
A Verification Platform

for

System on Chip

Kong Woei Susanto

A Dissertation submitted to the University of Glasgow in partial fulfillment of

the regulations for the degree of Doctor of Philosophy

October 2003

Department of Computing Science

University of Glasgow

Glasgow, UK

c© Copyright by Kong Woei Susanto, 31 October 2003

Abstract

System on Chip technology will reshape common design practice. The pressure

to create a working System on Chip design as early as possible leads designers

to consider using a platform based design method, called a system integration

platform. In this design methodology, a system is built from intellectual property

blocks in a plug and play environment. By using this approach, designing an

application is a matter of selecting from a set of standard components with

compatible specifications. Subsequently, a similar platform can be constructed

for formal verification. Every component in the integration platform has a

corresponding formal model in the formal platform.

This dissertation proposes a methodology to develop formal models of System

on Chip design and to verify the design from a system level point of view. The

methodology is based on two components: a formal verification environment

and a formal verification platform. A formal verification environment is an

environment where a selection of formal tools are integrated to offer a complete

set of formal verification techniques. It combines the capabilities of the HOL98

theorem prover, the ACL2 theorem prover, and the SMV model checker. A

formal verification platform is a standardised platform where formal models can

be integrated and system level validation of the design can be performed. In

the verification platform, all formal models are formalised in the most suitable

formalism. They are connected using higher order logic as the glue logic. The

formal verification platform provides an environment to analyse the combined

properties of the design.

Two formal verification platforms were formalised to demonstrate the application

of a formal verification environment in system level verification. In the first

platform, a complete system was formalised. The verification efforts were

targeted to verify whether properties of the system as a whole satisfied the

specifications. The verification showed that the system had liveness properties

and that all master requests will eventually be granted by the arbiter. The

software was also verified to ensure that it was correctly executed. In the second

platform, a partial system is defined. Applications were developed by integrating

additional components onto the platform. The formal verification platform was

used to obtain specific properties of the system. These properties can be used

as the guidelines for tighter specifications in the selection of components.

Declaration

The studies outlined in this dissertation were undertaken in the Department of

Computing Science, University of Glasgow, under the supervision of Prof. Tom

Melham, Dr. Simon Gay, and Dr. John O’Donnell. This dissertation has not

been submitted at any other university. All of the work was performed by the

author, except otherwise indicated.

The case studies presented in this dissertation have been published. The

verification of Simple Integration Platform has been published in [77]. The

development of ARM verification platform have been published in [78].

Kong Woei Susanto

Glasgow, October 2003.

In memory of my grandparents.

Acknowledgements

I would like to extend my gratitude and thanks to my supervisor Tom Melham for

providing guidance and support throughout my PhD research. I am grateful for

his patience in guiding me to understand the world of theorem proving. He has

been a constant source for valuable technical feedback even after his departure

from the department. I am overwhelmed with his kindness to my family during

our time in Glasgow. Without his encouragement and support, this dissertation

would not exist.

Special thanks must be given to Simon Gay and John O’Donnell, who kindly

become my supervisors when Tom left the department. I would like to thank

the formal analysis, theory, and algorithms groups for their constant support.

Special thanks to Alice, Lyndell, Stephan, Peter, Claire, Michael, and Ashish

for their valuable thoughts. I also like to thank J Moore, Jun Sawada, Mark

Staples, Michael Norrish, Konrad Slind, and Richard Boulton for their help with

the system.

Special thanks also to Prof. Steve Beaumont and the Institute for System Level

Integration for providing the RAPIER platform for this work and the Veriscope

research group for the use of their machine.

I would like to thank Intel Strategic CAD Labs for providing me an internship

opportunity. Special thanks to Brian Moore and John O’Leary for guiding me

during my internship in working on an industrial scale verification.

I am thankful for the financial support provided by the University of Glasgow

studentship, the Overseas Research Studentship scheme, SHEFC RDG grant

85, Design Cluster for System Level Integration, and the ESPRIT PROSPER

project LTR 26241.

Finally, I wish to thank my parents and brothers for their support. To my wife

Kristin, for her love, patience, and support throughout my academic endeavour.

To my daughter Stephanie, who fills my days with joy and happiness.

Contents

1. Introduction . 1

1.1 Background . 1

1.2 Problem Definitions . 2

1.3 The Approach of this Research . 3

1.4 Contributions . 4

1.5 Outline of the Dissertation . 5

2. Related Work . 7

2.1 Formal Verification of Microprocessor Designs 7

2.2 Formal Verification of Bus Protocol Designs 10

2.3 Formal Verification of SoC Designs . 11

2.3.1 Timed Automata Formal Verification Platform 11

2.3.2 Model Checking a System on Chip Design 11

2.4 Summary . 12

3. An Introduction to System On Chip 14

3.1 Fundamentals of ASIC Technology . 14

3.2 System on Chip Overview . 16

3.2.1 ASIC vs SoC . 16

3.2.2 Advantages and Disadvantages of SoC Design 17

3.2.3 SoC Issues and Challenges . 18

3.3 Towards SoC Design Methodology . 20

3.3.1 Area-Driven Design . 21

Contents vii

3.3.2 Timing-Driven Design . 22

3.3.3 Block-Based Design . 22

3.3.4 Platform-Based Design . 23

3.4 Design Reuse . 24

3.4.1 IP Cores . 25

3.4.2 Models of Reuse . 26

3.5 Validation Issues . 27

3.6 Summary . 28

4. Integration and Verification Platforms For SoC Designs 29

4.1 Integration Platform . 29

4.2 Integration Platform Architecture . 30

4.3 Verification Platform . 32

4.4 Formal Tools Architecture . 33

4.5 Summary . 34

5. The Formal Verification Environment 35

5.1 Introduction to Formal Hardware Verification 35

5.2 ACL2 Theorem Prover . 37

5.3 HOL Theorem Prover . 40

5.4 SMV Model Checker . 42

5.5 ACL2-HOL Integration . 43

5.6 SMV-HOL Integration . 46

5.7 Summary . 47

6. The Simple Integration Platform (SIP) 48

6.1 Introduction . 48

6.2 Processor Model . 50

Contents viii

6.2.1 The Architecture . 50

6.2.2 The Formal Specification of a Processor Module 53

6.3 Interrupt Model . 63

6.3.1 The Architecture . 63

6.3.2 The Formal Specification of an Interrupt Module 63

6.4 Memory Model . 64

6.4.1 The Architecture . 64

6.4.2 The Formal Specification of a Memory Module 65

6.4.3 Application Code . 67

6.5 System Integration Module and Bus Control (SIMBC) 68

6.5.1 The Arbiter . 68

6.5.2 The Bus Multiplexer . 70

6.6 The Verification Platform . 70

6.6.1 Interfacing Processor-Module 71

6.6.2 Interfacing Interrupt-Module 73

6.6.3 Memory-Module . 74

6.6.4 SIP . 77

6.7 Summary . 78

7. The Formal Verification of Simple Integration Platform 80

7.1 SIP Liveness Proofs . 80

7.1.1 Liveness of Interrupt Request 81

7.1.2 Liveness of Processor Request 85

7.2 Hardware/Software Correctness . 86

7.2.1 Processor-Memory Simulation 88

7.2.2 SIP Simulation . 91

7.3 Summary . 93

Contents ix

8. The ARM Integration and Verification Platform 95

8.1 ARM AMBA . 95

8.1.1 AMBA Specification . 95

8.1.2 AMBA AHB . 97

8.1.3 Formal Model of AMBA AHB 100

8.2 ARM7 . 102

8.2.1 ARM7 Specification . 102

8.2.2 Formal Model . 108

8.2.3 Wrapper . 119

8.3 Summary . 121

9. The ARM Formal Verification Platform 122

9.1 AMBA AHB Properties . 122

9.1.1 Basic Operational Conditions and Properties 123

9.1.2 Master Arbitration . 125

9.1.3 Burst Transfer . 128

9.1.4 Control and Data Transfer . 130

9.2 ARM7 properties . 131

9.3 Application Specific Platform . 133

9.4 Summary . 136

10.Summary and Future Work . 137

10.1 Summary . 137

10.2 The methodology . 138

10.3 Future Work . 139

Bibliography . 141

List of Figures

3.1 (a) A MOS transistor original size (b) A MOS transistor reduced

size by α . 15

3.2 system on a PCB builds from ICs/ASICs 16

3.3 System on a chip builds from VCs/IPs 17

3.4 Evolution of design reuse models . 26

4.1 Integration Platform for System on Chip 31

4.2 Verification Platform for System on Chip 32

4.3 Heterogenous Formal Tools System . 34

5.1 (a) An inverter (b) Wiring two inverters 41

5.2 The visualisation of LTL operators . 43

6.1 Simple Integration Platform Block Diagram 49

6.2 Block Diagram of an Interrupt Finite State Machine 64

6.3 SIMBC State Transitions Diagram. 69

6.4 Simple Integration Platform . 77

7.1 Dependency lemmas for SIPLiveness 81

7.2 Dependency lemmas for ProcUnlock A 82

7.3 Dependency lemmas for SIPSWHWSim H 88

8.1 Typical AMBA system . 96

8.2 ISLI Foundation Block System . 101

8.3 ARM7 Registers Organisation . 104

List of Figures xi

8.4 Format of the Program Status Registers 105

8.5 ARM Instruction Set Summary . 106

List of Tables

5.1 Description of basic ACL2 functions and constants 38

5.2 Description of basic HOL terms . 40

6.1 Processor Input/Output Interfaces . 51

6.2 Description of the instructions . 52

6.3 Op-code of the instructions . 52

6.4 Instruction Cycles . 53

6.5 Interrupt Input/Output Interfaces . 63

6.6 Memory Input/Output Interfaces . 65

6.7 HOL abstract representations of ACL2 Processor functions 72

6.8 HOL abstract representations of ACL2 functions 75

8.1 AMBA AHB Interfaces . 98

8.2 ARM7 Interfaces . 103

8.3 Instruction Condition Codes . 105

8.4 Instructions Summary . 107

8.5 Memory Cycle Type . 108

8.6 ARM7 Instruction Cycle Summary . 108

8.7 ARM7 Instruction Classes . 110

List of Definitions

Definition 1 plus . 37

Definition 2 gplus . 37

Definition 3 plus hol . 41

Definition 4 Inverter . 41

Definition 5 Two Inverters . 41

Definition 6 ACL2GLPUS hol . 45

Definition 7 ACL2 processor’s state: state 54

Definition 8 ACL2 accessor function: PReg 54

Definition 9 ACL2 processor state predicate: statep 55

Definition 10 ACL2 natural number predicate: natnp 55

Definition 11 ACL2 memory predicate: memp 55

Definition 12 ACL2 first half cycle NOP . 56

Definition 13 ACL2 processor functional model: PSCexec 62

Definition 14 HOL interrupt functional model: ISCexec 64

Definition 15 ACL2 memory cell: MemCell 65

Definition 16 ACL2 memory cell predicate: MemCellp 65

Definition 17 ACL2 memory module predicate: MemModulep 66

Definition 18 ACL2 memory’s state: MemState 66

Definition 19 ACL2 memory functional model: MSCexec 66

Definition 20 ACL2 Memory Initial Condition: memResetLst 68

Definition 21 HOL Arbiter . 69

Definition 22 HOL Bus-Mux . 70

List of Definitions xiv

Definition 23 Type: Pstate ty . 71

Definition 24 HOL processor relational model: SPC 72

Definition 25 HOL processor core: Processor 73

Definition 26 HOL interface module: SIC . 73

Definition 27 HOL interrupt core: Interrupt 74

Definition 28 Type: MemModule ty . 74

Definition 29 Type: Mstate ty . 74

Definition 30 HOL memory module: SMC . 76

Definition 31 HOL memory module constraints: MemRules 76

Definition 32 HOL memory core: Memory . 77

Definition 33 HOL the verification platform: SIP 78

Definition 34 ACL2 P-M single cycle evaluation: OneCycleSim 89

Definition 35 ACL2 P-M N cycle simulation: NCycleSim 89

Definition 36 ACL2 State of processor constraints: initPState 90

Definition 37 ACL2 Simulation correctness criteria: softwareOK 90

Definition 38 ACL2 ARM7’s state: state . 110

Definition 39 HOL ARM7 processor module 132

List of Lemmas

Lemma 1 PSCexec-gives-statep . 62

Lemma 2 MemExec-gives-memstatep . 66

Lemma 3 SPCGivesStatep H . 72

Lemma 4 Liveness of Interrupt Request: IntReqLiveness H 81

Lemma 5 Processor not locking (ACL2): ProcUnlock A 82

Lemma 6 Processor one cycle unlock: Unlock-1Cycle A 83

Lemma 7 Processor state 7: Unlock-FSM7 A 83

Lemma 8 Processor state 6: FSM6-to-FSM7 A 83

Lemma 9 Processor two cycle unlock: Unlock-2Cycle A 83

Lemma 10 Processor three cycle unlock: Unlock-3Cycle A 83

Lemma 11 Processor not locking (HOL): ProcUnlock H 84

Lemma 12 Interrupt maintains its request: MaintainIntReq H 84

Lemma 13 Liveness condition of Interrupt Request: IntLiveness S 85

Lemma 14 Liveness of Processor Request: ProcReqLiveness H 85

Lemma 15 Interrupt behaviour: ISCEXECbeh S 86

Lemma 16 Fairness of interrupt request: IntReqFairness S 86

Lemma 17 Processor fair process: ProcFairness S 86

Lemma 18 Processor-Memory simulation: softwareSimulation A 90

Lemma 19 SIP multicycle simulation: SIPNCycleSim H 91

Lemma 20 SIP one cycle simulation: SIPOneCycleSim H 91

Lemma 21 SIP one cycle immediate simulation: SIPOneCycleImmSim H 92

Lemma 22 Processor Memory maintain states: IntMaintainProcMem H . 92

Lemma 23 Fairness of Idle Cycle: EventualSPnWait H 93

List of Theorems

Theorem 1 gplus-gives-natnp . 39

Theorem 2 symbolic-simulation-of-gplus . 39

Theorem 3 gplus-gives-natnp hol . 45

Theorem 4 Liveness of SIP: SIPLiveness H 80

Theorem 5 Full-Chip validation: SIPSWHWSim H 87

Theorem 6 Mutual Exclusion . 124

Theorem 7 New Cycle . 126

Theorem 8 Masters’ Request Liveness . 127

Theorem 9 Burst Cycle 1 . 128

Theorem 10 Burst Cycle 2 . 129

Theorem 11 Burst Cycle 3 . 129

Theorem 12 Burst Cycle 4 . 129

Theorem 13 Burst Cycle 4+ . 130

Theorem 14 AMBA Control Signals . 130

Theorem 15 AMBA Data Transfer . 131

Theorem 16 ARM7 Properties . 132

Theorem 17 ARM-AHB WRAPPER . 133

Theorem 18 System’s Properties . 135

Glossary

ACL2 A Computational Logic for Applicative Common Lisp

ACL2PII ACL2 PROSPER Integration Interface

AHB Advanced High Performance Bus

AMBA Advanced Micro-controller Bus Architecture

APB Advanced Peripheral Bus

API Application Programming Interface

ARM Advanced RISC Machines

ASB Advanced System Bus

ASIC Application Specific Integrated Circuit

ADD Area Driven Design

BBD Block Based Design

BDD Binary Decision Diagram

BIST Build In Self Test

CMOS Complementary Metal Oxide Semiconductor

CPE Core Proof Engine

CPSR Current Program Status Register

CTL Computational Tree Logic

DMA Direct Memory Access

DSP Digital Signal Processing

EDA Electronics Design Automation

FP Floor Planning

FSM Finite State Machine

FVE Formal Verification Environment

FVP Formal Verification Platform

GDSII Graphical Design System II

GPIO General Purpose Input/Output

GPR General Purpose Register

GSI Giant Scale Integration

HCI Host Controller Interface

HDL Hardware description Language

IC Integrated Circuit

I/O Input/Output

IP Intelectual Property

ISLI Institute for System Level Integration

Glossary xviii

LSI Large Scale Integration

LTL Linear Time Logic

MOS Metal Oxide Semiconductor

MSI Medium Scale Integration

OCP Open Core Protocol

OPB On-chip Peripheral Bus

PBD Platform Based Design

PC Program Counter

PCB Printed Circuit Board

PII PROSPER Integration Interface

PLB Processor Local Bus

RAM Random Access Memory

ROM Read Only Memory

RISC Reduced Instruction Set Comnputer

RTL Register Transfer Level

RTOS Real Time Operating System

SBD Schematic Based Design

SFR Special Function Register

SIMBC System Integration Module and Bus Control

SIP Simple Integration Platform

SLI System Level Integration

SoC System on Chip

SPSR Saved Program Status Register

SSI Small Scale Integration

STA Static Timing Analysis

TDD Timing Driven Design

TTL Transistor-Transistor Logic

UART Universal Asynchronous Receiver/Transmitter

ULSI Ultra Large Scale Integration

VC Virtual Component

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC HDL

VLSI Very Large Scale Integration

VSIA Virtual Socket Interface Alliance

Chapter 1

Introduction

1.1 Background

Since the early 1950s, the complexity of transistor based electronics has

exponentially grown at an immense rate. This growth has been achieved as

a result of miniaturisation of transistor sizes. In addition to the growth in

system complexity, the requirements on time to market for electronic products

has become shorter. Time to market is the key prerequisite in the electronics

industry.

In the near future, the microelectronics industry will face the reality of a billion

transistors on a single chip. In this technology, a designer is able to implement

a complete and complex system on a single chip. The technology is commonly

known as System on Chip (SoC).

The SoC design concept follows traditional design flows. Since the early days,

silicon and design automation technology has facilitated the integration of more

functionality onto a single piece of silicon. However, with each advancement in

silicon technology and the availability of transistors on a single die, new design

challenges emerge. In the early days, designers were challenged to place as much

functionality as possible onto a single die. Nowadays the number of available

transistors exceeds the requirement to complete a full system in a single chip.

Traditionally, designers focused on creating original design content and verifying

it. The new approach shifts the content based approach to the compositional

approach [38]. In the new approach, designers deal with evaluating, integrating

and verifying the components.

The SoC revolution will bring this technology to a broader spectrum of users [36].

Furthermore, recent industry developments are setting the stage for more

widespread use. The emergence of multi-core System-Level Integration (SLI)

platform chips and the increasing standardisation of peripheral interconnect

enables critical design efficiencies and standardised architectures. These

efficiencies are critical elements both in the proliferation of electronic systems

and in the use of SoC design methodology to create them.

Chapter 1. Introduction 2

1.2 Problem Definitions

Historically, Hardware Description Language (HDL) and Schematic-Based

Design (SBD) flows were used in creating new logic circuits which implemented

the necessary functionality [9]. Increasingly along with the advancement of the

design and manufacturing technology, the integrated circuits (ICs) are comprised

from a collection of intellectual property (IP) blocks or virtual components (VCs).

These IP blocks are predefined, large grained blocks, such as filters, peripherals,

memories, and processors, whose function has been precisely specified. They can

be developed in-house or originated from external vendors. When IPs become

widely available the design focus will shift to reuse rather than design. The SoC

design is becoming much more a matter of design composition rather than of

design creation.

The SoC design shifts the designer’s design focus towards devising the following

problems:

• How the functionality will be divided between hardware and software.

• How and what IP blocks will be utilised.

• How the system will be interconnected and validated.

This compositional or reuse based design methodology will be the problem

addressed by SoC designers. A standardised platform and application-specific

architectural context will play a major role in achieving the plug-and-play

environment using reusable components. The verification of SoC design is

arguably the biggest challenge for designers. On the other hand, designers

are still constrained in using the traditional time consuming logic simulation

methods for a full-chip validation. A new design methodology for SoC design

is needed to address these problems. The new methodology has to be able to

reduce the amount of analysis, debugging, and optimisation that takes place in

the early development stages. A common co-validation environment for both

hardware and software engineers will facilitate more productive interaction as

well as a more optimised implementation. In addition, rapid verification using

an abstract representation of IP models also helps to speed up the simulation.

Finally, the use of mathematical techniques in formal verification will remove

uncertainty, increasing the design confidence, and reducing verification time.

The formal verification methodology has recently been used on a regular basis to

verify hardware specifications and models within the industrial community [25].

Based on the technology, formal hardware verification can be categorised in

three groups: equivalence checker, model checker, and theorem prover [25, 71].

Chapter 1. Introduction 3

An equivalence checker uses a mathematical approach to verify the equivalence

of a reference or golden model to the implementation of the model. A model

checker compares a design to a set of logical properties of a design’s behaviour,

where the properties are a direct representation of the specification of the design.

Finally, the theorem proving method is the most advanced among all formal

verification techniques. It has the ability to decompose a large problem into a

set of smaller ones. The model checker is widely used in protocol verification,

whereas the equivalence checker and theorem prover have been actively used in

microprocessor verification.

A typical SoC design contains a microprocessor, a bus protocol, various IP

blocks, memory blocks, and a software component. Ideally, these components

are verified using one formal verification technology. In most cases, this

technology may not be the most suitable technology to be used on all types

of components. Verifying SoC design necessitates the use of various formal

verification technologies. There is a challenge to find a formal tool which offers

such technologies. On the other hand, most formal verification tools were created

based on specific technologies which differ from each other and make such formal

verification tools unique. In order that more than one formal tool can be used,

integration problems must be resolved.

In this dissertation, we explore the utilisation of formal verification to conduct

SoC design verification. The approach will provide the answer to the following

problems:

• How to represent each component of the system.

• What formalism is suitable for each component.

• How to integrate the components.

• How to verify the system.

1.3 The Approach of this Research

The SoC design methodology relies on using IP blocks or VCs to create a more

complex system. Such reuse is the primary key in reducing the time to market

for new products. The idea to reuse existing formal proof techniques in the

system level verification is proposed, that builds a formal system similar to

the SoC design. The formal system is called a formal verification platform.

In contrast with SoC design which normally is implemented in a standard

Hardware Description Language (HDL) such as Verilog HDL or Very High Speed

Chapter 1. Introduction 4

Integrated Circuit HDL (VHDL), the formal models are constructed using various

formalisms. These formalisms depend on the tool used in the verification of

each model. Finding a formal tool platform which offers the relevant formal

technologies will be part of the challenge.

All formal verification tools come with their own limitations. On the one hand,

the automation offered by equivalence checking and model checking make these

two technologies popular among verification engineers. On the other hand,

the automation comes with a capacity limitation which limits the tools to

deal only with a small circuit size. While the problem decomposition from a

theorem prover is capable of handling large and complex systems, it requires

substantial involvement from the user to operate the tool. Significant effort

has been expended to combine various tools, from the pragmatic semi-formal

verification method that combines the conventional and formal verification

methodology to the mixed verification tools which combine different verification

techniques [28]. The extended system is delivered either by extending an

existing tool with a new technology or by integrating various technologies in

an integrated environment [2, 3, 16, 26, 31, 55]. In this dissertation we present

one architecture which has a complete set of formal verification technologies in

a single environment.

The objective of this dissertation is:

to demonstrate the feasibility of defining a heterogenous formal tools system

which can be applied in the system level verification of SoC designs. The approach

uses a formal verification platform and allows the reuse of existing formal proofs

from the individual components.

1.4 Contributions

The contributions of this dissertation are as follows:

• A heterogenous formal verification environment is defined. It is an

environment where a selection of formal tools are integrated to offer a

complete set of formal verification techniques. The combined capabilities

of this environment provide verification engineers the flexibility to choose

the most suitable formalism for each component of SoC design.

• A formal verification platform is proposed to perform formal validation

on SoC design. A formal verification platform is a platform where a

verification engineer can easily integrate various formal models in a single

formal verification environment.

Chapter 1. Introduction 5

• A methodology to obtain the generic properties of a formal model is

developed. The properties can be reused in higher level validation such

as in the interface level and system level.

• The feasibility of the methodology is demonstrated in two case studies.

– The verification of SIP.

– The analysis of the ARM platform.

In the first case study, we demonstrate our methodology in verifying system level

properties of SIP. SIP contains two master modules and one slave module. Inter

module communications are managed by an arbiter which is specifically built

for the system. Using formal verification, it will be shown that the system has

liveness properties. The correct execution of the software component embedded

in the system’s memory will also be verified. A report of this work was published

and presented in [77].

In the second case study, the methodology to design an application using a

generic or standard platform will be shown. The required specifications for each

module are obtained by analysing the application’s requirements along with the

standard platform.

The standard platform contains an ARM7 processor and an AMBA bus protocol.

A formal model of the ARM7 processor in the LISP programming language was

developed. In this way, the processor’s formal model can be analysed using

symbolic simulation by theorem proving as well as traditional simulation by

execution. The AMBA-AHB bus protocol developed by the Institute for System

Level Integration (ISLI) was used and was implemented in Verilog HDL. A set

of generic bus properties was then developed by defining its input and output

relations. This work has been accepted for publication in [78].

This dissertation is the first to propose a formal verification platform using an

integrated heterogenous formal tool system to perform a system level verification

for SoC design. Apart from a few scattered results [18, 19, 20, 52, 66], no other

work has been done on this topic.

1.5 Outline of the Dissertation

The dissertation is organised as follows:

In chapter 2, a brief summary of the application of formal verification to digital

hardware circuits will be discussed.

Chapter 1. Introduction 6

In chapter 3, a brief introduction to SoC will be presented, describing various

aspects of SoC design, the technologies that drive the revolution in ASIC

design, the differences between ASIC design and SoC design, the advantages

and disadvantages of SoC design, the challenges and opportunity offered by SoC

design, and the technologies that define SoC design methodology.

In chapter 4, the SoC design methodology will be described using an integration

platform. The concept behind a formal verification platform and a formal

verification environment will be explained, providing the justification of the

selection of formal tools and a brief description of the integrated formal tools

environment.

In chapter 5, a brief introduction to formal tools used in the formal verification

environment will be presented and descriptions will be given for the physical

connections that integrate those tools in such a way that information can be

passed amongst them.

In chapter 6, the architectural description of SIP platform will be given,

presenting the formalism of each SIP module and showing how these models

are integrated to create an SIP formal verification platform.

In Chapter 7, the formal verification of SIP will be presented. The verification

is divided into two parts. The first is the verification of liveness properties of

the system. The second is the verification of correct execution of the software

component which is embedded in the platform.

In chapter 8, the architecture of an ARM platform, a standard integration

platform architecture based on the ARM processor and the ARM AMBA bus

protocol will be described and the formalisation of the ARM7 processor and

AMBA-AHB bus protocol will be presented.

In chapter 9, the development of reusable formal properties of the AMBA-AHB

bus protocol will be described. The way protocol properties and processor

properties are used to create an application and to develop the required

specifications of the remaining modules which can satisfy applications’

requirements will be shown.

In chapter 10, a summary of this dissertation will be presented along with

discussion of future work.

Chapter 2

Related Work

Almost all formal hardware verification activities have been targeted to verify

complex logic circuits, microprocessors, and bus-protocols. Most of the

existing reported work in formal hardware verification for SoC design has been

concentrated in the verification of the protocol or the interface [18, 66]. The

effort closest to the work described in this dissertation is the work by Liao and

Hsiung [52], and Choi et.al. [19, 20].

The goal of this chapter is to give an idea of which technologies and what

approaches are used in the verification of the common components of SoC

designs. The brief summary of microprocessor and bus protocol verifications

will be presented in Section 2.1 and Section 2.2 respectively. A brief summary

of the work done by Liao and Hsiung, and Choi et.al. will be presented in

Section 2.3. A summary will conclude this chapter.

2.1 Formal Verification of Microprocessor

Designs

Microprocessor design verification is an active area for formal hardware

verification both in academia and in industry. Various formal techniques are used

in this area. A selection of results in microprocessor verification are presented

in this section.

The early efforts in microprocessor verification were concentrated in the full

verification of non-pipelined microprocessor designs. Some notable results by

Hunt, Joyce, and Birtwistle are presented in this section.

Hunt was the first to consider the problem of reasoning about the

implementation of a handshaking protocol to synchronise data exchange between

a microprocessor and external memory [84]. He implemented this microprocessor

(FM8501) in LISP and verified it using the Boyer-Moore theorem prover. Hunt

used an oracle to guess the length of wait state for the hand shaking operation.

He proved the correctness of the system by showing that the microprocessor is

correct for all possible oracles. This work was later extended to the verification of

Chapter 2. Related Work 8

the FM9001 microprocessor [85]. FM9001 is specified at 4 levels of abstraction.

The highest level layer is the instruction set specification. The lowest level layer

is the actual hardware implementation. The verification is performed by proving

that each layer is a correct implementation of the layer above it. By doing so,

Hunt proved that the actual implementation of the microprocessor implements

the instruction set specification. This verification is also performed using the

Boyer Moore theorem prover. Both FM8501 and FM9001 are non pipelined

microprocessors.

Joyce designed the TAMARACK-3 microprocessor and used the HOL theorem

prover to verify the design [46]. TAMARACK-3 is a non pipelined

microprocessor and has an input for interrupt request. It can be interfaced

to external memory and can be operated in fully synchronous and asynchronous

mode. Joyce verified the correctness of the microprocessor operations in both

synchronous and asynchronous mode.

The final example is the verification of the SECD microprocessor by Birtwistle

and Brian using the HOL theorem prover [12, 35]. SECD is a moderate

complexity microprocessor. It is modelled in two levels of formal specification,

the top level specification and the low level RTL implementation. The

correctness of the microprocessor is achieved by showing that the sequence of

operations in the RTL level correlates with the specification transition at the

more abstract top level.

Recent microprocessors have become more complex with the inclusion of features

such as out-of-order execution, complex multi-stage pipelines, and co-processors.

Some of the notable results by Sawada, Srivas, Greve, Patankar, and Fox are

presented below.

Sawada used the ACL2 theorem prover to verify an out-of-order pipelined

processor [68]. The processor includes out-of-order execution and speculative

instruction fetch. He proposed the use of a table called Micro-architecture

Execution Trace Table (MAETT) to store an execution trace of instructions

representing states in the implementation. MAETT captures the past history

of the processor’s execution process and helps to easily define various pipeline

properties.

Srivas and Miller used the PVS theorem prover to verify the AAMP5

microprocessor [75]. The AAMP5 has a large and complex instruction set,

multiple addressing modes, and a pipelined implementation. The verification

problems were decomposed into two sub-goals: a part that reasons about stalling

behaviour and a part that reasons about individual instructions in the absence

of stalling.

Chapter 2. Related Work 9

Greve used the symbolic simulation technique in the PVS theorem prover to

verify the JEM1 microprocessor [37]. JEM1 is the first direct execution Java

processor. The instruction set of JEM1 is a superset of the Java Virtual Machine

(JVM). Symbolic simulation in PVS is still in its early stages. As a result, the

verification suffers from slow symbolic simulation speed.

Patankar used the BDDs-based Symbolic Trajectory Evaluation (STE) technique

to verify the ARM6 microprocessor [61]. The verification is conducted using

the Symbolic Trajectory Evaluator with trajectory assertions at the gate-level

implementation of the microprocessor. The instruction set architecture is

specified as a set of abstract assertions. These abstract specifications are used

to generate a set of trajectory assertions. Although the verification is completed

only on the bitwise-OR instruction, it can be extended to other instructions. The

only exception is that with the current model, the verification of multiplication

instructions may yield an exponential memory complexity.

Fox also verified the ARM6 microprocessor using the HOL theorem prover [30,

31, 32]. In contrast to Patankar, Fox completely verified the abstract model of

the ARM6 microprocessor. The microprocessor is specified in such a way that

it can be executed either symbolically or with variable free (constant) terms.

Similar to Greve, the execution of the microprocessor model is slow, especially

when it is compared to the symbolic simulation speed of ACL2.

The complexity of microprocessor circuits leads verification engineers to

concentrate their efforts to guarantee the specified performance of a module

before it is integrated into a chip. Industrial communities have used formal

techniques in the verification of complex arithmetic functions. Some notable

results are by the team at Intel and AMD.

The Intel team verified the Floating Point Adder (FADD) circuit of the

Pentium©R Pro microprocessor [1] using an in-house tool called Forte. Forte

is a verification environment which integrates model checking engines, BDDs,

circuit manipulation functions, theorem proving, and a functional programming

language. The correctness of the FADD circuit is shown by decomposing the

goal into subgoals based on the type of operation (addition/subtraction) and

differences between two components. Every subgoal is verified using the model

checker. The completeness coverage of problem decomposition is ensured by

maintaining goal decompositions in the theorem proving environment.

Russinoff verified the FADD circuit of AMD AthlonTM microprocessor [67]. He

used the ACL2 theorem prover as the verification environment. The verification

approach is by using two set of descriptions of the circuits, the actual RTL code

and a simplified version. These circuits were translated into the ACL2 logic as

Chapter 2. Related Work 10

ACL2 functions. The correctness of the circuit was obtained by proving the

equivalence of these two functions.

At Intel, Harrison verified the trigonometric functions of INTEL’s IA-32 [39].

He verified the circuit using the HOL light theorem prover. The development of

proofs was very tedious. The tool allow users in developing program to automate

the proof process.

2.2 Formal Verification of Bus Protocol

Designs

Another active area in formal hardware verification is protocol verification.

Various specifications, such as cache coherence protocols, PCI bus, and FireWire

bus, have been verified using various formal techniques. The automation of

model checking technology make model checker tools the preferred option to be

used in bus protocol verification.

Dill et.al. showed that an automatic protocol verification system can be used

very early in the design phase to catch design errors. They used the Murψ

system to verify a cache coherence protocol system [29]. One of the techniques

used in the verification was down scaling, reducing the complexity of the system

by pretending the system was small. The idea behind down scaling is that most

of the bugs in the protocol can be demonstrated using two or three processes.

Although this technique did not guarantee the total correctness of the system,

it gave better coverage in detecting errors than standard simulation techniques.

Clarke et.al. verified the IEEE FutureBus+ cache coherence protocol using the

SMV model checker [22]. The protocol is a standard to define a hierarchical bus

structure system for many processors and caches. In this work, Clarke verified

a structure with three bus segments, eight processors and 1030 states. The

verification can be extended to cover as many system configurations as possible

by using induction in the model checking.

Although automated model checking is the preferred technology in bus protocol

verification, Mokkadem et.al. have shown that a bus protocol system can also

be verified using a theorem prover. They show this by verifying the PCI 2.1

bus transaction ordering problem using the PVS theorem prover [59]. The proof

result was generic; it covered any acyclic network of a finite number of PCI

buses. In the verification, induction was used extensively.

Calder and Miller analysed the tree identification phase of the IEEE 1394

FireWire bus protocol system using the SPIN model checker [15]. They overcome

Chapter 2. Related Work 11

the model checking limitation of having to have a fixed configuration for each

process by using a Perl script to generate the model and subsequent model

checking runs. The verification coverage is then checked manually.

2.3 Formal Verification of SoC Designs

2.3.1 Timed Automata Formal Verification Platform

Liao and Hsiung proposed a Formal Verification Platform which is similar to

the proposed idea in this dissertation [52]. They defined verification flows

for the Formal Verification Platform which is similar to the standard ASIC

design and validation flows. The platform consists of three components: the

SoC environment configurator, the SoC system integrator, and the State Graph

Manipulators (SGM).

Initially, a set of IPs are modelled as Timed Automata (TA) models. TA is

a modelling technique which describes the behaviour of a component in a real

time concurrent system. In this approach, it is possible to define a multiple

clock system. The SoC environment configurator is then used to set up an

SoC environment. In this phase, users select all components which will be used

to create the SoC design. The next stage is the integration of the IP models

specified in the SoC environment configurator. The components are connected

through shared variables and synchronisation labels. Shared variables contain

register variables which provide numeric information about the system and clock

variables which provide timing information. The synchronisation labels model

the synchronous behaviour of the timed automata. Finally, the SGM kernel

is used in the verification of the system using a model checking technique.

Properties used in the verification were specified in Computational Tree Logic

(CTL).

2.3.2 Model Checking a System on Chip Design

The SoC development group at Samsung Electronics have reported their

experience and methodology used in the verification of S3C2400X in [19, 20].

The S3C2400X is an embedded SoC product which is composed of an ARM920T

processor core and 16 IP modules, such as Universal Serial Bus Host (UHOST),

Direct Memory Access (DMA) controller, and etc. The AMBA bus protocol is

used to manage the communication between these modules. All verifications

were conducted using the SMV model checker.

Chapter 2. Related Work 12

The IP modules used in S3C2400X are classified into three equivalence classes:

old IPs, newly designed IPs, and newly bought IPs. An old IP is an IP which has

been used in a previous product and has been verified in silicon. In most cases,

the interface logic of this IP is re-designed to match the requirement of AMBA

bus protocol. Formal verification is applied to verify the interface logic of this

IP. A newly designed IP is an IP which is designed in-house. The correctness

of this IP is obtained by verifying it using formal verification. A newly bought

IP is an IP purchased from a third party vendor. Verification will be performed

if the module needs to be modified. For example, UHOST in S3C2400X is

a newly bought IP. A wrapper is developed to bridge the differences between

the UHOST Host Controller Interface (HCI) bus interface and the AMBA bus

interface. Formal verification is used to verify the wrapper. A model of the HCI

bus interface is also produced for the verification.

In this work, a golden model of a module is produced through the following

design and verification processes. First, a module is designed either in Verilog or

SMVL. If the module is implemented in Verilog, it is transformed into SMVL.

The expected properties of the module are specified in CTL. The module written

in SMVL and the CTL properties are model checked. If the verification succeeds

for all properties, the SMVL module becomes the golden model. This golden

model is then translated into Verilog and becomes the Verilog golden model. If

for refinement purposes the Verilog code is changed, the module is re-verified

using an equivalence checker or a model checker.

The SMV model checker is based on Binary Decision Diagrams (BDDs). It

searches every possible state that the system being verified can reach. SMV

used to suffer from state space explosion. To avoid this limitation, two basic

strategies are used in the verification: data abstraction and case splitting. Data

abstraction is applied to the data bus and address bus to avoid the explosion

of the BDD’s size. Case Splitting is used to decompose a goal into several

subgoals which make the model checking easier and more efficient. Finally, all

CTL properties used in the verification are manually checked against the RTL

for coverage analysis.

2.4 Summary

This chapter provided a summary of the existing results in processor and bus

protocol verification. It also summarised one industrial case study of SoC

verification. In general, any formal verification technology can be applied to

verify digital hardware circuits. The only question is which one is the most

suitable for the task.

Chapter 2. Related Work 13

Verification of microprocessor designs are dominated by theorem prover and

symbolic simulator technologies. The common design practice of validation

by simulation has inspired semi-formal verification methods that combine

conventional and formal verification methodologies [28]. It also inspired some

use of symbolic simulation techniques in a theorem prover environment. On

the other hand, the limitation of a symbolic simulation system which can only

handle a limited design size is overcome by adding on top of the system a layer

of theorem proving [1, 40].

Bus protocol systems can be verified using a theorem prover or a model checker.

The automation of model checking systems make them the preferred choice in the

verification of bus protocols. On the other hand, model checking systems suffer

from the limitation that they can only be used to verify a fixed configuration

model or process. There is a trend to extend the model checker with a layer of

theorem proving capability which offers induction schemes and automation of

the management of problem decompositions [24, 50, 55].

Chapter 3

An Introduction to System On Chip

In this chapter, a brief introduction to System on Chip (SoC) technology

is provided. The chapter is divided into six sections. A brief history of

ASIC technology and the technology behind it is presented in Section 3.1. In

Section 3.2, an overview of SoC technology is presented. First, the difference

between ASIC and SoC designs will be shown. Then, the advantages and

disadvantages of an SoC design will be explained. Finally, the issues in creating

an SoC design and the challenge in validating the design will be discussed. The

evolution of ASIC design methodology is presented in Section 3.3, describing the

technologies that drives the revolution of design methodology. In Section 3.4,

the methodology behind reusable design will be described by exploring different

forms of reusable design and the correlation between design reuse and design

methodologies. The issue of validation is presented in Section 3.5. Finally, a

summary of this chapter is presented in Section 3.6.

3.1 Fundamentals of ASIC Technology

The micro-electronics era was started in 1958 when Jack Kilby came up with a

new idea for creating a more reliable circuit design. His suggestion was to create

the design by integrating a number of transistors in a single package, instead

of making it from stitching a lot of components together. Then the invention

was known as the solid circuit. Today, it is known as the integrated circuit

(IC) or the silicon chip. One year later, Robert Noyce developed a new concept

of miniaturisation, creating transistors on the surface of silicon wafers. This

invention enabled more transistors to be integrated in a tiny space and produced

silicon chips in mass production. Since then, the manufacturing technology has

moved forward at a tremendous speed [21].

In 1965, Gordon Moore made an observation on the growth of manufacturing

technology. He made a very famous prediction, that the number of transistors

on a given piece of silicon will be doubled every couple of years. This is known

as ‘Moore’s Law’ [43]. Moore’s prediction describes an exponential growth in

transistor density, the result of which was that more complex designs could be

Chapter 3. An Introduction to System On Chip 15

integrated in the die. In addition, the shrinking size of transistors makes ICs

cheaper, more powerful, and more plentiful.

One way to get some understanding of the impact is by examining the changes

in a single metal oxide semiconductor (MOS) transistor. Consider Figure 3.1(a)

which illustrates a MOS transistor. It consists of a channel with source and drain

at each end, and a thin layer of oxide with a gate layer on top. The length of the

channel is denoted by L. The width of the wiring is indicated by W. The time

to activate the transistor is affected by the thickness of the oxide and is defined

as t. When the manufacturing technology advances by a size reduction of α, the

length of the channel is reduced from L to L/α. The width of the wiring is also

reduced from W to W/α. As the result, the transistor size is reduced by α2 and

the transistors density of the die is increased by α2. The reduction of the oxide

gap reduces the transistor activation time from t to t/α. Now, the transistor can

be activated with a speed of t/α. The reduced size of the MOS transistor by α

is shown in Figure 3.1(b).

WIRING

GATE

SOURCE DRAIN

L

W

t

a L /α

/αW

WIRING

GATE

SOURCE DRAIN

/αt

b

Fig. 3.1: (a) A MOS transistor original size (b) A MOS transistor reduced size

by α

Over more than four decades the technology has advanced as predicted by

Gordon Moore. Since then, the IC’s design complexity has moved forward

from SSI (Small Scale Integration), MSI (Medium Scale Integration), LSI (large

Scale Integration), VLSI (Very Large Scale Integration), ULSI (Ultra Large Scale

Integration), and recently, GSI (Giant Scale Integration) [63]. The term VLSI

also used to refer to ULSI and GSI design. Today, we have technology which

can create a system containing a billion transistors on a single piece of silicon.

Chip designers can put more functionality on a single chip. At the same time,

a single chip system provides the high performance engine which is needed by

complex applications.

This chapter describes the basic idea of SoC, the components that support the

creation of a SoC system, and the challenges that SoC designers have to face.

Chapter 3. An Introduction to System On Chip 16

3.2 System on Chip Overview

The reminder of this chapter is based on the ISLI course material on SLI

Methodology Overview [42].

3.2.1 ASIC vs SoC

The practice of integrating system functions on a single platform has been

around since the beginning of microelectronics. In the early days, systems were

built by connecting standard ICs such as TTL ICs, microprocessor chips and

memory devices, on a single board or multiple boards (Figure 3.2). Printed

Circuit Boards (PCBs) are the platform used to integrate the components. As

the technology advanced, the integration of standard ICs to perform specific

functions or a set of functions shifted the integration from board level to chip

level. Larger components such as microprocessors and memory devices are

still unpractical to be integrated together. The integration of these ICs in the

system largely remains at the board/PCB level.

ASIC
SYSTEM BOARD

Fig. 3.2: system on a PCB builds from ICs/ASICs

As the technology continues to improve, more and more functionality can be

put into a single chip. The latest technology has again shifted the design

practice from Application Specific Integrated Circuit (ASIC) design towards the

System on Chip (SoC) design. Today’s SoC chip integrates components of a

system on a single silicon substrate (Figure 3.3). SoC is defined as a single

complex IC that is designed by integrating together multiple stand-alone VLSI

designs, known as Virtual Components (VCs), to produce full functionality

of a complete end-product for an application. The SoC design methodology

offers the ability to integrate various components in a plug-and-play approach.

The components include programmable processors, on-chip memory devices,

hardware to perform specific functions, and peripheral devices. It also includes

the possibility to integrate software components along with the hardware parts.

Chapter 3. An Introduction to System On Chip 17

System Chip

Virtual Component

Fig. 3.3: System on a chip builds from VCs/IPs

3.2.2 Advantages and Disadvantages of SoC Design

SoC technology offers advantages in various aspects. It increases the reliability

and manufacturability of the design. A complex SoC design is created in a

single die, manufactured using common substrates and materials. This allows

for easier manufacturing of the design. At the same time, all modules and their

interconnections are created together. This reduces a source of unreliability

which can occur in the system. The integration reduces the possibility of failure

in the packaging and pins internal connection. It also reduces the failure of the

solder joints, wire joints, and PCB tracks.

The technology also delivers an increase in design performance. In SoC

design, modules’ interconnection is moved from slow off-chip communications

to fast on-chip communications. As a result, the communication speed between

subsystem modules is increased. Integrated modules reduce the off-chip

capacitance effect between module interconnections. The total die size for the

complete application is reduced when multiple functional blocks are packed

together in a single chip. The expensive I/O pads from every module, when

manufactured individually, are replaced by a combined and more efficient single

chip I/O pad. SoC has simplified packaging as the system may have fewer

external connections and interconnections between its subsystems. The power

consumption is also reduced, as the power consumption per transistor is falling

and power dissipation is reduced. This will allow SoC design to be used in low

power applications which can run on batteries. Furthermore, each generation of

technology brings down the transistor price. This allows for low cost SoC chips.

SoC technology enables designers to be more creative and explore the creation

of more advanced architectures. For instance: designers can design an

integrated multi-processor system in a single chip, they can explore the use

of distributed memory systems and parallel processing systems which manage

task sharing between processors, and they can also experiment with various

in-chip communication architectures such as network on chip and asynchronous

Chapter 3. An Introduction to System On Chip 18

communication systems.

On the down-side, the technology also comes with issues that need to be

dealt with. Extra masking layers in manufacturing are needed to combine

standard logic/digital components and other components (such as SRAM,

DRAM, flash memory, analog/mixed signal). This is due to the incompatibility

of manufacturing technology for the components. As a result, it will increase

the complexity of the manufacturing process and raise the cost of production.

The single package system raises the issue of power dissipation. It also raises

the complexity of dealing with power distribution to the subsystems and the

peak current demands at clock transitions. Signal integrity will be a major

concern in SoC design. The issue of digital noise injection which is fed into

sensitive analogue components appears because a common substrate is used

to manufacture the design. Digital noise is responsible for the increase of

random switching in low voltage systems. Although the size reduction of digital

components leads to a lower voltage system, designing analog circuits at low

voltage is not easy. Furthermore, external drive interoperability requires a high

voltage system, raising the issue of voltage restrictions in the design.

SoC design relies on using existing Intellectual Property (IP) blocks. Acquiring

third party IP usually requires a considerable amount of time to find the right

IP and negotiate the terms of agreement. This will raise the design time and

cost which affects the up-front non-recurring engineering (NRE) costs.

Designing using IP components raises issues in validation and testability. How

does the designer know if the IPs work when they are acquired? How does

the designer know the design is going to work before building it? The SoC

approach forces the designer to start thinking about a test strategy, prior to the

commencement of the design phase. The validation strategies will need to test

subsystems and the system as a whole.

3.2.3 SoC Issues and Challenges

SoC technology provides an integrated solution to system design problems.

Success relies on how to use the appropriate design approaches. The challenge

is in finding the right one. In general, we group these dilemmas into three

categories [11]:

• How can the designer create an SoC system?

• Where can they get the components?

Chapter 3. An Introduction to System On Chip 19

• How can they build the system?

The first point arises when the designers are pressured to produce the product

with a shorter time to market, while the complexity of the system increases. One

way to deal with this issue is to shorten the design cycle by reusing as many

existing designs as possible. In SoC design, these components are often called

virtual components (VCs) or intellectual properties (IPs).

The second point addresses the problem in creating or acquiring reusable

components. In the past, most system developers created a system by combining

various components (ICs) on PCBs. In most cases, the components come from

various vendors or sources which specialised in specific areas or expertise. Similar

to this, SoC design is created by integrating various VCs. If the design-house

has the expertise, they can create their own VCs. If not, then they must rely

on acquiring third party VCs, which come from the effort of IC suppliers in

transforming existing design into VCs.

The final point deals with the approach needed to build the system. One

approach is to create the system by mixing and matching reusable components

sourced from internally and externally developed VCs. The mixing and matching

approach offers the ability to connect and integrate VCs from different sources.

But it does not guarantee that the system will actually work. This practice

brings the following challenges to integrating SoC design:

• The challenges in the interoperability of VCs.

• The integration of VCs in the context of system-level design.

• The interoperability of Electronics Design Automation (EDA) tools.

• The validation of the design.

In a board design, designers are rarely concerned with the technology to create

and test the components. They have accepted that the components match the

given specification. They only need to understand the component interfaces and

their operational models. When a problem rises, they fix the system by adding

some glue logic or board reworks. In SoC design, the components come as VCs.

In contrast with the board design where every component has been standardised,

VCs can appear at various levels of abstraction. They can come in the form of

soft-cores, firm-cores, and hard-cores. A detailed description of these cores is

presented in Section 3.4.1. Most likely, every VC supplier creates and verifies its

VCs. There is no common interface between VCs.

There are several obstacles that need to be considered in integrating VCs. In

practice, SoC designers have to integrate system level representation of various

Chapter 3. An Introduction to System On Chip 20

VC blocks. Often the representations of these blocks are defined in different

languages and environments. A conversion is needed for every representation to

fit the system integration environment. Unfortunately, there are few tools which

can deal with these issues. The use of a processor also raises another issue.

Typically, a processor is always associated with a set of proprietary systems (such

as busses, memory, and peripherals) and tools (such as assemblers, compilers,

linkers, drivers). Furthermore, the problem is compounded by the unlikelihood

of existing software applications being compatible between different processor

systems.

Almost all ASIC companies use various EDA tools in developing their designs.

In most cases, the tools will not come from a single vendor. Every EDA vendor

develops their own proprietary data format for their file standards, such as report

files, library files, etc. These data format differences force the design company

to develop translators and filter programs to bridge and stitch the tools and

create a suite of design tools. This set of tools define the company’s design flow

or design methodology. Their biggest shortfall as a result of this situation is

that they have to keep pace with tool vendors in updating the programs every

time tool vendors upgrade their tools or replace the tools with new ones. The

situation becomes worse when the ASIC company has to use third party VCs,

which may be designed using a different tool suite. Standardisation will be the

key factor in tool inter-operability.

The biggest challenge in SoC design is in validating and testing the system.

Validating and testing SoC designs differ from board design. On a PCB, the

system can be probed through the components’ physical pins. In an SoC, all

components (VCs) are internally connected which makes probing the connections

extremely difficult. One way to overcome this hurdle is to make the system

self-testable by using Build-In Self-Test (BIST) as part of the system, or by

implementing a partial-scan or even a full-scan test. The decision to add self-test

functions has to be made as early as possible in the design process, as it will

be hard to extend a nearly built system. Third party VCs may come with no

self-test scheme, or they may come with different self-test schemes. SoC design

must be able to adapt to any situation to ensure the design can be quickly tested.

3.3 Towards SoC Design Methodology

Every advancement in microelectronics processing technology is always followed

by the development of new design technology [17]. This new design technology,

a so-called linchpin technology, becomes the building block to lead the design

entering the next generation of design methodology. The design methodology

Chapter 3. An Introduction to System On Chip 21

responds with an adaptation to the new design process resulting in an

incremental increase in productivity. It alters the relationship between the

designers and the design by introducing a new level of abstraction.

Over the past few decades, several linchpin technologies have been invented.

For example, the invention of gate level simulation enabled an increase in

design validation capacity. The effectiveness of a simulator is defined by the

accuracy of the gate level models and their associated libraries. The inclusion

of a gate level simulator in the design process means the designer accepted

the limitation and boundary brought by the simulator. As another example,

consider Register Transfer Level (RTL) synthesis technology that provides

another path to increase designer productivity. It requires the transition from

gate level design to the RTL-based design and validation methodology. The

effectiveness of synthesis technology is defined by the predictability limitation

of the optimisation technology. These technologies have led to fundamental

changes in the design methodology.

A linchpin technology always comes along with its specific design methodologies.

In general, these design methodologies can be grouped into four groups:

• Area-Driven Design (ADD)

• Timing-Driven Design (TDD)

• Block-Based Design (BBD)

• Platform-Based Design (PBD)

These design methodologies are differentiated by their design capacity, level of

reusable block, and the design technology used in creating the design.

3.3.1 Area-Driven Design

Area-Driven Design (ADD) is the most basic and the simplest methodology

used in creating ASIC designs. It is driven to achieve the primary goal target

in creating a design which can fit into a limited budget area. The designer is

challenged to implement as much functionality as possible in a single piece of

silicon. The ADD methodology is used to achieve small sized ASICs. Most

ADDs are created from scratch and do not offer any design reuse.

The main ADD activity is in logic minimisation. The synthesis optimisation is

to produce the smallest design which can meet the intended functionality. In

Chapter 3. An Introduction to System On Chip 22

this methodology, no floor planning information is used at the RTL or gate level

analysis.

ADD can be identified by two linchpin technologies: RTL/logic synthesis tools

and gate-level simulators. RTL synthesis increases the design productivity from

the traditional schematic design. It helps the designer to identify the best

implementation that meets the area goal. A gate-level simulator enables the

designer to quickly validate the design and identify any incorrect functionality

before and after the synthesis.

3.3.2 Timing-Driven Design

Timing-Driven Design (TDD) is a methodology for optimising a design in a

top down, timing convergent manner. It is driven by the design requirement

for meeting performance or power consumption. The methodology is used to

achieve a moderately sized complex ASIC design. In general, the complexity of

a TDD circuit is between 5000 to 250K gates. It is primarily a custom logic

design, offering a very slim possibility of design reuse.

The TDD methodology imposes a more floor plan-centric design methodology

that supports incremental changes of the design. The floor planning and timing

analysis tools can be used to determine the location of placement sensitive areas,

allowing the results to be tightly coupled into the design optimisation process.

TDD relies on three linchpin technologies: interactive Floor-Planning (FP) tools,

Static Timing Analysis (STA) tools, and using compilers to move design to

higher abstraction with timing predictability. FP tools give accurate estimation

on the delay and area early in the design process. They address the timing and

area convergence problems which occur in the design process between synthesis

and ‘place and route’. STA enables a designer to identify timing problems and

perform timing optimisations across the entire ASIC. It reduces the validation

stress in catching bugs using a slower timing-accurate gate-level simulation.

The advancement in compiler technology enables the designer to move the

design into higher abstractions while retaining timing predictability. For

example, behavioural synthesis provides an operational vehicle for planning and

implementing data-path dominated design rapidly. A higher-level abstraction

will move the critical decision trade-offs into the behaviour level, which leads to

an efficient data-path layout.

3.3.3 Block-Based Design

Block-Based Design (BBD) is the design methodology used to produce designs

Chapter 3. An Introduction to System On Chip 23

that are reliable, predictable, and can be implemented by top-down partitioning

of the design into hierarchical blocks. It introduces the concept of creating

a system by integrating blocks of pre-designed system functions into a more

complex one. The methodology is used to create medium-sized complex ASICs

with complexity between 150K to 1.5M gates. BBDs are primarily created as

custom logic designs. In comparison to TDD; BBD offers a better chance for

reuse, although in reality, very few BBDs are reuseable.

Initially, the systems are behaviourally modelled before the process of

design implementation starts. The models are analysed for the trade-off of

hardware/software partitioning and functional hardware/software co-validation.

The partitioned components are mapped onto specified functional RTL blocks.

The blocks are designed to meet the budgeted area, timing, and power

constraints. The top-down planning creates individual blocks to allow synthesis

to analyse timing hierarchically. Then, the designers can choose to perform a

flattened or hierarchical analysis on the final routing.

BBD relies on three linchpin technologies: application-specific high-level system

algorithmic analysis tools, block floor planning, and integrated synthesis and

physical design. The analysis tools provide the environment for modelling a

system’s algorithm and environment. They can be linked to HDL validation

tools through co-simulation technologies and to HDL-based design capabilities,

such as RTL synthesis via HDL generation and behavioural synthesis. Block

floor planning facilitates interconnected management decision-making based

upon RTL estimations through faster area, timing, and power convergence. It

provides a specific constraint budget for each component/block in the context

of the top-level chip interconnection. This will enable the designer to focus the

optimisation for each individual block. Integrated synthesis and physical design

enables a designer to manage the increased influence of physical design effects

during the synthesis process by eliminating the need to iterate between separate

synthesis, placement and routing tools to achieve design convergence. In the

integrated system, the synthesis can meet the top-level constraints in a more

predictable manner.

3.3.4 Platform-Based Design

Platform-Based Design (PBD) is a methodology which is driven to increase

productivity and time to market by extensively using design reuse and design

hierarchy. It expands the opportunities to speed-up the delivery of derivative

products. PBD achieves high productivity through extensive and planned design

reuse. Productivity is increased by using predictable, pre-validated blocks that

have standardised interfaces. The methodology focuses on better planning for

Chapter 3. An Introduction to System On Chip 24

design reuse and less modification on the existing functional blocks. PBD is

used to design large sized complex ASICs with design complexities greater than

300K gates.

The PBD methodology separates the design into two categories of activity:

block authoring and block integration. Block authoring uses a methodology

which is suited to the block type such as TDD or BBD. Blocks are created with

standardised interfaces so they can be easily integrated with multiple target

designs. Block integration focuses on designing and verifying the architecture of

the system and the interfaces between the blocks.

PBD focuses around a standardised bus architecture and increases its

productivity by minimising the amount of custom interface design or

modification of the blocks. The test for the design is incorporated into the

standard interfaces to support each block’s specific test methodology. This allows

for a hierarchical, heterogenous test architecture.

PBD relies on three linchpin technologies: architectural design tools, physical

layout tools, and VC authoring validation tools. The architectural design tools

provide the environment to do high-level and system-level design. They also

provide the vehicle to perform partitioning of hardware and software and perform

functional validation by leveraging comprehensive models of VCs. The physical

layout tools focus on bus planning and block integration enabling predictable,

constraint-driven, hierarchical place and route of PBD designs. PBD validation

focuses on the interfaces: block to block, block to bus, hardware to software,

digital to analog, and chip to environment. The VC authoring validation tools

provide a thorough validation which can be used throughout the validation levels.

3.4 Design Reuse

Design for reuse is a methodology in creating a design that can be reused.

A reusable design implies it is a correct and robust design. It comes with

good documentation, good code implementation, well designed validation

environments, and robust scripts for synthesis and validation.

In general, the designs (IP cores) have to follow some guidelines to be fully

reusable. First, a reusable core is created to solve a general problem. The

core must be easily configured to fit different applications. Second, the core

is designed for use in multiple technologies. The core must have an effective

porting strategy for mapping onto new technologies. If the core needs to be

re-synthesised, the synthesis scripts have to produce satisfactory result quality

with a variety of libraries. Third, the core must be designed for simulation

Chapter 3. An Introduction to System On Chip 25

with a variety of simulators. This implies each IP must come with VHDL and

Verilog designs. The validation test-bench of each version also needs to be

available and should work with all major commercial simulators. Fourth, the

core must be verified independently of the chip in which it will be used. Reusable

designs must have full test-bench and validation suites that afford very high

levels of test coverage. Fifth, the core must be verified to a high degree of

confidence. This means a rigorous validation as well as building a physical

prototype that is tested in an actual system running real software. Finally, it

must be accompanied by full documentation in terms of appropriate applications

and restrictions. Core configuration restrictions and parameter values must be

clearly stated. Interfacing requirements and restrictions on how the core can be

used must also be documented.

3.4.1 IP Cores

By definition, IP cores are pre-designed and pre-verified complex functional

blocks. According to their properties, IP cores can be distinguished into three

types of cores: soft-cores, firm-cores, and hard-cores.

Soft-cores are architectural modules which are synthesisable. They offer the

highest degree of modification flexibility. On the other hand, a lot of physical

design issues need to be faced before the core can be fabricated. This makes the

soft-cores very unpredictable in terms of performance. A synthesisable soft-core

consists of a set of technology-independent HDL files, synthesis constraints,

test-bench and validation information and adequate information.

Firm-cores are encrypted black boxes that are integrated into design flow in the

same way as library elements. Firm-cores are delivered as a mix of RTL code and

a technology-dependent net-list, and are synthesised with the rest of ASIC logic.

They come ready for routing analysis and do not present significant difficulties

for floor-planning, placement, and routing. They have the same routability

properties as soft-cores. The performance of the block is still unpredictable.

Hard-cores are mask and technology-dependent modules that already have

physical layout information which give predictable performance. The key

deliverable is a fully verified layout in Graphical Design System II (GDSII)

format, along with a design for a test structure and test patterns. The drawback

of hard-core is that the cores can not be customised for a particular design

application. Hard-cores require more model support than firm-cores, which

increases development cost. On the other hand, the usage cost is lower because

timing validation, test strategies, etc., have already been built into the design.

Monolithic hard-cores create a jigsaw puzzle problem for ASIC layouts. When

Chapter 3. An Introduction to System On Chip 26

more than one hard-core is used, the ordinary place and route techniques cannot

be used due to the existence of a strange, non-rectangular area left for routing

other non-core logic.

3.4.2 Models of Reuse

In the early days, design reuse was more opportunistic. As the technology to

support design reuse matured, design reuse was better planned and considered

in the early phase of the design process. Based on how design reuse models are

developed, they can be grouped into four categories; personal, source, core, and

VC. The evolution of design reuse is shown in Figure 3.4.

Core reusePersonal reuse VC reuseResource reuse + ++

SRAM
ROM

Cache
Data

RAM
ROMATM

MPEG

µP
core Logic

Plug and Play
System on Chip

Complex ASIC
with few IPs

SRAM
ROM

Soft IPLogic

µP core
Logic

ASIC
on DSM

BBDTDD PBD

Opportunistic IP reuse Planned IP reuse

Fig. 3.4: Evolution of design reuse models

Personal design reuse appears in the TDD methodology. It is based on

re-applying personal or team design experiences to produce derivative projects.

The simplicity of the personal design reuse model make it only portable to

single-thread operations. In most cases, the model is not scalable and depends

on retraining key personnel who have acquired the knowledge.

As the design flow moved from TDD to BBD, the model became more reusable.

It evolved from a personal design model to a source design model. In source

design reuse, the source code of the design is provided either at the RTL-level

or netlist-level. In this category a design can be modified to meet specific design

requirements or constraints. On the other hand, if re-validation is required for

every change made, then the reuse of this model will be less productive. The

model also suffers from poor predictability of performance, area, and power

consumption.

Along with the maturity of BBD methodology, the model of design reuse has

also improved. More core design reuse models are available in firm and hard

Chapter 3. An Introduction to System On Chip 27

form. The information on timing, area, and power are sufficiently documented.

Information exists on whether the core has been used and on the process of core

integration. However, in this stage the core may still need to be modified to

adapt to the bus architecture, power constraints, clock and test structures.

Finally, the transition of IP into VC creates components for plug and play

environments. The VC model are pre-characterised, pre-verified, pre-modelled

blocks which are targeted for a specific system integration environment and

application domain.

3.5 Validation Issues

Validation is an integral part of the design process. It consumes 60 to 80

percent of overall design effort [10]. The complexity of SoC designs makes the

validation task more important. It extends the traditional validation task from

bug catching at block level to the system level with additional issues in block

interfacing, and hardware/software integration.

In system-level validation, the system-level behaviour model is developed. A

test-bench and test suites are developed to verify the model including test suites

for software components. A validation strategy consists of at least three steps.

The first step is the functional validation of each individual block as stand-alone

units. The second is the validation of system interfaces between blocks at the

transaction level and data transfer level. Finally, the full chip is validated to

correctly execute the application software [49].

In block level validation, every module/block is rigorously validated. The

validation includes compliance, corner case, and random testing. The compliance

test verifies that the block complies with the standard published specifications,

especially the standard interface specifications. Corner-case testing explores

testing complex scenarios which are believed to be able to break the system.

While in the first two tests, the scenarios used in the validation are normally

anticipated scenarios, a random test uses a scenario which is not anticipated by

the designer.

In interface validation, the interfaces between blocks are validated. The

interfaces usually have a regular structure with an address-bus and a data-bus

connecting the modules, utilising some form of control structure which manages

the transaction process and data transfer between blocks. The activity in

interface validation can be divided into two groups, transaction validation and

data transfer validation. In transaction validation, all possible transactions for

each interface are tested. A test-bench is created to cover the activity within

Chapter 3. An Introduction to System On Chip 28

the block and the transaction between blocks. If the overall system behaviour is

correct, the chip is considered to be working correctly. After these validations

are completed, it is necessary to verify that the blocks work correctly for any

form of data and all sequences of data. A random data generator is used to

create test cases. The test reveals that the block responds correctly to data

sequences that the designer expected.

Finally, the ultimate challenge is in validating the system as a whole.

This includes verifying the system whilst running the application software.

Unfortunately, conventional simulation based validation is not fast enough to

execute the millions of vectors required to run even the smallest fragment of

application code. There are three approaches to address this issue. First,

using specialised hardware for performing validation. Second, increasing the

level of abstraction which increases the simulation speed. Third, using formal

verification which eliminate the use of test vectors. Although the first approach

is the preferred option, the cost implication forces many design houses to opt

for using the second or third approaches as much as possible.

3.6 Summary

SoC technology offers new challenges and opportunities. On the one hand,

it may be the answer for easing the increased pressure on time-to-market,

and reducing the design and manufacturing cost. On the other hand, it is

recognised that SoC design methodologies are still immature. The design

methodology is still evolving to cope with evolving issues. There is a need to

define common standards for the SoC design environment so that it can foster

design development. The issue of exchange and inter-operability of cores will

require development, so that building an SoC design can become as easy as

building a board design. The component’s evaluation and selection will be at

least as significant as the design of custom logic. The complexity of an SoC

design will lead to a major bottleneck in system level functional simulation.

Finding a way to facilitate system-level validation will be a major challenge.

Chapter 4

Integration and Verification Platforms

For SoC Designs

In this chapter, the discussion is focussed on the design methodology used in

the creation and validation of an SoC design. In Section 4.1, the methodology

used in SoC design is explained. The standard architecture for creating an SoC

application is presented in Section 4.2. In Section 4.3, a formal verification

methodology for SoC design is introduced. The architecture of a formal

verification system is briefly described in Section 4.4. The chapter is concluded

with a summary.

4.1 Integration Platform

Platform-based design emerges as the methodology to develop SoC designs.

In this methodology, the designers integrate block designs or modules which

originated from various sources into a standardised platform. A standardised

platform will allow for rapid system development and is extensible for the

development of derivative design applications. This standardised platform is

also called the integration platform. By definition, an integration platform is

an environment to develop an SoC design by mixing and matching reusable

virtual components. An integration platform is defined by targeting a specific

application domain [54].

An integration platform consists of:

• The SoC integration architectural specification. It describes the basic

architecture of the hardware such as the bus structure, the test

architecture, the I/O configurations, the required VC blocks, and the

constraints (performance, power, and area). The description may

also include the basic software architecture such as the real time

operating system (RTOS), task scheduler, inter-task communication,

software/hardware communication, and the middleware and application

software structure.

Chapter 4. Integration and Verification Platforms For SoC Designs 30

• The portfolio of virtual components which meet the constraints defined

in the integration platform. These VCs form a collection of component

libraries for a specific targeted application domain and are used in the

mix-and-match integration process.

• The documented design methodologies for block authoring and chip

integration. The methodologies include the support for the design,

verification, planning and integration of new logic or VCs.

• A design verification methodology and environment. The methodology

addresses the problem of hardware/software co-verification and specific

verification requirements for the application domain.

• A prototype characterisation of the behaviour of the integrated

architecture.

The practice of using a platform to create a design will lead to a fundamental

shift in the design methodology. This may include the following:

• The reusable platform to increase productivity and re-use will restrict

possible derivative applications. It is targeted only for derivation within

the scope of an application domain. This restriction will allow for a higher

degree of assurance that the system will work when the components and

the architecture are integrated together.

• There is a shift in design creativity towards creating the platform. The

integration process itself is similar to creating a board design with a set of

prefabricated IC components. The restricted derivative application makes

the design integration process low-risk, predictable and fast.

• The integration platform is built around a processor or a DSP core and

a specific bus architecture. These two components are the core modules,

whereas the other components such as peripherals are added and evolved

to meet the requirements of the application.

4.2 Integration Platform Architecture

One key problem in SoC is the infrastructure for communication between cores.

The Virtual Socket Interface Alliance (VSIA) has developed specifications for

an on-chip bus interface to solve this problem. However, various vendors

have created their own proprietary communication protocols associated with

their own cores. This has made standardisation a difficult task. Examples

Chapter 4. Integration and Verification Platforms For SoC Designs 31

include the Open Core Protocol (OCP) from Sonics Inc [73] and the Advanced

Micro-controller Bus Architecture (AMBA) from ARM [7]. Sonics’s OCP bus

protocol is based on a single bus architecture while ARM’s AMBA bus protocol

is based on multi-bus architectures. Of the two specifications, the AMBA

specification is used more in the building of embedded SoC systems. The rest

of this section describes the multi-bus integration platform architecture.

For some companies, such as Texas Instruments (TI) and VLSI Technology,

SoC is not a new activity. They have both developed their own integration

platforms for wireless systems. TI developed the TI standard-independent

platform for single-chip digital baseband wireless system. The platform combines

the use of several modules such as TI-DSP, the ARM7 processor, RAM/ROM,

analog blocks, and logic blocks [79]. VLSI Technology has also developed

a communication standard platform, which combines OAK-DSP, the ARM7

processor, RAM/ROM, analog blocks, and logic blocks [83]. Both companies

use similar basic components and they incorporate third party IP blocks as part

of their design.

Similar to TI and VLSI, three major providers of EDA tools Cadence [17],

Synopsys [41], and Mentor Graphics [49], have proposed a similar idea of system

integration platform. A typical integration platform architecture is presented in

Figure 4.1 [64]. A general-purpose processor core is the basic component in the

integration platform. All the IP blocks are glued together through busses that

communicate with the processor. Within this environment, two kinds of bus are

introduced: the processor local bus (PLB) and the on-chip peripheral bus (OPB).

There will be only one PLB but there may be more than one OPB. The OPB is

connected to the PLB through a module interface called the OPB bridge. The

PLB arbiter controls the PLB communications amongst the processor, memory

and OPB bridge. The OPB arbiter controls the OPB communications amongst

the IP blocks. The IP blocks can be user-defined logic blocks or third party IP

blocks.

arbiter
PLB

OPB
bridgeProcessor Local Bus (PLB)

Processor
Core RAM

ROM

arbiter
OPB

LogicIP Core
3 Party User defined

On-chip Peripheral Bus (OPB)

Fig. 4.1: Integration Platform for System on Chip

Chapter 4. Integration and Verification Platforms For SoC Designs 32

4.3 Verification Platform

In parallel with the system integration platform described above, this

dissertation encourages the construction of a formal verification platform. A

formal verification platform is a standardised platform where a verification

engineer can easily integrate various formal models in a single environment and

perform formal validation of the system [77, 78]. In this, each of the building

blocks is represented as a formal specification model (Figure 4.2). There is a

model for the processor core, for the bus and its protocol, and for all IP blocks

available. The different models are integrated as a single system description in

the verification platform.

 OPB

Arbiter

On-Chip Peripheral Bus (OPB)

User Defined

 Logic

3rd Party

 IP

 OPB

Bridge

 OPB

Bridge

 PLB

Arbiter

Processor Local Bus (PLB)

Processor

 Core

 RAM

 ROM

 OPB

Arbiter

On-Chip Peripheral Bus (OPB)

User Defined

 Logic

3rd Party

 IP

 OPB

Bridge

 OPB

Bridge

 PLB

Arbiter

Processor Local Bus (PLB)

Processor

 Core

 RAM

 ROM

formal model

formal model

formal model

Integration Platform Verification Platform

Fig. 4.2: Verification Platform for System on Chip

Similar to validation, which commonly uses simulation, the formal verification

platform may apply a variety of verification techniques. For example, a processor

core formal model can be verified by symbolic simulation or by formal proof [84].

A bus protocol formal model is normally verified using a property checker [72].

The verification platform needs to accommodate all these various verification

techniques.

The formal verification platform is created through the following steps:

• The analysis of component behaviours. The results are used as a

guideline to decide which formalism is best suited to model the component.

For example: protocols are best suited to be modelled in a model

Chapter 4. Integration and Verification Platforms For SoC Designs 33

checking environment, whereas processors are best modelled in a symbolic

simulation environment.

• The creation of formal models for each component. Components are

modelled in a relational modelling style. In this modelling style, the

behaviour of a system is built by wiring together components by conjoining

the predicates. Higher Order Logic is used as the glue logic to combine

and connect formal components. This approach is similar to the way a

system is created in the integration platform. If a formal component is

functionally modelled, an interface to transform the functional model to a

relational one is needed.

• The development of generic behavioural properties for each formal model.

Obtaining the generic form for the properties enables them to be used

without the need to redo the verification every time it is used to create a

new design. One approach to obtain the generic properties is by defining

the properties as input/output relations.

• The system level verification of the formal verification platform. The

verification uses the generic properties of the components and combines

them to obtain the system level properties. The verification process

is conducted using the most appropriate tool available in the formal

verification environment.

4.4 Formal Tools Architecture

There are two approaches to define the formal models for these verification

methods. The first is to define them all in a single specification language

that has a complete set of verification techniques: equivalence checking, model

checking, and theorem proving. HOL [34, 80], PVS [74], ACL2 [14, 47, 48], and

Forte [2, 3, 45] are examples of this kind of verification environment. Another

approach is to use a mixture of available tools, PROSPER [27] being one notable

example of such an environment. This approach enables the verification platform

to use the most appropriate tools without compromising performance. But it

has the drawback that a system might be formally modelled in more than one

specification language. It also raises the problem of integrating the different

tools used so that they can communicate. A logical connection among the tools

is required in which the formal models can be integrated as a single system,

using a kind of glue logic to connect them.

This work uses the mixed tools environment. We construct a verification

environment which has the capabilities of various formal verification

Chapter 4. Integration and Verification Platforms For SoC Designs 34

USER

HOLACL2 SMV

Theorems

Command

PROSPER + ACL2PII Embedded

Fig. 4.3: Heterogenous Formal Tools System

technologies, such as a symbolic simulator, a model checker, and a theorem

prover. The verification environment combines the HOL98 theorem prover [80],

the ACL2 theorem prover and symbolic simulator, and the SMV model checker

[56, 57]. The architecture of the formal tools system is presented in figure 4.3.

HOL98 is the centre of the tools environment. ACL2 and SMV are connected

to HOL98 through a layer of interfaces. The communication between ACL2

and HOL is managed by PROSPER and ACL2PII. The SMV model checker is

embedded in HOL as one of the decision procedures for HOL’s tactic language.

Through these interfaces, users can send commands from HOL98 to instruct

ACL2 and SMV to perform formal proof. HOL98 also accepts proved theorems

and properties from ACL2 and SMV as theorems in its own logic.

The system provides an environment such that every user can interact with

the tools in their original environment. Furthermore, the platform provides

an integrated control environment controlling ACL2 and SMV through the

HOL98 environment. A detailed description of each formal tool used in the

verification environment and the interface between the tools are explained in

the next chapter.

4.5 Summary

The formal verification platform concept is an adaptation of the integration

platform concept. In the formal verification platform, a formal system is created

by integrating various formal models and is then formally validated. Central to

this concept is the formal verification environment where various formal tools

are integrated to create a complete set of formal techniques. The verification

environment combines the capabilities of the HOL98 theorem prover, the ACL2

theorem prover, and the SMV model checker.

Chapter 5

The Formal Verification Environment

In this chapter, descriptions will be given of the Formal Verification Environment

(FVE) used in the rest of the dissertation. The descriptions are split into two

main categories: the description of individual formal tools, and the integration

of the formal tools.

In Section 5.1, a brief introduction to the formal hardware verification

technologies is presented. The following three sections give a brief introduction

to the formal verification tools used in FVE and the approach used to create

formal models. The ACL2 theorem proving system is described in Section 5.2.

The HOL theorem proving system is described in Section 5.3. The SMV model

checker is described in Section 5.4. The integration of the ACL2 theorem prover

and the HOL theorem prover is presented in Section 5.5. The integration of the

SMV model checker and the HOL theorem prover is presented in Section 5.6.

Finally, the summary of this chapter is presented in Section 5.7

5.1 Introduction to Formal Hardware

Verification

Design validation involves taking steps to guarantee that a design will perform

according to its specification. The process of validating a design can be

grouped into three stages: pre-implementation, implementation, and post

implementation [51]. In the pre-implementation stage, checks are made as to

whether the design is as intended. In the second stage, checks are made as

to whether the design has actually been implemented. In the final stage, the

design is manufactured and the product is tested. Formal hardware verification

is concentrated in the first two stages. Validation of the pre-manufacturing

stage is based on a brute-force simulation technique, either by running a number

of independent simulations distributed over a set of machines, or using special

purpose simulation hardware. However, despite these tremendous efforts, serious

design errors often remain undetected. Formal hardware verification attempts

to overcome the weakness of non-exhaustive simulation.

Chapter 5. The Formal Verification Environment 36

Formal methods are the application of mathematical methodologies to the

specification and validation of systems. Formal methods and their applications

to perform correctness proofs are well-known and have been in existence for many

years. Originally they were intended to verify software. Unfortunately, it is not

used as a standard technique in the verification of software components. On the

other hand, hardware verification has been explored for just two decades, but

commercial tools are already available and hardware verification is now becoming

a standard for design flow.

There are several reasons why formal methods have been quickly adopted in

circuit design. First, the quality standard for hardware is much more rigid

compared to software. Errors in hardware are very expensive to correct.

Moreover, there is no customer tolerance for faulty designs as hardware cannot

be easily replaced or corrected like software where patches for correcting the

system are easily provided, or even an upgrade to a new version of software.

Second, hardware design as an engineering discipline enforces a structured and

well-defined design cycle. This comprises a unified refinement process using

standard abstraction levels and a high degree of reuse. The reuse of already

designed components either justifies a costly verification or allows for a cheaper

verification, since previously employed verification strategies can be used again.

Third, hardware designs are considered to be simpler compared to software.

The nature of hardware forces the use of finite domain data-types (bits and bit

vectors) which makes it possible to use a high degree of automation. In many

cases the structure of the design can be directly used to automatically steer a

hierarchical verification approach.

Formal hardware verification technologies can be grouped into three categories:

equivalence checking, model checking, and theorem proving [25, 71]. Equivalence

checking is a technique used to verify the equivalence of a reference and a revised

design. The tools perform an exhaustive check on the two designs to ensure that

the designs behave identically under all possible conditions. Model checking is

a verification technique that is based on building a finite model of a system and

checking that a desired property holds in the model. It is an automated technique

used for verifying finite state concurrent systems by performing an exhaustive

state space search. Theorem proving is a technique where both a system and its

desired properties are expressed as formulas in some mathematical logic. This

logic is given by a formal system, which defines a set of axioms and a set of

inference rules. Theorem proving is the process of finding a proof of a property

from the axioms of the system. Steps in the proof appeal to the axioms and

rules, and possibly derived definitions and intermediate lemmas.

A formal verification environment which offers all of these formal technologies

is built by integrating three formal verification tools: the ACL2 theorem prover,

Chapter 5. The Formal Verification Environment 37

the HOL theorem prover, and the SMV model checker. The combination of

these three formal tools enables the user to perform a combination of verification

techniques. Using this formal verification environment, formal analysis can be

performed on SoC circuits.

5.2 ACL2 Theorem Prover

ACL2 stands for A Computational Logic for Applicative Common Lisp. It is a

theorem proving system and a programming environment. The logic of ACL2

is based on quantifier-free First Order Logic. The ACL2 language is built as a

variant of the Common Lisp language [86]. It is described as a mathematical

logic with axioms and rules of inference. Functions and formal models specified

in ACL2 are used as specifications and as simulation engines. In a programming

environment, functions and formal models can be executed or simulated. As

specifications, they can be reasoned about to prove properties or theorems about

them.

Functions in ACL2 are defined using the defun expression. With concrete

arguments, these functions can be evaluated. At the same time, they are also

represented as logical objects about which one can reason. For example, an

ACL2 addition function (plus) is described in Definition 1.

Definition 1 (plus)

(defun plus (a b) (+ a b))

The defun expression defines plus as a function that takes two arguments and

returns the result of adding the two inputs. When the function is evaluated with

concrete values, such as (plus 4 5), it returns 9 as the result. Some primitive

functions of ACL2 are described in Table 5.1

Lisp is syntactically untyped. When LISP function evaluates arguments outside

the intended domain, the result depends on the implementation. ACL2 provides

a mechanism to specify and restrict the arguments to the intended domain.

When the evaluation goes outside the domain, an error message is signalled.

The intended domain of a function is specified by its guard. For example, the

guard of the plus function can be specified for natural numbers. The new plus

function (gplus) is defined in Definition 2. The function accepts only natural

numbers as arguments for evaluation.

Definition 2 (gplus)

(defun gplus (a b)

(declare (xargs :guards (and (natnp a)(natnp b))))

(+ a b))

Chapter 5. The Formal Verification Environment 38

ACL2 Function and Constants Description

T True value

nil False value or empty list

(and p1 p2) Logical conjunction operator

(or p1 p2) Logical disjunction operator

(implies p q) Logical implication

(not p) Logical negation

(iff p q) Logical equivalence

(acl2-numberp x) Recogniser for any type of ACL2 number

(integerp x) Recogniser for integers

(rationalp x) Recogniser for rationals

(zerop x) x=0

(zp x) x=0 or x is not a positive integer

(< x y) Less than relation

(<= x y) Less than or equal relation

(> x y) Greater than relation

(>= x y) Greater than or equal relation

(+ x y) Addition

(- x y) Subtraction

(/ x y) Division

(1- x) Decrement by 1

(1+ x) Increment by 1

(characterp x) Recogniser for character

(consp x) Recogniser for ordered pairs

(cons x y) Construct an ordered pair

(car pair) First component of a pair

(cdr pair) Second component of a pair

(atom x) Recogniser for non-pairs

(list x1 ... xn) Linear list of objects

(nth n lst) nth element of a list.

(len lst) Length of a list

(true-listp x) Recogniser for linear lists

Tab. 5.1: Description of basic ACL2 functions and constants

Chapter 5. The Formal Verification Environment 39

Lemmas and Theorems in ACL2 are defined with the defthm expression. For

example, the result of evaluating the gplus function will always produce a natural

number. Given two natural number variables a and b, the symbolic evaluation of

gplus on the variables results in an addition operation of the variables. Theorem 1

(gplus-gives-natnp) describes the proof of the gplus function.

Theorem 1 (gplus-gives-natnp)

(defthm gplus-gives-natnp

(implies (and (natnp a)

(natnp b))

(natnp (gplus a b))))

The ACL2 system allows users to perform symbolic simulation. In symbolic

simulation, the user can execute a design on certain kinds of indeterminate data.

This allows the coverage of more cases in a single execution. With symbolic

simulation we can evaluate the gplus function symbolically. The symbolic

evaluation of gplus function is described in Theorem 2.

Theorem 2 (symbolic-simulation-of-gplus)

(defthm symbolic-simulation-of-gplus

(implies (and (natnp a)

(natnp b))

(equal (gplus a b)

(+ a b))))

Undoubtedly, the symbolic-simulation-of-gplus theorem is a trivial one. However,

the simplicity also holds when a complex function is executed, such as a processor

model, with program instructions. We use this feature to symbolically simulate

a fragment of code which is executed using a processor model.

In ACL2 logic, there is no distinction between lemmas and theorems. The

ACL2 theorem prover exploits mathematical induction and term rewriting with

heuristics to prove theorems automatically. In the case of a complex theorem,

the user may have to provide the outline of the proof by providing intermediate

theorems. The collection of these intermediate and final theorems is called a

book.

A digital circuit is modelled in ACL2 using a functional style of specification. In

this style, the output of every component in the design is specified as a function

of inputs to the component. An example of the functional style of specification

is as previously described in Definition 1.

Chapter 5. The Formal Verification Environment 40

5.3 HOL Theorem Prover

HOL is a Higher Order Logic theorem prover. The HOL logic is based on

higher order predicate calculus which allows variables to range over functions

and predicates. The HOL logic is built on an ML style typed system [62]. A

term in HOL logic is represented by an abstract data-type called term. HOL

has four kinds of primitive term: variables, constants, function applications, and

λ-abstraction. A variable is a term which has a name and a type. The definition

of a constant is similar to a variable, except it has a fixed type and cannot be

bound by quantifiers. A function application is a term with the format of (f t),

where f and t are terms. It has types of the form σ1 → σ2, where σ1 and σ2

are the types of the domain and range of the functions. The λ-abstraction is a

term with the format (λx. t), where x is a variable and t is a term. In the HOL

system, the symbol ’\’ is used to represent λ. For example, (\x. x+1) is a term

that denotes the function n → n+1.

The HOL system uses these primitive terms in defining its basic terms. The

truth and falsity terms are Boolean typed constants and defined as T and F.

The function applications such as the negation (¬) is a term with the type (bool

→ bool). Some functions, such as ==>, \/, /\, etc., are infixes. They have

special syntactic status which allows them to be written as infix expressions,

e.g. (t1 ==> t2). The basic HOL terms are presented in Table 5.2

Kind of term HOL notation Description

Truth T True value

Falsity F False value

Negation ¬ t Not t

Disjunction t1 \/ t2 t1 or t2

Conjunction t1 /\ t2 t1 and t2

Implication t1 ==> t2 t1 implies t2

Equality t1 = t2 t1 equals t2

∀ quantification !x.t forall t

∃ quantification ?x.t exists t

ε term @x.t an x such that t

Conditional (t => t1 | t2) if t then t1 else t2

Tab. 5.2: Description of basic HOL terms

A function in HOL is defined using a Define expression. Define declares a new

constant (plus) and installs a definitional axiom (plus def) in the current theory.

The function plus is described in Definition 3.

Chapter 5. The Formal Verification Environment 41

Definition 3 (plus hol)

Define ‘(plus a b = a+b)’;

Term constants:

plus :num -> num -> num

Definitions:

plus_def |- !a b. plus a b = a + b

One way to prove a theorem is by proving the goal with a tactic. A goal of

a theorem is the target of the proof which defines the validity of the theorem.

A tactic is an ML function that when applied to a goal reduces the goal into

sub-goals. If the proof succeeds, it returns a theorem which can be stored in the

current theory.

In HOL, a digital hardware circuit can be specified in two modelling style:

the functional and the relational styles [58]. The functional style specification

is as specified in Definition 3. In the relational style specification, digital

hardware circuits are specified in higher order logic by defining their predicates.

The predicates state the combinations of values that can appear on their

external input and output ports. The behaviour of devices are built by joining

smaller devices together by connecting them at all identically-labelled external

wires. The composition is done with logical conjunction and using existential

quantification to hide internal wiring.

As an example, consider an inverter circuit. The circuit diagram is shown in

Figure 5.1(a). The inverter has one input port (i) and one output port (o).

The variables i and o have the logical type bool. The term Inv(i,o) describes a

relationship between the variables. The output o becomes true when i is false,

and vice versa. The relational model of Inverter is specified in Definition 4.

Definition 4 (Inverter)

⊢Inv(i,o) = (o = ¬ i)

i o
(a)

i ox

(b)

Fig. 5.1: (a) An inverter (b) Wiring two inverters

In Figure 4(b) two inverters are joined together by an internal wire x. The

combined models are specified by applying logical conjunction to the components

and hiding the internal wire x by existentially quantifying the wire. The circuit

is described in Definition 5.

Definition 5 (Two Inverters)

∃x. Inv(i,x) ∧ Inv(x,o)

Chapter 5. The Formal Verification Environment 42

5.4 SMV Model Checker

SMV is a model checking tool, a tool for automatically checking the validity of

temporal logic formulas in finite-state circuit models. Digital hardware circuits

are represented as finite-state models and in a symbolic form that uses Binary

Decision Diagrams (BDDs) to give a compact representation. The finite model

is defined in a state transition graph called a Kripke structure. It consists of

a set of states, a set of transitions between states and a function that labels

each state with a set of properties that are true in the corresponding state. The

computation of the system is modelled as paths. A specification for SMV is a

collection of properties. A property states the relationship between the values

or timing of the signals. Properties are specified in a notation called Temporal

Logic [23]. The Cadence SMV model checker supports Linear Temporal Logic

(LTL) specifications.

LTL is based on the idea that time is linear. It considers only one future or

execution which has actually taken place. An LTL formula is an assertion about

one particular sequence of states. The formula is similar to an ordinary boolean

logic formula, except the truth value of a formula is a function of time (num →

bool). New operators to specify relationships in time are added to the existing

boolean logic operators (and, or, not, implies).

The future (F) operator is used to express that a condition is true at some time

in the future. The formula (Fϕ) is true at time = 0 (t0) if ϕ is true at some

time later (t ≥ t0). (Fϕ) is usually read as eventually ϕ.

The globally (G) operator is used to state that a condition is true at all times in

the future. The formula (Gϕ) is true at t0 if ϕ is always true at (t ≥ t0). (Gϕ)

is usually read as always ϕ.

The next (X) operator is used to express that next time a condition is true. The

formula Xϕ is true at t0 if ϕ is true at (t = t0+1).

The until (U) operator is used to express that a conditional condition is true

at some time in the future. The formula (ϕUψ) is true at t0 if eventually ψ is

true at tx and ϕ is true at (t0 ≤ t < tx). The visualisation of these four LTL

operators are presented in Figure 5.2

SMV uses the SMVL (SMV language) to specify a model. The SMVL can be

divided into three parts: type declarations, signal assignments, and assertions.

Type declarations define the type of every signal used in the system. The

signal type can be in the simple form of boolean, enumerated type (for example

{ready,wait}), and subrange (for example 0 .. 7) or an abstract data-type such

as undefined. The undefined data-type tells SMV that the type is a symmetric

Chapter 5. The Formal Verification Environment 43

F

G

X

ϕ

ϕ

ϕ

ϕ

ϕ ϕ ϕ ϕ

ϕ

ϕ ϕ ϕ ψUϕ ψ

Fig. 5.2: The visualisation of LTL operators

type, but does not state what the values of the type are. The signal assignments

define the relationship between input and output signals. An assertion is a

condition that must hold true in every possible execution of the program.

SMV also accepts circuits described in Verilog Hardware Description Language

(Verilog HDL). When SMV reads the Verilog code, it transforms the code into

SMVL using a transformation tool called vl2smv. This feature enables the users

to directly write the models in an HDL style rather than specify them in SMVL.

The SMV model checker automatically verifies the hardware circuit’s properties

by interacting with the system’s finite state machine. The verification searches

all possible states that the system can reach. In some cases, the SMV verifier

produces a counter-example which is a behaviour trace of the finite state system

which violates a specified property. This counter-example helps users to debug

the circuit.

5.5 ACL2-HOL Integration

The ACL2 and HOL theorem provers use different languages and different logics.

The ACL2 uses untyped s-expressions (s-exp) to represent first order logics,

whereas the HOL uses typed terms to represent higher order logic statements. To

combine these two theorem provers, we need an interface which can bridge these

two worlds. One possible solution is by integrating ACL2 into the PROSPER

[27] framework.

PROSPER is an environment for building a custom verification engine which

can be operated by another application through an Application Programming

Interface (API). The proof engine is based upon the functionality of a theorem

prover with additional capabilities provided by plug-ins from existing off the shelf

tools. The PROSPER toolkit comes with two main components: the PROSPER

Chapter 5. The Formal Verification Environment 44

Integration Interface (PII) and a Core Proof Engine (CPE) . The PII is a set

of libraries which enables communication between components. The CPE is the

main proof engine where other proof engines (such as theorem provers, model

checkers, and decision procedures) can be integrated as plug-ins. The CPE

command language is used as the glue language for managing plug-in components

and orchestrating the proof engines. The PROSPER toolkit is implemented

around the HOL98 theorem prover. Through the PROSPER framework, HOL

can interact with external systems such as ACL2.

The communication link between ACL2 and PROSPER is provided by the ACL2

PROSPER Integration Interface (ACL2PII) [76]. ACL2PII is a dynamic link

for translating theorems between two live sessions of HOL and ACL2. Both

ACL2 and HOL communicates to each other via ACL2PII and PROSPER. The

interface allows a user to run ACL2 from within HOL. It also enables ACL2

to pass or export its knowledge of a particular ACL2 book into HOL. Through

this link, ACL2 is being used as an axiom-server which produces axioms about

constant that are otherwise uninterpreted in HOL. The logical consistency of the

resulting HOL theory is assured by the proofs having been done in ACL2 and by

an understanding about the correspondence between any background theories

used in each of the tools.

The ACL2PII is based on an ad-hoc scheme for translating ACL2 s-expressions

to HOL terms. A set of default translations is available such that appropriate

s-expressions can be translated into Booleans, Natural numbers, integers, simple

arithmetic expressions, strings, characters, lists and tuples. These are the basic

constructors in the interpretation of ACL2 s-expressions in the environment of

the standard HOL library. For example, Boolean in ACL2 is the same as Boolean

in HOL and the constant ∧ in HOL is the same as the AND operator in ACL2.

ACL2PII provides a method for specifying new translations. It is by defining

a translation pattern based on a triple of a string which represents an ACL2

s-exp, a HOL term quotation, and a list of HOL term quotations representing

side-conditions on the translation. The ACL2 string is used to do pattern

matching of the ACL2 pattern with the actual ACL2 s-expressions. Consider

these two translations:

(1) (“(– X Y)”, ‘X – (Y:int)’, [])

(2) (“(– X Y)”, ‘X – (Y:num)’, [‘Y <= X’])

The two subtraction translations are similar, except that the first one is intended

for integer subtraction while the second one is for natural number subtraction.

The infix subtraction of the HOL term ‘X – Y’ is a constant and X and Y are the

variable names. These variables are used as variables for matching in the ACL2

s-exp (– X Y). The s-exps of X and Y are recursively translated into HOL terms

and substituted for X and Y in the HOL term pattern. In the first translation,

Chapter 5. The Formal Verification Environment 45

the substitution pattern of Y is an integer. The variable X is automatically

defined as an integer. The empty list indicates that there is no side condition

for integer subtraction. In the second translation, variables X and Y are defined

as natural numbers. When the value of X is less than the value of Y, the ACL2

evaluation will be a negative number while in HOL the result will be zero. To

avoid inconsistency of the translation process, a side condition of ‘Y <= X’ is

added. When an ACL2 theorem is imported into HOL, the side-condition is

added as part of the hypotheses on the theorem’s conclusion.

ACL2PII provides the mkbasefun function to declare a HOL constant which

corresponds to an ACL2 function. The function creates an automatic translation

and a type guessing function for the new constant. The mkbasefun function takes

four arguments. The first and third arguments represent the ACL2 function

name and the HOL constant. The second argument is the number of inputs for

the functions. The last argument is the type definition for the constant. For

example, the plus function (Definition 3) is translated into HOL with (mkbasefun

“plus” 2 “acl2plus” (Type ‘:num→num→num’)). The function creates a HOL

constant acl2plus which has the type num→num→num. If it is not needed,

the ACL2 definition of plus does not need to be imported into HOL, although

it is possible to import ACL2 definitions into HOL. The automatic mechanism

is provided by ACL2PII’s mkfun function. The mkfun function only requires

three arguments which is similar to mkbasefun, except it does not need to

know the number of inputs. Executing (mkfun “gplus” “ACL2GPLUS” (Type

‘:num→num→num’)) creates a HOL constant ACL2GPLUS and translates the

ACL2 function definition gplus to create a HOL equality definition theorem. The

ACL2PLUS function definition is as follows:

Definition 6 (ACL2GLPUS hol)

∀ A B. ACL2GLPUS A B = A + B

ACL2 theorems are imported into HOL using the getthm function. This

function recovers the theorem from ACL2 and translates it into an HOL term.

The term is then axiomatised as a theorem using HOL’s oracle mechanism.

Executing (getthm [] “gplus-gives-natnp”) results in a HOL theorem described

in Theorem 3.

Theorem 3 (gplus-gives-natnp hol)

((natnp a ∧ natnp b) → natnp (gplus a b))

It is also possible to execute an ACL2 function with a concrete instance from

HOL. The mechanism is provided by the getexec and command functions. The

getexec function takes an ML term and executes it in ACL2. The ACL2 execution

result is parsed and translated into HOL as the right hand property of the

Chapter 5. The Formal Verification Environment 46

equivalence operator. Then it is asserted as a theorem using HOL’s oracle

mechanism. The command function performs a similar task, except it takes

a LISP s-expression. Executing (command “plus 3 4”) results in a theorem (⊢

(plus 3 4) = 7).

A detailed description of the PROSPER toolkit and ACL2PII is presented in

[27] and [76] respectively.

5.6 SMV-HOL Integration

The HOL98 distribution includes an early version of McMillan’s SMV symbolic

model checker as part of the temporal logic library. LTL is embedded in HOL

using the shallow embedding technique. The temporal operators are defined as

functions that are applied to arguments of type (num → bool). For example:

the NEXT operator is defined as a new definition in HOL. The function accepts

one argument P which has the type (num → bool). The HOL description of

NEXT is as follows:

val NEXT = new definition(”NEXT”, - -‘NEXT P = \t. P(SUC t):bool‘- -);

The meaning of the definition is as follows: (NEXT P) is true at time t when P

is true at time (SUC t) or (t + 1).

In the library, the model checker is embedded in HOL as one of the decision

procedures for HOL’s tactic. Using this library, temporal properties are specified

in LTL notations. Note that the model checker which comes with the distribution

only supports CTL (Computation Tree Logic) style temporal logic. The model

checker can not directly deal with properties specified in LTL. The LTL formulae

need to be transformed into a format which can be understood by the model

checker.

It is not possible to directly translate LTL formulae to CTL formulae. But

it is possible to convert LTL formulae into an intermediate format, namely a

finite state ω-automata [69, 70]. The translation of the formula to this format

can be viewed as transforming the problem into a fix-point one. While CTL

is a subset of the alternative free µ-calculus which enables the reduction of

model checking problems into fix-point computations. The LTL formula which

has been converted into ω-automata can be validated in two ways, either by

proving the properties using traditional HOL tactics or by using an external

model checker. When a model checker is used and the formula can be verified

then the result from the model checker is represented as a theorem using HOL’s

oracle mechanism. If the model checker reports an error, then a counter example

is provided.

Chapter 5. The Formal Verification Environment 47

The latest version of the SMV model checker was developed at CADENCE. This

re-implementation of SMV uses LTL instead of CTL. Although for backward

compatibility it supports CTL style, the developers suggest the use of LTL style

to achieve maximum performance. The temporal library is extended in this

instance so that it is possible to use the CADENCE SMV model checker in LTL

notations. A subset of SMVL is embedded in HOL using the deep embedding

technique. In deep embedding, the semantics of the language is constructed and

an interpretation of the language is provided. It also makes the system more

modular. Previously, when a model checker was used, the formal model had to

be specified in HOL. Now, the SMV model can be verified on its own and the

proved properties are automatically imported as HOL theorems.

5.7 Summary

In this chapter, a gentle introduction to formal verification technologies

commonly used in formal hardware verification was given. In general, the

technologies are grouped into three categories: equivalence checking, model

checking, and theorem proving. Each technology is uniquely used in different

aspects of formal hardware verification. Verifying an SoC design as a whole

combines all verification problems which are commonly dealt with separately.

An integrated heterogenous formal verification environment was created which

represents those three technologies. The system is based on the ACL2 theorem

prover, the HOL theorem prover, and the SMV model checker. Physical

interfaces that combine the tools are needed. The HOL theorem prover is at

the center of the proposed formal system where users control the verification

process. The ACL2 theorem prover utilizes the PROSPER framework as its

interface to communicate with the user. The SMV model checker is embedded

as one of HOL’s decision procedures.

The formal models can be specified in two modelling styles: in functional style

or in relational style. ACL2 and HOL allow formal models to be specified in

functional style. The relational formal model can only be specified in HOL. The

integration of formal models is done in HOL using the relational modelling style.

Chapter 6

The Simple Integration Platform (SIP)

Chapter 5 discussed the heterogenous formal verification environment. The

environment is used to specify components of SoC design in the most suitable

formalism. In this chapter, the formalisation of an SoC design using the formal

verification environment is demonstrated. As an example, a system called SIP is

defined. The formalisation of SIP will provide a concrete example of the formal

verification platform concept introduced in chapter four. It will also provide a

concrete illustration of how links between heterogenous collection of tools and

logic systems in the platform actually work in practice. The whole process will

lay the foundation of how to model and verify SoC designs.

The introduction of SIP architecture is presented in Section 6.1. In Section 6.2,

the specification of the processor module is described. Section 6.3 describes

the Interrupt module. The specification of the memory module is described in

Section 6.4. Section 6.4.3 describes an example of a software component used in

the verification. In Section 6.5, the bus-controller and bus-multiplexer will be

defined. Finally, the integration of all modules will be presented in Section 6.6.

A summary will conclude this chapter.

6.1 Introduction

Simple Integration Platform (SIP) is an integration platform based on the

architecture proposed by Richard Black in [13]. In this case study, every module

in the platform is represented by its simplified version. The use of the full

specification modules would only increase the verification complexity without

adding a new concept. Furthermore, the simplified version will provide a better

clarity of Sthe proposed verification methodology.

The bus protocol, which controls all communications between master and slave

modules, is specifically designed for the architecture and without a standardised

protocol methodology [5]. An extended version of SIP will be explored in the

case study presented in Section 9.3. In contrast with SIP, the later case study

will use industrial standard components as its building blocks. The architectural

Chapter 6. The Simple Integration Platform (SIP) 49

similarity between the two platforms will allow the verification methodology of

SIP to be used as the guideline in the verification of the extended one.

The SIP system contains four modules: two master modules, one slave modules,

and one SIMBC (System Integration Module and Bus Control) module. The

processor and the interrupt are the master modules. The memory is the slave

module of the system. The SIP architecture only has one data-bus. All data

transfer between master and slave has to go through this bus. The block diagram

of the SIP architecture is described in Figure 6.1.

Master 1

Slave

Master 2

SIMBC

Fig. 6.1: Simple Integration Platform Block Diagram

One of the masters is set as the default master. It has the feature of always

requesting the bus and always being granted when no other masters send their

request signals. Furthermore, it has the capability to lock the bus. In this

condition, the bus-controller will ignore any other bus request until the lock

signal is withdrawn. The second master has a higher priority than the default

master. In most cases, it will immediately get the bus. The only exception is

when the bus-controller is serving a bus-lock request. There are interdependency

requirements between these two modules in granting their bus access request.

This case study will show how the whole system works together in satisfying and

reducing the requirements.

The choice of how to formalise each component depends on what properties

will be proven and what is the best formal technology to verify them. In this

case study, two properties of SIP system will be verified: the liveness of every

master request and the correctness of a software component executed in the

SIP system. First, the liveness verification concentrates on the verification of

the bus protocol. The properties are normally verified using a model checker.

The SIMBC will be modelled in the model checking environment. Second, the

correctness of a software component is normally conducted using a simulation

technique. Based on this, the software component and its execution engine are

modelled in the environment where symbolic simulation can be performed. More

detailed descriptions of the properties being verified are presented in the next

chapter.

Chapter 6. The Simple Integration Platform (SIP) 50

6.2 Processor Model

6.2.1 The Architecture

The processor is the default master module. It features a three-stage pipeline

architecture: fetch, decode, and execute. In this architecture, before an

instruction is evaluated in the execute stage, it has to go through the fetch and

decode stages. The independence of each pipeline stage allows the processor to

operate on three different instructions in the same clock cycle. Consider three

instructions (Inst1, Inst2, and Inst3) which will be executed by the processor.

At time t, the processor fetches an instruction (Inst1) from an external memory

module and stored it in the third pipeline register (p3). At time (t + 1), Inst1

is moved to the second pipeline (p2) and is decoded. At the same time, a new

instruction (Inst2) is fetched and stored in p3. At time (t + 2), Inst1 is moved

to the top pipeline register (p1) to be executed. Meanwhile, Inst2 is moved from

p3 to p2 and starts the decoding stage. At the same time, a new instruction

(Inst3) is being fetched and stored in p3.

The processor has eight internal registers. It is based on a nine instruction set

architecture. These instructions are capable of performing program branching,

data manipulation, and data transfer operations.

Interfaces

The processor has three bus lines (PDataIn, PDataOut, PAddress). It has five

control signals, two input signals (PnReset, PnWait), and three output signals

(PLock, PnRW, PnMreq). The description of the interfaces are presented in

Table 6.1.

Internal Registers and Flags

The processor has eight internal registers (r0 - r7). Registers r0 to r5 are the

General Purpose Registers (GPR). Registers r6 and r7 are the Special Function

Registers (SFR). Register r7 stores the value of the Program Counter (PC).

When the processor is executing data transfer operations, it changes the address

to a new value. The processor has to save the current address so that it can

resume the process before the address changes. The old address is saved in

the temporary PC register r6. After the processor completes the data transfer

process, it restores the address to the one saved in r6.

Chapter 6. The Simple Integration Platform (SIP) 51

Name Description

PnReset is the reset signal. A LOW level input signal forces the

processor to go to the default reset state.

PnWait is the wait signal. A LOW level input signal stalls the processor.

PLock is the lock signal. A HIGH level output signal indicates that

the processor is executing a locked memory access.

PnRW is the read or write signal. The processor is in the read cycle

when the signal is LOW. Otherwise, it is in the write cycle.

PnMreq is the memory request signal. When the signal is LOW,

it indicates that the processor requires bus access.

PDataIn is the input data line. This input line allows the data to go

into the processor.

PAddress is the address line. This output line provides the

address that the processor is accessing.

PDataOut is the output data line. This output line provides the data

to be transfered out of the processor.

Tab. 6.1: Processor Input/Output Interfaces

The processor has one flag: the zero flag ZF. ZF is updated when the processor

is executing data processing instructions. When the result of data manipulation

is zero, ZF is set to HIGH. Otherwise, it is set to LOW.

Instruction Sets

The processor implements nine instructions. Based on how it operates, these

instructions can be grouped into four categories: no operation instruction

(NOP), conditional branch instruction (JZ), data manipulation instructions

(ADD, SUB), and data transfer instructions (MOV, LDA, STA, SWAP). The

descriptions of the instructions are presented in Table 6.2.

Every instruction is represented by a 12-bit data-word. The format of each

instruction is described in Table 6.3. Ra, Rb, and Rc are the operand registers,

and the #DATA field stores an immediate data value.

The processor instruction set can be extended with more instructions.

Instruction size can also be extended beyond the 12-bit data-word. Adding

more instructions or extending the size of the instructions will only result in a

more featured processor rather than increasing the complexity. In the second

case study, this processor is extended with more instructions and a larger number

of instruction sizes.

Chapter 6. The Simple Integration Platform (SIP) 52

Instruction Description

NOP No Operation

ADD Rc, Rb, Ra Rc ← (Rb + Rc)

SUB Rc, Rb, Ra Rc ← (Rb - Rc)

MOV Rc, Ra Rc ← Ra

MOV Rc, #DATA Rc ← #DATA

LDA Rc, Ra Rc ← @Ra

STA Rc, Ra @Ra ← Rc

SWAP Rc, Ra Rc ← @Ra ∧ @Ra → Rc

JZ #DATA if ZF then PC ← #DATA

Tab. 6.2: Description of the instructions

11 10 9 8 7 6 5 4 3 2 1 0

NOP 0 0 0 X X X X X X X X X

ADD 0 0 1 Rc Rc Rc Rb Rb Rb Ra Ra Ra

SUB 0 1 0 Rc Rc Rc Rb Rb Rb Ra Ra Ra

MOV 0 1 1 0 0 0 Rc Rc Rc Ra Ra Ra

MOV 0 1 1 1 # D A T A Rc Rc Rc

LDA 0 1 1 0 0 1 Rc Rc Rc Ra Ra Ra

STA 0 1 1 0 1 0 Rc Rc Rc Ra Ra Ra

SWAP 0 1 1 0 1 1 Rc Rc Rc Ra Ra Ra

JZ 1 - # - D - A - T - A -

Tab. 6.3: Op-code of the instructions

Expansion with more instructions and longer instruction sizes only increases the

complexity of the design and the verification of the design without really adding

anything conceptually new to the system. This expansion will be demonstrated

in the second case study within the definition of an ARM7 processor.

Instruction Cycle Operations

Instructions are executed in a variable number of cycles. For example, the data

processing instruction is executed in one execution cycle, and the data transfer

process uses between two and four cycles. Table 6.4 shows the internal process

of an execute cycle. The Address and Data columns represent the value of the

address bus and data bus of the processor’s external interface. In the address

column, (PC+n) means the address bus has a relative PC value which differs by

n. ALU means that the address bus contains the ALU value. In the data-bus

column, [PC+n], [ALU], [Rm], and [Rn] indicate the memory content with its

Chapter 6. The Simple Integration Platform (SIP) 53

address indicated by (PC+n), ALU, Rm, and Rn respectively. The rw, mreq,

seq, and lock denote the value of the signals when an instruction is executed.

Flag defines the type of instructions that affect the zero flag.

Instructions Cycle Address Data rw mreq lock Flag

Data 1 PC+2 [PC+2] 0 0 0 Y

Processing PC+3

STA 1 PC+2 [PC+2] 0 0 0 N

2 ALU [Rd] 1 0 0 N

PC+3

LDA 1 PC+2 [PC+2] 0 0 0 N

2 ALU [ALU] 0 1 0 N

3 PC+3 - 0 0 0 N

PC+3

JZ 1 PC+2 [PC+2] 0 0 0 N

2 ALU [ALU] 0 0 0 N

3 ALU+1 [ALU+1] 0 0 0 N

ALU+2

SWAP 1 PC+2 [PC+2] 0 0 0 N

2 Rn [Rn] 0 0 1 N

3 Rn [Rm] 1 1 1 N

4 PC+3 - 0 0 0 N

PC+3

Tab. 6.4: Instruction Cycles

6.2.2 The Formal Specification of a Processor Module

The formal model of the processor is specified in ACL2. In this notation, the

formal and mathematical model of the processor is constructed. One can execute

and also reason about the model. The processor is modelled in a style suggested

by Boyer and Moore [14]. The model used the notion of state which represents

the condition of the processor’s finite state machine. The state is represented as

a linear list. Every component of the state is accessed using an accessor function.

Invariants are maintained to ensure that certain relationships hold among the

components by using guard.

Basic Components

The processor is implemented as a finite state machine at the Micro-Architecture

(MA) level. Every internal state transition corresponds to a hardware clock

Chapter 6. The Simple Integration Platform (SIP) 54

cycle. The MA is modelled using a state function, which is a mapping of the

form (f: inputs → state → state). The inputs argument is the input interface

of the processor (PnReset, PnWait, and PDataIn). The state argument defines

the internal state of the processor. It contains a list of all components of the

processor, such as the registers, flags, etc. The internal registers (r0 . . . r7)

are represented by variable preg. The pipeline registers are denoted by pp0,

pp1, and pp2. Three auxiliary variables are added to the state variable; pfsm,

ptempPC, and preset. pfsm is the processor state machine variable. It indicates

the operational state of the processor. ptempPC is a temporary PC register. It is

used as an intermediate variable to save the next cycle calculation result of PC.

preset is the variable indicating whether the processor is being reset. In total,

a state contains thirteen components. A processor’s state function is defined as

follows:

Definition 7 (ACL2 processor’s state: state)

state(preg pp0 pp1 pp2 pzf pfsm ptempPC preset plock prw pmreq padd pdo)
def
=

list preg pp0 pp1 pp2 pzf pfsm ptempPC preset plock prw pmreq padd pdo

The value of each state component can be obtained using accessor functions.

For example, function PReg is the accessor function for the preg component.

The definition of PReg is shown in Definition 8. In state, preg is located as the

first element of the list. The “nth(0,s)” function gets the first element from list

s. The remaining accessor functions are as follows: Pp0, Pp1, Pp2, Pzf, Pfsm,

PtempPC, Preset, Plock, Prw, Pmreq, Padd, Pdo.

Definition 8 (ACL2 accessor function: PReg)

PReg(s) def
= nth(0 , s)

A state predicate statep is defined for the state variable s. The statep function

definition is described in Definition 9. The state predicate uses two basic

predicates, the natural number predicate (natnp) and memory registers predicate

(memp). Boolean is a primitive type of ACL2. All state components which are of

the type boolean do not need to be declared in the statep. Some interpretations

of these predicate functions are as follows. The function (true-listp s) ∧ (| s | =

13) means that the state variable s has the type list and length 13. The function

(memp(PReg s)) means the component preg in state s has the type memp.

Chapter 6. The Simple Integration Platform (SIP) 55

Definition 9 (ACL2 processor state predicate: statep)

statep(s) def
= (true − listp s) ∧

(| s | = 13) ∧

(memp(PReg s)) ∧

(natnp(Pp0 s)) ∧

(natnp(Pp1 s)) ∧

(natnp(Pp2 s)) ∧

(natnp(Pfsm s)) ∧

(natnp(PtempPC s)) ∧

(natnp(Padd s)) ∧

(natnp(Pdo s))

The function (natnp x) restricts the value of x to be a positive integer.

Definition 10 describes the natural number predicate function.

Definition 10 (ACL2 natural number predicate: natnp)

natnp(x) def
= (x ∈ int) ∧ (x ≥ 0)

The function (memp x) defines x as a list of natural numbers. Definition 11

describes the memory predicate.

Definition 11 (ACL2 memory predicate: memp)

memp(x) def
= if (atom x)

then (x = nil)

else (natnp(car x) ∧ memp(cdr x))

In ACL2, predicates are used as guards or invariants. A guard guarantees that

certain relationships hold among the components. For example, (memp mem)

ensures that mem is always a list of natural numbers. The state transformer

function produces a new state by updating the content of old state components.

The state predicate ensures any modification will update only the field and

maintain the construct.

The Processor’s Instruction Set

Every instruction cycle is modelled as two half-cycle functions, instead of one

cycle functional model. In the one cycle functional model, an oracle step is

needed in the read operation [84]. It is by executing the operation twice. In the

first execution, the processor provides the memory address where data is going

to be read. In the second execution, the data is read by the processor. The

two half-cycle modelling style provides a mechanism to conduct a sequence of

Chapter 6. The Simple Integration Platform (SIP) 56

simulations between the processor and the memory modules without any oracle

step. It is also more realistic and closer to the actual operation. All output

signals from the processor, including data-output and address, are available in

the first half-cycle (cyclel). Data inputs to the processor are handled in the

second half-cycle (cycleh). The memory uses the first half cycle information

to perform either memory read or memory write operations. The output of

the memory module, in a read cycle, is handled by the processor in the second

half-cycle. The superscript (1 . . . 4) denotes the cycle number of the instruction.

In this section, the model of each instruction will be described.

In general, all first cycle instructions perform a similar task. In the first

half-cycle, it increases PC by one and push the pipeline stacks one step forward.

The top instruction in the new pipeline stacks is the one being executed. In the

second half-cycle, a new instruction fetched by the processor from the memory

is stored in the last pipeline stacks.

• No Operation: NOP

NOP is a no-operation instruction. The NOP process is completed in a single

clock cycle. The cycle1-nop function is the first half cycle of NOP operation.

The definition of the cycle1-nop function is shown in Definition 12.

Definition 12 (ACL2 first half cycle NOP)
(defun cycle1-nop (s)

(declare (xargs :guard (statep s)))

(modify s :preg (put 7 (+ 1 (Padd s)) (PReg s))

:pp0 (Pp1 s)

:pp1 (Pp2 s)

:padd (+ 1 (Padd s))

:prw nil

:pmreq nil

:plock nil))

The function accepts one argument, the state of processor s. The well-formedness

of s is guaranteed by (declare (xargs :guard (statep s))). This statement is the

declaration that the argument s is constrained by the state predicate function

statep. The modify function obtains the old values of s and updates only the

value of components which are modified. In this cycle, seven variables (preg,

pp0, pp1, padd, prw, pmreq, pLock) are updated. Let us consider the first

update process of Preg. The process uses two accessor functions Padd and Preg

to obtain the contents of padd and preg from state s. The statement has the

following meaning: the value of padd is increased by one and is stored in the

register number 7 of preg. The result of this operation is stored back into s.

The cycle1-nop function can be represented in mathematical notation as follows:

Chapter 6. The Simple Integration Platform (SIP) 57

NOP 1
l : preg ← ([r7] ← padd+1)

pp0 ← pp1

pp1 ← pp2

padd ← padd+1

prw,pmreq,pLock ← nil

NOP 1
l is the representation of the first half cycle NOP function. Consider the

first line of NOP 1
l statement, the first variable which is updated is the preg.

The first left arrow (preg ←) means the content of preg will be updated. The

second arrow ([r7] ←) means the content of register 7 will be updated. (padd

+ 1) means the value of variable padd is increased by one. (preg ← ([r7] ←

padd+1)) means the content of register 7 of variable preg is updated with the

value of padd increased by one.

For the remainder of this dissertation, the description of the instruction sets will

be presented in this mathematical notation.

NOP 1
h : pfsm ← 1

pp2 ← di

preset ← t

In the second half cycle (NOP 1
h), the variable di is the data-in and the constant

t is a high signal.

• Jump if Zero: JZ #DATA
JZ1

l : preg ← ([r7] ← padd+1)

pp0 ← pp1

pp1 ← pp2

padd ← padd+1

prw,pmreq,plock ← nil

ptempPC ← #DATA

JZ1
h : pfsm ← ZF → 8 | 1

pp2 ← di

preset ← t

The JZ instruction performs a conditional jump. If ZF is set, then PC is changed.

The processor goes into a pipeline flush mode for two cycles to clear the pipeline

stacks. During these two cycles, the processor ignores the instruction which is

stored in the pipeline. Instead, it executes a process similar to NOP. In this

cycle, the new address (#DATA) is stored in ptempPC. If ZF is clear then the

processor will perform a process similar to NOP and resume executing the next

instruction in the next cycle. In this case the JZ instruction is completed in a

single clock cycle.

Chapter 6. The Simple Integration Platform (SIP) 58

JZ2
l : preg ← ([r7] ← ptempPC)

pp0 ← pp1

pp1 ← pp2

padd ← ptempPC

prw,pmreq,plock,pzf ← nil

JZ2
h : pfsm ← 9

pp2 ← di

preset ← t

The second JZ cycle (JZ2)is only executed whenever the ZF is set. The new

address which is stored in ptempPC is assigned to the program counter. The

new instruction loaded from external memory is stored in the pipeline. This

cycle is also used by other instructions which write the PC register (r7).

JZ3
l : preg ← ([r7] ← padd+1)

pp0 ← pp1

pp1 ← pp2

padd ← padd+1

prw,pmreq,plock,pzf ← nil

JZ3
h : pfsm ← 1

pp2 ← di

preset ← t

The third JZ cycle (JZ3) is the final pipeline flush cycle. It performs a similar

operation as NOP.

• Addition: ADD Rc,Rb,Ra
ADD1

l : preg ← ([r7] ← padd+1) ∧ ([Rc] ← [Rb]+[Ra])

pp0 ← pp1

pp1 ← pp2

padd ← padd+1

prw,pmreq,plock ← nil

ptempPC ← [Rc]

pzf ← ([Rc]=0) → T | nil

ADD1
h : pfsm ← 1

pp2 ← di

preset ← t

The ADD instruction adds the value of register Rb with the value of register

Ra. The result is stored in register Rc. If the summation result is zero, ZF is

set. Otherwise, it is cleared. The ADD operation is completed in a single clock

cycle.

Chapter 6. The Simple Integration Platform (SIP) 59

• Subtraction: SUB Rc,Rb,Ra
SUB1

l : preg ← ([r7] ← padd+1) ∧ ([Rc] ← [Rb]-[Ra])

pp0 ← pp1

pp1 ← pp2

padd ← padd+1

prw,pmreq,plock ← nil

ptempPC ← [Rc]

pzf ← ([Rc]=0) → T | nil

SUB1
h : pfsm ← 1

pp2 ← di

preset ← t

The SUB instruction subtracts the value of register Ra from the value of register

Rb. The result is stored in register Rc. If the subtraction result is zero, ZF is

set. Otherwise, it is cleared. The SUB operation is completed in a single clock

cycle.

• Move Data: MOV Rc,Ra or MOV Rc,#DATA
MOV 1

l : preg ← ([r7] ← padd+1) ∧

(([Rc] ← [Ra]) | ([Rc] ← #data))

pp0 ← pp1

pp1 ← pp2

padd ← padd+1

prw,pmreq,plock ← nil

ptempPC ← [Rc]

pzf ← ([Rc]=0) → T | nil

MOV 1
h : pfsm ← 1

pp2 ← di

preset ← t

The MOV operation loads the value of register Ra or the immediate data #DATA

and stores it in the register Rc. When the transfered data is zero, ZF is set.

Otherwise it is cleared. The MOV operation is completed in a single clock cycle.

• Load Data from External Environment: LDA Rc,Ra
LDA1

l : preg ← ([r7] ← padd+1)

pp0 ← pp1

pp1 ← pp2

padd ← padd+1

prw,pmreq,plock ← nil

LDA1
h : pfsm ← 3

pp2 ← di

preset ← t

The LDA instruction loads external data into the processor. The address is

defined by the value of register Ra. The external data is then stored in register

Rc. The transfer process is started in the second cycle.

Chapter 6. The Simple Integration Platform (SIP) 60

LDA2
l : preg ← ([r6] ← padd) ∧ ([r7] ← [Ra])

padd ← [Ra]

pmreq ← t

prw,plock ← nil

LDA2
h : preg ← ([Rc] ← di)

ppf ← 0

pfsm ← 4

preset ← t

In the second cycle (LDA2), the PC is updated with the contents of registerRa.

The old PC value is saved in register r6. Data from the memory to the processor

comes in the second half-cycle. It is stored in register Rc.

LDA3
l : preg ← ([r7] ← [r6])

padd,ptempPC ← [r6]

prw,pmreq,plock ← nil

LDA3
h : pfsm ← 1

preset ← t

In the final cycle (LDA3), the PC is restored to its original value. It is now

ready to execute a new instruction in the next clock cycle. The LDA operation

is completed in three clock cycles.

• Store Data in External Environment: STA Rc,Ra
STA1

l : preg ← ([r7] ← padd+1)

pp0 ← pp1

pp1 ← pp2

padd ← padd+1

prw,pmreq,plock ← nil

STA1
h : pfsm ← 2

pp2 ← di

preset ← t

The STA instruction gets the data stored in register Rc and sends it to the

memory. The data is stored externally in the location assigned by the content

of register Ra. The data transfer process is conducted in the next cycle.

STA2
l : preg ← ([r6] ← padd) ∧ ([r7] ← [Ra])

padd ← [Ra]

prw ← t

pmreq,plock ← nil

pdo ← [Rc]

STA2
h : pfsm ← 1

preset ← t

In the second cycle (STA2), the PC is updated with the contents of registerRa.

The old PC value is saved in register r6. The processor transfers data from

register Rc to the data-out port (pdo). The PC is restored to the previous address

before the next instruction is executed. The STA operation is completed in two

clock cycles.

Chapter 6. The Simple Integration Platform (SIP) 61

• Swap Data Inside and Outside of the Processor: SWAP Rc,Ra
SWAP 1

l : preg ← ([r7] ← padd+1)

pp0 ← pp1

pp1 ← pp2

padd ← padd+1

prw,pmreq,plock ← nil

SWAP 1
h : pfsm ← 5

pp2 ← di

preset ← t

The SWAP instruction exchanges the value of register Rc with the contents of

the memory location indicated by the content of Register Ra. The swapping

process involves reading and writing the content of the internal register and the

external memory.

SWAP 2
l : preg ← ([r6] ← padd) ∧ ([r7] ← [Ra])

padd ← [Ra]

prw,pmreq ← nil

plock ← t

SWAP 2
h : pfsm ← 6

ptempPC ← di

preset ← t

In the second cycle (SWAP2), the PC is updated with the contents of registerRa.

The old PC value is saved in register r6. The incoming external data is stored

in the temporary register ptempPC.

SWAP 3
l : prw,pmreq,plock ← t

pdo ← [Rc]

SWAP 3
h : preg ← ([Rc] ← ptempPC)

pfsm ← 7

preset ← t

In the third cycle (SWAP3), the contents of register Rc is sent to pdo. Then the

content of register Rc is updated with the value of ptempPC.

SWAP 4
l : preg ← ([r7] ← [r6])

padd,ptempPC ← [r6]

prw,pmreq,plock ← nil

SWAP 4
h : pfsm ← 1

preset ← t

In the final cycle (SWAP4), the PC is restored to its original value. The SWAP

operation is completed in four clock cycles.

The Processor’s Execution Model

The top level processor function is the processor’s single cycle cyclic behaviour

function (PSCexec). Similar to the way in which the instruction is modelled,

Chapter 6. The Simple Integration Platform (SIP) 62

PSCexec is split into two half-cycle functions (PSCexecl ,PSCexech). PSCexecl

is the group of all first half-cycle processes and PSCexech is the group of all

second half-cycle processes. PSCexec takes two group of arguments, input

signals (PnReset, PnWait, PDataIn) and the current state of the processor

(state). The result of executing the function with the arguments is an updated

state of the processor. This input information is also used by PSCexecl and

PSCexech . PSCexecl uses PnReset, PnWait and state whilst PSCexech uses

all input signals and data. The execution process of PSCexec starts with the

PSCexecl and PSCexech functions handling the PnReset and PnWait control

signals accordingly. If the control signals instruct the processor to execute

the instruction, PSCexecl and PSCexech decode the highest instruction in the

pipeline into opcode. Then they perform a case analysis on the opcode and select

the appropriate execution function. The description of PSCexec is as follows:

Definition 13 (ACL2 processor functional model: PSCexec)

PSCexec(PnReset PnWait PDi state)
def
=

PSCexech PnReset PnWait PDi (PSCexecl PnReset PnWait state)

The well-formed condition of the state variable is maintained by showing that an

update on the state variable maintains its structure. Lemma 1 shows that given

a well-formed processor state s and a natural number di, the result of evaluating

PSCexec with state and di maintains the structure of the processor’s state.

Lemma 1 (PSCexec-gives-statep)

((statep s) ∧ (natnp PDi)) → statep(PSCexec PnReset PnWait PDi state)

Lemma 1 is proved using the well-formedness lemmas of PSCexecl and

PSCexech. The correctness of both well-formedness lemmas depends on the

well-formedness lemmas of functions that construct PSCexecl and PSCexech

functions.

The processor (PSCexec) is defined using seventy-eight functions, in which

forty-one of them update the processor state variable. The well-formedness

condition of state needs to be preserved by all functions which update the state

variable. One lemma, which is similar to Lemma 1, is proven for each of these

forty-one functions.

ACL2 proves these lemmas automatically by rewriting. The well-formedness

proof of the processor took approximately one minute on a Linux machine with

an Intel Pentium II 400MHz processor with 384M RAM.

Chapter 6. The Simple Integration Platform (SIP) 63

6.3 Interrupt Model

6.3.1 The Architecture

Interrupt is the second master module. The module implements only the external

behaviour of the control signals. The internal functionality of the module is left

undefined. This simple model is meant to represent the protocol aspect of a more

complex core, for example: a Digital Signal Processing (DSP) core, a Memory

Manangement Unit (MMU), and etc. The module is meant to demonstrate the

disruption process on the operation of default master. The behaviour of this

module is sufficient for the purpose. The bus-request from the interrupt module

can force the bus-controller to stop granting the processor bus-access. One of the

consequences is that software execution has to be interrupted and later resumed.

The Interrupt module has two input signals (InReset, InWait) and one output

signal (InReadreq). The description of the signals are as follows:

Name Description

InReset is the reset signal. A LOW level input signal forces the interrupt

to go to the default reset state.

InWait is the wait signal. A LOW level input signal stalls the interrupt.

InReadreq is the request signal. When the signal is LOW, it indicates that

the interrupt module requires bus access.

Tab. 6.5: Interrupt Input/Output Interfaces

The behaviour of the module sends a request signal (InReadreq) to obtain bus

ownership. Whenever granted, it keeps the bus for n cycles before releasing the

bus. After m cycles of idle state, the cycle will be repeated.

6.3.2 The Formal Specification of an Interrupt Module

The formal model of an Interrupt module is specified in HOL. The function takes

input control signals (InReset, InWait) and the state of the interrupt module

(Istate). Istate contains two elements: a counter which defines the number of idle

or active cycles of the interrupt and the status of interrupt request (InReadreq).

The block diagram of an Interrupt finite state machine is described in Figure 6.2

The idle and active cycles are implemented using a 2-bit counter. InitCounter

initialises the counter to the value of zero. When the counter reaches the

maximum value of three, the counter will be re-initialised and the request signal

will be toggled. The description of ISCexec is provided in Definition 14.

Chapter 6. The Simple Integration Platform (SIP) 64

S0

Sn

S0

Sm

FSM FSM

Request Idle

Fig. 6.2: Block Diagram of an Interrupt Finite State Machine

Definition 14 (HOL interrupt functional model: ISCexec)

ISCexec(InReset InWait Istate)
def
=

if InReset

then if (InReadreq(Istate) ∨ InWait)

then if (Counter(Istate) = n)

then (InitCounter ,¬(InReadreq(Istate)))

else inc counter(Istate)

else Istate

else (InitCounter , InReadreq)

6.4 Memory Model

Memory is the only slave module in the SIP architecture. It is specified to be

capable of responding to any request during one clock cycle. It is also assumed

that the module covers all address spaces.

The module contains two types of memory, Read Only Memory (ROM) and

Random Access Memory (RAM). An application in the form of program codes

is stored in the ROM. In this way, we prevent it from being a self-modifying

system. All other data used in the operations are stored in the RAM component.

6.4.1 The Architecture

The memory module has five external interfaces, four inputs and one output.

The inputs are (MnReset, MnRW, MAddress, MDataIn) and the output is

(MDataOut). A description of these input and output signals is shown in

Table 6.6

Chapter 6. The Simple Integration Platform (SIP) 65

Name Description

MnReset is the reset signal. A LOW level input signal forces the memory

to go to its default reset state.

MnRW is the input read or write signal. Memory is in the read cycle

when the signal is LOW. Otherwise, it is in the write cycle.

MAddress is the address line. This input line provides the memory

address for the memory module to operate.

MDataIn is the input data line. This input line allows the data to be

written into the memory module in the write cycle.

MDataOut is the output data line. This output line provides the data

to be transfered out of the memory module.

Tab. 6.6: Memory Input/Output Interfaces

6.4.2 The Formal Specification of a Memory Module

A memory module is formally specified in ACL2. Modelling the entire memory

as an array may consume a large amount of space and make the approach

unrealistic. Another approach is to build a model where only the necessary

elements exist in the model [60, 68, 82]. In this approach, a memory element is

represented as a tuple (add, val). The tuple represents the content of memory

val as stored in the address add. The description of a memory-cell is provided

in Definition 15.

Definition 15 (ACL2 memory cell: MemCell)

MemCell(address, value) def
= (address, value)

A memory module is represented as a list of memory-cells. Initially, the module

has a default value of an empty list. Every time the module is written, either

a memory cell is added to the list or the existing memory-cell is updated with

a new value. This representation removes the need for representing the whole

array of memory-cells.

We define two predicates for the memory cell model: MemCellp and

MemModulep. (MemCellp x) ensures that x is a memory cell which contains

two natural numbers: an address identifier and its contents. (MemModulep

x) guarantees that x is a memory module which is a list of memory cells.

Descriptions of MemCellp and MemModulep are provided in Definition 16 and

Definition 17 respectively.

Definition 16 (ACL2 memory cell predicate: MemCellp)

MemCellp(Address,Value) def
= ((natnp address) ∧ (natnp value))

Chapter 6. The Simple Integration Platform (SIP) 66

Definition 17 (ACL2 memory module predicate: MemModulep)

MemModulep(mem) def
= if (atom mem)

then (mem = nil)

else (MemCellp(car mem) ∧ MemModulep(cdr mem))

Similarly to the processor module, the memory module is also defined using a

state function (f : inputs→ state→ state). The inputs are the input interface

of the memory (MnReset, MnRW, MAddress, MDataIn). The state is the

internal state of the memory. A memory state variable contains two variables:

a list of memory cells and output data. The first element is a list of MemCell.

The second element is a natural number and represents the data on the output

port of the memory module. The definition for a memory state variable is as

follows:

Definition 18 (ACL2 memory’s state: MemState)

MemState(mlist mdo) def
= list mlist mdo

The behaviour of a memory module is formalised by the MSCexec function. It

takes five arguments, MnReset, MnRW, MDi, MAdd and Mstate. The nMreset

sets the memory module into an initial state memReset . The initial condition

of the memory module can be defined in various forms. It can be in the form of

an empty list or contain a list of memory cell values. A pre-loaded application

code can be represented in this form. The MnRW defines the memory read or

write operation. A LOW signal of MnRW means that the memory module is

performing a read operation, while a HIGH signal means a write operation. The

description of MSCexec function is as follows:

Definition 19 (ACL2 memory functional model: MSCexec)

MSCexec(MnReset MnRW MDi MAdd Mstate)
def
=

if MnReset

then if MnRW

then (WriteMemSt MAdd MDi Mstate)

else (ReadMemSt MAdd Mstate)

else memReset

Similar to the processor, Lemma 2 shows that a given Mstate satisfies the

memory state predicate and both address and data-in are natural numbers, the

result of evaluating MSCexec with Mstate, MDi, and MAdd satisfies MemStatep.

Lemma 2 (MemExec-gives-memstatep)

((MemStatep Mstate) ∧ (natnp MDi) ∧ (natnp MAdd))

→

MemStatep(MSCexec MnReset MnRW MDi MAdd Mstate)

Chapter 6. The Simple Integration Platform (SIP) 67

Lemma 2 depends on the well-formed results of the memory write operation

(WriteMemSt) and the memory read operation (ReadMemSt). ACL2 proves

these three lemmas automatically by rewriting.

6.4.3 Application Code

Embedded software is a vital component in SoC design. It is used to derive a

series of product using the same platform. The embedded software component

is stored in the memory module. In general, there are two ways to have the

embedded software in the memory module. The first one is by having the

embedded software as part of the memory module, such as storing the code

in the ROM part of the memory module. The second one is by uploading the

embedded software into the memory module when the system is started. In this

case study, the first approach is used. The embedded software is stored in the

ROM part of the memory module.

Each instruction of the embedded software occupies one memory cell. It is

defined as a tuple of address and code. The address is the memory location in

which the instruction is stored. The code is the instruction representation in

machine code. For example, the instruction (MOV R5,#11) stored in memory

location 3 is represented by (memcell 3 1933). Instructions of the embedded

software in the memory module are stored in the memory module and is defined

as a list of memory cells.

A fragment of embedded software code is implemented in SIP as part of the

memory module. This code will be used to demonstrate the verification of a SIP

hardware/software system. The code is stored in the ROM which prevents the

system from being able to modify the code. It performs an addition operation,

which involves reading the operand values from the memory and writing back

the result. It is described as follows:

Address Instructions Code Memory Element

. . .

1 MOV R5,#10 1925 (memcell 1 1925)

2 LDA R0,R5 1640 (memcell 2 1640)

3 MOV R5,#11 1933 (memcell 3 1933)

4 LDA R1,R5 1641 (memcell 4 1641)

5 ADD R2,R1,R0 648 (memcell 5 648)

6 MOV R5,#12 1941 (memcell 6 1941)

7 STA R5,R2 1706 (memcell 7 1706)

. . .

The above instructions are translated into ACL2 as a list. The order of memory

cells in the list is not important, provided all data are using unique memory

Chapter 6. The Simple Integration Platform (SIP) 68

addresses. If there are two or more memory cells which have the same address,

the most recent memory cell will be used in the read/write operations. The

addition operation codes are described as follows:

Definition 20 (ACL2 Memory Initial Condition: memResetLst)
(defun memResetLst nil

(declare (xargs :guard t))

(list (memcell 1 1925)

(memcell 2 1640)

(memcell 3 1933)

(memcell 4 1641)

(memcell 5 648)

(memcell 6 1941)

(memcell 7 1706)))

The memory module uses the above function to initialise the module. Whenever

a reset signal is fed to the module, it automatically deletes all data in the list

and replaces them with the contents of ROM (memResetLst).

6.5 System Integration Module and Bus

Control (SIMBC)

All master and slave modules are integrated through a common bus system.

System Integration Module and Bus Control (SIMBC) is the platform where

modules are integrated. SIMBC contains two main components, the arbiter and

the bus multiplexer. The arbiter manages the control signals, while the bus

multiplexer provides the mechanism for data transfers.

6.5.1 The Arbiter

The arbiter is responsible for managing the control of data transactions between

modules. It responds to request signals from masters by granting one of them

access to the data-bus and providing read or write signals to the memory module.

The arbiter implements a bus priority arbitration scheme. The interrupt has the

highest priority, while the processor gets the lowest priority. A request from the

interrupt is always granted, except when the processor is in lock mode. When no

master is requesting to access the bus, the default master/processor is granted

bus access. A SIMBC state transition diagram is presented in Figure 6.3

In general, the arbiter module can be implemented in any of the supported

systems such as HOL, ACL2, and SMV. One consideration is that an arbiter is

Chapter 6. The Simple Integration Platform (SIP) 69

IDLE

InWait = 0
PnWait = 1
PnRW

RESET

InWait = 0
PnWait = 0

interrupt

InWait = 1
PnWait = 0
InRW

processor
InWait = 0
PnWait = 1
PnRW

nReset=0

nReset=0

nReset=1

 nReset=1
InReadreq'=1
 nMreq'=0

nReset=1
InReadreq'=1
PnMreq=1
PLock=0

 nReset=1
InReadreq'=0
 Lock=0

 nReset=1
InReadreq'=1
 nMreq'=1

nReset=1
InReadreq'=1
PnMreq'=0

PLock=1

nReset=1
InReadreq'=0nReset=0

nReset=0

nReset=1
InReadreq'=0

Fig. 6.3: SIMBC State Transitions Diagram.

normally verified using a model checker. A preferable approach is to describe it

in a system which can perform model checking. The other approach is to describe

the arbiter as a collection of properties about the behaviour of its interfaces. In

this approach, attention is focused on defining the intended properties. The

properties are the golden model in describing the arbiter implementation.

In this case study, the arbiter module is specified as a set of LTL specifications.

It is an abstraction which represents the external interface which is expected to

be found in any implementation. The specifications describe the input/output

relational behaviours of the module. The specifications of the arbiter are

described in Definition 21.

Definition 21 (HOL Arbiter)

Arbiter SnReset SPnWait SPLock SPnRW SInReadreq SInWait SInRW SMnRW
def
=

G((¬SPnWait ∨ ¬SInWait) ∧

(SPnWait → (SMnRW = SPnRW)) ∧

(SInWait → (SMnRW = SInRW)) ∧

((¬SPnWait ∧ ¬SInWait)→ ¬SMnRW) ∧

(SnReset → (SPnWait ∨ SInWait)) ∧

(¬SnReset → (¬SPnWait ∧ ¬SInWait)) ∧

(¬SnReset → (X SnReset → X SPnWait)) ∧

((X SnReset ∧ SPLock)→ X SPnWait) ∧

((X SnReset ∧ SInReadreq)→ X SPnWait) ∧

((X SnReset ∧ ¬SPLock ∧ ¬SInReadreq)→ X SInWait)

Chapter 6. The Simple Integration Platform (SIP) 70

The later case study presented in Chapter 8 and 9 will describe in more detail

the approach to obtain the properties from a specific implementation.

6.5.2 The Bus Multiplexer

The bus multiplexer is responsible for managing the selection of which module’s

data are available in the data-bus and address-bus. The selection depends on

the output control signals from the arbiter. Similar to the arbiter, the bus

multiplexer module can be implemented in any of the supported systems such

as HOL, ACL2, and SMV. For the same reason, the bus multiplexer module is

specified using LTL specifications. The specification describes the input/output

relational behaviour of the module. When the processor is granted the bus, the

address-bus value comes from the processor and the data-bus comes either from

the processor or the memory. A similar behaviour is also applied to the interrupt

module. The specification of the bus module is described in Definition 22.

Definition 22 (HOL Bus-Mux)

Bus−Mux SPnWait SPnRW SPDi SPDo SPAdd SInWait SInRW SIDi SIDo SIAdd

SMDi SMDo SMAdd
def
=

G(SPnWait → ((SPnRW → ((SPDo = SMDi) ∧ (SPDi = SPDo))) ∧

(¬SPnRW → ((SMDo = SMDi) ∧ (SPDi = SMDo))) ∧

(SPAdd = SMAdd))) ∧

G(SInWait → ((SInRW → ((SIDo = SMDi) ∧ (SIDi = SIDo))) ∧

(¬SInRW → ((SMDo = SMDi) ∧ (SIDi = SMDo))) ∧

(SIAdd = SMAdd)))

6.6 The Verification Platform

In the verification platform, modules are connected and integrated in the HOL

theorem prover environment. Every module which is not formalised in HOL

needs to have an interface to bridge their differences in formalism. The formal

verification environment described in Chapter 3 has a collection of methods

and techniques to create such links or interfaces. For example: the PROSPER

and ACL2PII framework provides the environment to define connections

between ACL2 and HOL. The ACL2 formal model can be interpreted in HOL

automatically. In this section, the construction of the SIP formal verification

platform will be described.

Chapter 6. The Simple Integration Platform (SIP) 71

6.6.1 Interfacing Processor-Module

Sharing knowledge between ACL2 and HOL means both systems must have an

identical interpretation of the same piece of information. This is achieved by

defining the relationship between definitions in ACL2 and HOL. It is sufficient

to have a middle level of abstraction linking these two definitions. For example,

the interface allows an ACL2 function definition to be imported into HOL. On

the other hand, a HOL constant representation is sufficient to represent an ACL2

function in HOL.

The internal representation of the processor is defined by state. In ACL2, the

state is represented as a list of variables. The type of the list is defined by the

state predicate function statep. In HOL, these two definitions are joined together

and used in defining the structure of Pstate ty. Pstate ty is the type of processor

state in HOL. The definition of the type structure is given in Definition 23.

Definition 23 (Type: Pstate ty)

Pstate ty
def
=

: num list#num#num#num#bool#num#num#bool#bool#bool#bool#bool#num#num

Seven HOL constants are declared to represent ACL2 functions. The constants

are the processor execution function (PSCexec), the state predicate (statep),

memory request (PnMreq), read/write request (PnRW), lock request (PLock),

data-out (PDo), and address (PAdd). The last four constants are also a group

of accessor functions. Constants are created in HOL using the mkbasefun

function. The mkbasefun function takes four arguments. The first and third

arguments represent the ACL2 function name and the HOL constant. The

second argument is the number of inputs for the functions. The last argument

is the type definition for the constant. For example, the HOL constant for the

memory request function is defined as (mkbasefun “PnMreq” 1 “PNMREQ”

Pstate ty→bool). By correlating PnMreq and PNMREQ, the system recognises

the ACL2 function PnMreq to have the same meaning as the uninterpreted HOL

constant PNMREQ. The seven HOL constants are described in Table 6.7.

In HOL, we transform the PSCexec functional model into SPC. SPC is a

relational model representation of PSCexec. The model uses time-varying inputs

and outputs. It employs the usual notation of signal, which is a Boolean valued

function taking discrete time arguments. An initial state of the processor (Pst0)

is supplied for the base case (t=0). The result of executing the PSCexec function

at time t is defined as the next state value (SPst.(t+1)).

Chapter 6. The Simple Integration Platform (SIP) 72

ACL2 name HOL constant HOL type

PSCexec PSCEXEC bool→bool→num→Pstate ty→Pstate ty

PSCexecl PSCEXECl bool→bool→Pstate ty→Pstate ty

PSCexech PSCEXECh bool→bool→num→Pstate ty→Pstate ty

statep STATEP Pstate ty→bool

PnMreq PNMREQ Pstate ty→bool

PnRW PNRW Pstate ty→bool

PLock PLOCK Pstate ty→bool

PDo PDO Pstate ty→num

PAdd PADD Pstate ty→num

Tab. 6.7: HOL abstract representations of ACL2 Processor functions

Definition 24 (HOL processor relational model: SPC)

SPC SPnReset SPnWait SPDi SPst Pst0
def
=

(SPst 0 = Pst0) ∧

∀t . (SPst(t + 1) = PSCEXEC (SPnReset t)(SPnWait t)(SPDi t)(SPst t))

The well-formed nature of the processor state has to be maintained by the

SPC function. The well-formedness lemma is shown in Lemma 3. The

lemma describes that given the initial state of the processor Pst0 satisfies the

state-predicate STATEP, data-in di is always a natural number, and the state

of SPst at (t+1) is obtained by evaluating PSCEXEC function with the state

of SPreset, SPwait, SPdi, and SPst at t, then SPst will always satisfy the

state-predicate STATEP.

Lemma 3 (SPCGivesStatep H)

SPC SPnReset SPnWait SPDi SPst Pst0 ∧

STATEP Pst0 ∧

∀t . natnp(SPDi t)

→

∀t . STATEP(SPst t)

The HOL execution code to prove Lemma 3 is presented as follows:

- val PSCexecGivesStatep_A = GEN_ALL (getthm [] "PSCEXEC-GIVES-STATEP");

> val PSCexecGivesStatep_A =

|- !WT RST S DI.

NATNP DI /\ STATEP S ==> STATEP (PSCEXEC RST WT DI S) : thm

- val SPCGivesStatep_H = TAC_PROOF(([],--‘

!SnReset SPnWait SPDi PS0 SPState.

(SPC SnReset SPnWait SPDi PS0 SPState /\

(!t. NATNP (SPDi t)) /\ STATEP PS0)

==>

(!t. STATEP (SPState t))‘--),

... THEN (Induct_on ‘t‘)

... THEN (FULL_SIMP_TAC hol_ss [PSCexecGivesStatep_A]));

Chapter 6. The Simple Integration Platform (SIP) 73

> val SPCGivesStatep_H =

|- !SnReset SPnWait SPDi PS0 SPState.

SPC SnReset SPnWait SPDi PS0 SPState /\ (!t. NATNP (SPDi t)) /\

STATEP PS0 ==>

!t. STATEP (SPState t) : thm

The proof of Lemma 3 depends on PSCexec-gives-statep lemma (Lemma 1).

The ACL2 lemma is imported into HOL using the getthm command. The HOL

version of Lemma 1 is stored as PSCexecGivesStatep A. Lemma 3 is then proved

by induction on t and using PSCexecGivesStatep A.

Finally, we define the processor module with its input and output interfaces.

The output signals (SPnMreq, SPLock, SPAdd, SPdo, SPnRW) are obtained by

applying the accessor functions to its state variable (SPstate). The processor

module description is provided in Definition 25.

Definition 25 (HOL processor core: Processor)

Processor SPnReset SPnWait SPDi PS0 SPstate SPnMreq SPLock SPnRW

SPDo SPAdd
def
=

SPC SPnReset SPnWait SPDi SPstate PS0 ∧

∀t . (SPnMeq t) = PNMREQ(SPstate(t + 1)) ∧

∀t . (SPLock t) = PLOCK (SPstate(t + 1)) ∧

∀t . (SPnRW t) = PNRW (SPstate(t + 1)) ∧

∀t . (SPDo t) = PDO(SPstate(t + 1)) ∧

∀t . (SPAdd t) = PADD(SPstate(t + 1)) ∧

∀t . NATNP(SPDi t) ∧

STATEP(Pst0)

6.6.2 Interfacing Interrupt-Module

The interrupt module is already modelled in HOL. It transforms a direct

representation of the functional model into a relational one. The transformation

uses a similar approach as the processor module. The relational model of the

interrupt module is implemented as the base case and the step case. In the base

case, the initial state of the module (Ist0) is defined. The step case is the next

state function for the interrupt module. The relational definition of ISCexec is

described as follows:

Definition 26 (HOL interface module: SIC)

SIC SInReset SInWait SIst Ist0
def
=

(SIst 0 = Ist0) ∧

∀t . (SIst(t + 1) = ISCexec(SInReset t)(SInWait t)(SIst t))

Chapter 6. The Simple Integration Platform (SIP) 74

The Interrupt module is constructed from SIC and its state values. Three state

signals are obtained from the interrupt state variable. SIreq is the interrupt

request signal, SI0 and SI1 are the counters that define how long the module is in

active and idle mode. One output signal and three bus interfaces are introduced.

Four signal and bus uninterpreted interfaces are introduced as part of interrupt

module interfaces. These interfaces represent input/output connections of the

module without internal functionality being implemented. These interfaces are

one read/write output signal (SInRW) and three buses: the data-input bus

(SIDi), the address bus (SIAdd), and the data-output bus (SIDo). The Interrupt

module is defined in Definition 27.

Definition 27 (HOL interrupt core: Interrupt)

Interrupt SInReset SInReadreq SInWait SInRW SIDi SIAdd SIDo SI0 SI1 SIst Ist0
def
=

SIC SInReset SInWait SIst Ist0 x ∧

∀t . (SInReadreq t) = SND(SIst(t + 1)) ∧

∀t . (SI0 t) = FST (FST (SIst(t + 1))) ∧

∀t . (SI1 t) = SND(FST (SIst(t + 1)))

6.6.3 Memory-Module

Similarly to the processor, the memory is modelled in ACL2. The state

representation of the memory is described in HOL. Two memory state

representations are defined in Definition 28 and 29; the memory structure

(MemModule ty) which contains the tuples of (address,value) and the memory

component structure which contains the tuples (address,value) and the data-out

line or register of the memory.

Definition 28 (Type: MemModule ty)

MemModule ty def
= (num#num)list

Definition 29 (Type: Mstate ty)

Mstate ty def
= (num#num)list#num

Thirteen HOL constants are defined to represent ACL2’s abstract functions. The

functions can be grouped into functions for data constructors, data accessors,

data processing, and data predicates. The data constructor functions are

the memory cell constructor (MemCell) and the memory state constructor

(MemState). The data accessor functions are the content accessor of a memory

cell (GetMemCell), the memory cells accessor (MemList), and the output data

register accessor (MemDo). The data processing functions are the memory

Chapter 6. The Simple Integration Platform (SIP) 75

execution function (MEMexec), the memory write function (MEMexecW), the

memory read function (MEMexecR), and the test function (IsMemExists).

Finally, the predicate functions for memory cell (MemCellP), memory cells

(MemP), memory module (MemModuleP), and memory state (MemStateP). The

thirteen HOL memory representations are described in Table 6.8.

ACL2 name HOL constant HOL type

MSCexec MSCEXEC bool→bool→num→num→Mstate ty→

Mstate ty

MEMexecW MEMEXECW bool→num→num→MemModule ty→

MemModule ty

MEMexecR MEMEXECR bool→num→MemModule ty→num

MemList MEMLIST Mstate ty→MemModule ty

MemDo MEMDO Mstate ty→num

MemState MEMSTATE MemModule ty→num→Mstate ty

MemStateP MEMSTATEP Mstate ty→bool

MemP MEMP num list→bool

MemCell MEMCELL num→num→MemCell ty

MemCellP MEMCELLP MemCell ty→bool

MemModuleP MEMMODULEP MemModule ty→bool

IsMemExists ISMEMEXISTS num→MemModule ty→bool

GetMemCell GETMEMCELL num→MemModule ty→MemCell ty

Tab. 6.8: HOL abstract representations of ACL2 functions

In HOL, we transformed the MEMexec functional model into SMC. SMC is

the relational representation of MEMexec. The ISMEMEXISTS function is

the memory decoder which partitions the memory module into several memory

components. The initial condition of SMC is defined by Mst0. If ISMEMEXISTS

is TRUE then the result of executing a MEMEXEC function at time t is defined

as the next state value (SMst.(t+1)). If it is FALSE then the internal state of the

memory remains the same. A description of SMC is provided in Definition 30.

Similarly to the processor module, the well-formed nature of the memory state

SMst has to be maintained. The proof is performed using induction on t and

the HOL version of Lemma 2.

Chapter 6. The Simple Integration Platform (SIP) 76

Definition 30 (HOL memory module: SMC)

SMC SMnReset SMDi SMAdd SMnRW SMst SMDo SMst Mst0
def
=

(SMst 0 = Mst0) ∧

∀t . SMst(t + 1) =

(if (ISMEMEXISTS (SMAdd t)(MEMLIST (SMst t)))

then (MSCEXEC (SMnReset t)(SMnRW t)(SMDi t)(SMAdd t)(SMst t))

else (MEMSTATE (MEMLIST (SMst t))(SMDo t))) ∧

∀t . NATNP(SMDi t) ∧

∀t . NATNP(SMAdd t) ∧

∀t . NATNP(SMDo t) ∧

MEMSTATEP(Mst0)

In SIP, the memory module is constructed from two memory components. Every

memory address has a unique location within the memory module and all

memory components share the data output register. These rules are described

in Definition 31.

Definition 31 (HOL memory module constraints: MemRules)

MemRules SMAdd SMst SMst1 SMst2 Mst0
def
=

∀add t . GETMEMCELL(SMAdd t)(MEMELIST (SMst t)) =

(if (ISMEMEXISTS (SMAdd t)(MEMLIST (SMst1 t)))

then (GETMEMCELL(SMAdd t)(MEMELIST (SMst1 t)))

else (GETMEMCELL(SMAdd t)(MEMELIST (SMst2 t)))) ∧

∀add t . (ISMEMEXISTS (SMAdd t)(MEMLIST (SMst1 t)) ∨

ISMEMEXISTS (SMAdd t)(MEMLIST (SMst2 t))) ∧

∀add t . (¬(ISMEMEXISTS (SMAdd t)(MEMLIST (SMst1 t))) ∨

¬(ISMEMEXISTS (SMAdd t)(MEMLIST (SMst2 t)))) ∧

∀t . MEMDO(SMst t) =

(if (ISMEMEXISTS (SMAdd t)(MEMLIST (SMst1 t)))

then (MEMDO(SMst1 t))

else (MEMDO(SMst2 t))) ∧

MEMSTATEP(Mst0)

Finally, we define the memory module (memory) with its input and output

interfaces. The module contains two memory elements defined by their state

variables (SMst1, SMst2). The outputs of this memory module (SMDo, SMlist)

are obtained by applying the accessor functions to its state variable (SMst). The

memory module is defined in Definition 32.

Chapter 6. The Simple Integration Platform (SIP) 77

Definition 32 (HOL memory core: Memory)

Memory SMnReset SMnRW SMDi SMAdd SMDo SMlist SMst SMst1 SMst2

Mst0 Mst1 Mst2
def
=

SMC SMnReset SMDi SMAdd SMnRW SMst1 SMDo SMst Mst1 ∧

SMC SMnReset SMDi SMAdd SMnRW SMst2 SMDo SMst Mst2 ∧

MemRules SMadd SMst SMst1 SMst2 Mst0 ∧

∀t . (SMDo t = MEMDO(SMst t)) ∧

∀t . (SMlist t = MEMLIST (SMst t))

6.6.4 SIP

The SIP platform is implemented by integrating the processor module, interrupt

module, memory module, and SIMBC module. The architecture of the platform

is presented in Figure 6.4. Interconnection of the components in the verification

platform is straightforward. The formal models are integrated and connected

using higher order logic to compose relational predicates that model each

component. All nodes which share the same connection are defined with the

same name. The SIP is defined below:

Processor
Module

Interrupt
Module

SIMBC
arbiter

Data
Bus Bus

Addr

SIMBC

Memory
Module

PnWait

InReadreq

InWait

PnMreq, PnRW, PLock

MnRW

Fig. 6.4: Simple Integration Platform

Chapter 6. The Simple Integration Platform (SIP) 78

Definition 33 (HOL the verification platform: SIP)

SIP SnReset SPnWait SPnMreq SPDi SPLock SPAdd SPDo SPnRW SPst Pst0

SInReadreq SInWait SInRW SIDi SIAdd SIDo SI0 SI1 SIst Ist0

SMnRW SMDi SMAdd SMDo SMlist SMst SMst1 SMst2 Mst0 Mst1 Mst2
def
=

Processor SnReset SPnWait SPDi PS0 SPState SPnMreq SPLock SPnRW

SPDo SPAdd ∧

Interrupt SnReset SInReadreq SInWait SInRW SIDi SIAdd SIDo SI0 SI1 SIst Ist0 ∧

Memory SnReset SMnRW SMDi SMAdd SMDo SMlist SMst SMst1 SMst2 Mst0

Mst1 Mst2 ∧

Arbiter SnReset SPnWait SPLock SPRW SInReadreq SInWait SMnRW ∧

Bus−Mux SPnWait SPRW SPDi SPDo SPAdd SInWait SIRW SIDi SIDo SIAdd

SMDi SMDo SMAdd

6.7 Summary

This chapter described the specifications and formalisms of SIP. SIP is a case

study used to demonstrate the development of a formal verification platform in a

heterogenous formal verification environment. The decision on how to formalise

the design is based on two components: what modules are used to build the

SoC design and what properties will be verified. Each module of the platform

is formalised in the most suitable form for verification.

The first stage in defining how to formalise the design is gathering the design

and target verification information. First, SIP is a platform which contains four

modules: processor module, interrupt module, memory module, and SIMBC

module. Second, two properties of SIP are verified. The first property is the

liveness of bus request signal from the master modules. The second property

is the correctness of embedded software when it is evaluated in SIP. In the

second stage, the decision how to formalised each module is taken based on

these two properties. The processor, the memory and the embedded software are

formalised in the symbolic simulation environment (ACL2). The SIMBC is the

main module in the liveness verification. It is formalised in the model checking

environment (SMV). The interrupt module is formalised in the theorem proving

environment (HOL). All modules are then integrated in the HOL environment.

Integrating modules with different formalisms require a layer of interface that

defines the relationship between different formalisms. HOL is used as the

environment to integrate the modules. Any module which is not implemented

in HOL has to have logical interfaces which create the relationship between

definitions in both systems. The logical connection of SMV is provided by

Chapter 6. The Simple Integration Platform (SIP) 79

embedding LTL in HOL. An interface is created for each module defined in

ACL2. The interface contains the ACL2 data-types correlation in an HOL

structure and ACL2 functions are represented as HOL constants.

The formal verification platform of SIP is defined by integrating the modules

in higher order logic. This is achieved by connecting the relational predicates

of each module. All modules defined in the functional modelling style need to

be transformed to the relational modelling style. In this approach, every node

which shares the same connection also shares the same connection name.

Chapter 7

The Formal Verification of Simple

Integration Platform

As described in Section 3.5, the SoC design validation is based on three validation

steps: validation at the block level, interface level, and full-chip level. The SIP

validations use the last two steps. This chapter is intended to demonstrate

the feasibility of a top level verification of the whole system. It is assumed

that all SIP components are correct. Subsequently, no block level validations

are performed for SIP. The functional correctness in block level validation is

replaced by validating the component to obtain its implementation properties.

In the interface level validation, the goal is to validate the liveness properties of

the system. Finally, the full-chip level validation is explained by describing the

correct execution of a software application that is embedded in the system.

7.1 SIP Liveness Proofs

Every master that wants to access the bus has to send a request signal

to the arbiter. The arbiter processes the requests using a fixed priority

arbitration scheme and decides which master is granted access to the bus. The

liveness properties of SIP request signals guarantee that any attempted request

eventually will be granted. These properties depend only on the behaviour of

the masters and the arbiter modules. The behaviour of the slave module does

not affect the arbitration process. These liveness properties are shown in the

following theorem:

Theorem 4 (Liveness of SIP: SIPLiveness H)

SIP →

G((SnReset U SPnWait)→ F SPnWait) ∧

G((¬SInReadreq ∧ (SnReset U SInWait))→ F SInWait)

Theorem 4 describes two liveness properties of SIP. The first property deals with

a request from the Interrupt module. When the module sends a request signal

and no reset is applied during the wait process then the request will eventually

Chapter 7. The Formal Verification of Simple Integration Platform 81

ProcUnlock_AProcUnlock_H

SIP_Liveness_H

ProcReqLiveness_H

IntReqLiveness_H

IntReqFairness_S

MaintainIntReq_H
IntLiveness_S

ProcFairness_S

ISCEXECbeh_S

Fig. 7.1: Dependency lemmas for SIPLiveness

be granted. The second property states that the processor will eventually get

ownership of the bus, provided no reset is applied during the wait process. The

correctness of this theorem is given by two lemmas; the interrupt liveness lemma

(Lemma 4) and the processor liveness lemma (Lemma 14). Figure 7.1 shows the

lemmas needed to prove SIPLiveness H (Theorem 4). A naming scheme is used

for each lemma and theorems. A HOL lemma or theorem name is followed by

H. SMV and ACL2 lemmas or theorems are followed by S and A respectively.

All basic properties of the component are gathered using the appropriate formal

tool. The choice of tool depends on how the component is specified. These

properties are then gathered and imported into HOL, where the liveness of the

SIP system will be proved.

In the remainder of this section, the proofs of these liveness lemmas are described.

A sketch of proofs of the main liveness lemmas is provided. Figure 7.1 provides

the road map for the structure of the descriptions.

7.1.1 Liveness of Interrupt Request

The first liveness property is the liveness of interrupt request. This property is

described in Lemma 4. The lemma guarantees that any interrupt request will

eventually be granted. The lemma is shown below:

Lemma 4 (Liveness of Interrupt Request: IntReqLiveness H)

SIP → G((¬SInReadreq ∧ (SnReset U SInWait))→ F SInWait)

The first lemma used to prove Lemma 4 is the processor unlock lemma. The SIP

design states that a request from the Interrupt module has a higher priority

than the Processor module bus request. Normally, the Arbiter grants the

interrupt bus access in the following clock cycle after receiving the request

signal. The only exception is when the Processor is locking the bus. The

Arbiter has to wait until the Processor has completed its activity and retracts

the lock signal before it can grant a new arbitration. The liveness condition

Chapter 7. The Formal Verification of Simple Integration Platform 82

requires the Processor to be able to retract its lock request and not to lock the

bus forever. Lemma 5 shows that the processor will eventually retract the lock

request. The lemma is shown below:

Lemma 5 (Processor not locking (ACL2): ProcUnlock A)

rst1 ∧ wt1 ∧ (natnp di1) ∧ (statep s)

→

¬(PLock(PSCexec rst1 wt1 di1 s)) ∨

(rst2 ∧ wt2 ∧ (natnp di2)

→

¬PLock(PSCexec rst2 wt2 di2 (PSCexec rst1 wt1 di1 s)) ∨

(rst3 ∧ wt3 ∧ (natnp di3)

→

¬PLock(PSCexec rst3 wt3 di3 (PSCexec rst2 wt2 di2 (PSCexec rst1 wt1 di1 s)))

The above lemma says that for any processor state, in at most three clock

cycles the processor will un-lock the bus. The correctness of the above lemma

is obtained by performing a case split analysis on all instruction cycles of the

processor. The instruction cycles are described in Section 6.2. Based on the

number of cycles to the un-locking condition, the case split results are grouped

into three categories: one execution cycle; two execution cycles; and three

execution cycles. Figure 7.2 shows the lemmas needed to prove ProcUnlock A

(Lemma 5).

Unlock−FSM0_A
Unlock−FSM1_A
Unlock−FSM2_A
Unlock−FSM3_A
Unlock−FSM4_A
Unlock−FSM7_A
Unlock−FSM8_A
Unlock−FSM9_A
Unlock−FSM9+_A

FSM6−to−FSM7_A

FSM5−to−FSM6_A

Unlock−1Cycle_A

Unlock−2Cycle_A

Unlock−3Cycle_A

ProcUnlock_A

Fig. 7.2: Dependency lemmas for ProcUnlock A

The Processor sends a lock (HIGH) signal only when it executes a SWAP

instruction. It is indicated by an internal fsm set to 5 or 6. Otherwise, the

Chapter 7. The Formal Verification of Simple Integration Platform 83

lock signal is set to LOW which indicates that the processor is not in a lock

mode. The later condition is described in Lemma 6.

Lemma 6 (Processor one cycle unlock: Unlock-1Cycle A)

rst ∧ wt ∧ (natnp di) ∧ (statep s) ∧ ((Pfsm s <= 4) ∨ (Pfsm s >= 7))

→

¬PLock(PSCexec rst wt di s)

Lemma 7 shows one of the cases used in proving Lemma 6. It states that with

a no reset, a no wait, and an internal fsm equal to 7, a no lock signal will be

produced as a result of the processor’s execution.

Lemma 7 (Processor state 7: Unlock-FSM7 A)

rst ∧ wt ∧ (natnp di) ∧ (statep s) ∧ (Pfsm s = 7) → ¬PLock(PSCexec rst wt di s)

There are eight more lemmas which are similar to Lemma 7. Each lemma

represents a proof for each possible processor state, except when the state is

equal to 5 or 6. These lemmas are used to prove Unlock-1Cycle A (Lemma 6).

If the internal fsm of the processor module is equal to 6, then in the next cycle

the internal fsm of the processor can be in state 7. This behaviour is described

in Lemma 8.

Lemma 8 (Processor state 6: FSM6-to-FSM7 A)

rst ∧ wt ∧ (natnp di) ∧ (statep s) ∧ (Pfsm s = 6) → Pfsm(PSCexec rst wt di s) = 7

Using a combination of Lemma 7 and 8, the Unlock-2Cycle A lemma (Lemma 9)

is proven. The lemma says that in two execution cycles, the processor will send

a no lock signal to the arbiter.

Lemma 9 (Processor two cycle unlock: Unlock-2Cycle A)

rst1 ∧ wt1 ∧ (natnp di1) ∧ rst2 ∧ wt2 ∧ (natnp di2) ∧ (statep s) ∧ (Pfsm s = 6)

→

¬PLock(PSCexec rst2 wt2 di2 (PSCexec rst1 wt1 di1 s))

A similar proof will be needed for the processor execution that starts in state 5.

In this case the first evaluation changes the processor’s state into state 6. This

condition results in a need for a minimum of three processor cycles to reach the

un-lock condition. This behaviour is shown in Lemma 10.

Lemma 10 (Processor three cycle unlock: Unlock-3Cycle A)

rst1 ∧ wt1 ∧ (natnp di1) ∧ rst2 ∧ wt2 ∧ (natnp di2) ∧

rst3 ∧ wt3 ∧ (natnp di3) ∧ (statep s) ∧ (Pfsm s = 5)

→

¬PLock(PSCexec rst3 wt3 di3 (PSCexec rst2 wt2 di2 (PSCexec rst1 wt1 di1 s)))

Chapter 7. The Formal Verification of Simple Integration Platform 84

The ProcUnlock A lemma (Lemma 5) and its subsequent lemmas are proved

using the ACL2 theorem prover. Lemma 5 is imported into HOL and

transformed using HOL’s Processor module definition. The HOL code to

import and transform Lemma 5 is shown as follows:

val ProcUnlock_A = GEN_ALL (getthm [] "PROCUNLOCK");

val ProcUnlock_H = TAC_PROOF(([],--‘

!SnReset SPnWait SPDi PS0 SPState SPnMreq SPLock SPRW SPDo SPAdd.

Processor SnReset SPnWait SPDi PS0 SPState SPnMreq SPLock SPRW SPDo SPAdd

==>

ALWAYS

(\t. ((SnReset t) /\ (SPnWait t)) ==>

(~(SPLock t) \/

((NEXT (\tx. (SnReset tx) /\ (SPnWait tx)) t) ==>

(~(NEXT SPLock t)) \/

((NEXT (NEXT (\tx. (SnReset tx) /\ (SPnWait tx))) t) ==>

~(NEXT (NEXT SPLock) t))))) 0‘--),

...

(ASSUME_TAC SPCGivesStatep_H) THEN ...

(ASSUME_TAC (SPECL ... ProcUnlock_A)) THEN ...);

The PROCUNLOCK lemma which is proven in ACL2 is imported into HOL and

stored as ProcUnlock A. Lemma ProcUnlock A and Lemma 3 are used to prove

ProcUnlock H lemma. The ProcUnlock H lemma is described in Lemma 11.

Lemma 11 (Processor not locking (HOL): ProcUnlock H)

Processor

→

G(SnReset ∧ SPnWait

→

¬SPLock ∨ (X (SnReset ∧ SPnWait)

→

X¬SPLock ∨ (X 2 (SnReset ∧ SPnWait)

→

X 2 (¬SPLock))))

The lemma guarantees that in at most three continous processor execution

cycles, the processor will unlock the bus.

The second lemma used to prove Lemma 4 is the continuation of interrupt request

lemma. When the system is in lock mode, the Interrupt is forced to be in a wait

state. The request from the interrupt will be evaluated again in the next clock

cycle. Since Arbiter does not memorise or keep track of incoming requests, the

Interrupt has to send the request signal again in the next clock cycle. This

interrupt property is shown in the following lemma:

Lemma 12 (Interrupt maintains its request: MaintainIntReq H)

Interrupt → G((X SnReset ∧ ¬SInReadreq ∧ X¬SInWait)→ X¬SInReadreq)

Chapter 7. The Formal Verification of Simple Integration Platform 85

The third lemma used to prove Lemma 4 is the liveness of interrupt request

lemma. A combination of Arbiter and properties from Lemma 11 and 12

are used to show the requirements to grant an interrupt request. When the

interrupt maintains its request until it is granted and the processor is not

infinetly locking the bus then the Arbiter will eventually grant the interrupt

request. This condition is described in Lemma 13. We prove this lemma using

SMV. The result is as follows:

Lemma 13 (Liveness condition of Interrupt Request: IntLiveness S)

Arbiter ∧

G((X SnReset ∧ ¬SInReadreq ∧ X¬SInWait)→ X¬SInReadreq) ∧

G(SnReset ∧ SPnWait

→

¬SPLock ∨ (X (SnReset ∧ SPnWait)

→

X¬SPLock ∨ (X 2 (SnReset ∧ SPnWait)

→

X 2 (¬SPLock))))

→

G((¬SInReadreq ∧ (SnReset U SInWait))→ F SInWait)

By combining Lemma 11, Lemma 12, and Lemma 13, the system level liveness

of the interrupt module described in Lemma 4 can be proven. The lemma is

interpreted as follows: If we have a system which contains a Processor, an

Interrupt, and an Arbiter, then whenever the interrupt sends a request signal

it will eventually be granted.

7.1.2 Liveness of Processor Request

The second liveness property is the liveness of the processor module to access

the bus. The lemma is shown below:

Lemma 14 (Liveness of Processor Request: ProcReqLiveness H)

SIP → G((SnReset U SPnWait))→ F SPnWait)

There are three conditions for the arbiter to grant the processor module bus

access. First, the processor sends a lock request signal to the arbiter which

recieves the highest arbitration priority. Second, when the processor sends a

request signal and the interrupt is in an idle condition then the processor is

granted bus access. Third, when no master is requesting to access the bus, the

arbiter grants the default master/processor. In other words, the only condition

that prevents the processor from accessing the bus is when the processor is

Chapter 7. The Formal Verification of Simple Integration Platform 86

not locking the bus and the interrupt is requesting to access the bus. These

conditions are used to show the liveness of the processor module. Lemma 15

shows that the interrupt will eventually stop requesting for bus access. This

property is obtained by model checking the behaviour of the interrupt module.

Lemma 15 (Interrupt behaviour: ISCEXECbeh S)

Interrupt → G(GF SInWait → F SInReadreq)

In this stage, two properties of the interrupt module have been proven. First,

when the interrupt is frequently granted then it will eventually stop requesting

for access to the bus (Lemma 15). Second, when the interrupt is requesting

the bus and no reset is applied during the waiting period then the request will

eventually be granted (Lemma 4). A new property about the interrupt is derived:

when there is no reset then the interrupt will eventually stop requesting for access

to the bus. This property is shown in Lemma 16. SMV is used to prove the

lemma.

Lemma 16 (Fairness of interrupt request: IntReqFairness S)

G(GF SInWait → F SInReadreq) ∧

G((¬SInReadreq ∧ (SnReset U SInWait))→ F SInWait)

→

G((SnReset U SInReadreq)→ F SInReadreq)

The Fairness of interrupt request lemma is used to prove that eventually the

processor is granted bus access. This statement is proved using an SMV model

checker. The verification result is described in Lemma 17.

Lemma 17 (Processor fair process: ProcFairness S)

Arbiter ∧

G((SnReset U SInReadreq)→ F SInReadreq)

→

G((SnReset U SPnWait)→ F SPnWait)

Combining Lemma 4, 15, 16, and 17 proves the system level liveness of the

processor module described in Lemma 14. If a system contains a Processor,

an Interrupt, and an Arbiter, then the processor module will eventually get

the ownership of the bus.

7.2 Hardware/Software Correctness

In a full-chip validation, the correctness of the SIP running an application

software is verified. A simple arithmetic program as described in Section 6.4.3

Chapter 7. The Formal Verification of Simple Integration Platform 87

is stored in the memory module. The full-chip validation targets the correctness

verification of the program running in the SIP. In the verification process, two

basic assumptions are made. First, the code is a non self-modifying program.

One possible scenario is to store the program in a ROM device. Second, all data

needed during the process is already available in the memory. No analysis on

the off-chip process will be performed in this verification.

Two enviromental constraints are needed to show that the application will work

correctly in the system. First, the system is assumed to be about to execute

the application. Second, the memory is partitioned into two groups: the first

group is used to store the application code and the data used in the execution

of the program; the second group is for the remainder of the memory system.

The memory module has been designed to support the requirements of two

memory groups. The first group of memory SMState1 is defined to be used by

the application. The others are stored in the second group of memory SMState2.

Four enviromental assumptions are defined:

• No reset is applied during the analysis.

• When the Interrupt is active, no write process is allowed in SMState1.

• The processor has to be able to execute the application code.

• All external data needed by the processor are ready in SMState1.

Using these four assumptions, the correctness of the application running in the

system can be proved. The correctness proof of the application running on the

SIP is described in Theorem 5.

Theorem 5 (Full-Chip validation: SIPSWHWSim H)

SIP ∧

(NATNP X1) ∧

(NATNP X2) ∧

∀t . (SnReset t) ∧

∀t . (SPnWait t)→ (ISMEMEXISTS (SMAdd t)(MEMLIST (SMState1 t))) ∧

∀t . (SInWait t)→ (ISMEMEXISTS (SMAdd t)(MEMLIST (SMState1 t))→ ¬(SInRW t))

→

∀t . (INITSTATE (SPState t)) ∧

(MEMLIST (SMState1 t) = MEMRESET X1 X2)

→

∃tx . SOFTWAREOK X1 X2 (MEMLIST (SMState1 (t + tx)))

The verification is performed by splitting the process into two stages. In the

first stage, the system is partitioned by selecting the software component and its

Chapter 7. The Formal Verification of Simple Integration Platform 88

execution engine, with the verification performed for the selected components.

In the second stage, facts of the partitioned system are mapped back to the

complete system.

The Full-Chip validation uses two main lemmas, the processor-memory

simulation lemma (Lemma 18) and the SIP multicycle simulation lemma

(Lemma 19). The first lemma shows the correctness of application executed

by only the processor and the memory modules. The second lemma shows the

fairness of any instruction executed in the system. Figure 7.3 shows the lemmas

needed to prove the full-chip validation theorem (Theorem 5)

SIPNCycleSim_H

softwareSimulation_A

SIPSWHWSim_H

SIPOneCycleSim_H
SIPOneCycleImmSim_H
IntMaintainProcMem_H
EventualSPnWait_H

Fig. 7.3: Dependency lemmas for SIPSWHWSim H

7.2.1 Processor-Memory Simulation

Both the processor and memory modules are modelled in ACL2. These

two modules are combined using an intermediate function OneCycleSim

(Definition 34). This function provides the connectivity and operational

sequences between inputs and outputs to and from these two modules. The

sequential process of OneCycleSim may be described in two half-cycles. In the

first half-cycle, the processor executes. If the processor is performing a write

operation, both the address and data-output are available otherwise only the

address is valid. The second step is memory execution. When the memory

performs a write operation, it takes the address and data-output from the

processor, otherwise it uses the address to obtain the contents of the memory

indicated by the address. In the second half-cyle, the processor uses the

data-output from the memory to complete its evaluation process.

The result of evaluating OneCycleSim is an updated state of the processor and

memory. A new datatype XVPState is defined to represent the processor state

and the memory state as a tuple. The first element of the tuple is the state of

the processor and the second element is the state of the memory.

Chapter 7. The Formal Verification of Simple Integration Platform 89

Definition 34 (ACL2 P-M single cycle evaluation: OneCycleSim)

OneCycleSim rst wt simst
def
=

let TempDo (Pdo(PSCexecl rst wt (xpm simst)))

TempAdd (Padd(PSCexecl rst wt (xpm simst)))

TempRW (Prw(PSCexecl rst wt (xpm simst)))

TempPState (PSCexecl rst wt (xpm simst))

NextDo (MemExecR rst (Padd(PSCexecl rst wt (xpm simst)))(xmmsimst))

if wt

then if TempRW

then (XVPState (PSCexech rst wt TempDo TempPState)

(MemExecW rst TempDo TempAdd memst))

else (XVPState (PSCexech rst wt NextDo TempPState)(xmm simst)

else simst

In simulation, the termination condition is determined by defining how many

cycles take place in the evaluation. This termination condition is defined in

Definition 35. During this evaluation, it is assumed that the system executes

continously without any interruption until the termination condition is achieved.

Because both reset and wait signals are active low, they are set to HIGH or

TRUE.

Definition 35 (ACL2 P-M N cycle simulation: NCycleSim)

NCycleSim N XVPstate
def
=

if (N = 0)

then XVPstate

else NCycleSim (N − 1) (OneCycleSim T T XVPstate)

In this stage, system precondition requirements are defined so that the simulation

or evaluation of the targeted code is about to start. The requirements define the

initial state of the processor module and the memory module. The requirements

are defined as follows:

• The internal state machine indicates that in the next cycle the next

instruction in the pipeline will be executed.

• The processor is not in reset mode.

• The processor is not in flushing pipeline mode.

• The top instruction in the pipeline is the first code to be evaluated.

• The second instruction in the queue is the second code to be executed.

Chapter 7. The Formal Verification of Simple Integration Platform 90

• The address-bus indicates the address of the second code in the external

memory.

The processor’s initial condition is defined in Definition 36.

Definition 36 (ACL2 State of processor constraints: initPState)

initState Pstate
def
=

(Pp1 s = (MOV R5 ,#10)) ∧

(Pp2 s = (LDA R0 ,R5)) ∧

(Ppf s = 0) ∧

(Pfsm s = 1) ∧

(Padd s = 2) ∧

¬(Preset s)

The initial state of the memory module (initMstate X1X2) is interpreted as

the default condition. It contains only the code or program and all data to be

processed. The function initMstate adds symbolic data X1 and X2 to the default

memory state.

Finally, the correctness criteria of the code is defined. The code which is defined

in Section 6.4.3 takes two values (X1, X2), adds them together, and writes

back to the memory. Function softwareOK contains the procedure to check the

correctness of the final contents of the memory.

Definition 37 (ACL2 Simulation correctness criteria: softwareOK)

softwareOK X1 X2 Mstate
def
=

(getMemMemst 16 Mstate) = X1 ∧

(getMemMemst 17 Mstate) = X2 ∧

(getMemMemst 18 Mstate) = (X1 + X2)

Lemma 18 shows that when the initial conditions of the processor and memory

are satisfied, the evaluation of the code executed by the processor satisfies the

correctness criteria. The lemma was proven in ACL2.

Lemma 18 (Processor-Memory simulation: softwareSimulation A)

(natnp X1) ∧ (natnp X2) ∧ (statep Pstate) ∧ (initState s)

→

softwareOK X1 X2 XMM (NCycleSim 15 (XVPState s (initMstate X1 X2)))

Chapter 7. The Formal Verification of Simple Integration Platform 91

7.2.2 SIP Simulation

The single-cycle processor-memory evaluation depends on the environmental

assumption that the processor is granted access to the bus. Similarly, the

multi-cycle evaluation uses the same assumptions that the processor is always

granted to continue its execution. In SIP, this assumption is not always true.

There is a possibility that the processor has to wait for a few cycles before

it becomes active. The processor liveness lemma (Lemma 14) guarantees that

eventually the processor will be active. Suppose at time = t, the processor is

ready to evaluate a valid state of processor SPState and memory SMState1 then

the valid result will eventually appear after tx cycle. This property is described

in the following lemma:

Lemma 19 (SIP multicycle simulation: SIPNCycleSim H)

SIP ∧

(NATNP N) ∧

∀t . (SnReset t) ∧

∀t . (SPnWait t)→ (ISMEMEXISTS (SMAdd t)(MEMLIST (SMState1 t))) ∧

∀t . (SInWait t)→ (ISMEMEXISTS (SMAdd t)(MEMLIST (SMState1 t))→ ¬(SInRW t))

→

∀t .∃tx .

EXECUNTIL N (XVPSTATE (SPState t)(MEMLIST (SMState1 t)))

=

XVPSTATE (SPState(t + tx))(MEMLIST (SMState1 (t + tx)))

The multicycle evaluation lemma (Lemma 19) is an extension of the single cycle

evaluation lemma (Lemma 20). The interpretation of Lemma 20 is similar to

Lemma 19, the only difference is in the number of cycles. Lemma 20 is the

lemma for one processor execution cycle while Lemma 19 is the lemma for N

processor execution cycles. The single cycle evaluation lemma is shown below:

Lemma 20 (SIP one cycle simulation: SIPOneCycleSim H)

SIP ∧

∀t . (SnReset t) ∧

∀t . (SPnWait t)→ (ISMEMEXISTS (SMAdd t)(MEMLIST (SMState1 t))) ∧

∀t . (SInWait t)→ (ISMEMEXISTS (SMAdd t)(MEMLIST (SMState1 t))→ ¬(SInRW t))

→

∀t .∃tx .

ONECYCLESIM T T (XVPSTATE (SPState t)(MEMLIST (SMState1 t)))

=

XVPSTATE (SPState(t + tx))(MEMLIST (SMState1 (t + tx)))

The next three lemmas are used to prove Lemma 20. These lemmas describe

the condition when the processor is granted the bus and when it is set to idle.

Chapter 7. The Formal Verification of Simple Integration Platform 92

First, in ACL2 we assume that at time = t the processor is granted access to the

bus and no reset is applied, then by definition the result of this evaluation will

appear in the next cycle (t+1). The property is defined in HOL and described in

Lemma 21. The description of the lemma is as follows: at time t the processor

is not in the wait mode and no reset is applied, then the result of evaluating the

SIP will appear at (t+1). This property is shown in Lemma 21.

Lemma 21 (SIP one cycle immediate simulation: SIPOneCycleImmSim H)

SIP ∧

∀t . (SnReset t) ∧

∀t . (SPnWait t)→ (ISMEMEXISTS (SMAdd t)(MEMLIST (SMState1 t)))

→

∀t . (SPnWait t)

→

ONECYCLESIM T T (XVPSTATE (SPState t)(MEMLIST (SMState1 t))

=

XVPSTATE (SPState(t + 1))(MEMLIST (SMState1 (t + 1)))

Second, consider the possibility that the processor is in the wait state. In the

wait/idle state, the processor maintains its internal state. The property is proved

in ACL2. Memory SMState1 is used primarily by the processor. The interrupt

can only read the data without the possibility to write it. In this case, the

memory state of SMState1 is not changed. These two properties are gathered in

HOL. They are used to show that when the arbiter did not grant the processor,

the processor’s state (SPState) and the memory’s state (SMState1) remain the

same. These properties are described in Lemma 22.

Lemma 22 (Processor Memory maintain states: IntMaintainProcMem H)

Arbiter ∧

∀t . (SnReset t)

∀t . ¬(SPnWait t)

→

(ISMEMEXISTS (SMAdd t)(MEMLIST (SMState1 t))→ ¬(SInRW t))

→

∀t . ¬(SPnWait t)

→

XVPSTATE (SPState t)(MEMLIST (SMState1 t))

=

XVPSTATE (SPState(t + 1))(MEMLIST (SMState1 (t + 1)))

Finally, the interrupt module has to have a fairness behaviour by not infinitely

requesting the bus. The processor liveness lemma (Lemma 17) guarantees that

Chapter 7. The Formal Verification of Simple Integration Platform 93

the processor eventually gets the bus. A more detailed analysis of the behaviour

of the interrupt module shows that the processor will get the bus in four cycles

at the most. This final property is shown below:

Lemma 23 (Fairness of Idle Cycle: EventualSPnWait H)

SIP ∧

∀t . (SnReset t)

→

∀t . (SPnWait(t + 1)) ∨ (SPnWait(t + 2)) ∨ (SPnWait(t + 3)) ∨ (SPnWait(t + 4)

Using Lemma 21, 22 and 23, the one cycle simulation lemma (Lemma 20)

is proven. This lemma is the bases of the multi cycle simulation lemma

(Lemma 19). The generic form of Lemma 19 provides a guarantee that

any program correctly executed using the processor will always preserve its

correctness in the platform.

7.3 Summary

The case study presented in this chapter is aimed at addressing one problem in

the verification of SoC design; given a complete SoC system, how to validate the

system as a whole. In this chapter, system level verifications of the SIP were

demonstrated. It shows that it is possible to perform system level reasoning

to a complex embedded system which includes software execution. Within an

integrated heterogenous formal verification framework, combining results from

several tools can be done effectively.

Two system level properties to be validated were defined: the liveness of every

master request; and the software correctness when the software is embedded

in the system. The liveness verification is achieved by analysing each master

request. The validation starts from the highest priority module to the lowest.

It was shown that each request can eventually be granted and every process can

be completed to allow a new arbitration. The software correctness verification

was achieved by decomposing the problem into two subgoals. First, the

correctness of the software component with its execution engine is validated.

Second, the platform will always correctly execute any processor instruction.

The combination of these two properties shows the correctness of the software

component executed using the platform.

The SIP was verified on a Linux machine with an Intel Pentium II 400MHz

processor with 384M RAM. The processor model was built in one minute.

Twenty one lemmas were used to verify the processor unlock lemma. The

Chapter 7. The Formal Verification of Simple Integration Platform 94

verification was completed in one minute. The SIP liveness properties were

verified in two minutes and used fourteen lemmas. The proof distribution of

these lemmas is as follows: two lemmas are proved in ACL2; four lemmas are

proved in SMV; and eight are proved in HOL. The hardware/software verification

used fifty five lemmas. The proof distribution of these lemmas is as follows:

twenty lemmas are proved in ACL2; six lemmas are proved in SMV; and twenty

nine lemmas are proved in HOL. The verification was completed in two and a

half minutes.

Chapter 8

The ARM Integration and Verification

Platform

The integration platform design methodology allows designers to mix and match

reusable virtual components. A similar idea is adopted for the formal verification

platform methodology. In this methodology, formal systems are developed by

integrating reusable formal components. The properties of the system are then

verified using the formal verification environment. A methodology is defined

to develop a generic and reusable formal verification platform. The generality

of the platform makes it reusable in the development of an application specific

platform.

In this chapter, the basic components used in the development of an ARM formal

verification platform will be described. The platform is based on an ARM AMBA

bus protocol and an ARM7 processor. In Section 8.1, a description of the ARM

AMBA bus protocol will be given. Specifically, the RAPIER’s AMBA AHB bus

protocol will be discussed. In Section 8.2, a description of the ARM7 processor

model and its wrapper will be provided.

8.1 ARM AMBA

8.1.1 AMBA Specification

The Advanced Micro-controller Bus Architecture (AMBA) is an on-chip bus

specification that defines the interconnection, communication, and management

of functional blocks for SoC design. The AMBA specification facilitates

the right-first-time development of SoC design. It is based on technology

independent specification. This ensures that the modules are highly reusable

across diverse IC processes and technologies. It encourages standardised

modular system design using common bus protocols, enhancing the reuse design

methodology for the modules.

Chapter 8. The ARM Integration and Verification Platform 96

There are three types of AMBA busses:

• The Advanced High-Performance Bus (AHB)

• The Advanced System Bus (ASB)

• The Advanced Peripheral Bus (APB)

The AMBA AHB is used for the design of high performance and high frequency

system modules. The AMBA ASB is used only for designing high performance

system modules. Both types of busses are used to support efficient connection

of processors, on-chip memories, and off-chip external memory interfaces. The

AMBA ASB supports only pipeline operations and multiple bus masters. In

addition to AMBA ASB features, AMBA AHB also supports burst transfers and

split transactions. A burst transfer is one or more data transactions requested

by a bus master. A split transfer is an incomplete transfer which requires a bus

master to retry the transfer. A slave requests access to the bus on behalf of the

master when it decides that the split transfer can be completed. The AMBA

APB is used for the design of low-power peripherals and is used in conjunction

with either AMBA AHB or AMBA ASB.

Typically, an AMBA based SoC design contains a high performance bus system

such as an AMBA AHB or an AMBA ASB. The bus is capable of handling a

high-bandwidth process with an external memory interface, processor, on-chip

memory, Direct Memory Access (DMA) module, and a bridge to a lower speed

bus APB where most peripherals in the system are located. The block diagram

of a typical AMBA system is shown in Figure 8.1. The block diagram is very

similar to the one described in Figure 4.1. In this figure, the AMBA AHB or

AMBA ASB and AMBA APB are represented by the PLB and OPB.

External Memory
Interface

on−chip
RAM

DMA bus
Memory

B
R
I
D
G
E

Processor
ARM

UART

PIO

Timer

Keypad

AHB or ASB APB

Fig. 8.1: Typical AMBA system

An SoC system can have one or more masters. A typical system contains at least

one processor. A DMA controller or a Digital Signal Processor (DSP) are also

Chapter 8. The ARM Integration and Verification Platform 97

standard bus master devices. The external memory interfaces, on-chip memory,

and APB bridge are typical of AHB slaves. Most of the peripherals can be part

of the system of AHB slaves. More likely, they are part of the AMBA APB.

In this case study, the AMBA AHB was used to demonstrate how to generate

reusable formal models and formal proofs. The reuse of formal proofs are shown

in defining a specific application. For the rest of the section, the discussion will

focus on the AMBA AHB.

8.1.2 AMBA AHB

The AMBA AHB is a high performance bus system which provides high

bandwidth operations and supports multiple bus masters. A typical AMBA

AHB system contains the following four components: AHB master, AHB slave,

AHB arbiter, and AHB decoder. An AHB master is a bus master which provides

the necessary control signals and data to trigger read or write operations. An

AHB slave is a bus slave which responds to the operation initiated by the bus

master. It replies back to the active master on its operational status, either

successes or failures. An AHB arbiter is the bus arbiter which controls the

arbitration of master processes. In AMBA, the bus arbiter ensures that at

any time there will be one and only one bus master which can start read or

write operations. An AHB decoder is the module that decodes the address for

each transfer and provides selection signals to indicate which signals are going

through.

Interfaces

All control and response signals from the AHB masters and AHB slaves are

managed by the AHB arbiter. In total the AHB arbiter has 18 signal interfaces,

of which nine signals originate from the masters and four signals from the slaves.

There are three signals coming out from the arbiter, one control signal from the

decoder, and one system reset signal. These signals are described in Table 8.1.

Bus Architecture

The bus architecture in the AMBA AHB uses a central multiplexer

interconnection scheme. There are three bus multiplexers, one each for: write

data (HWdata), read data (HRdata), and address (HAddr). The AHB arbiter

is responsible for deciding which master’s data (HWdata or HRdata) is going

through the multiplexer to the slaves.

Chapter 8. The ARM Integration and Verification Platform 98

Name Source Description

HReset system is the reset signal. A LOW level signal forces the system

to go to the default reset state

HAddrx master is the bus address

HTransx master is the type of data transfer

It can be either nonseq, seq, idle, or busy

HWritex master is the read or write data transfer control signal.

Read operation sets the signal to LOW,

and vice-versa.

HSizex master is the size of data.

HBurstx master is the number of data transfer.

HProtx master is the protection control signals for master module

HWdatax master The data bus for transfer data from master

to slave during the write operation

HSelx decoder is the select signal to indicate the active slave

HRdata slave is the data bus for transfer data from slave

to master during the read operation

HReady slave is the status of data transfer signal.

A HIGH signal indicates a transfer is completed

and vice-versa

HResp slave is the status responses signal for data transfer.

It can be either okay, error, retry, or split

HBusreqx master The request signal from master module

HLockx master The lock request signal from master module

HGrantx arbiter The grant signal for master x that it gets

the bus access

HMaster arbiter is the current active master indicators

HMasterlock arbiter is the arbiter’s lock indicator signal

HSplitx slave is the slave signal to indicate which master

is allowed to resume the split transaction

Tab. 8.1: AMBA AHB Interfaces

Chapter 8. The ARM Integration and Verification Platform 99

Overview of AMBA AHB operation

The AMBA AHB process starts when the AHB masters assert bus request signals

(HBusreqx) to the AHB arbiters. The AHB arbiters then perform the arbitration

process to determine which master is granted (HGrantx) access to the bus. The

selected master starts the data transfer process by sending the control signal

and address (HAddr). The control signals provide information for the transfer.

They are grouped in the following categories:

• Type of transfer (HTrans). There are four types of transfer: nonseq, seq,

idle, and busy. The nonseq signal indicates that the first transfer of a burst

is not related to the previous transfer. The seq signal indicates that the

remaining burst transfers are sequential. The control signal and address

relate to the previous one. In an idle transfer, the active master does not

perform any data transfer. The busy transfer is similar to the idle cycle.

It indicates that the master is inserting an idle cycle in the middle of the

burst operation. For idle and busy transfers, the slave must respond with

the okay signal.

• The burst operation (HBurst). There are eight types of burst operation:

single, incr, wrap4, incr4, wrap8, incr8, wrap16, and incr16. In a wrap

burst, the address is wrapped when the boundary is reached. For example,

a wrap4 burst transfer will wrap at 16 byte boundaries. If the transfer

started at the address 0x44, then the transfer will continue with the address

0x48, 0x4C, and 0x40.

• The data size (HSize). There are eight data sizes for the transfer. The

sizes are 8, 16, 32, 64, 128, 256, 512, and 1024 bits. The sizes are used in

conjunction with the burst signals to determine the address boundary for

wrapping the burst operation.

• The protection control (HProt). There are eight types of protection signal

such as the opcode fetch, data access, user access, privilege access, not

bufferable, bufferable, not cache-able, cache-able. This protection signal

is only used when some level of protection will be implemented. In most

cases, this signal is left unused.

• The transfer direction (HWrite). This signal indicates the type of operation

that the master is performing. It can be either a read or a write operation.

When the active master has started the transfer, the active slave responds with

information on the transfer using HReady and HResp signals. Whenever the

active slave needs to assert one or more wait states, the HReady signal is set

Chapter 8. The ARM Integration and Verification Platform 100

to LOW. The HResp signal is used to determine the status of the transfer.

There are four possible HResp responses: nonseq, seq, idle, and busy. The okay

response on HResp indicates that the slave’s transfer is progressing without any

problems. When the transfer is completed the HReady is set to HIGH. The

error response indicates that an error has occurred during the transfer. The

error message is sent to the bus master so that it knows that the transfer is not

successful. The retry response indicates that the transfer is not finished yet and

the bus master has to retry the transfer until it is completed. The split response

indicates that the transfer is not completed successfully. The bus master must

attempt to retry the transfer when it is next granted access to the bus. In a

split condition, the slave will request the access of the bus on the behalf of the

master when the transfer can be completed. The retry and split responses allow

slaves to delay the completion of the transfer along with making the bus free to

be used by other masters.

The arbiter manages the arbitration processes. It monitors requests to access

the bus from masters and complete the split transfer from slaves. Then it

decides which master has the highest priority to be granted access. The

arbitration process can be implemented using the highest priority, fair access, or

a combination of both schemes. The arbiter is also responsible for guaranteeing

that at any time there is only one master granted access to the bus.

8.1.3 Formal Model of AMBA AHB

The AMBA bus protocol described in this case study is based on the RAPIER

AMBA implementation from ISLI. The bus protocol is a part of the ISLI

foundation block system [53]. It is developed to provide an infrastructure for

academic research projects and teaching platforms. The block diagram of the

ISLI foundation block is shown in Figure 8.2.

The foundation block contains a two-bus architecture based on the AMBA AHB

and the AMBA APB. There are five AMBA AHB ports which can be used by

master modules such as the processor, Digital Signal Processing (DSP) processor,

Direct Memory Access (DMA) controller, etc. The arbiter is responsible for

determining which master is currently active. Slave modules are connected

either to the AHB bus or the APB bus. High performance slave modules, such

as on-chip RAM (Static RAM) and external memory controller are connected to

the AHB bus. The APB is used by slower peripherals such as Timers, Universal

Asynchronous Receiver/Transmitter (UART), General Purpose Input/Output

(GPIO), and Interrupt and System controllers. The AHB bus and APB bus

are connected through the AHB-APB bridge.

Chapter 8. The ARM Integration and Verification Platform 101

SRAM
Slave
Ports

External
Memory

Controller
Bridge

System
Controller

Interrupt
Controller

Timers UART GPIO
Expansion

Ports

System
Watchdog

Decoder Arbiter
Master
Ports

APB

AHB

SLAVE

Fig. 8.2: ISLI Foundation Block System

Similar to the foundation block, the formal verification platform is used to

integrate formal descriptions of the components and to perform system level

formal verification. The platform is built based on the RAPIER foundation

block. The platform centres on the AHB bus. It contains the five master ports,

the bus controller, and a slave port. One slave port is introduced by generalising

slave behaviour which, in fact, is the same.

The ISLI’s AMBA AHB bus protocol is implemented in Verilog. The SMV

model checker is the most suitable tool to do a formal check of this protocol.

The Verilog code of ISLI’s AMBA AHB must be transformed to the specification

language of SMV, the SMV Language (SMVL), before it is model checked.

The translation from Verilog to SMVL is done by using the translation tool

vl2smv [56]. The inclusion of data and address paths in the model may cause

a state space explosion which will prevent the model checker from completing

the verification. One way to reduce the state space explosion is by abstracting

these paths. In SMV, data abstraction can be achieved by declaring the n-bit

bus signal as a scalar-set data-type called num [44].

AMBA-AHB interfaces contain fifty five input signals and twelve output signals.

The input signals are hreseti, hwriteix, htransix, hsizeix, hburstix, hprotix,

hbusreqix, hlockix, haddrix, hwdataix, clkenix, hreadyi, hrespi, hrdatai, and

Chapter 8. The ARM Integration and Verification Platform 102

hspliti. The output signals are hgrantox, hrdatao, hmastero, hmastlocko, hwriteo,

haddro, and hwdatao. The interface representation of the AHB module is as

follows:

AHB(hreseti, hwritei1, htransi1, hsizei1, hbursti1, hproti1,

hbusreqi1, hlocki1, haddri1, hwdatai1, hgranto1, clkeni1, hwritei2,

htransi2, hsizei2, hbursti2, hproti2, hbusreqi2, hlocki2, haddri2,

hwdatai2, hgranto2, clkeni2, hwritei3, htransi3, hsizei3, hbursti3,

hproti3, hbusreqi3, hlocki3, haddri3, hwdatai3, hgranto3, clkeni3,

hwritei4, htransi4, hsizei4, hbursti4, hproti4, hbusreqi4, hlocki4,

haddri4, hwdatai4, hgranto4, clkeni4, hwritei5, htransi5, hsizei5,

hbursti5, hproti5, hbusreqi5, hlocki5, haddri5, hwdatai5, hgranto5,

clkeni5, hgranto0, hreadyi, hrespi, hrdatai, hspliti, hrdatao, hmastero,

hmastlocko, hwriteo, haddro, hwdatao)

For the remainder of this dissertation, the above representation is denoted as

AHB.

8.2 ARM7

8.2.1 ARM7 Specification

ARM7 is a 32-bit microprocessor from Advanced RISC Machines (ARM) [4, 33,

81]. It is based on the Reduced Instruction Set Computer (RISC) architecture. It

has twenty eight instructions 1 and employs three stages of instruction pipeline

processing.

Interface

An ARM7 processor has three bus lines (PDataIn, PDataOut, PAddress), four

input control lines (PnReset, PnWait, PnIRQ, PnFIQ), and six output control

lines (PLock, PnRW, PnMreq, PSeq, PnBW, PnMode). The descriptions for the

interfaces of an ARM7 processor are presented in Table 8.2.

1 The ARM7 specification defined in the data-sheet [4] has thirty three instructions. The

ARM7 model described in this chapter only implemented twenty eight instructions. The five

missing instructions are the co-processor instructions.

Chapter 8. The ARM Integration and Verification Platform 103

Name Description

PnReset is the reset signal. A LOW level input signal forces the processor

to go to the default reset state.

PnWait is the wait signal. A LOW level input signal stalls the processor.

PLock is the lock signal. A HIGH level output signal indicates

that the processor is performing a locked memory access.

PnRW is the read or write signal. The processor is in the read cycle

when the signal is LOW. Otherwise, it is in the write cycle.

PnMreq is the memory request signal. When the signal is LOW, it

indicates that the processor requires memory access.

PSeq is the sequential address signal. When the signal is HIGH,

the address of the next memory cycle relates to the last

memory address

PnBW is the signal to the external memory to indicate the length of

data for the transfer. A HIGH signal indicates word length data,

otherwise it is byte length data.

PnMode is the signal to indicate the processor mode.

PnIRQ is the fast interrupt signal.

PnFIQ is the slow interrupt signal.

PBigend is the signal to indicate the endian configuration. A HIGH

signal indicates the processor treats the bytes in the memory in a

big endian format

PDataIn is the input data line. This input line allows the data to come

into the processor.

PAddress is the address line. This output line provides the memory

address that the processor is accessing.

PDataOut is the output data lines. This output lines provide the data

to be transfered out of the processor.

Tab. 8.2: ARM7 Interfaces

Chapter 8. The ARM Integration and Verification Platform 104

Internal registers and Flags

The processor can be operated in six operating modes: user, FIQ, IRQ,

supervisor, Abort, and undefined. Each operating mode has 16 active General

Purpose Registers or GPR (R0 – R15) and one or two status registers, which

are the Current Program Status Register (CPSR) and the Saved Program Status

Register (SPSR). All operating modes have their own private registers: R13 and

R14. They share the use of other registers, except for the FIQ mode. The FIQ

mode has five more private registers (R8 – R12). R13 is used to save the stack

pointer, while R14 is used to store the link register. The user mode is the only

mode which has only one status register (CPSR). It does not have the SPSR

register. The register mapping for all modes is presented in Figure 8.3.

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R14
R15

R13R13

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R8_fiq

R13_svc

R14_svc

R13_abt

R14_abt

R13_irq

R14_irq

R13_und

R14_und

CPSR CPSR

SPSR_undSPSR_irq

CPSRCPSR

SPSR_abt

CPSR

SPSR_svc

CPSR

SPSR_fiq

USER FIQ SUPERVISOR ABORT IRQ UNDEFINED

General Purpose Registers

Program Status Registers

Fig. 8.3: ARM7 Registers Organisation

The CPSR stores information on the processor flags, interrupt disable bits, and

the processor’s operational mode (M). There are four flags: the negative flag

(N), the zero flag (Z), the carry flag (C), and the overflow flag (O). These four

flags can be changed as a result of executing an arithmetic or logical operation.

The flags are used also to determine if the current instruction is to be executed.

There are two interrupt status bits, one each for IRQ (I) and FIQ (F). When

these bits are set then the corresponding interrupts are disabled. The I, F, and

M are known as the processor’s control bits. They can be changed only when the

Chapter 8. The ARM Integration and Verification Platform 105

processor is not in the user mode. The format of the program’s status register

is presented in Figure 8.4.

331 30 29 28 27 8 7 6 5 4 2 1 0

N Z C V I F M2M3 M1 M0M4

Fig. 8.4: Format of the Program Status Registers

Instruction Sets

Every instruction in ARM7 is 32-bits wide. The encoding of these instructions

is presented in Figure 8.5. The last four bits (bit 28–31) of the instruction are

used as the conditional prerequisite for the instruction to be executed. They

represent the conditional status for N, Z, C, and V flags. If the corresponding

flags in CPSR agreed with the conditions of the instruction, then the instruction

is executed. Otherwise, the processor will perform a no-operation (NOP) process

A summary of the conditional test is presented in Table 8.3

Code Suffixes Description

0000 EQ Z is set

0001 NE Z is clear

0010 CS C is set

0011 CC C is clear

0100 MI N is set

0101 PL N is clear

0110 VS O is set

0111 VC O is clear

1000 HI C is set and Z is clear

1001 LS C is clear or Z is set

1010 GE N is equal to O

1011 LT N is not equal to O

1100 GT Z is clear, and N is equal to O

1101 LE Z is clear, and N is not equal to O

1110 AL ALWAYS execute instruction

1111 NV NEVER execute instruction

Tab. 8.3: Instruction Condition Codes

The ARM7 processor has twenty eight instructions. Based on the type of

operations and instruction cycles, these instructions can be categorised into

eight groups: data processing, multiplication, branching, PSR data transfer,

Chapter 8. The ARM Integration and Verification Platform 106

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

S RdRn

S Rn

RdRn

1 0 0 1

1 0 0 1

00

00 0 0 0 0

Rm

RmB

A

0 0 0 1 0

0 0 0 0 0 0

I

I RdRn

I

01 1

01 1

0 11

BP U W L

Rn

Rn

1 1 1 1

1 1 1 0

1 1 1 0

0 CRmCPCP#CRdCRn

d. Single Data Transfer
e. Undefined
f. Block Data Transfer

g. Branch
h&i. Coprocessor Instruction
j. Software Interrupt

b. Multiply
c. Single Data Swap

a. Data Processing and PSR Transfer

31 29 29 28 27 26 25 24 23 22 21 1920 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operand 2Opcode

Rd Rs

0 1 Offset

XXXXXXXXXXXXXXXXXXXX XXXX

1 0 0 P U W LS

L

P U W LN CRd CP#

Ignored

Register List

Offset

Offset

L

CP Op

CP Op CRmCPCP#CRn Rd 1

g

i

k

j

a

b

c

d

e

f

h

Fig. 8.5: ARM Instruction Set Summary

single data transfer, multiple data transfer, data swap, and software interrupt.

All single cycle arithmetic instructions are gathered in the data processing

group. This group contains sixteen instructions, ADD, ADC, SUB, SBC, RSB,

RSC, CMP, CMN, AND, ORR, EOR, MOV, MVN, BIC, TST, and TEQ. The

multiplication instructions (MUL, MLA) are separated from the data processing

group as they may take more than one clock cycle to complete. The processor has

two branching instructions B and BL. It has two instructions to manipulate the

CPSR register, one for reading (MSR) and one for writing (MRS). Both single

and multiple data transfer groups contain two instructions, one for reading from

memory and one for writing to memory. The single data instructions are LDR

and STR. The multiple data transfer instructions are LDM and STM. The last

two instructions are the single data swap SWP and the software interrupt SWI.

A summary of these instructions is described in Table 8.4.

Based on the type of memory transfer, the clock cycles in ARM7 are

categorised into four classes: non-sequential (N), sequential (S), Internal (I),

and Coprocessor (C). In the N-cycle, the processor requests a transfer to or

from an address that is unrelated to the address used in the previous cycle.

While in the S-cycle, the address of the data transfer is related to the previous

one. In the I-cycle, the processor does not require data transfer. Similar to this,

the C-cycle does not require data transfer, but it uses the bus to communicate

with the co-processor. These processor cycle classes are defined by the output

signals of PnMreq and PSeq. The corresponding relations between these signals

and the memory cycle type are shown in Table 8.5.

The ARM7 processor features a three-stage pipeline architecture. Typically in

Chapter 8. The ARM Integration and Verification Platform 107

Mnemonic Instruction Description

ADC Add with carry Rd ← Rn + Op2 + Carry

ADD Add Rd ← Rn + Op2

AND Logical and Rd ← Rn ∧ Op2

B Branch R15 ← #address

BIC Bit clear Rd ← Rn ∧¬ Op2

BL Branch with link R14 ← R15, R15 ← #address

CMN as ADD but result not written CPSR flags ← Rn + Op2

CMP as SUB but result not written CPSR flags ← Rn - Op2

EOR Logical exclusive or Rd ← Rn ⊕ Op2

LDM Load multiple registers Stack manipulation

LDR Load register from memory Rd ← #address

MLA Multiply accumulate Rd ← (Rm * Rs) + Rn

MOV Move register or constant Rd ← Op2

MRS Move PSR to register Rn ← PSR

MSR Move register to PSR PSR ← Rm

MUL Multiply Rd ← (Rm * Rs)

MVN Move negated register Rd ← ¬ Op2

ORR Logical or Rd ← Rn ∨ Op2

RSB reversed subtraction Rd ← Op2 - Rn

RSC reversed subtraction with carry Rd ← Op2 - Rn - 1 + Carry

SBC subtraction with carry Rd ← Rn - Op2 - 1 + Carry

STM store multiple registers Stack manipulation

STR Store register to memory #address ← Rd

SUB subtraction Rd ← Rn - Op2

SWI Software interrupt O/S call

SWP Swap register with memory Rd ← Rn, Rn ← Rd

TEQ as EOR but result not written CPSR flags ← Rn EOR Op2

TST as AND but result not written CPSR flags ← Rn AND Op2

Tab. 8.4: Instructions Summary

Chapter 8. The ARM Integration and Verification Platform 108

nMREQ SEQ Cycle type

0 0 N (Non-Sequential)

0 1 S (Sequential)

1 0 I (Idle)

1 1 C (Co-Processor)

Tab. 8.5: Memory Cycle Type

one clock cycle, one instruction is fetched and stored in the last pipeline queue,

one instruction in the second pipeline queue is decoded, and one instruction in

the top pipeline queue is executed. The number of clock cycles used to complete

the execution process varies depending on the type of instruction. For example a

typical data processing instruction can be completed in one S-cycle. But, when

R15 is used to store the result of the operation, the elapsed time is increased by

two clock cycles (one S-cycle and one N-cycle). The summary of elapsed time of

ARM7 instructions is presented in Table 8.6. The value of n is determined by

the number of words transfered. The value of m is determined by the number of

cycles required by the multiplier algorithm. For example, multiplication by any

number between 22m−3 and (22m−1 - 1) and (1 < m > 16) takes 1S + mI cycles.

Multiplication by 0 or 1 uses 1S + 1I cycles. Multiplication by any number

greater or equal 229 uses 1S + 16I cycles.

Instruction Cycle count Additional

Data Processing 1S + 1I for SHIFT(Rs)

+ 1S + 1N if R15 written

MSR, MRS 1S

MUL, MLA 1S + mI

LDR 1S + 1N + 1I + 1S + 1N if R15 loaded

STR 2N

LDM nS + 1N + 1I + 1S + 1N if R15 loaded

STM (n-1)S + 2N

SWP 1S + 2N + 1I

B, BL, SWI 2S + 1N

Tab. 8.6: ARM7 Instruction Cycle Summary

8.2.2 Formal Model

The ARM7 processor is modelled in LISP (ACL2). The approach is similar to

the one used to model the processor module in SIP. Both models use the state

Chapter 8. The ARM Integration and Verification Platform 109

function to represent their internal condition. The FSM of ARM7 has more

states than the number of states in the SIP FSM. This is because ARM7 has

more functionality. Some of the instructions perform iterative processes, such as

the instructions for multiplication and multiple data transfer. Even though the

ARM7 FSM is more complex than the processor in SIP, the approach used to

model each instruction cycle remains the same. Every cycle of the instruction

is modelled as a function. The evaluation of this instruction cycle updates the

value of the state function.

Basic components

The state of ARM7 defines the internal state of the processor. It contains a

list of components of the processor, such as registers and flags. In total, state

contains a list of sixteen components.

Seven of them are the output signals from the processor. These signals are the

pmreq (memory request), pseq (sequential indicator), prw (memory read/write),

pbw (byte/word data), plock (lock request), padd (memory address), and pdo

(data-out). Detailed explanations of these signals are presented in Table 8.2.

Three of the components are the pipeline registers: pp0, pp1, and pp2. pp0 is the

top pipeline register. pp1 is the second pipeline register. pp2 is the last pipeline

register. In one clock cycle, the processor perform fetch, decode and execute

operations simultaneously. The processor executes instructions in pp0. At the

same time, it decodes instructions in pp1 so that all controls are ready when the

processor completes the execution. Meanwhile, it fetches a new instruction from

external memory and stores the data in pp2.

Registers in ARM7 are represented using two variables: preg and pcspr. preg

contains the GPRs registers. pcspr contains all status registers. The registers

are organised based on the processor modes. The first sixteen locations are

allocated for processor mode 0 (user). The next seven locations are allocated for

mode 1 (FIQ). The last eight locations are allocated for modes 2 to 5 (supervisor,

abort, IRQ, and undefined), with two memory locations allocated for each mode.

The CPSR and SPSRs registers are stored in the pcspr. The CPSR register is

placed in the first list and followed by the SPSRs for mode 1 to mode 5.

Finally, the last four components are the auxiliary components. They are

pnreset, pfsm, ptempPC, and pvar. pnreset is the flag that indicates that the

processor is in a reset state. pfsm is the processor’s state machine. ptempPC is

the temporary PC register. pvar is the general purpose variable and is used as

a counter variable in multiplication and multiple data transfer instructions. It

is also a temporary variable when performing swap operations.

Chapter 8. The ARM Integration and Verification Platform 110

Definition 38 (ACL2 ARM7’s state: state)

state(preg pcspr pnreset pfsm pp0 pp1 pp2 pnmreq pseq pnrw pnbw plock padd pdo

ptempPC pvar)
def
=

list preg pcspr pnreset pfsm pp0 pp1 pp2 pnmreq pseq pnrw pnbw plock padd pdo

ptempPC pvar

Similar to SIP, every variable in state has its own accessor function. Overall there

are seventeen accessor functions, one for each variable. Using these accessor

functions, the value of each variable can be obtained. For example the accessor

function PReg applied to state results in the memory component of GPRs.

The Processor’s Instruction Sets

In this section we briefly describe each instruction cycle. The modelling approach

of the instructions is exactly the same as the one used to model SIP. Based on

ARM7 types of operation, these instructions can be grouped into seven classes.

The classification of the instructions is described in Table 8.7.

Class Instruction

Branch B, BL

Data processing ADD, ADC, SUB, SBC, RSB, RSC, CMP, CMN,

AND, ORR, EOR, MOV, MVN, BIC, TST, TEQ

PSR transfer MRS, MSR

Multiply MUL, MLA

Data transfer LDR, STR, LDM, STM

Single data swap SWP

Software Interrupt SWI

Tab. 8.7: ARM7 Instruction Classes

• No Operation

All instructions in ARM7 processor are conditionally executed. An instruction

is executed only when it passes the execution condition. Otherwise, a (MOV R0

R0) operation is performed. In our model, this instruction is replaced by a no

operation (NOP) instruction. The NOP process only fetches a new instruction

and stores it in the pipeline register.

Chapter 8. The ARM Integration and Verification Platform 111

NOP 1
l : preg ← ([R15] ← padd+4)

pp0 ← pp1

pp1 ← pp2

padd ← padd+4

pnrw,pnmreq,pseq,plock ← nil

pnbw,pnreset ← t

NOP 1
h : pfsm ← 1

pp2 ← di

• Branching Instructions: B and BL

Two instructions fall into the branch instruction group: regular branch (B) and

subroutine branch (BL). A subroutine branch is capable of returning to the next

instruction after the branch instruction, while the regular branch does not have

this option. When the processor executes BL, the address of the instruction

stored in pp1 (pipeline register 1) is copied to R14. The program can return

from a subroutine by restoring the PC data from R14 by using a move instruction

(MOV PC,R14).

A branch instruction uses the first 24 bits of the instruction code as the offset

value. This data is shifted by two bits to create a +/-32Mbyte offset. The offset

is added to the address of the current instruction (pp0). The program counter

(PC) which is eight bytes ahead of pp0 is used as the reference address. The

branch instruction is completed in three clock cycles.

branch1
l : preg ← ([R15] ← padd+4)

L → ([R14] ← [R15]-4)

pp0 ← pp1

pp1 ← pp2

padd ← padd+4

pnrw,pnmreq,pseq,plock ← nil

pnbw,pnreset ← t

ptempPC ← PC-8+offset

branch1
h : pfsm ← 8

pp2 ← di

In the first cycle, a new instruction is being fetched and stored in the pipeline.

A new address is prepared and stored in the temporary PC register (ptempPC).

When a branch with a link instruction is executed (L), the return address is

saved in R14. The saved address is the PC adjusted by four bytes. The next

two cycles are used to flush the instructions from the pipeline and replace them

with instructions denoted by the branching address.

Chapter 8. The ARM Integration and Verification Platform 112

flush2
l : preg ← ([R15] ← ptempPC)

pp0 ← pp1

pp1 ← pp2

padd ← ptempPC

pnrw,pnmreq,plock ← nil

pseq,pnbw,pnreset ← t

flush2
h : pfsm ← 9

pp2 ← di

The second cycle of a branch instruction is the first pipeline flush (flush2). In

this stage, a new instruction from a new address is fetched and stored in the

pipeline. The old instruction is flushed and not executed.

flush1
l : preg ← ([R15] ← padd+4)

pp0 ← pp1

pp1 ← pp2

padd ← padd+4

pnrw,pnmreq,plock ← nil

pseq,pnbw,pnreset ← t

flush1
h : pfsm ← 1

pp2 ← di

The third cycle is the last pipeline flush cycle (flush1). It performs a similar

process to the first pipeline flush cycle. These two flush cycles are also used by

instructions which use R15 as the destination register and the content of R15 is

updated with a new one.

• Data Processing

There are sixteen instructions for performing arithmetic and logical operations.

ADD, ADC, SUB, SBC, RSB, RSC, CMP, and CMN are classified as the

arithmetic instructions. The rest are classified as the logical instructions. These

eight instructions are AND, ORR, EOR, MOV, MVN, BIC, TST, and TEQ. The

descriptions of each instruction are presented in Table 8.4. Two instructions from

each category do not have a destination register and do not write the result in

any register. These instructions are CMP, CMN, TST, and TEQ. The other

instructions use the destination register as the target register to store the result

of the data processing operations. When the S bit in the instruction is set, the

result of the data processing operation is used to update the V, C, Z, and N flags

in the CSPR. In general the data processing instructions complete the process

in a single cycle. But, it is possible for the operations to be completed in two or

three cycles.

Chapter 8. The ARM Integration and Verification Platform 113

dataproc1
l : preg ← ([R15] ← padd+4)

(updateRd ∧ ¬shift Rs) →

([Rd] ← process)

pp0 ← pp1

pp1 ← pp2

padd ← padd+4

pseq ← shift Rs

pnrw,pnmreq,plock ← nil

pnbw,pnreset ← t

pcspr ← (¬shift Rs ∧ S) → update cpsr

dataproc1
h : pfsm ← shift Rs → 15 | 1

pp2 ← di

Almost all data processing instructions complete their operations in the first

cycle. Externally, a new instruction is being fetched and stored in the pipeline.

dataproc2
l : preg ← ([R15] ← padd+4)

updateRd → ([Rd] ← process)

padd ← padd+4

pnrw,pnmreq,pseq,plock ← nil

pnbw,pnreset ← t

pcspr ← S → update cpsr

dataproc2
h : pfsm ← 1

When the second register is shifted, one more clock cycle is needed to complete

the process. In this case, the first cycle is only used to fetch a new instruction

and shift the value of the second register. The arithmetic or logical operations

are completed in the second cycle. Flags are updated after the arithmetic or

logical operations have been completed.

PC updatex
l : ptempPC ← process data

PC updatex
h : pfsm ← 8

When the instruction uses the PC register (R15) as the destination register,

two additional cycles are added to flush existing instructions in the pipelines.

The flushing processes are similar to the second and third cycles of branching

instructions (flush2 and flush1). The new address/data for the PC register is

stored in ptempPC which is loaded to the output address port.

• Multiplication

ARM7 has two multiplication instructions, MUL and MLA. MUL operates

on Rm and Rs registers while MLA has an additional register (Rn) which is

accumulated with the result of Rm and Rs. Similar to the data processing

processes, when the S bit is set then the status flags (N,C,Z, and V) from CSPR

are updated.

Chapter 8. The ARM Integration and Verification Platform 114

MULT 1
l : preg ← ([R15] ← padd+4)

pp0 ← pp1

pp1 ← pp2

padd ← padd+4

pnrw,pnmreq,plock ← nil

pseq,pnbw,pnreset ← t

MULT 1
h : pfsm ← ([Rs] = 0,1) → 11 | 10

pp2 ← di

pvar ← m

In the first cycle, a new instruction is fetched and stored in the pipeline register.

In this cycle, the processor determines the value of the multiplicand. If the value

is zero or one then in the next cycle it performs MULT 3, otherwise it goes to

MULT 2
l . In ARM7, the number of cycles needed by the multiplication algorithm

to complete the operation is determined by the value of the multiplicand. At

most the instruction uses seventeen clock cycles to complete its execution. It is

possible for the algorithm to complete the process before the maximum allocated

time. The operation is modelled by setting the maximum number of iterations

m. The iteration value is stored in the temporary variable pvar.

MULT 2
l : preg ← (pvar = m) → ([R15] ← padd+4)

padd ← (pvar = m) → padd+4

pnrw,pseq,plock ← nil

pnmreq,pnbw,pnreset ← t

MULT 2
h : pfsm ← ((pvar-1) = 1) → 11 | 10

pvar ← (pvar-1)

MULT 2 is used as the internal iteration state of the processor. Each iteration

reduces the value of pvar by one. The process remains in this state until the

value of pvar reaches one. This indicates that the multiplication process will

be completed in the next cycle. The processor needs to move to a new state of

MULT 3.

MULT 3
l : preg ← ([Rs] = 0,1) → ([R15] ← padd+4)

[Rd] ← (A → ([Rm]*[Rs])

| ([Rm]*[Rs]+[Rn]))

padd ← ([Rs] = 0,1) → padd+4

pnrw,pnmreq,plock ← nil

pseq,pnbw,pnreset ← t

MULT 3
h : pfsm ← 1

MULT 3 is the last state or cycle of the multiplication operations. In this

cycle, the result of the multiplication is calculated and stored in the destination

register. MUL and MLA are not allowed to write the result in the PC register.

• Data Transfer

There are four instructions for data transfer, LDR, STR, LDM, STM. LDR and

STR are the single load and store data transfer, while LDM and STM are the

Chapter 8. The ARM Integration and Verification Platform 115

block load and store data transfer. In general, single data transfer operations

are block data transfer operations for transferring single data. The choice of

instruction to do write or read is provided by the L bit. The processor performs

a load transfer when the L bit is HIGH and a store transfer when it is LOW.

The U bit determines the direction of the offset. When it is HIGH the offset is

added to the base address and when it is LOW the offset is subtracted from the

base address. When the W bit is set to HIGH then the new updated address is

written back to the base address (Rn). If the P bit is LOW then the indexed

offset of the address is used for the transfer. Otherwise, it uses the pre-indexed

value. In the single data transfer, there is an option to do either a byte or word

transfer, while block data transfers always occur at the word level.

load1
l /store1

l : preg ← ([R15] ← padd+4)

pp0 ← pp1

pp1 ← pp2

padd ← padd+4

pnrw,pnmreq,pseq,plock ← nil

pnbw,pnreset ← t

load1
h/store1

l : pfsm ← load → 3

store → 2

pp2 ← di

ptempPC ← LDR/STR → (Rn or offset)

LDM/STM → adjusted Rn

pvar ← LDR/STR → 1

LDM/STM → itt

In the first load/store cycle, a new instruction is fetched and stored in the

pipeline. Meanwhile, a new address into which the transfer will be made is

prepared and stored in the temporary PC (ptempPC). Finally the total amount

of data that will be fetched is stored in pvar. In a single data load transfer, only

one data is fetched or stored. In this case, pvar is stored with the value of one.

pvar in the block data transfer stores the number of transfers that will be made.

The single load and store can complete the operations in a minimum of three

clock cycles and two cycles respectively. While the block data transfer uses (itt

- 1) cycles more, where itt is the amount of data being loaded.

load2
l : preg ← ([R15] ← ptempPC)

(pvar = itt) → ([R14] ← padd+4)

padd ← ptempPC

pnrw,pnmreq,plock ← nil

pseq,pnreset ← t

pnbw ← LDR → B

LDM → t

load2
h : preg ← ([Rlist] ← di)

pfsm ← (pvar > 1) → 3 | 4

ptempPC ← LDM → adjusted Rn

pvar ← pvar - 1

Chapter 8. The ARM Integration and Verification Platform 116

In the first half of the second load cycle (load2
l), the new address is posted in

the address port. If this is the first loop cycle, then the return address is stored

in R14. In the second half cycle (load2
h), the data from the memory is read and

stored according to the register list. If all the data is fetched then the operation

will go to the last load sequence (load3). Otherwise a new address is prepared

for the next load cycle and the number of loops to be made will be decreased

by one. LDR can complete the operation in a minimum of three clock cycles.

The STM uses (loop - 1) cycles more than LDR, where n is the number of data

being loaded.

load3
l : preg ← ([R15] ← [R14])

padd ← [R14]

pnrw,pnmreq,plock ← nil

pseq ← ¬(Rd = PC)

pnbw,pnreset ← t

load3
h : pfsm ← 1

In the final load cycle the return address is restored. If R15 is used as the

destination register, the two cycle flush sequence will follow the load3 operation.

In addition, the PC update sequence will be executed. A new address is then

loaded to ptempPC.

store2
l : preg ← ([R15] ← ptempPC)

(pvar = itt) → ([R14] ← padd+4)

padd ← ptempPC

pdo ← [Rlist]

pseq,pnmreq,plock ← nil

pnrw,pnreset ← t

pnbw ← STR → B

STM → t

store2
h : pfsm* ← (pvar > 1) → 2 | 1

ptempPC ← STM → adjusted Rn

pvar ← pvar - 1

In the first half of second store cycle (store2l), data from the register list is sent

to the data-out port and a new address is sent to the address port. If this

operation is the first loop cycle, then the return address is stored in R14. After

all operations are completed the return address will be adjusted in the beginning

of the next clock cycle.

• PSR transfer

ARM7 provides two instructions to manipulate the PSR registers. The MRS

instruction allows the contents of the PSR register to be transfered to a GPR.

The MSR instruction allows the contents of a GPR or an immediate data to be

stored to the CPSR or SPSR. The choice between CPSR or SPSR is selected by

the P bit. If the P is HIGH then the operation will manipulate SPSR, if it is

LOW the CPSR will be manipulated.

Chapter 8. The ARM Integration and Verification Platform 117

PSR1
l : preg ← ([R15] ← padd+4)

MRS → ([Rd] ← (P → SPSR | CPSR))

MSR → (P → ([SPSR] ← (Rm or Imm))

| ([CPSR] ← (Rm or Imm)))

pp0 ← pp1

pp1 ← pp2

padd ← padd+4

pnrw,pnmreq,pseq,plock ← nil

pnbw,pnreset ← t

PSR1
h : pfsm ← 1

pp2 ← di

While the processor performs a PSR data transfer, a new instruction is fetched

and stored in the pipeline register. When the MRS instruction is executed the

data from CPSR or SPSR is copied to Rd in the GPR. Meanwhile, the MSR

instruction moves the content of Rm or an immediate value to either CPSR or

SPSR. PSR instructions use one clock cycle to complete the data transfer.

• Single Data Swap

The data swap instruction (SWP) is used to swap data between the internal

register and the external memory. The instruction performs a read operation

which is followed by a write operation. The operations are done in a lock mode,

which is a priority operation that can not be interrupted until it is completed.

The swap address is determined by the value of Rn. The processor stores the

content of Rm in the swap address and stores the external memory value in Rd.

The swap instruction is executed in four clock cycles.

swap1
l : preg ← ([R15] ← padd+4)

pp0 ← pp1

pp1 ← pp2

padd ← padd+4

pnrw,pnmreq,pseq,plock ← nil

pnbw,pnreset ← t

swap1
h : pfsm ← 5

pp2 ← di

ptempPC ← [Rn]

In the first cycle, a new instruction is fetched and stored in the pipeline register.

The swap address is read from Rn and stored in ptempPC.

swap2
l : preg ← ([R15] ← Rn)

([R14]← padd+4)

padd ← Rn

pnrw,pnmreq,pseq ← nil

plock,pnreset ← t

pnbw ← B

swap2
h : pfsm ← 6

pvar ← di

Chapter 8. The ARM Integration and Verification Platform 118

In the first half of the second swap cycle, the swap address is assigned to the

address port and the return address is stored in R14. In the second half cycle

data from the external memory is read and stored in the temporary variable

pvar.

swap3
l : pdo ← [Rm]

pseq ← nil

pnrw,pnmreq,plock,pnreset ← t

pnbw,pnreset ← B

swap3
h : pfsm ← 7

In the third cycle (swap3), data from Rm is sent to the data-out port and stored

in the external memory.

swap4
l : preg ← ([R15] ← [R14])

([Rd] ← pvar)

padd ← [R14]

pnrw,pnmreq,plock ← nil

pseq,pnbw,pnreset ← t

swap4
h : pfsm ← 1

Finally, in the last swap cycle (swap4) the content of the old external memory

is written in the destination register. The address is restored to the value saved

in R14.

• Software Interrupt

The software interrupt instruction is used to enter the supervisor mode. The

instruction causes a software interrupt trap which changes the operating mode.

The CPSR is saved in SPSR svc. The PC is forced to have 0x08H and the old

PC address is saved in R14. The processor can return to its previous operating

mode by restoring the PC and CPSR values.

SWI1
l : preg ← ([R15] ← padd+4)

([R14] ← padd+4)

pp0 ← pp1

pp1 ← pp2

padd ← padd+4

pnrw,pnmreq,pseq,plock ← nil

pnbw,pnreset ← t

pcpsr ← SPSRsvc ← CSPR

ptempPC ← 8

SWI1
h : pfsm ← 8

pp2 ← di

SWI stores the return address at R14 and sets the new address to 0x08H. After

that it goes to two cycle flush sequences and loads new instructions in the

supervisory mode.

Chapter 8. The ARM Integration and Verification Platform 119

Processor’s Execution Model

The top level ARM7 processor function is the single cycle behaviour function

(ARM7execute). The function takes five arguments: the reset signal (PnReset),

the wait signal (PnWait), the interrupt signals (PnFRQ, PnIRQ), the data-in

(PDataIn), and the processor’s state (Pstate).

The ARM7execute function implements four exceptions. A fixed priority system

controls the exceptions, with the highest priority being the reset signal. When

the processor recieves a reset signal then the processor goes into a default reset

state. The next priority is for the interrupt signals. There are two external

interrupt signals: the fast interrupt (PnFRQ) and the slow interrupt request

signal (PnIRQ). A fast interrupt request signal has higher priority than the slow

interrupt request signal. These two execptions are executed when the F and I

flags in the CPSR are enabled. The last execption is the software interrupt.

Two conditions determine whether the processor executes the instruction in the

pipeline register. First, the processor must not receive a wait signal or a no

grant signal. Otherwise, the internal state of the processor remains unchanged.

Second, the condition of the instruction has to be true. The top four bits of the

instruction have to satisfy the conditions described in Table 8.3. If the result of

the condition is false, the current instruction is ignored and a no operation is

executed.

8.2.3 Wrapper

The ARM7 processor is connected to an AMBA bus as the default master.

Unfortunately, ARM7 external specifications do not comply with AMBA

specifications. The ARM7 processor uses a two-clock cycle operation in

completing the process. In the first cycle, control signals are sent by the processor

to request external data. If it is granted, then the address is fetched in the second

cycle and data will be ready in the same cycle. The AMBA bus protocol uses

a three clock cycle operation in completing data transfer. Control signals are

expected in the first clock cycle. Then in the second cycle the memory address

is fetched by the slave. Data comes in the final clock cycle.

A wrapper is needed to interface the communication and data transfer between

the ARM7 processor and the AMBA bus protocol [6, 8]. Input signals from AHB

to ARM7 are routed through the wrapper and output signals are also routed

through the wrapper before they are driven to AHB. The wrapper enables the

ARM7 processor to satisfy the AHB master requirements. This wrapper was

modelled in SMVL.

Chapter 8. The ARM Integration and Verification Platform 120

The basic ARM7 wrapper is made up of three blocks: wrap-burst, wrap-lock,

and wrap-master. The wrap-burst module is responsible for generating AHB

address (HAddr) and control signals during burst transfers. The control signals

of a wrap-burst are: the size of data (HSize), the read/write (HWrite), and the

type of transfer (HTrans) signals.

HWrite and HSize signals are buffered signals from the processor. HWrite is

generated from the read/write (PnRW) signal of ARM7. The HSize signal is

used to indicate the size of data from 8 bits up to 1024 bits. ARM7 is capable of

performing an 8 bit or a 32 bit data transfer. The selection of bit sizes is shown

by the PnBW signal. AMBA allows data transfer from size 8 up to 1024 bits

which is indicated by a 3 bit HSize signal. The wrapper uses two sizes: 001 and

010. 001 indicates a byte data transfer; while 010 is used for a 32 bit word data

transfer.

There are three types of HTrans signals generated by wrap-burst: idle, seq, and

nonseq. It is mainly generated from the PnMreq and PSeq control signals from

the processor. When the processor performs a sequential cycle then the wrapper

generates seq on HTrans. The only exception is that when the processor’s

sequential cycle follows an internal cycle then a nonseq is generated on HTrans.

A non-sequential cycle on the processor also generates a nonseq on HTrans.

When the processor is performing an internal cycle or a co-processor cycle, an

idle is generated on HTrans.

The HAddr data comes from either the processor’s output address or internal

address incrementer. In general, the address from the processor is running one

cycle ahead of the bus. When the processor performs a non-sequential cycle,

a new address which is not related to a previous transfer is generated by the

processor. An Idle cycle is asserted on the AHB to allow the new address to be

sampled by the wrapper. In this cycle, the processor’s clock is stopped to allow

the wrapper to synchronise with the processor whilst the processor preserves its

internal state. In the next cycle, the address sampled by the wrapper is used for

the HAddr. If the following cycle is a sequential cycle then the internal address

incrementer is used to generate the HAddr data. This process eliminates the

need for the wrapper to assert an idle cycle.

The wrap-lock module generates the HLock signal. The HLock signal is only

set when the processor executes a SWAP instruction. The module monitors all

instructions read by the processor. It detects when the processor is about to

perform a SWAP instruction and checks that the instruction is being executed

when it exits the pipeline registers.

The wrap-master module controls the bus master interface to the AHB. The

module is used to determine when the wrapper is granted the bus and when it

Chapter 8. The ARM Integration and Verification Platform 121

can drive the address, data, and control outputs. It is responsible for generating

the HBurst and HBusreq signals. The HBurst output is held at 001 to indicate

that the processor only performs burst operations of unspecified length. The

HBusreq output is held HIGH to show that the processor is always requesting

access to the bus.

8.3 Summary

This chapter describes the specification and formalism of an ARM platform. It

contains the AMBA AHB bus protocol and ARM7 processor. The bus protocol

is defined in Verilog. It is capable of handling five master modules and one

slave module. ARM7 is defined in ACL2. A wrapper is designed to interface the

communication protocol between the processor and the AMBA AHB bus. These

two modules are the main components of the ARM platform. Components are

added to the platform to create an application or an application specific platform.

Chapter 9

The ARM Formal Verification Platform

In this chapter, we explain the development of a verification platform for the

system described in Chapter 7. The platform is based on specifications for the

AMBA AHB bus protocol and the ARM7 processor. Then, it is used to develop

platform specifications for two AHB masters.

The development consists of three stages. First, the generic properties of the

platform which are based only on RAPIER’s AMBA protocol properties are

established. Second, the properties of the processor are developed. Third, the

bus arbiter and the processor are integrated by combining their properties. The

result of this combination is used to define the specifications for the remaining

components. These specifications are the test-benches to define the components’

compatibilities with the system.

The generic properties of the system are obtained by proving properties about

the components by describing the functional behaviour of the system with

relevant input/output scenarios or sequences. The basic idea is to make the

proof reusable by finding and defining the most general or weakest environmental

constraints required to obtain the properties. These properties are used as the

behavioural representation of the components.

In Section 9.1, the development of the generic AMBA AHB properties will

be described and the constraints needed to make the bus protocol perform

as specified will be defined. The analysis of the properties of ARM7 will be

described in Section 9.2. Then in Section 9.3, the development of the application

specific platform will be described. Finally in Section 9.4, a summary of this

chapter is presented.

9.1 AMBA AHB Properties

The formal verification platform is built around the AMBA bus protocol. In

this first stage mentioned above, the environmental constraints for the protocol

are being defined. These constraints provide operational conditions whereby the

expected behaviours of the protocol are reached or proven correct. Conditions

Chapter 9. The ARM Formal Verification Platform 123

are proven using the SMV model checker; then they are imported into HOL98

as theorems (axioms).

All SMV verifications were performed using a Linux machine with an Intel Xeon

2.4GHz processor with 3G RAM.

9.1.1 Basic Operational Conditions and Properties

From the RAPIER documentation [65], we learn that the request from all

masters connected to the AMBA AHB can be activated or de-activated by setting

the clock blocking signals (clocken mi). When a master is de-activated, the clock

signal is blocked for that master. Consequently, requests to access the bus will be

ignored and no grant signal can be assigned to it. To achieve maximum coverage

of all master activities, all masters need to be activated. This is done by setting

off the blocking control for the input clock of each module (clocken mi) with a

HIGH signal.

One way to assure behavioural consistency of the system is by applying an

initialisation sequence. This is achieved by triggering the reset signal. The

environmental constraint is formulated by defining that the reset signal is active

for at least one cycle and no reset is applied afterwards. Analysis is only

performed on the behaviour of the model after the system is reset and all masters

are active. This constraint is defined in Assumption 1.

Assumption 1.

Reset ∧ XG ¬Reset ∧ G(
V

1≤i≤5

clocken mi)

In SMV, Assumption 1 is declared as a fairness condition for the system.

The SMV code for this fairness condition is SMV Assumption1. The fairness

properties are enforced by assuming them to be true, using the SMV assume

construct. The SMV code is shown below:

SMV Assumption1:

assert (Reset & XG ∼Reset & G(clocken m1 &

clocken m2 & clocken m3 & clocken m4));

assume SMV Assumption1;

The AHB arbiter receives requests from up to five AHB masters. It then uses a

fixed priority rule to determine which master should be granted bus ownership.

Master m5 is assigned the highest priority and master m0 the lowest priority.

If no master is requesting the bus, then unless m1 is in the split mode, bus

ownership is granted to m1 [7]. If the default master (m1) is in split mode, the bus

is granted to the dummy master (m0). The AHB arbiter has the responsibility

to ensure that at any time only one master is being granted bus ownership. The

Chapter 9. The ARM Formal Verification Platform 124

arbiter also guarantees that at any time there is one master which is granted

the bus. This is shown in SMV Theorem1. The mutual exclusion properties are

described in SMV Theorem2.

SMV Theorem1:

assert GX(grant m0 | grant m1 | grant m2 |

grant m3 | grant m4 | grant m5);

using SMV Assumption1 prove SMV Theorem1;

SMV Theorem2:

assert GX(∼(grant m0 & grant m1) &

∼(grant m0 & grant m2) &

. . .

∼(grant m4 & grant m5));

using SMV Assumption1 prove SMV Theorem2;

SMV Theorem1 and SMV Theorem2 are proved using the fairness condition

SMV Assumption1. We instruct SMV to use the constraints by a using

assumptions prove theorems statement.

The interface between SMV and HOL enables users to automatically import

properties proved in SMV into HOL. The interface analyses the SMV code to find

relevant information about the properties being verified. It also gathers which

components, modules, and assumptions are used in the verification. The modules

and assumptions become the antecedents and the properties being proved

become the conclusions of implications in HOL. For example, SMV Theorem1

and SMV Theorem2 are imported into the HOL environment by using the

command get smv theorem. The HOL theorem is:

HOL Theorem:

(AHB ∧ Reset ∧ XG ¬Reset ∧

G(clocken m1 ∧ clocken m2 ∧ clocken m3 ∧ clocken m4))

→

(GX(grant m0 ∨ grant m1 ∨ grant m2 ∨ grant m3 ∨ grant m4 ∨ grant m5) ∧

GX(¬(grant m0 ∧ grant m1)∧

¬(grant m0 ∧ grant m2)∧

. . .

¬(grant m4 ∧ grant m5))

Another style of HOL Theorem is presented in Theorem 6. The theorem says

that when AHB is initialised with the conditions described in Assumption 1,

there will be exactly one master being granted bus ownership.

Theorem 6 (Mutual Exclusion)

AHB ∧ Assumption(1)

→

GX(
W

0≤i,j≤5

grant mi) ∧ GX(
V

0≤i,j≤5,i6=j
¬(grant mi ∧ grant mj))

Chapter 9. The ARM Formal Verification Platform 125

For the remainder of Section 9.1, we use the notations employed in Assumption

1 to describe the SMV fairness constraints and Theorem 6 to describe SMV

theorems when they are imported into HOL.

9.1.2 Master Arbitration

After defining the initialisation process, the need to learn about the specific

behaviour of the system will arise. The resources available for this are the

documentation and the circuit itself. In most cases, however, the existing

documentation is not detailed enough to provide the specific information needed.

Furthermore, the system may come as a black box system where minimal

information about the circuitry is available. One approach that can be taken is

by performing experimental verifications using the documented specifications

as guidelines. In this case, SMV is used to learn about the AHB system.

When incorrect constraints are used in the verification, SMV generates a counter

example. The documentation and feedback from SMV are used to determine the

operational conditions of the system that can lead to the expected behaviours.

A master may request the arbiter to perform a burst process or a lock process.

When the arbiter allows the master to perform these processes, the arbiter state

machine goes into either a burst mode or a lock mode state. In these states, the

system goes into an internal loop and continues to grant the bus to the active

master until the process is finished. The only exception is when the arbiter

goes into a lock-split state, which forces the arbitration to grant the bus to the

dummy master until the split process is completed. The lock-split state is a

condition when the arbiter is serving an active master lock request, with the

slave responding with a split signal. The arbiter starts a new arbitration when

the process in burst mode or lock mode is completed.

At this stage, we need to find the general conditions that ensure that all process

modes can be completed. When a master is granted the bus, the completion

of the process depends on the response from the slave. The slave informs the

arbiter and the master that the data is ready by emitting a slv ready signal. We

assume slaves have the fairness property of eventually responding to any request.

At the same time, the master must be able to acknowledge the slave response.

This requires a condition where if master mi is granted the bus, then eventually

the active master is not in a busy mode and the slave issues a ready signal. This

fairness constraint is shown in Assumption 2.

Assumption 2.

GF slv ready ∧ G(
V

1≤i,j≤5

grant mi → XF(¬msti busy ∧ slv ready))

Chapter 9. The ARM Formal Verification Platform 126

The transition of the arbiter’s state machine into lock mode can be observed from

the response to grant and lock signals of each master. When an active master

is sending a lock signal, then the arbiter will go to lock mode. This condition

is defined as (
W

1≤i≤5

(grant mi ∧ lock mi)) and abbreviated as the lock req signal.

When lock req goes to HIGH then the arbiter will be in lock mode. Whenever

the system enters a lock mode, there is a possibility that the system is trapped

and has reached a deadlock condition. We prevent this condition by stating that

every master which asserts a lock signal will eventually de-assert itself.

There is also a possibility that the lock mode operation goes into an alternating

sequence in which the master sends the lock/unlock signal and the slave sends

the split/retry-ok/error signal. For example, every time the active master

de-asserts the lock signal, the slave responds with a split/retry signal. This

condition forces the arbiter to go back into the lock or lock-split mode state.

If this condition always occurs, the system will be trapped in lock mode. This

condition was deliberately allowed to happen and the possible sequences needed

to break this loop-trap were examined. The requirement to exit from the

loop-trap is shown in Assumption 3.

Assumption 3.

G (lock req → F ¬lock req) ∧

GF (lock mode → (¬grant m0 ∧ slv ok/slv error ∧ ¬lock req ∧

X(slv ready ∧ slv ok/slv error ∧ ¬lock req)))

First, when the active master asserts a lock signal, it will eventually de-assert

itself. Second, the lock mode will always be terminated after two cycles. In the

first of these cycles, it is required that the bus is not granted to m0. In the

second cycle, the slave module has to acknowledge that it is ready to complete

the transfer. In both cycles, the master has to be able to retract the lock signal

(unlock), and the slave must not issue a split or retry response.

A new arbitration is achieved when the system is in the burst mode or able to

exit from the lock-trap while in the lock mode. This condition is indicated by a

new cycle signal, when a HIGH output on this signal indicates that the arbiter

is performing a new arbitration process. The exit requirements are defined in

Assumption 1,2, and 3. Assuming the exit requirements are fair, we prove that

the arbiter will always eventually perform a new arbitration. The theorem is

shown below:

Theorem 7 (New Cycle)

(AHB ∧ Assumption(1,2,3)) → GF new cycle

Chapter 9. The ARM Formal Verification Platform 127

There is a possibility that a granted master is forced by a slave into the split

mode. When this condition occurs, the arbiter memorises which master has been

split using the split mi signal. In this case, the arbiter will ignore all incoming

requests from master mi until it receives an un-split signal from the slave. The

un-split signal indicates that the data for the master is ready for transfer. To

avoid the scenario where a master remains in split mode indefinitely, we define

a new fairness condition which is shown in Assumption 4.

Assumption 4.

G
V

1≤i≤5

(split mi → F un-split mi)

For every clock cycle, the arbiter evaluates the latest input signals and decides

what action it will take. When a request sent by a master module is not granted,

the module needs to keep requesting. This is because the arbiter does not

memorise incoming signals. If the master retracts its request signal, the arbiter

will assume the corresponding master has cancelled its request.

The arbiter uses a fixed priority scheme to decide which master is granted access

to the bus. The fixed priority scheme will always prevent any lower priority

master being granted bus ownership. We need to create a situation where the

possibility of granting control to this master exists. A request from mi can only

be granted whenever no higher priority master is sending a request signal or

when the higher priority master is in split mode. The request constraints are

shown in Assumption 5.

Assumption 5.

G
V

1≤i≤5

((req mi ∧ X ¬grant mi) → X req mi) ∧

G
V

1≤i≤4

(req mi → F (
V

i<j≤5

(¬req mj ∨ split mj) ∧ X new cycle))

After the successful creation of the general scenario for a new arbitration, it can

be used to obtain the requirements for the arbiter to grant every incoming master

request. The additional rules are shown in Assumption 4 and 5. The general

request-grant theorem is shown in Theorem 8. The theorem says that every

master request will eventually be granted, provided all requirements defined in

Assumption 1 through Assumption 5 are satisfied:

Theorem 8 (Masters’ Request Liveness)

(AHB ∧ Assumption(1,2,3,4,5)) → G (
V

1≤i,j≤5

req mi → F grant mi)

Theorem 8 defines only the liveness condition of every master’s request. In order

to guarantee liveness of the system, all constraints must be satisfied. This means

that all masters have to operate fairly so that every master has the chance to

access the bus. In Section 9.3, a description will be provided in which Theorem 8

will be refined to construct an application specific verification platform.

Chapter 9. The ARM Formal Verification Platform 128

The time taken to model check each of Theorem 7 and Theorem 8 was

approximately 25 seconds.

9.1.3 Burst Transfer

In Theorem 7 and Theorem 8, we proved that under certain constraints the

arbiter will always eventually perform a new arbitration and every request will

always eventually be granted. These facts were used to verify the arbitration

process for burst transfer. Based on the number of transfers, AMBA burst

operations were categorised into four groups. The groups were: burst transfer

of length one, burst transfer of length four, burst transfer of length eight, and

burst transfer of length sixteen.

Because of the complexity of burst systems and the huge number of possible

combinations of scenarios, it is extremly difficult to fully validate all possible

combinations of burst transfers. One approach is to find the lower bound

scenarios such as finding the minimum input sequences so that the burst transfer

process can be completed. For example, a minimum input sequence to complete

a four word burst transfer means the active master is granted access of the bus

for at least four cycles.

Theorem 9 to Theorem 13 show the proofs of the highest arbitration priority

master being granted access to the bus. In the first cycle, we use three initial

assumptions. First, the arbiter is not being reset. Second, the arbiter is about

to perform a new arbitration. Third, the expected active master is not in a

split condition. Any split master can not be granted the bus until it is un-split.

Provided these three conditions are satisfied, the request from master mi will be

granted in the next clock cycle. This property is shown in Theorem 9.

Theorem 9 (Burst Cycle 1)

G((Reset ∧ req mi ∧ ¬split mi ∧ X new cycle) → X grant mi)

The AMBA documentation [7] shows that when a master receives the grant

signal at time t, the control signals are sampled at time (t+1). Unfortunately,

the arbitration decisions were decided when the signals were sampled by the

arbiter. The decision of whether the arbiter goes to burst mode has to be

delayed until the next arbitration cycle. In addition to the first input sequence,

the active master has to hold its request signal. Meanwhile, slaves are not allowed

to respond with a split signal. In a burst transfer, a split signal will force the

arbiter to terminate the transfer even if the transfer has not yet finished. The

second burst cycle theorem is shown as follows:

Chapter 9. The ARM Formal Verification Platform 129

Theorem 10 (Burst Cycle 2)

G((Reset ∧ req mi ∧ ¬split mi ∧ X (new cycle ∧ req mi ∧ ¬slv split)) → X2 grant mi)

In the third burst cycle, the arbiter can previously be executing a burst of

length one or going to the lock-mode. The arbiter is prevented from going to

the lock-mode by assuming that the active master is not sending a lock signal

and the arbiter is going to perform a new arbitration. In order to go to the

burst-mode, the active master must send a transfer with a length of four or

more and the transfer must be started with a non-sequential signal. The slave

has to complete its previous transfer by sending a ready signal. Furthermore,

the slave is not allowed to respond with a split signal. The theorem for the third

burst cycle is shown in Theorem 11.

Theorem 11 (Burst Cycle 3)

G((Reset ∧ req mi ∧ ¬split mi ∧

X (new cycle ∧ req mi ∧ ¬slv split ∧ slv ready ∧ ¬lock mi) ∧

X2 (new cycle ∧ ¬slv split ∧ msti burst4+ ∧ msti nonseq ∧ ¬lock mi))

→

X3 grant mi)

In the fourth burst cycle, the arbiter should be in the burst-mode. The arbiter

burst-mode behaviour only depends on the type of the master’s transfer requests

and the slave’s transfer responses. The active master is only allowed in the state

of busy or sequential and the active slave is only allowed to respond with okay

or error. Otherwise, the arbiter will perform an early burst termination. The

fourth burst cycle theorem is shown in Theorem 12.

Theorem 12 (Burst Cycle 4)

G((Reset ∧ req mi ∧ ¬split mi ∧

X (new cycle ∧ req mi ∧ ¬ slv split ∧ slv ready ∧ ¬lock mi) ∧

X2 (new cycle ∧ ¬slv split ∧ msti burst4+ ∧ msti nonseq ∧ ¬lock mi) ∧

X3 (msti busy/seq ∧ slvi okay/error))

→

X4 grant mi)

The arbiter’s behaviour for bursts of length eight and sixteen is similar to the

burst of length four. The fifth to sixteenth burst cycle have similar behaviour to

the fourth burst cycle. They only depend on the type of the master’s transfer

requests and the slave’s transfer responses. The theorem for this group of burst

cycles is shown in Theorem 13. The variable n used in the theorem is the cycle

number. It ranges from 5 to 16.

Chapter 9. The ARM Formal Verification Platform 130

Theorem 13 (Burst Cycle 4+)

G((Reset ∧ req mi ∧ ¬split mi ∧

X (new cycle ∧ req mi ∧ ¬ slv split ∧ slv ready ∧ ¬lock mi) ∧

X2 (new cycle ∧ ¬slv split ∧ msti burst8+ ∧ msti nonseq ∧ ¬lock mi ∧ slv ready) ∧
V

4≤m≤n
Xm−1 (msti busy/seq ∧ slvi okay/error))

→

Xn grant mi)

The burst rule for the other masters is similar to the highest priority master. A

lower priority master can be granted only when the higher priority master does

not request to access the bus. The theorems for these masters are similar to

the one described before. We only need to change (req mi) to (req mi ∧
V

i≤j<max

req mj) where i is the master’s priority number and max is the highest priority

value. In RAPIER max has the value of 5.

80 burst theorems were proven, 16 theorems for each master. The proofs were

completed after approximately 6 hours of CPU time.

9.1.4 Control and Data Transfer

The final group of properties that were checked is the correctness of the data

transfer from the master to slave. Any master request which comes at time t can

be granted at least one clock cycle after (time (t+1)). Then the control signal

comes at time (t+2), followed by data at time (t+3).

In order to validate the transfer of control signals and data, it was assumed that

no reset signal is applied to the arbiter and master mi is granted the bus. The

transfer process can start only when a previously granted master has completed

its transfer. This can be determined by monitoring the ready signal from the

active slave. In this stage the write, size and address are transfered from the

master to the slave. The theorem for this proof is defined in Theorem 14

Theorem 14 (AMBA Control Signals)

G((Reset ∧ grant mi ∧ slv ready)

→

X ((msti add = slv add)) ∧ (msti write = slv write) ∧ (msti size = slv size))

Data output from the master to the slave and vice versa needs one additional

cycle. A second ready signal is needed to show that the slave is ready to serve

the request. The theorem for this proof is defined in Theorem 15.

Chapter 9. The ARM Formal Verification Platform 131

Theorem 15 (AMBA Data Transfer)

G((Reset ∧ grant mi ∧ slv ready ∧ X slv ready)

→

X2 ((msti wdata = slv wdata) ∧ (msti rdata = slv rdata)))

The time used to model check Theorem 14 and Theorem 15 was approximately

60 seconds and 150 seconds respectively.

9.2 ARM7 properties

The ARM7 processor is the second core component of the verification platform.

In AMBA AHB, the processor is defined as the default master and connected to

the ports of m1 through the ARM-AHB wrapper. The processor is modelled in

ACL2 using the functional modelling style. In this style, the output signals of a

component are given as a function of the input signals.

ARM7execute is a single-step ACL2 execution function for the ARM7 processor.

The function takes five arguments. The first is the input signal for reset. The

second is the signal from the arbiter to grant access to the bus. The third

argument is the interrupt input signal. The fourth is the data-in from the

AHB bus. The last argument is the internal state function of the processor.

Evaluating ARM7execute will compute the updated initial internal state and

return this updated state.

Similar to the bus protocol, properties of the processor need to be obtained. They

are obtained by proving facts using the ACL2 theorem prover. Three features

of the processor that have been verified are presented below. All analyses were

performed under the condition that no reset is applied to the processor. The

processor’s properties are as follows:

• The processor will continue its evaluation only when it receives a grant

signal. If it does not, then it goes to an idle state and maintains its

internal state. This means that the processor holds its request signal

whenever it is not granted.

(¬reset ∧ ¬grant) → (ARM7execute 0 0 interrupts data Pstate) = Pstate.

• The ARM7 processor is capable of performing a lock sequence. It was

proven that after at most three execution cycles, the processor will release

the bus.

Chapter 9. The ARM Formal Verification Platform 132

(P1 = (ARM7execute reset0 grant0 interrupts0 data0 P0) ∧

P2 = (ARM7execute reset1 grant1 interrupts1 data1 P1) ∧

P3 = (ARM7execute reset2 grant2 interrupts2 data2 P2)) →

((¬reset0 ∧ grant0) →

(¬Plock(P1) ∨ ((¬reset1 ∧ grant1) →

(¬Plock(P2) ∨ ((¬reset2 ∧ grant2) → ¬Plock(P3))))))

In the methodology, all components were combined and integrated in HOL. They

were specified as relational models in higher order logic by defining predicates

that state which combinations of values can appear on their external ports.

When a component is defined as a functional model, as is the case with the

ACL2 model of ARM7, it needs to be transformed into a relational one.

The ACL2 processor function ARM7execute is transformed in HOL into the

relational model called ARM7. The relational model of the processor is defined

as follows:

Definition 39 (HOL ARM7 processor module)

ARM7
def
=

(Pst0 = P0) ∧

(Pst(t+1) = ARM7execute reset grant interrupts data Pstt)

Pst is a function from time to the processor’s state. The index subscript to Pst

indicates the relative time at which the state occurs. Pst0 is the state of the

processor at time 0 and P0 is the initial state of the processor. As discussed

above, ACL2 theorems for the processor are automatically imported into HOL

as trusted axioms. A small amount of very simple theorem proving is needed

to simplify the HOL properties obtained from ACL2 theorems. The final HOL

theorem is as follows:

Theorem 16 (ARM7 Properties)

ARM7 ∧ (G ¬reset)

→

(G (¬grant → (Pst(t+1) = Pstt)) ∧

G (grant(t) → (¬Plock(Pst(t+1)) ∨

(grant(t+1) → (¬Plock(Pst(t+2)) ∨

(grant(t+2) → ¬Plock(Pst(t+3)))))))

The processor is connected to the AMBA-AHB through its ARM-AHB wrapper.

The communication between the processor and the bus protocol is moderated by

the wrapper. Two properties which will be used in Section 9.3 are highlighted.

Chapter 9. The ARM Formal Verification Platform 133

First, the wrapper is always sending a request signal to access the bus even if

the processor does not need to access the bus. Second, the wrapper will never

emit a busy signal to the AMBA-AHB. It always acknowledges the processor

activity by only sending an idle, sequential, or non-sequential signal. The HOL

theorem of these wrapper properties is defined in Theorem 17.

Theorem 17 (ARM-AHB WRAPPER)

G (WRAPPER → (req m1 ∧ ¬mst1 busy))

9.3 Application Specific Platform

RAPIER is an environment used in teaching at the ISLI. One application case

study was to build an Ethernet Switch using the platform [13]. The Ethernet

Switch system uses two AHB masters; the ARM7 processor and a memory

controller. In this platform, all slaves are required to give an immediate response

for any master’s request. The slaves are not allowed to respond with a split or

retry signal. The goal was to find the specifications or requirements for the

memory controller and the slaves so that all desired properties were satisfied.

Interconnection of the components in the verification platform is a

straightforward step. The formal models are connected and integrated with

logical conjunctions in higher order logic. The integration of the AHB bus

protocol, the ARM7 processor, and the ARM-AHB wrapper are just defined as

(AHB ∧ ARM7 ∧WRAPPER).

The goal was to have a system which has liveness properties. In this condition, all

requests are always granted. Theorem 3 shows the general rules or constraints

for granting the master’s requests. These constraints were used to define the

specifications of a system which has the desired liveness properties.

The Ethernet Switch system uses only two masters. The other masters are left

inactive. This fact is the new constraint for the AHB bus. This constraint

was used to refine existing AHB properties. The refinement is performed either

using the model checker (SMV) or the theorem prover (HOL). In either case,

existing properties were used and the constraints of the AHB bus protocol were

simplified. There were no requirements to re-model check the bus protocol from

scratch for the system with two masters. All proofs about AHB were imported

into HOL where system level integration and verification were performed.

The non-existence of m3 to m5 meant that there was no request from any of

these modules. One of the implications of this absence or simplification is that

no grant signals were ever sent for these masters. The slave requirement of not

Chapter 9. The ARM Formal Verification Platform 134

allowing split or retry meant that a slave could only respond with ok or error.

Because a slave is never emitting a split signal, no split condition will ever occur.

In SMV it was proven that the system has these properties. The properties are

used as the refinement constraints to simplify the generic properties of AMBA

AHB. These constraints are defined as follows:

V

3≤i≤5

(G ¬req mi → G ¬grant mi) ∧

(G ¬slv split/slv retry) → G(
V

1≤i≤5

¬split mi ∧ ¬grant m0 ∧ slv ok/slv error)

The constraints eliminate the need for Assumption 4. They also simplify

Assumption 1,3,5 with Assumption 6,7,8 respectively. The new assumptions

eliminate all properties related to m0, m3, m4, m5, and the slave split/retry

response.

The clock enable signals in Assumption 1 are only needed when they are used.

If there is no master connected to the corresponding port, all signals related to

the master can be ignored or turned off. The new assumption is shown below:

Assumption 6.

Reset ∧ XG ¬Reset ∧ G(
V

1≤i≤2

clocken mi)

The restriction on slave modules of not allowing them to send split or retry

signals reduces Assumption 3 dramatically. It eliminates the need to include a

dummy master module. Furthermore, the exit constraints when the arbiter is

in the lock-mode depend only on the slave’s ready signal and the master’s lock

request signal. The reduced fairness constraints are defined in Assumption 7.

Assumption 7.

G (lock req → F ¬lock req) ∧

GF (lock mode → (¬lock req ∧ X(slv ready ∧ ¬lock req)))

The properties of Assumption 5 are reduced to m1 and m2. In the specialized

platform, the system’s liveness constraints depend only on the fairness condition

of m2 in not infinitely requesting the bus. Because m1 is the default master,

when m2 does not request the bus, the arbiter will always grant the bus to the

default master. The simplified assumption is shown in Assumption 8.

Assumption 8.

G
V

1≤i≤2

((req mi ∧ X ¬grant mi) → X req mi) ∧

G (req m1 → F(¬req m2 ∧ X new cycle))

The behaviour of the wrapper is given by Theorem 17. One of the properties is

that the wrapper never sends a busy signal. This fact eliminates the dependency

of Assumption 2 on the processor’s behaviour. The new constraints are given in

Assumption 9.

Chapter 9. The ARM Formal Verification Platform 135

Assumption 9.

GF slv ready ∧ G(grant m2 → XF(¬mst2 busy ∧ slv ready))

The second wrapper property guarantees that the default master or processor

is always requesting access to the bus. This property refines Assumption 8 into

Assumption 10.

Assumption 10.

G ((req m2 ∧ X ¬grant m2) → X req m2) ∧

G (F(¬req m2 ∧ X new cycle))

Theorem 16 also shows that when the processor is locking the bus, it will

eventually unlock it in at most three execution cycles. The arbiter also

guarantees that in lock mode the active master always keeps the bus. These

conditions refine Assumption 7 to Assumption 11.

Assumption 11.

G((grant m2 ∧ lock m2) → F(grant m2 ∧ ¬lock m2)) ∧

GF (lock mode → (¬lock req ∧ X(slv ready ∧ ¬lock req)))

Finally, the Ethernet Switch platform is defined in Theorem 18. It states that

the platform has two masters. It is constructed from the AHB bus protocol,

the ARM7 processor, and the ARM-AHB WRAPPER. When the system is

initialised with the sequence described in Assumption 6 and the constraints

described in Assumption 9,10,11 are satisfied, the system will always provide

fair services for its two masters. Light-weight theorem proving is needed to

prove Theorem 18.

Theorem 18 (System’s Properties)

AHB ∧ ARM7 ∧ WRAPPER ∧ Assumption(6,9,10,11)

→

G (F grant m1 ∧ req m2 → F grant m2)

Based on Theorem 18, the requirements can be analysed and the specifications

for each module can be defined. The second master (memory controller) has to

satisfy the following specifications:

• The module has to be capable of maintaining its request signal until it is

granted.

• The module has to be able to accept a response from a slave by not always

engaging in a busy mode.

• If the module is capable of asserting a lock signal, it has to be able to

de-assert it until a new arbitration cycle is reached.

Chapter 9. The ARM Formal Verification Platform 136

• In order to let a lower priority master access the bus, the module should

not infinitely request the bus. One way to achieve this is by introducing

one additional rule: every completed request sequence must be followed

by a sequence of idle states. In this way, the system can guarantee that

all requests can be served.

The slaves in this platform have to satisfy the following specifications:

• By definition, all slaves are not allowed to send a retry or split signal.

• They have to be able to respond to all requests.

• To prevent any erratic behaviours of the slaves, an additional rule is defined

which controls the behaviour of the slaves: when all inputs are stable, the

output of the slaves will eventually become stable. This means that when a

slave is ready to respond to a master’s request, the slave’s output remains

stable as long as the input does not change.

In this methodology, we obtain specialised specifications for both the master and

slave modules. These specifications feature tighter requirements in comparison

to the standard ones. The specifications are geared to satisfy the application

specific requirements. Designing the modules under these specifications

guarantees that the system fulfils the application’s specific requirements.

9.4 Summary

In this chapter, the methodology was given to develop a generic formal

verification platform in which applications can be developed. The generic

platform behaviours were described as a set of formal properties. The generality

of the properties makes them reusable in the development of platform specific

applications. The properties can be used to develop the specifications of the

components of the platform. They can also be used to analyse the behaviour of

the platform with a set of components.

A standard integration platform containing the AMBA-AHB bus protocol and an

ARM7 processor was developed, with descriptions provided for the development

of reusable formal properties for this platform. It was shown that the properties

define the generic behaviour of the system. This platform was used to build

an application and by evaluating the platform’s properties with the application

requirements, the specifications for the remaining components were obtained.

Chapter 10

Summary and Future Work

10.1 Summary

The primary objective of this dissertation is to demonstrate the feasibility of

defining an integrated heterogenous formal tools system which can be used in

the system level verification of SoC designs. The goal is achieved by addressing

the problem in two steps. The first was to define a heterogenous formal system

which can offer a complete set of formal technologies which are needed in the

verification. The second was to use the heterogenous formal system in defining

formal models and performing system level verification. In this dissertation, a

tool architecture and methodology to perform formal verification for system on

chip designs were presented.

A formal verification environment was defined. In this environment, various

formal tools can be combined and integrated. It also allows each component to

be modelled in the most suitable formalism. The formal verification environment

used in this dissertation has the capability of symbolic simulation, model

checking, and theorem proving. It combines the HOL98 theorem prover, the

ACL2 theorem prover, and the SMV model checker. ACL2 is linked to HOL98

through the interface provided by PROSPER [27] and ACL2PII [76]. SMV is

embedded in HOL as one of its decision procedures [70]. These interfaces provide

an automatic mechanism for sharing information and reduce the possibility of

errors being made during the translation of theorems from one formal tool to

the other. The formal verification environment enables verification engineers to

perform formal verification using the most suitable techniques at the component

level and combine the results to achieve system level verification.

Two case studies, SIP and RAPIER, were formalised to demonstrate the

application of a formal verification environment in system level verification. Both

case studies were developed using the formal verification platform approach. In

this approach, components were individually modelled in their most suitable

formalism. A collection of formal models was developed as the building block for

the formal verification platform. Two of these models are either for components

most commonly used in all applications, such as processors and memory, or else

are given in a generic way as properties of a component’s external behaviours,

Chapter 10. Summary and Future Work 138

such as a bus arbiter. The formal verification platform methodology provides

a mechanism to wrap the models in such a way that they can be integrated

and connected to create the verification platform. In this stage, system level

properties of the combined system can be analysed.

Each case study was set to explore different aspects of system level verification

for SoC designs. In the first case study (SIP), a complete system was formalised.

The verification efforts were targeted to verify whether properties of the system

as a whole satisfied the specifications. In the second case study (RAPIER),

a partial system defined as a generic platform was formalised. Applications

were developed by integrating additional components onto the platform. The

formal verification platform for the partial system was used to obtain specific

properties of the system. These properties can be used as guidelines for tighter

specifications in the selection of components.

In SIP, a simple integration platform was developed by integrating two master

modules, one slave module, an arbiter module, and a fragment of a software

component embedded in the slave module. The verification showed that the

system had liveness properties and that all master requests will eventually be

granted by the arbiter. The program was also verified to ensure that it was

correctly executed.

In RAPIER, a standard integration platform containing the AMBA-AHB bus

protocol and an ARM7 processor was developed and descriptions were given of

the development of reusable formal properties for this platform. The properties

defined the generic behaviour of the system. This platform was used to build

an application. By evaluating the platform’s properties with the application

requirements, the specification for the remaining components were obtained.

10.2 The methodology

The complexity of System on Chip design is arguably the biggest challenge in

verification. The inclusion of embedded software in the design makes verification

even harder. The methodology described in this dissertation differs from the

one proposed by Liao and Hsiung [52]. They defined models as timed-automata

models. The advantage of this modelling technique is that a multiple clock

model and a gated clock model can be described. Verification is solely based on

the use of a model checking tool. Similar to the work by Choi et.al. [19, 20],

Liao and Hsiung did not address the issue of embedded software.

The methodology defined in this dissertation is based on a heterogenous formal

verification environment which offers a complete set of formal verification

Chapter 10. Summary and Future Work 139

technologies commonly used in hardware verification. The proposed formal

verification environment combines three formal tools. The combined tools

create a verification environment which has the capabilities to perform symbolic

simulation, model checking, and theorem proving. The theorem prover enables

the user to decompose a complex goal into more manageable sub-goals. The

model checker can automate proving the sub-goals. The symbolic simulator can

be used in validating the embedded software.

In this environment, components can be modelled in any of the supporting

formalisms. Information on how the component will be verified is used to decide

which formalism is the best suited to model the component. Subsequently,

generic properties of each component are obtained. One approach is by defining

the properties as input/output relations. The generality of the properties enables

them to be used without the need to redo the verification whenever it is used to

create a new design.

A formal verification platform for an SoC design is built by connecting formal

models using higher order logic to compose relational predicates that model

each component. When modelling with different formalisms is used, a layer of

interface is needed to define the relationship between different formalisms. Using

the verification environment, various modules described in various formal forms

can be integrated and verified as a whole. The formal verification methodology

allows the development of a generic formal verification platform in which

applications can be developed. The generic platform behaviours were described

as a set of formal properties. The generality of the properties make them reusable

in the development of platform specific applications. The properties can be used

to develop the specifications of the components of the platform. They can also

be used to analyse the behaviour of the platform with a set of components.

The formal verification approach has been applied successfully on SIP and

RAPIER. SIP is a simple integration platform with system level complexity. The

methodology is used to verify the protocol aspect of the system and the correct

execution of a software application embedded in the system. The development

of a scalable formal verification platform is presented in RAPIER. It uses models

of an industrial standard microprocessor and bus protocol.

10.3 Future Work

The ARM verification platform is still in its early stages of development. A

more comprehensive verification platform could be built on top of it. The

platform will be based on the full specification of the AMBA bus protocol and the

ARM7 processor. The platform could also be expanded by integrating standard

Chapter 10. Summary and Future Work 140

peripherals. Embedded software will play an important role in shaping the

generic platform to a specific application.

The formal verification platform methodology aims to create an environment

where a verification platform can be built by integrating a selection of formal

models in a ‘plug and play’ environment. A collection of reusable formal models

and their formal proofs need to be developed to achieve the goal.

An obvious step in this work is to extend the system with more tools. The

inclusion of more tools will enrich the system and provide more flexibility. There

will be more choices of how to model the components and the techniques used

in the verification.

One direction of interest is to develop a methodology for reusable embedded

software systems. All embedded software implementations depend on the choice

of the processor. The application code differs from one processor to another. A

development framework of processor and software can increase software reuse.

Modelling a component, such as an ARM processor, is a difficult task. In

most cases, the model usually fails to capture all behaviours of the component

implementation, especially its specific implementation behaviours. Embedding

the hardware description language, such as Verilog or VHDL, in the verification

system allows the designer to obtain more realistic properties of the component.

It will also foster the methodology closer towards the design flow.

Traditionally, interactive theorem proving systems only perform operations when

a user sends an instruction. In most cases, the system is in an idle condition.

The availability of fast processing computers should be exploited by letting the

system perform background processes in trying to prove the remaining sub-goals.

This will increase the automation of the theorem proving system.

The methodology has been used in building an ARM verification platform.

Although the platform only uses the AMBA-AHB bus protocol specification,

the methodology has shown its potential to be used in verifying a large design.

A comprehensive study is needed to measure the scalability of the methodology

and the system in use.

Bibliography

[1] Mark D. Aagaard, Robert B. Jones, Thomas F. Melham, John W. O’Leary,

and Carl-John H. Seger. A Methodology for Large–Scale Hardware

Verification. In Jr. Warren A. Hunt and Steven D. Johnson, editors, Formal

Methods in Computer Aided Design: Austin, Texas, volume 1954 of Lecture

Notes in Computer Science, pages 263–282. Springer–Verlag, November

2000.

[2] Mark D. Aagaard, Robert B. Jones, and Carl-John H. Seger. Combining

Theorem Proving and Trajectory Evaluation in an Industrial Environment.

In the 35th Design Automation Conference: San Francisco, California,

pages 538–541, June 1998.

[3] Mark D. Aagaard, Robert B. Jones, and Carl-John H. Seger. Lifted–FL:

A Pragmatic Implementation of Combined Model Checking and Theorem.

In Y.Bertot et al., editor, Theorem Proving in Higher Order Logics: Nice,

France, volume 1690 of Lecture Notes in Computer Science, pages 323–340.

Springer–Verlag, September 1999.

[4] ARM. ARM–7 DataSheet, DDI 0020C, December 1994.

[5] ARM. Interfacing a Memory System to the ARM7TDMI without Using

AMBA, DAI 0029A, December 1995.

[6] ARM. AHB Example AMBA System, DDI 0170A, August 1999.

[7] ARM. AMBA Specification ver 2.0, IHI 0011A, May 1999.

[8] ARM. AHB CPU Wrappers, DDI 0169B, May 2001.

[9] Peter J. Ashenden. Modeling Digital Systems using VHDL. IEEE Potentials

magazine, pages 27–30, April/May 1998.

[10] Janik Bergeron. Writing Testbenches, Functional Verification of HDL

Models. Kluwer Academic Publishers, 2000.

[11] Mark Birnbaum and Howard Sachs. How VSIA Answers the SOC Dilemma.

IEEE Computer magazine, pages 42–50, June 1999.

Bibliography 142

[12] Graham Birtwistle and Brian Graham. Verifying SECD in HOL. In

Jorgen Staunstrup, editor, Formal Methods for VLSI Design, IFIP WG

10.5, Amsterdam, North–Holland, pages 129–177, June 1990.

[13] Richard Black. System Integration Platform Pilot Technical Specification.

The Institute for System Level Integration, 1999.

[14] Bob Boyer and J Moore. Mechanized Formal Reasoning about Programs

and Computing Machines. In R.Veroff, editor, Automated Reasoning and

its Applications: Essay in Honor of Larry Wos. MIT Press, 1996.

[15] Muffy Calder and Alice Miller. Using SPIN to Analyse the FireWire

Protocol - A Case Study. In the IEEE 2394 FireWire workshop, Berlin,

pages 9–13, March 2001.

[16] Albert J. Camelleri. A Hybrid Approach to Verifying Liveness in a

Symmetric Multi–Processor. In Elsa L. Gunter and Amy Felty, editors,

Theorem Proving in Higher Order Logics: Murray Hill, New Jersey, volume

1275 of Lecture Notes in Computer Science, pages 49–67. Springer–Verlag,

August 1997.

[17] Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew McNelly,

and Lee Todd. Surviving the SOC Revolution, a Guide to Platform-Based

Design. Kluwer, 1999.

[18] Pankaj Chauhan, Edmund M. Clarke, Yuan Lu, and Dong Wang. Verifying

IP–Core based System–On–Chip Designs. In the IEEE International

ASIC/SOC Conference, September 1999.

[19] Hoon Choi, Myung-Kyoon Yim, Jae-Young Lee, Byeong-Whee Yun, , and

Yun-Tae Lee. Formal Verification of an Industrial System-on-a-Chip. In the

International Conference on Computer Design 2000, Austin, Texas, pages

453–458, September 2000.

[20] Hoon Choi, Byeongwhee Yun, Yuntae Lee, and Hyunglae Roh. Model

Checking of S3C2400X Industrial Embedded SOC Product. In the 38th

Design Automation Conference, Las Vegas, Nevada, pages 611–616, June

2001.

[21] Windsor Chorlton. The Invention of the Silicon Chip. Heinemann, 2002.

[22] E. M. Clarke, O. Grumberg, H. Harashi, S. Jha, D. Long, K.L.McMillan,

and L. Ness. Verification of the Futurebus+ Cache Coherence Protocol.

In Edmund M. Clarke, editor, Formal Methods in System Design, volume

06–02, pages 217–232. Kluwer, 1995.

Bibliography 143

[23] Edmund M. Clarke, O. Grumberg, and Doron A. Peled. Model Checking.

The MIT Press, 2000.

[24] Edmund M. Clarke, D. E. Long, and K.L. McMillan. Compositional Model

Checking. In the 4th Annual Symposium on Logic in Computer Science:

Pacific Grove, California, pages 353–362, June 1989.

[25] Edmund M. Clarke and Jeannette M. Wing. Formal Methods: State of the

Art and Future. In ACM Computing Survey, volume 28–4, pages 626–643,

December 1996.

[26] Ashish Darbari. Formaliziation and Execution of STE in HOL. In

Supplementary Proceeding Theorem Proving in Higher Order Logics: Rome,

Italy, September 2003.

[27] Louise A. Dennis, Graham Collins, Michael Norrish, Richard Boulton,

Konrad Slind, Graham Robinson, Mike Gordon, and Tom Melham. The

PROSPER Toolkit. In S. Graf and M. Schwartzbach, editors, Tools

and Algorithms for the Construction and Analysis of Systems: Berlin,

Germany, volume 1785 of Lecture Notes in Computer Science, pages 78–92.

Springer–Verlag, March/April 2000.

[28] David L. Dill. What’s Between Simulation and Formal Verification? In

the 35th Design Automation Conference, San Francisco, California, pages

328–329, June 1998.

[29] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang.

Protocol Verification as a Hardware Design Aid. In the IEEE International

Conference on Computer Design: VLSI in Computers and processors, pages

522–525, 1992.

[30] Anthony Fox. A HOL Specification of the ARM instruction Set

Architecture. Technical Report 545, Computer Laboratory, University of

Cambridge, United Kingdom, June 2001.

[31] Anthony Fox. An Algebraic Framework for Modelling and Verifying

Microprocessors using HOL. Technical Report 512, Computer Laboratory,

University of Cambridge, United Kingdom, March 2001.

[32] Anthony Fox. Formal Verification of the ARM6 Micro-architecture.

Technical Report 548, Computer Laboratory, University of Cambridge,

United Kingdom, November 2002.

[33] Steve Furber. ARM System Architecture. Addison–Wesley, 1999.

[34] M.J.C. Gordon and T.F.Melham. Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press, 1993.

Bibliography 144

[35] Brian T. Graham. The SECD Microprocessor; A Verification Case Study.

Kluwer, 1992.

[36] SoC Verification Business Unit Mentor Graphics. Design Challenges Thrust

on SoC Process. Nikkei Electronics Asia, August 2000.

[37] David A. Greve. Symbolic Simulation of the JEM1 Microprocessor. In

Ganesh Gopalakrishnan and Philip Windley, editors, Formal Methods in

Computer-Aided Design: PaloAlto, California, volume 1522 of Lecture

Notes in Computer Science, pages 321–333. Springer–Verlag, November

1998.

[38] Rajesh K. Gupta and Yervant Zorian. Introducing Core-Based System

Design. IEEE Design and Test of Computers magazine, pages 15–25,

October–December 1997.

[39] John Harrison. Formal Verification of Floating Point Trigonometric

Functions. In Jr. Warren A. Hunt and Steven D. Johnson, editors, Formal

Methods in Computer Aided Design: Austin, Texas, volume 1954 of Lecture

Notes in Computer Science, pages 217–233. Springer–Verlag, November

2000.

[40] Scott Hazelhurst and Carl-Johan H. Seger. A Simple Theorem Prover Based

on Symbolic Trajectory Evaluation and OBDDs. Technical Report 93–41,

Department of Computer Science, University of British Columbia, Canada,

November 1993.

[41] IBM and Synopsys. Design Environment for System–On–Chip. White

Paper on Synopsys Sucess Stories.

[42] The Institute for System Level Integration. SLI Methodology Overview,

2001.

[43] INTEL. Expanding Moore’s Law, TL 001, 2002.

[44] C.Norris Ip and David L. Dill. Better Verification through Symmetry. In

D. Agnew, Luc Claesen, and R. Compasano, editors, Computer Hardware

Description Languages and Their Applications, April 1993, pages 87–100.

Elsevier Science Publishers B.V., 1993.

[45] Robert B. Jones, John W. O’Leary, Carl-John H. Seger, Mark D. Aagaard,

and Thomas F. Melham. Practical Formal Verification in Microprocessor

Design. IEEE Design and Test of Computers magazine, pages 16–25,

July–August 2001.

[46] Jeffrey John Joyce. Multi–Level Verification of Microprocessor–Based

Systems. PhD thesis, University of Cambridge, 1990.

Bibliography 145

[47] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore.

Computer-Aided Reasoning, ACL2 Case Studies. Kluwer, 2000.

[48] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore.

Computer-Aided Reasoning, An Approach. Kluwer, 2000.

[49] Michael Keating and Pierre Bricaud. Reuse Methodology manual For

System–On–a–Chip Designs. Kluwer, 1999.

[50] R.P. Kurshan and K.L. McMillan. A structural induction theorem for

processes. In the ACM Symposium on Principles of Distributed Computing:

Edmonton, Alta., Canada, pages 239–247, August 1989.

[51] Pran Kurup, Taher Abbasi, and Ricky Bedi. It’s the Methodology, Stupid!

ByteK Designs, Inc., 1998.

[52] Wen-Shiu Liao and Pao-Ann Hsiung. FVP: A Formal verification Platform

for SoC. In Ganesh Gopalakrishnan and Philip Windley, editors, the 16th

IEEE International SoC Conference: Portland, Oregon, volume 1522 of

Lecture Notes in Computer Science. Springer–Verlag, September 2003.

[53] Mark Litterick. ARM Integration Platform Architectural Specification. The

Institute for System Level Integration, November 2001.

[54] Grant Martin, Lee Todd, and Andy McNelly. The Integration Platform

Approach to System On Chip. In IP98, 1998.

[55] K.L. McMillan. Minimalist Proof Assistants: Interactions of Technology in

Formal System Level Verification. In Ganesh Gopalakrishnan and Philip

Windley, editors, Formal Methods in Computer-Aided Design: PaloAlto,

California, volume 1522 of Lecture Notes in Computer Science, page 1.

Springer–Verlag, November 1998.

[56] K.L. McMillan. The SMV language. Cadence Berkeley Labs, Cadence

Design Systems, 1998.

[57] K.L. McMillan. Getting started with SMV. Cadence Berkeley Labs, Cadence

Design Systems, 1999.

[58] T. Melham. Higher Order Logic and Hardware Verification, volume 31 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, 1993.

[59] Abdel Mokkadem, Ravi Hosabettu, and Ganesh Gopalakrishnan.

Formalization and Proof of a Solution to the PCI 2.1 Bus Transaction

Ordering Problem. In Ganesh Gopalakrishnan and Philip Windley, editors,

Formal Methods in Computer-Aided Design: PaloAlto, California, volume

Bibliography 146

1522 of Lecture Notes in Computer Science, pages 237–254. Springer–Verlag,

November 1998.

[60] J Strother Moore. Symbolic Simulation: An ACL2 Approach. In

Ganesh Gopalakrishnan and Philip Windley, editors, Formal Methods in

Computer-Aided Design: PaloAlto, California, November 1998, volume

1522 of Lecture Notes in Computer Science, pages 334–350. Springer–Verlag,

November 1998.

[61] Vishnu A. Patankar, Alok Jain, and Randal E. Bryant. Formal Verification

of an ARM processor. In the 12th International Conference on VLSI Design,

Goa, India, January 1999.

[62] Lawrence C. Paulson. ML for the Working Programmer. Cambridge

University Press, 1996.

[63] Douglas A. Pucknell and Kamran Eshraghian. Basic VLSI Design. Prentice

Hall, 1994.

[64] Ann Marie Rincon, Cory Cherichetti, James A. Monzel, David R. Stauffer,

and Michael T. Trick. Core Design and System-on-a-Chip Integration. IEEE

Design and Test of Computers magazine, pages 26–35, October–December

1997.

[65] David Robinson. Foundation Block and IP Library. The Institute for System

Level Integration, November 2001.

[66] Abhik Roychoudhury, Tulika Mitra, and S.R. Karri. Using Formal

Techniques to Debug the AMBA System–on–Chip Bus Protocol. In the

Design, Automation, and Test Europe Conference, Munich, Germany,

March 2003.

[67] David M. Russinoff. A Case Study in Formal Verification of

Register–Transfer Logic with ACL2: The Floating Point Adder of the AMD

AthalonTM Processor. In Jr. Warren A. Hunt and Steven D. Johnson,

editors, Formal Methods in Computer Aided Design: Austin, Texas, volume

1954 of Lecture Notes in Computer Science, pages 3–36. Springer–Verlag,

November 2000.

[68] Jun Sawada. Formal Verification of an Advanced Pipelined Machine. PhD

thesis, The University of Texas at Austin, December 1999.

[69] K. Schneider. Yet another look at LTL model checking. In Laurence Pierre

and Thomas Kropf, editors, Correct Hardware Design and verification

Methods: Bad Herrenalb, Germany, volume 1703 of Lecture Notes in

Computer Science, pages 321–325. Springer–Verlag, September 1999.

Bibliography 147

[70] Klaus Schneider and Dirk W. Hoffmann. A HOL Conversion for Translating

Linear Time Temporal Logic to ω–Automata. In Y. Bertot et al., editor,

Theorem Proving in Higher Order Logics: Nice, France, volume 1690

of Lecture Notes in Computer Science, pages 255–272. Springer–Verlag,

September 1999.

[71] Carl-Johan Seger. An Introduction to Formal Verification. Technical Report

92–1, Department of Computer Science, University of British Columbia,

Canada, June 1992.

[72] Kanna Shimizu, David L. Dill, and Ching-Tsun Chou. A Specification

Methodology by a Collection of Compact Properties as Applied to the Intel

Itanium Processor Bus Protocol. In Tiziana Margaria and Tom Melham,

editors, Correct Hardware Design and verification Methods, volume 2144

of Lecture Notes in Computer Science, pages 534–537. Springer–Verlag,

September 2001.

[73] Sonics Inc. Open Core ProtocolTM Specification 1.0, 1999.

[74] Madayam Srivas, Harald Rueβ, and David Cyrluk. Hardware Verification

using PVS. In Thomas Kropf, editor, Formal Hardware Verification

Methods and Systems in Comparison, volume 1287 of Lecture Notes in

Computer Science, pages 156–205. Springer–Verlag, July 1997.

[75] Mandayam K. Srivas and Steven P. Miller. Formal Verification of

a commercial microprocessor. Technical Report SRI–CSL–95–04, SRI

Computer Science Laboratory, July 1995.

[76] Mark Staples. Linking ACL2 and HOL. Technical Report 476, Computer

Laboratory, University of Cambridge, United Kingdom, November 1999.

[77] Kong Woei Susanto. An Integrated Formal Approach for System on Chip.

In the IP Based Design 2002, Grenoble, France, pages 119–123, October

2002.

[78] Kong Woei Susanto and Tom Melham. AMBA–ARM7 Formal Verification

Platform. In the 5th International Conference on Formal Engineering

Method, Singapore, November 2003.

[79] Texas Instrument. TI’s Standard–Independent Single Chip Digital Baseband

Platform for Wireless System Design, SPRY006 1996.

[80] University of Cambridge. The HOL System Description, HOL98 Taupo–6,

June 2002.

[81] Alex van Someren and Carol Atack. The ARM RISC Chip, A Programmer’s

Guide. Addison–Wesley, 1994.

Bibliography 148

[82] Miroslav N. Velev, Randal E. Bryant, and Alok Jain. Efficient Modeling

of Memory Arrays in Symbolic Simulation. In O. Grumberg, editor,

Computer-Aided Verification, volume 1254 of Lecture Notes in Computer

Science, pages 388–399. Springer–Verlag, June 1997.

[83] VLSI Technology. Power and Flexibility in a Single Chip, Product Bulletin

PBGSM 1.0, October 1997.

[84] Jr. Warren A. Hunt. FM8501: A Verified Microprocessor, volume 795 of

Lecture Notes in Computer Science. Springer–Verlag, 1994.

[85] Jr. Warren A. Hunt and Bishop Brock. A Formal HDL and its use in

the FM9001 Verification. In C.A.R. Hoare and M.J.C. Gordon, editors,

Mechanized Reasoning and Hardware Design, Prentice–Hall International

Series in Computer Science, pages 35–48. Prentice–Hall, Englewood Cliffs,

N.J., 1992.

[86] Patrick Henry Winston and Berthold Klaus Paul Horn. LISP. Addison–Wes

ley Pub.Co., 1989.

