
Xs Are for Trajectory Evaluation,

Booleans Are for Theorem Proving

Mark D. Aagaard1, Thomas F. Melham2, and John W. O’Leary1

1 Strategic CAD Labs, Intel Corporation, JFT-102
5200 NE Elam Young Parkway, Hillsboro, OR 97124, USA

{maagaard,joleary}@ichips.intel.com
2 Department of Computing Science, University of Glasgow

Glasgow, Scotland, G12 8QQ
tfm@dcs.gla.ac.uk

Abstract. This paper describes a semantic connection between the sym-
bolic trajectory evaluation model-checking algorithm and relational ver-
ification in higher-order logic. We prove a theorem that translates cor-
rectness results from trajectory evaluation over a four-valued lattice into
a shallow embedding of temporal operators over Boolean streams. This
translation connects the specialized world of trajectory evaluation to a
general-purpose logic and provides the semantic basis for connecting ad-
ditional decision procedures and model checkers.

1 Introduction

The well-known limits to BDD-based model-checking techniques have moti-
vated a great deal of interest in combining model-checking with theorem prov-
ing [3,11,9,6]. The foundation of any such hybrid verification approach is a se-
mantic connection between the logic of properties in the model checker and the
logic of the theorem prover. Symbolic trajectory evaluation [16] is a highly effec-
tive model checker for datapath verification. It has been combined with theorem
proving and the combination has been used effectively on complex industrial
circuits [1,12]. However, two of the features that make trajectory evaluation
so effective as a model checker create difficulties or limitations in the theorem
proving domain. Trajectory evaluation’s temporal logic has limited expressabil-
ity and operates over a lattice of values containing notions of contradiction (�)
and unknown (X).

In this paper, we formally verify a semantic link from symbolic trajectory
evaluation to higher-order logic. This link allows trajectory evaluation to be
used as a decision procedure without encumbering the theorem proving world
with the complications and limitations of trajectory evaluation. The trajectory
evaluation temporal operators are defined in a shallow embedding of predicates
over streams and the lattice domain is converted to simple Booleans. This trans-

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 202–218, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Xs Are for Trajectory Evaluation, Booleans Are for Theorem Proving 203

lates trajectory evaluation results into the conventional “relations-over-Boolean-
streams” approach to hardware modeling in higher-order logic [7].1

We believe that the relational world is the right target domain for connecting
model checking engines. Each model checking algorithm typically has its own
temporal logic. By translating results into higher-order logic, the vestiges of the
individual model checkers are removed, allowing the full power of general-purpose
theorem proving to be brought to bear.

To give some intuition about the two worlds we reason about and the con-
nection between them, consider the nand-delay circuit in Figure 1. Figure 2
presents simple correctness statements for both the trajectory evaluation and
relational styles. We will use this circuit as a running example throughout this
paper. In this example, for simplicity, we consider the nand gate to be zero delay.
Trajectory evaluation typically uses a more detailed timing model of circuits.

i om

Fig. 1. Simple example circuit nand delay

i
def
= "i"

o
def
= "o"

|=ckt

[
(i is b1)and
(o is b2)

==� (N (o is ¬(b1 ∧ b2))

]

cktHOL i o
def
=

∃m.
(∀t. m t = NAND(i t)(o t)) ∧
(∀t. o (t + 1) = m t)

specHOL i o
def
=

∀t.o (t + 1) = NAND(i t)(o t)

∀i, o. cktHOL i o =⇒ specHOLi o

Trajectory-evaluation verification Relational style verification

Fig. 2. Example stream and trajectory evaluation verifications

Trajectory evaluation is based on symbolic simulation. Correctness state-
ments are of the form |=ckt [ant ==� cons], where ==� is similar, but not iden-
tical to, implication (details are given in Section 2). The antecedent ant gives
an initial state and input stimuli to the circuit ckt , while the consequent cons
specifies the desired response of the circuit. Circuits are black boxes—their im-
plementations are not user visible. Circuit nodes are named by strings. In the
example, the antecedent drives the nodes “i” and “o” with the Boolean vari-
ables b1 and b2 at the initial step of the verification. The consequent says that
at the next time step the node “o” has the value ¬(b1 ∧ b2).
1 In the rest of the paper we will take the phrase “relational” style to mean “relations

over Boolean streams” with a shallow embedding of temporal operators as predicates.

204 Mark D. Aagaard et al.

In relational verification, correctness statements are of the form ckt i o =⇒
spec i o, where =⇒ is true implication. Signals (e.g., i, m, and o) are modelled
by streams, which are functions from time to values. Both the circuit and the
specification are relations over these infinite streams. A stream satisfies a circuit
if it is a series of values that could be observed on the corresponding signals in
the circuit. The correctness criterion for the example says that if the streams i
and o satisfy the circuit model, then they must conform to the specification.

