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. “Learning
with a Strong Adversary”. In: CoRR abs/1511.03034 (2015). URL:
http://arxiv.org/abs/1511.03034 (visited on 10/16/2019).

[87] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial Machine
Learning at Scale”. In: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL: https://openreview.net/forum?id=BJm4T4Kgx
(visited on 10/16/2019).

[88] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. “Towards Deep Learning Models Resistant to Adversarial
Attacks”. In: 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL: https://openreview.net/forum?id=rJzIBfZAb.

[89] J. M. Danskin. The Theory of Max-Min and Its Application to Weapons Allocation
Problems. en. Ökonometrie Und Unternehmensforschung Econometrics and
Operations Research. Berlin Heidelberg: Springer-Verlag, 1967. DOI:
10.1007/978-3-642-46092-0. URL:
https://www.springer.com/gp/book/9783642460944 (visited on 10/23/2019).

[90] Florian Tramèr and Dan Boneh. “Adversarial Training and Robustness for
Multiple Perturbations”. In: CoRR abs/1904.13000 (2019). URL:
http://arxiv.org/abs/1904.13000 (visited on 10/23/2019).

https://arxiv.org/abs/1901.10861
https://arxiv.org/abs/1901.10861
http://arxiv.org/abs/1901.10861
https://arxiv.org/abs/1809.02104
http://arxiv.org/abs/1809.02104
http://papers.nips.cc/paper/8273-with-friends-like-these-who-needs-adversaries
http://papers.nips.cc/paper/8273-with-friends-like-these-who-needs-adversaries
http://papers.nips.cc/paper/7749-adversarially-robust-generalization-requires-more-data
http://papers.nips.cc/paper/7749-adversarially-robust-generalization-requires-more-data
http://arxiv.org/abs/1511.03034
https://openreview.net/forum?id=BJm4T4Kgx
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1007/978-3-642-46092-0
https://www.springer.com/gp/book/9783642460944
http://arxiv.org/abs/1904.13000

References 201

[91] Pratyush Maini, Eric Wong, and J. Zico Kolter. “Adversarial Robustness Against
the Union of Multiple Perturbation Models”. In: arXiv:1909.04068 [cs, stat] (Sept.
2019). arXiv: 1909.04068 [cs, stat]. URL:
http://arxiv.org/abs/1909.04068 (visited on 10/03/2019).

[92] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
“Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks”. In:
Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I. Ed. by Rupak Majumdar and
Viktor Kuncak. Vol. 10426. Lecture Notes in Computer Science. Springer, 2017,
pp. 97–117. DOI: 10.1007/978-3-319-63387-9_5.

[93] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and
Ananthram Swami. “Distillation as a Defense to Adversarial Perturbations
Against Deep Neural Networks”. In: IEEE Symposium on Security and Privacy, SP
2016, San Jose, CA, USA, May 22-26, 2016. IEEE Computer Society, 2016,
pp. 582–597. DOI: 10.1109/SP.2016.41.

[94] Nicholas Carlini and David A. Wagner. “Defensive Distillation Is Not Robust to
Adversarial Examples”. In: CoRR abs/1607.04311 (2016). URL:
http://arxiv.org/abs/1607.04311 (visited on 10/25/2019).

[95] Anish Athalye, Nicholas Carlini, and David A Wagner. “Obfuscated Gradients
Give a False Sense of Security: Circumventing Defenses to Adversarial
Examples”. In: International Conference on Machine Learning (ICML). Ed. by
Jennifer G Dy and Andreas Krause. Vol. 80. 2018, pp. 274–283. URL:
http://proceedings.mlr.press/v80/athalye18a.html.

[96] Nicholas Carlini and David A. Wagner. “Adversarial Examples Are Not Easily
Detected: Bypassing Ten Detection Methods”. In: Workshop on Artificial
Intelligence and Security at the ACM Conference on Computer and Communications
Security (AISec@CCS. ACM, 2017, pp. 3–14.

[97] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel,
Jonas Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and
Alexey Kurakin. “On Evaluating Adversarial Robustness”. In: arXiv:1902.06705
[cs, stat] (Feb. 2019). arXiv: 1902.06705 [cs, stat]. URL:
http://arxiv.org/abs/1902.06705 (visited on 06/18/2019).

[98] Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark Barrett, and
Mykel J. Kochenderfer. “Algorithms for Verifying Deep Neural Networks”. In:
CoRR abs/1903.06758 (2019). arXiv: 1903.06758. URL:
http://arxiv.org/abs/1903.06758.

[99] Matthew Mirman, Timon Gehr, and Martin T. Vechev. “Differentiable Abstract
Interpretation for Provably Robust Neural Networks”. In: Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause.
Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018, pp. 3575–3583.
URL: http://proceedings.mlr.press/v80/mirman18b.html (visited on
10/17/2019).

https://arxiv.org/abs/1909.04068
http://arxiv.org/abs/1909.04068
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1109/SP.2016.41
http://arxiv.org/abs/1607.04311
http://proceedings.mlr.press/v80/athalye18a.html
https://arxiv.org/abs/1902.06705
http://arxiv.org/abs/1902.06705
https://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1903.06758
http://proceedings.mlr.press/v80/mirman18b.html

202 References

[100] Eric Wong and J. Zico Kolter. “Provable Defenses against Adversarial Examples
via the Convex Outer Adversarial Polytope”. In: Proceedings of the 35th
International Conference on Machine Learning (ICML). Ed. by Jennifer G Dy and
Andreas Krause. Vol. 80. JMLR Workshop and Conference Proceedings.
JMLR.org, 2018, pp. 5283–5292. URL:
http://proceedings.mlr.press/v80/wong18a.html.

[101] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. “Provable
Robustness of ReLU Networks via Maximization of Linear Regions”. In: The 22nd
International Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18
April 2019, Naha, Okinawa, Japan. Ed. by Kamalika Chaudhuri and
Masashi Sugiyama. Vol. 89. Proceedings of Machine Learning Research. PMLR,
2019, pp. 2057–2066. URL:
http://proceedings.mlr.press/v89/croce19a.html (visited on 10/17/2019).

[102] Shiqi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana. “MixTrain: Scalable
Training of Formally Robust Neural Networks”. In: CoRR abs/1811.02625 (2018).

[103] Francesco Croce and Matthias Hein. “Provable Robustness against All
Adversarial Lp-Perturbations for P>=1”. In: CoRR abs/1905.11213 (2019). URL:
http://arxiv.org/abs/1905.11213 (visited on 10/23/2019).

[104] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. “DLFuzz:
differential fuzzing testing of deep learning systems”. In: Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE 2018. New York,
NY, USA: Association for Computing Machinery, Oct. 2018, pp. 739–743. DOI:
10.1145/3236024.3264835. URL:
https://doi.org/10.1145/3236024.3264835 (visited on 10/13/2020).

[105] Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh. “Effective white-box
testing of deep neural networks with adaptive neuron-selection strategy”. In:
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ISSTA 2020. New York, NY, USA: Association for Computing
Machinery, July 2020, pp. 165–176. DOI: 10.1145/3395363.3397346. URL:
https://doi.org/10.1145/3395363.3397346 (visited on 10/13/2020).

[106] Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. “Adversarial attacks and
defenses in deep learning”. In: Engineering 6.3 (2020), pp. 346–360.

[107] Nicholas Carlini. A Complete List of All Adversarial Example Papers.
https://nicholas.carlini.com/writing/2019/all-adversarial-example-
papers.html. June 2019.

[108] Justin Gilmer, Ryan P Adams, Ian J Goodfellow, David Andersen, and
George E Dahl. “Motivating the Rules of the Game for Adversarial Example
Research”. In: CoRR abs/1807.0 (2018). arXiv: 1807.06732. URL:
http://arxiv.org/abs/1807.06732.

[109] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras,
Brandon Tran, and Aleksander Madry. “Adversarial Robustness as a Prior for
Learned Representations”. In: arXiv:1906.00945 [cs, stat] (Sept. 2019). arXiv:
1906.00945 [cs, stat]. URL: http://arxiv.org/abs/1906.00945 (visited on
10/24/2019).

http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v89/croce19a.html
http://arxiv.org/abs/1905.11213
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3395363.3397346
https://doi.org/10.1145/3395363.3397346
https://arxiv.org/abs/1807.06732
http://arxiv.org/abs/1807.06732
https://arxiv.org/abs/1906.00945
http://arxiv.org/abs/1906.00945

References 203

[110] Shibani Santurkar, Dimitris Tsipras, Brandon Tran, Andrew Ilyas,
Logan Engstrom, and Aleksander Madry. “Image Synthesis with a Single
(Robust) Classifier”. In: arXiv:1906.09453 [cs, stat] (Aug. 2019). arXiv: 1906.09453
[cs, stat]. URL: http://arxiv.org/abs/1906.09453 (visited on 10/24/2019).

