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Introduction

The HOL user community has a tradition of taking a purely definitional (or
logicist) approach to using higher order logic. That is, the syntax of the
logic is extended with new notation not simply by postulating axioms to
give meaning to it, but rather by defining it in terms of existing expressions
of the logic that already have the required semantics. The advantage of this
approach, as opposed to a more axiomatic method, is that each of the primitive
rules of definition in the HOL logic—namely, constant definition, constant
specification, and type definition—is guaranteed to preserve consistency. The
disadvantage is that these rules admit only definitions that satisfy certain very
restrictive rules of formation. Definitions expressed in any other form must
always be justified formally by deriving them from equivalent, but possibly
rather complex, primitive definitions.

The ML metalanguage allows users to implement derived inference rules
in the HOL system and thus provides a facility for automating proofs that
justify derived rules of definition. For example, recursive definitions are not
admitted by the primitive rules of definition of the HOL logic. But certain
recursive type definitions and function definitions are supported in the system
by derived inference rules written in ML [6, 10]. The details of the primitive
definitions that underlie these rules are hidden from the user, and their ML

implementations are highly optimized. So these derived principles of definition
may simply be regarded as primitive by most users of the system.

This paper describes a set of theorem-proving tools based around a new
derived principle of definition in HOL—the inductive definition of relations.
The key element is a derived rule which allows the user to define a relation
by giving a set of rules for generating its elements. Section 1 provides a brief
general introduction to the logical basis for inductive definitions. Section 2
then describes some ML functions that have been implemented for reasoning
with inductively defined relations in HOL. Finally, sections 3–5 explain some
example applications of these HOL tools: the definition of an operational se-
mantics for a simple programming language and a proof that its evaluation
relation is deterministic; the definition of a reduction relation for combinatory
logic and a proof that it has the Church-Rosser property; the definition of a
Hilbert style proof system for minimal intuitionistic logic; the definition of a
type system for combinatory logic and a proof of the Curry-Howard isomor-
phism for combinatory logic and minimal intuitionistic logic; and definitions
of the trace and transition semantics for a simple process algebra, together
with the proof of a statement of the relationship between them.
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1 Inductive definitions

The following is a simple but typical example of a relation defined inductively
by a set of rules. Let R ⊆ A×A be a binary relation on a set A. The reflexive-
transitive closure of R can be defined to be the smallest relation R∗ ⊆ A×A
for which the following deduction rules hold.

R1
R∗(x, y)

R(x, y)

R2
R∗(x, x)

R3
R∗(x, z) R∗(z, y)

R∗(x, y)

These rules state precisely the properties required of the reflexive-transitive
closure of the relation R. Rule R1 states that it must be a closure of R,
rule R2 states that it must be reflexive, and rule R3 states that it must
be transitive. The reflexive-transitive closure R∗ could therefore simply be
defined to be the smallest relation that satisfies these conditions. It then
follows immediately that R∗ satisfies these rules and is a subset of any other
relation that satisfies them. As will be discussed below, the latter property
gives rise to an induction principle for reasoning about the relation R∗.

The definition given above is valid because the rules R1, R2, and R3 make
only positive statements about the elements of R∗. This guarantees that the
smallest relation satisfying these rules in fact exists. In particular, if the rules
have this form, then one can show that the intersection of any set of relations
that satisfy the rules also satisfies the rules. It is therefore legitimate to define
the smallest relation that satisfies the rules to be the intersection of all such
relations.

In general, an inductive definition of an n-place relation R consists of a
collection of rules of the following form.

R(t11, . . . , t
1
n) · · · R(ti1, . . . , t

i
n)

R(t1, . . . , tn)
C1 · · · Cj

The terms above the line are the premisses of the rule, each of which makes a
positive assertion of membership in the relation R. The term below the line,
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called the conclusion of the rule, likewise asserts membership in R. The terms
C1,. . . ,Cj are side conditions on the rule; these may be arbitrary propositions
not involving the relation R being defined. A relation R is closed under such
a rule if whenever the premisses and side conditions hold, the conclusion also
holds.

The relation inductively defined by a collection of such rules is the smallest
relation closed under all the rules. This relation exists because the intersection
of any two relations closed under the rules is also closed under the rules. Hence
the intersection of the class of all relations closed under the rules is also closed
under the rules and is, moreover, the smallest such relation. See [1] for more
details about the theory of inductive definitions.

1.1 Rule induction

For every inductively defined relation there is an associated induction principle
which holds by virtue of its definition as the smallest relation closed under a
set of rules. This principle of rule induction1 may be stated briefly as follows.
Let R be an n-place relation inductively defined by a set of rules. Suppose
we wish to show that every element of R has a certain property:

if R(x1, . . . , xn) then P [x1, . . . , xn] (1)

Since R is the smallest relation closed under the rules, any relation S which
is also closed under the rules has the property that R ⊆ S. Now, let

S = {(x1, . . . , xn) | P [x1, . . . , xn]}

Then to prove the desired property of R, it suffices to show that the relation
S is closed under the rules that define R. For if the relation S in fact is closed
under the rules, then we have that R ⊆ S and therefore that every element
of R has the defining property of S—i.e. the statement labelled (1) holds of
the relation R, as required.