At a very cursory level, a mapping from the trajectory evaluation result in
Figure 2 to the relational world would result in:

∀i, o. ∀t.
((i t) = b1) ∧ ((o t) = b2) ∧ (ckt i o)
=⇒
(o (t + 1)) = ¬(b1 ∧ b2)

Substituting for b1 and b2 throughout the expression gives:

∀i, o. ∀t. ckt i o =⇒ (o (t + 1)) = ¬((i t) ∧ (o t))

Technically, this description is not quite correct, but it gives the intuition behind
our result that correctness statements in trajectory evaluation imply relational
correctness statements. Section 5.2 shows the actual process and results for the
nand-delay circuit. The difficulties arise in details such as translation between
different semantic domains (e.g., Boolean and lattice valued streams) and the
treatment of free variables in trajectory formulas.

Our main result is a formal translation from trajectory evaluation’s temporal
operators over lattices to a shallow embedding of the temporal operators over
Boolean streams. We prove that any result verified by the trajectory evaluation
algorithm will hold in the relational world. This allows trajectory evaluation
to be used as a decision procedure in a theorem prover without changing the
relational style of verification used in the theorem prover.

It is interesting to note that our result is an implication, not an “if-and-only-
if”; that is, we do not guarantee that every statement provable in the relational
world will also hold in trajectory evaluation. The problem stems from the dif-
ferences in how the relational world and the trajectory evaluation world handle
contradictions in the circuit and antecedent. Joyce and Seger gave an extra
constraint on trajectory evaluation that can be used to prove an if-and-only-if
relationship [10]. The constraint requires reasoning about contradictions and top
values. Because we use trajectory evaluation as a decision procedure, we are able
to avoid the burden of reasoning about contradictions.

1.1 Organization of the Paper

Figure 3 is a roadmap of the paper. We begin with a presentation of trajectory
assertions (the specifications for symbolic trajectory evaluation) over the stan-
dard four-valued lattice (Section 2). Our verification relies on two major steps:

Xs Are for Trajectory Evaluation, Booleans Are for Theorem Proving 205

STE correctness
(lattice, meta)

STE correctness
(Bool, shallow)

STE algorithm

Voss impl
of STE

STE correctness
(Bool, deep)

STE correctness
(Bool, meta)

Thm 1

Thm 2

Thm 4 Thm 3

Thm5

(Sect 2)

(Sect 3.1) (Sect 4.2) (Sect 4.1)

(Sect 6)

 (Seger FMSD 95)

(Sect 3.2)

(Sect 5.1) (Sect 4.2)

(Sect 5.1)

Fig. 3. Roadmap of the paper

from the four-valued lattice to Booleans and from a deep embedding of the tem-
poral operators to a shallow embedding. In Section 3 we introduce our definition
of trajectory assertions over Booleans and prove that a trajectory assertion over
lattice-valued streams implies the same result over Boolean-valued streams. We
then prove that a shallow embedding of trajectory formulas as relations over
streams is equivalent to a deep embedding (Section 4).

Our proof relating trajectory assertions over lattices to trajectory assertions
over Booleans is a meta-logical proof about the semantics of the two languages
and links the free (Boolean) variables that appear in these assertions. The con-
version from the deep to shallow embedding is done in higher-order logic. In
Section 5 we connect connect all of the pieces together to prove our final result.

1.2 Related Work

An early experiment in combining model checking and theorem proving was the
HOL-Voss System [10]. Within HOL [7], Joyce and Seger proved the correspon-
dence between a deep embedding of the Voss [8] “5-tuple” implementation of
trajectory assertions (see Section 6) and a simple specification language that
was deeply embedded in HOL. This allowed them to use Voss as an external
decision procedure for HOL. Our work focuses on the logical content of trajec-
tory assertions, independent of any particular implementation (e.g., Voss), and
connects this to a shallow embedding of temporal operators in higher-order logic.

The modal mu-calculus has been embedded in HOL [2] and in PVS [15].
In the PVS work, Rajan et al implemented a shallow embedding upon which
they defined the ∀CTL∗ temporal logic. They connected a mu-calculus model

206 Mark D. Aagaard et al.

checker and verified a number of abstraction opertations. It should be possible to
translate a subset of the ∀CTL∗ formulas into predicates over Boolean streams,
but given the complexity of ∀CTL∗, it is difficult to estimate the feasibility of
this approach.

Chou has given a set-theoretic semantics of trajectory evaluation, focusing on
extensions to the basic algorithm [5]. Our work translates trajectory evaluation
results into a form that can be seamlessly integrated with current practice in
higher-order-logic theorem proving. It would be interesting to explore connec-
tions between the work presented here and Chou’s, to find a seamless connection
from extended trajectory evaluation to theorem-proving in higher-order logic.

2 Symbolic Trajectory Evaluation

This section presents the logic of trajectory assertions. Our results are meta-
logical, but for convenience we use a bold face logical-style notation to state our
results. Our presentation of trajectory evaluation is comprised of three parts.
After a few preliminary definitions; we proceed with Section 2.1, which describes
the four-valued lattice. Section 2.2 overviews the circuit model used in trajectory
evaluation. Finally, Section 2.3 describes the specification logic of trajectory
evaluation.