[111] Zhou Wang and Alan C. Bovik. “Mean Squared Error: Love It or Leave It? A New
Look at Signal Fidelity Measures”. In: IEEE Signal Processing Magazine 26.1 (Jan.
2009), pp. 98–117. DOI: 10.1109/MSP.2008.930649.

[112] Florian Tramèr, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, and
Jörn-Henrik Jacobsen. “Fundamental Tradeoffs between Invariance and
Sensitivity to Adversarial Perturbations”. In: CoRR abs/2002.04599 (2020). arXiv:
2002.04599. URL: https://arxiv.org/abs/2002.04599.

[113] Jamie Hayes and George Danezis. “Learning Universal Adversarial
Perturbations with Generative Models”. In: 2018 IEEE Security and Privacy
Workshops. IEEE Computer Society, 2018, pp. 43–49. DOI:
10.1109/SPW.2018.00015. URL: https://doi.org/10.1109/SPW.2018.00015.

[114] Shumeet Baluja and Ian Fischer. “Learning to Attack: Adversarial
Transformation Networks”. In: AAAI Conference on Artificial Intelligence. Ed. by
Sheila A. McIlraith and Kilian Q. Weinberger. AAAI Press, 2018, pp. 2687–2695.
DOI: 10.1609/aaai.v32i1.11672.

[115] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song.
“Generating Adversarial Examples with Adversarial Networks”. In: Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden. Ed. by Jérôme Lang. ijcai.org, 2018,
pp. 3905–3911. DOI: 10.24963/ijcai.2018/543. URL:
https://doi.org/10.24963/ijcai.2018/543.

[116] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge J. Belongie. “Generative
Adversarial Perturbations”. In: 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE
Computer Society, 2018, pp. 4422–4431. DOI: 10.1109/CVPR.2018.00465. URL:
http://openaccess.thecvf.com/content_cvpr_2018/html/Poursaeed\
_Generative_Adversarial_Perturbations_CVPR_2018_paper.html.

[117] Houssem Ben Braiek and Foutse Khomh. “On Testing Machine Learning
Programs”. In: arXiv:1812.02257 [cs] (Dec. 2018). arXiv: 1812.02257 [cs]. URL:
http://arxiv.org/abs/1812.02257 (visited on 10/24/2019).

[118] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. “Machine Learning Testing:
Survey, Landscapes and Horizons”. In: CoRR abs/1906.10742 (2019). URL:
http://arxiv.org/abs/1906.10742 (visited on 10/17/2019).

[119] Hong Zhu, Patrick A. V. Hall, and John H. R. May. “Software Unit Test Coverage
and Adequacy”. In: ACM Comput. Surv. 29.4 (1997), pp. 366–427. DOI:
10.1145/267580.267590.

[120] John Joseph Chilenski and Steven P. Miller. “Applicability of Modified
Condition/Decision Coverage to Software Testing”. In: Software Engineering
Journal 9.5 (Sept. 1994), pp. 193–200. DOI: 10.1049/sej.1994.0025.

https://arxiv.org/abs/1906.09453
https://arxiv.org/abs/1906.09453
http://arxiv.org/abs/1906.09453
https://doi.org/10.1109/MSP.2008.930649
https://arxiv.org/abs/2002.04599
https://arxiv.org/abs/2002.04599
https://doi.org/10.1109/SPW.2018.00015
https://doi.org/10.1109/SPW.2018.00015
https://doi.org/10.1609/aaai.v32i1.11672
https://doi.org/10.24963/ijcai.2018/543
https://doi.org/10.24963/ijcai.2018/543
https://doi.org/10.1109/CVPR.2018.00465
http://openaccess.thecvf.com/content_cvpr_2018/html/Poursaeed_Generative_Adversarial_Perturbations_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Poursaeed_Generative_Adversarial_Perturbations_CVPR_2018_paper.html
https://arxiv.org/abs/1812.02257
http://arxiv.org/abs/1812.02257
http://arxiv.org/abs/1906.10742
https://doi.org/10.1145/267580.267590
https://doi.org/10.1049/sej.1994.0025

204 References

[121] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. “DeepXplore: Automated
Whitebox Testing of Deep Learning Systems”. In: Proceedings of the 26th
Symposium on Operating Systems Principles. SOSP ’17. New York, NY, USA:
Association for Computing Machinery, Oct. 2017, pp. 1–18. DOI:
10.1145/3132747.3132785. URL:
https://doi.org/10.1145/3132747.3132785 (visited on 10/13/2020).

[122] Lei Ma et al. “DeepGauge: Multi-Granularity Testing Criteria for Deep Learning
Systems”. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018.
Ed. by Marianne Huchard, Christian Kästner, and Gordon Fraser. ACM, 2018,
pp. 120–131. DOI: 10.1145/3238147.3238202.

[123] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. “Testing Deep Neural
Networks”. In: CoRR abs/1803.04792 (2018). URL:
http://arxiv.org/abs/1803.04792 (visited on 10/17/2019).

[124] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “SELECT - a Formal System
for Testing and Debugging Programs by Symbolic Execution”. In: Proceedings of
the International Conference on Reliable Software 1975, Los Angeles, California, USA,
April 21-23, 1975. Ed. by Martin L. Shooman and Raymond T. Yeh. ACM, 1975,
pp. 234–245. DOI: 10.1145/800027.808445.

[125] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs”.
In: 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2008, December 8-10, 2008, San Diego, California, USA, Proceedings. Ed. by
Richard Draves and Robbert van Renesse. USENIX Association, 2008,
pp. 209–224.

[126] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “The S2E
Platform: Design, Implementation, and Applications”. In: ACM Trans. Comput.
Syst. 30.1 (2012), 2:1–2:49. DOI: 10.1145/2110356.2110358.

[127] Fish Wang and Yan Shoshitaishvili. “Angr - The Next Generation of Binary
Analysis”. In: IEEE Cybersecurity Development, SecDev 2017, Cambridge, MA, USA,
September 24-26, 2017. IEEE Computer Society, 2017, pp. 8–9. DOI:
10.1109/SecDev.2017.14.

[128] Divya Gopinath, Kaiyuan Wang, Mengshi Zhang, Corina S. Pasareanu, and
Sarfraz Khurshid. “Symbolic Execution for Deep Neural Networks”. In: CoRR
abs/1807.10439 (2018). arXiv: 1807.10439.

[129] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. “Concolic Testing for Deep Neural Networks”. In: ACM/IEEE
International Conference on Automated Software Engineering (ASE). Ed. by
Marianne Huchard, Christian Kästner, and Gordon Fraser. ACM, 2018,
pp. 109–119.

[130] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. “Structural Coverage Criteria
for Neural Networks Could Be Misleading”. In: Proceedings of the 41st
International Conference on Software Engineering: New Ideas and Emerging Results,
ICSE (NIER) 2019, Montreal, QC, Canada, May 29-31, 2019. Ed. by Anita Sarma and
Leonardo Murta. IEEE / ACM, 2019, pp. 89–92. DOI:
10.1109/ICSE-NIER.2019.00031.

https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3238147.3238202
http://arxiv.org/abs/1803.04792
https://doi.org/10.1145/800027.808445
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1109/SecDev.2017.14
https://arxiv.org/abs/1807.10439
https://doi.org/10.1109/ICSE-NIER.2019.00031

References 205

[131] Barton P. Miller, Lars Fredriksen, and Bryan So. “An Empirical Study of the
Reliability of UNIX Utilities”. In: Commun. ACM 33.12 (1990), pp. 32–44. DOI:
10.1145/96267.96279.

[132] Augustus Odena, Catherine Olsson, David Andersen, and Ian J. Goodfellow.
“TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing”. In:
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA. Ed. by Kamalika Chaudhuri and
Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.
PMLR, 2019, pp. 4901–4911. URL:
http://proceedings.mlr.press/v97/odena19a.html (visited on 10/17/2019).

[133] Sven Gowal, Chongli Qin, Po-Sen Huang, Taylan Cemgil,
Krishnamurthy Dvijotham, Timothy A. Mann, and Pushmeet Kohli. “Achieving
Robustness in the Wild via Adversarial Mixing with Disentangled
Representations”. In: CoRR abs/1912.03192 (2019). arXiv: 1912.03192. URL:
http://arxiv.org/abs/1912.03192.

[134] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and
Sarfraz Khurshid. “DeepRoad: GAN-based metamorphic testing and input
validation framework for autonomous driving systems”. In: Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering. ASE
2018. New York, NY, USA: Association for Computing Machinery, Sept. 2018,
pp. 132–142. DOI: 10.1145/3238147.3238187. URL:
https://doi.org/10.1145/3238147.3238187 (visited on 10/28/2020).

[135] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. “Unsupervised Image-to-Image
Translation Networks”. In: Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA. Ed. by Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett. 2017, pp. 700–708. URL: http://papers.nips.cc/paper/6672-
unsupervised-image-to-image-translation-networks.