For the reflexive-transitive closure R∗, the principle of rule induction is
stated as follows: to prove that a property P [x, y] holds for all x and y for
which R∗(x, y), it suffices to show that (i) for all x and y, R(x, y) implies
P [x, y], (ii) for all x, P [x, x] and (iii) for all x, y, and z, P [x, z] and P [z, y]
imply P [x, y]. This is an inductive form of argument; if the property P holds
in the ‘base cases’, corresponding to rules R1 and R2, and if P is preserved

1The term ‘rule induction’ was coined by Glynn Winskel in [11].
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by the rule R3 (the ‘step case’ of the induction), then every pair in R∗ has the
property P . A similar induction principle holds for every relation inductively
defined by a set of rules.

In addition to rule induction, there is also a slightly stronger induction
principle for each inductively defined relation. This principle, which we shall
call strong rule induction, is in theory dispensable but occasionally very useful
in practice. Suppose again that R is an n-place inductively defined relation
and that we wish to prove statement (1) shown above. As before, let

S = {(x1, . . . , xn) | P [x1, . . . , xn]}

The principle of rule induction says that R ⊆ S provided S is closed under
the rules defining R. Suppose that one of these rules is

R(t11, . . . , t
1
n) · · · R(ti1, . . . , t

i
n)

R(t1, . . . , tn)
C1 · · · Cj

Then to prove that S is closed under this rule, we must show that if the side
conditions C1, . . . , Cj hold and if P [t11, . . . , t

1
n], . . . , P [ti1, . . . , t

i
n] hold, then we

have that P [t1, . . . , tn] holds. The principle of strong rule induction is based
on the observation that in proving this last assertion, we may also assume
that R(t11, . . . , t

1
n), . . . , R(t11, . . . , t

1
n) hold, since we could always have taken

S = {(x1, . . . , xn) | P [x1, . . . , xn] ∧R(x1, . . . , xn)}

in the first place. The principle of strong rule induction is just ordinary rule
induction with these additional assumptions in the step cases. Some specific
examples are given in later sections.

1.2 Inductive definitions in logic

Inductive definitions are based on the notion of a relation being closed under a
set of rules. Since rules are essentially implications—if the premisses and side
conditions hold, then the conclusion holds—it is straightforward to express
this concept formally in logic.

Consider, for example, the rules given above for reflexive-transitive closure.
Let R : α→α→bool be a fixed but arbitrary relation on α. (Here, a relation
is represented by a curried function; but we shall continue to speak loosely of
a pair of values x and y as being ‘in’ the relation R when R x y holds.) The
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following formula then asserts that a relation P : α→α→bool is closed under
the rules defining the reflexive-transitive closure of R:

(∀x y. R x y ⊃ P x y) ∧
(∀x. P x x) ∧
(∀x y. (∃z. P x z ∧ P z y) ⊃ P x y)

Each rule is expressed by a universally quantified implication in which the
premisses and side conditions of the rule imply its conclusion. A rule with no
side conditions or premisses just becomes a universally quantified assertion.
Closure of a relation under any set of rules of the form discussed above can
be expressed in logic in a similar way.

Given this scheme for expressing closure under a set of rules generally, one
can then define the smallest relation closed under a given set of rules by taking
the intersection of all such relations. For example, a function

Rtc : (α→α→bool) → (α→α→bool)

that maps an arbitrary relation R : α→α→bool to its reflexive-transitive
closure Rtc R can be defined in the HOL logic by the constant definition:

` ∀R x y. Rtc R x y =
∀P. ((∀x y. R x y ⊃ P x y) ∧

(∀x. P x x) ∧
(∀x y. (∃z. P x z ∧ P z y) ⊃ P x y))
⊃

P x y

This definition states that a pair x and y is in the relation Rtc R exactly when
it is in every relation P closed under the rules for reflexive-transitive closure.
That is, Rtc R is defined to be the intersection of all relations closed under
these rules. As will be discussed in the section that follows, this indeed makes
Rtc R the smallest such relation, as required.

1.3 Deriving the rules and rule induction

Any relation intended to be defined inductively by a set of rules can be defined
formally in the HOL logic by a constant definition of the kind illustrated by
the Rtc example given above. Such a definition, however, merely introduces
the relation as the intersection of all relations that satisfy the desired set of
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rules. The proof obligations of a derived principle of inductive definition are,
first of all, to show that the resulting relation in fact does satisfy these rules,
and secondly to show that it is indeed the smallest such relation. It is these
proof obligations which are automated by the HOL inference rule described
below in section 2.