First, some preliminaries. We suppose there is a set of nodes, naming observ-
able points in circuits. A stream is a function from natural numbers representing
time to data values in the stream. A sequence takes a node and returns the
stream for that node. A state is a mapping from nodes to values. We typically
use σ for sequences and s for states. Two convenient sequence operations are
taking the suffix and transposing a sequence so that it is a stream of states.

α stream
type
= N → α

α sequence
type
= node → α stream

α state
type
= node → α

suffix: σi
def
= λn. λt. (σ n (t + i))

transpose: σT def
= λt. λn. (σ n t)

σT :: (α state) stream

2.1 The Four Valued Lattice

In this paper, the only lattice that we use is the four-valued lattice shown below.
The theory of trajectory evaluation works equally well over all complete lattices.
However this lattice simplifies the presentation and is the lattice used by the Voss
implementation of trajectory evaluation [8]. Our mathematical development also
is based on this lattice—generalizing our results would be of theoretical interest,
but not of immediate practical benefit to us.

1 0
X

Xs Are for Trajectory Evaluation, Booleans Are for Theorem Proving 207

The ordering over lattice values shown above defines the ordering relation
 ,
which we lift pointwise and overload over streams and states. We inject the set
of Boolean values to lattice values with the postfix operator ↓ (read “drop”,
Definition 1), which maps the Boolean values T and F to their counterparts in
the lattice. Drop is lifted pointwise to states, to sequences, and to state streams.

Definition 1. Dropping from Boolean to lattice values

F↓ def
= 0

T↓ def
= 1

2.2 Circuit Models

In our description of circuit models, we will refer to Table 1, which gives the
lattice transition function for the example nand-delay circuit. In trajectory
evaluation, the circuit model is given by a next state function Y that takes a
circuit and maps states to states:

Y :: ckt → lattice state → lattice state

A lattice state is an assignment to circuit nodes of values drawn from the four
valued lattice. The first argument toY identifies the particular circuit of interest,
and for the present purposes may be regarded as an uninterpreted constant.
Intuitively, the next state function expresses a constraint on the set of possible
states into which the circuit may go for any given state. Suppose the circuit is
in state s, then Y(s) will give the least specified state the system can transition
to. Here, “least specified” means that if a node can take on both 1 and 0 values
in the next state, then Y(s) will assign the value X to that node.

Table 1. Lattice transition function for nand-delay circuit

〈 i o 〉 〈 i′ o′ 〉
0 0 X 1
0 1 X 1
0 X X 1 ←− o can initially be X, and o′ is still defined
1 0 X 1
1 1 X 0
1 X X X ←− o′ is unknown, because o is unknown
X 0 X 1 ←− i can initially be X, and o′ is still defined
X 1 X X ←− o′ is unknown, because i is unknown
X X X X

A critical requirement for trajectory evaluation is that the next-state function
be monotonic, which is captured in Axiom 1.

Axiom 1. Monotonicity of Y
For all s , s ′. (s
 s ′) implies (Ys
Ys ′)

208 Mark D. Aagaard et al.

Monotonicity can be seen in the nand-delay circuit by comparing a transition
in which one of the current state variables (e.g., o) is X with a transition in
which o is either 0 or 1. A bit of the algorithmic efficiency of trajectory evaluation
is illustrated here. The initial value for some of the circuit nodes can be X and
a meaningful result can still be verified. In this way, the lattice often allows
trajectory evaluation to prove results with fewer BDD variables than would
otherwise be needed.

A sequence σ is said to be in the language of a circuit (Definition 2) if the
set of behaviors that the sequence encodes is a subset of the behaviors that the
circuit can exhibit. This means that the result of applying Y to any element of
the state stream σT is no more specified (with respect to the
 ordering) than
the succeeding element of σT.

Definition 2. Sequence is in the language of a circuit

σ ∈ L ckt
def
= For all t ≥ 0. (Y ckt (σT t))
 (σT (t + 1))

2.3 Trajectory Evaluation Logic

Trajectory evaluation correctness statements (known as trajectory assertions)
are written as:

|=ckt [ant ==� cons]

where ant and cons are trajectory formulas. The intuition is that the antecedent
ant provides stimuli to nodes in the circuit and the consequent cons specifies
the values expected on nodes in the circuit. Before further describing trajectory
assertions, we define trajectory formulas (Definition 3) and what it means for a
sequence to satisfy a trajectory formula (Definition 4).

Definition 3. Trajectory formulas

f
def
= n is 0 // n has value 0
| n is 1 // n has value 1
| f1 and f2 // conjunction of formulas
| f when g // f is asserted only when g is true
| N f // f holds in the next time step

where f, f1, f2 range over formulas; n ranges over the node names of
the circuit; and g is a Boolean expression, commonly called a guard.

Trajectory formulas are guarded expressions defining values on nodes in the
sequence. Guards may contain free variables. In fact, guards are the only place
that free variables are allowed in the primitive definition of trajectory formulas.
Syntactic sugar for is is commonly defined to allow guards in the value field as
well. This is illustrated in Figure 1 and Section 5.2.

Definition 4 describes when a sequence σ satisfies a trajectory formula f .
Satisfaction is defined with respect to an assignment φ of Boolean values to the
variables that appear in the guards of the formula.

Xs Are for Trajectory Evaluation, Booleans Are for Theorem Proving 209

Definition 4. Sequence satisfies a trajectory formula

(φ, σ) |=
STE

(n is 0)
def
= σ n 0 � 0

(φ, σ) |=
STE

(n is 1)
def
= σ n 0 � 1

(φ, σ) |=
STE

(f1 and f2)
def
= ((φ, σ) |=

STE
f1) and ((φ, σ) |=

STE
f2)

(φ, σ) |=
STE

(f when g)
def
= (φ |= g) implies ((φ, σ) |=

STE
f)

(φ, σ) |=
STE

(Nf)
def
= (φ, σ1) |=STE

f

Where φ |= g means that the assignment that φ makes to the free vari-
ables in g renders g true.

We now have sufficient notation to define a trajectory assertion (Definition 5).
In trajectory evaluation, correctness criteria are formulated as trajectory asser-
tions.

Definition 5. Trajectory assertion

φ |=ckt [ant ==� cons]
def
=

For all σ. (σ ∈ L ckt) implies ((φ, σ) |=
STE

ant) implies ((φ, σ) |=
STE

cons)

The fundamental theorem of trajectory evaluation [16] says the trajectory
evaluation algorithm (STE ckt ant cons) computes the Boolean condition e on
the free variables in ant and cons if and only if any assignment φ satisfying e
also proves the trajectory assertion φ |=ckt [ant ==� cons] (Theorem 1).

Theorem 1. Correctness of STE algorithm
For all circuits ckt, antecedents ant, and consequences cons, the
implementation of the STE algorithm returns the value e (that
is, e = STE ckt ant cons) if and only if:

For all φ. φ |= e implies φ |=ckt [ant ==� cons]

3 Trajectory Logic over Boolean Streams

In this section we give a definition of trajectory logic over Boolean streams (as
opposed to the standard lattice-valued streams in Section 2) and prove that
trajectory evaluation results that hold over the four valued lattice also hold
over Boolean streams. Boolean identifiers (e.g., next-state relations, sequences,
and languages) will be distinguished from their lattice valued counterparts by
marking them with a ◦, as in

◦
Y , ◦

σ , and
◦L .

3.1 Definitions and Axioms

In the Boolean world, circuit behavior is modeled as a relation between current
and next states. In contrast, circuit behavior in trajectory evaluation is modeled
as a next state function. The Boolean next state relation, denoted

◦
Y , has the

type:
◦
Y :: ckt → bool state → bool state → bool

210 Mark D. Aagaard et al.

We write
◦
Y ckt as an infix operator, as in: s(

◦
Y ckt)s′.

As a concrete example, the next state relation for the nand-delay circuit
of Figure 1 is defined by Table 2, where the vectors 〈i, o〉 and 〈i′, o′〉 denote the
current and next states of the input and output. Note that the non-determinism
that was represented by Xs in Y (Table 1) appears as multiple next states with
the same current state in Table 2.

〈 i , o 〉 〈 i′ , o′ 〉
0 0 0 1
0 0 1 1

0 1 0 1
0 1 1 1

1 0 0 1
1 0 1 1

1 1 0 0
1 1 0 1

Table 2. Boolean next-state relation for nand-delay

Given a circuit’s next state relation
◦
Y , we say that a Boolean sequence ◦

σ

is in the language of the circuit when consecutive states in the state stream ◦
σ

T

are included in the next-state relation (Definition 6).

Definition 6. Boolean sequence is in the language of a circuit:
◦
σ ∈ ◦L ckt

def
= For all t ≥ 0. (◦

σ
T
t) (

◦
Y ckt) (◦

σ
T(t + 1))

We now define when a Boolean sequence ◦
σ satisfies a trajectory formula f

(Definition 7). The only distinction between |=◦ and satisfaction over lattice se-
quences (|=

STE
) is that for the formulas (n is 0) and (n is 1), satisfaction is defined

in terms of values in the Boolean domain rather than the lattice domain.

Definition 7. Boolean sequence satisfies a trajectory formula

(φ,
◦
σ) |=◦ (n is 0)

def
= (◦

σ n 0) = F

(φ,
◦
σ) |=◦ (n is 1)

def
= (◦

σ n 0) = T

(φ,
◦
σ) |=◦ (f1 and f2)

def
= ((φ,

◦
σ) |=◦ f1) and ((φ,

◦
σ) |=◦ f2)

(φ,
◦
σ) |=◦ (f when g)

def
= (φ |= g) implies ((φ,

◦
σ) |=◦ f)

(φ,
◦
σ) |=◦ (N f)

def
= (φ,

◦
σ 1) |=◦ f

3.2 Correctness of Boolean Valued Trajectory Evaluation

To link the worlds of lattice and Boolean based trajectory evaluation, we require
that the two models of the circuit behavior (Y and

◦
Y) describe the same be-

havior. Axiom 2 says that if two Boolean states s and s′ satisfy the next-state

Xs Are for Trajectory Evaluation, Booleans Are for Theorem Proving 211

relation
◦
Y , then the result of applying the next-state function Y to the dropped

versions of s results in a state that is no higher in the lattice than s′↓ (Y is a
ternary extension of

◦
Y).

Axiom 2. Relating next-state relation
and next-state function

For all ckt , s, s′. s (
◦
Y ckt) s′

implies
(Y ckt (s↓))� (s′↓)

↓

Y

↓

Y

s s

s↓Ys↓ s↓’

’

Fig. 4. Illustration of Axiom 2

Axiom 2, which is illustrated in Figure 4, says that any Boolean next state s′

possible in the relational model is consistent with the next state in the lattice-
valued model. It also constrains

◦
Y ckt to return F whenever it is applied to two

states s, s′ that are inconsistent with Yckt (e.g., unreachable states). Inconsis-
tency is manifested by Yckt s returning the lattice value � (top).

Theorem 2 makes the connection between trajectory assertions over lattice
“values” and Boolean trajectory assertions. If a trajectory assertion holds over
lattice-valued streams, then the same antecedent leads to the same consequent
over Boolean-valued streams. This is the crux of connection from the lattice
world to the Boolean world.

Theorem 2. Translate trajectory logic from lattice to Boolean sequences.
For all ckt , ant , cons .

For all φ, σ.
σ ∈ L ckt implies

For all t ≥ 0. ((φ, σt) |=STE
ant) implies ((φ, σt) |=STE

cons)
implies
For all φ,

◦
σ .

◦
σ ∈ ◦L ckt implies
For all t ≥ 0.

(
(φ,

◦
σ t) |=◦ ant

)
implies

(
(φ,

◦
σ t) |=◦ cons

)
The proof of Theorem 2 relies on Lemmas 1 and 2. Lemma 1 says that if a

Boolean sequence ◦
σ is in the Boolean language of a circuit then the dropped

version ◦
σ↓ is in the lattice-valued language of the circuit. The proof of Lemma 1

is done by unfolding the definition of ∈ ◦L and using Axiom 2.

Lemma 1. Relationship between Boolean and ternary sequences

For all ◦
σ .

◦
σ ∈ ◦L ckt implies ◦

σ↓ ∈ L ckt

Lemma 2 relates satisfaction over Boolean sequences to satisfaction over lattice-
valued sequences. Its proof is by induction over the structure of trajectory for-
mulas, unfolding the definitions of |=◦ and |=

STE
, and employing properties of the

drop operator (Lemma 3).

212 Mark D. Aagaard et al.

Lemma 2. Satisfaction over Boolean and ternary sequences
For all φ, f,

◦
σ . (φ,

◦
σ) |=◦ f iff (φ,

◦
σ↓) |=

STE
f

Lemma 3 says that the value of an element of a Boolean sequence ◦
σ is F (T)

if-and-only-if the value of the dropped sequence at that point is higher in the
lattice than 0 (1). The lemma holds because F↓= 0, 0 � 0 (similarly, T↓= 1, and
1 � 1).

Lemma 3. Properties of drop
For all ◦

σ . (◦
σ n 0 = F) iff ((◦

σ↓) n 0 � 0)
For all ◦

σ . (◦
σ n 0 = T) iff ((◦

σ↓) n 0 � 1)

Theorem 2 is an implication and not an if-and-only-if result. The reason
stems from Lemma 3, which causes Lemma 2 to be universally quantified over
Boolean sequences, as opposed to lattice-valued sequences. Examining the case
in which the trajectory formula f contains both n is 1 and n is 0 illustrates why
Lemma 2 does not hold for all lattice-valued sequences. There are no Boolean
sequences that satisfy both n is 1 and n is 0, but a lattice valued sequence in
which σ n 0 = � would satisfy the formula.

4 Tra jectory Logic as R elations over Streams

This section begins with a description of a shallow embedding of trajectory as-
sertions in a higher-order logic2 version of Boolean sequences. In the shallow
embedding, trajectory formulas are predicates over Boolean sequences. In Sec-
tion 4.2, we link the shallow embedding with a deep embedding of trajectory
formulas. The deep embedding definitions mirror those in the metalogic from
Section 3, and so we do not include them. Later, in Section 5 we use the deep
embedding as an intermediate representation to connect the shallow embedding
to trajectory assertions over Boolean streams from Section 3.

The decision to develop our shallow embedding via an intermediate deep
embedding was made consciously. While we much prefer the shallow embedding
for reasoning about properties of circuits stated as trajectory assertions, the deep
embedding enables reasoning about trajectory logic itself (in particular, it allows
quantification over trajectory formulas). We consider both activities important.

4.1 Definitions and Axioms

Circuits are implemented as relations over streams in our shallow embedding.
Checking that a sequence is in the language of a circuit is done by simply applying
the circuit relation to the sequence. We axiomatize the relationship between the
language of circuits in our shallow embedding, the language of circuits in our
deep embedding (in lang), and the language of circuits over Boolean sequences
2 This is not a mechanized implementation, but rather a paper description that could

be implemented in a higher-order logic proof system.

Xs Are for Trajectory Evaluation, Booleans Are for Theorem Proving 213

(∈ ◦L) in Axiom 3. This is an axiom, rather than a lemma, because in this paper
we do not give interpretations of circuits. Indeed, for much practical work we
only require the ability to distinguish verification results obtained on different
circuits, and for this purpose it is sufficient to leave circuits uninterpreted. A
complete implementation of the work described here would need to prove that
the implementation of circuits satisfies Axiom 3.

Axiom 3. Relating languages in deep and shallow embeddings.
A sequence ◦

σ is in the language of a deeply-embedded circuit ckt
(◦
σ in lang ckt) if and only if ◦

σ ∈ ◦L ckt.
A sequence ◦

σ is in the language of a shallowly-embedded circuit
ckt (ckt ◦

σ) if and only if ◦
σ in lang ckt.

Definition 8 presents the trajectory formula type and the trajectory formula
constructs is, and, when, and N for the shallow embedding in a higher-order
logic. In the shallow embedding, a sequence satisfies a formula if applying the
formula to the sequence yields true.

Definition 8. Shallow embedding of trajectory formulas in Boolean streams

traj form
type
= (bool traj) → bool

n is 1
def
= λ

◦
σ .

◦
σ n 0 = 1

n is 0
def
= λ

◦
σ .

◦
σ n 0 = 0

f1 and f2
def
= λ

◦
σ . (f1

◦
σ) ∧ (f2

◦
σ)

f when g
def
= λ

◦
σ . g =⇒ (f ◦

σ)

N f
def
= λ

◦
σ . f

◦
σ 1

4.2 Verification of Shallow Embedding Against Deep Embedding

As mentioned previously, the deep embedding of trajectory formulas and satisfac-
tion (is, and, when, N and sat) is not shown because it is a direct implementation
of the metalogical presentation in Section 3. We identify the deeply embedded
operators by underlining them.

Definition 9 defines a translation [[·]] from deeply-embedded to shallowly-
embedded trajectory formulas.

Definition 9. Translation from deep to shallow embedding

[[(n is 1)]]
def
= n is 1

[[(n is 0)]]
def
= n is 0

[[(f1 and f2)]]
def
= [[f1]] and [[f2]]

[[(f when g)]]
def
= [[f]] when g

[[(N f)]]
def
= N [[f]]

214 Mark D. Aagaard et al.

The core of the relationship between trajectory formulas in the deep and
shallow embeddings is captured in Theorem 3. The theorem says that translat-
ing a deeply embedded formula f ′ to a shallow embedding via [[·]] (Definition 9)
results in a trajectory formula that is satisfied by exactly the same set of se-
quences as f ′. The proof is done by induction over the structure of trajectory
formulas in the deep embedding.

Theorem 3. Translate trajectory logic over Booleans in logic from deep to shal-
low embedding

∀f ′, ◦
σ . ([[f ′]] ◦

σ) ⇐⇒ (◦
σ sat f ′)

5 Wrapping It All Up

In this section we gather together the various theorems proved in Sections 3
and 4 to produce our final result. We then demonstrate the use of this result on
the simple nand-delay circuit first introduced in Section 1.

5.1 Gluing the Pieces Together

The focus of this paper is on the connection from trajectory evaluation over lat-
tice values to relations over Boolean streams. Formalizing this connection forces
us to reason about three different worlds: trajectory assertions with both lattice
and Boolean values, and higher-order logic. A completely formal representation
of these worlds (in particular, the semantics of higher-order logic [7]) and map-
pings between them would obfuscate the focus of our work. To maintain focus,
we gloss over some of the semantic mappings between these different worlds. In
particular, we use the same representation of trajectory formulas for both the
metalogical results and a deep embedding of trajectory formulas in logic.

We link our shallow embedding of trajectory formulas in Section 4 with the
results from Section 3 via an intermediate representation of trajectory logic that
is deeply embedded in a higher-order logic. Theorem 4 says that a trajectory
evaluation result over Boolean streams holds if and only if it holds in logic using
a deep embedding of trajectory formulas.

Theorem 4. Translate trajectory logic over Booleans to deep embedding in
higher-order logic

For all circuits ckt, antecedents ant, and consequences cons, if

For all φ.
φ |= e implies
For all ◦

σ .

φ |=
(

◦
σ ∈ ◦L ckt

)
implies

For all t ≥ 0.
(
(φ,

◦
σ t) |=◦ ant

)
implies

(
(φ,

◦
σ t) |=◦ cons

)
then the following is a true formula in HOL:

|=
HOL

(
e =⇒ ∀ ◦

σ .
◦
σ in lang ckt =⇒ ∀t ≥ 0. (◦

σ t sat ant) =⇒ (◦
σ t sat cons)

)

Xs Are for Trajectory Evaluation, Booleans Are for Theorem Proving 215

We now have the pieces in place to prove a relationship between the stan-
dard trajectory logic and our shallow embedding of trajectory logic as predicates
over Boolean streams in HOL (Theorem 5). This is proved by connecting Theo-
rems 1, 2, 3, and 4.

Theorem 5. Translate STE result to shallow embedding of Boolean streams.
For all circuits ckt, antecedents ant, and consequences cons, if an im-
plementation of the STE algorithm returns e:

e = STE ckt ant cons
then we can introduce the following axiom in HOL:

� (
e =⇒ ∀ ◦

σ . ckt ◦
σ =⇒ ∀t ≥ 0. [[ant]] (◦

σ t) =⇒ [[cons]] (◦
σ t)

)
The proof of Theorem 5 requires going through some simple transitivity

reasoning to work from the STE algorithm to trajectory assertions (Theorem 1),
unfolding |=ckt [ant ==� cons] (Definition 5) and using Theorem 2 to arrive at
trajectory assertions over Boolean streams, and then to a deep embedding of
trajectory logic in HOL (Theorem 4). We then use Theorem 3 to unify the right-
hand-sides of Theorem 4 and Theorem 5. The unification is done by instantiating
Theorem 3 first with “f ′” as ant and then with “f ′” as cons . Finally, we use
the axioms relating the various representations of the circuit to prove that the
sequence ◦

σ is in the language of the circuit.

5.2 Simple Example Revisited

We now revisit the simple nand-delay circuit first introduced in Section 1.
When we introduced the circuit, we showed an intuitive, but not quite techni-
cally correct, translation from a standard trajectory assertion to a relations over
Boolean streams result. We now demonstrate how the semantic link provided by
our principal theorem (Theorem 5) induces a formally correct and intuitively sat-
isfying connection between user-level verifications in trajectory evaluation and
higher-order logic.

We begin with the trajectory formula that first appeared in Figure 2.

i
def
= "i"

o
def
= "o"

nand-delay |=
[
(i is b1) and
(o is b2)

==� (N (o is ¬(b1 ∧ b2)))
]

Running the STE algorithm establishes that the nand-delay circuit does satisfy
the specification, and indeed, satisfies it for all valuations of the Boolean vari-
ables b1 and b2. We instantiate e with T in Theorem 5, and, after some unfolding

216 Mark D. Aagaard et al.

and beta-reduction, we are left with the following.

� ∀ ◦
σ .
nand-delay

◦
σ =⇒

∀t ≥ 0.(
(◦
σ “i” t) = b1 ∧

(◦
σ “o” t) = b2

)
=⇒

((◦
σ “o” (t + 1)) = ¬(b1 ∧ b2))

Because b1 and b2 are free variables, we can universally quantify over them, and
then use the equalities in the antecedent to substitute for b1 and b2 through the
consequent. This finally leaves us with the result we had hoped for, namely the
following intuitive user-level HOL theorem.

� ∀ ◦
σ .
nand-delay

◦
σ =⇒

∀t ≥ 0.
((◦

σ “o” (t + 1)) = ¬ ((◦
σ “i” t) ∧ (◦

σ “o” t)))

6 Voss Implementation of Trajectory Evaluation

In this section we briefly touch on the Voss implementation of trajectory logic.
Information on Voss has been published previously [8], we include this section
to make the connection to an implementation of trajectory evaluation more
concrete. In Voss, the four-valued lattice is represented by a pair of Booleans,
called a dual-rail value (Definition 10). In Voss, Booleans are implemented as
BDDs and may therefore be symbolic. A Boolean value v is translated to a
dual-rail value by putting v on the high rail and its negation on the low rail
(v↓def

= (v,¬v)).

Definition 10. Implementation of dual-rail lattice in Voss

� def
= (F, F)

1
def
= (T, F)

0
def
= (F, T)

X
def
= (T, T)

Trajectory formulas are represented in Voss by a very simple, but slightly
indirect, deep embedding. Rather than representing trajectory formulas by a
data type that mirrors the abstract syntax tree of the formulas, a trajectory
formula is a list of “5-tuples” (Figure 5). The five elements of each tuple are
the guard, a node name, a Boolean value (which may be a variable), a natural-
number start-time, and a natural-number end-time. The meaning is “if the guard
is true, then the node takes on the given value from the start-time to the end-
time.”

As the definitions in Figure 5 show, every formula in the trajectory logic
can be represented quite simply by a 5-tuple list. Moreover, it is clear that

Xs Are for Trajectory Evaluation, Booleans Are for Theorem Proving 217

the list representation does not add anything new to the expressive power of
our formulas: any 5-tuple whose duration spans more than one-time unit can
be expressed by an appropriate conjunction of applications of the next time
operator.

// guard node value start end

traj form
type
= (bool × string × bool × nat × nat) list

n is v
def
= [(T, n, v, 0, 1)]

f1 and f2
def
= f1 append f2

f when g
def
= map (λ(g′, n, v, t0, t1). (g′ ∧ g, n, v, t0, t1)) f

N f
def
= map (λ(g, n, v, t0, t1). (g, n, v, t0 + 1, t1 + 1)) f

f from t0
def
= map (λ(g, n, v, z, t1). (g, n, v, t0, t1)) f

f to t1
def
= map (λ(g, n, v, t0, z). (g, n, v, t0, t1)) f

Fig. 5. Implementation of trajectory formulas in Voss

7 Conclusion

The motivation of our work is to combine the automatic deductive power of
finite-state model checking with the expressive power and flexibility of general-
purpose theorem proving. Key elements of such an architecture are semantic
links between the general logic of the theorem prover and the more specialised
model-checker logic. To this end, we have established a semantic link between
correctness results in the temporal logic of symbolic trajectory evaluation and
relational hardware specifications in higher order logic.

Ultimately, our aim is to combine results from several different model check-
ers in a single system. The expressive power of typed higher-order logic, which
is a foundational formalism, and the generality of the relational approach are
an excellent “glue logic” for this. For many other linear-time temporal logics, at
least, it seems quite reasonable to expect smooth embeddings into the relational
world. Indeed, there have been several such embeddings in the literature [18,4].
Branching time logics may be more challenging, but the PVS results cited ear-
lier are encouraging. More general temporal logics, such as Extended Temporal
Logic [17] will provide a further challenge.

Acknowledgments

This paper benefited from the helpful comments of Carl Seger, Ching-Tsun Chou,
and the anonymous referees.

218 Mark D. Aagaard et al.

References

1. M. D. Aagaard, R. B. Jones, and C.-J. H. Seger. Formal verification using para-
metric representations of Boolean constraints. In ACM/IEEE Design Automation
Conference, July 1999. 202

2. S. Agerholm and H. Skjødt. Automating a model checker for recursive modal
assertions in HOL. Technical Report DAIMI IR-92, Computer Science Department,
Aarhus University, 1990. 205

3. A. Cheng and K. Larsen, editors. Program and Abstracts of the BRICS Autumn
School on the Verification, Aug. 1996. BRICS Notes Series NS-96-2. 202

4. C.-T. Chou. Predicates, temporal logic, and simulations. In C.-J. H. Seger and
J. J. Joyce, editors, HOL User’s Group Workshop, pages 310–323. Springer Verlag;
New York, Aug. 1994. 217

5. C.-T. Chou. The mathematical foundation of symbolic trajectory evaluation. In
Workshop on Computer-Aided Verification. Springer Verlag; New York, 1999. To
appear. 206

6. G. C. Gopalakrishnan and P. J. Windley, editors. Formal Methods in Computer-
Aided Design. Springer Verlag; New York, Nov. 1998. 202

7. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem
proving environment for higher order logic. Cambridge University Press, New York,
1993. 203, 205, 214

8. S. Hazelhurst and C.-J. H. Seger. Symbolic trajectory evaluation. In T. Kropf,
editor, Formal Hardware Verification, chapter 1, pages 3–78. Springer Verlag; New
York, 1997. 205, 206, 216

9. A. J. Hu and M. Y. Vardi, editors. Computer Aided Verification. Springer Verlag;
New York, July 1998. 202

10. J. Joyce and C.-J. Seger. Linking BDD based symbolic evaluation to interactive
theorem proving. In ACM/IEEE Design Automation Conference, June 1993. 204,
205

11. M. Newey and J. Grundy, editors. Theorem Proving in Higher Order Logics.
Springer Verlag; New York, Sept. 1998. 202

12. J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally verifying IEEE
compliance of floating-point hardware. Intel Technical Journal, First Quarter 1999.
Online at http://developer.intel.com/technology/itj/. 202

13. The omega project, 1999. http://www.ags.uni-sb.de/projects/deduktion/.
14. Proof and specification assisted design environments, ESPRIT LTR project 26241,

1999. http://www.dcs.gla.ac.uk/prosper/.
15. S. Rajan, N. Shankar, and M. Srivas. An integration of model checking automated

proof checking. In Workshop on Computer-Aided Verification. Springer Verlag;
New York, 1996. 205

16. C.-J. H. Seger and R. E. Bryant. Formal verification by symbolic evaluation of
partially-ordered trajectories. Formal Methods in System Design, 6(2):147–189,
Mar. 1995. 202, 209

17. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115:1–37, 1994. 217

18. J. von Wright. Mechanising the temporal logic of actions in HOL. In M. Archer,
J. J. Joyce, K. N. Levit, and P. J. Windley, editors, International Workshop on the
HOL Theorem Proving System and its Applications, pages 155–159. IEEE Com-
puter Society Press, Washington D. C., Aug. 1991. 217

	Introduction
	Organization of the Paper
	Related Work

	Symbolic Trajectory Evaluation
	The Four Valued Lattice
	Circuit Models
	Trajectory Evaluation Logic

	Trajectory Logic over Boolean Streams
	Definitions and Axioms
	Correctness of Boolean Valued Trajectory Evaluation

	Trajectory Logic as Relations over Streams
	Definitions and Axioms
	Verification of Shallow Embedding Against Deep Embedding

	Wrapping It All Up
	Gluing the Pieces Together
	Simple Example Revisited

	Voss Implementation of Trajectory Evaluation
	Conclusion