[136] Ameya Joshi, Amitangshu Mukherjee, Soumik Sarkar, and Chinmay Hegde.
“Semantic Adversarial Attacks: Parametric Transformations That Fool Deep
Classifiers”. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 2019, pp. 4772–4782.
DOI: 10.1109/ICCV.2019.00487. URL:
https://doi.org/10.1109/ICCV.2019.00487.

[137] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. “A
General Framework for Adversarial Examples with Objectives”. In: ACM Trans.
Priv. Secur. 22.3 (2019), 16:1–16:30. DOI: 10.1145/3317611. URL:
https://doi.org/10.1145/3317611.

[138] Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, and David A. Forsyth.
“Big but Imperceptible Adversarial Perturbations via Semantic Manipulation”. In:
arXiv:1904.06347 [cs] (Apr. 2019). arXiv: 1904.06347 [cs]. URL:
http://arxiv.org/abs/1904.06347 (visited on 09/25/2019).

https://doi.org/10.1145/96267.96279
http://proceedings.mlr.press/v97/odena19a.html
https://arxiv.org/abs/1912.03192
http://arxiv.org/abs/1912.03192
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1145/3238147.3238187
http://papers.nips.cc/paper/6672-unsupervised-image-to-image-translation-networks
http://papers.nips.cc/paper/6672-unsupervised-image-to-image-translation-networks
https://doi.org/10.1109/ICCV.2019.00487
https://doi.org/10.1109/ICCV.2019.00487
https://doi.org/10.1145/3317611
https://doi.org/10.1145/3317611
https://arxiv.org/abs/1904.06347
http://arxiv.org/abs/1904.06347

206 References

[139] Haonan Qiu, Chaowei Xiao, Lei Yang, Xinchen Yan, Honglak Lee, and Bo Li.
“SemanticAdv: Generating Adversarial Examples via Attribute-Conditional
Image Editing”. In: arXiv:1906.07927 [cs, eess] (June 2019). arXiv: 1906.07927 [cs,
eess]. URL: http://arxiv.org/abs/1906.07927 (visited on 09/25/2019).

[140] Zhengli Zhao, Dheeru Dua, and Sameer Singh. “Generating Natural Adversarial
Examples”. In: arXiv:1710.11342 [cs] (Oct. 2017). arXiv: 1710.11342 [cs]. URL:
http://arxiv.org/abs/1710.11342 (visited on 09/25/2019).

[141] Taejoon Byun, Abhishek Vijayakumar, Sanjai Rayadurgam, and Darren Cofer.
“Manifold-Based Test Generation for Image Classifiers”. In: 2020 IEEE
International Conference On Artificial Intelligence Testing (AITest). Aug. 2020,
pp. 15–22. DOI: 10.1109/AITEST49225.2020.00010.

[142] Shuo Wang, Shangyu Chen, Tianle Chen, Surya Nepal, Carsten Rudolph, and
Marthie Grobler. “Generating Semantic Adversarial Examples via Feature
Manipulation”. In: arXiv:2001.02297 [cs, stat] (Jan. 2020). arXiv: 2001.02297 [cs,
stat]. URL: http://arxiv.org/abs/2001.02297 (visited on 02/11/2020).

[143] Fan Yang, Ninghao Liu, Mengnan Du, and Xia Hu. “Generative Counterfactuals
for Neural Networks via Attribute-Informed Perturbation”. In: ACM SIGKDD
Explorations Newsletter 23.1 (May 2021), pp. 59–68. DOI:
10.1145/3468507.3468517.

[144] Felipe Toledo, David Shriver, Sebastian Elbaum, and Matthew B. Dwyer.
“Distribution Models for Falsification and Verification of DNNs”. In: 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE). Nov.
2021, pp. 317–329. DOI: 10.1109/ASE51524.2021.9678590.

[145] Eric Wong and J. Zico Kolter. “Learning perturbation sets for robust machine
learning”. In: 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL:
https://openreview.net/forum?id=MIDckA56aD.

[146] Swaroopa Dola, Matthew B. Dwyer, and Mary Lou Soffa. “Distribution-Aware
Testing of Neural Networks Using Generative Models”. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). May 2021, pp. 226–237.
DOI: 10.1109/ICSE43902.2021.00032.

[147] Matthias Minderer, Olivier Bachem, Neil Houlsby, and Michael Tschannen.
“Automatic Shortcut Removal for Self-Supervised Representation Learning”. In:
Proceedings of the 37th International Conference on Machine Learning. PMLR, Nov.
2020, pp. 6927–6937.

[148] Lu Yang, Qing Song, and Yingqi Wu. “Attacks on State-of-the-Art Face
Recognition Using Attentional Adversarial Attack Generative Network”. In:
Multimedia Tools and Applications 80.1 (2021), pp. 855–875. DOI:
10.1007/s11042-020-09604-z.

[149] Xiaosen Wang, Kun He, and John E. Hopcroft. “AT-GAN: A Generative Attack
Model for Adversarial Transferring on Generative Adversarial Nets”. In: CoRR
abs/1904.07793 (2019). arXiv: 1904.07793. URL:
http://arxiv.org/abs/1904.07793.

https://arxiv.org/abs/1906.07927
https://arxiv.org/abs/1906.07927
http://arxiv.org/abs/1906.07927
https://arxiv.org/abs/1710.11342
http://arxiv.org/abs/1710.11342
https://doi.org/10.1109/AITEST49225.2020.00010
https://arxiv.org/abs/2001.02297
https://arxiv.org/abs/2001.02297
http://arxiv.org/abs/2001.02297
https://doi.org/10.1145/3468507.3468517
https://doi.org/10.1109/ASE51524.2021.9678590
https://openreview.net/forum?id=MIDckA56aD
https://doi.org/10.1109/ICSE43902.2021.00032
https://doi.org/10.1007/s11042-020-09604-z
https://arxiv.org/abs/1904.07793
http://arxiv.org/abs/1904.07793

References 207

[150] Francis Baek, Daeho Kim, Somin Park, Hyoungkwan Kim, and SangHyun Lee.
“Conditional Generative Adversarial Networks with Adversarial Attack and
Defense for Generative Data Augmentation”. In: Journal of Computing in Civil
Engineering 36.3 (May 2022), p. 04022001. DOI:
10.1061/(ASCE)CP.1943-5487.0001015.

[151] Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, and
Alec Jacobson. “Beyond Pixel Norm-Balls: Parametric Adversaries Using an
Analytically Differentiable Renderer”. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL: https://openreview.net/forum?id=SJl2niR9KQ (visited on
10/17/2019).

[152] Lakshya Jain, Wilson Wu, Steven Chen, Uyeong Jang, Varun Chandrasekaran,
Sanjit A. Seshia, and Somesh Jha. “Generating Semantic Adversarial Examples
with Differentiable Rendering”. In: CoRR abs/1910.00727 (2019). URL:
http://arxiv.org/abs/1910.00727 (visited on 10/17/2019).

[153] Vincenzo Riccio and Paolo Tonella. “Model-Based Exploration of the Frontier of
Behaviours for Deep Learning System Testing”. In: Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Virtual Event USA: ACM, Nov. 2020,
pp. 876–888. DOI: 10.1145/3368089.3409730.

[154] Alessio Gambi, Marc Mueller, and Gordon Fraser. “Automatically Testing
Self-Driving Cars with Search-Based Procedural Content Generation”. In:
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis. Beijing China: ACM, July 2019, pp. 318–328. DOI:
10.1145/3293882.3330566.

[155] Hossein Hosseini and Radha Poovendran. “Semantic Adversarial Examples”. In:
2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR
Workshops 2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society,
2018, pp. 1614–1619. DOI: 10.1109/CVPRW.2018.00212. URL:
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w32/html/
Hosseini_Semantic_Adversarial_Examples_CVPR_2018_paper.html (visited
on 10/17/2019).

[156] Zhengyu Zhao, Zhuoran Liu, and Martha A. Larson. “Towards Large Yet
Imperceptible Adversarial Image Perturbations With Perceptual Color Distance”.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 2020, pp. 1036–1045. DOI:
10.1109/CVPR42600.2020.00112. URL:
https://doi.org/10.1109/CVPR42600.2020.00112.

[157] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and
Aleksander Madry. “Exploring the Landscape of Spatial Robustness”. In:
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA. Ed. by Kamalika Chaudhuri and
Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.
PMLR, 2019, pp. 1802–1811. URL:
http://proceedings.mlr.press/v97/engstrom19a.html (visited on
10/16/2019).

https://doi.org/10.1061/(ASCE)CP.1943-5487.0001015
https://openreview.net/forum?id=SJl2niR9KQ
http://arxiv.org/abs/1910.00727
https://doi.org/10.1145/3368089.3409730
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1109/CVPRW.2018.00212
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w32/html/Hosseini_Semantic_Adversarial_Examples_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w32/html/Hosseini_Semantic_Adversarial_Examples_CVPR_2018_paper.html
https://doi.org/10.1109/CVPR42600.2020.00112
https://doi.org/10.1109/CVPR42600.2020.00112
http://proceedings.mlr.press/v97/engstrom19a.html

208 References

[158] Yongqiang Tian, Shiqing Ma, Ming Wen, Yepang Liu, Shing-Chi Cheung, and
Xiangyu Zhang. “Testing Deep Learning Models for Image Analysis Using
Object-Relevant Metamorphic Relations”. In: CoRR abs/1909.03824 (2019). arXiv:
1909.03824. URL: http://arxiv.org/abs/1909.03824.