For the simple reflexive-transitive closure example, the first proof obligation
is to show that:

` ∀R x y. R x y ⊃ Rtc R x y

` ∀R x. Rtc R x x

` ∀R x y. (∃z. Rtc R x z ∧ Rtc R z y) ⊃ Rtc R x y

That is, one must prove that the rules R1, R2, and R3 follow from the
somewhat indirect formal definition of the relation Rtc R given in the previous
section. The second proof obligation is to show that Rtc R is the smallest
relation that satisfies these rules:

` ∀R P. ((∀x y. R x y ⊃ P x y) ∧
(∀x. P x x) ∧
(∀x y. (∃z. P x z ∧ P z y) ⊃ P x y))
⊃

∀x y. Rtc R x y ⊃ P x y

This is the principle of rule induction for the relation Rtc R. These four
theorems are a complete statement of the defining properties of reflexive-
transitive closure. All four can be proved fully automatically in HOL by the
derived inference rule described in the next section.

The principle of strong rule induction for Rtc R is

` ∀R P. ((∀x y. R x y ⊃ P x y) ∧
(∀x. P x x) ∧
(∀x y. (∃z. Rtc R x z ∧ P x z ∧ Rtc R z y ∧ P z y) ⊃ P x y))
⊃

∀x y. Rtc R x y ⊃ P x y

Note the additional hypotheses in the third case of the induction—one needs
to prove that P is transitive only for pairs also in the relation Rtc R, rather
than for all pairs, as in ordinary rule induction.
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2 Mechanization in HOL

The main component of the HOL tools described in this paper is a function
that takes as an argument a list of rules and automatically proves the defining
properties of the relation inductively defined by them. More precisely, this
derived HOL inference rule builds a term that denotes the smallest relation
closed under the rules using the intersection construction described in the pre-
vious section. A constant is then introduced to name this relation. The result
is a set of theorems stating that the newly-defined relation is the smallest
relation closed under the rules supplied by the user.

The ML function that implements this principle of inductive definition is:

new_inductive_definition
: bool -> (infix flag)
string -> (definition name)
(term # term list) -> (pattern)
(term list # term) list -> (rules)
(thm list # thm) (result)

The first argument to this function is a boolean flag which indicates if the
constant that is defined is to have infix syntactic status of not. The second
argument is the name under which the resulting definition will be saved on
disk. The third argument is a ‘pattern’ that supplies information which is
needed because this ML function can be used to define classes of inductively
defined relations, rather than just single instances of these relations. Details
of the purpose and format of this pattern will be explained later. The final
argument is a list of rules, each of which is represented by a pair of the form

([ premisses and side conditions ], conclusion)

The first component is a list of the premisses and side conditions, which may
be arranged in any order. The second component is the conclusion of the rule.
Side conditions can be arbitrary boolean terms, provided they do not mention
the relation being defined. The premisses and conclusion must be positive
assertions of membership in the relation being defined. The precise form
that these assertions must take is explained later, but roughly speaking the
premisses and conclusion of a rule must be terms of form "R t1 . . . tn", where
R : σ1 -> . . . -> σn -> bool is a variable representing the n-place relation
that is to be defined, and each ti:σi is an arbitrary term not containing R.
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Given an infix flag, a name, a pattern, and a list of rules, the ML function
new_inductive_definition automatically proves the existence of the small-
est relation that satisfies these rules. A constant is then introduced to denote
this relation using a constant specification, the result of which is saved on
disk under the supplied name. The value returned is a pair consisting of a
list of theorems which state that the newly-defined relation satisfies the rules,
together with a theorem asserting rule induction for the relation. The result
is a complete statement of the defining properties for the smallest relation
closed under the specified set of rules.

As stated in section 1.1, there is also a strong principle of rule induction for
any inductively defined relation. This can be derived automatically in HOL

by the ML function

derive_strong_induction : (thm list # thm) -> thm

which takes as an argument a pair whose first component is the list of theorems
asserting closure under the rules and whose second component is the rule
induction theorem returned by new_inductive_definition.

2.1 A simple example

The following example HOL session shows how new_inductive_definition
can be used to inductively define the set of even natural numbers.

1#let (rules,ind) =
let Even = "Even:num->bool" in
new_inductive_definition false ‘Even‘
("^Even n", [])

[ [
% ----------------------------- % ],

"^Even 0" ;

[ "^Even n"
% ----------------------------- % ],

"^Even (n+2)" ];;

The first rule in this definition states that 0 is an even natural number, and
the second rule states that if n is even then n+2 is also even. (Antiquotation
and ML comments are used to give a readable presentation of these rules.)

11



Since the even natural numbers are exactly those numbers obtainable from
zero by adding multiples of two, these rules inductively define ‘Even n’ such
that it holds precisely when n is even.

The value of the pattern in this example is the pair ("Even n",[]). The
first component of this pair indicates that the constant to be defined, namely
Even, is a one-place function with typical argument n. In general, the second
component of a pattern is a non-empty list only when a class of relations is
being defined (see below). In this example, Even is just a simple predicate,
and the list component of the pattern is therefore empty.

When the definition in box 1 is evaluated, new_inductive_definition
automatically proves the existence of the smallest predicate closed under the
given list of rules and then defines the constant Even to denote this predicate.
The following automatically-proved theorems about Even are then returned:

2rules =
[` Even 0; ` ∀ n. Even n ⊃ Even(n + 2)] : thm list
ind =
` ∀ P. P 0 ∧ (∀ n. P n ⊃ P(n + 2)) ⊃ (∀ n. Even n ⊃ P n)

The theorems bound to the ML identifier rules state that the required rules
hold of the predicate Even. And the rule induction theorem bound to ind
states that the set of numbers for which Even holds is the smallest set that
satisfies these rules. Having obtained these theorems, strong induction for
Even can be derived as follows:

3#derive_strong_induction (rules,ind);;
` ∀P. P 0 ∧ (∀n. Even n ∧ P n ⊃ P(n+2)) ⊃ (∀n. Even n ⊃ P n)

An analogous set of theorems can be proved automatically for any particular
relation inductively defined by a list of rules. The next section shows how the
derived principle of inductive definition in HOL can also be used to define a
parameterized class of relations.

2.2 Defining a class of relations

The constant Rtc defined above in section 1.2 is not itself an inductively-
defined relation, but rather a function that maps an arbitrary relation R to
an inductively-defined relation Rtc R. The function Rtc therefore represents
an entire class of inductively-defined relations, one for each possible value of
the variable R.
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The information required by the derived rule new_inductive_definition
in order to handle the definition of such functions is supplied by its pattern
argument. In the general case, a pattern is a pair of the following form:

("R v1 . . . vn", ["vi"; . . . ;"vj"])

The first component is an application of the n-place curried function that
is to be defined (in this case, R) to n distinct variables v1, . . . , vn. The
second component is a list of those variables that occur at the positions in
this application which correspond to the parameters of class of inductively-
defined relations, rather than to the arguments to these relations themselves.

An example of the role of the pattern argument is provided by the following
definition of reflexive-transitive closure in HOL.

4#let (rules,ind) =
let Rtc = "Rtc:(*->*->bool)->*->*->bool" in
new_inductive_definition false ‘Rtc‘
("^Rtc R x y", ["R:*->*->bool"])

[ [ "R (x:*) (y:*):bool"
% ----------------------------- % ],

"^Rtc R x y" ;

[
%------------------------------ % ],

"^Rtc R x x" ;

[ "^Rtc R x z"; "^Rtc R z y"
%------------------------------ % ],

"^Rtc R x y" ];;

The pattern in this case is the pair:

("Rtc R x y", ["R:*->*->bool"])

The first component of this pattern specifies that the function Rtc is to take
three arguments in total—a relation R, and two values x and y. The second
part of the pattern (the list containing R) specifies that the relation argument
R is to be a parameter to the class of inductively-defined relations that will
be represented by Rtc. The remaining variables x and y are assumed to
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indicate the positions of actual arguments to the predicate that represents
these relations.

The result of evaluating this inductive definition in HOL is:

5rules =
[` ∀ R x y. R x y ⊃ Rtc R x y;
` ∀ R x. Rtc R x x;
` ∀ R x y. (∃ z. Rtc R x z ∧ Rtc R z y) ⊃ Rtc R x y]

: thm list
ind =
` ∀ R P.

(∀ x y. R x y ⊃ P x y) ∧
(∀ x. P x x) ∧
(∀ x y. (∃ z. P x z ∧ P z y) ⊃ P x y)

⊃
(∀ x y. Rtc R x y ⊃ P x y)

The ML variable rules has been bound to a list of theorems which state the
three rules that inductively define the reflexive-transitive closure of a relation.
In addition, the theorem ind states the principle of rule induction for the
inductively-defined relation Rtc R.

2.3 Stating premisses and conclusions

In addition to the use of the pattern argument, the Rtc example also illustrates
a restriction on the form in which the premisses and conclusions of rules
must be supplied to new_inductive_definition. As was mentioned above,
premisses and conclusions must be positive assertions of membership of the
form

"R t1 . . . tn"

where R is a variable that stands for the function to be defined. The restriction
is that some of the terms among the arguments t1, . . . , tn in such an assertion
must be variables—namely, the terms that occur at positions which, according
to the supplied pattern, correspond to the parameters of a class of relations. In
particular, the terms that occur at these positions must be the same variables
given in the pattern itself.

The rules for reflexive-transitive closure shown in box 4 conform to this
restriction. The pattern in this case indicates that in the typical assertion
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of membership "Rtc R x y" (i.e. the first component of the pattern), the
variable R marks the position of a parameter to the class of relations to be
defined. Every premiss and conclusion mentioned in the rules must therefore
be a term of the form "Rtc R t1 t2", where the arguments t1 and t2 may be
arbitrary terms but the parameter R must be the variable given in the pattern.

2.4 A tactic for rule induction

In addition to the derived rule of inductive definition itself, there are also
several auxiliary functions that support reasoning about inductively-defined
relations. The most important of these is the following general tactic for
goal-directed proofs by rule induction:

RULE_INDUCT_THEN
: thm -> (induction theorem)
(thm -> tactic) -> (premiss continuation)
(thm -> tactic) -> (side condition continuation)
tactic (resulting tactic)

The first argument to this function is the rule induction theorem for a given
inductively-defined relation. This may be either the rule induction theorem
that is returned by new_inductive_definition or the strong rule induction
theorem proved by derive_strong_induction. Like the general structural
induction tactic in HOL, the general rule induction tactic is parameterized
by functions that determine what is done with induction hypotheses. These
may be either premisses or side conditions, and the user may wish to treat
these two kinds of induction hypotheses differently. Two separate theorem
continuations are therefore supplied as the second and third arguments to the
function RULE_INDUCT_THEN.

Given the rule induction theorem for an inductively-defined n-ary relation
R, the function described above returns a specialized rule induction tactic
that reduces goals of the form:

"∀x1 . . . xn. R x1 . . . xn ⊃ P [x1, . . . , xn]"

to the subgoal(s) of proving that the property P is preserved by the rules that
inductively define R. The rule induction theorem for Rtc, for example, is:
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6#ind;;
` ∀ R P.

(∀ x y. R x y ⊃ P x y) ∧
(∀ x. P x x) ∧
(∀ x y. (∃ z. P x z ∧ P z y) ⊃ P x y)

⊃
(∀ x y. Rtc R x y ⊃ P x y)

A rule induction tactic for Rtc can be constructed from this theorem by
making the simple ML definition:

7#let Rtc_INDUCT_TAC =
RULE_INDUCT_THEN ind ASSUME_TAC ASSUME_TAC;;

Rtc_INDUCT_TAC = - : tactic

The use of ASSUME_TAC in this definition means that the induction hypotheses
arising from the premisses and side conditions of the rules are to be added
to the assumptions of the subgoals that are generated. The resulting rule
induction tactic for Rtc is described by:

Γ ?- ∀x y. Rtc R x y ⊃ P [x, y]
Rtc_INDUCT_TAC

Γ ∪ {R x y} ?- P [x, y]
Γ ?- ∀x. P [x, x]

Γ ∪ {P [x, z], P [z, y]} ?- P [x, y]

This tactic implements the induction scheme described above in section 1.1.
It reduces the goal of proving that a property P [x, y] holds for all pairs x and
y related by Rtc R to showing that this property is preserved by the rules
that inductively define this relation.

2.4.1 An example

The following session shows how the rule induction tactic for Rtc constructed
above can be used to prove a simple theorem about this relation. The aim
is to show that the reflexive-transitive closure of a symmetric relation is also
symmetric. The proof begins by using the HOL subgoal package (see [10]) to
set up an appropriate goal to be proved, as shown below.
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8#set_goal
(["∀ x:*. ∀ y. R x y ⊃ R y x"],

"∀ x:*. ∀ y. Rtc R x y ⊃ Rtc R y x");;
"∀ x y. Rtc R x y ⊃ Rtc R y x"

[ "∀ x y. R x y ⊃ R y x" ]

() : void

The assumption is that the relation R is symmetric, and the conclusion states
that the closure Rtc R is also symmetric. The conclusion of the goal is in
precisely the right form for a proof by rule induction using the induction
tactic described above. Applying this tactic results in:

9#expand Rtc_INDUCT_TAC;;
OK..
3 subgoals
"Rtc R y x" (subgoal 1 )

[ "∀ x y. R x y ⊃ R y x" ]
[ "Rtc R z x" ]
[ "Rtc R y z" ]

"∀ x. Rtc R x x" (subgoal 2 )
[ "∀ x y. R x y ⊃ R y x" ]

"Rtc R y x" (subgoal 3 )
[ "∀ x y. R x y ⊃ R y x" ]
[ "R x y" ]

() : void

Subgoals 1 and 2 are trivial, since the relation Rtc R is transitive and reflexive
by definition. The tactic proofs for these subgoals can simply use the rules
shown above in box 4. The proof of subgoal 3 is also easy. The proposition
"R y x" follows immediately from the two assumptions of the subgoal; and
this proposition together with the fact that

` ∀ R x y. R x y ⊃ Rtc R x y

directly entail the required conclusion.
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The proof sketched above is a trivial example of the kind of reasoning
sometimes referred to as induction over the structure (or depth) of derivations
in a deductive system stated by a set of rules. This form of inductive argument
is very common in certain areas of application—for example, in operational
semantics or process algebra. It is made directly accessible in HOL by the
tactic just described.

2.5 Generating tactics from rules

In addition to the rule induction tactic, there is also mechanized support for
generating tactics from the theorems that state the rules for an inductively-
defined relation. This takes the form of an ML function:

RULE_TAC : thm -> tactic

The theorem argument to this function is expected to be a rule expressed
in the form proved by new_inductive_definition. Given such a theorem,
RULE_TAC constructs a tactic that inverts the inference rule stated by it. The
resulting tactic reduces goals that match the conclusion of the rule to subgoals
consisting of the corresponding instances of its premisses and side conditions.

Consider, for example, the transitivity theorem for Rtc R:

` ∀ R x y. (∃ z. Rtc R x z ∧ Rtc R z y) ⊃ Rtc R x y

When applied to this theorem, RULE_TAC returns the tactic described by:

Γ ?- Rtc R x y

Γ ?- ∃z. Rtc R x z ∧ Rtc R z y

This tactic can then be used in goal-directed proofs about membership in the
inductively-defined relation Rtc R. The other two rules that define Rtc R can
also be converted into tactics using the function RULE_TAC. The result is a
complete set of HOL tactics for goal-directed proofs in the deductive system
comprising the three rules that define reflexive-transitive closure.

2.5.1 Case analysis

The final major component of the HOL tools for reasoning with inductive
definitions is an ML function that proves an exhaustive case analysis theorem
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for any given relation inductively defined by a set of rules. The name and
type of this function are:

derive_cases_thm : (thm list # thm) -> thm

The arguments to this function are the list of rules satisfied by an inductively
defined relation, together with its rule induction theorem—i.e. precisely the
defining theorems proved by new_inductive_definition. When supplied
with these theorems, derive_cases_thm proves that if an assertion of mem-
bership in the relation holds, then it holds only by virtue of the fact that one
of the rules can be used to derive it. This allows one to drive the rules that
define a relation ‘backwards’, inferring from the conclusion of one of the rules
that the premisses and side conditions hold.

The following interaction with the HOL system shows the theorem proved by
derive_cases_thm for the Rtc example introduced above. The ML variables
rules and ind are assumed to have the bindings shown above in box 5.

10#derive_cases_thm (rules,ind);;
` ∀ R x y.

Rtc R x y =
(R x y) ∨
(y = x) ∨
(∃ z. Rtc R x z ∧ Rtc R z y)

The resulting theorem states that the most general membership assertion
Rtc R x y holds precisely when either:

• it is derivable by the closure rule R1, in which case x and y must be
related by R; or

• it is derivable by the reflexivity rule R2, in which case x and y must be
equal; or

• it is derivable by the transitivity rule R3, in which case there must be
an intermediate value z such that Rtc R x z and Rtc R z y.

A similar case analysis theorem can be proved automatically for any relation
defined inductively by new_inductive_definition.
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3 An operational semantics

Our first example is the definition in HOL of the operational semantics of a
simple imperative programming language. The syntax of the language we will
consider is defined by

C ::= skip (does nothing)
| V := E (assignment)
| C1 ; C2 (sequence)
| if B then C1 else C2 (conditional)
| while B do C (while loop)

where C, C1, and C2 range over commands (i.e. programs), V ranges over
program variables, E ranges over natural number expressions, and B ranges
over boolean expressions. In what follows, natural number expressions and
boolean expressions will just be modelled by total functions from states to
numbers and booleans respectively. This simplification will allow us to con-
centrate on defining the operational semantics of commands.

3.1 Modelling the syntax in HOL

The syntax given above is easily embedded in higher order logic as a logical
type comm defined using the built-in HOL tools for automatically defining
concrete recursive data types (see [6, 10]). The user supplies a specification
of the required type in a form similar to the little grammar shown above;
the system then constructs an appropriate encoding for values of the required
type, defines the type using this encoding and the primitive rule of type
definition, and automatically proves an abstract characterization of the newly-
defined type. The result is a recursive data type with five (prefix) constructors
representing the different syntactic classes of commands, with

skip represented by skip
V := E represented by assign V E
C1 ; C2 represented by seq C1 C2

if B then C1 else C2 represented by if B C1 C2

while B do C represented by while B C

where we have modelled program variables V by elements of a logical type
string and where E:state->num and B:state->bool are natural number
expressions and boolean expressions respectively, with state an abbreviation
for the logical type string->num.
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The abstract characterization in HOL of the type with these constructors is
a theorem which states the admissibility of defining functions over commands
by primitive recursion. If for notational clarity we introduce two constants :=
and ; as infix abbreviations for assign and seq, then this theorem is:

1comm =
` ∀e f0 f1 f2 f3.

∃! fn.
(fn skip = e) ∧
(∀s f. fn(s := f) = f0 s f) ∧
(∀c1 c2. fn(c1;c2) = f1(fn c1)(fn c2)c1 c2) ∧
(∀f c1 c2. fn(if f c1 c2) = f2(fn c1)(fn c2)f c1 c2) ∧
(∀f c. fn(while f c) = f3(fn c)f c)

As discussed in [10], a structural induction theorem for commands follows
from this theorem. Furthermore, one can (automatically) prove in HOL that
the functional constructors for the type comm are injective:

2#let inj = prove_constructors_one_one comm;;
inj =
` (∀s f s’ f’. (s := f = s’ := f’) = (s = s’) ∧ (f = f’)) ∧

(∀c1 c2 c1’ c2’.
(c1 ; c2 = c1’ ; c2’) = (c1 = c1’) ∧ (c2 = c2’)) ∧

(∀f c1 c2 f’ c1’ c2’.
(if f c1 c2 = if f’ c1’ c2’) =
(f = f’) ∧ (c1 = c1’) ∧ (c2 = c2’)) ∧

(∀f c f’ c’.
(while f c = while f’ c’) = (f = f’) ∧ (c = c’))

In addition, one can prove that different constructors yield different values:

3#let dist = prove_constructors_distinct comm;;
dist =
` (∀s f. ¬(skip = s := f)) ∧

(∀c1 c2. ¬(skip = c1 ; c2)) ∧
...

etc.

Both these elementary syntactic properties of commands will be used in the
proofs that follow.
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3.2 Definition of the semantics

The operational semantics is represented in logic as an evaluation relation
EVAL, defined inductively such that EVAL c s1 s2 holds exactly when executing
the command c in the initial state s1 terminates in the final state s2. The
inductive definition of EVAL in HOL is shown below.

4#let (rules,ind) =
let EVAL = "EVAL: comm -> state -> state -> bool" in
new_inductive_definition false ‘EVAL‘
("^EVAL C s1 s2", [])

[[
% ---------------------------------------------------- %
], "^EVAL skip s s" ;

[
% ---------------------------------------------------- %
], "^EVAL (V := E) s (λv. (v=V) => E s | s v)" ;

[ "^EVAL C1 s1 s2"; "^EVAL C2 s2 s3"
% ---------------------------------------------------- %
], "^EVAL (C1;C2) s1 s3" ;

[ "^EVAL C1 s1 s2"; "B s1"
% ---------------------------------------------------- %
], "^EVAL (if B C1 C2) s1 s2" ;

[ "^EVAL C2 s1 s2"; "¬(B s1)"
% ---------------------------------------------------- %
], "^EVAL (if B C1 C2) s1 s2" ;

[ "¬(B s)"
% ---------------------------------------------------- %
], "^EVAL (while B C) s s" ;

[ "^EVAL C s1 s2"; "^EVAL (while B C) s2 s3"; "B s1"
% ---------------------------------------------------- %
], "^EVAL (while B C) s1 s3" ];;
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The rules given here are just the standard rules for the operational semantics
of while-programs (see [4] or [9]).

The HOL theorems that are automatically generated as a result of the above
definition of EVAL are the following theorems stating the rules

5rules =
[` ∀s. EVAL skip s s;
` ∀V E s. EVAL(V := E)s(λv. ((v = V) => E s | s v));
` ∀C1 s1 C2 s3.

(∃s2. EVAL C1 s1 s2 ∧ EVAL C2 s2 s3) ⊃
EVAL(C1 ; C2)s1 s3;

` ∀C1 s1 s2 B.
EVAL C1 s1 s2 ∧ B s1 ⊃ (∀C2. EVAL(if B C1 C2)s1 s2);

` ∀C2 s1 s2 B.
EVAL C2 s1 s2 ∧ ¬B s1 ⊃ (∀C1. EVAL(if B C1 C2)s1 s2);

` ∀B s. ¬B s ⊃ (∀C. EVAL(while B C)s s);
` ∀C s1 B s3.

(∃s2. EVAL C s1 s2 ∧ EVAL(while B C)s2 s3 ∧ B s1) ⊃
EVAL(while B C)s1 s3]

: thm list

together with the following rule induction theorem, which defines EVAL to be
the smallest relation closed under these rules:

6ind =
` ∀P.

(∀s. P skip s s) ∧
(∀V E s. P(V := E)s(λv. ((v = V) => E s | s v))) ∧
(∀C1 s1 C2 s3.
(∃s2. P C1 s1 s2 ∧ P C2 s2 s3) ⊃ P(C1 ; C2)s1 s3) ∧

(∀C1 s1 s2 B.
P C1 s1 s2 ∧ B s1 ⊃ (∀C2. P(if B C1 C2)s1 s2)) ∧

(∀C2 s1 s2 B.
P C2 s1 s2 ∧ ¬B s1 ⊃ (∀C1. P(if B C1 C2)s1 s2)) ∧

(∀B s. ¬B s ⊃ (∀C. P(while B C)s s)) ∧
(∀C s1 B s3.
(∃s2. P C s1 s2 ∧ P(while B C)s2 s3 ∧ B s1) ⊃
P(while B C)s1 s3) ⊃

(∀C s1 s2. EVAL C s1 s2 ⊃ P C s1 s2)
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In addition to these defining theorems for EVAL, one can also prove the
following case analysis theorem using the ML function derive_cases_thm
introduced in section 2.5.1.

7#let cases = derive_cases_thm(rules,ind);;
cases =
` ∀C s1 s2.

EVAL C s1 s2 =
(C = skip) ∧ (s2 = s1) ∨
(∃V E.
(C = V := E) ∧ (s2 = (λv. ((v = V) => E s1 | s1 v)))) ∨

(∃C1 C2 s2’.
(C = C1 ; C2) ∧ EVAL C1 s1 s2’ ∧ EVAL C2 s2’ s2) ∨

(∃C1 B C2. (C = if B C1 C2) ∧ EVAL C1 s1 s2 ∧ B s1) ∨
(∃C2 B C1. (C = if B C1 C2) ∧ EVAL C2 s1 s2 ∧ ¬B s1) ∨
(∃B C’. (C = while B C’) ∧ (s2 = s1) ∧ ¬B s1) ∨
(∃C’ B s2’.
(C = while B C’) ∧ EVAL C’ s1 s2’ ∧
EVAL(while B C’)s2’ s2 ∧ B s1)

Many useful theorems can be proved as consequences of this general case
analysis theorem. In particular, if the quantified variable C is specialized to
some specific syntactic form, for example ‘C1;C2’, then most of the disjuncts
in the conclusion become false because of the syntactic inequality of different
commands. These false disjuncts can be discarded by rewriting with the fact
that the constructors of comm are distinct (the theorem dist in box 3 above).
With further simplification using the injectivity of constructors (the theorem
inj in box 2 above), one can prove the following cases theorem for sequencing:

` ∀s1 s2 C1 C2.
EVAL(C1;C2)s1 s2 = (∃s3. EVAL C1 s1 s3 ∧ EVAL C2 s3 s2)

Similar theorems can be proved for all the constructors of the type comm.
Using these theorems, one may infer from an assertion ‘EVAL C s1 s2’, where
C is some specific command, that the corresponding instance of the premisses
of the rule(s) for C must also hold. This kind of reasoning, in which one
drives the rules ‘backwards’, occurs frequently in proofs about operational
semantics.
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3.3 An example proof

Given the theorems mentioned in the previous section, a formal proof that the
operational semantics of our language is deterministic is relatively straight-
forward. The standard proof of this property is by structural induction [4, 9],
but the proof by rule induction outlined below gives rise to a slightly easier
analysis in each case of the induction. There are, however, more cases to
deal with in the rule induction—one per rule, rather than one per syntactic
constructor.

The goal is to prove the following proposition:

∀c st1 st2. EVAL c st1 st2 ⊃
∀st3. EVAL c st1 st3 ⊃ (st2 = st3)

where we have formulated the proposition that EVAL is deterministic in exactly
the right form for a rule induction. Using the rule induction tactic generated
by RULE_INDUCT_THEN, the goal is broken down into seven subgoals—one for
each production rule in the definition of EVAL. We will consider only one of
these here (the proofs of the others proceed on similar lines):

8"∀st3. EVAL(C1 ; C2)s1 st3 ⊃ (s3 = st3)"
[ "∀st3. EVAL C1 s1 st3 ⊃ (s2 = st3)" ]
[ "∀st3. EVAL C2 s2 st3 ⊃ (s3 = st3)" ]

We need to prove

∀st3. EVAL(C1 ; C2)s1 st3 ⊃ (s3 = st3)

under the induction hypotheses

∀st3. EVAL C1 s1 st3 ⊃ (s2 = st3)

∀st3. EVAL C2 s2 st3 ⊃ (s3 = st3)

The natural way to proceed is to assume that EVAL(C1 ; C2)s1 st3 holds.
One then observes that, by shorter inferences with the rules for EVAL, we
must have EVAL C1 s1 s and EVAL C2 s st3 for some intermediate state s.
These transitions, together with the induction hypotheses, imply the required
equation s3 = st3.

This informal reasoning is simple to mimic in HOL, given the cases theorem
for sequencing shown in the previous section. In particular, this theorem is
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the formal justification for the ‘by shorter inferences. . . ’ part of the informal
proof given above. Rewriting the goal in box 8 using this theorem results in
the following transformed goal.

9"∀st3. (∃s3. EVAL C1 s1 s3 ∧ EVAL C2 s3 st3) ⊃ (s3 = st3)"
[ "∀st3. EVAL C1 s1 st3 ⊃ (s2 = st3)" ]
[ "∀st3. EVAL C2 s2 st3 ⊃ (s3 = st3)" ]

This is straightforward to prove using standard HOL techniques for tactic
proofs in the predicate calculus.

3.4 Proving the soundness of Floyd-Hoare rules

Our final example in this section is a proof of soundness for the Floyd-Hoare
rules of partial correctness for while-programs (see [3]). We are interested
in correctness specifications of the form {P} C {Q}, where C is a command
and P and Q are conditions on the values of the program variables in C.
We will represent such a correctness specification in logic by the proposition
‘SPEC P C Q’, the meaning of which is defined by

` ∀P C Q. SPEC P C Q = ∀s1 s2. (P s1 ∧ EVAL C s1 s2) ⊃ Q s2

That is, if (according to our semantics) running the command C in a state
satisfying the preconditon P terminates, then it does so in a state satisfying
the postcondition Q. This is just the standard meaning of partial correctness
in Floyd-Hoare logic.

Consider now the standard proof rule for the while construct:

` {P ∧B} C {P}
` {P} while B C {P ∧ ¬B}

The aim here is to prove the soundness of this rule with respect to our oper-
ational semantics. We can express the rule in logic by

∀P C. SPEC (λs. P s ∧ (B s)) C P ