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Abstract

This dissertation proposes a two-layer approach for folmaedware ver-
ification using symbolic ternary simulation of gate-levetait models.

At the core of our approach we follow the methodology of gaheed

symbolic trajectory evaluation (GSTE), which has shownsiderable
promise for the verification of micro-processor componemsoperties
for GSTE have traditionally been expressed using diagrathsdasser-
tion graphs but the graphical nature of these places limitations omé&r
reasoning and scalability. We recast GSTE techniques icleea general
logical framework for simulation, and use this frameworletplore and
characterize important verification steps.

We introducegeneralized trajectory logi¢GTL), a low-level tempo-
ral logic that provides a textual formal basis for specifyand reasoning
about symbolic ternary simulations. We describe modelkingdor this
logic and derive clean rules for property equivalence, demmsition and
abstraction refinement. We then introdassertion programswvhich de-
scribe abstract specifications as high-level executablgetso We show
how term-rewriting based on weakest preconditions can bd tsgen-
erate simulations that verify that a circuit refines an dagseprogram.
Expressing these simulations using GTL, we show how theybeady-
namically transformed during the generation process,daterparticular
schemes of model checking abstraction. We apply the ergni@cation
framework to a first-in-first-out buffer and a micro-opeoatscheduler.
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Chapter 1

Introduction

In this chapter, we provide the context and motivation foved@ping specification
notations for formal hardware verification by symbolic &mnsimulation. Following
an overview of general verification techniques, we intrasgmbolic ternary simu-
lation, and the specification problems that we aim to addissthen summarize our
contributions and give an outline of the dissertation.

1.1 Verification

Digital systems are increasing in usage, providing unjeeal degrees of convenience
and automation. They are responsible for performing maitiga@ktasks, from real-
time flight and automotive control, to secure and reliabésmission of sensitive
communications. But as well as growing in humber and respoityg these sys-
tems are also tending to expand in design complexity, fubjeddvances in digital
processing and storage, and by the connectedness offeigldldi®t communications
networks. This complexity is difficult to manage, often le@ythe doors open to po-
tential design flaws. To guard against these risks, thersti®ag need foverification
methodologies, which demonstrate that the specificatiangyfstem is in fact met by
its design.

The most common form of verification ®mulation Simulation uses an exe-
cutable model of the design to compute how it will respondeidain environmental
scenarios. As well encompassing simple interactive debgggocedures, verifica-
tion by simulation can also describe bulk batch attemptsitbbiigs by systematically
covering as many system states as possible. A wide rang®lsfdwist to structure
and select such simulation sets, by maximizing the exptoraif significantly dis-
tinct design states. But despite applying huge numberswmilations, bugs are often
missed, simply due to the size of the state-spaces at hanmdth&dntel Pentium 4
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design, tens of bugs were still undetected after a set of2Z8@billion simulation cy-
cles, requiring the capacity of several thousand machopeating for many months
[BenO1].

1.2 Formal Verification

Formal verificationuses rigorous mathematical foundations to reliably dequop-
erties about how systems behave over ranges of executiaiitioms. There are many
different approaches to formal verification, each suitetht particular qualities of
the properties or systems under verification.

Symbolic simulatiohas been in use since the late 1970s [CJB79]. It extends tradi
tional simulation to wider input ranges, by using symboltechvariables to represent
arbitrary unknown, but fixed, values. Expressions contgnhese variables are as-
sociated with components of the system, so that the oveed# & represented in a
symbolic encoding. This allows standard simulation to beegalized over the range
of different operating conditions parameterized by themgables. The capacity of
symbolic simulation was greatly enhanced by the introdunotif Binary Decision Di-
agrams (BDDs) [Bry92] which provide particularly efficiengjpresentations for com-
mon Boolean functions. Despite this, symbolic simulat®still limited in capacity,
as well as in its linear and bounded nature.

Model checking [JGP99] is a different approach, developetependently by
Clarke and Emerson [CE81] and Quielle and Sifakis [QS82].mdel checking,
the validity of some property, typically a formula of tempblogic [Eme90], is sys-
tematically and automatically checked with respect to a@hddrived from the sys-
tem under analysis. When the property is found not to hold|lastrative counter-
example is typically generated. Different forms of speatiien and model checking
algorithms exist, for different classes of models and priogee  Unfortunately, stan-
dard model checking techniques are limited to those systgthstate-spaces that are
simple enough to be automatically explored. This is comgedrby thestate explo-
sion problem which says that the number of states of a system can, andl ddies,
increase exponentially with the size of the design.

Several means of avoiding this problem have been develoPeg. approach is
to use special data structures and algorithms for the asalyss with simulation,
the capacity of model checking techniques can be greatharesdd with the use of
symbolic techniques. Symbolic model checking [BCMD90, Miylencodes both
the sets of model states, as well as the model’s transitlatior, as Boolean formulas
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represented by BDDs. Another approach is to use BDD-basethayc simulation
for direct state-set image computation [CBM90]. Operaitor BDDs are fast, and
their space requirements decrease with the regularityeopthdicates they describe.
Since most designs tend to involve a reasonable degree agheymand regularity,
the resulting state-set representations can often be &iglyt compact.

Another option for extending capacity is to make usalo$tractior—the process
of losing selected pieces of information that are not relet@athe task at hand. Ab-
straction is often achieved using sound simplificationshef design model. Other
approaches discard information dynamically during the ehatecking algorithm it-
self. If too much information is lost, known awer-abstractionthen the resulting
reduction in precision can lead to verification failure. ibglly, a feedback loop of
iterativeabstraction refinemens used to reach a suitable level of abstraction, where
there is a middle-ground between loss and retention of imédion. This process is
often automated, although a degree of user interactionaaetimes prove critical to
aid the selection of relevant information.

Theorem proving [GM93] is a type of formal verification thdibas for a high de-
gree of manual interactive involvement. Properties areesged as terms in a logic,
and deductive reasoning rules are progressively applidétermine term validity. If
required, the user can gain complete control over the rydpBeal at each step. Since
the terms of the logic can be considered to themselves beaabshs, theorem prov-
ing can therefore be viewed as the ultimate in interactivarabtion control. But due
to the high degree of guidance, skill and time generally iregufor success, theo-
rem proving can often be prohibitively demanding. As a reshiére have been many
attempts to mix theorem proving with other, more automatechniques, to attain
an efficient balance between the benefits of human intuitiehthose of automated
deduction. One example of this is the use of interactivergragprovers to decom-
pose large model checking problems into smaller ones. Hereiser need only be
concerned with the high-level insights that are key to sssey the main capacity
barriers.

1.3 Symbolic Ternary Simulation

Verification is of particular importance for microprocesdesign, because of the im-
portance that microprocessors play in the foundations afynmher products, and
the high cost of any necessary product recalls. As the nuwitteansistors per pro-
cessor continues to rise exponentially, this extra comurtaapacity leads to addi-
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tional functional design complexity, enabling increa$yngut-of-order, speculative
machines with deeper pipelines, and advanced featurds asudyper-Threading and
multi-core architectures. This dissertation is based om&b hardware verification
using symbolic ternary simulatigna technique that has shown success in verifying
components of next-generation microprocessors beyonceteh of standard model
checking techniques [Sch03].

Symbolic ternary simulation lies at the intersection of &atic model checking,
symbolic simulation and abstraction techniques. As wititmisglic model checking,
BDDs are used to explore the relationship between model ampkpty states. Un-
like traditional symbolic model checking, however, pastages are calculated using a
form of symbolic abstract simulation that takes place diyezn a low-level descrip-
tion of the circuit design. This eliminates the need for ¢ty a complete model
transition relation, which is prohibitive for many industrdesigns.

Symbolic ternary simulation is fundamentally distingudlirom many other stan-
dard forms of model checking by the abstract representdtianit uses for sets of
circuit states. Abstraction is introduced by adding theitalthl simulation value
X, which denotesinknowncircuit charge. This results in what is effectivgigrtial
circuit simulation. One key advantage of this approach & #ach particular set of
circuit states can be represented byageof different approximations. The less pre-
cise an approximation is, the less space it consumes in tlelrobecker. Therefore
an abstraction balance can often be achieved between ltsingiuch information
and requiring too much space. In order to do this, user fesdbtan direct the model
checker on how to pick the best representatives for a givepepty.

There are several different flavours of model checking basesiymbolic ternary
simulation. We look at each of these in detail in Chapter 2 Mlost basic form, Sym-
bolic Trajectory Evaluation (STE) [BBS91], uses singlesiation sequences to verify
properties written in a small linear temporal logic. Thed#mof the traces checked
by STE match the length of the abstract simulation itselfpperties are limited to
being bounded in natur&eneralized symbolic trajectory evaluati®@STE) [YS02]
overcomes this limitation, by using fixed-points to simalahbounded iterative be-
haviours.Compositional GSTECGSTE) [YS04] extends this approach by providing
a mechanism for decomposing a run into separate concufarksoof simulation.

Properties for (C)GSTE are expressed usasgertion graph$YS02], which are
graphical structures that resemble a variety of univeasédmata [HCYO3b]. Each
path in an assertion graph represents a linear assertioa ataulit which execution
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traces are allowable. These graphs are directly travengdtebmodel checking algo-
rithms, so their shape can directly affect the simulatioategy. In order to control
abstraction, therefore, manual transformations are eglirectly to the graph struc-
tures themselves.

Although the graphical nature of assertion graphs can baulute displaying
simple properties in a visual manner, it places seriougditions on formal reasoning.
Experience from from STE [AJS98, S306] has shown the benefits of formal rea-
soning for managing high-level verification steps such ap@ity decomposition. In
(C)GSTE, abstraction refinement also requires additiarsification. Although some
progress has been made on reasoning with assertion gra@0ph, YYHSO05],
the resulting rules tend to be complicated by the graphiatiine of the properties.
Cleaner reasoning requires a property representatiomsthatre structured and con-
trolled.

1.4 Contributions

This dissertation describes a clean formal framework foification using symbolic
ternary simulation. The framework is split into two layeadow-level temporal logic
layer, for describing simulation structures, and a higlelsynchronous programming
language, for specifying behavioural models. The tempogit and its associated
reasoning rules have been publishedihogic for GSTHSmI07]. The language and
methodology for our high-level language is based on ouripatibn A Method for
Generation of GSTE Assertion Grapl@&mni05]. We will now summarize the contri-
butions that we make.

Generalized Trajectory Logic We introducegeneralized trajectory logi¢GTL) as

a linear temporal logic for expressing symbolic ternarydations. The structure
and semantics of GTL unifies the property notations of STETE8nd CGSTE, by
aligning itself with the atomic simulation steps common &cle By operating at this
finer level of atomicity, we expose underlying algebraictgas that have not been
otherwise apparent. This not only provides the fundamdatatal characteristics
necessary for formal reasoning, but also emphasizes thedipropositional logic,
clarifying the nature of symbolic ternary simulation as aoleh Being a textual nota-
tion, GTL is furthermore easy to manipulate, express, asdrige rules for.
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Reasoning with GTL By examining the semantic characteristics of our logic, we
develop a series of reasoning rules for applying practieaification management
steps to simulations expressed using GTL. As with GSTE tissagraphs, the speci-
fications describe both the property to be verified, as wataserification approach.
Equivalence rules can therefore be used to describe pyeperserving transforma-
tions that optimize model checking or refine abstractions.al§o introduce rules for
property decomposition, and a rule for temporal induction.

Assertion Programs Since GTL describes simulations at a low level, it is not prac
tical for expressing complex specifications manually. Torgwunt this problem, we
introduce the synchronous languageastertion programsas a user-facing specifi-
cation language. Assertion programs are used to exprebdévgl reference mod-
els of the behaviour expected of a circuit. This approaabhwallspecifications to be
expressed using a familiar imperative programming stykd Wigh-level data-types,
such as integers and lists. Unlike GTL, the notation alseeseto separate property
specification from model checking approach. The circuits lsigh-level models are
connected via givemterface mappingthat form part of the specification.

Verifying Assertion Programs We provide a means to unify the semantics of GTL
and assertion programs. We then use this to build a ruledbfaamework for gen-
erating simulation descriptions from assertion programecgjcations. The simula-
tions produced verify that a circuit refines the given assemrogram. Simulations
are progressively built using symbolic backwards statespexploration, based on
weakest-precondition term-rewriting. By incorporatinges for abstraction and de-
composition into the framework, users can control the tegybkimulation approach
through the choice and application of rules.

Case Studies We have implemented both GTL model checking and our sinmariati
generation framework within the Forte [S30b] verification environment, and used
our implementation to verify a first-in-first-out buffer amdsimple micro-operation

scheduler.

1.4.1 Significance of Contributions

Our notation for simulations is at least as expressive asEs&Skertion graphs, so
it enables the expression of GSTE simulation techniquasceSit is based around a
formal logic with good algebraic properties, there are margs for reasoning about



1.5. Introduction - Outline 7

the simulations that are otherwise difficult to describedssertion graphs. Our work
therefore shows significant promise for improving the cakl@f symbolic ternary
simulation, by fitting the successful techniques surrongdsSTE into a clean and
manageable formal setting.

1.5 Outline

Chapter 2 provides an introduction to symbolic ternary $ation, explaining its his-
tory, theoretical foundations and usage methodology. \Wedascribe the structure of
our circuit models. Then we explain how regular simulatieoleed via STE to GSTE
and, more recently, toompositional GSTEIriven by demands for increased capacity
and property expressibility. We provide an in-depth looteatary abstraction and the
GSTE specification notation of assertion graphs. We showthege graphs are used
to control abstraction in practice.

Chapter 3 introduces generalized trajectory logic (GTtgrteg with an introduc-
tion to thesymbolically indexed structurdéisat we use to model symbolic expressions.
We provide a formal trace-based semantics of GTL, for whield@monstrate mono-
tonicity and continuity. After introducing several shatid notations, we describe
and justify algorithms for both concrete and abstract motletking.

Chapter 4 describes a seriesrefsoning ruledor GTL, illustrated with several
small sample applications. The first section demonstratgdes equivalence rules for
formulas, classified into Boolean, temporal and symbolesy In the second section,
rules for properties are considered, including severaln®@d decomposition. The
final section formalizes the notation of abstraction refiaatdor GTL, and expresses
and classifies several common patterns of refinement pralyioged with GSTE.

Chapter 5 introduces the high-level modeling languageseértion programsiWe
first describe the refinement-based approach that we talpgetifisation. Then, after
providing an overview of the structure of assertion proggame step through each
language construct in turn, from variables and statementiset interface mappings
that link the high-level models to the circuits. We then pdeva formal semantics for
the language, and a formal definition of satisfaction.

Chapter 6 provides a methodology for translating assegrograms into series
of GTL properties that together verify refinement. We unlg semantics of asser-
tion program expressions and formulas of GTL to allow reasphetween these two
modes of specification. We extend GTL to a form caledtor GTLwhich, although
of a more complex form, scales better to large simulations tWgn describe a series
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of compilation rules for building up vector GTL simulatiobased on the transition
structure of an assertion program. We show how differenliegtpons of these rules
results in different abstraction approaches during theltieg simulation runs.

In Chapter 7, we apply our verification methodology to tworapée circuits: a
first-in-first-out (FIFO) buffer and a micro-operation sdager. In each case, we in-
troduce the circuit specification in English, describe aistexg verification approach
based on assertion graphs, and then describe our own apdraaed on assertion
programs. At the end of the chapter we compare and contmasivthmethodologies.

Finally, Chapter 8 provides some concluding remarks, ansicadsion of potential
future work.



Chapter 2

Generalized Symbolic Trajectory
Evaluation

Generalized symbolic trajectory evaluati@®@STE) is a formal hardware verification
technique lying at the boundaries of model checking, abisimgerpretation, symbolic
execution and circuit simulation. In this chapter, we ekpits nature and history.

We first describe the gate-level circuit model used by theeholdecker, as well
as a more abstract circuit model that is useful for reasothiagretically about ver-
ification. We provide a brief introduction to standard bynaircuit simulation, and
then introduceernary simulation Ternary simulation extends the range of binary
simulation by introducing a ‘don’t care’ value, deno¢dhto the simulation domain.
By viewing the ternary simulation states as abstract remtasions ofsetsof binary
states, we show how ternary simulation can be compared & sthndard forms of
model checking.

We then describ&ymbolic Trajectory Evaluatio(STE), which uses aymbolic
form of ternary simulation for model checking. STE is su#fitily scalable to have
found many applications in industry, but its range of agilmn is limited to bounded
properties, because of its roots in conventional simutatid his deficiency led to
the development afeneralizedSTE (GSTE), which extends STE to unbounded be-
haviours by introducing fixed-points in the simulation. Wesdribe GSTE model
checking, with its graphical specification notation calBstertion graphs Finally
we describe a further generalization of GSTE, knowrcasipositionalGSTE that
decomposes simulations of concurrent behaviour.
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b = aAd a b Cc
d = b ED—B
d = —c

(i) Circuit Netlist (i) Diagrammatic Representation

Figure 2.1: A Circuit Netlist

2.1 Circuit Models

We will describe two different forms of circuit model. Thestirof these models, the
circuit netlist is a gate-level circuit description used directly by thawgliation tool.
The second model, the circidripke StructurdJGP99], is a more abstract model that
is useful forreasoningabout the verification. The types of circuits that we conside
are synchronous systems, where the outputs at each timesstdunctions both of
the current state and the current circuit inputs, classiegitageactive[Hal98]. Each
state in these models represents a particular stable cbangjguration in the physical
circuit. We use Boolean values, which are, in the hardwareaio, conventionally
written ashigh, 1, andlow, 0, to model the charge that can be held at any one pointin
the circuit.

2.1.1 Netlists

The circuit netlist model, used by gate-level simulation-based techniquek asc
GSTE, is a collection of logical and statefyatestogether with a description of their
interconnections. Each gate is itself modeled using a Boagcitation functiorthat
describes how its output behaves as a function in terms ofipists. To allow for
state-holding elements, this map can be a function opteegiousinputs and output
of the gate, as well as its current inputs. The gates are cteshéhrough a finite set
of shared connections, given by the setiofuit nodes N .

Example An example circuit netlist is shown in Figure 2.1, togethéthwts tradi-
tional graphical representation. The circuit nodes arel&ts, b, c andd. The excita-

tion function for each node is listed as a Boolean expressitereb’ represents the
previous value of node. The delay element, graphically represented as a rectangle
is a gate whose inpul, always matches the subsequent value of its output, written
Nodea has no excitation function, and is therefore a circuit input
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Notice that netlist models are more structured than typroadels used in formal
verification, such as state-transition systems or autani#ia is because they encode
the topological layout of the physical circuit as well asfitactionality. In this way,

a netlist expresses a circuit model gsraductof systems that each model one of the
gates. This has benefits over a monolithic transition reortasion, as different parts
of the circuit can be analyzed and simulatedependentlyand the model representa-
tion is kept concise.

2.1.2 Kripke Structures

Although circuit netlists are the models used directly gdation-based techniques,
it is useful to have alternative abstract modelsriasoningabout such techniques.
This is because the properties that we are concerned wittetiyponly depend on the

functionality of the circuit, not its topological layout.oFthis we model circuits as

Kripke Structures [JGP99].

Definition 2.1.1 (Kripke Structure) A Kripke Structure is a paill = (S,7T'), where
S is a finite set of modedtatesand7” C S x S is a total transition relation.

The set of circuit states used throughout this dissertatiorconsists of those
Boolean vectors € BY that are consistent with the constraints imposed by theitirc
gates. We will writes(n) for the value of node in states. The transition relation
T will hold between those states where the constraints idgdiethe circuit’s state
elements are satisfied. We will regard the Kripke structdithe circuit under verifi-
cation,KCc = (5, T), to be a fixed constant throughout.

Example We can model the netlist shown in Figure 2.1 as the KripkecBire shown
in Figure 2.2. States are represented as four-bit vecteittewin the formabcd. The
consistent states,, are those states that satisfy= a A d andd = —c. The transition
relation holds from state € S to s’ € S whens(b) = s'(c).

Kripke Structures contain no concept of initial state. Tigisn alignment with
hardware systems in particular, where nothing is known attmustate of the system
until we start to interact with it. This differs from softwgrwhere state is typically
initialized on allocation. Many hardware components doehseme form ofesef to
what might be regarded as an initial state. But many also tiand reset logic, when
it exists, is often sufficiently complex to require verificat in its own right. Therefore
resets are not a part of the circuit models for STE-base(iceion.
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@ S = { 0001, 0010, 1010, 1101 }

{0109 o10) T = { (0001,0001), (0001,1101),

(0010,0001), (0010, 1101),

\® (1010,0001), (1010,1101),
(1101,0010), (1101,1010) }

Figure 2.2: A Kripke Structure

Definition 2.1.2 (Kripke Post-Image) For Kripke StructurelC = (S,T'), we define
the post-image functiomost, : 2° — 2%, to map a set of states to the set of its
successorspost(R) ={s' € S|ds € R. (s,s") € T'}.

Example For the Kripke Structure that represents our example d¢jrthe post-image
of states in whiclb is 0 consists of those states in whiclms 0:

post({0001,0010,1010}) = {1101, 0001}

This is what we would expect, seeing as there is a simple dddaygent that separates
the two nodes.

We model the possible behaviours of our modelsrases which are non-empty
finite words fromS™* corresponding to paths through the Kripke Structure.

Definition 2.1.3 (Kripke Traces) A finite non-empty sequence of statess ST, is
a trace of K if each step in the trace is a possible transitiofw;, ;1) € T for
0 <1< |o| — 1. We will writetr(KC) for the set of all traces of.

Throughout the dissertation we will uest(¢) to refer to the last element in the
sequence, andfront(t) to refer to the prefix consisting df with its last element
removed.

2.2 Binary Simulation

Binary circuit simulation is a complete software emulatadra circuit. Given a start-
ing state and a sequence of concrete inputs, it determiragtlgkow a circuit will
react by finding the complete state of the circuit at each-ste@. For netlists, this is
done by evaluating the excitation function for each gatein tintil a complete circuit
state is reached.
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(@) Input Trace

(i) Simulation Calculation
Figure 2.3: Binary Circuit Simulation

Example Figure 2.3 illustrates the simulation of a simple gatedlemeuit model.
The four stages of simulation are:

e The inputs and state at time zero are assigned to their pomdsg netlist
nodes.

e The values are propagated forward to the rest of the cirbyitalculating the
output of each gate in turn.

e A time-step is simulated by copying the values on delay gapeits to their
outputs, and then clearing the values assigned to all otites

e Another propagation is then performed for the subsequera-ttep.

The result of binary simulation is that the Boolean valuevefrg node is calculated
for the entire bounded time-frame for which the inputs wea/ed.

2.3 Ternary Simulation

As we have seen, binary circuit simulation allows us to dakeuhow a circuit will
react toone particularconcrete input trace over time. Verifying more interesting
properties, however, typically requires us to reason ovamyrinput traces at once.
For instance, if a property requires us to try all possibpriirvalues for a circuit, then
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Figure 2.4: Ternary Logic

Tme a b ¢ o
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1 X X X

() Input Trace

(ii) Simulation Calculation
Figure 2.5: Ternary Circuit Simulation

the number of simulations required will be exponential ia ttumber of these inputs,
making binary simulation impractical.

Ternary simulation introduces an extraknowrvalue (or ‘don’t care’ value), writ-
tenX, that indicates that nothing is known about the charge hela particular node.
Each simulation step assignseanary valuefrom the sefl’ = {0, 1, X} to each node.
Simulation states are therefore elementdI'éf, which can also be seen artial
circuit states.

Ternary simulation proceeds in the same format as binarylaiion, but with a
new interpretation of excitation functions based on a ttwadaed logic over ternary
values. The output of a gate can only be assighed 1 if enough information is
known to deduce this output, given the partial informatianivave about its inputs. If
there is not enough information thenis assigned instead. For example, if one input
of an OR-gate is high, then we know that its output must alsbigle, soX v 1 = 1.
The same input conditions, however, are not enough to dedugthing about the
output of an AND-gate, s& A 1 is evaluated tX. This is equivalent to interpreting
the standard logic gates with the ternary logic shown in Ed4.

Example Suppose we would like to verify, for the circuit in Figure 2ii}, that if node
a is low at Time 0 then the outputmust be low at Time 1. To use binary simulation,
we would have to run a simulation for each of the possibletispmbinations, totaling
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(i) s (ii) |s| (iii) post?(s)

Figure 2.6: Ternary Simulation Steps

26 = 64 simulations. We can, however, instead verify all of theseds in a single
ternary run, as shown in Figure 2.5.

2.3.1 Modeling Ternary Simulation

We introduce some notation in order to describe the stegsmaty simulation. Figure
2.6 (i) shows the ternary vecterthat represents all consistent circuit states where the
node marked is low. Maximal propagation of these constraints, withinregke time-
frame, is formalized by the propagation opergtef, which is illustrated in Figure
2.6(ii). This operator has been described in detail in [R&G0&here it is referred to as
theforwards closure functionf the circuit. Its effect is to assign to the output of each
node the least approximate output of each gate that can heeddrom the ternary
inputs currently assigned to it. The abstract post-imagetfan, post?, represents
first performing this propagation, then passing the resgltionstraints across delay
elements and marking every other node&aas shown in Figure 2.6(iii). This results
in a post-image state containing all the constraints thatbsadeduced by forward
propagation from its predecessor.

2.3.2 Ternary Abstraction

Unlike binary simulation, ternary simulation can be seeropsrating withsetsof
circuit states, much like many standard forms of model cimgck This is because
ternary states can be seen as abstract representationts aff ércuit states. For
example, the ternary stabd0X can be seen as an abstract representation of the set
{000,001, 100, 101}. In ternary simulation, these representations are usegbper-
approximationswhose precision can be controlled by controlling the nunafexs.

For example, the s€0011,0001} can be represented precisely using the ternary vec-
tor 00X1, and approximately b§XX1 or evenXXXX. Some sets cannot be represented
exactly. For example, the most precise representatiofi0f@r1, 0101} is 0XX1. STE

has a symbolic mechanism for dealing with such cases, whectvittcome to later.
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The state-set abstraction in ternary simulation is an ekamipa Cartesian ab-
straction[CC95], which is used to abstract away dependencies betweelel sub-
systems. Using ternary vectors forces the simulatiagnore dependencidsetween
the circuit nodes. In effect, it represents each set of ttistates as the product of the
set of states of each node, or, equivalently, hyper-cuboittse space of circuit state
bit-vectors.

This abstraction is successful in hardware verificatiorahise useful properties
often correspond to simple constraints on a small numbeirotiit nodes, which
can be efficiently and precisely encoded as ternary vecteughermore, the vector
representation fits naturally with gate-level simulatigince it assigns values to circuit
nodes in the netlist. This allows post-image calculatianprbceed via simulations,
which are fast to calculate.

2.3.3 Abstract Interpretation Framework

The relation between ternary vectors and sets of circuiéstaas been described in
[Cho99, Pre04], using the theory of abstract interpretd500, Cou01] to formalize
the approximation. Concrete sets of circuit states arde@leo their corresponding
abstract ternary vector representations viaadois connection

To describe this connection it is first necessary to modehbstract and concrete
domains using partial orders that capture their interngtekes of approximation. For
concrete sets of circuit states, this is simply modeled bynetusion,C. We model
approximation over ternary vectors using the partial ofdewhich is interpreted as
‘is less approximate than’.

Definition 2.3.1. The ternary approximation order on ternary values is thestea-
flexive relation wher® and1 are both less approximate thatt 0 C X and1 C X.

ExtendingC point-wise to vectors and adding a bottom elemeénto represent
the case of an over-constraint, creates a complete lattiegrary vectorsT?). This
lattice is illustrated for vectors of length one in Figur@ @, and vectors of length
two in Figure 2.8 (page 18). Notice thdX ... X is the top element of such a lattice,
representing the set of all consistent circuit states.

The join and meet operations for the binary state-set &tre triviallyu andn
respectively. For the ternary vectors the join is writtéand the meeftl. Informally,
the join takes those constraints that are common to bothpegsamds, and the meet
takes all those constraints that exist in either of its op#sa For vectors of size
one, these operations are shown in Figure 2.7. Higher-dirapal vectors follow the
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(i) Hasse Diagram (i) Join (iif) Meet

Figure 2.7: Ternary Lattice

point-wise application of this join and meet with a coalesbettom (i.e. 01 1 1X
equalsl).

A Galois connection [CC79] is a pair of functioife : C' — A, v : A — (C)
that can be used to link the ordered concrete don{@inC), to an ordered abstract
domain,(A, C). Theabstraction mapa, maps elements of the concrete domain to
their most precise abstract representation. ddwcretization map : A — C maps
abstract representations to the least upper bound of threterset of elements that
they represent. In order to be a Galois connection, the twpsmmaust satisfy the
condition that for allh € A and for allc € C".

alc) Ca ifandonlyif ¢ C y(a)

In ternary simulation theory, such a Galois connection edus demonstrate that the
ternary states are sound upper-approximations of thearteets of concrete binary
states.

In previous models of ternary simulation [Cho99], the ceterdomain has been
based on all possible bit-vectors B. We find instead that it is more appropriate
to connect ternary vectors only to those setsarfsistenbit-vectors, fromS ¢ BV,
which agree with the constraints imposed by the circuitdo@ihis provides a more
accurate representation of ternary simulation, since oncrete domain is in one-to-
one correspondence with the possible physical states dfitbeit. It is also more
faithful to actual implementations, where, for examplduea are automatically as-
signed to circuit nodes that are marked as logically comstuch a step can only be
justified in our model.

Definition 2.3.2. The Galois connection between ternary vectors and setshafyi
valued circuit states is uniquely defined by the followingaretization map:

N fora=_1
@) =9 (seS|¥neN:s(n) Can)} foraeTV
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Figure 2.8: Galois Connection for Ternary Vectors

In this map, bottom represents the empty set of states, artdteanary vector
represents the set of states that can be obtained by repldawith any choice of
Boolean values. Such a Galois connection is illustratedigurie 2.8, for a model
where00 is the only 2-bit-vector that is not a consistent state.

2.4 Symbolic Trajectory Evaluation

In Symbolic Trajectory Evaluation (STE) [SB95, BBS91] Beah-valued variables
are incorporated into ternary simulations to parametatiferent circuit operating
conditions. STE has shown considerable success in praeticehas been used on
industrial hardware designs at Intel, Compaq, IBM and MalnfAJS98, OZGS99,
BMAAO1, PRBA97, Kai05]. Where standard symbolic simulatieses variables to
represent differenbinary simulations, Symbolic Trajectory Evaluation (STE) uses
variables to represent differetgrnary simulations. We will call this techniqugym-
bolic ternary simulation

For example, in a memory verification, we might like to chelcltta particular
location of memory correctly storesyn-bit data value. Using ordinary ternary sim-
ulation will require2™ runs—one for each possible data value. With STE, however,
we can represent an arbitrary data value by using variahléisel simulation. The
verification can then proceed in one single symbolic sinnorhetun.

STE uses a finite seVar, of variables, callethdexing variables, that parameter-
ize the different simulations. Simulation then takes plager a domain of symbolic
representations of ternary values [BBS91]. For the purpos$ehis dissertation, we

lindexing variables are sometimes referred teyaabolic variablesn (G)STE literature.
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Figure 2.9: A Run of STE

will write symbolic ternary values as either one of the teynsonstants), 1 or X, or
as a conditional expressions of the fofgn — f | g, meaning ‘if@Q thenf elsey’,
where() is a predicate oveYar andf andg are also symbolic ternary vectors.

STE simulation lifts ternary simulation to the symbolic daim Simulation propa-
gation remains the same over ternary constaftd: = X andXv1 = 1. Symbolically
conditional inputs, however, result in symbolically caimhal outputs, calculated on
a case-by-case basis. For example,

Q@ —1X)A1 = (@ — (LAD)][(XAL) = @ — 1|X

Since the simulation for each variable valuation is effe}i treated independently, a
symbolic run of STE effectively encodes multiple ternamasiations, as illustrated in
Figure 2.9.

The interplay betweeKs and symbolic simulation in STE allows the user to gain
fine control over the precision with which state-sets areasgnted. The introduction
of X values can be used to lose irrelevant information, wherasahles can be used
to retain useful dependencies that are otherwise lost b€ @neesian abstraction. For
example, with ternary vectors alone, the best approximaifd 01, 10} is XX. With
symbolic ternary simulation, however, we can introduceatirvariabley, and use the
symbolicternary vectoiu — 0| 1)(uw — 1|0)to parameterize the two cases exactly.
In the extreme, symbolic ternary representations can beplaienrepresentations of
sets of states, when a unique variable is placed on evenjitarade. The combination
of Xs and variables can be used creatively in a variety of caseslémce loss of
information against the cost of simulation [MJ02, PRBA9'B98, ABMS07]. Goel
has developed some theory to unify this interplay [Goe0408B

The use of variables can be particularly effective when teyused for repre-
senting values odatapathswithin a circuit. Datapaths carry the information being
processed by the circuit, as distinct frazontrol buseswhich govern the circuit's
mode of operation. In cases where there is little feedbawk fitata to control, the use
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of variables enforces separation between the data andotaspects of verification.
Furthermore, when no data transformation occurs, such agemories and buffers,
the symbolic data expressions remain constant in size.

The use of symbolic representations also increases thetieéfieess of STE by
allowing for sharingwithin the simulation. For example, suppose we wish to sataul
a circuit which calculateg (x, g(y)), for inputs(z, y) in {(1,0), (0,0)}. This can be
encoded as the single symbolic run where- (v — 1|0) andy = 0. As a result,
the simulation ofy only takes place once, even though we actually calculatesthét
of two different input pairs. Given that might represent an arbitrarily large piece of
circuitry, this sharing can have a large impact on verifaratime.

2.4.1 Implementation

The implementation of STE inside the Forte verification folath [SJO™05] uses a
canonicaldual-rail encodingof symbolic ternary values for fast simulation. Each
symbolic ternary value is represented by a gairg) of Boolean predicates. Pred-
icate p encodes the symbolic cases under which the expression mhaigiheandq
encodes the symbolic cases under which the expression miywbd-or example,
X is represented bytrue, true), 1 by (true, false), u by (u, -u) andu — 1|X by
(true, —u).

Each logic gate can then be quickly simulated by its appab@iinterpretation on
dual-rail values. In particular, the common logical opeenas from Figures 2.4 and
2.7 map to the following implementations for dual-rail repentations:

—(p,q) = (q,p) (p,gU(r,s) == (pVrqVs)
(@) N(rys) == (pAr,qVs) (p,gN(rs) = (pAr,qAs)
(p,q) VvV (r,s) == (pVrghs) (p,q) E(r,s) = (p=71)A(g=5)

A dual-rail value(p, q) is inconsistent wherp A —¢. Under such conditions, the
node value represented can be neither high nor low. Suchditmmtherefore signals
an inconsistency within the circuit and simulation assuans.

To avoid over-approximation during simulation, such ingistencies need to be
propagated between time-steps. But an inconsistent valtleas this may ‘fall off’
the edge of the simulation when it is assigned to a circupwiunode. To rectify this
situation, the STE simulator also keeps a global persistest-constrainfredicate
that keeps track of the symbolic valuations that are instest.

The dual-rail predicates are traditionally representedgu®rdered Binary Deci-
sion Diagram (OBBDs) [Bry92] for compact and efficient ogEnaimplementations.
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More recently, there have been attempts to use other forroteBo reasoning, such
as SAT-based STE [RCO05, GSYO07].

2.5 Generalized Symbolic Trajectory Evaluation

STE is an effective technique that scales to industrial gsea#ication efforts. But
STE can only check bounded properties of fixed temporal kebgtause of its ba-
sis in scalar simulation. In contrast, many other standasdehchecking techniques
verify more expressive properties, such as liveness ptieggdGP99, McM92]. Gen-
eralized symbolic trajectory evaluation (GSTE) extends phinciples of symbolic
ternary simulation to handle such richer classes of pragsert

The first step toward GSTE was by Seger and Hazelhurst, whedaalalintil op-
erator [Haz96] to their specification descriptions. SegerBryant proposed a means
for checking iterative simulations of arbitrary length [88 using simple specifica-
tions based on regular expressions. Specifications weteyéreralized to arbitrary
transition systems by Beatty [BB94], and a generalized rhduecking algorithm for
these specifications was proposed by Nelson and Jain in [NJBEhis algorithm
was subtly refined by Chou [Cho99], leading to introductiéifG&TE by Yang and
Seger using the graphical specification notation of assegraphs [YS03, YSO00].
GSTE has a high capacity beyond the scope of traditional hob@eking techniques,
because of its approach to the state-explosion problemZYS¢€h03].

2.5.1 Set-Based Assertion Graphs

Properties for verification by GSTE are traditionally sfied usingassertion graphs
[YSO00, YS03, YS02, YG02]. An assertion graph is a directempbrwith an initial
vertex, where each edge is labeled watfitecedenaind consequentonditions. The
antecedent conditions drive the simulation by providing itipput stimulus, whereas
the consequent conditions describe the resulting ciregsponses to be asserted. As-
sertion graphs resemble input-output automata, whererttecedent resembles the
input, and the consequent resembles the asserted outmytnTdst closely align with
the variety of automata known dsrall automata [MP87], owing to the fact that a
word is accepted only if it satisfied by the assertions made/érypath through the
graph. We will start off by describing set-based asserti@plgs, where antecedent
and consequent conditions are defined in terms of sets aficatates.
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Definition 2.5.1 (Set-Based Assertion Graphgjor a given Kripke StructurdC =
(S,T), an assertion graph is a triplef = (V, vy, E) whereV is a set of vertices,
vy € V is an initial vertex, ande C V x 29 x 2% x V is a set of doubly-labeled
edges. For a given edge = (v, a,c,v'), we say thasource(e) = v is the source
vertex,ant(e) = a is the antecedenton(e) = c is the consequent, angik(e) = v/
is the sink vertex.

Example An example assertion graph that might be used to verify alsimgmory

cell is shown in Figure 2.10. The edges are labeled with ciarigtic predicates in
the formantecedent/consequeitthis graph expresses that if write nogeis enabled

with input 3, then the output of the memory cell should subsequently, las long as
no further writes take place.

—wr / true
A in:3/\wr/true® true /out =3
O . O

Figure 2.10: Set-Based Assertion Graph

The property described by an assertion graph can be unddrsyaconsideringll
finite paths that start at the initial vertex. Each of thesthpaxpresses an assertion
about all circuit traces of the same length.

Definition 2.5.2 (Initial Edge) For assertion graplg = (V, vy, E), we will say that
an edge: € E is initial if source(e) = wp.

Definition 2.5.3(Assertion Graph PathA path of an assertion graph is a non-empty
finite sequence of edges = epe;...e, € ET, whereeq is an initial edge and
sink(e;) = source(e;41) for0 <7 < n.

Definition 2.5.4 (Path Satisfaction)A model traces € tr(K) is said to satisfy path
p, of the same length, writtefkC, o) = (G, p), if and only if wheneves satisfies all
the antecedents along it also satisfies all the consequents algng

(Vi:0<i<|p|.o; €ant(p;)) implies (Vi:0<i<|p|.o; € con(p;))

Definition 2.5.5 (Assertion Graph SatisfactionA Kripke StructurefC satisfies an
assertion graphy, written £ |= G, if and only if every tracer of K satisfies every
pathp of G of the same length.
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wr

D—— out

Figure 2.11: A Simple Memory Cell Circuit

Example We will consider whether the simple memory cell circuit simoin Fig-
ure 2.11 satisfies the example assertion graph from Figife Z'he possible paths
through the assertion graph are of the form:

Antecedent | in=3Awr

Consequent out =3

Antecedent | in=3Awr| -—wr

Consequent out =3

Antecedent | in=3Awr —wr —wr

Consequent out =3
Antecedent | in=3Awr —Wwr .. —wr
Consequent out =3

In order to satisfy the assertion graph, the circuit mussgaall these bounded
assertions. A trace satisfies one of these assertions ¥ &uee the antecedent con-
ditions are satisfied, the consequent conditions are atsfied. Table 2.1 shows the
path of length 3 against some of the possible traces for thelsimemory circuit.
Trace 1 satisfies the path because the antecedent is nGiedadishe first edge. Trace
2 satisfies the path because the antecedent is not satistieel stcond edge. Trace
3 satisfies the path because both the antecedents and tlegjgents are satisfied at
every edge. If we continue in this way for every trace and pfagin we will discover
that the circuit satisfies the assertion graph.

Antecedent| in =3 Awr —Wwr

Consequent out =3

Node wr in out|wr in out|wr in out| Satisfied
Trace 1 0O 3 4|0 6 4 (0 7 4 O
Trace 2 1 3 4 1 6 3 0 7 6 1l
Trace 3 1 3 4 0 6 3 o 7 3 0

Table 2.1: Path Satisfaction Example
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2.5.2 Model Checking

The standard GSTE model checking algorithm [YS03] assesimtset of model states,
sim[e], with each assertion graph edgeThis set collects the states that are reachable
via a trace that satisfies the antecedent conditions alomg g@th from the initial
vertex toe. Intuitively sim[e] holds the combined post-image for the antecedent paths
that precede it.

Like many forms of reachability analysis, the algorithm geeds by repeatedly
calculating and including the post-image of each transiiicturn, until a fixed-point
is attained. The algorithm keeps a queue of edges;e, whose set of states has been
updated but whose image remains to be computed. Initilly,queue is set to hold
all the initial edges, ansim|e] is set toant(e) for each of these edges.

To reach the required fixed-point, the algorithm repeatddahewing steps. First
an edgee is removed fromgueue. Then the post-image efmle] is computed. For
each edge’ succeeding, sim[¢'] is assignedim[e’] U (post(sim|e]) Nant(e')). This
adds those states from the post-image that satisfy the ssmcedge’s antecedent. If
this assignment adds new states, theis enqueued to have its own post-image re-
calculated. Once the fixed-point is complete, the contaimroleecksim|e] C con(e)
is performed for each edge of the graph. This completes tharitim, which is
summarized in Figure 2.12.

It has been shown in [SSTV04] that the GSTE algorithm witheutary abstrac-
tion corresponds to partitionedform of standard symbolic model checking (SMC)
[McM92]. The difference concerns the way in which the cortizechetween property
states and model states is represented. In SMC, each syrpbadiicate represents a
subset of the property-model product state-space. InasntESTE maintains a map,
sim, from property states to model state-sets. Thus the GSTEagip partitions the
representations according to property states. The tweseptations are isomorphic,
but it has been shown that GSTE-style property partitiongngften advantageous
[STVO5].

2.5.2.1 Justifying Model Checking

We will briefly describe why model checking is sound and caetgal First, to demon-
strate completeness, suppose that model checking failsn fftere is some edge
such thasimle] Z con(e). Therefore there is some statesuch thats € sim[e] and
s ¢ con(e). There is a model checking invariant that states shatim|[e] only if there
is some circuit trace that satisfies all the antecedents along an initial patiat ends
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/I Initialization:
queue = empty
foreache € £

if source(e) = vg

sim[e] := ant(e)
queue.push(e)
else
sim[e] := ()
endif
endfor

I/l Fixed point calculation:
while queue # empty
e := queue.pop()
foreach successoe’ of e
update := sim[e’] U (post(sim[e]) N ant(e’))
if update # sim|e’]

sim[e/] := update
queue.push(e’)
endif
endfor
endwhile

/I Consequent check:
foree F

assertsim[e] C con(e)
endfor

Figure 2.12: Set-Based Model Checking Algorithm

in s. But such a path cannot satispysince it does not satisfy the last consequent.
Hence the model does not satisfy the assertion graph.

Now suppose that the circuit model does not satisfy the tissgraph. Then there
must be some pathand tracer of minimal length such that does not satisfy. This
means that satisfies all the antecedents algngout not all the consequents. Now,
sincep ando are of minimal length, it must be on the last edge that the egpmasnt
fails, otherwise there would be a shorter prefix path ancetthat also fails. After
the fixed-point computation, we have by the model checkingriant thatlast(o) €
sim[last(p)], sinceo satisfies all the antecedents up to etige(p). Therefore, it must
be thatsim[last(p)] Z con(last(p)) and so model checking must fail.
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—wr / true
N in:u/\wr/trueQ true /out = u _
>0 > >O

Figure 2.13: A Symbolic Assertion Graph

2.5.3 Using Symbolic Ternary Simulation

Like STE, GSTE is implemented via symbolic ternary simalatf the circuit netlist
to combat the state-explosion problem. We show how the astéb algorithm pre-
sented so far can be adapted to this style of simulation.

2.5.3.1 GSTE Assertion Graphs

GSTE assertion graphs are just like set-based assertiphgraxcept that the an-
tecedent and consequent predicate labels are given as kyraooary vectors. We
will write V = (Var — B) for the set of variable valuations. Symbolic ternary vestor
then correspond to elementswf— T

Definition 2.5.6 (GSTE Assertion Graph)For a given Kripke StructuréC = (S, 7)),
a GSTE assertion graph is a triplgt= (V, vg, E') whereV is a set of verticesy, € V
is the initial vertex,E C V x (V — TV) x (V — T¥) x V is a set of edges.

As with STE, the use of symbolic ternary vectors allows satiohs to be gener-
alized over different variable valuations. For example,dbt-style assertion graph in
Figure 2.10 can only test the memory cell with a single dalaeyd. By encoding an
arbitrary data value as a vector of variablesof appropriate size, the GSTE assertion
graph in Figure 2.13 expresses thalydata value is stored correctly.

2.5.3.2 Symbolic Ternary Model Checking

We update the model checking algorithm to use symbolic tgreanulation. It is
necessary simply only to replace each operation on setatekdby the corresponding
abstract operation, lifted to symbolic ternary vectorsapproximate union and inter-
section, GSTE uses thein LI andmeetr respectively, of the lattice of ternary prop-
agations (see Figure 2.7). The post-image funcgiost is replaced with the abstract
post-image simulatiopost®. Finally, the set inclusion test is replaced by checking the
approximation order on the lattice of ternary vectars,

The resulting algorithm is shown in Figure 2.14, where therafor symbols for
ternary vectors have been overloaded with their symbolimterparts. Notice that
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it has exactly the same flow as the algorithm for set-basecehabacking in Figure
2.12. Allthat has changed is that concrete set operatiorestieen replaced with their
symbolic abstract counterparts.

I/ Initialization:
queue = empty
foreache € £

if source(e) = vg

sim[e] := ant(e)
queue.push(e)
else
sim[e] := L
endif
endfor

/I Fixed point calculation:
while queue # empty
e := queue.pop()
foreach successoe’ of e
update := sim[e/] U (post®(sim[e]) M ant(e'))
if update # sim|e’]

sim[e/] := update
queue.push(e)
endif
endfor
endwhile

/l Consequent check:
forec E

assertsim[e] C con(e)
endfor

Figure 2.14: Abstract Model Checking Algorithm

2.5.4 Controlling Abstraction

Since both GSTE and STE model checking are based on syméwoiary simulation,
they both share many characteristics. Model checking isicdout not complete,
and manual control over the property specification affedigkvparts of the circuit
structure are simulated and what state information ismethi Although little has
been written on abstraction in GSTE, the connection betweese abstractions and
cone-of-influence abstraction techniques has been expilof&' TOO].
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False negatives occur when a property holds, but there areaoyX values in the
simulation. The GSTE approach for dealing with false negatis to refine the level
of simulation abstraction by making changes to the streadfithe specification of the
property. Since the model checking flow is defined directlgrahe structure of the
property, these changes can directly influence the precigith which state-sets are
represented. Of course, such changes must also ensura thalii&alent or stronger
property is verified as a result.

2.5.4.1 Case-splitting Edges

Over-abstraction most often occurs when model checkingstéke union of two sets
of states using the join operatian This operation is often responsible for loss of
precision because it carries forward only those state caingt that are common to
both of the operands. The most common approach to prevent suztmafion loss

is to split a single assertion graph edge into two, sepayatut the approximations.
This is akin to instructing the model checker to kéep ternary vectors to represent
the union, rather than merging them together and losingnmdtion.

Example Consider the run of GSTE that is depicted in Figure 2.15. Tiheiato
verify the behaviour of a twice-delayed XNOR-gate showni)n \\Ve write ternary
vectors in the formabcdefg. The first run, shown in Figure 2.15(ii), produces a false
negative result, due to the over-abstraction that occutiseasecond segment of the
graph. During simulation, this edge is assigneilOXXX L XX01XXX, which is
XXXXXXX. Therefore, all information about the required post-ctindiis lost due to
the ternary abstract representation.

In order to overcome this false negative, a case-split toamation can be applied
to the second time-slice of the assertion graph. The cd#edstinguishes the two
possible input cases occurring in the preceding time-fraRdlowing such a trans-
formation, GSTE returns a positive result, as shown in Fagui 5(iii).

2.5.4.2 Unrolling Loops

Another example of an abstraction refinement transformagitheunrolling of asser-
tion graphs loops. Whenever a loop occurs in an assertigghgthe corresponding
fixed-point calculation collects an approximation of thesging circuit states. Each
step calculates the abstract unian,of the previous state and the result of the next
loop iteration. Since. loses information, however, these types of fixed-points can
over-approximate.
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e
syt

(i) Delayed XNOR Circuit

aA—b/true
TOXXXXX

true /true _ true/g

OOOOXK 2 XK
—a A b/true

01XXXXX

(ii) False Negative by Over-Abstraction
aA—b/true true / true

TOXXXXX XXI0XXX

true / g O
XXXXXX1

—a/Ab/true . true/true
OIXXXXX — ~XX01XXX

(iif) Successful Refinement

Figure 2.15: Refining an Assertion Graph



2.5. GSTE - Generalized Symbolic Trajectory Evaluation 30

(i) Last Iteration Split (iv) Alternate Iterations Split

Figure 2.16: Refinements by Unrolling

By unrolling an assertion graph loop, the states that cpomd to different it-
erations in the fixed-point can be separated from each otierepresented more
precisely. A loop-unrolling therefore corresponds to arfaf temporal case-split.
Examples of loop-unrollings are shown in Figure 2.16.

2.5.4.3 Introducing Variables

As with STE, ternary vectors can also be case-split by intcoty fresh symbolic vari-
ables, to capture dependencies between circuit nodesélatsaby the ternary vector
representation. Unlike STE, a problem arises when suclahias are introduced in
assertion graph cycles. Since the variables are neveritjadraut, their values are
scoped over the entire simulation, and not just over eacle ¢igration. But when
variables are being used purely for the purpose of abstractintrol, a fresh variable
is required for each time-step, otherwise extra state digrenies can be unintention-
ally introduced. To cater for such cases, Yang and Segeredafispecial class of
variables, for use in only antecedents, that are autonligtieanoved via existential
guantification at the end of each simulation step [YS02]sTuantification is sound,
because the variables all occur negatively with respectieichecking satisfaction.
The effect of this is that these variables are scoped onlhécetige in which they
appear.
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2.5.4.4 Knots

In some cases, the precision needed requires that cateveihiin fixed-point persist
for longer than a single simulation step. This can be overcoim manual specifica-
tion of variable quantification points to avoid name condlicthese points are called
knots[NHY04] in GSTE terminology, because they conceptuallynpiéthe tying to-
gether of an infinite line of case-splits into a loop.

2.5.45 Precise Nodes

If the precision introduced by case-splitting needs toipeeven longer, then variable
renaming with fresh names can be used to avoid conflicts leetweamporally over-
lapping scopes. If fresh variables are introduced at everation, however, then a
fixed-point may never be attained.

This difficulty is resolved in GSTE through the use of what taenedprecise
nodegYS02]. The general idea is as follows, but we will revisititsome detail in
Section 4.3.4. The set of precise nodes for a run of GSTE i¢ afsgrcuit nodes
for which temporary anonymous variables are automaticatipduced to maintain
interdependencies. The use of such a set allows us to direanbdel checker to
increase the level of detail with which certain segment$efdircuit are represented.

As an example, suppose a circuit has two 2-bit counters pssgrg in synchrony.
The set of states in which the second counter is one ahead:dirsh can be de-
scribed explicitly a§ (00, 01), (01, 10), (10, 11), (11,00)}. If the counters are marked
as precise nodes, to avoid over-abstractioX¥, XX), the state of the counters is
automatically encoded using extra variableandi,:

_|t1 AN _|t2 — (00, 01)
_|t1 VAN tg — (01, 10)
tl /\_\tg = (10,11)
tl /\tz — (11,00)

If we simulate such an encoding one step forward to find it$-poage, then the
result will be:

—t; A=ty —  (01,10)
_|t1 A tg — (10, 11 )
tl /\_\tg = (11,00)
tl /\tz = (00,01)

Although this representation describes the same set asstatuses a different
variable indexing. For fixed-point detection, these ddferes can be overcome using
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a canonical re-parameterization based on the algorithmJ$99]. Since the vari-
ables affected are anonymous, this re-parameterizaties dot affect the soundness
of model checking.

2.6 Compositional GSTE

GSTE has also been further generalized to a form knowrpagpositionalor con-
curren) GSTE (CGSTE) [YS04, YGTO05]. This extension allows differ@areas of
a circuit to be independently simulated, and then have gigiulations merged to-
gether. Performing these smaller simulations can greatisease the capacity of the
model checker since the maximum state space being exploset/ane time is re-
duced. It does, however, require some insightinto the desiglementation or circuit
structure.

Instead of using a single assertion graph, CGSTE spectfitatonsist of multi-
ple named assertion graphs, representing the sub-siondaflhese assertion graphs
can be seen as executing concurrently, effectively spegifgt property as a product
of individual machines. To allow for composition, the camahis on edge antecedents
can contain terms callecbmpositional conditionsEach composition condition ref-
erences a given edge on any one of the group of assertiongyrapinace satisfies a
path containing such an antecedent condition if it satishesstandard condition for
normal assertion graphs, and all prefixes of the trace thathreapath ending at a
composition condition also satisfy some initial path of graph referenced by that
condition that ends at the referenced edge.

Example Suppose we have two memory cells whose outputs are attagtzedam-

parator (Figure 2.17). In order to verify this circuit usiagun of conventional GSTE,
we must create a single assertion graph such as that shovigiuireR2.18. This spec-
ification must simulate both memory cells at the same timasicering all ways of

Wry out

Ny —

Figure 2.17: A Memory Cell Comparator
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—Wrg A Wiy

ing = VA
—Wr, A\ Wrp

ing = uA

Wrg A —Wrp,
“ —Wrg A Wiy

ing = u A Wrg/
inp = v Awr

ing = uA
Wrg A —wry

in, = VA
—Wrg /A Wry

—Wrg A Wr

Figure 2.18: Comparator Assertion Graph

interleaving writes of data to the first memory cell and to the second. Under these
conditions it would then be expected that the circuit outpatches the value af = v.
By using compositional GSTE we can simulate each of the tweang cells
independently. We create assertion graphendB for each of the cells, each with an
edge namedone, to capture the conditions under which each of the memotyg cel
should hold their respective symbolic values (Figure 2.18% create a third graph,
Main, to compose the two simulations and check the operationeotdimparator. In
compositional GSTE, edge antecedents may include predicithe form G ON E”,
which describe those states reachable from a path in thé gramedG which ends
at the edge nameld. In our example, the first antecedent of thiain graph asserts
the compositional conditiofA ON Done) A (B ON Done). Under this condition, we
would expect the output of the comparator toube v in the subsequent time-step.
During compositional model checking, each assertion gregimulated in turn,
and the compositional constraints from each are forwarded bne graph to another
as symbolic ternary circuit states. Conjunction of the cosiponal conditions is
interpreted using the meet on the lattice of ternary vectémsthe case where two
graphs mutually refer to each other, the algorithm finds thieesponding fixed-point.

2.7 Other Variants

The framework for symbolic ternary simulation that we witepent in the follow-
ing chapters is sufficient to capture each of the simulatamhniques that we have
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“Wrg

~ ing = uAwrg Q

A i Done

C")

—WIry

—>© inp = v Awr Q ;O

B: m Done

Main: O (A ON Done) A (BON Done) NG /out = (u =) O

Figure 2.19: Comparator Compositional Assertion Graphs

introduced so far. There are several additional technithegswe will not cover. In
particular, GSTE has been extended to liveness propevt®&(]], specified using fair-
ness constraints for assertion graphs. A form of backwardsitsimulation has also
been proposed [YS02] that propagates circuit constraiiliselstionally. Although
our framework will not cater for these approaches, we do oosiler this to be a se-
vere restriction, since compositional GSTE is sufficientli® majority of verification
cases to which GSTE is applied in practice.



Chapter 3

Generalized Trajectory Logic

In this chapter, we address the problem of how runs of syralefnary simulation
are best specified. A specification notation is required iar key roles. First, the
notation needs to formally express thwpertyof interest. This is necessary to com-
municate exactlyvhatthe verification demonstrates. Secondly, the notation mherst
scribe a simulation outline, giving information drow the verification takes place.
Many model checking specification languages are conceritedive property alone,
but manual guidance is paramount for symbolic ternary saten, to allow for ab-
straction control and optimization strategies.

A successful specification notation achieves these rolesway that makes all
relevant aspects of the verification easy to manage. Mosbitaptly, the notation
needs to represent simulations directly and concisely aitkean semantics, so that
their interpretations are as clear as possible. As well igs ittrshould provide good
scope for formal reasoning, by existing in a form amenableamipulation, and by
preferably exhibiting compositional algebraic qualitteat show promise for useful
reasoning rules.

We introduce a specification language caligheralized trajectory logi¢GTL),
which is a linear temporal logic that achieves these requipealities. We choose
our notation to be expressive and detailed enough to exgressommon simulation
patterns that we have explored in Chapter 2. An importantityuaf GTL is that
each logical construct corresponds exactly with each o&tbeic steps used within
traditional symbolic ternary simulation techniques likEBESand GSTE. By making
the constructs of our logic in alignment with these steps,all@v our notation to
describe both the simulation and the property in a singlarcketting. By relating
the constructs to propositional logic, we obtain a detadled clear representation of
simulations and their associated properties. As we wiltdbs in Chapter 4, this fine
level of simulation specification leads to clean reasonuigs:.

35
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To our knowledge, our logic is the first attempt at defining farfal property lan-
guage capable of expressing all compositional GSTE runsprByiding a textual
logical foundation, it greatly improves the outlook for fial reasoning about GSTE-
style simulations. On top of this, we believe that GTL pr@sd good perspective
from which to understand the model checking techniquesubkatsymbolic ternary
simulation, and in particular, GSTE.

3.1 Symbolic Indexing Notation

Before we define our specification, we introduce some natatior dealing with the
symbolic mathematical structures used extensively by Baged verification tech-
niques. We will use the tersymbolically indexed representatitmdescribe a struc-
ture containingndex variablesymbols. These structures represent different values
depending on the contextual valuation of the index varmli@t they contain. As
we have seen in Chapter 2, STE-based techniques use syailyaliciexed repre-
sentations of sets of circuit states during verification.aAgsult of this, much of its
underlying theory and notations are also built using thedexed representations.

We will assume that the indexing variables are Booleanegknd drawn from a
finite setVar. They therefore have associated set of valuatidns Var — B. We
will model the symbolic representations of a Sétusing the setX” of maps from
valuations taX, and writes(v) for the value ofs under valuation € V.

Given a functionf : X — Y, itsindexed liftingis the functionf” : XV — YV
that appliesf independently in each valuation:

(f@)w) = fla) (3.1)

We will lift an n-ary relationk C X" in three different ways. Thmdexed liftingof

R C X" is the mapRY : (XY)* — BY that provides the Boolean predicate that is
true in those valuations where the relation is satisfied. drieersal liftingof R is the
relationR"Y C (XY)" that s true for those symbolic representations whetelds in
everyindex valuation. Dually, thexistential liftingof R is the relation??” C (XV)»
that is true of those representations in whi¢holds insomevaluation. In summary:

(R¥(x)){v) iff  R(x(v))

RY(x) iff YveV.R{))
RY(z) iff 3JveV.Rx))
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Q — fl|f Symbolic conditional @ € pred(Var)
flu:=Q) Explicit substitution u € Var, ) € pred(Var)

f o=t True
| ff False
| n Node is high neN
| —n Node is low neN
| fAS Conjunction
| fVf Disjunction
| Yf Yesterday
| Z Recursion variable zZeF
| pZ.f Least fixed-point ZeF
I

Figure 3.1: Syntax of GTL

Example Binary Decision Diagrams (BDDs) [Bry92] can be viewed as arf@f
symbolically indexed representation, commonly used toasgnt Boolean predicates
overVar in model checking. Using our terminology, BDD conjunctisrihe symbolic
lifting of Boolean conjunction. Similarly, implication dBDDs is the symbolic lifting
of Boolean implication. The universal lifting of implicath corresponds to Boolean
implication followed by a validity check.

3.2 Formal Definition

This section provides a formal definition of generalizegertory logic, and describes
how it can be used to specify properties for symbolic tersamulation.

3.2.1 Syntax

The syntax of GTL contains two different types of variablegst, we use Boolean-
valued index variables € Var for the layer of symbolic representation that is main-
tained symbolic throughout the simulation process. Secwamduserecursion vari-
ables of the formZ € F, to capture fixed-point iteration in the style of thecalculi
[BSO01]. These variables correspond to intermediate sitounatates.

Definition 3.2.1. Formulas of GTL are those strings that satisfy the grammamsh
in Figure 3.1, and that meet the syntactical requirement thighin any fixed-point,
uZ . f, every occurrence of the recursion varialifein f is bound by an occurrence
of the temporal Yesterday operafr.
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IRl = 7

[Risli =0

[ Y = {teSt|last(t)(n) =1}

| =n ¥ = {te St |last(t)(n) =0}

1 fAgll =0l glly

1 fvall, = rlyullglly

1Y = {tseSt[telfl}}

1Z 1, = p(2)(v)

Il uz . f1 =WTW I flzen €Y T}

1Q — flgly = if Q) then]| f || else] g |,
I flu:=Q) |y = | f e

Figure 3.2: Semantics of GTL

3.2.2 Semantics

The semantics for GTL is given in terms of non-empty finite dgof states from the
circuit model, which is assumed throughout to be the KrigkecsureXc = (5, 7),
as described in Section 2.1.2. Recall that the finite set of bit-vectors that repre-
sent consistent circuit states, and thhas the model transition relation between these
states. Each formula of GTL satisfies a particular set of wéodeach indexing vari-
able valuation. This allows us to use indexing variable®mmiulas which correspond
directly with the indexing variables in GSTE simulations.model this, the semantic
domain we use consists of maps from index valuations to $etsmals, (2°")Y.

To capture recursion, we usaecursion contextp : F — (257)Y, that provides
semantic values for the free recursion variables in the fiterbeing evaluated. We
provide the semantics of GTL by giving a value to each formafl&TL in each
possible fixed-point recursion context.

Definition 3.2.2. The semantics of GTL are defined in Figure 3.2. The notatibrj,
denotes the set of finite non-empty words figmsatisfied by formuld in symbolic
indexing valuations € V and recursion contex.

We describe each construct of the logic in turn. Every wottsBes truth,tt, and
no word satisfies falsityf. A word satisfies the atomic propositianor —n, if node
n is high, or low, respectively, in thignal stateof the word. The connectives and
V behave exactly as their equivalents in propositional ldgit notice that we do not
allow for negation of arbitrary formulas.

The only temporal operator is théesterdayoperator, writtenY . Intuitively, Y f
expresses that held one time-step ago. A words ending in states satisfiesY f
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if word ¢ satisfiesf. We handle fixed-point recursion in the standard manneref th
p~calculi. For exampleyZ . f v Y Z expresses that has held at some point in the
past.

Finally, GTL has constructs for managing symbolically irelé representations.
The symbolic conditional) — f | g is equivalent tgf in valuations wher&) holds,
and g otherwise. As an example, the formula— n|-n describes the symbolic
words ending in states where nodéas value:. Thesymbolic substitutionperator,
written f(u := @), explicitly changes the current variable valuation cohtémdex-
ing variables used within these constructs remain symiatliing model checking,
providing us with a handle to control the balance betweeregpdicit and symbolic
simulation. For exampld)Y (v — n|-n))(u := T) specifies the run that symboli-
cally simulates the circuit with variable and subsequently uses this symbolic result
to reference the state indexed by the case whesdrue.

3.3 Semantic Characteristics

In this section, we explore some important characteristi€STL that provide a basis
for model checking. In particular, we show that GTL formuéae continuouswith
respect to their recursion context. This allows us to agpdynaster-Tarski Theorem
to deduce that the GTL fixed-point can be attained by a finitalver of simulation
iterations.

In order to reason about the effects of the recursion contextwill define the
following map, which interprets the semantics of a formwdaadgunction of a given
recursion variable context:

Definition 3.3.1. The functionR; , , maps valug/ € (2°")" to the semantic value
of f in formula contexp extended by mapping variabketo U:

Ripz(U) = | f llpiz—0

This map then models the effect of passing once through desitagation of a
fixed-point computation.

3.3.1 Monotonicity

We show than any formula of GTL is monotonic with respect te ¥alue of each
recursion variable. As well as being a step on the way to detnatmg continuity,
this property will also allow us to derive many useful reasgrrules about GTL in
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Chapter 4. The property states that if the set of words sadigfy recursion variable
Z increases, then we also increase the words satisfigd by

Theorem 3.3.2(Monotonicity). Ry , ~ is monotonically increasing with respect to the
symbolic containment relatio, " .

Proof. The proof is by structural induction ovérand is given in Appendix A.1. [

3.3.2 Continuity

We demonstrate that the semantics of GTLfar#gary, which is a sufficient condition
for continuity. This corresponds to the statement that iivergywordo is satisfied by
a formula recursion conteyt there must be another recursion conigxduch that the
value of each recursion varial}g 7) is a finite subset gf(Z), and in whicho is also
satisfied.

In order to show that this property is true for GTL, we will use following
observation. Whether or not a word of lengtlsatisfies a formula depends only on
which words of length less than or equaltare satisfied by the recursion variables in
the evaluation context. Informally, this expresses thal @ifily looks backwards in
time a finite distance for each finite word. We formalize thigienent, with a function
that restricts a set of symbolic words to those words of lengtr less:

Definition 3.3.3. Let thenth length restrictionwheren € Z U {+o00, —}, be the
mapL=": (257)Y — (257)Y defined by:

L(X)(v) = {oeX({v) | lo]<n}

Notice thatn need not be positive, and tha#’(X), for upwards of any, is chain
when ordered by V. It is simple to show that:

Lemma 3.3.4. L=" is chain-continuous.

Proof. Let X; be a chain with respect t0"”. Then:

= X)) = {ze @57)|3i.z € Xuv) Ala] < n)

%

-t xw) =
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We will say that a function on symbolic setsagnsistently lengtheninghen it is
both monotonic, and the words of lengthn its image are completely determined by
the words of length less than or equaliti its argument. Intuitively, this means that
as we iterate through the fixed-point, the words that arerealvare of ever-growing
length.

Definition 3.3.5. The mapF : (257)Y — (25")" is termed consistently lengthening
iff £ is both monotonic, and

L="(F(X)) <™ F(L="(X))
for everyn € Z and X € (257)Y.

We can now show that any consistently lengthening map isroomiis, by demon-
strating that each word in the image of the map is determiryea finite number of
words in the argument. These are the those words that arelbdiny the same length.

Lemma 3.3.6. Every consistently lengthening map is chain-continuous.

Proof. Let F : (257)Y — (257)Y be a consistently lengthening map akige (257)¥
be a chain with respect ta”’. Now suppose that word is in F(|J,”X;). It
must be that is in the restriction of this set to words less than or equats@wn
length: o € L§|”|(F(UZ_VXi)). It follows since F' is consistently lengthening that
o € F(LE(U,Y X;)). By Lemma 3.3.4, this equals(|J,” L=I"(X;)). Now, since
U, L=l X;) is finite, there must exist some € N such thatr € F(L=/(X))).
SinceF is monotonic, it follows that € F(X;) and sas € |J,VF(X,). Itis trivial
to show that monotonicity also guarantees tbg’fF(XZ—) cw F(UiVXi). Therefore
U,"F(X,) = F(U,” X;) and soF is chain-continuous. O

In order to demonstrate th&; ,  is consistently lengthening, and therefore con-
tinuous, we use the concept of tteenporal depttof a formula:

Definition 3.3.7. Let the temporal depth of formula variabtein formulaf, written
depth(Z, f), be the least number &f operators binding any free occurrence %fin
f, and+oo whenZ does not occur free iff.

The temporal depth of a formula gives a measure of the diftaxen length be-
tween corresponding words that satisfy a formfuéandZ. For example, sinc¥ Z has
temporal depth one, each word that satishesorresponds to wordsneletter larger
satisfyingY Z. The temporal depth of a formula therefore gives a minimurasnee
of how much longer words will be after one recursive itenatiorough a formula.
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We can show thaR; , ; is consistently lengthening by structural induction over
f in the following theorem. We use a stronger inductive irmatithan is strictly
necessary, so that we can reuse the condition later, indBetti.2.

Theorem 3.3.8(Continuity). For every recursion contextand GTL formulgf where
every instance of recursion variableis bound by at least one instance¥f R; , ~
is consistently lengthening, and therefore continuous.

Proof. The proof of this lemma is by structural induction oyeand is given in Ap-
pendix A.2. For each formula it is shown in Appendix A.2 the following condition
holds:

L="(Ryp.z2(R))) € Ry pz(L="" A0 (R))

Due to the given requiremendepth(Z, f) > 1. Therefore each formula is consis-
tently lengthening map by virtue of this and Theorem 3.3.2nt¢¢ by Lemma 3.3.6,
it is chain-continuous. O

The importance of this theorem is in demonstrating that feithts can be at-
tained through finite iteration, providing a basis for modae¢cking. We will define
theapproximantof a GTL fixed-point as follows:

Definition 3.3.9 (Approximants) Let thenth approximant of.Z . f, written "7 . f,
be defined inductively as:

Wz f = f
pwzf = flw"z. 1)) 2]

Continuity allows us to apply the Knaster-Tarski Theorenshiow that these ap-
proximants converge to the corresponding fixed-point:

Corollary 3.3.10 (to Theorem 3.3.8)By the Knaster-Tarski Theorem on continuous
maps, the GTL fixed-poiptZ . f is the least fixed-point &2, , ~, and the symbolically
lifted union of the approximants:

(fie(Ryp2)v) = pZ.gl,(v)
="z f llo(v)

n>0
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3.4 Syntactic Sugar

To describe some common temporal patterns, we define thdipesequivalents of
the Linear Temporal Logic [Pnu77] operatdfigally and strongJntil. Previouslyf,
written Pf, asserts that held at some pointin the past. The formfil8inceg, written

f S g, requires thaf holds at every point backward in time until some point where
has held.

Definition 3.4.1. The two temporal operatoi® and S are defined by:

Pf = uZ.fVYZ
fSg == puZ.gv(frYZ)

Notice that we cannot define an equivalent to LTGkbally operator, since our
logic cannot express greatest fixed-points. This is in kegpith current applications
of GSTE, which do not calculate any greatest fixed-points.

We define the following notations for symbolic quantificatio

(Fu.f) for  f(u:=T)Vf(u:=F)
(Vu.f) for  fu:=T)Af(u:=F)

We will also write 'n is @)’ as short-hand fo) — n|-n. It is also useful to
have a notation for describing the values on data buses. lets are commonly
modeled as vectors of nodes, and conventionally writtehénformb|rn : 0], which
represents the grougn|, bjn — 1], ..., b[0] of nodes. We will similarly writev[n : 0]
for the vector of variables consisting ofin], v[n — 1],...,v[0]. We can then use the
following syntax for the values on buses:

bin:0]isv[n:0] for (b[n]isvn])A...A (b[0]is v[0])

3.5 Expressing Properties

We will use GTL in order to describe the outlines of symboé&eiary simulations,
as well as to provide a sound semantics for the propertieggbearified by those
simulations. The top level of simulation must be describeth formulas that are
closedwith respect to recursion variables, since the fixed-pamutation iterations
must be closed for us to be able to simulate them.

Definition 3.5.1. A GTL formula is closed if every occurrence of a recursioriatale
is bound by a correspondingexpression.
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To be able to use GTL to express runs of symbolic ternary sitiau, it is nec-
essary to introduce a construct to separate ouathecedenandconsequenparts of
the property. This allows us to differentiate those comstsahat should be used to
drive and define the circuit simulation, versus those cangs that are to be asserted
about the simulation result.

Definition 3.5.2(GTL Properties) A GTL property is of the form ‘antecedefteads
to consequent’, written A = C, whereA andC are closed formulas of GTL.

We can now formally define what it means for a model to sati€®a property. A
model satisfies a property if every trace of it that satistiesantecedent also satisfies
the consequent.

Definition 3.5.3 (Trace Satisfaction)A model tracer € S* satisfies GTL property
A = C if under every indexing variable valuation, the anteced®ihg satisfied by
o implies that the consequent is satisfiedbby

cEA=C iff WweV.(oe|AllP=sae|C)

Definition 3.5.4(Property Satisfaction)A Kripke structure circuit modél¢ satisfies
GTL propertyP if every trace of the model satisfi®s

Kc):’P iff VO'EtI‘(Kc).O'):’P

Example The following property can be used to verify a delayed ANDegaith
inputsa andb and outpub:

Y((aisu) A (bisv)) = ois (uAv)

The property can be read as ‘whenever ned@d valuex and nodeb had valuev in
the previous time-step, nodeshould be(u A v)’. Notice that the property uses two
different forms of conjunction. The first is that of GTL, anxpeesses that two tem-
poral events have both occurred. The second instance isftBatolean conjunction,
that defines the Boolean function describing the expectke\an node.

Example As another example, consider the following property thatmight expect
to hold of a simple memory cell, which has write enable inpytdata input nodén
and outpubut:

Y((—wr) S (wrAinisu)) = outisu

This property says that if from the previous time-step baakis no write has occurred
since some time when a write occurred with inputhen the output should equal
This property is equivalent to that of the assertion gragwshin Figure 2.13 (page
26).
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3.6 Set-Based Model Checking

This section introduces set-based model checking for GDpenties, illustrating the
algorithm behind our intended simulation approach, whistping issues of abstrac-
tion aside. The algorithm will then be adapted in the subsetjgsection, for the
ternary vector data structures required for abstract sitioul.

The GTL propertyA =- C is verified by using the shape of antecedent formula
to control and drive the flow of simulation. The resulting gskstates is then checked
for containment against the consequént Since the logical constructs of GTL are
in one-to-one correspondence with the atomic steps of siionteonary simulation,
the model checking procedure follows the shape of the faandirectly. Like each
formula of GTL, each intermediate set of states producegnsslically indexed.

3.6.1 Preliminaries

First of all, we formally define themageof a formula to describe what it is that the
simulation of a formula actually calculates.

Definition 3.6.1 (Formula Image) The image of formulg, with respect to Kripke
structureXCc and contexp, is the symbolic set of states that are the last states irethos
model traces oK ¢ that satisfyf in p:

imie,o(f)(v) = last(tr(Ke) Nl f II})

We will often omitCq, since it is assumed to be constant throughout. The states
of a ternary simulation consist of representations of theokstates satisfied by an
antecedent up until a particular time point. Once simutasacomplete, each of these
sets can be checked for containment against some consegu@ition. For this
reason, the consequents that we can use must not be temyveralill call this class
of formulasatemporal

Definition 3.6.2 (Atemporal) A GTL formula is atemporal if it does not contain any
instances ol

Recall that every recursion variable used within a fixedipekpression must be
bound by an instance &f (Definition 3.2.1). Therefore any fixed-point variablesdise
within a atemporal formula must not contain recursion \l@gs, so each such fixed-
point may therefore be replaced by its inner expression.ekample.Z . f may be
replaced by if Z does not occur freely if.
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As would be expected, whether or not a word satisfies an atahfsymula is
determined purely by the last state in the word:

Lemma 3.6.3.For any atemporal formuld and wordt € ST, t satisfies if and only
if last(¢) satisfiesf as a singleton word.

Proof. The proof is in Appendix A.3. 0J

GTL verification is different from either STE or assertioragh verification be-
cause we only check for conditions using tmed-stateof the simulation. In STE
the consequent can refer to any point along a fixed-lengttefirace of simulation
states. But this approach is not possible in general for ®@€cause properties can be
unbounded.

In GSTE assertion graphs, consequents can be applied atoantyirpthe simu-
lation, and not just at the end. We have avoided this for GTdpprties because we
believe that it simplifies the structure of properties and@&sahem more amenable to
reasoning. Since consequents in GTL properties are ordgdino theendof simula-
tion, and not the intermediate states, we are freer to toamsthe simulation without
being concerned about additional side-effects. If we sigh to verify multiple con-
sequent conditions then we can instead do so by using neufiipperties.

3.6.2 Set-Based Simulation

Similar to the standard model checking approach for calitigdhe set of states that
satisfy a formula of Computation Tree Logic (CTL) [CES86¢ define simulation for
GTL by structural recursion on the syntax of the antecedemhd@ila. The algorithm
results in a symbolic set of states fram— 2° that is an upper-approximation of the
image of a formula. We usesamulation context : F — (V — 2°) to assign values
to the free recursion variables in a formula and accumulaéelfpoint values.

Definition 3.6.4(GTL Simulation) Figure 3.3 defines simulation for GTL formulas.
The result of simulation is writtepf |“, wheref is the formula being simulated,

is the indexing variables valuation, andis the simulation context. Fixed-points are
calculated using the recursive functifin, defined by:

fix fo = if ((fz) = x) then z else (fix f (fz))
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[t ]7 = S

(] =

[n]7 {seS|s(n)=1}
[—n]? = {865| s(n) = 0}
[fVgly = [flrulgl

[fAgl? = [flnlglk

(Y[, = post([f]})

[Z]7 = 7(2)

(nZ .11, = fix (NS [f],1z=5) (W.0)
(Q — flg]ly = ifQv)then|[f]” else[g]”
[fu=Q) =[5

Figure 3.3: Set-Based Simulation

3.6.2.1 Termination

For fixed-point.Z . f, we first simulatg in a context in whicl¥ is assigned the empty
set of states in every index valuation. We then use thistrasuh new assignment to
Z tore-simulatef. This is repeated until equality is reached between it@nati Since
our domain is finite, termination is ensured by the monotonaf each simulation:

Lemma 3.6.5. For every formulaf, simulation terminates and is monotonic in the
simulation context of each recursion variable.

Proof. This is shown by induction, first on the number of fixed-points formula,
and second by the length of the formula, and is given in fuRgpendix A.3 O
3.6.3 Checking Properties

In order to use simulation to verify a GTL property, we simealboth the antecedent
and the atemporal consequent of the property, and thert ass¢ainment:

Definition 3.6.6 (Set-Based Model Checkingfet-based model checking of a GTL
property succeeds if and only if the antecedent simulatsooointained within the
consequent simulation:

Mcset(KC7A:> C) iff [A] QVV [C]

We will now justify this model checking procedure. We do thisdemonstrating
relationships between the results of simulation and theilsitad formula’s image.
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Lemma 3.6.7.The simulation of any closed formulg,is an upper-approximation of
its image:

im(f) €V [f]

Proof. In order to demonstrate this for closed formulas of GTL, wgiree the follow-
ing inductive property of sub-formulas: for any formylatrace recursion context
and simulation recursion context if im,(Z) C" [ Z]. for every recursion variable
Z, thenim,(f) €7 [f]..

This property extends the lemma to formulas with free raoargariables, which
requires the given simulation context to also contain wgpgroximations of the im-
age of the given corresponding semantic recursion contextetailed proof of this
property is in Appendix A.3, and proceeds by induction, ardgfirst by the length
of a formula, and secondly by the numbeneéxpressions in a formula. O

Lemma 3.6.8.For any atemporal GTL formulg, the simulation and image are equal:

Proof. The proof is very similar to that of Lemma 3.6.7, and is giveriull in Ap-
pendix A.3.1. O

These two lemmas allow us to use a simulation containmertkcheorder to
verify that a circuit model satisfies a given GTL property:

Theorem 3.6.9.If set-based model checking succeeds for proparty> C, with
atemporal consequeft, then the circuit satisfiead = C.

MC;(Kc, A= C) implies K¢ E A=C

Proof. Model checking succeeds whér ] C*V [C]. Lemma 3.6.7 ensures that
im(A) C" [A]. SinceC is atemporal theim (C) = [C] by Lemma 3.6.8. There-
fore im(A) C"V im(C). Now supposer is a trace of the model that satisfies the
antecedent in valuation: o € tr(Kc) N || A ||Y. Thenlast(c) € im(A)(v), so
last(c) € im(C)(r). Now since the consequent is atemporale im(C)(v) by
Lemma3.6.3. Hence every trace of the model satisfies the property inyexadua-
tion, so¢c = A = C. O
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Figure 3.4: Soundness of an Abstract Operation

3.7 Abstract Model Checking

Abstract model checking is the modification of set-basedehddecking to make use

of symbolic ternary simulation. These changes counter fibleipitive state-explosion
problem that would accompany explicit set-based modelléhgof sizable designs.
Using the ternary vector abstract state set represensatiguires abstract interpreta-
tions of U, N andpost. The next section describes how each of these operations are
calculated in practice, and demonstrates their soundaesls,in some cases, com-
pleteness. This will allow us to justify abstract model dtieg.

3.7.1 Abstract Simulation Operations

The foundations for the abstract operations in ternary kitimn have already been
given in Section 2.5.3.2, using the terminology of abstnaterpretation theory (Sec-
tion 2.3.3). Recall that elements in the lattice of ternaegtors, T\ are used to
represent sets of circuit stat@s, and that we can reason about abstraction using the
Galois connectiofic, 7).

We will say that an abstract mafy : TV — T¥, on ternary vectors, is sound
approximationof a concrete mag : 2° — 2%, on sets of circuit states, if, for every
a € T, the set represented b (a) is a superset of the image undgiof the set
represented by: f(v(a)) C v(f*(a)). This is illustrated in Figure 3.4. We will say
that an abstract map is furthermarempletaf, f(v(a)) = v(f*(a)).

Throughout this section, in order to describe ternary wscsaccinctly, we chose
to define them using a lambda-expression notation. We willewin. f(n) for the
ternary vector that satisfiea(n) = f(n) forall nin \V.

We will describe the calculation of each simulation operatin detail, with the
exception of the propagation operatpr,| (see Section 2.3.1), which is beyond the
scope of our work. We will merely make the assumption that tipieration does not
change the set of sets being representék|) = ~(s). This is fair in practice, since
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propagation adds information to the ternary vectors thateadeduced directly from
the circuit constraints. We will also describe in detail haver-constraint conditions
interact with simulations—something which is not covereddetail by other STE
literature.

3.7.1.1 True and False

We will use L to represent the empty set of states. Singce) = 0, it is clear that
this is a sound and complete representation. For the sdtafradistent states, we will
use the propagation of the ternary vector that consisksaifevery node. Again, this
representation is sound and complete siE€X ... X) = S.

3.7.1.2 Atomic Propositions

For the image of GTL's atomic propositions, we use the foltaypabstract represen-
tation:

Definition 3.7.1. Letn is* b be the propagation of the ternary vector that has Boolean
valueb at noden and X everywhere else:

) b ifn=m
# _
nisth = ’)‘m'{ X otherwise

Lemma 3.7.2.n is* 1 andn is* 0 are sound and complete representations [fof”,
and[—n ", respectively.

Proof.
1 ifn=m N
il _
y(nist 1) =~ (')\m.{ X otherwise ) (Definition 3.7.1)

1 ifn=m .

= v ()\m. { X otherwise ) (Assumption)

= {seS|s(n) C1AVm#n.s(m)C X} (Definition 2.3.2)

= {seS|s(n)=1} (Definition 2.3.1)

= [n]” (Definition 3.6.4)

The same proof outline holds for O
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3.7.1.3 Union

To approximate union and intersection, we usejtiie Ll andmeetr1, respectively, of
the lattice of ternary vectors. These operations have dyreaen defined for single
guaternary valueX, 0,1 and_L in Figure 2.7. For elements of the ternary lattice, the
join for vectors can be calculated as the point-wise joirhefternary value assigned
to each circuit node:

Definition 3.7.3. Join on the ternary vector lattice for ternary vectarsh € T/ is
defined by:

a ifo=1
alb =< b ifa=_1
An . a(n) Ub(n) otherwise
Lemma 3.7.4.Join is a sound, but not complete, abstract interpretatibgsat union.
Proof. Let a andb be elements of the ternary vector lattide .
Casea = L. Theny(a) Uvy(b) = DU ~(b) = v(b) = v(alb).
Caseb = L. Theny(a) U~y(b) = vy(a) UD = v(a) = y(a Ub).
Casea # L Ab# L. Then:
s€v(a)Uv(b) = (VYn.s(n) Ca(n))V (Vn.s(n) C b(n))
= (Vn.s(n) C a(n)lb(n))
= s€y(alUb)

Hencey(a) U~(b) C y(alUb), as required for soundness. The following case demon-
strates that/ is not complete:

v(10)U~(01) = {10,01} C {00,10,01,11} = ~(XX) = ~(10L01)
O

3.7.1.4 Intersection

As a form of abstract set intersection, we use the meet oattied of propagations of
ternary vectors. The meet is calculated by performing thetpeise meet on nodes,
and then a propagation step. We use a propagation step atdlgis, because we
can deduce new information about the values of circuit nodéss is because the
knowledge that two conditiortsothhold allows us to increase the frontier of what we
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know about the circuit state. For example, consider the leiogse of an AND-gate.
If we know thatbothof its inputs are high, then a propagation step allows us doce
the additional constraint that the output must be high. Tlkets L when either of
its arguments isL, or if it introduces an inconsistency. This is summarizedhia
following definition:

Definition 3.7.5. Meet on the ternary lattice is calculated by:

if a=1lvb=_1
1 V dn.a(n)Mb(n) =L
V' (JAn.a(n) M b(n)| = L)
|[An . a(n)Mb(n)| otherwise

allb =

Lemma 3.7.6.Meet is a sound and complete abstract interpretation of rs#etrsec-
tion.

Proof. We show thaty(a) N v(b) = v(ab).
Casea =1 Vb= _1.Theny(a)Ny(b) =0 =~(L) =~(amb).

Casedn.a(n) M b(n) = L. Then sincer andb disagree at node, the sets of states
represented do not overlap, $t:) N y(b) = 0 = (L) = v(ab).

Case |An.a(n) M b(n)| = L. Then by the assumption dn |, y(An.a(n) M b(n)) = 0,
S0 no consistent states satisfy the conditions of ba@thdb. Thereforeyy(a) Ny (b) =
0 =~(L) =~(amb).

Case Otherwise:

s€y(a)Ny(b) <= (Vn.s(n) Ca(n))A(¥n.s(n)C b(n))
<= Vn.(s(n) C a(n) A s(n) Cb(n))
<= Vn.(s(n) C a(n)Mb(n))
< sevy(amb) O

3.7.1.5 Post-Image

The post-image functiopost is interpreted using the abstract post-image function
post! that applies one step of forward symbolic ternary simufati®ecall from Sec-
tion 2.3.1 that this calculation consists of propagatirfgnmation through the circuit
using the ternary logic, and then simulating a time-steprégdferring values across
delay elements. We will not formally demonstrate thast* is a sound abstract in-
terpretation obost, due to the additional work required to formally model giteel
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Figure 3.5: Example of Post-Image Over-Approximation

simulation. The thrust of the argument, however, is t{abst*(a)) includes all the
successor states 9fa), since the abstract post-image calculation transfersi@nts
across from the input of delay nodes to their output.

We note thapost! is not a complete interpretation pbst, since it is possible to
lose information due to the lack of backwards constrainppgation. For example,
consider the ternary vectarillustrated in Figure 3.5. Since the output of the AND
gate isl, it follows that the second inpub, must also bé. Therefore, in every state
of post((a)), it must be that the outputis 1. Because simulation only propagates
values forward, however, this constraint is not maintained

3.7.1.6 Containment

Finally, the set inclusion test for the consequent is regady a point-wise application
of the ‘is less approximate than’ order on the lattice of éa@yrvalues=. We interpret
this relation into the abstract Boolean domain whiatee is more approximate than
true, since model checking will be sound, but not complete.

Definition 3.7.7. The abstract containment operation?, is defined by:

true ifa=1
aClc = false ifa# LAc=1
Vn €N .a(n) Ce(n) otherwise

Lemma 3.7.8. The abstract containment operation is sound.
aChc implies ~(a) C 7(c)
Proof. We examine the cases in whialC# ¢ holds.
Case a = L: Thenvy(a) = 0, so the result holds trivially.
Casea# LAc# LANneN .a(n)Cc(n)):
Vn e N .a(n) C ¢(n)
= Vse S.(VneN.s(n) Ca(n)) = (YneN.s(n) Cc(n))

< Vse S.sev(a)=sey(c)
— ~(a) S () 0
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Set Construct Abstract Interpretation Sound| Complete
S An.X 0 O
0 1 O 0
[n]” nis* 1 O O
[—n] nis* 0 0 0
U L t t
N M 0 0
post post? (l (l
- ct O O

Table 3.1: Abstract Interpretation of Set Operations

Lemma 3.7.9. The abstract containment operation is not complete.

Proof. Consider the case where = {00}, « = 01 andc = L. Here the ternary
vectora is inconsistent with the circuit constraints describedShgo~(a) = (). But
v(c) = 0. Thereforey(a) C ~(c), even though C* b does not hold. O

For STE, containment for ternary traces can be made compjeteaking use of
bounded model checking instead of point-wise ternary chgt&06]. We expect that
containment can also be made complete in our set-based ¥iéWwlosimulation, by
introducing similar forms of reasoning.

3.7.2 Abstract Simulation

We now have all the abstract operations necessary in orgerform abstract model
checking. Table 3.1 shows a summary of the atomic set opasatised, together with
their abstract interpretations and characteristics. Végptihe set-based algorithm to
use these abstract interpretations, resultingastract simulationdefined in Fig. 3.6.

3.7.2.1 Termination

As with set-based simulation, we demonstrate the ternunatf fixed-point calcula-
tions by showing that abstract simulation is monotonic @/énite domain.

Lemma 3.7.10. Abstract simulation terminates and is monotonic in eachlursion
variable, i.e.| f |7, is monotonic with respect 0" as a function of/.

Proof. Proof is by induction, ordering first by the number of fixedss in f, and
secondly by the length gf, and is given in Appendix A.4. O
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|t |” = AmX

Bil = 1

| n|” = nisf1

| =n |¥ = nisf0

LfValy = |flsulals

LfAgly = |flznlaly

LYSf ], = post*(|f ]%)

LnZ.f g = fix (AS. LfJTZHS]) (A1)
|Q — flgly = Q) then|f ] else| g];
fw=Q) 5 = LfJ"?

Figure 3.6: Abstract Simulation

3.7.3 Checking Properties
We can now define what it means for abstract model checkingdoesd:

Definition 3.7.11. Abstract model checking succeeds when the abstract siiomilait
the antecedent is contained within the abstract simulabicthe consequent for every
variable valuation:

MC(Kg, A= C) iff [A]"C*|C|” foreveryv €V

Using our results on the soundness of our abstract opesatios can show that
abstract simulation consistently over-approximates:

Lemma 3.7.12.1f the value assigned to each recursion variablle= F in abstract
simulation context is an upper-approximation of its value in concrete simuwlati
contextr, then abstract simulation of any formufain this context will result in an
upper-approximation of the concrete simulation of the séon@ula:

vVZer . [Z], €V ([ Z],) implies [f]. € ~A(Lf],)

Proof. The previous section has shown that every operation ofatigtimulation is a
sound approximation of set-based simulation. This lemraalisect result of applying
this observation inductively over the length of the simioliat 0J

Model checking verifies that every trace which satisfies tite@ndent must also
satisfy the consequent. Therefore the consequent resthetaccepted set of be-
haviours, so the simulation of the abstract consequentemagst not approximate.
Sincell is not a complete interpretation of it follows that abstract model checking
is sound only when the consequent under consideration adde®ntain disjunction.
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This requirement rules out properties that express noerehnistic outcomes us-
ing disjunction. Since we are performing verification ussiguulation over a deter-
ministic model, these types of properties typically requis to ‘determinize’ them via
case-splitting. For example, consider a reverse OR-gaf@epty such as:

input = (outputy) V (outputy)

Simulating the consequent conditidoutput;) V (output,) for the two outputs in-
volved will result inX being assigned to both of them, so that model checking suc-
ceeds no matter what the input. Unlike antecedent simulatids form of consequent
over-approximation is unsound, because it weakens théocation. Such a property
might instead be soundly verified by

MC(Kg,input A A = output;) V MC(Kc,input A =A = outputy)

whereA is the case-split condition required to determine a coravetcome for the
circuit at-hand.

Lemma 3.7.13.If the value assigned to each recursion variallle= F in abstract
simulation context is an exact representation of its value in concrete simarati
contextr, then abstract simulation of any formufahat does not contain disjunction
or Yesterday will result in an exact representation of thaarete simulation of the
same formula:

(VZzeF . [Z].=(12],) implies [f] =~(f],)

Proof. Every operation of abstraction simulation is completehwite exception of
those for disjunction and post-image calculation. Thisrteans a direct result of
applying this observation inductively over the length af gimulation. O

Finally, we can use this to demonstrate that abstract mduelking is sound.

Theorem 3.7.14.1f C is atemporal and does not contain disjunction then
MC(Kc,A=C) implies Kc=A=C

Proof. By Lemma 3.7.12[A]* C (| A |*) for any formulaA. For atemporal conse-
quents without disjunction, Lemma 3.7.13 ensyré€s$” = ~(| C |¥). Now, if model
checking succeeds, thém |*C#| C |¥, which impliesy(| A |*) € (| C ) by
Lemma 3.7.8. Combining these, we have that” C v(| A |¥) C~(| CJ¥) =[C]".
Thus set-based model checking also succeeds, which inmpiesCc = A = C
by Theorem 3.6.9. O
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As described for STE in [TGO06], it is possible to obtain mdnart justs ‘pass’
or ‘fail’ from the ternary containment check if required. dffailure is due to over-
approximation, then the failed comparisons will be of therfX C 0 or X C 1. But
if we have demonstrated a genuine error in the design thee Wi# be a check of the
form1C0Oor0LC 1.

3.8 Related Work

We have presented a specification notation and model chgeelkgorithm for sym-
bolic ternary simulation, using a pure-past linear templargic with constructs for
symbolic indexing. This section explores how GTL relatesxsting notations, both
inside and outside the domain of STE-based simulation.

3.8.1 STE Specifications

The most commonly used specification notation for trad&lo8TE is Trajectory
Evaluation Logic (TEL) [BS91, SB95]. Like GTL, TEL takes tHerm of a re-
stricted linear temporal logic, with formulas of the folfRUE, nis0, nis1, f and f,

Q — f, andnextf, written Nf. Assertions are written in the forfantecedent =
consequent|. The considerable success of TEL for describing and magaSiE
verifications [SJO05, PRBA97] was one factor that inspired us to use similanfou
dations for GTL.

Unlike GTL, TEL does not use past time. This does not posedhegroblems
with composition as exist for GSTE, since past and futuretoperands are easily
interchangeable in a bounded setting. The logic also difierits use of anf-then
construct, rather than thé&then-elseconstruct of GTL. One reason for this is that
TEL specifications intuitively feel more like assertion®absets of traces, whereas
GTL formulas feel more like the sets of states that they dlescin practice we believe
that our approach better represents common simulatiors casd as symbolic case-
splitting. The semantics of TEL also differs significanttprh GTL, as the nodes in
TEL circuits models themselves themselves have ternatgsst@ihis model structure
derives from early use of STE for switch-level circuitry, @k charge is not modeled
as binary, but can include an extra logically neutral praisstate corresponding to a
node that is driven neither high nor low. This was part of thgin of the use of the
valueX. But binary models suffice at the gate-level targeted by G@&hd there are
significant benefits to staying within in a binary model.
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As STE evolved to deal with richer classes of propertiesietivgere several in-
termediate specification notations proposed. Hazelh@wstribes a variant of TEL
with arbitrary negation and an additionaitil operator, implemented via a fixed-point
calculation. This goes some way toward the expressiverfeGS®E and our own
approach. But like TEL, the semantics of Hazelhurst’s |lagguare also based on
partially ordered model states, leading to a four-valuggicldemantics that compli-
cates reasoning.

STE was also adapted to include fixed-points by Seger andnBmygSB95]. In
their notation, TEL assertions are sequentially compositld av‘;’ operator, and a
Kleene star syntax is used for iteration. For example, tbpgnty[A; = C4]*; [As =
Cs], is interpreted as “A trace which initially satisfies any rhen of iterations of
A; must satisfy the same number of iterationsCasand then subsequently satisfy
[A; = Cy]”. In order to model check such properties directly, fixemlrgs were
introduced into the STE simulation flow.

Regular expressions are not so suitable for GSTE. Firste lkeno equivalent for
GTL conjunction, which is used to describe the branchingugaions of composi-
tional GSTE. This does not limit the expressibility of proes, but does limit the
description of how a simulation can take place. Second,apeesentation of fixed-
points using the Kleene star approach is less compact. $tbhedcause it does not
allow shared references to fixed-points as Gi#expressions can. This means that
regular expressions require nested fixed-points to be tegpeaplicitly in-line.

The main remaining difference is that regular expressi@es aoncatenation to
represent the progression of time, whereas GTL usesSyttaperator. For simple
properties the two notations are easily interchangeahktlas largely comes down
to a question of aesthetics. The use of the concatenatiaatopenforces temporal
conditions to follow from left to right as they pass from pa&stfuture, and is likely
to require reduced use of parenthesis. But when we considat appens during
substitution, concatenation antlbehave quite differently.

For example, consider the conditiOW reset) A init, which, we might express as
the regular expressioreset.init. Suppose we would now like to substitute the con-
dition init with the initialization condition given byY init1) A init2, or init1.init2.
Direct substitution will give ugY reset) A (Yinitl) A init2 andreset.init! .init2,
respectively, which are quite different conditions. TH®ws that GTL formulas are
better suited to independent backwards-looking tempanadlitions, whereas regular
expression concatenation is better suited to describimpaeal events with defined
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start and end points. We believe that the former is more aelefor hardware ver-
ification because circuits exhibit a high-degree of bramglparallel behaviour with
relatively little synchronization between components.

3.8.2 GSTE Specifications

Work by Beatty [BB94] laid the foundations for GSTE by retagicircuits to arbitrary
state transition graphs and using an individual run of STietify each transition in
turn. In this work, each transition is specified as an STEréiesecontaining abstract
state that is manually mapped into circuit state. NelsonJaia [NJB97] introduced
labeled transition graphs to connect these assertiongraposed a generalized STE
algorithm to model check multiple transitions in a singledabchecking run. In
[Cho99], Chou shows that this algorithm is incomplete, argppses an alternative
graph satisfaction criterion that better fits the impleratioh. These graph structures
were further formalized and extended to form GSd$sertion graphgsee Section
2.5.3.1) by Yang and Seger [YS02, YSO03].

Although assertion graphs can be useful for displaying Erppperties in a visual
manner, the notation suffers from several drawbacks in eoisgn to GTL. It places
strict limitations on the amount of formal reasoning that t& achieved, due to its
graphical nature. Some progress has been made on formahnegsvith assertion
graphs, but the resulting rules, and their proofs, tend todmeplicated, because they
deal with unstructured flat representation of what is n#ljueagraphical concept. In
contrast, as we will see in the subsequent chapter, these ®xiple reasoning rules
for GTL that are clear and intuitive.

Assertion graphs also introduce problems associated witexing variables. In
particular, the variable scoping conventions are difficuiisually parse because the
notations used do not positionally enclose the defined baniesl of scope. There
are two areas where this is especially true: the use of Var@hsses with different
scoping rules (see Section 2.5.4.3), and the use of knasS@etion 2.5.4.4). In both
of these cases, the scoping rules are, in practice, diglddedm the assertion graph
structure itself. In contrast, GTL variable scoping is maaéural because the notation
directly encloses a variable’s lexicographical scope. c&ii follows conventional
logical syntax, the notation is also more familiar.

The forall-semantics of assertion graphs can also caudeasion, because it dif-
fers from the typical semantics of standard automata. Samsiderable effort is
sometimes required to understand the interplay betweerdhditions asserted by
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different concurrent paths in a graph. Another common rtespretation of the asser-
tion graph semantics is that the initial assertion grapte staust align with some form
of initial hardware state.

3.8.3 CGSTE Specifications

As well as the problems with formal reasoning, the notatiiassertion graphs cannot
describe theeompositional extensioresf GSTE that have been discussed in Section
2.6. These extensions are currently expressed with oneoafiifferent notations. The
first is by using the language eabmpositional specificatiofY S04]. This language
was primarily introduced as a theoretical notation, in thief of a process algebra,
to explain the compositional GSTE technique. Because sf thdoes not cater for
certain aspects of GSTE, such as its symbolic nature. UGike, antecedents and
consequents are mixed together in this language withinahreegsemporal structure.
We believe this complicates the resulting semantics, staoh formula corresponds
to both a verification check as well as a simulation desaniptAs a result, the logical
constructs are complex and unfamiliar. In contrast, GTLasaes antecedent and
conseqguent concerns to maintain the familiar form of praosl logic.

A second specification notation for compositional GSTE mvpated by the com-
positional assertion graph data-types for the propertesged by Intel's composi-
tional GSTE model checker, provided with the Forte verifaaplatform [SJO05].
This notation suffers from the opposite problem to $ipecification language-it is
suitably expressive for practical use, but it does not hafggraal semantics beyond
that of the model checker’s implementation. Furthermouejmtial experiments have
shown that the notation is not closed with respect to ceffiamdamental forms of
composition, and suffers from some counter-intuitivegtrarities.

3.8.4 Temporal Logics

Outside the realm of STE, temporal logics [Eme90, MP92] aidely used for the

specification of properties for formal verification, as wa#l for controlling some
forms of simulation [BC96]. Of these logics, GTL is most damito the linear-time

mu-calculus [Sti92]. In particular, when GTL's two symlmindexing operators are
removed, the remaining constructs form the negation-free-past fragment of the
linear-time mu-calculus over finite traces. GTL's partaruualities are born out of
the need to align the logic closely with the existing simislaimethodology of GSTE.

We will comment on each of the logic’s aspects in turn.
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The most striking feature of our logic is that we only referp@asttime. The
use of both past and future temporal operators is relatee@hgmon in other logics,
such as in LTL+Past [Eme90] and the ForSpec temporal prpge#cification lan-
guage [AFF 02]. It has been shown that the addition of these past timeatgrs does
not affect expressibility [Gab87], although logics withspime can be exponentially
more succinct [LMS02]. There are also arguments that the@tipast time operators
make specifications more natural to write [LPZ85]. Logic tieference only the past
are more rare, although some pure-past temporal logics ibmtiiaces have been used
recently for characterizing attacks on security proto¢RISSC05]. Despite it being
more conventional to think of properties defined using thierk) we believe that past
time is the natural way to express properties for GSTE. Sgicrilations proceed
forward in time, the simulation state is a reflection on the eventsitage occurred
in the past, not those that will occur in the future. This neetirat by using a past
operator, simulation patterns become compositional. kamgle,Y f can be simu-
lated first by simulating and then calculating the post-image of this simulation.step
In contrast, a future time operator would introduce a regquint for us to tempo-
rally invert properties before we are able to model checkithéurthermore, since we
cannot simulate backwards, a future time operator woutddghice predicates that be
cannot simulated. The correspondence between past-tgiesland executable spec-
ifications has been explored by Gabby [Gab87], and work ierdiklds has resulted
in similar observations [FW93].

We have chosen to use a finite trace semantics for GTL. An iaefggmantics is
often more appropriate for reasoning about ongoing, nomteting behaviour. There
are, however, two reasons why an infinite semantics is nabgpiate for GTL. First,
since we are reasoning with respect to the past, we are dibgmnsider finite words,
otherwise traces that start with a state with no predecessonot included in our
analysis. Second, since we are only considering forms ofEst®@t describe safety
properties, there is no need for us to consider infinite woadsl by restricting our-
selves to finite words, we obtain a simpler and cleaner seasamthich is one of our
main aims. One example of this is that GTL fixed-points argueaj as we will show
in detail in the next chapter. This is because the finite lesgf traces enforce bounds
on the depth of fixed-point recursion. If we instead consadegic equivalent to GTL
but defined over infinite traces then fixed-point are no lomgéue. For example, the
equationZ = n A 'Y Z would have the empty set as a least fixed-point, as well as the
greatest fixed-poinf ¢ | Vi € N. g;(n) }. With finite traces, the least and greatest
fixed-points are equal. The result of this is that we can usgugmess to reason about
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GTL formula. Such reasoning is used by various rules in theseguent chapter, as
well as for the verification methodology that we propose imgtbr 6.

Finite forms of linear-time temporal logic have been usewhere [GP02], in-
cluding for the verification of sizable industrial systembkese the abstractions re-
quired for liveness reasoning are infeasible [HRO1]. Galhethese logics raise ques-
tions about how temporal operators should be interpreted trey reach the end of
a trace. The most common way to deal with this is to introdueaknand strong op-
erators that are true and false, respectively, when a teaeghiausted. Alternatively,
an extra undetermined value can be used for the end of tr&tdiKR00], but this
requires the use of a three-valued meta-logic. In GTL, treeabe of negation above
temporal operators prevents us from requiring these exigaators.

Another property of GTL is that it is negation free. This alkghe logic with the
use of upper-approximation in ternary simulation, wher llest approximation of
a negated ternary vector is truth itself. By excluding niegatwe also limit the ex-
pressibility of our logic to those states that we can appnate using simulation. For
instance, if we were to adapt our logic and semantics to declarbitrary negation,
then the hypothetical formulaYtrue, would ideally correspond to the set of states
without a predecessor. It is not clear how forward abstrmstigtion could be used
to find such states. Furthermore, our avoidance of negatingdabout monotonicity
rules in the subsequent chapter that are useful for reag@iiaut property decom-
position and abstraction refinement. We note that similek laf negation occurs
in other logics deriving from abstract interpretationsstsas in Schmidt’'s approach
to reasoning about abstraction-interpretation-baset staalysis [Sch07]. The con-
structive aspect of our logic also provides a similar feehtany process algebras
[Hoa85, Bar93, Mil82].



Chapter 4
Reasoning With GTL

In this chapter, we use the GTL specification language toldpwend categorizesa-
soning rulesfor managing symbolic ternary simulation. Such rules argitafl im-
portance for enabling large-scale verifications, servmghe glue between different
model checking runs and ensuring property reductions aredsoAs well as being a
contribution in its own right, the development of these swéso validates the work of
Chapter 3, by demonstrating that GTL can express the typasmdformations that
are useful for refining typical GSTE verification approaches

The first section considers simple rules fooperty equivalencen GTL. These
rules form the foundations for simulation optimizatiomea they express how a sim-
ulation can be transformed without changing the properiiydoeepresented. The sec-
ond section considers rules fdecompositionBy splitting a run into several smaller
runs that together imply the first, verification can becomeically possible. The
third and final section explores rules fabstraction refinemenSuch rules transform
a simulation to change the precision with which states greesented.

4.1 Equivalence Rules

In this section, we describe some fundamental rules for Gt tan be used to
demonstrate property equivalence. Since formulas of GTerdene both the shape
of simulation flow as well as the property being checked, gregpuivalence rules ef-
fectively describe property-preserving simulation tfanmations. Simulation trans-
formations are useful in practice because they can affett the efficiency and ab-
straction level with which the simulation is carried out.

63
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4.1.1 Boolean Connectives

First, we show that GTL follows the normal rules of logic tha would expect from
a propositional temporal logic. GTL formulas form a distrtilve lattice with respect
to A, V, tt andff:

tAf = f tvf = f Ones
fAf = £ tVf = t Zeros
fA(GNANR) = (fAg) AR fVv(gvh) = (fvg) Vh Associativity
fhNg = gNf fVvg = gVf Commutativity
fVv(fng) = f fA(fVg = f Absorption
fVY(gNh) = (fVg)A(fVh) triby iy
FA(gVRE) = (FAQV(FAR) Distributivity

These rules all follow directly from the trace-set semant€ GTL, and the corre-
sponding rules for set arithmetic. For example,

Lfv by = (1A Ud gyl All)
= WrIpulbglip)ndisIzull bl
= [ (FVaATVR)I;
The built-in semantics for negated propositions behavegasould expect nega-
tion to, since the value of a node in the final state of a traB®ean:

nA—-n = {f nV-n =t

Although these logical rules are simple, they are usefusiimulation simplifica-
tion, as well as for describing the abstraction refinememisformations to be covered
in Section 4.3. Furthermore, these rules are not eviderthiexisting specification
notations of assertion graphs.

4.1.2 Fixed-Points

As we have already shown, GTL fixed-points are the limit ofrthpproximants from
below (Corollary 3.3.10). Hence fixed-points can be uncbliéth the rule:

wZ.f = flpz.)/Z) (u-unroll)

Applying this rule does not directly change the result ofdeing the fixed-point. It
does, however, mean that last iteration of the fixed-pointhoa distinguished from
the other iterations during the application of subsequalest since it has been taken
outside of theu-expression.
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Example Suppose we are trying to demonstrate the propery\x (m S n) = m.
Using the definition ofSinceand the fixed-point unrolling rule, we can rewrite the
antecedent as follows:

“-nA(mSn) = -nApZ.nV(mAYZ)) (Def. 3.4.1)
= nAMV(MAYpuZ.nV(mAYZ)))) (u-unroll)
= ((nAN)V(NnAMAY(uZ.nV(mAYZ))))
= tVENAMAY(Z.nvVv(mAYZ))))
= mA-nAY(uZ.nV(mAYZ)))

It is quite clear thatn A —-n A Y (uZ.nV (mAYZ))) = m holds, so the original
property must also hold.

By splitting off the last iteration in this way, the unrollleuwill also allow us to
selectively apply the rules that we will present for abdtcacrefinement and property
decomposition.

GTL fixed points also have the property that they anéque so if Z = f(YZ)
andW = f(YW) then it follows that” = W

Theorem 4.1.1(Unique Fixed-Point)If every free occurrence df in f occurs within
a’Y operator, theriR; , » has a unique fixed-point.

Proof. Since every instance ¢f is bound byY, the temporal depth of in f must be
greater than or equal to one. Therefore, by the intermeckatdt of Theorem 3.3.8:

L="(Ry,2(R)) S Rypz(L=""(R))
SinceL=" is a lower-closure,

L="(Ry,pz(R)) S L="(Rypz(L=""'(R))) (4.1)
Now, R ,,, z is monotonic, so:

Ripz(R) 2Y Ry, z(L="71(R))
so, by applying the monotonic functidit=" to both sides,

L="(Ry,pz(R)) 2" L="(Ry,z(L=""'(R))) (4.2)
Therefore by Equations 4.1 and 4.2,

L(Rypa(R) = L="(Ry,z(L5"\(R)) (4.3)
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Now suppose&? and( are fixed-points ofR; , » andR # (). Then w.l.0.g. there
is some wordr and valuations € V such that € R(v) \ Q(v). Then it must be that
o € (L=VI(R))(v) \ (L=°1(Q)){v), so{m € N| L="(Q) # L="(R)} is non-empty.
Letn = min{m € N| L>™(R) # L=™(Q)}. n is therefore the shortest length trace
for which R and@ differ.

Now L="(Q) # L="(R) implies L="(|| f [lsz-q) # L="(Il f lly1z-r) since
both@ andR are fixed-points. Therefore

L="(Ry,p,2(L="7H(Q))) # L="(Ry .2(L="'(R)))

by Equation 4.3. This in turn implie="~1(Q) # L=""!(R), contradicting minimal-
ity of n. O

This theorem is useful for demonstrating equivalence betveeo fixed-point for-
mulas, as we will show in the next section.

4.1.3 Temporal Operators

In this section we will consider rules that apply to the temapoperatorsy’, P andS.
As a consequence of GTL being a linear logic, the Yesterdayatpr distributes over
the other connectives. For example:

YfAYg = Y(fAg) (Y-dist-A)
YfVYg = Y(fVg) (Y-dist-V)

AlthoughYff = ff, Ytt is not equivalent tat, sincett satisfies all traces of length
one, butYtt does not. This may seem a counter-intuitive rule, but it ot useful,
because it accurately matches the characteristics offesimaulation. Since not every
state has a pre-image in our circuit model, the set of akkstatay differ from its own
post-image.

BecausePreviousand Sinceare defined in terms of fixed-points, fixed-point un-
rolling directly induces the following rules for them:

Pf = fVvYPf (P-unroll)
fSqg =gV(ANY(fSyg)) ('S -unroll)

The first of these rules might, for example, be used to cakebsged on whether
the event described kfyoccurred in the most recent time-step or not. These alswallo
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us to instantly derive that:
Pt = tt (P-tt)
fSt =t (S-tt-2)
tSf =f (S-ff-1)

The distributive law for disjunction, together with the guneness of fixed-points,
allows us to demonstrate some interesting propertid3 ahd S . For example, the
following two equations forYPf and PYf are obtained by simple unrolling and

distribution:

PYf =

YPf =

YfVY(PYY)

Y (f V YPF)
YfVY(YPf)

(P-unroll)

(P-unroll)
(Y -dist-Vv)

Therefore bothYPf andPY f satisfy the equatioty = Yf VvV YZ. Applying the
Unique Fixed-Point Theorem, this demonstrates, as we wexgdct, that

PY/ =

YP/

(Y-dist-P)

This result can be used, for example, for us to case-spliirasependently simulate
thefirst step of an iteration, sind8f = f VYPg = f vV PY/.
We can also use the uniqueness of fixed-points to derive th@viag similar

results:
Pf = ff
P(fvyg) = PfVPyg
fSE =f
tSg = Py
Y(fSg) = (Yf)S(Yy)
fS(gVvh) = (fSg)V(fSh)
(fAg)Sh = (fSh)A(gSh)

(P-ff)
(P-dist-V)
(S -f-2)
(S -tt-1)
(Y-dist-S )
(S -dist-V)
(S -dist-A)
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4.1.4 Symbolic Constructs

The symbolic constructs of GTL are orthogonal to the othpes$yof constructs, since
they are the only constructs that affect the differencewéent each of the symbolic
indices. As a result, the other logical operations distelwver symbolic ones. For
example,

Q@ — flgAh =Q — (gAh)[(fAh) (A-dist—)
(@ — flg)Vh =Q — (gVh)[(fVh) (V-dist—)

Y(u— flg) =u— Yf|Yyg (Y-dist—)
fAP:=Q) = (flu:=Q)) A(g(u:=Q)) (:=-dist-7)
fVPu:=Q) = (flu:=Q))V(9(u:=Q)) (:=-dist-v)

Y(f(u:=0Q)) = (Yf)(u:=Q) (Y-dist-=)

The conditional follows a few simple rules that we would estgeto:

(true — flg) = f (—-true)
(false — flg) = ¢ (—-false)
(~Q — flg) =Q — glf (—-neg)

@Q—=flf) =171 (—-equal)

Rules for introducing and removing variables are usefubhee they allow control
over whether properties are model checked explicitly ortsyimally. This is impor-

tant because some property aspects, such as values ontdstagza be more effi-
ciently represented symbolically. For example, we haveaoihion of representing
disjunction either explicitly or symbolically by introdung a fresh variable:

fvg = BGu.u—flyg) (sym-disj)

This rule can be combined with the distributive laws for digjtion in order to affect
the model checking process. For example, the rule allows cisange the two explicit
post-image calculations represented¥of V Y g into the single symbolic post-image
calculation given by3u . Y(u — f]g)).

We can also go in the reverse direction and make model chgckore explicit.
The following rule states that symbolic substitution isigglent to textual substitution
on its operand.

flu:=Q) = [flQ/u] (subst)
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We can use this rule to flatten symbolic model checking infdiet model checking,
as the following example demonstrates.

Example Suppose we would like to verify that a 4-step clock genersiggmalsclk
when reset with signal, and every fourth time interval afterward. We can model
check this behaviour explicitly with the following formula

uCountg.rV (-r AY(=r AY(=r AY(—r A YCounty))))

Model checking calculates the set of states where eitheset wEcurs, or has last
occurred a multiple of four time-steps ago. Now supposewlegknow that the timer

is implemented using a two-bit counter, and we would like $& @ more efficient

symbolic model checking approach. The following propemy$ the symbolic set of
states in which the value of the countemis

(uCount . (u=10) — r|ff) V (-r AYCount(u:=u—1)))(u:=0)

It is not immediately obvious that the two properties areieant. We can repeatedly
use the substitution rule, however, to flatten-out the syliolstates and demonstrate
equivalence:

Count[0/u] =(((u
((u=0) — r|ff) V (-r A YCount
((0=0) — r|ff) V(-rANYCount(u:=0—1)
=rV (-r A’ YCount[3/u])
=rV (-r ANY(—-r AYCount[2/u]))

(

(

=0) — r|ff) V(-r AN YCount(u:=u-—1
=0 (u:i=u-1

~—

=rV (-rANY(=r AY(=r A YCount[1/u])))
=rV (- rAY(=rANY(-r AY(—rAYCount[0/u]))))

We can now use the unique fixed-point theorem to deducé&thait, = Count[0/u].

4.2 Decomposition Rules

We now consider rules that enable decomposition of a prpjetd multiple model
checking runs. Such rules can be employed in cases whereigjieab property re-
guires excess resources, but splitting it up allows eadeqiebe verified successfully.
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4.2.1 Logical Decomposition

There are some straightforward rules for decomposing GTpgmties by splitting
antecedents or consequents. For example, if an anteceatebeaase-split into con-
ditionsA; andA,, then we can verify each of these conditions in turn:

Ai=C Ay =C
A1VAy=C (Vv-split)

This rule follows directly from the semantics of GTL. Duallf/the consequent of a
property requires us to verify two independent respon$es) Wwe can verify each of
these separately:

A= Cq A= Co
A= G AG (A-split)

Recall that the GTL property = C is satisfied if and only if every model trace that
satisfiesA also satisfie€’. Therefore, for any circuit model, the leads-to relation is
reflexive and transitive:

A=A (=-refl)
A=B B=C
A=C (=-trans)

Transitivity allows us to split a simulation in half by inttacing an intermediate state,
B. The new verification approach first shows that simulatirgnftd results inB.
Secondly it verifies that simulating from8 results inC'. These two properties will
typically simulate different adjacent segments of thewtravith the formulaB cor-
responding to a ‘cut-point’ between them. This is illustchin Figure 4.1(i). In
logical terms, it can also be seen as expressing the soumdhegher weakening an
antecedent, or strengthening a consequent.

The transitivity rule is linear in nature, but we can exteimel &pproach to branch-
ing simulations, given that the GTL semantics is monotolie can express mono-
tonicity (Theorem 3.3.2) with the rule

A=C
flA/X] = flC/X] (mono)

Or equivalently as

A1 = O Al = G
fIAL/C] = f f = fICi/A4]
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Al Cl A2 C2
= | = |
= = = =
A B O AQ CQ A1 Cl
(i) Leads-to Transitivity (ii) Pre-composition (iif) Pesbmposition

Figure 4.1: Decomposing a Simulation

Using these rules combined with transitivity, we can shoat this sound to weaken,
or strengthen, angub-formuleof an antecedent, or consequent, respectively:
A1 = Cl A2 = Cg

AyJA1/C] = Cy (pre-composition)
A1 = Cl A2 = C2
Ay = C[Cy/Ay] (post-composition)

Because these substitutions can take place at any place witiormula, these
rules express that branching simulations can be split aypaeny branch. The first
rule is termedpre-compositionbecause it effectively adds a simulation before some
part of the antecedent condition. Similarly, thest-compositioreffectively places
an extra simulation after one part of the consequent of amnotRigures 4.1 (ii) and
(iii) illustrate the possible layout of the segments of awit corresponding to such
decompositions.

Monotonicity and transitivity allow us to derive other ral®r decomposition. For
example, the following derived rule can be used to compasalations conjunctively:

A= Cy Ay = Cy

Al/\A2:>C1/\A2 (mono) Cl/\A2:>C1/\CQ
Al/\A2:>C1/\CQ

(mono)
(=-trans)

This can be useful if two parallel independent circuit segteean be simulated in-
dependently. Since monotonicity holds for every formula,can equally well derive

this result for any function of two recursion variables. Egample, we can show that
A; = C; andA, = C,y implies

(YAl) S A2 = (YCl) S Cg

Properties can also be split based on the value of a symlasiahle. For example,
if we can verify a property for both valuations of a particwariable, then the entire
property must hold:

(A = C)[true/u] (A = C)[false/u]
A=C
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4.2.2 Temporal Decomposition

In this section, we examine decomposition relating to teralpmspects of a property.

4.2.2.1 Temporal Shifting

Since GTL properties have no notion of a starting state, we@aporally shift prop-
erties without affecting their meaning, i.e. for a given rabd

(A=0C) iff (YA=YC) (Y -shift)

Proof. By monotonicity ofY 7, itis clear thatd = C impliesYA = YC.

Now supposeC = YA = YC and pick some trace < tr(K) that satisfies
A. Since every Kripke structure has a total transition retatithere is some trace
o.s € tr(K), wheres is some state of the system. By the semantics of Yestesday,
satisfiesY A, and so, by our assumption, also satish&S. Now by the semantics of
Yesterday, it must be thatsatisfies”'. Hencek = A = C. O

Section 3.7.3 introduced a model checking algorithm for Gifbperties with
atemporal consequent (containing 9. Using the temporal shifting rule allows
us extend this algorithm to those properties that may corifain their consequent.
Properties that are bounded and linear, like those of STriEheae-written into a form
where both the antecedent and consequent are a conjuntfamulas that refer to
distinct time-slices, such as:

YiNg=YhAi

The consequent conjuncts can then be split up. For this eedimgre is one to check
the final time-stepi, and one which checks the preceding condittan,

S= 0y shift
YiAg=Yf Yf=Yh ;jr;ns
YiNg=1 YiNg=Yh A-split

YiNng=YhAt

Example Suppose a 16-bit adder should deliver the first 8-bits of utipwt in one
time-step, and the remainder in the subsequent time stepcd@h be captured by the
property:

Y (Y (opAisa AopBisbd))

=
Y (outlis (a+ b)[7: 0]) Aout2is (a + b)[15 : §]
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We can verify this property by showing independently thahbautputs are correct,
using the two properties

Y (opAisa AopBisb) = outlis(a-+ b)[7:0]
Y (Y(opAisa AopBisb)) = out2is(a+ b)[15: §]

In practical implementations, the model checking processtich simulations can be
shared, since the simulation of the second property willighe that of the first.

4.2.2.2 Induction

Since GTL fixed-points represent finite iteration, we canarsénduction rule to de-
compose them. For formulgswhere every free instance dfis bound byY, such a
rule is captured by:

flE/X]=C [flC/Z]=C
uwZz . f=«C (u-induct)

In effect, this rule states that fixed-points satisfy theductive invariants.

Proof. We show by induction that the assumptions are sufficient helcmle that each
approximant ‘leads toC.

Casen = 0: u°Z . f = ff andff = C is vacuously true.
Casen = 1: p'Z . f = f[ff/ X], which is covered by the first assumption.

Casen + 1 given casen: Supposen™”Z.f = C. Then sincef[C/Z] = C, by
monotonicity we have that[C/Z][u"Z .f/C] = C. But f[C/Z|[u"Z.f/C] =
flunz.f]Z) =17 . f. Henceu" ' Z . f = C.

Since the traces that satisfy each approximant also satisgnd the fixed-point is
the union of these approximants, it must be that traceshgatysthe fixed-point also
satisfyC, as required. O

This induction principle allows us to derive some powerfighlevel temporal
patterns. For example, we can verify that some invariahblds perpetually after
resetR, by first showing that the reset establishes the invariamd, taen that the
invariant inductively holds:

R=1 YI=1
PR=1
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Proof.

R=1 YI=] R=1
RvYfi=1 RVvYI =1
uwZ . (RVYZ)=1

PR=1

V-split
p-induct

P-def

O

Example To illustrate the use of one of these rules, we will examireedecom-
position of the verification of an industrial memory desigevpously described in
[HCYO3b]. The design consists of two blocks: a memory blamkstoring incoming
data, and a processing block that performs selection, rakgm and masking on the
data being read.

Verification aims to show that if dat® has been written to addresks and not
overwritten since, then if addressis accessed with appropriate options, the correct
selection, alignment and mask bfis returned. The selection and alignment options
must be provided with the read request, and the mask opticnsded one cycle
later, when the read completes. Introducing extra namessoribe the simple input
predicates required, the property can be specified with GTL a

Y (Y (no_overwrite S write) A read A sel_align)

A mask = data_correct (4.4)

The decomposition approximately halves verification titd€Y 03b] by introducing

an internal predicataead_result, to assert that the data is correctly transmitted on
the bus between memory and processing blocks. The first sfaggification checks
that the memory correctly stores the data and sends it oiisis

Y (no_overwrite S write) A read = read_result (4.5)

The second stage verifies that if the processing block dbyresceives the data then
it is processed correctly:

Y (read_result A sel_align) A mask = data_correct (4.6)

To justify such decomposition it is necessary to show thatdiiqn 4.4 is implied
by Equation 4.5 and Equation 4.6 together. This conditiaexectly captured by the
branching pre-composition rule, since substituting thie@edent of Equation 4.5 in
for read_result in the antecedent of Equation 4.6 results in the originaperty of
Equation 4.4.
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4.3 Abstraction Refinement Rules

As well as expressingvhat is being checked, GTL specifications also express the
model checking approach that will be used to check it. Thiamsehat the shape of a
formula can be used to control the degree of precision ensplopbstraction refine-
ment can therefore be described using property-presereingte rules that change
the model checking direction. Since every atomic step otiation can be described
precisely using GTL, we have complete control over modetkimg. We will formal-

ize abstraction refinement as follows:

Definition 4.3.1. The transformation of GTL formulAto GTL formulag is an ab-
straction refinementritten f - ¢, if f and g are semantically equivalent, and the
abstract simulation ofj is more precise than the abstract simulationfof f | I

| g |, for every circuit model.

Any abstraction refinement rule can be soundly applied tsabyformula in order
to create another abstraction refinement rule:

[z g implies h[f/Z] = hlg/Z]

This is a result of the monotonicity of abstract simulatigiren by Lemma 3.7.10. In
practical terms, this allows us to refine the abstractiomgfiatermediatesimulation
state.

There are two ways in which a ternary simulation can over@gmate the im-
age of an antecedent. First, set-based simulation itselbiscomplete for certain
antecedents. Second, the ternary representation ingedaofrmation loss due to its
approximation of disjunction and post-image calculatigve will consider rules for
each of these effects in turn.

4.3.1 Refining Disjunction

Suppos¢g does not contain any fixed-points, and model checKipygv ») = C fails
due to over-abstraction. If the loss of required informatgcaused by this disjunction
alone, then it must be that boftig) = C andf(#) = C would succeed individually.
One way of avoiding such information loss isrepeatthe simulation/ for both
disjuncts independently. By doing this, we effectively rmakodel checking more ex-
plicit. This refinement is captured by distributifigwhere possible, over disjunction:

flgvh) zZ flg) Vv f(h) (v-dist)
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Proof. By definition ofL,

Lgly
Lgloulhly 3 LR]Y

so by monotonicity of abstract simulation 6f7),

,_
Q
| I—
q
—
=
| I—
q
1L

I

L Joizetgppuingy 2 L 1oz 01y

Lf Joizegpmuingy 2 L Jozengy

Hence
Lf loizetgzoingy 2 L ozein UL Joizey oy
or, equivalently
flgvh) = flg)Vf(h) L

Intuitively, this rule is an abstraction refinement becaitsgelays the stage at
which information is lost until later in the simulation. Ballows more to be deduced
from this information, increasing the precision with whittodel checking runs. Un-
fortunately, this increases the number of simulation stbp$ occur during model
checking, giving a performance penalty.

Symbolic representation can allow us to reduce this petitsharingthe com-
mon elements between two repeated steps. We will term ttiiguesymbolic dis-
junctive completiomiue to the correspondence with disjunctive completion stralot
interpretation theory [CC79]. Symbolic disjunctive combn uses. — g¢|h to
represeny V h, whereu is existentially quantified at the top level of simulatiorher
symbolic states capture circuit node dependencies thdtvedlierwise have been lost
by the abstract disjunction. This induces the followingriaf abstraction refinement:

flgvh) = Fu.f(u— g|h) (V-sym-dist)

In abstract interpretation theory, using the set of dowdlwatosed abstract elements
to express disjunction is known dgsjunctive completiofGRS00]. When computing
oversetsof representatives @etsof states, union is a complete abstract interpretation
of disjunction. The symbolic representation can be viewedndexing such sets.
Under this interpretation, the symbolic indexing encodesdisjunctive completion

of ternary propagations.



4.3. GTL Reasoning - Abstraction Refinement Rules 77

Example Consider the XOR-gate with delayed inputs shown in Figug& A\Ne
would like to verify that if the inputs were mutually exclusiin the preceding time
step, then the output should now be high. The most obviousropt simulate this,
Y ((aAn—b)V(-aAb)), loses all information in the first time-step, as shown inuFéy
4.2(i). This is because we are specifying a dependency keetwecuit nodes that
ternary vectors cannot capture. Applying thedist) rule distributes the disjunction so
that the information about the mutual exclusion case ismrethin the post-image, as
shown in Figure 4.2(ii). If we apply the rule for symbolic gisctive completion, (-
sym-dist), then we achieve the same effect with a single Isitian (Figure 4.2(iii)).
The variableu captures the required dependency, and the output can besbdve
high.

4.3.2 Product Reduction

It is often possible to simplify a model checking run by foigiseparate parts of
the circuit to be exercised independently. This is the naditm behind compositional
GSTE, described in Section 2.6. The result of such a tramsfton is that, rather than
simulating an entire systefp; x (2 X ... X (,,, Simulation takes place independently
within each componen,, (0-, . .., @, in turn. For this reason, we will term this type
of transformatiorproduct reduction

In terms of GTL, the degree of product reduction is deterghigthe point in the
simulation where the result of two sub-simulations are cmgd. Since GTL model
checking keeps track of only the final states, or images, ofi éarmula, a product
reduction effectively allows fomoretraces than required, since they are not limited
by the constraining interaction between the system compueneProduct reduction
can be expressed as the abstraction refinement rule:

YiAYg Z Y(fAg) (prod. red.)

Proof. By definition ofr,

,_
~
—
SEAN
—
S
| I—
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—
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Lflsmlaly E Laly

so by monotonicity opost,

post*(Lf Js M Lgls) & post’(Lf]7)
post*(Lf Js ML gls) E post’(Lg]7)

I
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S XX X [].X

bx:ngL bx:ngL

(an—b)V(=aAb) Y((ah-b)V(—aAb))

(i) Initial Verification

o™ x et

L ] L X[ X

a A b Y(a A -b) L QD 1
b X []X

401X L X0 ]
g :XE)DL bX:1 b}} Y(aA—b)VY(—-aAb)
—ﬁa/\b 3?(ﬁa/\b)
(i) Repeating the Simulation
S [ X L X[ lu 4 XX
= D= D= D
u — (aA—b)|(=aAb) Y(u — (ah—b)|(=aAb))

(iif) Symbolic Disjunctive Completion

Figure 4.2: Two Methods of Refining Abstract Disjunction
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Hence

post’(Lf ][5 M Lg]y) T post*(Lf J5) Mpost*(| g %)
which exactly corresponds to

Y(frng) TYfAYyg O

Example Consider verifying a three-stage pipeline that indepetigelecrements

its two binary inputsa andb, then adds them together. We can try to simulate the two
inputs independently, and combine the results at the fingkestising{YY (a is u)) A
(YY (b is v)). Suppose this run fails due to over-abstraction and we d&sdbat, in
fact, the two inputs start to interact at the second stageréfifee the simulation to
Y(Y(aisu) AY(bisv)) (orevenYY (ais uAbis v)). This simulation may have
greater space requirements, but may now maintain enougtmation for verification

to succeed.

4.3.2.1 Partial Order Reduction

When simulation with fixed-points is involved, product retlan can correspond to
partial order reduction. Partial order reduction helpsronp the performance of
model checking by eliminating the interleaving of indepenidactions.

For example, suppose that we wish to simulate the conditieuwhich evenf
andg have both occurred in the past. The most obvious way to simthé condition
is to use the formul®f A Pg. When this is given to the model checker, it simulates
the results off andg independently. This is perfectly acceptablg iind g simulate
different parts of the circuit, but if there is any dependebetween the effects of the
two formulas, then they will not be captured.

An alternative way to simulate the condition is to casetspii which event oc-
curred first. This is captured by the simulation

P(fAnPg)VP(PfAg)

that is capable of capturing the interaction between thectvemts.

4.3.3 Refinement by Case-Splitting

Due to the nature of abstract simulation, there are sevéhar avays in which in-
formation can be lost, leading to over-abstraction. Fipsgpagation is calculated
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sel

X
a X
1‘% X

aAb

Figure 4.3: Multiplexer

locally, on a node-by-node basis. Because of this, the idlgoidoes not take account
of global patterns that affect the dependencies betweeasadtbr example, consider
the multiplexer in Figure 4.3. The output should be the sasevehensel is 1, and
the same ab whensel is 0. It follows that if botha andb are high then the output
should also be high. The propagation shown in this figure doesgerive this global
outcome, however, as it simulates each gate locally.

Second, propagation only takes place in a forward direcithough backwards
propagation is sometimes required to attain new constrafn example of this has
already been illustrated in Figure 3.5.

In both such cases, the required precision can be retainsditaply case-splitting
the simulation. This is captured by the abstraction refirgme:

[z (fFAR)V(fA-n) (case-split)

~

It is easy to show that this is a refinement rule, sificeequivalent tgf A (n\V—n), and
we can then apply the rule for refinement via distributionisfuhction. Typically,n
is some circuit node whose simulation directly affects #gnsent of interest.

Example Figure 4.4 shows the result of applying the rule case-spla oultiplexer
by splitting on thesel input node. The two scalar inputs bAnd0 are each considered
in turn (Figures 4.4 (i) and (ii)) and the simulator maintathat the output is always
high when the two cases are merged in (iii).

As with disjunctive completion, we also have the option oihgsa variable to
index the two cases symbolically:

f zZ Ju.(fAnisu) (sym-case-split)

~

This powerful transformation effectively allows us to pepthe simulation with extra
detail, by introducing pieces of complete symbolic simiolatvithin a predominantly
ternary run.
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sel sel sel
0 1 X
1 0 1 1 1 X
a 1 @ 1 @ 1
1) 1 >0 1 P X
b b b
(aAbAsel)
(i) aAbAsel (i) a A b A —sel (iii) Vv
(a Ab A —sel)

Figure 4.4: Case-Split Multiplexer Verification
X

L aX—(D@&c axﬁlc
b X b U bl

(i) c (i) cA (bis u) (iii) Ju.cA(bis u)

Figure 4.5: Case-Splitting to Avoid Backwards Simulation

Example Figure 4.5 (i) shows an example where information is lostabse con-
straints are not propagated backwards. Since the AND-gapitx is 1, it must be
that both its inputs are also high. By introducing the vdaabon nodeb in Figure
4.5 (ii), this forces an over-constraint in the case that false. When is quantified
out in Figure 4.5 (iii), we maintain the constraint that nad®aust be high.

4.3.4 Emulating Precise Nodes

As described in Section 2.5.4.5, the GSTE simulator forréissegraphs allows a set
of precise node$o be specified. Ghost variables are created to mirror theevat
these nodes, thus maintaining their dependencies pngcisels allows us to select
aspects of the circuit that we believe require a more coacegiresentation. In this
section, we describe a GTL transformation that achievesahe effect.

The transformation works by using a set of ghost variables) encode the val-
ues on precise nodes. Similar to symbolic model checking [McM92], the simulator
keeps a Boolean predicate, containing these ghost vasiathlat precisely charac-
terizes the set of possible node states associated withsgaciation state. This is
encoded using thever-constrainpredicate (see 2.4.1). The connection between the
values on the nodes and the constraints on the ghost varigbigintained by assert-
ing that the two match in each simulation step.
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In symbolic model checking, the variables used to encode st effectively
scoped locally to each time-step. Typically the transitielation, 7', is a predicate
over the current-state variables, and the next-state variableg, The image of a
state predicat® is then calculated a&d; p; . T A S)[p;/p;]. This use of substitution
and quantification eliminates the need to use one set ofblagdor each time-step.
Our precise nodes transformation uses substitution anati§joation in a similar way,
so that variables can be used by each property state indepignd

Let us use the example from Section 2.5.4.5, of a circuit with 2-bit counters,
¢, andey, that increment in synchrony. When a reset occurs, by siggabder, both
counters are reset to zero. Suppose that both counterstacbeat to a comparator,
and we would like to verify that this comparator always resuirue.

If we simulate the circuit with the formulaZ . r v —-r A'Y Z then the values of both
counters are quickly abstractedX. In the first iteration(a,ag, b1by) = (00, 00).
In the second iteratiofa,ag, b1by) = (00,00) U (01,01) = (0X,0X). In the third
iteration, (a;ag, biby) = (0X,0X) LI (XX, XX) = (XX, XX). The final output of the
comparator iX and so verification fails.

Now we will aim to use variables to index these different sasehe situation is
different from symbolic model checking because we will usgrent-state variables,
pi, andpreviousstate variables;; . Given any simulation state, we can add variables
to the state to encode the precise nodgswith the formula

D = (/\ n; is p;)

In our example, the formularesets the counters to zero. Therefére\ r sets the
counters to zero, and asserts that the ghost variables rimst zero counts. Now
suppose that state is already indexed in terms of the counters’ ghost variaiolethe
current state. Then we can capture the relationship bettteestates by substituting
the current state variables for previous state variableimglihe post-image calcula-
tion, then asserting the new current state variables andtifiyiag out the previous
state variables:

pZ . 3ip; (DA)V(DAN=r ANY(Z(pi = p;)i)))

Let us step though this simulation for the dual-counter gdemwith set of precise
nodes{ay, ag, b1, bo}. In the first iteration, simulatingdrives(a,ao, b1by) to (00, 00),
and thenD asserts thatp,, pa,, Ps, Ps,) = (00,00). Therefore the ternary vector asso-
ciated with each symbolic valuation is(over-constrained) except for the state where

(palpll07pb1pbo) = (00,00)
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for which it is (00, 00).
We then substitute and take the post-image, giving us a atioal state where
every symbolic valuation ig. except for

(PayPays Po, Py,) = (00,00)

which is assigned ternary vect@r1,01). Now D again asserts that the current-state
variables encode the post-image,

(pa1paoapb1pbo) = (01701)

Following quantification of the previous-state variablesgry symbolic valuation is
assignedL except for when

(PayPags PorPoy) = (00,00) V' (PayPag> PbrPy,) = (01,01)

which are assigned00, 00) and (01,01) respectively. This process continues un-
til a fixed-point is reached where the only symbolic valuest thre notl satisfy
(Pay = P, ) N (Pay = Pp,) @nd have assigned ternary vedtor, pa,, P, Po, )- IN €ach of
these consistent states, the output of the comparatoreisTherefore the verification
succeeds.

This method generalizes to arbitrary GTL formulas, althotige matter becomes
more complicated when the formula is made up from more thamecursion variable.
One way around this is to create a family of ghost variableghat there is one for
each of the occurrences of the variable being simulated.

4.4 Related Work

Although limited reasoning techniques currently exist&3TE, the development of
reasoning rules and associated theorem proving infrasteibas in the past played
an important role within the more restricted setting of SEafication.

4.4.1 STE Reasoning

Seger and Joyce [SJ92] first formally reason about STE ruresriiedding their se-
mantics in Higher-Order Logic (HOL), and using HOL’s asswed theorem proving
environment [GM93] to manipulate properties. They descB0 E assertions as a set
of tuples, each tuple of which encodes the timing and valternmation about a par-
ticular event in the circuit. The connection to STE simwatis then performed using
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a decision procedure tool called Voss. Manual reasoninggis tised to connect STE
assertion tuples to custom higher-level specification defirs in HOL.

Seger and Hazelhurst [Haz96] structure and simplify thiagach, by describing
runs in terms of the simple domain specific logic, Trajectevaluation Logic (TEL).
They develop a simple set of rules for this logic that can e directly within their
lightweight proof tool, VossProver. This makes reasonirayeraccessible, since it no
longer requires either low-level reasoning at the levelssiation tuples, or an under-
standing of reasoning with HOL. The rule-base [SC95] corstailes for equivalence
and decomposition, and have shown to be useful in industidication [AS95]. A
range of extra reasoning rules for TEL have also been pregeatcomplement par-
ticular advances in STE verification techniques. For instaagaard et al. [AJS98]
describe extra rules for temporal induction and casetsit Kaivola and Aagaard
describe a range of rules used in an industrial divider @iinKAO0Q]. TEL is also
used to express symbolic indexing transformations [AJ$8%)2], which can dra-
matically reduce memory verifications [PRBA97], as well &sy/@ part in automatic
abstraction refinement [RC06b, ABMS07, TG06, CHXYO07].

Since TEL is close to being a sub-language of GTL, these aukesimilar to some
of our own. For instance, some are closely related to ousffigletransitivity, tempo-
ral shifts, weakening and strengthening, and some aspesytaolic reasoning. One
significant difference is that TEL is defined in terms of a adrnodel structure, and
so does not allow a law of the excluded middle. When using TEa binary setting,
its partially ordered state-space models must be connedgtedadditional Boolean
relational models [AMO99] in order to derive such rules. émtrast, the semantic ap-
proach of GTL models the circuit as Boolean from the statts tsimplifying both our
specification notation semantics as well as our theory. Ofs® the main advantage
of our reasoning system is that the rules are generalized tmbounded setting.

4.4.2 GSTE Reasoning

In contrast to STE, reasoning techniques for GSTE are feweumber, and are less
formally specified. We suspect that this is primarily duehe difficulties that ac-
company reasoning with assertion graphs. Systematicftranations for abstraction
control in GSTE were first described by Yang and Seger [YS@REre it is noted
that case-splitting of assertion graph edges, and ungotiinedge loops, are often
sufficient for abstraction refinement. In GTL, equivaleangformations to these are
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captured cleanly by a combination of case-splits, fixed¥ponrolling and distribu-
tive operations. Our abstraction rules are, to our knowgetite first general-purpose
formalization of abstraction refinement applicable to GSirgulation approaches.

Jain [Jai97] describes some similar forms of transfornmaéind composition for
his graphical simulation specification notations—the fiareners of assertion graphs.
Like assertion graphs, reasoning with and manipulatinggterms requires lengthly
proofs and algorithms. Hu et al. [HCYO03b] are the first to fatiy reason with the
currently accepted specification notation of assertioplyggaby providing decision
procedures for both implication and verification under agstion. The methods rely
on constructing monitor circuits [HCY03a] from assertioaghs, which signal when
an assertion on their inputs fails. GSTE itself is then usedwech monitor circuits to
verify the required characteristics. An alternative apgtoto checking implication is
provided by in [YYSXO06], via an algorithm for explicit caltation of maximal models
for assertion graphs. Although both these approaches anelsthey are long-winded
when compared to some of the options available with GTL. Retaince, at the end
of Section 4.2, we demonstrate a GTL decomposition thatagvehto be sound via
a simple syntactic proof rule in our logic. The same decortiposverified using
monitor circuits [HCYO03b] requires an entirely separatel&Serification effort.

As well as approaches that use decision procedures to réasoally about as-
sertion graphs, some progress has also been made with &xbauanual reason-
ing. A series of results regarding implication between d&segraphs is provided
in [YYHSO05]. These rules and proofs are long and involved;aose they deal di-
rectly with flat mathematical representations of assergaaphs. Furthermore, the
rules have a very limited range of applicability, with compans typically requiring
equal assertion graph structures. When translated into §pEkifications, many of
these rules become trivial instances of monotonicity.

Our product reduction abstraction refinement rule charaetgethe motivation be-
hind compositional GSTE [YS04]. This rule amounts to a urgaéabstraction of the
dependencies between the parallel processes of whichrthgt ¢ composed. Similar
abstractions between parallel processes have also belemezkm [KDG95].



Chapter 5

Assertion Programs

This chapter introduces the languagees$ertion programswvhich can be used to de-
scribe GSTE specifications at a higher level of abstrachan generalized trajectory
logic. This enables more succinct specifications that camect and make sense of
the often numerous and complex simulation patterns regjuadully verify a non-
trivial hardware component.

There are several reasons why a language such as this iseg@liove-and-
beyond GTL. Most importantly, GTL formulas operate at thielével, so operations
like arithmetic are generally obscured beyond the poinasfegecognition. Assertion
programs get around this problem by providing standard ggias to capture these
patterns directly. Another problem with GTL is the low linoih nested:-expressions
before a simulation becomes unintelligible to the human égecontrast, recursion
in assertion programs is captured in a more scalable stggedoon familiar pro-
gramming notations. Furthermore, GTL specifications mastetimes be written in
unintuitive forms to enforce a particular model checking®&gy. In contrast, asser-
tion programs are independent of model checking, so can leemwim the best way
to represent the properties most clearly.

Traditionally, GSTE specifications are complete forms ahponent specifica-
tion. A single GTL property, however, expresses a singleeaf-effect relation, so
a multiplicity of properties are typically required to vigrihe complete functional-
ity of a hardware component. For example, several distirf®TE simulations may
be used for each different output signal of a particularuircAlthough these simu-
lations are distinct, they often share some of their stmegtsince they are intended
to drive the same device. It therefore makes sense to celias® common factors
into a unified component specification. For this reason, weosh to use assertion
programs to describe high-level model specifications thpture the required circuit

86
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Figure 5.1: Conceptual Framework

behaviour. GSTE simulations for different aspects of thecdjcation can then be
generated directly from these specifications.

5.1 Specification Approach

In the conceptual view of our framework, the high-level miaated the circuit design
receive the same input data from the environment at eachdiepe Both execute
independently with these inputs, and produce their ownoesgs. A set of assertions
are then used to verify that the outputs of the circuit matah éxpectations from
the specification, meaning that the circuit is consideregfiagment of the high-level
model. This is illustrated in Figure 5.1.

One apparent disadvantage of our approach is that the eigth+inodels will be
susceptible to the same human error as the circuit designssitlves. But verification
does plug a significant abstraction gap, since factors tila@rpure functionality drive
practical circuit designs to higher levels of complexitgr lnstance, nondeterminism
is often introduced by design optimizations such as resosharing, power reduc-
tion features and pipelines with additional control st&gmmetries in the functional
specification are often not mirrored in the design, for reasaf layout placement or
even electrical interference with neighbouring composent

5.2 Language Overview

Assertion programs are cycle-accurate executable repgegsmns of circuit specifica-
tions, so the language of assertion programs subscribég ®ame temporal charac-
teristics as the hardware itself. Time is modeled as a sefidscrete steps, each of
which contains some amount of synchronous parallel conipataSo that we can
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describe any timing characteristics that might be possibleardware, we follow its
reactive nature. Therefore the current output values andubsequent circuit state in
our high-level model are determined by the current statecanent input values.

5.2.1 Structure

Each program is split into four different blocks:

e Thevariable declaration blocklefines the types and variables used by the pro-
gram.

e Themodel bloclkdescribes the transition system of the specification ingesm
statements that assign values to variables.

e Theinterface blockdescribes how the inputs to the circuit relate to those of the
high-level model.

e Finally, theassertion blockdescribes properties to verify, regarding how the
circuit output relates to that of the high-level model.

5.2.2 Types

Assertion programs make use of higher-level data types ttagid associated func-
tional operators, in order to represent complex patternspetification succinctly.
The language is strongly typed, to support the semanticselss for type-checking
and aiding reasoning. In principle, any relevant range td tigoes and operators may
be used within our framework, matching the specific requaets of the design at
hand. For the purposes of this chapter, however, we willtloor data types to the
Boolean typebool, and the family of bounded non-negative integer tyjpasn) for

n € N, whereint(n) describes those non-negative integers that are stricytiean
n. As operators on these types, we will allow the standard &oobperators, together
with conventional operators for arithmetic modulo

5.2.3 Variables and Declarations

Assertion programs contain two classes of variables: arograriables and indexing
variables Program variablesapture the state of the high-level model in a given time-
step.Indexing variablesre used for defining locally scoped generalizations, sach a
generalized parallel composition and Boolean quantificatOnly program variables
are evaluated with respect to the current temporal conft@xtinstance, it makes sense
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to refer to the value that a program variable held in the ias¢istep, but not to the
previous value of an indexing variable.

For clarity and typing, program variables, constants apd gliases are declared at
the beginning of a program, in tlteeclaration block Program variables are declared
with the var keyword, as such:

var variable_name : variable_type

Constant declarations provide a simple and useful mearssdf/@arameterizing
specifications. In practice, parameterization would béebeterviced by a complete
module system, but this is beyond the scope of our work. @otstre defined with
the const keyword. For example:

const SIZE = 10

It is also useful to be able to define type constants, or ajasa declarations of the
form

type index = int(SIZE)

5.2.4 Expressions

Assertion program expressions allow us to describe how apeibe the values with
which to update the program state. Expressions can corisitgral constant values,
program or indexing variables, or be constructed using &oobperators, equality or
other data-specific functions. This allows us to build egpiens such as

((1 + count) = max) A done

We will also allow conditional expressions, using the sagrgax as the GTL condi-
tional construct:

guard — if _expression | else_expression

We introduce the special operatiast which modifies an expression to refer to
its value in the preceding time-frame. For exampbest(input + 1) refers to the
value assigned to program variakteout in the preceding synchronous time-step,
incremented by one.

This form of temporal expression is useful for several reasé&irst, since our out-
put may be functionally dependent either the current oryalses of other signals, we
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require a means of specifying temporal references. Sedmidg able to temporally
shift signal specifications is useful, since hardware fatas are frequently affected
by pipelining adjustments. Third, the uselaét expressions conveniently mirrors the
Yesterdayoperator of GTL. This correspondence is vital in the traimstawhich we
will present from programs to GTL properties.

5.2.5 Statements

The state transitions for our high-level models are deedrilssing assignment state-
ments that set the values of program variables at each symuins time-step. State-
ments can be viewed either imperatively or declarativehyerpreted imperatively,
the statements provide instructions that describe how datgthe state of the model.
This gives the specifications an intuitive feeling, and nesnhany common program-
ming languages. In contrast, assignments can also be visataratively, as defining
constraints on the model’s possible state transitionss &hernative viewpoint also
forms a logical basis for our translation to GTL propert@gsented in the subsequent
chapter.

Setting a program variable is described byaasignmenstatement of the form:

identifier :== expr

whereidentifier is the variable to be set andpr is the expression to evaluate for
the update value. For exampteunt := last(count) + 1 stipulates that the program
variablecount is be incremented at every time-step. From the declaratexgpoint,

the statement can be viewed as the constraint given by thespamding equality:
count = last(count) + 1. Such an equation says that in any model transition, the
value ofcount is one greater in the successor state than in the origirtal sta
Statements are composed piarallel compositiopwritten using the infix symbol

', or, alternatively, as a line-break. For example, theestaint

count’ := last(count) || count := count’ + 1

says thatount’ should be set to the previous valuecofint andcount should be set
to the current value afount’ plus one. In terms of logical specification, parallel com-
position can be seen as the conjunction of the logical camssrof its two component
statements.

Since parallel updates take place simultaneously, twaiatgroblems are raised
by this form of composition. First, it is possible to constrinconsistent programs
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var reset : bool
var count : int(256)

model
if reset then
count := 0
else

count := last(count) + 1

Figure 5.2: Program for an 8-bit Counter

that assign different values to the same variable. For elgmp= 1 || a := 2 does
not have a clear interpretation. We will judge such multiggsignments to be ill-
formed statements, which it is the responsibility of thertigs@void. Second, mutually
recursive dependency loops suchas- b || b := a can be created, which do not have
a well-founded evaluation strategy. We will avoid this gesb by requiring of the
user that there are no dependency loops in the programs.

Programs also include conditional statements for spexgfgontrol, using théf,
then andelse keywords. Such statement follow the standard expectatbascon-
ditional. An example of this is shown in the assertion pragia Figure 5.2, which
models a simple 8-bit counter.

5.2.6 Arrays

We include arrays as built-in composite data types in asseprograms, as they are
frequently useful for the describing common hardware spation patterns that mir-
ror structural circuit duplication and memories. Arrayagonsist of an element type
and a index type, written in the form

element_type|index_type)]
Array-lookup expressions are written in the form
array_namelindex_expression|

Notice that we allow arrays to be indexed over any type, arigusbthe integers.
In this sense, they resemble arbitrary value maps. For ebeamvp might describe an
address to be an array 8bit values, and describe a memory to be an array of data
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type data = int(256)
type addr = int(8)

model
var mem : dataladdr]
var data_in,data_out : data
var write_addr, read_addr : addr
var write_enable, read_enable : bool

for i : addrdo
if write_enable A (i = write_addr) then

mem([i] := data_in
else
mem[i| := last(mem)[i]
if read_enable then
data_out := last(mem)[read_addr]

Figure 5.3: Program Segment for an 8-Place 32-bit Memory

indexed by addresses:

type addr = bool]int(8)]
type mem = data[addr]

Modeling often requires simultaneous assignment to amdicés within a single
time-step. To express this, we usa statements to describe indexed parallel compo-
sition, generalizing parallel composition over typed ixidg variables. As an example
Figure 5.3 shows a program that models an 8-place memorgfbit3ntegers, using
afor statement to update each index of the memory array modeéay gme-step.

In order to achieve a clean semantics, we will place theicgisin that assignment
statements can only assign the primitive types of Booleanaegers. This enforces
the degree of atomicity with which variables can be set. Assalt, an array cannot be
copied directly with a single assignment of the foxm= b. We can, however, always
introducefor statements to handle such cases:

fori : type do afi] := b[j]

5.2.7 Circuit Interface

Theinterface bloclkdescribes how the inputs to the high-level model relatedartphut
nodes of the circuit implementation. Circuit input nodes eepresented by special
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Boolean program variables, declared with lines of the form:
node reset, write_en

The names of these variables correspond with the stringiftiea used by circuit
netlist models, and necessarily have typsol. Since they represent environmental
input, they may not be assigned to. Buses of nodes may bereéclaing the conven-
tional square bracket hardware notation for defining vaotiex ranges. For example,
the declaration

node data_in[7 : 0]

declares the array of the nodes nardeid_in[7],data_in[6], ...,data_in[0] in the circuit
model. For such a budata_in is assigned the array tyfgsol|[int(8)].

By introducing these variables, we can now express the mgdmtween these
variables and the high-level model inputs using the samestyb statements that are
used to define the model. At each time-step, the inputs toigtelavel model are set
using assignments evaluated from circuit input expressidhis follows the approach
set out in Figure 5.1.

Since these statements follow the same semantics as stasambigh-level mod-
els, the interface block can be seen as merely a parallehggteto the high-level
model. By enforcing the separation between the two, howevercan greatly en-
hance the clarity of the high-level model by separatingatrfrthe messy details of
the interface. It is also common for there to be many diffebrardware designs and
interfaces for different circumstances even though theytement the same functional
purpose. Therefore our separation of model and interfdoesifor the model to be
reused and only the interface part need be rewritten foemifft circuit implemen-
tations. The use of a separate interface ensures that thdevigl model does not
contain details such as:

e The names of circuit nodes, which, following synthesis, ynla@ long and ob-
scure.

e The binary implementation encodings for high-level dafzet;
e The timing details about when circuit signals are stable.

e Small aspects of control (termed ‘pre-logic’) that conatiilly select, route and
decode parameters in an implementation specific manner.
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interface
node force_bypass_rd L 335
node res_op_FH_334[35 : 0]
node bypass_H_333(31 : 0]
node res_op_out_H_338[31 : 0]

write_addr := bvn2int_raw(res_op_FH_334[4 : 1])
read_addr := bvn2int_raw(res_op_FH_334[4 : 1))
write_enable := res_op_FH_334[0]
read_enable := —res_op_FH_334/0]
if last(force_bypass_rd_L_335) then

data_in := last(last(bypass_H_333))
else

data_in := res_op_FH_334[35 : 4]

Figure 5.4: Example Interface for an 8-Place 32-bit Memory

The methodology surrounding the Forte verification platfdras demonstrated the
benefits of separating such hardware interfaces from theefaoctional specification,
using what it termsircuit APIs[SJO05].

5.2.7.1 Encoding Mappings

Our programs make use of the library of functions provided-byte [SJO 05] for
mapping between high-level data types and bit-vector sgmtations. Forte includes
functions for bit-vector arithmetic, conversion, extemsi contraction and signing.
An example is the useful mapt2bvn, which converts non-negative integers to their
unsigned bit vector encoding, abhdn2int, which converts back again.

Example Suppose we are to use the program in Figure 5.3 to verify al smeshory.

In the implementation at hand, the memory receives eithead or write operation
encoded on the buss_op_FH_334[35 : 0]. The noderes_op_FH_334[0] is set true
if this operation is a write, otherwise the operation is alrebhe address is encoded
as an unsigned integer as_op_FH_334[4 : 1]. If this is a write then the data is
in res_op_FH_334[35 : 4], unless a special flafprce_bypass_rd_L_335 was set in
the previous time-step, in which case the data should coome the values on bus
bypass_H_333[31 : 0] two time-steps previously. The assertion program interfac
this is shown in Figure 5.4, and characterizes typical faters found during micro-
processor verification.
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5.2.8 Assertions

The final block of an assertion program specifies propeftiaslink the output of the
circuit to the behaviour of the high-level model. Such pmips can be seen as an
output interface mapping between the two. Assertions atiesoform

antecedent = consequent

where the antecedent and consequent are Boolean expessiointhe consequent is
an expression involving only circuit nodes and indexingalkales. Each line asserts
that if the circuit is operating in parallel with the intecEamapping and high-level
model, within the same environmental input trace, then atyestep, if the antecedent
condition is true, then the consequent condition must alatuate to true. Typically,
the antecedent corresponds to a particular high-level hstaie, and the consequent
describes the resulting signals that we would expect torsdeeicircuit implementa-
tion under such conditions. Often this is used to assertlsioytput equivalence.

For example, suppose we have a high-level model of a cowums;jsting of pro-
gram variablecount. We can assert that under the conditions in which the count is
zero, the circuit under verification should sigeaipty:

(count = 0) = empty

When programs are compiled into symbolic ternary simutetj@as described in the
subsequent chapter, the antecedents of these assertonseat to calculate those
circuit execution traces that need to be simulated, and dnsexjuents are used to
assert that the right values occur in these traces.

In order to bridge the gap between antecedent and consedguenften necessary
to introduce indexing variables that remain symbolic in¢beresponding simulation
run. This is achieved via indexddrall assertions. For example, we might make the
following assertion about the memory model of Figure 5.3:

forall i : data . ((data_out = i) = (res_op_out_H_338[31 : 0] = 1))

5.3 Formal Semantics

This section introduces the formal semantics for asseprograms. A formal gram-
mar for the programs can also be found in Appendix B.
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Definition 5.3.1. Assertion programs satisfy the grammar in Appendix B tageilith
the conditions that there are no atemporal cyclic depenasigetween the values as-
signed to the program variables and conditional guards adrdepend on the vari-
ables set within either of their branches (i.e. we cannotssehe element of state
conditional upon its future value).

These sanity conditions are used later in order to ensutdttbaxpressions as-
signed to variables can be calculated directly from thetspuailable.

We provide a semantics for programs by viewing statementeakrative con-
straints on execution traces. A circuit then satisfies eaocfgram trace if each of the
assertions holds in every circuit trace with matching isput

As we have already described, assertion programs make psaegpém variables
which we will denote with the finite sdtrogVars, andindexing variablesfor which
we will use the finite selndexVars. The circuit nodes\V' C ProgVars are described
using special program variables that cannot be assignedeioTypes be the set of
types in use, containing at least a Boolean typsol.

We designat&alues to be the set of primitive values, which, for illustrativerpu
poses will contairtrue, false and the non-negative integers. We will definéues to
map from the set of types to the sets of values that a partitype represents. For
example, we might have thatlues(int(4)) = {0, 1,2,3}. For our purposes, such
sets are assumed to be finite.

The state of a program is modeled as a finite words of storegsppnding to ex-
ecution histories, where a store is a map from locationsligtega Since an expression
may incorporate arbitrarily mankst expressions, we must keep track of the com-
plete past execution history. A store location consists @fogram variable, together
with a list of lookup indices, giving us the set:

Locations = ProgVars x Values®

For example, the location associated with addeg3$4] is (a, 3, 4]), and the address
for vis (v,[]). A store is then a map from locations to values:

Stores = Locations — Values

The possible transitions between such stores are detedrhinthe assignment state-
ments that a program contains.
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5.3.1 Evaluating Expressions

Expression evaluation is performed using two differentalde contexts, which cater
for program and indexing variables respectively. Prograniables are evaluated us-
ing the store historyy € Stores®. The index storey € IndexVars — Values, is the
local context in which to evaluate indexing variables.

We will define a natural semantics [Kah87] for expressionwat#on using the
judgment

E —Z» e
which means that expressidhevaluates to valuein store historyr and index store
v. To define expression evaluation, we first define how to etallecations from
assignable expressions, such as program variables andiradiees. These expres-

sions will be evaluated by first evaluating their store laratand then looking up this
location in the current store. The judgment

o,V
F — ]
loc

will be used to denote that an expression evaluates to tatiaét Locations. Program
variables evaluate to the location consisting of themselvieh the associated empty
index. Array indices are evaluated by creating a locatiomfthe name of the array
and the evaluations of each index expression:

x € ProgVars A loc (x7m) B v €

x — (% [) A[B] 7 (x,me)

loc loc
An expression that can be evaluated to a location can thexabgaged to a value by
being looked up in the current store:

E oS,V l

loc

E = 5()

Indexing variables are simply evaluated by looking up tkealue in the index store:
u € IndexVars

g
u —— v(u)

Functional application is evaluated by first evaluatingalguments in the same con-
text, and then applying the function:

o
Ei—’ei

v
el

f(EQ,...,En) —V> f(eo,...,6n)
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We will assume that equality and Boolean negation corregporspecific types of

functional application, with their standard definition. Wél also allow for the other

Boolean operators, as well as conditional expressionsoadth these are to be in-
terpreted lazily. For example, if the first argument of B@oleonjunction evaluates
to false, then the second argument need not be evaluatedersal quantification is
defined lazily by:

true) Je € values(t) . (E —— false)

v[x—e] v[x—e]

(forallx : t. F) —Z» true (forallx : t. F) —Z» false

Ve € values(t) . (E

and existential quantification is defined dually. Finalasttexpressions are evaluated
by shifting the program variable store context by one tineg$ackwards:

g
EFE —— ¢
14

last(E) —— e

14

Notice that as a result, there is no guarantee that an expmessn be evaluated at all,
since the current execution history may not be sufficiemhgthly.

5.3.2 Statements

We will write the judgment
g —f> gs
to indicate that statemeifitis consistent with the transition from state historio os
in indexing variable context. Transitions always corresponds to the addition of one
time-step to the store history. The skip statement posesmsti@ints on execution:

Assignment statements assert that current store valuegiarggam variable matches
the value of the assigned expression:

E % e s(x)=e

x:=F

g oS

A transition respects a parallel composition of statemiéitteespects both statements
at once:

T T
g — 0SS 0O —> 08§
14 14

T || T2
— 0S8
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The branches of conditional statements must only constinaiistate when the guard
evaluates correspondingly:

os Ty os Ts
E —— true 0 — o0s E —— false 0 — o0s
v v v v
if £ then T} else 1> if £ then T} else 1>
g > 0S8 g > 0S8
v v

The statements provided byfar expression apply under every valuation of the cor-
responding indexing variable:

e € values(t) o T s

v{ur—e]

foru:tdoT

oS
v

Notice that these conditions can result in a nondeterniirtistnsition system. In par-
ticular, if a particular program variable is not constraifiy an assignment statement,
then it may take on any value at that time-step.

5.3.3 Transition System

We will say that a statement is deadlock-free if every sta&oly has a successor.
Statements that introduce deadlock are those that assertsistent state updates,
such ax := true || x := false.

Definition 5.3.2. A statemenf’ is deadlock-free if for every € Stores™, there exists
somes € Stores such that

T
g — 0S8
12

Assuming that a given stateméfitis deadlock-free, then it has associated transi-
tion system given byStores™, ). If the statement has a bounded nesting depth
n of last expressions, we can reduce this infinite state structureetdinite Kripke
Structure(J,-, ., Stores’, TT}» ), since the state is not dependent on the entire ex-
ecution history. Given a progrataP, with model blockmodel(AP) and interface
blockinterface(AP), let its Kripke Structure be given by:

] del(AP interf: AP
ICAP = ( U Storesl, model( ) || interface( Z )

_ {
i<n+1
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5.3.4 Satisfaction

Now that we have defined this transition system, we can desevhat it means for

a circuit to satisfy the assertions laid down by an assegirogram. Recall that we

intend to subject the high-level model and circuit to the sanput traces, and then
assert that every output guaranteed by the high-level medé$o guaranteed by the
circuit. First, we will define the traces that can be perfamden a program runs in
parallel with a circuit:

Definition 5.3.3 (Monitor Traces) Given a traces € tr(K¢) of circuit modelKc,
then the setnonitorap (o) of corresponding monitor traces for prografP is de-
fined by those traces of the same lengtlrdbat are in lock-step agreement over the
circuit nodes:monitorap (o) =

{last(m) | m € tr(Kap) A |o] =|7| A Vi<]o|.(0; = (last(7);)) }

Definition 5.3.4(Satisfying Traces)For circuit K¢, a given circuit tracer € tr(K¢)
satisfies assertiolh = C of program AP when for every indexing context
IndexVars — Values, o satisfiesC whenever every monitor trace efsatisfiesA:

(VW € monitorap(o) . (A —Z» true)) implies  (C —Z» true)

Definition 5.3.5(Satisfying Circuits) A circuit K¢ satisfies progranA P when every
trace of the circuit satisfies every assertibn= C from AP.

Notice that our assertions require that the consequentdraidif the antecedent
holds foreverypossible monitor trace of a given circuit (input) trace. fdiere, if
the antecedent nondeterministically holds for a given iri@ace then no assertion is
made at all. For example, suppose we are modeling a memdnye has a non-
deterministic starting state. We assert that if the costehthe memory cell matches
some constard, then the circuit should output this value. Since the ihgtate is not
specified, there will be some execution traces where thiscadient holds initially.
Under our definition of satisfaction, however, the asserboly applies after those
input traces thaguaranteghe antecedent under all possible execution traces. There-
fore, the specification will only assert that the memory atdgghe correct value after
an input trace occurs that first writes to it.
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model
var count : int(5)
var reset : bool

if last(reset) then
count := 0
else
count := last(count) + 1

interface
node resetnode, signalnode

reset := resetnode

assert
(count = 0) = signalnode

Figure 5.5: Counter Assertion Program

5.3.5 Example

Consider the program in Figure 5.5, which describes a siroplmter that operates
modulo 5. The circuit under test contains at least a reset,mesttnode, and a node

signalnode that is supposed to signal true whenever the counter is Zamreset node
should set the counter to zero after a delay of one cycle. Weider exactly what it

means for a circuit to satisfy this specification.

Satisfaction requires that the assertionunt = 0) = signalnode holds for any
input trace given both to the program and the circuit. Finst, will consider input
traces of length one. The input consists solely of whethemréset node is high or
not, so there are only two possible cases. In either cas@)phétrace does not force
the value of the count to zero in the current time-step, satitecedent fails, and the
trace is satisfied.

Now let us consider traces of length two. A similar scenaow molds, with the
exception of the cases whetgetnode is high in the first time-step. Under this condi-
tion, the constraints of the program transition focoent to be zero in the subsequent
time-step, so that the antecedent condition evaluatesi¢o We therefore assert that
if resetnode is high thersignalnode must be high in the subsequent time-step.

By the time we reach traces that are longer than length fi@hanoption presents
itself. The antecedent now evaluates to true eithessétnode is high in the penulti-
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... 10

11
...1000000
...1000001
...100000000000
...100000000001

Table 5.1: Antecedent Satisfying Counter Input Traces

mate step, or if it was high six steps previously, and has bae&rior the following
five steps. Clearly, as traces lengthen further, we will @igbat signalnode must be
high 1 + 5n steps after the most recent reset. The traces for which vegtassignal
are illustrated in Table 5.1.

5.4 State Variables

When a program variable is not assigned an update in a gvenftame, its value is
effectively nondeterministic. This quality is useful fooaeling hardware, since it al-
lows us to write partial specifications. It is often easienyvbver, to specify transitions
using variables with persistent state, that retain thdirevé an update is not explic-
itly given. Of course, we can specify such persistence usgsignments of the form
a := last(a), but including a large number of such assignments can cloaidverall
view of the specification. We therefore provide an altexgathechanism for this, by
allowing individual program variables to be markedstate variablesmeaning that
their values persist by default. Figure 5.6 shows a memdhpaoegram that has been
simplified through the use of a state variable.

A program that uses state variables can be changed into araksyu program that
does not include state variables by adding extra state wegg® assignments of the
forma := last(a) at various points in the program. For example, the memoty cel
specification in Figure 5.6 (i) can be obtained automatidatim the state variables
used in (ii)). We do not describe this procedure in detall, fmte that it involves
calculating a symbolic condition under which no assignmendate the value of a
state variable, and inserting a top-level state presenvassignment guarded by this
condition.
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var cell : bool
var write, data : bool

state cell : bool
if write then var write, data : bool
cell := data
else if write then
cell := last(cell) cell := data
(i) Using Standard Variables (ii) Using a State Variable

Figure 5.6: Memory Cell with Persistent State

5.5 Related Work

One of the most common methods of property specificationdodware verification
is to use assertion languages like Property Specificatiomgliage (PSL) [PSLO5],
ForSpec [AFE02] or System Verilog Assertions (SVA) included in-line kiit the
circuit description itself. These linear assertion largggtend to use a mix of tempo-
ral logic and regular expressions, making them useful feckhng individual aspects
of a design’s functionality. GSTE verification, howevends to be based around com-
plete component specifications, and therefore resemefeement checkingather
more than property verification. For example, the GSTE FIk@perty in [YS02]
describesll the requirements of the device, in a single assertion giapassentially
describing a complete abstract reference model. Although abstract states can be
captured using-expressions in GTL, this approach does not scale well céslpein
terms of human legibility. Therefore, because they canisatlg describe these arbi-
trary abstract state transition systems, assertion pmgese more suitable for GSTE-
style verifications. We therefore use assertion programdselate the implementation
to the specification via trace equivalence. Similar appreaaising reference models
and trace equivalence for processor verification can bedfaufCyr03, Kai05].

There is a large range of existing languages that may alsoitadke for describing
such high-level models. The most important characterrstipired is the ability to
describe the synchronous parallel behavioureactive systems [Hal98]. Broadly
speaking, these languages can be divided into: synthésihabdware description
languages, hardware modeling languages, and languagepw®dy for specification.
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5.5.1 Hardware Description Languages

Hardware description languages have been widely used toidesystems at all lev-
els of abstraction, and have the benefit of being familiar emynengineers. Some
of the most commonly used include Verilog [TM91], VHDL [Nakf9 and SystemC
[GLMSO02]. One main drawback of these languages is that theyat defined with
a formal semantics. Formalization attempts have provdatulif [Gor95], although
limited progress has been made [Gor97, PLC94]. These |lgaguaso contain sig-
nificantly more complexity than required for our purposes, éxample by includ-
ing support for sequentiality, timing, synchronizatiomddions and recursion. Such
complexity would significantly affect the cleanliness ardsoning ease of our spec-
ifications. Furthermore, since these languages are dekfgn@roviding implemen-
tations rather than reference models, they can also tendetespecify systems, not
allowing for partial specification.

Aside from the most popular hardware description langudtpese are other op-
tions built around solid formal semantics. The synchronmagiramming languages
[Hal98], such as Esterel [BC85], Signal [RMC94] and Lusti.R92] are particu-
larly relevant for our requirements, due to their alignmeith the temporal models of
hardware execution. Of these, assertion programs moslglessemble the dataflow
language Lustre [HLR92], which also uses assignment-besestraints built from
expressions with a last-time operator. Lustre models dekconcept of initial state,
but ternary simulation models do not, so relating the tworgfmement could prove
troublesome. The mutually recursive equation definitioescdbed by both Lustre
and assertion programs can also be embedded as mutuallgivectunctional def-
initions in a functional programming languages, leadindattguages such as Lava
[CS00] and the original formulation of Bluespec [HAQO].

5.5.2 Modeling Languages

There is also a class of similar languages used to descrgigrdeodels for verifica-
tion. Like assertion programs, these languages generathace some form of model
state, and then describe behaviour as a series of transtiustraints, based around
this state.

One example is the modeling language for the Symbolic Moeeifier (SMV)
[McM99]. As with assertion graphs, assignment in the SM\Wlaage can be inter-
preted as a logical equality, allowing reasoning in the flasfoLamport’s Temporal
Logic of Actions [Lam94]. Unlike assertion programs, temgd@spects in SMV are
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slightly more rigid. Instead of allowing arbitratyist expressions, there are two forms
of assignment: instantaneous assignment, writter E, and delayed assignment,
writtennext(x) := E. Our use of the last operator is not only more succinct irapert
cases, but also provides a closer fit when we come to transl&dL properties, as
we will see in the subsequent chapter.

Assertion programs also share much in common with othesitian-based mod-
eling languages. Mur[DDHY92] is one such language, developed for protocol ver-
ification. As with assertion programs, transitions are g@etas updates to abstract
state, and assignments can be guarded or composed in ingasaldl. One crucial
difference, however, is that updates are grouped into galbtbcks calledules (or
transitiong, at most oneof which is nondeterministically chosen to execute in each
time-step. Although such nondeterminism in the order ofat@execution is useful
for simplifying protocol models, it does not help for GSTEifieations, where spec-
ifications are required to be cycle-accurate. Similar laggs, such as synchronized
transitions [GS90], CIRCAL [Mil85] and UNITY [CM88] are adsstructured in this
form. The language of the Symbolic Analysis Library (SALM®S03] is an example
that includes support for a mixture of both interleaved antytsynchronous updates.

Other hardware modeling languages used to model hardwsigelsignificantly
from the semantics of assertion programs. In SML [BC86],eéwample, timed se-
guential composition is permitted by associating eaclestant with a given discrete
time length, allowing the modeling of algorithmic state miaes that are more prone
to changing mode sequentially.

5.5.3 Specification Languages

There are also languages similar to assertion programexisapurely for the abstract
specificatiorof systems. The Abstract State Machine Language (AsmL) [R5
an executable specification language for formally spegfyind dynamically explor-
ing hardware and software models. As with assertion progy&smL programs have
a procedural flavor, modeling systems with sets of synchusupdates to some ab-
stract program state. The main assertion program consfiuath as indexed parallel
composition, are also present. AsmL is primarily intendadsoftware, so it is also
object-oriented, and supports sequential compositiothodigh these constructs op-
erate at a higher level of abstraction than we are aiming ftr assertion programs,
work by Hanna and Melham proposes to link the two levels.

The e specification language [HMNO1] was developed to aid autanmatrdware
test-case generation in a richer programming environnteart those of traditional



5.5. Assertion Programs - Related Work 106

hardware description languages. Assertions are specifibdaw assertion language
similar to PSL [PSLO5]. The language defines extensive rialetest-case selection
heuristics, but allows C-like procedures for writing asiserbased monitors. The
Tempura language [Mos86] is another example of a logictbapecification lan-
guage with similar sequential imperative features. WHhisth of these languages
permit high-level reference models similar to assertiamgpams, we believe that their
use of sequentiality is unnecessary for most GSTE properdied makes them less
amenable to direct reasoning. Furthermore, neither amtainstructs such as index-
ing variables, which are of integral importance when we coonganslate assertion
programs into runs of symbolic ternary simulation.

5.5.4 STE-Based Specifications

There are several existing formalisms to express spedtfitafor symbolic ternary
simulation at higher-levels of abstraction. Joyce and BEg#92] connect the HOL
[GM93] theorem prover to an STE model checker so that funeli@efinitions in
HOL can be used to provide more expressive user-definedaahistrs. At the same
time, they proposed a basic specification language and aryilmf pre-defined bit-
vector arithmetic functions to standardize these abstrast Whilst the original pro-
posals were quite limited in scope, this work has providedsadfor the specification
libraries contained within the Forte verification platfof8JO"05], the use of which
we have proposed for assertion programs.

Beatty [BB94] describes specifications of considerable merity by using sets
of actions defined in terms of their pre- and post-conditidas and Nelson [NJB97]
extend this specification methodology to unbounded prasgiintroducing the graph-
ical specifications on which assertion graphs are basedtifRay little work has at-
tempted to abstract above the detail of these assertiohgrafang and Goel [YG02]
describe how graphs can be automatically generated usimgidnal programing
scripts. Whilst this does allow the user to progressiveljdbup parameterizable ab-
stract concepts of assertion patterns, the situation ismueh improved, since these
scripts are not compositional or standardized, and aren @teunstructured as the
graphs themselves.

Another approach is described by Kaivola [Kai05], based ating STE runs
from high-level models embedded in a functional languagee figh-level state is
given as a data type in the function language, and the modesizibed using Boolean
functions on pairs of states that characterize the modesitian relation. This gives
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the specifications a feel somewhat similar to assertionrprog, since it encodes con-
straints on the current model state in terms of the curreshpasvious state.



Chapter 6

Verifying Assertion Programs

This chapter describes an approach for generating the &fions structures that can
be used to verify that a circuit satisfies a given assertiogiam. Simulation gener-
ation is described by defining a collection of rules withiniatreractive framework,
allowing us to combine the formalisms and techniques thatawe introduced so far.

Within this framework, we use our low-level logic, genezali trajectory logic
(GTL), to progressively build up an exact representatiothefsimulation being built.
We extend this logic, first by allowing a means of embeddiragpam propositions,
and second by creating a vector form that helps with the memagt of sizable sim-
ulations.

The core contribution is a set of rules that can be used tdecoeacise representa-
tions of the patterns of input sequences that bring aboutengintecedent condition
for a particular program. This is done by using weakest prditimn calculations
to progressively rewrite antecedent conditions as forsolaGTL, until a point is
reached where the conditions are expressed solely in tefrthe @ircuit inputs. We
also describe how the techniques for abstraction contimiplgication and decom-
position from Chapter 4 can be added as rules in our framewbhnkse can then be
applied throughout the generation process to affect thdtneg simulation.

6.1 Extending GTL

For simulation generation it is necessary to extend GTL talble to capture the
relationship between input traces and the program staggsniduce. In this section,
we describe how we can unify the semantics of GTL and assgutingrams, to allow
Boolean program expressions as GTL propositions. We themdo describe&ector
GTL, which uses a set of equations to capture a simulation, mafifa® nested:-
expressions.

108
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6.1.1 Adding Assertion Program Expressions

Recall from Section 5.3.4 that a circuit satisfies an agsegrogram if the two agree
on outputs when they are running in parallel on the same itrpaés. During sim-
ulation generation, we must therefore reason about thdlglacamposition of the
program and circuit in question.

We create a connection between input traces and prograss staextending GTL
to include formulas that express that given program exmes®valuate to truth. The
connection is natural, owing to the similarities in the temrgh and symbolic founda-
tions of the two formalisms.

We first allow GTL's indexing variables to use the same tyed are found in
assertion programs. We can then use the same context forGQddthand program
index variables, since both classes of variables are sétalytindependent of time
and used solely for quantification. As a result, the indextexinin extended GTL
is a map from the set of all index variablésdexVars, to the set of program values,
Values.

We include Boolean-typed program expressions as propaosith extended GTL.
These are written in the foreval(E), whereE an expression.

Definition 6.1.1. The propositioreval(E) is true only in those combined circuit and
program states wher#&' evaluates tarue:

m € |leval(E) ||I; ifandonlyif E —— true

Recall that a program expression is not guaranteed to geaall, for example,
if there is not enough past store data to evaluate the retid@pth oflast expressions.
Thereforeeval(F) is falseeitherif E evaluates téalse, or if £/ does not evaluate at all.
Theeval operator plugs the gap between the three-valued and Booledsls, at the
same time allowing GTL formulas to express the requiremehtssertion program
satisfaction (Section 5.3.4).

6.1.1.1 Example
As an example, we will consider the GTL formula
Ji : int(256) . Y (eval((i < 64) A (int2bvn(i) = in[7 : 0])))

that contains the program expression< 64) A (int2bvn(i) = in[7 : 0]). This formula
says that in the previous time-step, the integer encodetég-bit busn([7 : 0] held
avalue less than 64. It is semantically equivalent to theafda—in[7] A —in[6].
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6.1.1.2 Transforming Expressions into GTL

We progressively generate our simulation structures, agsforming program ex-
pressions into simulation steps expressed by the constofi€&d TL. This is achieved
through a series simple of rules that relate the two. For @k&nconjunction in an as-
sertion program is equivalent to GTL conjunctienal( EAE’) = eval(E)Aeval(E').
This step allows us to simulate the condition representetisyconjunction by simu-
lating the conditions represented by each conjunct in tmd,then taking the greatest
lower bound, as defined by GTL model checking.

6.1.2 Vector GTL

Because of their flat syntax;expressions are particularly useful simulation represen
tations for theoretical reasoning and automated manipunlaBut nested fixed-point
simulation descriptions can quickly become incompreli#ado the human reader,
making simulations difficult to manually manipulate and uigbAssertion programs
have addressed this problem for high-level specificatibntsan alternative represen-
tation is also desirable for the low-level. For this we inlwoevector GTL. which
has the same syntax and semantics as GTL except that fixatspoe defined using
mutually dependent systems of equations.

For example, consider the standard GTL property

rd A (uWritten.(in is u A wr) V (=wr A Y Written)) = out is u

An equivalent property in vector GTL is:

Write = inisuAwr
Written = Write V (=wr A Y (Written))
Reading = rd A Written

Reading = outisu

Notice that the vector GTL representation uses the samesieawariables as regular
GTL to break up the monolithic syntax graph of the originallGiroperty. Each of
these fixed-point variables represents the simulatioe #tat is described by the GTL
expression on the right-hand side of the equation.

Vector GTL has several advantages over standard GTL preperOne is that
fixed-point variables can be used as top-level handles &varte particular simula-
tion states. This is useful for simulation introspection aransformation, as well as
for generally improving legibility. Another advantage st the notation allows for
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sharing, which can be used for common sub-expression eitroim Not only does
this make the specifications more succinct, but it can be lngélgde simulator to avoid
duplicate work. In a similar vein, vector GTL also allows nsspecify multiple con-
sequent checks at various states within the simulation dthitian to these benefits,
this form is likely to be more familiar to verification engers thary.-expressions.

Although the tabular nature of vector GTL generally aidsaslpects of human
interaction with simulations, it unfortunately also makegomated reasoning more
difficult. Deviating from the linear textual form of traditnal logic creates a richer
structure that no longer directly fits term-based reasosysgems. For example, ap-
plying transformations using pattern matching is now naass/, as patterns may span
multiple variable definitions, and transformations careetffother sub-simulations.
Scoping of indexing variables is also more complicated. gdeghis, we found that
vector GTL is still preferable for real verification effortand that these reasoning
problems are largely surmountable through the use of ekpdicursion variable sub-
stitutions.

Vector GTL can also be seen as an adaptable hybrid betweertiasgyraphs and
GTL, since states can be optionally explicitly labeled, seenidden in the syntac-
tical structure of GTL formulas. The degree to which the ayriree is explicitly
broken into named chunks is determined by the requireménl®garticular user or
algorithm.

A GTL vector property is formally defined as follows:

Definition 6.1.2. A vector GTL specificatio® consists of a set of recursive equations
and a set of assertions. For each GTL recursion variablihere must be exactly one
equation of the fornr = f, wheref isany GTL formula. Since GTL requires that each
recursion path passes through¥a operation, we require that there is no atemporal
recursive cycle through the definitions that does not passitih aY operator. The
assertions are of the ford = C whereC is a closed formula of GTL.

Such systems of equations prescribe a unique semanticteadaeh of the recur-
sion variables, as a result of the Unique Fixed-point ThedfEheorem 4.1.1). These
recursion variable assignments are then used to define twhatins for a circuit trace
to satisfy the assertions associated with the same veaipepy:

Definition 6.1.3. Letp : F — (V — S™) be the unique solution to the fixed point
equations in vector specificatiogd. Then a circuit tracer € S+ satisfies assertion
A = Cof P, writteno = A = C, if, for every index context € V,

oe| Al implies o | C|”
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Definition 6.1.4. A circuit K¢ satisfies the entire propert, written ¢ | P, if
every trace of the circuit satisfies every assertion madééytoperty.

Example Consider the vector property given by:

ZERO = reset VY (TWO) A —reset
ONE = Y(ZERO) A —reset
TWO = Y(ONE) A —reset

ZERO = empty

In this property, the dependencies between the recursitebl@s sets up a simple
three-state cycle. The variable names correspond to thé&wuai steps, modulo 3,
since a reset has occurred. The asserfiBRO =- empty therefore requires that
empty is high during a reset and every three subsequent steps vasetehas not held
since.

6.1.2.1 Model Checking

The algorithm for model checking vector GTL differs slighttom that of standard
GTL (Section 3.7). Instead of calculating the fixed-point feexpressions indepen-
dently, we calculate a single global vector fixed-point. Wi wse the same notation
as Chapter 3 to express model checking contexts and sionsati

Definition 6.1.5 (Model Checking Vector GTL)Model checking starts off with the
empty recursion variable context whereo,(Z)(v) = L for each recursion variable

Z € 7 and index context. Model checking steps are then calculated using the
following recurrence:

oi1(2) = LfZJoi

where f is the GTL simulation associated with variabfein property P. Since
we know that abstract simulation is monotonically incregsover a finite domain, a
fixed-point, is eventually reached. Each assertidn=- C of P is then verified by:

A, € |C] foreveryv €V

We will say that vector GTL model checking succeeds, wiki€n,..(Kc, P) if every
assertion check holds.

Recall from Definition 3.6.1 that the image of a formila;(f) is the set of end-
states of circuit traces that satigfyn contextp. We will show that model checking is
sound by linking the simulated abstract state with the in@dke antecedent.
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Lemma 6.1.6. The fixed-point recursion context”) defines a sound approximation
of the set of circuit traces that are satisfied Byim;(7).

Proof. Let the trace semantics fixed-point approximaptsbe defined by:

po(Z)v) =10
pirt(Z)(v) = | fz

Pi
Lemma 3.6.7 states that set-based simulation is a soundxapyation of the image
of a formula:

(VZ e F.im,(Z2) €V [Z],) implies im,(f) €7 [f]

T

Furthermore, Lemma 3.7.12 has stated that abstract sionlistalways an upper-
approximation of set-based simulation:

(VZeF . [Z];c~(1Z]7) implies [f]7C~y(Lf]7)
Combining these two Lemmas we therefore have:
(VZ e F .im,(Z) € (| Z],)) implies im,(f) SV 2(|f],)  (6.1)

We aim to show by induction that the image of each trace apprant is approximated
by the corresponding abstract simulation approximant:

im,, (Z2) €V y(0:(2))

The base case is trivially satisfied sinee, (Z) = (. Let us assume th&h case
holds. Then (6.1) gives

im,, (fz) €7 (L fz],,)

which is exactly equivalent to:
im,,.,(2) €7 (0i11(2))

Now, taking the limit of both approximants, we have that
Uim,(2) < U 1(0:(2))

and so model checking is a sound upper-approximation ofdheaatics:

imy(2) < (5(2) O
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Theorem 6.1.7.1f model checking of vector GTL succeeds, and every asaartin-
sequent is atemporal and does not contain disjunction, thercircuit satisfies the
vector GTL property:

MCU@C(KC7P) Implles ICC ): P

Proof. Let A = C be any assertion in properfy. Since model checking succeeds,
| A |2 C¥| C ¥ foreveryv € V, and so by Lemma 3.7.8:

(LAL)€ A(LCJY) (6.2)

Now by Lemma 3.7.13y(| C |*) = [C]” = im(C). By the monotonicity of abstract
simulation and Lemma 6.1.6, we hawe;(A) C"Y ~(| A |%). Therefore, combining
these two results with (6.2), we have that:

im;(A) €% im(C)

So any circuit trace i A || must also be if| C ||, meeting the requirements of
Definition 6.1.5. O

6.2 Simulation Structure Generation

An assertion program describes a high-level specificatiodet) and a series of as-
sertions of the form\ = C that each describe the expected circuit respéhsgien

a given antecedemt holds of the model state. The aim of simulation generation is
to create a simulation pattern consisting of all possilpeifrsequences that can bring
about a given antecedent condition. Using simulation, it tteen be checked that
the circuit state satisfies the associated consedquewhich in turn implies that the
assertion holds.

Our simulation generation approach rewrites antecededligates to obtain a de-
scription of the required input traces. Each rewriting stees substitutions to calcu-
late theweakest preconditiorfer the antecedent to be satisfied following one step of
execution. In a similar manner to [Dij76], the substitus@re shaped by the program
assignments themselves. By repeating this rewriting phaee and merging equiv-
alent states, we effectively perform a symbolic backwaradgersal of the program’s
state-space.

During this backwards rewriting process, choices about tooarrange the simu-
lation formulas can affect the shape of the resulting sitarda In particular, many
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of the rules already explored in Chapter 4 can be applied yastage of the simu-
lation generation process to change the resulting sizeeo§itinulation and/or level
of simulation abstraction. For this reason, we make use aft@nactive simulation

generation environment, where named rules can be called tnarisform the sim-

ulation in different ways. There is also a composite ruldé tfenerates simulations
automatically, which is generally useful as a starting pwinen no manual control is
yet required.

6.2.1 Simulation Goals

We usecheck predicate® define the top-level verification goals in our environment
These assert the relationship between the circuit, therpnogand the vector GTL
property to be verified. Following common theorem provingmeology [Mil72],
we keep a list of goals, made up of such assertions, that ceawsiten, discharged,
or decomposed into further goals.

Definition 6.2.1. The predicate CHECK K¢ AP sim (A = C)” holds for circuit
Kc, assertion progranA P, vector GTL equationsim and GTL propertyA = C, if
for every circuittracer € tr(K¢) and every indexing context: IndexVars — Values,
if every monitor tracer of o satisfies antecedent in the states given by the fixed-
point of the GTL equationsm, theno also satisfies the consequért

(Vmr € monitorap(o) .7 € || A[]Y) implies o€ | C|”

6.2.2 Initialization

For a given circuittCc and programA P, simulation generation starts off withitial
checksfor each assertion. These predicates set-up a goal, usngrdgram to be
verified and the initially empty vector GTL simulation.

Lemma 6.2.2.The circuit/C satisfies progranA P consisting of assertions; = C;
exactly when following predicate holds for eaich

Proof. When the simulation is empty, it imposes no constraintsheareaning of the
assert predicate for each assertion simplifies to:

(Vr € monitorap(c) .7 € || eval(A) ||¥) implies o€ | C |
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which by Definition 6.1.1 is equivalent to
<V7T € monitorap(o) . (A —Z» true)) implies  (C —Z» true)

This is exactly the condition required by Definition 5.3.% fbe circuit to satisfy
each assertion made in an assertion program. O

A repeated series of steps can now be performed to rewrgeasertion into a
form where the antecedent is defined by a simulation purdaigrms of circuit inputs,
and independent of the program state. When this stage iegdasymbolic ternary
simulation can be used for verification.

6.2.3 Weakest Precondition Rewriting

We use a derivative of Dijkstra’s weakest preconditiongfarmer [Dij76], to rewrite
assertion antecedents in terms of constraints on stateefusack in time. We describe
the transform with the maprp, which takes a program and a Boolean postcondition
expression, and calculates the weakest precondition. Aduegs can also be seen as
the selective application of a structured set of rewritings described by the program.
In the simplest instance, the weakest precondition of desamsignment statement
x := F can be calculated via the single substitutiontbfor each free variable in
the antecedent condition:

wp (x:=F) ' = FE[E/X

The weakest precondition of a parallel composition is deiteed by the fair fixed-
point application of the weakest precondition calculafmnboth arguments:

wp (11| T3) B = (fix ((wp T1)o(wp T2))) E

The calculation can be guaranteed to terminate with theaycheal dependency as-
sumption for programs in Definition 5.3.1 through the use ofiaking procedure.
The weakest preconditions of conditional statements caraloellated as conditional
substitution:

wp (if £ thenT)elseTy) B/ = E — (wp Ty E')|(wp Ty E')

The second and third constraints given in Definition 5.3 duea that this calculation
rewrites the condition as far as possible.
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6.2.3.1 Rewriting Arrays

The simplest approach for rewriting with array assignmetd introduce a conditional
expression to check the array index:

wp (x[E]:=G) ([F]) = ((BE=F) = G[(x[F]))

The simplest approach for rewriting indexgd statements is to apply one statement
for each variable valuation:

wp (fori:tdoT) E = wp (| vevamesry I'[v/1]) E

But these approaches can lead to some excessively large tenen simultaneous
array update is indexed withfar statement. This is because a new conditional ex-
pression is generated for every value in the array index.

Since this pattern occurs commonly, especially when dgalith memories, we
provide a more efficient way of rewriting these cases. Fiestewrite the statement so
that only a single indexing variable appears in the indexixygression of each array.
Where more complicated index expressions occur, a conditian take their place.

We then choose to rewritlor statements using a syntactical analysis of the term
being rewritten. We calculate the weakest preconditiorhefgarallel composition
only for each index value that can actually affect the souos®lition being rewritten.
This is given by:

wp (fori:tdoT) E = wp (| vematchesti,r,py T[v/i]) £

wherematches(i, T, F') provides the possible symbolic values sfuch that statement
T assigns to a value referencedhn For example,

wp (fori:tdoafi] := true) (a[0] A a[j])
= wp (a[0] := true || a[j] := true) (a[0] A a[j])

Assignment to an array expression is then modified so thet th@ direct substitution
when there is an exact match:
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6.2.3.2 Example

The following statement sets the two-dimensional ar&y an identity matrix:
for i : int(100) do
for j : int(100) do

if i # j then a[i|[j] :==0

else a[i][j] :==1
Now suppose we would like to find the weakest preconditionwbich a[k]|[5] =
1. Using the first approach for array assignment and for setésnwould generate
10,000 conditional expressions. By instead doing analysithe source condition,
we can calculate the result as:

for i : int(100) do
w for j : int(100) do
p if i # j then a[i][j] := 0
else a[i|[j] =1
for j : int(100) do )

= wp if k # j then a[k][j] := 0
. else a[k|[j] :=1
- P ( ;flfei[zif;eriafk] =0 ) (alk][5] = 1)

~ (wp (alk]5] = 0)
B75 =) (wp (alk][5) = 1

= k;;é5—>(0—1)|(1 1)

= k#5 — false|true

— (k=5)

6.2.4 Detecting Fixed-points

In the previous example, there are no recursive dependebeteieen program states.
As a result, the weakest precondition rewriting approadjusranteed to terminate.
When temporal recursive dependencies are introduced Meoywewriting can expand
a condition indefinitely. For example, consider the follog/statement expansion:

if reset then

o b := true
flip = else
b := last(—b)
wp flip b

= wp flip (reset V Y (b))

wp flip (reset V Y (—reset A Y (b)))

= wp flip (reset V Y (—reset A Y (reset V Y (— b))))
= wp flip (reset V Y (—reset A Y (reset V Y (—(..
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In this instance, we would like to be able to generate the fp@dt simulation:
pnZz .reset VY (—reset AY(Z))

Our strategy for doing this is to keep track of a set of ternas #ne already having, or
have already had, their weakest precondition calculatede@nhe calculation reaches
a term that it has already seen, then an explicit fixed-peioteated.

wp flip |eval(b)

=wp flip (reset V Y (eval(—b)))

=wp flip (reset V Y (—reset A Y (|eval(b)|)))
=nZ .reset VY (reset AY(Z))

To perform this calculation in practice, we label each eiquadf a vector GTL sim-
ulation with the original predicate from which this segmenhtthe simulation was
derived. This labeling also provides a valuable means otigiging in the case of
over-abstraction during simulation, since it shows howheaitthe simulation states
are associated with program predicates.

In this labeled form of vector GTL, each equation is a triglét £, £') whereZ
is the recursion variable used to name this statés the program predicate that this
state correspond to, arid is the GTL simulation necessary to produce this state.

Rather than create a new simulation state for each simuolatep, we only create
a new state for each time-step that passes in the simulatieradapt the re-writing
algorithm so that substitution only occurs on ternd enclosed byy. When this
rewriting is complete, we create new simulation states fthose terms enclosed by
Y. If there is already a simulation state that matches the,térem this state is refer-
enced instead.

Using this approach, the flip example expands as followst,Rive start off with
the initial simulation state nameXi, for conditioneval(b):

( Xy, eval(b), eval(b) )
Now we rewrite the simulation using thi rule on current-time expressions to:
( Xo, eval(b), reset V Y (eval(—b)) )

Since the expressiosval(—b) refers to the previous time-step, we do not expand it
further. We now ‘split’ the simulation to form a new simulai state from the sub-
term of the simulation that refers to the preceding timerkea This is achieved by
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creating a new state for this term, with a fresh recursioratée, and substituting the
term in the original simulation for this variable.

( Xo, eval(b), reset V'Y X, )
( X, eval(—b), eval(—b) )

Again we rewrite the second simulation state usingwtheule:

( Xo, eval(b), reset V'Y X; )
( X, eval(—b), —reset A Y (eval(b)) )

Now when we come to split the tereal(b), we notice that this condition has already
been expanded in simulation stafg. Therefore after splitting the state we can apply
a rule that checks for equal states and merges them. Thihédxed-point knot:

( Xy, eval(b), reset V'Y X, )
( X, eval(=b), —reset AY X)) )

Now the simulation is completely generated, as no programe semains in the sim-
ulation description. Notice that our approach ensuresfitked-point definitions, cor-
responding to dependency cycles through simulation stakeays pass through one
unit of time, Y, and hence are well-defined.

6.2.4.1 Boolean Encodings

In most cases, the simple approach of checking for syntadtiivalence is not suf-
ficient for termination. Instead, we can enhance our algoriby creating Boolean
functions to characterize our states, and check for eqneal using standard tech-
niques such as BDD equivalence or SAT solving. Since ourraragypes are all
bounded, and expressions all refer to a bounded temporti,dapch checks are de-
cidable.

Formulas of GTL that do not contain fixed-points can be endad® a single
Boolean predicate that characterizes the linear tracésadliafy them. GTL formulas
are represented as single Boolean predicates containiiadphes that encode the com-
bined circuit and program traces. For instance,Y (—n) is encoded as the predicate
ng N\ —ny.

We encode program expressions into Boolean vectors thatibegheir evalua-
tion, and an extra Boolean predicate that captures whdtkexxtpression fully evalu-
ates or not. For instance, consider a 3-bit integer literatoded with:

encode(3 : int(8)) = ((F,1,7),T)
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The first component of this pair is the binary encoding of thieger3. The sec-
ond component asserts that this expression always evsluBtemlean variables are
encoded directly:

encode(v : bool) = ((v),T)

Variables of other types are converted into a vector of blytaamed Boolean vari-
ables:

encode(v : int(8)) = ((v_int8[2], v_int8[1], v_int8[0]),T)

Maps and equality are given bit-vector interpretationsthaa complex expressions
can be encoded. The application of these encoded maps omdbdieg must be
isomorphic to the maps on the original value domain. For gtam

encode(({v :int(8)} <4) =b) = ((—v_int8[2) AbV v_int8[2] A —b),T)

The importance of the second component of the encoding cmtogslay when partial
functions are applied. For example, the expression thatdgscthe head of an empty
listis encoded as any value together with false, indicatwag it can not be evaluated:

encode(head []) = ((x), F)

For the expressio that encodes tda, b), the corresponding propositiaival(E)
encodes ta A b, since such propositions must fully evaluate in order tahol

6.2.5 Simplification

During simulation generation it is useful to apply varioimglification rules to de-
crease the size of the terms involved, and to clarify anyiredudebugging. The rule
SIMPLIFY attempts to apply various simplification rules at every bepthin a term.
The core simplification rules are shown in Figure 6.1, andomaextended to cater for
additional data types or functions.

6.2.6 Trimming

As a result of these simulation rules, we will sometimes findt torphaned simu-
lation states become disconnected from the main simulafidre rule namedRIM
finds the set of simulation recursion variables that theasutent checks depend on,
and removes from the simulation any variables that are roptired. A similar rule,
ELIM_FALSE removes those states whose Boolean encodiriglds. Variables that
refer to such states in other parts of the simulation arecepl withff.
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——a = a a = trueif encodea = ((T),T)
a A false = false for atemporakh
false Aa = false a = falseif encode a = ((F),T)
aVtrue = true (last(a))[last(e)] = last(ale])
true Va = true fla—ble) = a— f(b)|f(e)
aNtrue = a fla — ble,d) = a — f(b,d)]| f(c,d)
trueAa = a f(dya — ble) = a — f(d,b)] f(d,c)
aVfalse = a f(last(a)) = last(f(a))
falseVa = a f(a,last(b)) = last(f(a,b))if bis constant
—true = false f(Qast(a),b) = last(f(a,b))if ais constant
—false = true f(last(a), last(b)) = last(f(a,b))
—last(a) = last(—a) —(Ji.a) = Vi—a
—(aANb) = —aV b —(Vi.a) = Ji.—a
“(aVb) = —aNn-b ¢c — E|F = (chNE)V(-cAF)
for BooleanE, '

Figure 6.1: Simplification Rules

6.2.7 Parameterization

Although weakest precondition rewriting removes all thegram variables via sub-
stitution, it is sometimes not possible to directly simaltte resulting terms because
they still contain higher-level constructs such as aritticneperations. Simulation
requires that we know the symbolic ternary value that shbeldised to drive each
circuit node involved in such expressions. Deducing thfermation requires ad-
ditional analysis. For example, consider how the vediarshould be simulated to
achieve the conditiomt2bvn(: >> 1) = (din[2], din[1], din[0]). We need to rewrite
such a predicate into a form that determines the possibtgesand interdependencies
between the nodes involved.

Fortunately, this problem has already received attentiahigpart of general STE
verification methodology. The act of expressing a predicaterms of the possible
range of values of several variables within it is knownpasametrization and can
be achieved using thgaram algorithm of [AJS99]. Theparam algorithm receives
a set of variables and a target predicate to parameterideredrns a new predicate
for each variable, defining the possible range of that végiabder which the original
predicate is satisfied. For example,

param {din[2], din[1], din[0]}
(encode(int2bvn(i >> 1) = (din[2], din[1], din[0]))
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returns:

din[2] = false, din[l] = i_int8[2], din[0] = i_int8[1]
This can be used to directly build the GTL formula

—din[2] A (din[1] is i_int8[2]) A (din[0] is i_int8[1])

which can then be simulated.

6.2.8 Model Checking

Once a simulation structure has been completely generafted,a couple of adapta-
tions it can be used to drive a simulation run that checks tbpeasty.

6.2.8.1 Temporal Mapping

Assertion programs will typically be cycle-accurate dggarns of the required circuit
characteristics. In contrast, each step of STE-based atimninormally corresponds
to a phase of the fastest clock in the simulation. Therefoneesextra temporal trans-
formation is normally required to translate a simulatioth® circuit’s internal timing.

In practice, many different clocking schemes may be usedatzimthe particu-
lar characteristics and requirements of the device. Weaasilisider a common case,
where a cycle is composed ohgghand alow phase, and the circuit is considered sta-
ble at the rising-edge of the cycle. We will also assume thattock is distinguished
by the logical value of nodelk.

The ruleRETIME rewrites a cycle-accurate simulation description for thisng
model. The rule first doubles the temporal delay betweerntassantecedent values
by replacing eacly f with YY f. It then adds alternating assertions about the value
of nodeclk. For example, the cycle accurate simulation Yb is replaced by the
phase accurate simulation:

aANY(Y(bA —clk) Aclk) A —clk

This mapping is illustrated in Figure 6.2. The top arrowsstrate the point in the
circuit timing that the program steps are mapped to. Thesénaalignment with the
end of the last clock phase in each cycle. As a result, thelation input values are
stable at the times required by the circuit, and the conseaginecks expect the circuit
to have a reached a stable value at these sample points.

We may now finally run the model checking algorithm for vec®dr. by invoking
the ruleSIM on the constructed simulation.
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Sample
points: \ \ \ \ v
Clock: [ 1[I | 1|
H L H L H«"Cvele
Phase yele

Figure 6.2: Cycle- to Phase-Accurate Temporal Mapping

6.3 Controlling Simulation Generation

In the previous section, we have described a method for tteraic generation of
symbolic ternary simulation descriptions. In many caseshsimulations succeed
with no further intervention. But experience from GSTE shkdhat the level of con-
trol over the simulation approach is of vital importanceVerification success. This
flexibility can be used both for manual abstraction refinetmercases of either over-
or under-abstraction, as well as for switching between sjimlbnd explicit forms of
simulation.

These types of refinements as well as forms of property decsitign can be
achieved using the reasoning rules for GTL that we desciitb&hapter 4. We will
now show how these rules can be applied midway though thelaiimn generation
process to control the characteristics of the resultinguktion run. If desired, the
user can choose which rewriting rules should be appliedct ganeration step, shap-
ing the GTL simulation and its resulting characteristicke Tuse of the these rules is
illustrated in the subsequent chapter, where we examine g@rticular case study
verifications.

6.3.1 Vector GTL Rules

The following two simple rules can be used to manage the wayhich simulations
are encoded as fixed-point equations.

6.3.1.1 SPLIT

TheSPLIT rule breaks off sub-terms of a simulation to form a new reouarsariable
definition. This can be useful for introducing sharing, ofdous the effects of sub-
sequent rule applications, since it introduces a freshreate® name. As an example,
SPLIT Z (n A m) transforms

= kAYW

Z = kAY(nAm) into W o~ nAm
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whilst introducing the nam#&’/ for this formula.

6.3.1.2 SUBSTITUTE

The SUBSTITUTE rule is in some ways the dual to tl$¢LIT rule. It substitutes a
recursion variable instance with its definition. For exaenpUBSTITUTE W (n A m)
transforms

Z = kAYW into Z = kAY(nAm)
W = nAm W = nAm

Again, this is useful for selectively targeting the effe€tfarther rules. For exam-
ple, for reasons of abstraction refinement, we may wish tdyaglistributive rule.
If the terms involved are split over several recursion \@eg, we can first use the
substitution rule before applying standard pattern mathi

6.3.2 Abstraction Refinement Rules

As we have seen in Section 4.3, simple equivalences can lsktasewrite GTL
formulas and change the resulting level of simulation @osion. These give rise to
the following abstraction refinement rules for our envir@mn

6.3.2.1 RAISE_DISJ

Like the GTL rule in Section 4.3.1, this distributes conjtioic andY over disjunction,
throughout the entire simulation. In practice, we have tbtirat it is often useful to
routinely apply this rule at each step of every simulationagation, to avoid common
cases of over-abstraction.

6.3.2.2 REDISTRIBUTE

Section 4.3.2 has described product reduction, wherealisitig Y over conjunction
critically determines whether conjunct conditions areludated together or separately.
Simulating different parts of the circuit separately is mefficient, because we do not
calculate how the two conditions interact. The resultirgestan, however, be too
approximate because we do not consider these interaclié®®REDISTRIBUTE rule
allows a user to control these aspects by providinglastraction schemthat can be
used to determine which types of simulations should ocalgpendently.

We will say that asubspaceof an assertion program is a set of program vari-
ables that we associate with one of its particular aspeatsalstraction schema then
consists of a set of subspacdsy;, S,...,S,}. The intention of such a schema
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if wr, then
cell, := in,
else
cell, := last(cell,)
if wry, then
celly, := inp
else
cell, := last(celly)

Figure 6.3: Assertion Program for a Two-Cell Comparator

is that simulations related to different subspaces shaké place independently.
Given a simulation written as conjuncts in the fofffi(c; A 2 A ... A ¢,), the
rule REDISTRIBUTE {5, Sa, ..., Sy} redistributes itto a fornr Ay A YAs A ... A

Y A,, N'Y A, where eachy; is the conjunction of those that contain a variable from
S;, and A is the conjunction of those; that contain no variables from ar$§f. The
result is that the preconditions associated with thesepaudes are then generated and
simulated separately.

Example We will show how theREDISTRIBUTE rule can be used with reference to
the memory cell comparator of Section 2.6. Recall that tiserdi®n graph in Figure
2.18 defines a complete simulation of the cross-produce-sfadce, whereas those
in Figure 2.19 simulate each memory cell independently,thed compose each of
these simulations. Figure 6.3 shows a suitable progranhfswerification. We aim
to simulate the condition

Y ((cell, = u) A (celly, = v))

By default we generate the simulation shown in Figure 6.4A()ich a similar shape
to the assertion graph in Figure 2.18. Noting, however, thattwo memory cells
operate independently, we can appBDISTRIBUTE {{cell,}, {cell,}} as the first
step in simulation generation to obtain the split condition

Y (cell, = u) A Y (cell, = v)

This results in the simulation in Figure 6.4 (ii), which a ganshape to the assertion
graph in Figure 2.19, and simulates the two components atghar
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So = Y((cell, = u) A (cell, = v))
= YS;
S1 = (cell, = u) A (cell, = v) So = Y(cell, = u)
= (wra Awrp Aing is u Aing is v) NY (cell, = v)
V(=wry, A =wr, AYS;) = YS;AYS,
V(wry, A =wr, Aing is u A YSy)
V(—=wr, Awr, Aing is v A Y'S3) S1 = (cell, = v)
= (wrp, Ainy is v)
Sy = (celly = v) V(=wr, AYS;)
= (wrp Ainy is v) V (—wr, A YSy)
So = (cell, = u)
Ss = (cell, = u) = (wry Ain, is u)
= (wry Aingis u) V (-wry AYS3) V(=wr, AYSs)
(i) (ii)

Figure 6.4: Comparison of Simulation Generation for a TwedtComparator

6.3.2.3 UNROLL

Given a state-space schema with which to redistribute sitimunl conditions, we can
create a composite rule that automatically applies theitiegrand fixed-point detec-
tion steps from Section 6.2 in sequence. The MROLL s performs the following
steps in sequence:

WP Find weakest preconditions, based on the assertion program
SIMPLIFY Perform basic simplification

RAISE DISJ Simulate disjunctive conditions independently

REDISTRIBUTE s Simulate specified conjuncts independently

LAST SPLIT Split off formulas referring to previous time-frame

ELIM FALSE Remove states that are false

SIMPLIFY Perform basic simplification

MERGE_EQ Merge any equivalent states

TRIM Trim unused states

This sequence of rules is sufficient in most cases to prodsgmbolic ternary simula-
tion with a reasonable, intermediate, level of default i@rsion, and we will illustrate
its use in both of the case studies in the subsequent chapter.



6.3. Verifying Assertion Programs - Controlling Simulation Generation 128

6.3.2.4 SPLIT_STATE

Derived from the case-split rule of Section 4.3.3, the BHBIT_STATE takes the set
of mutually exclusive casef’, (s, ...C,}, where(C; v Cy v ...V C,) is valid,
and case-splits terrfiinto

(fANCHOV(fANCY)V...V(fANC)

This is typically used to enable each of these cases to bdatmalindependently, thus
raising the level simulation precision.

Example Suppose, as an optimization, a piece of data can take oneadquivalent
routes through a pipeline, depending on whether there isitly a bubble behind it or
not. Since this is an optimization, it should not featurehi@ $pecification. Therefore
the simulation that is generated by default will not distirsip the two cases, and the
preceding element will be set #0. The verification will fail, because not enough
information exists in the simulation to determine whichlptite data takes. To refine
the simulation we can use tI$®LIT_STATE rule to distinguish the cases of whether
there is a bubble behind it or not.

The use of this rule is also illustrated by FIFO case studytinger 7.

6.3.2.5 WKN

All the rules so far have been equivalences. But since GTinfais are monotonic,
and always occur negatively in the antecedent, it is alssiplesto rewrite a simu-
lation by weakeninga sub-term of the simulation. Such weakening can result in a
more approximate simulation, which potentially consungss Ispace and time. For
example, suppose our simulationfig\ g. From our knowledge of the design, we may
be aware that, in actual fact,alone is sufficient a condition to verify the consequent
condition. The weakened simulation might be consideraiohpker, since the nodes
affected byg may now be simulated witX. The application of the ruléwkN a b)

can achieve this effect, by attempting to replace everairst ofa with b, under the
condition thatz impliesé.

6.3.3 Symbolic Rules

In this section we document rules in our framework that martag symbolic aspects
of the resulting simulations.
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6.3.3.1 CREATE_VARIABLE

The CREATE_VARIABLE rule allows us to manipulate preconditions by creating xnde
variables that are subsequently used for symbolic sinaratiFor example, suppose
that we are trying to simulate the conditian= last(b) where both andb are input
program variables. This condition asserts equality betvike current value of and

the previous value df. Since simulation progresses one time step at a time, howeve
we must introduce a variable with which to link the two valuégplication of the
rule CREATE_VARIABLE a creates a fresh variableand rewrites the condition as:

di.(a=1) A (last(b) = i)
Since constants are independent of time, this is equivadent
Ji.(a=1i) AN Y(b=1)

If, furthermore, constantis not used elsewhere in the simulation, then the quantifica-
tion becomes unnecessary:

(a=1) NY(b=1)

This is sound because all free antecedent variables aréittypbxistential, owing to
their negative position in the model checking assertiortsis Tondition is now in a
suitable form to be directly simulated.

The use of this rule is illustrated within the scheduler cstsely verification in
Chapter 7.

6.3.3.2 SYM_SUBSTITUTE

Since our simulation approach is symbolic, simulating adttion A with free index
variable: gives us a distinct set of image states for each valuation afsing this
symbolic state, we can directly calculate the alternatoredition A[E'/:] using simple
symbolic substitution.

For example, suppose we are modeling the value held by a@ousing the pro-
gram variablecount. Targeting the conditioticount = ) results in simulatiors,
which creates an family of circuit states whose indicesaspond to the different
count states. Suppose we are now required to simulate thtiooncount = j + 1).
We can use our existing simulation @ount = i) and perform the symbolic substi-
tution of j + 1 for ¢, written writtenS(: := j + 1) in GTL.
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The ruleSYM_SUBSTITUTE 7 E rule in our framework rewrites conditias into
(Afi/E])(i = E)

wherei is not free in A and E depends only on index variables. By ohimng these
self-canceling substitutions we can syntactically aphby/first during our simulation
generation process, leaving the second as a later simulstip.

We illustrate this rule in the subsequent scheduler caghysithere it is used to
reduce the number of symbolic conditions that we have to lsitedior waiting micro-
operations.

6.3.4 A Decomposition Rule

Another approach to overcoming the state-explosion proligeto use structural de-
composition to split apart the property at hand. Our framéwmntains rules for
many of the simple decomposition rules for GTL from Sectidh 4n this section we
describe another approach that splits the program based ertia internadlecom-
position interface The decomposition interface is a mapping between prograim a
circuit state, specified in the same manner as the inputfacifor a program. Un-
like the input interface, however, it does not form part @& #pecification, but exists
purely to define a splitting point in the verification. ThEBCOMPOSE rule performs
such a split.

A standard assertion program verificatiassumeshat the input map holds, and
demonstrates that the output assertions hold. DEW@MPOSE rule splits this process
into two. The first subgoal verifies the decomposition irstegf given that the input
interface as an assumption. The second verifies the origiogram assertions using
both the decomposition and input interfaces as assumpti8imulation now takes
place in two stages: one from the input interface to the deasition interface, and
another from the decomposition interface to the assertibnis is illustrated in Figure
6.5.

In order to apply the decomposition interface as an assoemptithe second stage
of the verification, we modify the prograP, so that all the assignments to variable
x are replaced with the assignment= E. The result of this modification is denoted
AP < (x:= F). By replacing these assignments, we direct the simulagortion
process to drive the simulation using the decompositiceriate, wherever possible.
For exampleDECOMPOSE (x := F) splits the verification goal

CHECK K¢ AP sim (A = C)
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into
CHECK K¢ AP sim ((x=d) = (F = d))
which verifies the decomposition interface, and
CHECK K¢ (AP < (x := F)) sim (A = C)

which verifies the original assertion under the assumptan the decomposition in-
terface holds.

Example Suppose a circuit consists of a register bank and an aritbahemnit. At
each cycle, either a number can be written to the registdr adtiress;, or else the
product of registerg andi, can be calculated and placed on lme. Such function-
ality might be modeled by the program fragment:

if write then

regliy] = in
else
result = regliy] X regliz

together with the assertion
forall ¢ . (result = ¢) = (out = ¢)

It is quite possible that simulation of both the memory areldhithmetical unit will
together be too large for a single simulation run. We can,dvan decompose the
task and simulate each of these units separately. Firstwu#eehe program so that
we have fresh names to reference the two arithmetical ogsran

if write then

regliy] = in
else
opa = regfi]
opg = reglis]
result := opay X opgp

Assertions

r/v ~——=y— Decomposition
Interface ' interface
NN

Circuit

Figure 6.5: Introducing a Decomposition Interface
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Now suppose we can find an internal interface mapping thatritbes how the mem-
ory connects to the arithmetical unit, given &y, := busp andopg := busg. Ap-
plying our rule for decomposition twice, we end up with twmsiations that verify
the register bank and one simulation that verifies the agtian

Figure 6.6 shows a proof tree for the two decompositions.fifstesplit introduces
the intermediate assertion that the values heldwsp correspond to the abstract state
opa in the program. The second split similarly relabasg to opg. Figures 6.7(i)-(iii)
illustrates the areas of the circuit simulated by the progrdabeled (i)-(iii) respec-
tively in Figure 6.6. The solid lines represent areas thatatively simulated in each
case.

6.4 Related Work

There are several existing methods for creating symbofitatg simulations from
higher-level descriptions, including, in particular, therk of Joyce and Seger [SJ92],
and Jain [Jai97]. These frameworks use simple mappings fh@mn specifications
to low-level simulation outlines. In contrast, generatihg simulations using our
approach requires significantly more reasoning. This isbse we have chosen to
use a high-level model with abstract state, so generatiagithulations requires a
fixed-point state traversal calculation rather than a dlimegpping.

The core algorithm of our process is the re-writing processch effectively per-
forms a symbolic backwards traversal of the property stptze. There are several
existing similar approaches to exploring the state-spat@saperative programs. In
[SHO7] weakest precondition calculations are used withihemrem prover for for-
ward construction of state graphs. In [BF8R], weakest preconditions are also used
to help create minimal transition system representati@ng. algorithm differs from
these approaches in several interesting ways. First, mgoyitams are concerned
with creating state-transition graphs, whereas we prodoiceulas of GTL, which
are significantly more complex structures. Second, we damotto explore entire
state-spaces, but only those abstract states require@dbrassertion. Third, we do
not aim for our abstract states partition the model state-space, since overlapping
abstract states are beneficial to the efficiency of ternanylsitions.

Like symbolic ternary simulation itself, our algorithm alselies on separating the
data and control aspects of a property, in order to tameeatalesion. The control as-
pects are expanded fully into explicit model checking stegsereas the data aspects
can remain symbolic throughout the entire process. Thig@ricularly relevant for



6.4. Verifying Assertion Programs - Related Work

133

model
if write then
regli;] := in
else
fopa = regli
ops = regli)
result := opy X opp}
assert
forall c.
(result = ¢) = (out = ¢)

A
/ Qfg[iﬂ = busa

model model
if write then if write then
regliy] = in regliy] = in
else{ else
{opa := reglii] {opa := busa
opp = regli] opp = reg[io]
result := opa X opp} result := opa X opp}
assert assert
forall d. forall c.
(regli1] = d) = (busa = d) (result = ¢) = (out = ¢)
0 \
A
/ Qfg[il] = busa
model model
if write then if write then
regliy] = in regliy] = in
else else
{opa = busa {opa := busa
opp = regli] opp := busg
result := opsy X opp} result := opy X opp}
assert assert
forall e. forall c.
(regliz] = €) = (busg = ¢) (result = ¢) = (out = ¢)
(i) (i)

Figure 6.6: Decomposition Proof Tree
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L i1 i i o
busa busa. o
Wr— | wr— wr--i
i --out -out . r---d out
" buss; n—"" busg in--
U (if) (i)

Figure 6.7: Three-Way Decomposition

hardware verification, where large datapaths are often dttdebeck in verification.
This orthogonal treatment of data is the basis behind mamgr @pproaches to ver-
ification, from control state graph generation [HGD95] te lse of uninterpreted
functions [BD94, HB95].



Chapter 7

Case Studies

In this chapter we examine two case-study verification efftirat allow us to explore
the benefits of our proposed approach compared to existitfgpaeof assertion graph
specification. To be able to compare and contrast our appnedh the most up-to-
date existing verification methodology, for each case stueyirst provide details of
verification using assertion graphs. We then show how theesponding assertion
programs can provide clearer and more succinct propertgseptations, allowing a
more structured approach to abstraction control. At thecénlde chapter we provide
a discussion of the two approaches. This chapter also sarv@®vide illustrative
examples of the rules presented in Chapter 6.

7.1 First-In-First-Out Buffer

The first example is a 4-entry 10-bit-wide First-In-Firstt(dFIFO) buffer, derived
from [YS02]. Although the FIFO specification is relativelyaght-forward, the ver-
ification makes a useful case study because of the diffepgrbaches to abstraction
that are required.

7.1.1 Circuit Specification

The buffer is intended to hold a queue of 10-bit data elemeAtseset operation
initializes the buffer to an empty queue. Data can be engijedeich means that it is
added to the back of the queue. When data is dequeued, idainesaremoved from
the front of the queue, so that the first piece of data to ehtebuffer is also the first
piece of data to leave the buffer. In addition to these opmrat the FIFO has two
outputs that describe when the buffer is empty and full.

135
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enq ——» «—— deq
din——<~ FIFO |4 dout
full «——— > empty

Figure 7.1: The FIFO Interface

As with most hardware, the FIFO circuit incorporates a déayor, so that fewer
gates are required between stateful elements, and thet@esuoperate at a higher
clock speed. The result of this is that the operations sup@dry the buffer take one
clock cycle to complete. For example, if the buffer is emptgd &ve enqueue a piece
of data at cyclé, then only at cyclé will the empty flag be set low and the data ready
to be dequeued.

Figure 7.1 illustrates the FIFO circuit interface. In orderenqueue a piece of
data, theenq line should be set high and the data presented onithénes. If the
FIFO is not already full then the data will be added to the dauffn order to dequeue
an element, thdeq line should be set high. Provided the FIFO is not empty, then t
oldest piece of data in the buffer will be presented atdihe lines and removed from
the buffer.

7.1.2 Circuit Implementation

The success of GSTE verification depends on how well the graglabstraction fits
with the structure of the circuit implementation. For treason, it is important to take
account of the circuit architecture when the verificatioplaned.

Our FIFO implementation has a memory array of content dajethteer with a head
and a tail pointer to mark the start and the end of the queuerVdh enqueue occurs,
data is written to the head pointer location and the head@oisiincremented. When
data is dequeued from the buffer, it is read from the tail filocation before the tail
pointer is incremented. An extra bit of state, th# bit, is used to determine whether
the buffer is full or empty in the cases where the head angtéilters match. Figure
7.2 illustrates the state of the FIFO after enqueuing détdowed bys.

7.1.3 Assertion Graph Verification

This section describes a FIFO verification using assertiaplts, closely based on the
example in [YS02]. Of particular importance is the degreelafity of the specifica-
tion, and the difficulties with the application of refinemeteéps. In this example, a
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Full Bit: 0

Head Pointer: 110

Tail Pointer: 0|0

Memory Array: 7181 727

Figure 7.2: FIFO State After Addingand8

generic FIFO property assertion graph is progressivehstaamed through abstrac-
tion refinement to match the particular implementation aicha

7.1.3.1 Generic FIFO Assertion Graph

Verification aims to check the following aspects of the dircu
1. Theempty output signal is set only when there are no entries in the FIFO
2. Thefull output signal is set only when the FIFO is full.

3. If data is enqueued when the FIFO is not full, it is cornediéqueued after each
of the previously enqueued entries have been dequeued.

In order to verify that theull andempty flags are set correctly, we can create an
assertion graph with states that correspond to the numbentags currently in the
FIFO. We can add to this graph all the possible transitioosfone state to another,
and assert for each of these transitions that the value afntipey andfull lines are
correct. Such an assertion graph, for a FIFO of depth fowsh@wn in Figure 7.3.
Forward transitions represent enqueues, and backwarsiticars represent dequeues.

Next we must verify that data going through the FIFO is notwoted. In order
to do this, we consider an arbitrary piece of enqueued dataraake sure than it is
unchanged when it is dequeued. We use the varialbderepresent the value of this
data. During the transitions at which the data is enqueuedyilV assert din is v'.
When we expect that same piece of data to be dequeued, we‘dsseris v’ in the
consequent.



leng/empty &!full enq&deq/!lempty&!full enq&deq/!lempty&!full

enq&deq/!empty &!full

ldeq/!empty &full

eng/empty&!full

enq&!deq/!lempty &!full enq&!deq/!lempty &!full enq&!deq/!lempty &!full
reset/T

leng&deq/!empty &!full

leng&deq/!empty &!full

lenq&deq/!lempty &!full deq/!lempty&full

lenq&!deq/!lempty &!full lenq&!deq/!lempty &!full lenq&!deq/!lempty &!full

Figure 7.3: Assertion Graph for Empty and Full Signals

enq&deq/!lempty &!full
leng&!deq/!empty &!full

enq&deq/!lempty &!full

enqg&deq/!lempty&!full
lenq&!deq/!lempty&!full lenq&!deq/!lempty &!full

leng/empty &!full Ideq/!lempty &full

eng/empty &!full

reset/T

lenq&deq/!empty &!full lenq&deq/!empty &!full lenq&deq/!empty &!full deq/!lempty &full

enq&deq/ eng&deq/

eng&deq/ enq&deq/
enqg/ din=v enq&!deq/ din=v enq&!deq/ din=v enq&!deq/ din=v
din=v din=v din=v din=v
O( deq/dout=v

ldeq/T Ideq/T

Ideq/T ldeq/T

Figure 7.4: Generic 4-Place FIFO Assertion Graph
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Since we need to make sure all enqueued data is handled thgrree need to
generalize our check to cover all possible starting statetieh a piece of data might
be enqueued. We also need to know the number of existingesrtithis point, since
we will expect the same number of dequeues before our datddshe dequeued. We
therefore include transitions that enqueustarting from each of the states in Figure
7.3. After the relevant number of dequeues, we check thaitdirect data is dequeued
atdout. The resulting graph is shown in Figure 7.4. The downwarodvesrare those
transitions where is enqueued, and should be dequeued during the last transition
in the bottom-left.

It is not immediately clear that this is the complete speaifan of a FIFO. In
particular, the assertion graph only contains one symhalitstant,v, which is the
value set on thelin line when data is enqueued on certain edges of the graph. It
therefore seems that if another piece of data were to be gubstly enqueued, then
we would have no way of ensuring that this second data is motijgt®d inside the
FIFO. Using this single symbolic variable, however, we iatfare able to verify all
possible sequences of enqueues and dequeues on the FIROséet the temporal
abstraction introduced by the for-all semantics of assegraphs. Consider that for
every possible enqueue of data to the FIFO, there is sométpatigh the graph where
we check that this data is not corrupted. Hence it must beathdata enqueued to the
FIFO is handled correctly.

7.1.3.2 Assertion Graph Refinement

When we use our first assertion graph attempt to verify oeudirGSTE fails due to
over-abstraction. To see why, we must consider the effdatsing ternary states to
characterize the states of our particular implementation.

The first vertex of the graph represents those states wherelHO is empty. In
our implementation, this corresponds to those circuitestathere the head pointer
is equal to the tail pointer and the full bit is low. By defauBSTE explores each
of these states and forms the most precise ternary repagisenthat includes all of
them. Therefore it forms thghead, tail) vector

(00,00) LI (01,01) LI (10, 10) LI (11, 11) = (XX, XX)

In other words, since this head and tail pointers can, inclegetly, take on any value
in the states being characterized, GSTE loses all infoonatbout them. This then
results in verification failure, since there is not enoudghrimation to determine if the
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ogse%\
head pointer

queue
length

«

Figure 7.5: Assertion Graph After the Head Pointer Casé-Spl

FIFO is full or empty. We explore both explicit and symbolppaoaches to surpassing
this over-abstraction.

Splitting Graph Vertices The first approach involves splitting every vertex of the
graph so that each resulting vertex corresponds to a sirgteplar head/tail value
pair. In order to preserve the property specified by the grapgelmust ensure that the
transitions cover the same possibilities as those of thggradi graph. Edges that do
not completely specify enqueues and dequeues, such asdthgss on the lower half
of Figure 7.4, must be case-split to do so. This effect of $pig on the first half of
the assertion is shown in Figure 7.5. Now when simulatiorucgaeach ternary state
stores a single concrete head/tail pointer state, so ther@ over-abstraction.

Introducing Precise Nodes Although refinement by splitting vertices is sufficient
for verification to succeed, the resulting number of stadeguiadratic in the size of
the buffer. To avoid creating so many distinct ternary statee can instead case-split
symbolically by introducing variables to connect the head il pointers. This is
done usingrecise nodegsee Section 2.5.4.5).

One advantage of this approach is that the case-split statetheir corresponding
simulation calculations are shared. For example, symaltticase-splitting based
on a single node does not require us to keep two distinct sitioul states. Another
advantage is that it requires significantly less work to adag assertion graph. We
must find the relevant head and tail pointer nodes in theitj@ud instruct the model
checker to keep them precisely. We then need to introducdalenvariables to
ensure that enqueues and dequeues are completely specified.
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Now when the simulation is run, GSTE internally allocatemperary symbolic
variablesz, and z; to capture the relation between the head and tail pointeos. F
example, the requirement that the two pointers are equhe€ifirst vertex of the graph
is captured by the symbolic stateead, tail) = (2120, 2120). Simulation propagates
such symbolic dependencies to other areas of the circuieXample, deducing that
the empty flag is high in the example state.

7.1.4 Assertion Program Verification

We will now use our proposed methods to verify the FIFO. Firgt write an assertion
program to capture the requirements of a generic FIFO bu@er implementation
framework includes support for bounded-length lists, Wwhiee will use to model
the state of the buffer. We will then apply some of the simafageneration rules
described in Chapter 6, and refine the simulation until \eifon succeeds.

7.1.4.1 AFIFO Assertion Program

The FIFO assertion program specification is shown in Figuée First we define
attributes that parameterize the model. The size of the F¥ELE, is 4, since it holds
a maximum oft elements. The type of data being held in the FIB&, is set to be
the type of 10-bit vectors.

We then declare the variables used by the program. The \atjdiolds the current
list of elements stored in the buffer, in order of arrival. W& a second list variable,
q, to store the partially updated contents. We also declamdan variables for the
various input and output control signals, and variabliesand dout of type data to
read and write elements.

The model block contains the main substance of the higH-teweel. If reset is
high, then the buffer is set to empty. Otherwise the contstae is set to its previ-
ous value, with enqueued data appended, and dequeued chatzecek The variable
q’ holds the state at a stage where it has been updated to reftpetiees but not de-
gueues. The empty and full flags are set to indicate the nuwmibelements in the
buffer. Since we have built the FIFO buffer as an independeatit, we have been
free to chose intuitive names for the interface nodes. Toer¢he program interface
is a simple directly-mapped interface.

Finally, the assertion block captures what circuit respsmnge wish to verify. Here
it is important to note that the asserted responses areabneelayed by one time-
step from the assertion programs. This accommodates theHagent in the circuit.



7.1.

Case Studies - First-In-First-Out Buffer

142

const SIZE = 4 Il
type data = bool[9 : 0] /1
model
var q,q : data list(SIZE) Il
var reset, enq, deq, empty, full : bool //
var din, dout : data /1
if reset then Il
q =[]
else{
if enq A —last(full) then /1
q = last(q) ++ [din]
else
q := last(q)
if deq A —last(empty) then /1
q = tail(q)
else
q = d
¥
empty := (length(q) =0) Il

full := (length(q) = SIZE)

interface
node n_reset, n_enq, n_deq, n_din[9 : 0]
node n_full, n_deq, n_dout[9 : 0]

reset = n_reset Il
enq = n_enq Il
deq := n_deq
din := n_din

assert
last(empty) = n_empty /1
—last(empty) = —n_empty
last(full) = n_full /11
—last (full) = —n_full
forall v : data . /1

Nunber of entries
Type of contents

Queue states
Bool ean signal s
Data in and out

Enpty on reset

Handl e enqueue

Handl e dequeue

Set status bits

Qur FI FO has a
direct interface

Check enpty bit
Check full bit

Check data out

deq A last(—empty A head(q) = v) = n_dout = v

Figure 7.6: FIFO Buffer Assertion Program
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Control Conditions

Precondition

reset

—reset A\ —deq A —enq
—reset A deq A\ —enq
—reset A —deq A enq
—reset A deq A enq

true

length(q) < 4

1 < length(q)
length(q) < 3

0 < length(q) < 4

—reset A enq length(q) = 0
—reset A\ —enq length(q) =0
—reset A deq length(q) =4

Table 7.1: Preconditions faength(q) # 4

7.1.4.2 AFirst Simulation Attempt

As a first attempt, we try applying the defauNROLL rule from Section 6.2 to gen-
erate the FIFO simulation run. This starts with the initi@tes characterised by the
assertion antecedents:

last(length(q) = 0)
last(length(q) # 0)
last(length(q) = 4)
last(length(q) # 4)
deq A last(—empty A head(q) = v)

Gk o

The first iteration of the backwards rewriting process findsweakest preconditions
of each of these states, under the various combinations gpfeeres and dequeues
that are possible. This is then repeated until all relevantlation states have been
explored.

As would be expected without any further intervention, fimst simulation fails
due to over-abstraction. To illustrate why, we will considlee preconditions for
length(q) # 4. Simulation generation considers the different contrpLis that can
bring about this condition, summarized in Table 7.1.

This shows that simulation generation by default creatiésrdnt states for differ-
entrangesof queue lengths. Not only will this result in a large simidat but it also
introduces abstraction problems, since the most preaisarierepresentations of the
head and tail pointers that characterize these statesl ats. al

7.1.4.3 Case-Splitting Simulation States

In order to avoid this over-abstraction, as well as to pre\sdme extra structure to
our simulation, we can instruct our environment to splitetat the start of generation
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if reset then
head := 0
else {
if enq A —last(full) then
head := last(head) + 1
else
head := last(head)

}

Figure 7.7: Program Augmentation for Head Pointer

based on the queue length. This is achieved withSIIEIT STATE from Section
6.3.2.4.

length(q) = 0, length(q)
SPLIT STATE ¢ length(q) = 2,length(q)
length(q) =4
This helps, but when GSTE is invoked on the resulting sinnutatverification still
fails due to over-abstraction. As with the assertion gragéec this occurs because
the dependencies between the head and tail pointers areauiggly represented. To
avoid this we can instruct simulation generation to spkissabased on the value of the
head pointer. But since the assertion program does notdaauay information about
this pointer, we must first augment our assertion progranesciibe its behaviour, as
shown in Figure 7.7.
Now we split the abstract simulation states based on thig@ostate:

head = 0, head = 1, }
head = 2, head = 3
For the verification of the empty and full flags, the end resldsely resembles the
assertion graph of Figure 7.5. In order to verify the finakatssn, we split the states
according to the number of dequeues required before dateeate should be seen.
This hint has the effect of reducing the number of simulastates, since it aligns
the abstract property states so that their images do nolagverhis ensures that the
control state of the FIFO is never approximateX{aso verification succeeds. Some
further miscellaneous term rewriting and weakening is akseful, as is trimming the
predicates to keep them legible during debugging.

9

1
3,

SPLIT_ STATE {

7.1.4.4 Case-Splitting Symbolically

As with the assertion graph case, rather than splitting agradratic number of simu-
lation states, it can be more efficient to encode the poirgpeddencies symbolically.
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This has the added benefit that we are not required to augimeassertion program
to describe how the head pointer behaves. In fact, symbaoialation instead derives
this information from the circuit model itself.

To achieve this symbolic-explicit hybrid, we use #RECISE_NODES rule based on
the transformations in Section 4.3.4, with the circuit rotteat make up the head and
tail pointer states. This then introduces symbolic vagalihat capture the required
dependencies between the two pointers, leading to sucatessification.

7.2 Micro-Operation Scheduler

A micro-operation (uop) schedulas a microprocessor component that receives a
stream of instructions to be executed and is responsiblddiiwvering each of these
to an execution unit at an appropriate time. We verify a senggheduler, based on a
resource scheduler from the Intel Pentium 4 Microproce&dn03, YGTO5].

7.2.1 Circuit Specification

Each uop instruction consists of apcodg asource registeand adestination register
as shown below:

=

Opcode| Source Register Destination Registe
3 bits 4 bits 4 bits

The interface to the scheduler is shown in Figure 7.8. Arrucsion may only
execute after all relevant previous instructions haveHibwriting to its source reg-
ister. To signal when this condition occurs, each instactiarries aeadybit with it
during its route through the scheduler. An instructionadg bit is set high when all
its dependencies have been executed. Instructions may beasly before they enter
the scheduler, or else become ready while inside. In ordentmeue an instruction

| 7¥\érback |
| ¢ |
Instruction | : | Execution
Decoder | W(rj'it: ;iauci | Unit
: ready —~> > Scheduler—>—> ;
L full ——— L, available |
\ \

Figure 7.8: The Micro-Instruction Scheduler
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din
ready
full < - | v v
write *| | enter, valid | [ready| [ opcode] wrback
enter;’| reg
entery | || | | \ >~ available
- Memory Array
Y
i schedy
Selection Scheds. - dOL;t
. .. rea
Logic sched,,
Priority Matrix L

Figure 7.9: The Scheduler Implementation

into the scheduler (provided tHell line is not set), thewvrite line of the scheduler
must be set high, the instruction presented ondihdines, and theeady bit for this
instruction put on theeady line.

Thewrback line from the execution unit is used to signal when the exeoudf an
instruction has resulted in the writing of data to a paracuéegister. The index of this
register is supplied on theg lines. There is an environmental assumption that any
instruction in the scheduler is waiting for at most one oihetruction to complete.
Therefore any waiting instructions that have a source tegimatching a write-back
registereg can have theiready bits safely set to high.

The scheduler should set the lim&ilable to high when it contains a waiting ready
instruction. When it receives this signal, the executioi cem request the instruction
on thedout lines by settingead to high. When there is more than one ready instruc-
tion, the scheduler provides the one that entered the stdrefitst. Like the FIFO,
the circuit incorporates some delay, so enqueues and baitks require one cycle to
become committed to state.

7.2.2 Circuit Implementation

As with the FIFO buffer, it is imperative to consider the sture of the implemen-
tation to be able to shape and balance the simulation abetrad=igure 7.9 shows
an outline of the scheduler implementation. The instruntiare stored in a memory
array, together with theiralid andready bits. Thevalid bits are used to signal whether
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there is currently an instruction stored in that index ofdhey. In order to store the
relative arrival times of each instruction, the schedulgo aontains griority matrix.
The (i, j)th entry of this matrix stores whether the instruction indrd of the mem-
ory array arrived before that stored in indgxf the array. There is then some logic
to determine which of the instructions stored is the edriedered ready instruction
that is next to be sent off to the execution unit.

7.2.3 Assertion Graph Verification

We will first describe how the scheduler can be verified usi®&J B assertion graphs.
This approach follows the example from [YS04], which bygasthe entry logic and
starts the simulation from thenter, nodes rather than directly from theite input
(see Figure 7.9). We also restrict ourselves to considentgthe correctness of the
data lines, missing out the full and available status lines.

Since the instruction emitted by the scheduler dependseorethtive arrival times
of all the instructions held, verifying the scheduler egply using a traditional asser-
tion graph would require too many simulation states to betpral. This is because
there would need to be one state for each set of possiblée/estatival times.

We can make use of compositional GSTE, however, to overchasetdifficulties.
Recall that compositional GSTE allows us to simulate d#ferparts of the circuit
independently. In particular, whether an instruction ade or not, and the relative
arrival times of instructions are handled separately bgjpahdent areas of the circuit.
Therefore if we simulate these sections separately, we iggifisantly reduce the
required number of simulation states.

The symbolic quantification operations supported by contipos GSTE also
allow us to effectively combine independent symbolic siatioins. In particular, we
are sometimes required to simulate conditions that appéyésyinstruction. Rather
than simulate each possible interleaving of input condgithat brings about such a
condition, we can instead simulate the requirement for tmygeneral instruction at
memory address and then universally quantify ovéto reach the required condition.

The top-level assertion graph for the scheduler verificashown in Figure 7.10.
EarliestReady(i, op) asserts that thé&h instruction has associated datg and is the
earliest ready instruction being held. The nedesd; in the circuit signals that tha&h
index of the array is being scheduled. Hence the edge of fhiet@| graph can be
read as saying that for every addreéss the instructionop has been stored ihand
is the earliest ready instruction, and the execution unitiag to read an instruction,
then the instruction is scheduled and valus is presented odout.
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FEarliestReady(i, op) A read / sched; A dout = op

>

Figure 7.10: The Top Level Scheduler Assertion

—enter(7) —sched ()

enter(i) A (din = op\)\\\
A—ready )

—wrback ~ “wrback A (reg # srcC)

Figure 7.11: The&Ready(i, op) Assertion

—enter(7)
@enter(i)%e“tefmg

Figure 7.12: TheFarlier(i, j) Assertion Graph
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—enter(7) —sched (1)

Enter(i) A\ —ready wrback A reg = sreC

wrback = z A (=2 V (reg # srcC))

Figure 7.13: TheVotReady(i) Assertion

The EarliestReady(i) condition can be defined in terms of further simulation con-
ditions, as:

FEarliestReady(i, op) := Ready(i,op) N Vj #i.(Earlier(i,j)V NotReady(j))

The predicateskeady (i, op), Farlier(i,j) and NotReady(j) are then defined in
terms of the a set of edges on the additional assertion gspiven in Figures 7.11-
7.13. In these diagrams, the union of the states assignduktsdiid lines is the
condition represented.

The Ready(i) assertion graph shows different paths for the two possillgsvin
which an instruction can become ready: either it is readynwhenters the scheduler
(the top path), or else it is not ready when it enters and sulesgly a write-back
occurs to its source register (the bottom path).

The meaning of th&larlier(i, j) graph is that an instruction has entered ingex
and no instruction has entered indegince. The final graphVotReady(i) uses the
same outline ofReady(i) to express those states in which thle instruction either
is not valid or else is not ready. These graphs are then entmugérify our circuit
without the need for abstraction refinement.

7.2.4 Assertion Program Verification

We will now describe how we have verified the scheduler usiid.-BGased simula-
tions created from an assertion program. The style of siomn@eneration is more
interactive than that of the FIFO buffer, since the succésbkeoverification is more
dependent on the correct simulation approach that keepaédh®ory footprint small.
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7.2.4.1 The Scheduler Assertion Program

The scheduler assertion program is shown in Figure 7.14sttdefines some types:
index is the type of memory address locationsp is the type for 11-bit uops, and
reg_addr is the type of register addresses.

We then declare the abstract state and variables used. atls bits for each uop
held by the scheduler are stored as arrays indexed by theddtspss. The state bit
valid[¢] indicates that there is an instructiondontents[:] with ready statuseady|:].
Bits earlier[s][j] are used to store whether or not the instruction at positiamived
before that at position. There is then a series of variables that corresponds to the
interface of the scheduler.

The state of the assertion program is updated as follows. nvdheset occurs,
every entry is set invalid, to empty the scheduler. Othespifsentryi is empty, and
the environment is attempting to enqueue an instructiorositipni, then the valid,
ready and contents indices are stored for this new instnuctivhen an entry is valid
and scheduled, it is subsequently set to invalid so thatlitnet be rescheduled. A
write-back occurs when the write-back register input mescthe last four bits of
one of the held instructions. Under this condition, the egponding ready bit is
set to true. The earlier array is updated depending on whitiee are entering the
scheduler. Finallysched[i] is set to describe whether the instruction at indéx to
be currently scheduled or not. This is calculated using thaition that in order to
be scheduled, a uop must be ready and valid, and have entersgheduler earlier
than any other valid ready entry. We omit an interface blacklie assertion program,
since our test circuit interface has the same names as thosbles on the interface
of the high-level model.

The aim of verification is to show that the scheduler circuitits the correct in-
struction at any given time. This can be described usinggles@mssertion where the
antecedent describes the conditions under whichagogt memory addressshould
be scheduled. The consequent asserts that under thisioonthe output lines of the
scheduler match valuep.

7.2.4.2 Generating the Simulation

We first simplify the verification by using tH#ECOMPOSE rule (Section 6.3.4) to relate
thesched array of the assertion program with the circuit nosld=d;, that we expect
to signal that a given instruction address is being scheddlbis is a useful place to
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type index = int(4) /1 Contains maxi mum 4 uops
type uop = bool[int(11)] /1 11-bit uops
type reg_addr = boolint(4)] // 4-bit register addresses

model
state contents : uoplindex| /1 Stored uops
state valid, ready, enter, sched : bool[index] // Status bits
state earlier : bool[index][index] [l Arrival times
var reset, wrback, ready_in, read : bool /'l Interface
var wrback_reg : reg_addr /'l vari abl es

var uop_in : uop

for i : index do { /'l For each uop...
if last(reset) then
valid[i] := false Il Clear it on reset
else if last(enter[i] A —wvalid[i]) then {
valid[i] := true /] Store it on entry
contents|i] := uop_in
ready[i] := ready_in
} else if last(read A sched|i] A valid[i]) then
valid[i] = false /'l 1Invalidate on schedul e
else if last(wrback A valid[i] A (contents|i][7 : 10] = wrback_reg))
then
readyli] = true /] Set ready on write-back

for j : index do { /'l Record arrival tinmes
if last(enter[i]) A —enter[j]) then
earlier[i][j] := false
else if last(enter[j]) then
earlier[i][j] = true

/'l Schedul e when a uop is the earliest ready uop
sched[i] = ready][i] A valid[i] A forall j : index .
((i = j) V —ready[j] V —wvalid[j] V earlier[s][;])
}

assert /'l Check correct data is schedul ed
forall 7 : index , op : uop .
read A (sched[i] AVj :index . (i = j) V =sched[j]) A (contents|i] = op)
= (dout[0 : 10] = op)

Figure 7.14: Scheduler Assertion Program
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decompose the verification because it allows us to sepavdtih@ control and data
aspects of the circuit. This decomposition splits the mate@edent:

read A (sched[i] AVj :index . (i = j) V —sched[j]) A (contents|i] = op)

into the two remaining simulation obligations:

1. sched[i] is ¢
2. read A (sched; A Vj :index . (i = j) V —sched;) A (contents[i] = op)

First we must check that thehed array andched; nodes are in fact equivalent. Then,
we must show that the scheduler operates correctly, giaritits equivalence holds.

Verifying the Circuit Control ~ The decomposition interface might be verified either
symbolically, using:

Vi :index, v : bool. (sched[i| is v = sched; is v)

or explicitly, using:

Vi :index . (sched[i] = sched;)
Vi :index . (—sched[i] = —sched;)

Since it is a control signal, the input patterns that geeetated|:] and —sched|i]
will have little in common. There is therefore no benefit tondplically sharing the
simulations, and an explicit approach is likely to be mofeieit.

In order to go about generating the two conditions, we usbdlekwards rewriting
technique from Chapter 6. By taking a single step in rewgitooth conditions, we
obtain:

sched[i] = —(last(reset)) A valid[i] A ready][i]
AVG.((1 = j) Vearlier[][j] V —valid[j] V —ready][j])

—sched[i] = last(reset) vV —wvalid[i] V —ready]i]
V 37.((¢ # §) A —earlier[i][j] A valid[j] A ready[j])

At this point, we can make use of our knowledge of the cirdnitcture. Since we
know that whether an instruction is valid, ready or enterefhte another instruction
are allindependentlynanaged by the circuit, we can start creating separate aiiong
for each of these sub-formulas, leaving them to be combihgtbdinal stage of simu-
lation. We therefore use tF#®LIT rule (Section 6.3.1.1) to create new recursion vari-
ables for each ofvalid|[i], —valid]i], ready][i], —ready]i], earlier[i][j], —earlier[s][;],
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valid[j], —valid[j], ready|[j] and—ready[j]. We can reduce the number of these con-
ditions by using thesYM_SUBSTITUTE rule (Section 6.3.3.2) to re-expresslid|[j],
—walid[j], ready[j] and—ready[;j] as conditions parameterized instead:by-or ex-
ample, generatingalid|[j] is the same as generating the conditiatid[:](i := j).

The remaining predicates can be simulated using the staagg@roach described
by theUNROLL rule (Section 6.3.2.3). At each step in this generationggscwe use
the REDISTRIBUTE rule (Section 6.3.2.2) to make sure that simulation of thelya
ready, earlier and schedule conditions remain independfénéther an instruction is
ready or not depends on whether its source register matcolyesréae-back registers.
It is therefore necessary to also use CREATE_VARIABLE rule to introduce variables
that correspond to théh instruction’s source register. No further abstractiefine-
ment steps are required for the verification of this aspetit@tontrol to complete.

Verifying The Data Output We take a similar approach to the second condition,
where we create the simulation of

read A (sched; AV :index . (i = j) V —sched;) A (contents[i] = op)

through the composition of separate simulations for eabkfeumula. The only sub-
formula that requires backwards propagation is the cantlitintents|i] = op, which
is covered using the default rewriting strategy of thi®0OLL rule (Section 6.3.2.3).
No further abstraction refinement is required for the ertigfication to succeed.

7.3 Discussion

In this chapter we have applied our verification approach fics&in-first-out buffer
and micro-operation scheduler. In both cases, we belieafethie assertion program
approach provides a more appropriate specification deggrithan the use of asser-
tion graphs. The cleanliness of the synchronous progragapproach gives a clarity
that lends a greater confidence to the interpretation of pguty. In particular, the use
of higher-level data-types such as lists and arrays alloto ususe well-understood
data structure concepts. Being textual and less explait #ssertion graphs, assertion
programs seem less vulnerable to small specification erA@sertion programs also
enforce the separation of concerns between the model, tikrésice mapping, and the
verification approach.

As well as this, assertion program specifications are mor@peterized than as-
sertion graphs because they can be configured via abstnastacds. This not only
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allows for reuse, but provides far better scope for scatgbior example, the size of
an assertion graph for a FIFO is linear in its depth. In catfrehanging the depth
for an assertion program specification requires changihgasingle constant literal.
There is, however, additional effort required to generagesimulation outline for an
assertion program. We have not explored the scalabilith@fsimulation generation
algorithm, partly due to the work involved with each genieratand partly because
our tool was built with a low degree of optimization. The sdality will, however,
certainly exceed what is possible with manual assertioptgcanstruction. The fol-
lowing cases highlight some other particular strengthsuofapproach that have been
illustrated by the case studies.

In the original FIFO assertion graph approach, it is diffitcalbe assured of the
correctness oéverydequeue output, given that we represent them all using asity-a
gle instance of symbolic data. The verification is sound, éx@x, due to the unusual
for-all semantics of assertion graphs, coupled with thk tddnitial hardware state. In
the assertion program approach, we are aware all alongw#hairhulation we produce
will be sound, since each step in the simulation generatioogss is justified.

The original scheduler verification is difficult to understda since it requires us
to look at the concurrent execution of multiple asserticapdss in order to fully un-
derstand the original verification property. This is neaegbecause the specification
must be decomposed in a particular way for the verificatiosutmceed with limited
memory space. In contrast, because the assertion progrdhoaotogy separates
the property from the verification approach, the schedudsedion program is not
required to be segregated in this way.

The scheduler verification proceeds via a decompositioadas the nodeched;,
which describes if the operation in indéxs scheduled at this time-step. In our ap-
proach, this step is extremely clear, and we have forma8iifjad that the decompo-
sition does not involve circular reasoning. In the assertjcaph approach, however,
nodesched; is used both in antecedents and consequents within the sapte @nd it
is not clear that the inductive step of the verification isially constructive.

The case studies also demonstrated some of the practiGahtades of using as-
sertion programs over assertion graphs. Because the sp#offirules could all be de-
scribed textually and applied automatically, specificadion GTL allowed for a more
adaptive verification approach, where it was easier to t@different strategies. The
textual nature of GTL also allowed for rapid command-lineein prototyping of sim-
ulations, greatly aiding abstraction refinement. Furtreenmodel checking could be
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optimized in new ways, for example, through the use of sifiggliion transformations
and the caching of simulations.



Chapter 8

Conclusion

This dissertation has presented two specification notstiod a methodology for veri-
fication using symbolic ternary simulation. The work hasused on taking particular
promising techniques from generalized symbolic trajgctraluation (GSTE), and
recasting them using cleaner and more general notatiohstéanore amenable to
formal reasoning. The approach is organized into two lay&isw-level logic, gen-
eralized trajectory logic (GTL)for specifying low-level simulation details, and the
synchronous language aksertion programsfor the high-level modeling of circuit
behaviour.

GTL is an intuitive and compositional linear temporal lothat provides a fine-
grained formalism for describing symbolic ternary simwas. Each formula de-
scribes a particular flow of simulation, but also has a cléete-based, property
semantics. By drawing an analogy between the atomic stepsmfiation and the
constructs of propositional logic, GTL and its algebraiogerties are made to look
familiar. Since it is textual in nature, GTL is also direcdynenable to mechanized
reasoning, easing the cleanliness of model checking #tgosi, introspection tech-
niques, and the construction and application of reasonitegr

An appropriate choice of foundational semantics for GTL éasabled us to de-
velop a wide range of reasoning rules, applicable in areabstiraction refinement,
decomposition, and simulation optimization. These go &rand existing rule-sets
for GSTE. The rules are generally based on the observatamnstbund simulation
transformations in GTL correspond to semantic-preserkemgiting rules. Our rules
also classify and further reveal the nature of GSTE verificathoices, particularly
for abstraction refinement and the mixing of symbolic andieijverification.

For describing complete high-level specifications mode&ks have presented the
language ofassertion programs This synchronous programming language allows
model transitions to be described using abstract staté foaih rich and familiar

156
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vocabularies of arbitrary data types. Statements in thguage are based around
imperative assignments, but have a declarative semahtitsaliows for equational
reasoning. In order to allow for greater clarity and reussegion programs allow for
the separation of concerns between the model, the cirdeitfate mapping, the veri-
fication approach and specification parameters. Assertimgr@ms are more concise
and descriptive than GSTE assertion graphs, because tis¢iaet transition structure
is not explicitly unwound. Combined with their textual neguthis makes assertion
programs more prone to mechanized reasoning, and lessablad¢o small errors in
specification.

The semantic nature of assertion programs has much in comitioiG TL: both
are based on a finite trace-based semantics, a last timet@pana similar variable
characteristics. This has allowed us to describe a ruleebliamework that connects
the two formalisms by translating assertion programs inta @roperties that drive
simulation. In this framework, the equational constraimtgshe assertion program
are used to apply weakest precondition calculations thragrpssively construct the
input sequence patterns necessary. Selective applicatitre reasoning rules for
GTL allow simulations to be tailored to the implementatiandiand. This provides a
rigorous overall verification methodology that we have ssstully applied to verify
both a first-in-first-out buffer, and micro-operation schied

Future Work

This section contains suggestions for future work, orgashimto topics that follow
the same order as the dissertation contents.

Generalized Trajectory Logic

Although GTL is expressive enough to cover the most commuoséyg forms of GSTE,
there are various currently inexpressible model checkitgrsions that the logic
might be adapted to handle. For example, the GSTE approalietess proper-
ties [YSO0] may correlate well with infinite trace variants@TL. The backwards
simulation approach in [YS02] may naturally correspondh® inclusion of a next
time operator. The scope of GTL could also be extended fospleeification of other
abstraction techniques, suchrasde weakeningvhere a node is forced % to limit
the propagation of constraints, dynamic weakeningwhich is a sound approach
to trimming the model checking BDD structures [AJBD]. Goel's work [Goe04],
which unifies the interaction between symbolic and ternanukation, suggests the
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additional use of a partial order on variables to provide plete specifications of the
variable dependencies that should be retained.

Each of these opportunities for extending GTL would natyralso increase the
potential for additional reasoning rules for managing théuture reasoning rules for
GTL may also concentrate on how to encode additional aligireiechniques into the
logic. For example, we have not included an analysis of Hdese-parameterization
of indexing variables, although it is expected that techagjfrom STE [MJ02] will
carry directly to GTL. Another area of interest might be explg variation in the
temporal scoping of indexing variables. For example, egBng new abstractions
for capturing dependencies across time ranges might bmedtdy extending the
persistence of the ghost variables in our precise nodeslengo

Verification with Assertion Programs

There are various potential improvements to the languagss#rtion programs. The
development of a suitable module system would increasalsitig), heighten abstrac-
tion, improve variable scoping, and potentially map downo imodular or incremental
verification approaches. Other beneficial extensions nimghide the use of new data
types, the addition of assumed environmental constrammtpolymorphic forms of
specification.

Our interactive simulation generation framework opensstjaas about how best
to selectively apply the various rewriting rules that we énaescribed. In particular,
there may be heuristics for suggesting various state albising, based on various
analyses of the circuit or specification. For example, themidication of datapaths
within the circuit might be a good indicator for the autormasymbolic treatment
of the corresponding assertion program state. In casesevdoene of the assertion
program structure is shared with the circuit, there may blerteejues and heuristics for
automatically determining internal equivalent nodesguirpoints between the two.
Such cut points are ideal candidates for the applicatioruotiecompaosition rule for
assertion programs. These techniques could potentialbabed on scalar simulation
tests, top-down structural comparisons, or on the siméahniques developed for
equivalence checking [KK97].

There are many potential practical improvements to simarageneration that
might either increase capacity or ease the abstractioreraént process. One way
of increasing capacity might be to make use of differentoragy engines, such as
those based on satisfiability checking [NOO05]. Unboundedeoy large data types
might be better handled using decision procedures thattgpédirectly on terms, or
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perhaps via the identification of a small model property. Qifigculty experienced

during our work that might inspire further research was thesgjon of how to apply

pattern matching across shared equational constrairds,agithose found in vector
GTL properties.

To help the process of abstraction refinement, the exe@utadilire of assertion
programs might be useful for generating illustrative cewmsxamples, or for dis-
covering and validating circuit interface specificatiorGraphical mapping of vec-
tor GTL simulations might help to emulate the visual beneditsassertion graph
specifications. Suitable rewriting rules for identifyirtgetcauses of over-abstraction
might be based on unrolling, simplification or case-spigtiproperties. It might
also be beneficial to characterize existing (G)STE abstracefinement algorithms
[RCO6b, ABMS07, CHXYO07] using simulation generation rulesGTL.

There is also scope for extending the nature of verificatlmyva the level of ab-
straction provided by assertion programs. In particussgdion programs have simi-
lar style to many other hardware modeling specificationsh s Murphi [DDHY92]
and the Symbolic Analysis Laboratory (SAL) [Sha00], whick generally used dur-
ing the verification of other forms of properties, such asrtiess properties. If a high-
level model is verified using these techniques, then it may the connected directly
to the gate-level circuit description through the applmabf our approach. In such a
process symbolic ternary simulation would effectivelytedst some of the circuit op-
timization and nondeterminism complexity, leaving a ckramodel for higher-level
verification. There is also scope for using or adapting opragch to verify different
types of refinement. For example, at the moment our high-leeelels must be ei-
ther phase- or cycle-accurate. By exploiting differentrierof temporal mappings, it
should be possible to allow for temporal deviations witlna tefinement process.



Appendix A

GTL Characteristics

This appendix contains detailed proofs about the semaotigeneralized trajectory
logic.

A.1 Monotonicity

Our aim in this section is to demonstrate that GTL is monatavith respect to re-
cursion variables. Since GTL is a form of symbolically inddxstructure, we first
demonstrate some monotonicity results for symbolicaltyeied structures in gen-
eral.

A.1.1 Symbolic Indexing Operators

In this section we show that both symbolic if-then-else ayrdisolic substitution are
monotonic operations.

Lemma A.1.1. If a and b are symbolic representations of the partial orde¥, C),
then ‘if ) thena elsel’, written @ — a | b, is monotonic in botla andb with respect
toC"V.

Proof. First we show that the operation is monotonic with respetitedirst argument.
Suppose: "V o’ and pick any € V.

Case Q(v). Then

(@ — alb)(v)

a(v)
a'(v)

(@ — a'|b){v)

"1
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Case —~Q(v). Then

(@ — alb)(v) = blv)
= (Q = d'[b)(v)

A similar argument demonstrates monotonicity with respe6t O

Lemma A.1.2. If a is a symbolic representation of the partial ordeX, C), then the
symbolic substitution of) for u, a(u := @), is monotonic as a function af with
respect to_"".

Proof. If a C o thena(v) C o (v) for any valuation. Sincev[u — Q(v)] is also
another valuation, it also implies that:

a(vfu— QW)]) & a(vfu— QW)])

This is true for ally, soa(u := Q) C" d(u:= Q). O

A.1.2 Generalized Trajectory Logic

Theorem (3.3.2) R; , 7 is monotonically increasing with respect@ .
Proof. The proof is by structural induction ovér

Casef = tt,ff,n,—n, W or uZ . g: Under any of these conditiong,is independent
of Z. ThereforeR; ,  is constant, and the hypothesis trivially holds.

Case f = Z. Inthis caseR  , » is the identity function, which is trivially monotonic.

Casef = gV h. HereR;,2(Q) = R,,2(Q) U Ry, 2(Q). By the inductive
hypothesis, botR, , » andR,, , z are monotonic. Union is a monotonic set operation
in both its operands. Therefore! is monotonic with respect t@ in each valuatiom,
so it is monotonic with respect t6". HenceR; , ~ is the composition of monotonic
maps, and so is monotonic itself.

Case f = g A h. Proofis as in the previous case, where union is replacedtbysec-
tion.
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Casef = Yg. Pick an arbitrary variable valuation and letQ, R € (25")Y be
semantic values whe@ C"V R. Then, by the semantics of Yesterday, a traizin
Ry g.p2(Q)(v) if and only if front(t) € R, ,~(Q)(v). By the inductive hypothesis,
R,z is monotonic, sdront(t) € R, z(Q)(v) impliesfront(t) € Ry, z(R)(v).
Then by the semantics of Yesterday, this in turn impliesRy, , (R)(v). Therefore
we have thatRy, , z(Q)(v) C Ry, z(R)(v) for any valuationv, so Ry, , z iS
monotonic.

Case f = uW . g whereWW # Z. Pick an arbitrary variable valuationand assume
Q,R € (2°7)Y are semantic values whe€ C" R. Now, by the semantics gi-
expressions, if € R ¢).,.2(Q){(v) then for any semantic valdg € (25")":

Ry pwe1,2(Q) € T implies t e T(v) (A1)

By the induction hypothesisk, .1,z is monotonic. Hence for any other value
T € (257)V:

R pwe),2(R) SIS Ry oiwe1),2(Q) v T (LH.)
= teT ) (Equation A.1)

By applying the fixed-point definition again, this is equiat to
te R(MW~9),p,Z(R)<V>

henceR . . ).,z IS monotonic.

Casef=Q — g|h or g(u:= Q). By the induction hypothesi®, , » andR,;, , ~

are both monotonic. By Lemmas A.1.1, and A.1.2 respectitblysemantics of is

also monotonic with respect to its sub-formulas. Theref®fg ~ is also monotonic.
O

A.2 Continuity
Theorem (3.3.8) For every recursion contextand GTL formulaf:
L= (Ryp2(R))) €7 Ry pz(L=""4PRED(R))

and, as a consequence, the nfap,, » is continuous.



Appendix A.2. GTL Characteristics - Continuity 163

Proof. For each formula it is shown that the following conditiondml
L="(Rypz(R))) €7 Rypz(L="" 4 PHEN(R))

Each formula is consistently lengthening map by virtue a$ ¢nd Lemma 3.3.2.
Hence by Lemma 3.3.6, each is also chain-continuous.

Case f = tt,ff,n,—n,uZ. g, W. In these casefis independent of/, SoRy , ~ is a
constant(, anddepth(Z, f) is co. Itis clear that.<"(Q) CY Q for any such constant

Q.

Casef = Z. In this caseR, ~ is the identity function, andepth(Z, Z) = 0.
Hence the hypothesis trivially holds.

Casef =gAh.

LS”(R(QAh),p,Z(R))

= L""(R,,2(R) NY Ry, z(R)) (Def. 3.2.2)
= L""(R,,2(R)) Y L="(Ry,2(R)) (Property ofL=")
gV Rg’p’Z(LSn—depth(Z,g) (R)) mV Rh,p,Z<L§n_depth(Z7h) (R)) (lH)

CV Rgm’Z(Lgn—dcpth(Z,g/\h)(R))
= mV Rhmz(LSn_deth(Z’g/\h) (R))

= Rganp.z (L= 4PRENI(R)) (Def. 3.2.2)

(Depth ofA)

Case f = ¢g V h. Proof mirrors the above case for conjunction.

Case f = Yg. Pick any symbolic valuatiow and integem. If n < 0 then the
hypothesis trivially holds, since="(Ry, , z(R))) = 0. Suppose: > 0, then:

LS"(R(YQ),,),Z (R)(v)

= L=({os | oellglyz—niv)}) (Def. 3.2.2)
= {os | oLl g lloz—r)(v) } (Property of L<")
C {os|oellgllzmc1-awnznm ! (LH.)
= Ry pz(L="IPEI(R)) (1) (Def. 3.2.2)
= Rivg)pz(L="PHEYI(R)) (1) (Depth ofY)

Case f = uW . g. SinceR, ,w is monotonic it has a least fixed-point

PRy pw = ﬂ{ T e (2S+)v | Rgpw(T) Ty
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by the Knaster-Tarski Theorem. This is precisely the dedinibf the semantics of
uW . g. By the inductive hypothesisy, ,w is continuous, so the Knaster-Tarski
Theorem guarantees that the fixed-point is the limit of ther@ximants given by:

W ogl, = | Repw)(L) (A2)

n>0

Hence

LS”<R(MW . g)m,Z(R))

— LSN 4 m .
- (U (R piz—rw)™ (L)) (Equation A.2)
m2>0
v
= |J L(Rypiz—rw)™(L)) (Lemma 3.3.4)
m>0
%
QV U (Rg’p[z,_,Lgn—depth(Z,g)(R)}’W)m(l) (IH)
m>0
= R . g)pz(L="PET 9 (R)) (Equation A.2)

Casef=0Q — g|h.
LS”(R(Qﬁglh),p,AR))
= L="(Ow.if Q(v)thenR, , z(R){v) elseR; , z(R){v)) (Def. 3.2.2)

= . if Q) thenL="(R,, 2(R))(v)
elseL="(Ry,z(R)){v) (Property ofL=")

CY M. if Q(v) thenR, , 7 (L="9Ph(Z9)(R)) (1)
elseRy, (LS 4PhZh (RY) (1) (ILH.)

CY v . if Q(v) thenR, , 7 (LS"~dPth(ZQ=9IM(RY) (1)
elseRy, . (L= dPh(ZQ =gl (RY) (1) (Depth of — |)

= R@Q—g|h)pz(L"IPREC=IIN(RY) (Def. 3.2.2)
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Case f = g(u := Q).

LS”(RQ(H:QLP,Z(R))

= L. Ry,z(R){V[u— Qv)])) (Def. 3.2.2)
= . L"(R,,z(R){vu— Q)] (Property of L=")
CY A Ry (L= 4PRED(R)) (vfu — Q(v)]) (ILH.)
= . Ry, (L5 IPEIE=DNRY) (y[u — Q()]) (Depth of:=)
= Rig(u=q)) p.z (L7 IPHEI=D)(R)) (Def. 3.2.2)

U

A.3 Set-based Model Checking

Lemma (3.6.3) For any closed atemporal formulg symbolic valuation, and word
t.s € S*, wheres is a state inS, t.s satisfiesf if and only if the singleton word
satisfiesf:

tsel|fII” i se|f”

Proof. Sincef is atemporal, it does not contain, fixed-points, or recursion variables.
Hence every sub-formula is also closed. We show the propesygtly for these cases,
using structural induction ofi.

Case f = tt. The result trivially true, sincé f ||* = S™.

Case f = ff. The result vacuously true, singef ||” = 0.

Case f =n.

tse|n]” < (last(t.s))(n)=1 (Def. 3.2.2)
<~ (last(s))(n) =1 (Property oflast)
< se|n]” (Def. 3.2.2)

Case f = —n. Proof follows the previous case.
Casef =gVh.

tsellgVh]|" < tsel|g||'Ulhl]” (Def. 3.2.2)
— selgll"ullhrl” (1LH.)
< sellgVh]|” (Def. 3.2.2)
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Case f = g A h. Proof is as previous case, by replacing union with intd¢rsec

Casef=Q — g|h.

tse||l@Q — g|h|]" < tse(if Q(v)then| g |” else| h ||”) (Def. 3.2.2)
< s e (if Q(v)then| g ||” else|| A ||) (LH.)
— se|[Q — g|h|” (Def. 3.2.2)

Case f = g(u:= Q).
tse|glu=Q)|" <= tse|g| 0" (Def. 3.2.2)
— sc|g| Q] (ILH.)
— selglu:=Q)|" (Def. 3.2.2)
U

Lemma (3.6.5) For every formulaf, simulation terminates and is monotonic in the
simulation context of each recursion variable.

Proof. Proof is by induction, ordering first by the number of fixedsts in formula
f, and secondly by length gt

Case f = tt,ff,n, or —n. In these cases, termination is trivial, and since the fermu
las contain no recursion variables, the simulations arestemh with respect to the
simulation context.

Casef = gV h,g ANh,Yg,Q — f|g, orf(u := Q). For each of these, the
simulation of the sub-formulas terminate by the inductigippdthesis. As a result,
each of these cases terminates, since they consist of sialglelation steps. Also
by the induction hypothesis, the simulation of each sumfda is monotonic with
respect to each recursion variable. Therefore each of #igsdation cases are also
monotonic, using monotonicity of, N, post, (— |) (Lemma A.1.1) and:=) (Lemma
A.1.2) respectively.

Case f = Z. Termination is assured, since the simulation of a recargwiable only
consists of looking up the variable in a store. Now suppgas®) C" 7/(Z) for any
Z € F.Then|Z]V =7(Z) C 7'(Z) = [ Z]¥, and hence simulation is monotonic.
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Case f = uZ.f. By the induction hypothesis, simulation 6fis monotonic with

respect taZ. Hence the simulation iteratioié\S'. [ f |, .¢)" (Av.0)) form a chain.

Since the domain of simulation is finite, we reach a fixed-paimere simulation ter-

minates. For monotonicity, suppose_*Y 7. Then:

wz.f1, = Ulwz.f1, < Uz £l = [(pZ.fl. 0
n>0 n>0

Lemma (3.6.7) For any closed GTL formuld, the simulation off is an upper-

approximation of the image ¢t

im(f) € [f]

Proof. We show a stronger property for any formylaf GTL, including those with

free variables. The added assumption is that the simulafieach recursion variable
up until now is an upper-approximation of the traced-basedext. The condition is
that for any trace recursion contexaind simulation recursion context

(VZ € F.im,(Z) €V [Z],) implies im,(f) € [f]

T

Proof is by induction, ordering first by the length of a formuand secondly by the
number of fixed-points in a formula. We assuing (Z) C" [ Z]. for each variable
in each case, and demonstrate (f) C* [f],.

Case f = tt. Trivially true, since[tt|” = S.

Case f = ff. Vacuously true, since:

i, () (v)
= last(tr(Kc) N £ [7) (Def. 3.6.1)
= last(tr(Kc) N 0) (Def. 3.2.2)
=0
Case f =n.

im, (n) (¥)
= last(tr(Kc) N[ n |7) (Def. 3.6.1)
= last(tr(Kc) N {t € ST | (last(t))(n) = 1}) (Def. 3.2.2)
C last(tr(Kg)) Nlast({t € ST | (last(¢))(n) = 1}) (Property oflast)
= Sn{teS|tn)=1} (Properties ofast)
= {teS|t(n)=1} (Set algebra)

[n]/ (Def. 3.6.4)

T
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Case f = —n. Proof follows the previous case.

Case f = Z. Covered directly by assumption.

Casef =gVh.

10 T | (|

O T T R | |

I I | |

im, (g V h)(
last(tr(KCa) Nl g vV 2 [|7)
last(tr(Ke) N ([ g Ul 2 117))
((tr(Ke) Nl g lI7) U (tx(Ke) N A7)
Ke)nll g 1lp) Ulast((tr(Ke) N[l 2 7))

1%

~—

—~

(
last(tr(KCa) N[l g A B |7)
) g G002 17)
(tr(Ke) 0l g 117) 0 (tr(Ke) O [ A 115))
last((tr(Kc) Nl g (7)) Nlast((tr(Kc) 0 [ A [17))

(
last(tr(Ke) N || Yg ||%)
last(tr(Ke) N {t.s € STt e g4}
last({t.s € ST | (last(t),s) € T At € tr(Kc) N [l g II7})
{s€ 5| (last(t).s) € T At € tr(Ke) N || g |2}
{seS|(s,s)eT N5 € last(tr(lCc) Nl gll)}

(Def. 3.6.1)
(Def. 3.2.2)

(Set Algebra)
(Property oflast)

(LH.)
(Def. 3.6.4)

(Def. 3.6.1)
(Def. 3.2.2)

(Set Algebra)
(Property oflast)

(L.H.)
(Def. 3.6.4)

(Def. 3.6.1)
(Def. 3.2.2)
(Prop. oftr)
(Def. last)
(Guard Rewrite)
(Def. post)
(Def. im)
(I.H., post monotone)
(Def. 3.6.4)
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Casef=uz.g

im, (12 . 9)(v)

= last(tr(Kc) Nl uZ . g }) (Def. 3.6.1)
= last(tr(Kc) N (I 1"Z . g |I%) (Corollary 3.3.10)
n>0

= Jlast(tr(Ke)n || w"Z . g |I}) (Set Algebra)
n>0

c Jwz. gl (I.H.)
n>0

= [puZ.gl” (Def. 3.6.4)

Casef=0Q — ¢g|h.

im,(Q — g[h)(¥)

= last(tr(Kc) N[| Q — g[h]}) (Def. 3.6.1)
= last(tr(Kc) N (if Q(v) then| g ||, else[| 2 ||})) (Def. 3.2.2)
= if Q(v) thenlast(tr(Kc) N || g ) elselast(tr(Kc) N[l 2 []7))  (Set Algebra)
C if Q(v) then[g]” else[h]” (LH.)
= [Q — g|h] (Def. 3.6.4)

= last(tr(Kc) Nl g(u:=Q) [I}) (Def. 3.6.1)
= last(tr(Kc) N (|| g [|5790M) (Def. 3.2.2)
C [gtmow (LH.)
= [gu:=Q)J; (Def. 3.6.4)

O

A.3.1 Atemporal Formulas

Lemma (3.6.8) For any closed atemporal GTL formufathe simulation of is equal
to the image of:
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Proof. Sincef is atemporal, it does not contain, fixed-points, or recursion variables.
Hence every sub-formula is also closed. We show by indu¢hian

im(f) = [f]
Casef =t

im (tt) (v)
= last(tr(Ke) N ||t ||) (Def. 3.6.1)
= last(tr(Kc) N S™) (Def. 3.2.2)
- S (Def. tr)
— [t]" (Def. 3.6.4)
Case f =ff

im (ff)(v)
= last(tr(Ke) N || £ ]|) (Def. 3.6.1)
= last(tr(Kc) N 0) (Def. 3.2.2)
) (Def. tr)
=[] (Def. 3.6.4)
Casef =n

im(n)(v)
= last(tr(Ke) N | n |*) (Def. 3.6.1)
= last(tr(Kc) N {t € ST | (last(t))(n) = 1}) (Def. 3.2.2)
= last(tr(Kc))N{t € S|t(n) =1} (Property oflast)
= {teS|tn) =1} (Set algebra)
= [n] (Def. 3.6.4)

Case f = —n. Proof follows the previous case.
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Casef=gVh.

im(g v h)(v)
= last(tr(c) N |l gV i ||") (Def. 3.6.1)
= last(tr(e)N (]| g VU]l 2 |I)) (Def. 3.2.2)
= last((tr(Kc) N[ g ") U (tr(Ke) N[ A (7)) (Set Algebra)
= last((tr(KCc) N g ||I")) Ulast((tr(Kc) Nl 2 ||")) (Set Algebra)
= [gl"uln]” (LH)
= [gVh] (Def. 3.6.4)
Casef =g Ah.

im(g A h)(v)
= last(tr(c) N || g AR |") (Def. 3.6.1)
= last(tr(e)N (|| g I” ]| 2 |I)) (Def. 3.2.2)
= last((tr(Kc) N0l g [7) N (te(Ke) N[ A (7)) (Set Algebra)
= last((tr(Kc) N || g |)) Nlast((tr(Kc) N | A [|7)) (Lemma 3.6.3)
= lgl"n[n]” (LH)
= [gAh] (Def. 3.6.4)

Casef=Q — g|h.
im(Q — g[h)(v)

= last(tr(Kc) N || Q@ — g|h ") (Def. 3.6.1)
= last(tr(Cc) N (if Q(v) then|| ¢ ||” else|| h ||)) (Def. 3.2.2)
= if Q(v) thenlast(tr(Kc) N || g ||V) elselast(tr(Kc) N || A ||Y))  (Set Algebra)
= if Q(v) then[g]” else[h]” (LH.)
— [Q = g|h) (Def. 3.6.4)

Case f = g(u:= Q).
im(g(u == Q))(v)

= last(tr(c) N || g(u:= Q) [|") (Def. 3.6.1)
= last(tr(Kc) N (|| g ||/t Q®)) (Def. 3.2.2)
= [g]toW (I.H.)
= [g(u:=Q)) (Def. 3.6.4)

O
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A.4 Abstract Model Checking

Lemma (A.4). Abstract simulation terminates and is monotonic with respe the
value of each recursion variable, i.ef |7, ., is monotonic with respect 8" as
a function ofU.

Proof. Proof is by induction, ordering first by the number of fixedfs in f, and
secondly by the length gf:

Case f = tt,ff,n,—nor W. Then[ f |}, trivially terminates and is constant with
respect td’/, so is monotonic.

Casef = gV h,gAhYg. Then|f]|, . terminates and is monotonic by the
induction hypothesis and monotonicityof 11 andpost respectively.

Case f = uW . g. By the induction hypothesi$,gjg[WHs} is monotonic with respect
to S. Therefore by the Knaster-Tarski theorem, the abstraatlsition of uWV . g,

fix (AS . [ f | wesy) (A1) (A3)

must reach a fixed-point in our finite abstract domain, whigpiads

|_| LKW" Weg 1z

n>0

This is the least value greater thap"W.g |7, ., for anyn. Supposd/C"VU".
Then by the induction hypothesis,

LM”W-QJZ[ZHU] c? LM”W-QJZ[ZHU']

for anyn. Therefore,

LM”W-QJZ[ZHU] v LM”W-QJZ[ZHU'] c? |_| LN”WQJZ[ZHU'}
n>0

for anyn. So

|_| L"Weg 2 €7 |_| LW Weg [z
n>0 n>0

as required.

Casef =@ — g|horg(u:= Q) By the induction hypothesis, abstract simulation
of the sub-formulag and/ is monotonic. Therefore by Lemmas A.1.1, and A.1.2,
respectively, abstract simulation pis also monotonic. O



Appendix B

Grammar for Assertion Programs

This appendix presents a grammar for assertion progranmg thee following BNF-
style conventions:

e Non-terminals are iritalics and all other symbols are terminals, except:
e { = } denotes zero or more occurrences:of

e x| y means one of eitherory.

The syntax takes the form:

literal = true | false
| integer_literal

type = identifier

|  bool

| int ( integer_literal )

| type { [ type ] }
const_decl = type identifier = type

| const identifier = literal
model_decl ::= wvar identifier : type
interface_decl = node identifier
|  node identifier [ integer_literal : integer_literal ]

lexpr = identifier { [ expr ] }

173
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infix_operator == AN| V | = |+ | - | < | < | >]| >
args = expr { ,expr }
expr = literal

lexpr { [ integer_literal : integer_literal | }

- expr

last ( expr )

expr infix_operator expr

expr — expr ‘|’ expr

forall identifier : type . expr
exists identifier : type . expr
expr | expr |

identifier ( args )

stmt = skip
| identifier = expr
| stmt || stmt
| if ezpr then stmt else stmt
| for identifier : type do stmt
| " stmt )
assertion = expr = expr
| forall identifier : type . assertion
program = const_decls
model
{ model_decls }
stmt
interface
{ interface_decls }
stmt
assert

{ assertion }
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