[159] Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan,
Sebastian Nowozin, D. Sculley, Joshua V. Dillon, Jie Ren, and Zachary Nado.
“Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty
under Dataset Shift”. In: Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
8-14 December 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett. 2019, pp. 13969–13980. URL:
http://papers.nips.cc/paper/9547-can-you-trust-your-models-
uncertainty-evaluating-predictive-uncertainty-under-dataset-shift
(visited on 06/03/2020).

[160] Yaroslav Bulatov. Machine Learning, Etc: notMNIST Dataset. Sept. 2011. URL:
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html (visited
on 06/03/2020).

[161] Xiaofei Xie et al. “DeepHunter: a coverage-guided fuzz testing framework for
deep neural networks”. In: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ISSTA 2019. New York, NY, USA:
Association for Computing Machinery, July 2019, pp. 146–157. DOI:
10.1145/3293882.3330579. URL:
https://doi.org/10.1145/3293882.3330579 (visited on 10/27/2020).

[162] Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik Roychoudhury. “Fuzz
testing based data augmentation to improve robustness of deep neural
networks”. In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. ICSE ’20. New York, NY, USA: Association for Computing
Machinery, June 2020, pp. 1147–1158. DOI: 10.1145/3377811.3380415. URL:
https://doi.org/10.1145/3377811.3380415 (visited on 11/10/2020).

[163] Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer,
and Balaji Lakshminarayanan. “AugMix: A Simple Data Processing Method to
Improve Robustness and Uncertainty”. In: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

[164] Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel.
“Towards Verifying Robustness of Neural Networks Against A Family of
Semantic Perturbations”. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 2020,
pp. 241–249. DOI: 10.1109/CVPR42600.2020.00032. URL:
https://doi.org/10.1109/CVPR42600.2020.00032.

[165] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. “DeepTest: automated
testing of deep-neural-network-driven autonomous cars”. In: Proceedings of the
40th International Conference on Software Engineering. ICSE ’18. New York, NY,
USA: Association for Computing Machinery, May 2018, pp. 303–314. DOI:

https://arxiv.org/abs/1909.03824
http://arxiv.org/abs/1909.03824
http://papers.nips.cc/paper/9547-can-you-trust-your-models-uncertainty-evaluating-predictive-uncertainty-under-dataset-shift
http://papers.nips.cc/paper/9547-can-you-trust-your-models-uncertainty-evaluating-predictive-uncertainty-under-dataset-shift
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1109/CVPR42600.2020.00032
https://doi.org/10.1109/CVPR42600.2020.00032

References 209

10.1145/3180155.3180220. URL:
https://doi.org/10.1145/3180155.3180220 (visited on 10/16/2020).

[166] Dan Hendrycks and Thomas G. Dietterich. “Benchmarking Neural Network
Robustness to Common Corruptions and Perturbations”. In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL:
https://openreview.net/forum?id=HJz6tiCqYm.

[167] Robert Geirhos, Carlos R. Medina Temme, Jonas Rauber, Heiko H. Schütt,
Matthias Bethge, and Felix A. Wichmann. “Generalisation in Humans and Deep
Neural Networks”. In: Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8
December 2018, Montréal, Canada. 2018, pp. 7549–7561.

[168] Norman Mu and Justin Gilmer. “MNIST-C: A Robustness Benchmark for
Computer Vision”. In: CoRR abs/1906.02337 (2019). arXiv: 1906.02337. URL:
http://arxiv.org/abs/1906.02337.

[169] Luca Scimeca, Seong Joon Oh, Sanghyuk Chun, Michael Poli, and Sangdoo Yun.
“Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space
Perspective”. In: International Conference on Learning Representations. 2022.

[170] Meike Nauta, Ricky Walsh, Adam Dubowski, and Christin Seifert. “Uncovering
and Correcting Shortcut Learning in Machine Learning Models for Skin Cancer
Diagnosis”. In: Diagnostics 12.1 (Jan. 2022), p. 40. DOI:
10.3390/diagnostics12010040.

[171] Axel Sauer and Andreas Geiger. “Counterfactual Generative Networks”. In: 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021.

[172] Kaiyang Zhou, Yongxin Yang, Timothy M. Hospedales, and Tao Xiang. “Learning
to Generate Novel Domains for Domain Generalization”. In: Computer Vision -
ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part XVI. Ed. by Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm. Vol. 12361. Lecture Notes in Computer Science. Springer,
2020, pp. 561–578. DOI: 10.1007/978-3-030-58517-4_33.

[173] Xiaodan Liang, Hao Zhang, Liang Lin, and Eric P. Xing. “Generative Semantic
Manipulation with Mask-Contrasting GAN”. In: Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
XIII. Ed. by Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss. Vol. 11217. Lecture Notes in Computer Science. Springer, 2018,
pp. 574–590. DOI: 10.1007/978-3-030-01261-8_34. URL:
https://doi.org/10.1007/978-3-030-01261-8_34.

[174] Cihang Xie and Alan L. Yuille. “Intriguing Properties of Adversarial Training at
Scale”. In: 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[175] Ishaan Gulrajani and David Lopez-Paz. “In Search of Lost Domain
Generalization”. In: International Conference on Learning Representations. Sept. 2020.

https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://openreview.net/forum?id=HJz6tiCqYm
https://arxiv.org/abs/1906.02337
http://arxiv.org/abs/1906.02337
https://doi.org/10.3390/diagnostics12010040
https://doi.org/10.1007/978-3-030-58517-4_33
https://doi.org/10.1007/978-3-030-01261-8_34
https://doi.org/10.1007/978-3-030-01261-8_34

210 References

[176] Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-Alvise Rebuffi, Ira Ktena,
Krishnamurthy Dj Dvijotham, and Ali Taylan Cemgil. “A Fine-Grained Analysis
on Distribution Shift”. In: International Conference on Learning Representations.
2022.

[177] Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt. “Testing
Robustness Against Unforeseen Adversaries”. In: CoRR abs/1908.08016 (2019).
URL: http://arxiv.org/abs/1908.08016 (visited on 10/16/2019).

[178] Yash Sharma and Pin-Yu Chen. Attacking the Madry Defense Model with
L_1-Based Adversarial Examples. July 2018. DOI: 10.48550/arXiv.1710.10733.
arXiv: 1710.10733 [cs, stat].

[179] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht,
and Ludwig Schmidt. “Measuring Robustness to Natural Distribution Shifts in
Image Classification”. In: Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, Virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin. 2020.

[180] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. “Robustness May Be at Odds with Accuracy”. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019.

[181] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and
Michael I. Jordan. “Theoretically Principled Trade-off between Robustness and
Accuracy”. In: Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA. Ed. by
Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. PMLR, 2019, pp. 7472–7482.

[182] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin D. Cubuk. “Adversarial
Examples Are a Natural Consequence of Test Error in Noise”. In: Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov.
Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 2280–2289.

[183] Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and
Justin Gilmer. “A Fourier Perspective on Model Robustness in Computer Vision”.
In: Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett.
2019, pp. 13255–13265. URL: http://papers.nips.cc/paper/9483-a-fourier-
perspective-on-model-robustness-in-computer-vision.

[184] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. “Do
ImageNet Classifiers Generalize to ImageNet?” In: Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov.
Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019, pp. 5389–5400.
URL: http://proceedings.mlr.press/v97/recht19a.html.

http://arxiv.org/abs/1908.08016
https://doi.org/10.48550/arXiv.1710.10733
https://arxiv.org/abs/1710.10733
http://papers.nips.cc/paper/9483-a-fourier-perspective-on-model-robustness-in-computer-vision
http://papers.nips.cc/paper/9483-a-fourier-perspective-on-model-robustness-in-computer-vision
http://proceedings.mlr.press/v97/recht19a.html

References 211

[185] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song.
“Natural Adversarial Examples”. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2021, Virtual, June 19-25, 2021. Computer Vision
Foundation / IEEE, 2021, pp. 15262–15271.

[186] Josip Djolonga et al. “On Robustness and Transferability of Convolutional Neural
Networks”. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Nashville, TN, USA: IEEE, June 2021, pp. 16453–16463. DOI:
10.1109/CVPR46437.2021.01619.

[187] Hanbin Hu, Mit Shah, Jianhua Z. Huang, and Peng Li. “Global Adversarial
Attacks for Assessing Deep Learning Robustness”. In: CoRR abs/1906.07920
(2019). arXiv: 1906.07920. URL: http://arxiv.org/abs/1906.07920.

[188] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. “Defense-GAN:
Protecting Classifiers Against Adversarial Attacks Using Generative Models”. In:
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
URL: https://openreview.net/forum?id=BkJ3ibb0-.

[189] Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Pedro Luis Cunha Farias,
and Alán Aspuru-Guzik. “Objective-Reinforced Generative Adversarial
Networks (ORGAN) for Sequence Generation Models”. In: CoRR abs/1705.1
(2017). arXiv: 1705.10843. URL: http://arxiv.org/abs/1705.10843.

[190] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. “SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient”. In: AAAI Conference on
Artificial Intelligence. Ed. by Satinder P Singh and Shaul Markovitch. AAAI Press,
2017, pp. 2852–2858. URL:
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344.

[191] Nicola De Cao and Thomas Kipf. “MolGAN: An Implicit Generative Model for
Small Molecular Graphs”. In: CoRR abs/1805.1 (2018). arXiv: 1805.11973. URL:
http://arxiv.org/abs/1805.11973.

[192] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain
Generalization: A Survey. May 2022. arXiv: 2103.02503 [cs].

[193] Garrett Wilson and Diane J. Cook. “A Survey of Unsupervised Deep Domain
Adaptation”. In: ACM Transactions on Intelligent Systems and Technology 11.5 (July
2020), 51:1–51:46. DOI: 10.1145/3400066.

[194] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. “Deeper,
Broader and Artier Domain Generalization”. In: IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer
Society, 2017, pp. 5543–5551. DOI: 10.1109/ICCV.2017.591.

[195] Xingxuan Zhang, Yue He, Renzhe Xu, Han Yu, Zheyan Shen, and Peng Cui.
NICO++: Towards Better Benchmarking for Domain Generalization. Apr. 2022. arXiv:
2204.08040 [cs].

[196] Martín Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz.
“Invariant Risk Minimization”. In: CoRR abs/1907.02893 (2019). arXiv:
1907.02893.

https://doi.org/10.1109/CVPR46437.2021.01619
https://arxiv.org/abs/1906.07920
http://arxiv.org/abs/1906.07920
https://openreview.net/forum?id=BkJ3ibb0-
https://arxiv.org/abs/1705.10843
http://arxiv.org/abs/1705.10843
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344
https://arxiv.org/abs/1805.11973
http://arxiv.org/abs/1805.11973
https://arxiv.org/abs/2103.02503
https://doi.org/10.1145/3400066
https://doi.org/10.1109/ICCV.2017.591
https://arxiv.org/abs/2204.08040
https://arxiv.org/abs/1907.02893

212 References

[197] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning.
Adaptive Computation and Machine Learning. MIT Press, 2016. URL:
http://www.deeplearningbook.org/.

[198] Yann LeCun, Corinna Cortes, and Chris Burges. MNIST Handwritten Digit
Database. 1998. URL: http://yann.lecun.com/exdb/mnist/ (visited on
03/28/2019).

[199] Kamran Kowsari, Mojtaba Heidarysafa, Donald E. Brown,
Kiana Jafari Meimandi, and Laura E. Barnes. “RMDL: Random Multimodel Deep
Learning for Classification”. In: CoRR abs/1805.01890 (2018).

[200] Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus.
“Regularization of Neural Networks using DropConnect”. In: International
Conference on Machine Learning (ICML). Vol. 28. Proceedings of Machine Learning
Research. PMLR, 2013, pp. 1058–1066. URL:
http://proceedings.mlr.press/v28/wan13.html.

[201] Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and
Marta Kwiatkowska. “Global Robustness Evaluation of Deep Neural Networks
with Provable Guarantees for L0 Norm”. In: CoRR abs/1804.05805 (2018). arXiv:
1804.05805. URL: http://arxiv.org/abs/1804.05805.

[202] Pei-Hsuan Lu, Pin-Yu Chen, Kang-Cheng Chen, and Chia-Mu Yu. “On the
Limitation of MagNet Defense Against L1-Based Adversarial Examples”. In:
IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN). IEEE Computer Society, 2018, pp. 200–214. DOI:
10.1109/DSN-W.2018.00065. URL:
http://doi.ieeecomputersociety.org/10.1109/DSN-W.2018.00065.

[203] Lukas Schott, Jonas Rauber, Wieland Brendel, and Matthias Bethge. “Towards the
first adversarially robust neural network model on MNIST”. In: CoRR
abs/1805.09190 (2018). arXiv: 1805.09190. URL:
http://arxiv.org/abs/1805.09190.

[204] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. “Delving into
Transferable Adversarial Examples and Black-box Attacks”. In: International
Conference on Learning Representations (ICLR). 2017.

[205] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2016, pp. 770–778. DOI: 10.1109/CVPR.2016.90. URL:
https://doi.org/10.1109/CVPR.2016.90.

[206] Tim Salimans, Ian J Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. “Improved Techniques for Training GANs”. In: Advances in Neural
Information Processing Systems (NeurIPS). Ed. by Daniel D Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett. 2016, pp. 2226–2234.
URL: http://papers.nips.cc/paper/6125-improved-techniques-for-
training-gans.

http://www.deeplearningbook.org/
http://yann.lecun.com/exdb/mnist/
http://proceedings.mlr.press/v28/wan13.html
https://arxiv.org/abs/1804.05805
http://arxiv.org/abs/1804.05805
https://doi.org/10.1109/DSN-W.2018.00065
http://doi.ieeecomputersociety.org/10.1109/DSN-W.2018.00065
https://arxiv.org/abs/1805.09190
http://arxiv.org/abs/1805.09190
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans

References 213

[207] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. “How Good Is My
GAN?” In: Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part II. Ed. by Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss. Vol. 11206. Lecture Notes
in Computer Science. Springer, 2018, pp. 218–234. DOI:
10.1007/978-3-030-01216-8_14. URL:
https://doi.org/10.1007/978-3-030-01216-8_14.

[208] Yuxin Wu and Kaiming He. “Group Normalization”. In: Computer Vision - ECCV
2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part XIII. Ed. by Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss. Vol. 11217. Lecture Notes in Computer
Science. Springer, 2018, pp. 3–19. DOI: 10.1007/978-3-030-01261-8_1. URL:
https://doi.org/10.1007/978-3-030-01261-8_1.

[209] DeepMind. Biggan Deep 512 |. 2019. URL:
https://tfhub.dev/deepmind/biggan-deep-512/1 (visited on 06/11/2020).

[210] Mingxing Tan and Quoc V. Le. “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks”. In: Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 6105–6114. URL:
http://proceedings.mlr.press/v97/tan19a.html.

[211] Qizhe Xie, Eduard H. Hovy, Minh-Thang Luong, and Quoc V. Le. “Self-training
with Noisy Student improves ImageNet classification”. In: CoRR abs/1911.04252
(2019). arXiv: 1911.04252. URL: http://arxiv.org/abs/1911.04252.

[212] Luke Melas-Kyriazi. lukemelas/EfficientNet-PyTorch. original-date:
2019-05-30T05:24:11Z. June 2020. URL:
https://github.com/lukemelas/EfficientNet-PyTorch (visited on
06/03/2020).

[213] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, and Dimitris Tsipras.
Robustness (Python Library). 2019. URL:
https://github.com/MadryLab/robustness.

[214] Eric Wong, Leslie Rice, and J. Zico Kolter. “Fast is better than free: Revisiting
adversarial training”. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL:
https://openreview.net/forum?id=BJx040EFvH.

[215] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by
Yoshua Bengio and Yann LeCun. 2015. URL: http://arxiv.org/abs/1412.6980
(visited on 06/11/2020).

[216] I. Dunn. “Supplementary Material for Testing Deep Image Classifiers Using
Generative Machine Learning (DPhil Thesis)”. In: (2022). DOI:
10.5287/bodleian:5zJwdjna0.

https://doi.org/10.1007/978-3-030-01216-8_14
https://doi.org/10.1007/978-3-030-01216-8_14
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1
https://tfhub.dev/deepmind/biggan-deep-512/1
http://proceedings.mlr.press/v97/tan19a.html
https://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1911.04252
https://github.com/lukemelas/EfficientNet-PyTorch
https://github.com/MadryLab/robustness
https://openreview.net/forum?id=BJx040EFvH
http://arxiv.org/abs/1412.6980
https://doi.org/10.5287/bodleian:5zJwdjna0

214 References

[217] Oliver Willers, Sebastian Sudholt, Shervin Raafatnia, and Stephanie Abrecht.
“Safety Concerns and Mitigation Approaches Regarding the Use of Deep
Learning in Safety-Critical Perception Tasks”. In: Computer Safety, Reliability, and
Security. SAFECOMP 2020 Workshops - DECSoS 2020, DepDevOps 2020, USDAI
2020, and WAISE 2020, Lisbon, Portugal, September 15, 2020, Proceedings. Ed. by
António Casimiro, Frank Ortmeier, Erwin Schoitsch, Friedemann Bitsch, and
Pedro M. Ferreira. Vol. 12235. Lecture Notes in Computer Science. Springer, 2020,
pp. 336–350. DOI: 10.1007/978-3-030-55583-2_25. URL:
https://doi.org/10.1007/978-3-030-55583-2_25.

[218] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge,
Felix A. Wichmann, and Wieland Brendel. “ImageNet-Trained CNNs Are Biased
towards Texture; Increasing Shape Bias Improves Accuracy and Robustness”. In:
7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL:
https://openreview.net/forum?id=Bygh9j09KX.

[219] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and
Aleksander Madry. “Do Adversarially Robust ImageNet Models Transfer
Better?” In: Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin. 2020. URL:
https://proceedings.neurips.cc/paper/2020/hash/
24357dd085d2c4b1a88a7e0692e60294-Abstract.html.

[220] Tengyu Ma. “Generalization and equilibrium in generative adversarial nets
(GANs) (invited talk)”. In: Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,
2018. Ed. by Ilias Diakonikolas, David Kempe, and Monika Henzinger. ACM,
2018, p. 2. DOI: 10.1145/3188745.3232194. URL:
https://doi.org/10.1145/3188745.3232194.

[221] Sanjit A. Seshia, Somesh Jha, and Tommaso Dreossi. “Semantic Adversarial Deep
Learning”. In: IEEE Des. Test 37.2 (2020), pp. 8–18. DOI:
10.1109/MDAT.2020.2968274. URL:
https://doi.org/10.1109/MDAT.2020.2968274.

[222] Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. “advertorch v0.1: An
Adversarial Robustness Toolbox based on PyTorch”. In: CoRR abs/1902.07623
(2019). arXiv: 1902.07623. URL: http://arxiv.org/abs/1902.07623.

[223] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
“Hierarchical Text-Conditional Image Generation with CLIP Latents”. In: CoRR
abs/2204.06125 (2022). DOI: 10.48550/arXiv.2204.06125. arXiv: 2204.06125.

[224] Chitwan Saharia et al. “Photorealistic Text-to-Image Diffusion Models with Deep
Language Understanding”. In: CoRR abs/2205.11487 (2022). DOI:
10.48550/arXiv.2205.11487. arXiv: 2205.11487.

[225] Jiahui Yu et al. “Scaling Autoregressive Models for Content-Rich Text-to-Image
Generation”. In: CoRR abs/2206.10789 (2022). DOI: 10.48550/arXiv.2206.10789.
arXiv: 2206.10789.

https://doi.org/10.1007/978-3-030-55583-2_25
https://doi.org/10.1007/978-3-030-55583-2_25
https://openreview.net/forum?id=Bygh9j09KX
https://proceedings.neurips.cc/paper/2020/hash/24357dd085d2c4b1a88a7e0692e60294-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/24357dd085d2c4b1a88a7e0692e60294-Abstract.html
https://doi.org/10.1145/3188745.3232194
https://doi.org/10.1145/3188745.3232194
https://doi.org/10.1109/MDAT.2020.2968274
https://doi.org/10.1109/MDAT.2020.2968274
https://arxiv.org/abs/1902.07623
http://arxiv.org/abs/1902.07623
https://doi.org/10.48550/arXiv.2204.06125
https://arxiv.org/abs/2204.06125
https://doi.org/10.48550/arXiv.2205.11487
https://arxiv.org/abs/2205.11487
https://doi.org/10.48550/arXiv.2206.10789
https://arxiv.org/abs/2206.10789

References 215

[226] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual Explanations
Without Opening the Black Box: Automated Decisions and the GDPR. en. SSRN
Scholarly Paper ID 3063289. Rochester, NY: Social Science Research Network, Oct.
2017. URL: https://papers.ssrn.com/abstract=3063289 (visited on
10/28/2019).

[227] Shubham Sharma, Jette Henderson, and Joydeep Ghosh. “CERTIFAI:
Counterfactual Explanations for Robustness, Transparency, Interpretability, and
Fairness of Artificial Intelligence Models”. In: arXiv:1905.07857 [cs, stat] (May
2019). arXiv: 1905.07857 [cs, stat]. URL:
http://arxiv.org/abs/1905.07857 (visited on 12/16/2019).

[228] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors”. In: Nature 323.6088 (1986),
pp. 533–536.

[229] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”.
In: IEEE International Conference on Computer Vision (ICCV). IEEE Computer
Society, 2015, pp. 1026–1034. DOI: 10.1109/ICCV.2015.123. URL:
https://doi.org/10.1109/ICCV.2015.123.

[230] 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL:
https://openreview.net/group?id=ICLR.cc/2019/Conference.

https://papers.ssrn.com/abstract=3063289
https://arxiv.org/abs/1905.07857
http://arxiv.org/abs/1905.07857
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://openreview.net/group?id=ICLR.cc/2019/Conference

216

Appendices

217

A
Introduction to Deep Neural Networks

Deep neural networks are functions fθ : X → Y that map inputs x ∈ X to outputs

fθ(x) ∈ Y, parametrised by parameters θ ∈ Θ. By searching for appropriate

values of θ, they can be ‘trained’ using data to approximate some target function

over the distribution that the training data are drawn from. In fact, various

universal approximation theorems assert that suitably rich neural networks can

approximate various classes of target functions, including continuous functions

and Lebesque integrable functions. But these theoretical results are not the

main reason for their popularity. They are popular because of their (somewhat

unexplained) success in practice.

A.1 Single-layer perceptron

A.1.1 Scalar output

Single-layer perceptrons with single scalar outputs are the nodes that are the

building blocks of deep neural networks. Consider a function with input space

X = Rm for some positive integer m, output space Y = R, and parameters

Θ = Rm+1. The parameters θ can be split into the weights w ∈ Rm and the bias

b ∈ R. A single-layer perceptron first performs a linear transformation, then

219

220 A.1. Single-layer perceptron

applies a non-linear activation function ϕ to the result:

fθ(x) = ϕ(w · x + b) = ϕ(θ · (x ⊕ 1)),

where θ = (w, b) and x ⊕ 1 denotes the (m + 1)-dimensional vector consisting of

the elements of x followed by additional element of value 1. Possible activation

functions ϕ include:

• the Heaviside step function, ϕ(z) = 1 if z > 0 else 0,

• the hyperbolic tangent, ϕ(z) = tanh(z) = ez−e−z

ez+e−z ,

• the logistic function, ϕ(z) = 1
1+e−z ,

• the rectified linear unit (ReLU), ϕ(z) = z if z > 0 else 0,

• the leaky ReLU, ϕ(z) = z if z > 0 else 0.01z.

In practice, since the derivatives of these functions provide the update values dur-

ing training, the Heaviside step function is rarely used, and the sigmoid functions

have fallen out of favour due to the low magnitude of their derivatives for much

of their range. The ReLU and related activation functions are commonly used.

A.1.2 Vector output

Consider duplicating the above scalar-output node n times in parallel, producing

n parallel outputs separately using n different sets of weights and biases. The

result is a single-layer perceptron fθ : X → Y, now with output space Y = Rn

and parameter space Θ = Rn×m+1. Defining x ⊕ 1 as above,

fθ(x) = ϕ(θ · (x ⊕ 1)),

where the n×m+ 1 weight matrix θ is multiplied by the m+ 1× 1 matrix (x ⊕ 1),

and where the activation function ϕ operates elementwise.

A. Introduction to Deep Neural Networks 221

A.2 Multi-layer network

A single-layer perceptron is a function that maps from m- to n-dimensional

vectors. So we can stack these layers, applying one perceptron to the output

of another if the input dimension of the former matches the output dimension

of the latter. In this way, we obtain a multi-layer network, which is a function

fθ : X → Y, consisting of a sequence of l layers, each of which is a single-layer

perceptron. The parameters θ consist of a matrix of parameters for each layer:

θ = (θ1, θ2, . . . , θl). So the ith layer, is the single-layer perceptron:

f (i)θ (ai−1) = ϕ(θi · (ai−1 ⊕ 1)),

where ai−1 will be the output from the previous layer (its activation value, since

the activation function ϕ has been applied to it). Besides needing to map from

inputs in X to eventual outputs in Y, the number of layers in the network and

the number of units in the various hidden (internal) layers is flexible, and is

a matter of design.

A deep neural network (DNN) is simply a multi-layer network with a large

number of layers. In practice, these have proven successful.

A.3 Training

Given a particular neural network fθ : X → Y, we need a procedure for picking

values of θ that make f a useful model for some purpose. Since this is a machine

learning model, we learn θ using data. In general, we design a differentiable loss

function l : X × Y → R that measures the error (or other undesirable property)

in the network output fθ(x) for a particular input x. A network whose outputs

induce low loss values should be desirable. In particular, we must have some

source of data that we can use to train our network. For example, one application

that will be revisited in this thesis is supervised classification. In this domain,

there will be a dataset of correctly labelled examples, and the loss function will

penalise a model to the extent that it does not predict the correct label.

222 A.3. Training

Modelling the data source as a probability distribution, ptrain, we want to

search for parameters θ that minimise the expected training loss over this distribu-

tion:

arg min
θ

E
x∼ptrain

l(x, fθ(x)).

This can be done using gradient descent. Assuming that we can compute the

derivatives ∂
∂θ E l(x, fθ(x)), with respect to each element of θ, then gradient

descent makes the following update to these parameters:

θ := θ − γ
∂

∂θ
E

x∼ptrain
l(x, fθ(x)),

where γ is a scalar known as the learning rate, which controls the size of each

update. Given a finite training dataset D of inputs x sampled from ptrain, the

most straightforward approach to computing the expectation Ex∼ptrain l(x, fθ(x))

is to compute the empirical average 1
|D| ∑x∈D l(x, fθ(x)).

In practice, though, a variant known as stochastic gradient descent (SGD)

is used. Rather than computing the gradient over the entire dataset for each

update, the dataset is partitioned into “mini-batches” Di of m inputs each. Then

the ith gradient update to the parameters becomes

θ := θ − γ
∂

∂θ

1
m ∑

x∈Di

l(x, fθ(x)).

In practice, graphical processing units (GPUs) are exploited for their ability

to perform the same operation in parallel on multiple data. So a mini-batch of

examples may be processed simultaneously, resulting in rank-3 tensor, rather than

merely matrix (rank 2), computation; the additional rank comes from processing

more than one example at once.

The last remaining question is how to compute the derivative of the loss

function with respect to the parameters θ. Since the loss function is differentiable,

this reduces to computing the derivative of the output of the network. Noting

that the only operations in the network are the activation function ϕ, which must

be differentiable, and matrix multiplication, it is clearly possible. The backprop-

agation algorithm [228] exploits that the network is a directed acyclic graph of

A. Introduction to Deep Neural Networks 223

operations by traversing the network in reverse, starting with its outputs, and

recursively computing the derivative of each node using the already-computed

derivatives of its successors; the derivatives of the weights are calculated at the

same time as those of the activation values they are multiplied with. This is often

referred to as a backwards pass through the network, as opposed to a forwards

pass, which computes the output of the network given an input.

This relatively concise section should have provided sufficient background

on feedforward (acyclic) neural networks for the purposes of this disserta-

tion. For a more comprehensive introduction, refer to Goodfellow, Bengio,

and Courville [197].

224

B
Training Generative Networks

Experimental Particulars

Contents

A.1 Single-layer perceptron . 219
A.2 Multi-layer network . 221
A.3 Training . 221

B.1 Details of experimental setup

The WGAN-GP [30] and ACGAN [36] architectures were the starting points

for the design of these neural networks. Only a small amount of manual hy-

perparameter tuning was performed.

The generator is a convolutional neural network, conditioned on class label.

The discriminator network is a combination of a conditional WGAN-GP

critic, which learns an approximation of the Wasserstein distance between the

generated and training-set conditional distributions, and an auxiliary classifier,

which predicts the likelihood of the possible values of h(x). We combined

these two architectures in an attempt to strengthen the gradient provided to

the generator, helping to generate data which are both realistic and for which

225

226 B.1. Details of experimental setup

the true (i.e., human-judged) labels match the intended true labels. The critic

is given the true label of the data h(x) to improve its training, but the auxiliary

classifier must not have access to this information since its purpose is to predict

it. We therefore split the discriminator d into three sub-networks. Network

d0 : X → Ri effectively preprocesses the input, passing an intermediate rep-

resentation to the critic network d1 : Ri × Y → R and the auxiliary classifier

network d2 : Ri → R|Y|. In our experiments, both d1 and d2 were single fully-

connected layers of the appropriate dimension. The loss terms from the WGAN-

GP and ACGAN algorithms are simply summed. The auxiliary classifier helps

the training converge, but is not necessary.

B. Training Generative Networks Experimental Particulars 227

Table B.1: Architecture for generator network, g.

Layer Type Kernel Strides Feature
Maps

Batch
Norm.

Dropout Activation

Fully-Connected N/A N/A 64 No 0 ReLU
Transposed Conv. 5 × 5 2 × 2 32 Yes 0.35 LeakyReLU
Transposed Conv. 5 × 5 2 × 2 8 Yes 0.35 LeakyReLU
Transposed Conv. 5 × 5 2 × 2 4 Yes 0.35 LeakyReLU
Fully-Connected N/A N/A 784 No 0 Tanh

Table B.2: Architecture for discriminator subnetwork, d0. No batch normalisation used.

Layer Type Kernel Strides Feature Maps Dropout Activation

Convolution 3 × 3 2 × 2 8 0.2 LeakyReLU
Convolution 3 × 3 1 × 1 16 0.2 LeakyReLU
Convolution 3 × 3 2 × 2 32 0.2 LeakyReLU
Convolution 3 × 3 1 × 1 64 0.2 LeakyReLU
Convolution 3 × 3 2 × 2 128 0.2 LeakyReLU
Convolution 3 × 3 1 × 1 256 0.2 LeakyReLU

Table B.3: Hyperparameters for all networks.

Hyperparameter Value

Attack rate µ = 0.1
Learning rate α = 0.000005

Adam betas β1 = 0.6, β2 = 0.999
Leaky ReLU slope 0.2

Minibatch size 100
Dimensionality of latent space 128

Weight initialisation Normally distributed [229]
Coefficient of gradient penalty loss term λ = 10

228 B.1. Details of experimental setup

B.1.1 Samples of MNIST Unrestricted Adversarial Examples

(a) Intended true label ‘0’. (b) Intended true label ‘1’.

(c) Intended true label ‘2’. (d) Intended true label ‘3’.

(e) Intended true label ‘4’. (f) Intended true label ‘5’.

(g) Intended true label ‘6’. (h) Intended true label ‘7’.

(i) Intended true label ‘8’. (j) Intended true label ‘9’.

Figure B.1: Examples generated by one adversarially-finetuned GAN to perform an
untargeted attack on Wong and Kolter’s (2018) classifier, which is provably robust to
perturbation attacks.

B. Training Generative Networks Experimental Particulars 229

B.2 Interfaces used by human judges

Figures B.2, B.3 and B.4 show full screenshots of the interfaces used for the experi-

ments presented in Sections 4.3 and 4.5, including the instructions for participants.

Figure B.2: Screenshot of the interface used by participants to label generated test inputs
for the experiment described in Section 4.3, including the instructions.

230 B.2. Interfaces used by human judges

Figure B.3: Screenshot of the interface used by participants when trying to pick out
which one image of ten is not drawn by a human for the experiments described in Section
4.5.

B. Training Generative Networks Experimental Particulars 231

Figure B.4: Screenshot of the interface used by participants when trying to pick out which
one image of two is not drawn by a human for the experiments described in Section 4.5.

232

C
Latent Generator Perturbations:

Supplementary Materials

Contents

B.1 Details of experimental setup 225
B.2 Interfaces used by human judges 229

C.1 ImageNet: further examples

Figure C.1 shows the results for the first sixteen randomly-selected (y, z, t) tuples

that were used throughout our experiments. The captions indicates when

an example was skipped because the classifier misclassified the unperturbed

seed image, and when an example was skipped because the true class of the

unperturbed seed image did not match the intended class, y. The captions also

indicate whether one of the human participants judged the perturbed image

to match the class of the unperturbed image. The Engstrom robust ResNet50

is the classifier used for this figure.

Figures C.2 to C.5 give more examples of context-sensitive feature pertur-

bations for each classifier and each different set of generator activations be-

ing perturbed.

233

234 C.1. ImageNet: further examples

Please refer to the additional online supplementary materials to this thesis

[216], hosted by the Oxford University Research Archive. These include many

more ImageNet examples, as well as many animations showing the effect of

gradually introducing the perturbations to the latent activations of the generator.

These give a much clearer intuition for the nature of the changes being made to

the images; comparing static images alone can be difficult to interpret.

C. Latent Generator Perturbations: Supplementary Materials 235

(a) Skipped because the classifier did not pre-
dict the desired label, ‘Labrador retriever’.

(b) Skipped because the human did not agree
that ‘velvet’ was the best description of the
unperturbed image.

(c) Perturbed from ‘Komodo dragon’ (left) to
‘overskirt’ (right), but the human labeller did
not agree that the label ‘Komodo dragon’ re-
mained the best description of the perturbed
image.

(d) Perturbed from ‘file cabinet’ (left) to ‘door-
mat’ (right); the human judged the true label
of the perturbed image to remain unchanged.

(e) Perturbed from ‘barn’ to ‘Afghan hound’;
the human judged the true label of the per-
turbed image to remain unchanged.

(f) Perturbed from ‘palace’ to ‘throne’; the
human judged the true label of the perturbed
image to remain unchanged.

(g) Perturbed from ‘reflex camera’ to ‘sunglass’;
the human judged the true label of the per-
turbed image to remain unchanged.

(h) Perturbed from ‘Blenheim spaniel’ to ‘black-
and-tan coonhound’; the human judged the
true label of the perturbed image to remain
unchanged.

Figure C.1: The first examples used in our experiments. Perturbed images for Engstrom
et al.’s adversarially-trained classifier [213] are to the right of each unperturbed image.

236 C.1. ImageNet: further examples

(i) Skipped because the classifier did not pre-
dict the desired label, ‘bath towel’.

(j) Perturbed from ‘rotisserie’ to ‘rain barrel’;
the human judged the true label of the per-
turbed image to remain unchanged.

(k) Perturbed from ‘breastplate’ to ‘mud tur-
tle’; the human judged the true label of the
perturbed image to remain unchanged.

(l) Skipped because the human did not agree
that ‘spotted salamander’ was the best descrip-
tion of the unperturbed image.

(m) Perturbed from ‘yurt’ to ‘library’; the hu-
man judged the true label of the perturbed
image to remain unchanged.

(n) Perturbed from ‘cougar’ to ‘shower cap’;
the human judged the true label of the per-
turbed image to remain unchanged.

(o) Perturbed from ‘chickadee’ to ‘soap dis-
penser’; the human judged the true label of
the perturbed image to remain unchanged.

(p) Skipped because the classifier did not pre-
dict the desired label, ‘trombone’.

Figure C.1: Continued.

C. Latent Generator Perturbations: Supplementary Materials 237

ResNet50 ‘palace’ → ‘throne’
(×10) (×25) (×5)

original first 6 layers middle 6 layers last 6 layers all 18 layers

EfficientNet-B4NS ‘palace’ → ‘throne’
(×10) (×25) (×5)

original first 6 layers middle 6 layers last 6 layers all 18 layers

Figure C.2: Examples of feature perturbations for the two standard classifiers. For each,
the bottom row shows the perturbed images for perturbations at different parts of the
generator. The top row shows the pixel-wise difference between the original image and
the perturbed image. Some of these have been scaled to be made more visible. The name
of the classifier is shown in the top left; the top right shows the original and target label.

238 C.1. ImageNet: further examples

Robust (“Engstrom”) ‘palace’ → ‘throne’

original first 6 layers middle 6 layers last 6 layers all 18 layers

Robust (“Fast”) ‘palace’ → ‘throne’

original first 6 layers middle 6 layers last 6 layers all 18 layers

Figure C.3: Examples of feature perturbations for the two pixel-robust classifiers. For
each, the bottom row shows the perturbed images for perturbations at different parts of
the generator. The top row shows the pixel-wise difference between the original image
and the perturbed image. The name of the classifier is shown in the top left; the top right
shows the original and target label.

C. Latent Generator Perturbations: Supplementary Materials 239

ResNet50 ‘odometer’ → ‘hot dog’
(×10) (×25) (×5)

original first 6 layers middle 6 layers last 6 layers all 18 layers

EfficientNet-B4NS ‘odometer’ → ‘hot dog’
(×10) (×25) (×5)

original first 6 layers middle 6 layers last 6 layers all 18 layers

Figure C.4: Examples of feature perturbations for the two standard classifiers. For each,
the bottom row shows the perturbed images for perturbations at different parts of the
generator. The top row shows the pixel-wise difference between the original image and
the perturbed image. Some of these have been scaled to be made more visible. The name
of the classifier is shown in the top left; the top right shows the original and target label.

240 C.1. ImageNet: further examples

Robust (“Engstrom”) ‘odometer’ → ‘hot dog’

original first 6 layers middle 6 layers last 6 layers all 18 layers

Robust (“Fast”) ‘odometer’ → ‘hot dog’

original first 6 layers middle 6 layers last 6 layers all 18 layers

Figure C.5: Examples of feature perturbations for the two pixel-robust classifiers. For
each, the bottom row shows the perturbed images for perturbations at different parts of
the generator. The top row shows the pixel-wise difference between the original image
and the perturbed image. The name of the classifier is shown in the top left; the top right
shows the original and target label.

C. Latent Generator Perturbations: Supplementary Materials 241

C.2 CelebA-HQ

Additional experiments were done with the CelebA-HQ dataset. This section

contains a table specifying the architecture of the generator architecture used,

and gives several more examples of perturbed test cases.

242 C.2. CelebA-HQ

Table C.1: CelebA-HQ convolutional generator architecture. Each row represents a layer.
Each horizontal rule marks an activation tensor at which perturbations are performed.

Fully-Connected (8192 units)
LeakyReLU (Slope −0.2)
Reshape (To batch of 512 × 4 × 4 tensors)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 8 × 8)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 16 × 16)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 32 × 32)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 512 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 64 × 64)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 256 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 256 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 128 × 128)
2D Convolution (64 × 64 kernel, stride 1, padding size 1, 128 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 128 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 256 × 256)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 64 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 64 feature maps)
LeakyReLU (Slope −0.2)

Upscale (To 512 × 512)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 32 feature maps)
LeakyReLU (Slope −0.2)
2D Convolution (3 × 3 kernel, stride 1, padding size 1, 32 feature maps)
LeakyReLU (Slope −0.2)

2D Convolution (1 × 1 kernel, stride 1, 3 feature maps)

C. Latent Generator Perturbations: Supplementary Materials 243

(×5 for
visibility)

(×10 for
visibility)

(×5 for
visibility)

(×10 for
visibility)

(×5 for
visibility)

(×10 for
visibility)

Figure C.6: A random selection of context-sensitive feature perturbations at different
granularities, as controlled by perturbing activations at the generator layers indicated
under each image. Differences with the unperturbed image are shown above each
perturbed image. Each perturbed image has the following labels predicted positively:
‘Bald’, ‘Blond hair’, ‘Eyeglasses’, ‘Goatee’, ‘Grey hair’, ‘Moustache’, ‘No beard’, ‘Wearing
hat’, ‘Wearing necklace’, and ‘Wearing necktie’.

244 C.2. CelebA-HQ

(×5 for
visibility)

(×10 for
visibility)

(×5 for
visibility)

(×10 for
visibility)

(×5 for
visibility)

(×10 for
visibility)

Figure C.7: A random selection of context-sensitive feature perturbations at different
granularities, as controlled by perturbing activations at the generator layers indicated
under each image. Differences with the unperturbed image are shown above each
perturbed image. Each perturbed image has the following labels predicted positively:
‘Bald’, ‘Blond hair’, ‘Eyeglasses’, ‘Goatee’, ‘Grey hair’, ‘Moustache’, ‘No beard’, ‘Wearing
hat’, ‘Wearing necklace’, and ‘Wearing necktie’.

C. Latent Generator Perturbations: Supplementary Materials 245

(×5 for
visibility)

(×10 for
visibility)

(×5 for
visibility)

(×10 for
visibility)

(×5 for
visibility)

(×10 for
visibility)

Figure C.8: A random selection of context-sensitive feature perturbations at different
granularities, as controlled by perturbing activations at the generator layers indicated
under each image. Differences with the unperturbed image are shown above each
perturbed image. Each perturbed image has the following labels predicted positively:
‘Bald’, ‘Blond hair’, ‘Eyeglasses’, ‘Goatee’, ‘Grey hair’, ‘Moustache’, ‘No beard’, ‘Wearing
hat’, ‘Wearing necklace’, and ‘Wearing necktie’.

	Abstract
	Contents
	List of Figures
	List of Tables
	Contributions to Co-Authored Works
	Introduction
	Motivation
	Aims
	Contributions

	Background
	Generative machine learning
	Semantic representations in DNNs
	Robustness to pixel perturbations

	Related Work
	Method of literature review
	Constrained pixel perturbations
	Perturbations using generative models
	Manually designed perturbations
	Generating test cases without perturbations
	Effect of adversarial training on generalisation
	Miscellaneous related work

	Training Generative Networks to Output Test Cases
	Procedure for training generative networks
	Experimental evaluation setup
	Efficacy of test generation
	Ability of tests to identify new problems
	Similarity of tests to training examples
	Ablative studies
	Scaling to ImageNet
	Threats to validity
	Performance on requirements

	Generating Tests by Perturbing Generative Network Activations
	Procedure for perturbing latent generator activations
	Description of empirical evaluation
	Experimental results and discussion
	Threats to validity
	Performance on requirements

	Detecting Faults using Generator Activation Perturbations
	Detecting intentionally injected faults
	Detecting faults in the wild
	Threats to validity
	Conclusion

	Adversarial Training Can Worsen Generalisation
	Experimental setup
	Results
	Discussion
	MNIST
	Threats to validity

	Conclusion
	Summary of research
	Significance of contributions
	Building on this thesis

	References
	Introduction to Deep Neural Networks
	Single-layer perceptron
	Multi-layer network
	Training

	Training Generative Networks Experimental Particulars
	Details of experimental setup
	Interfaces used by human judges

	Latent Generator Perturbations: Supplementary Materials
	ImageNet: further examples
	CelebA-HQ

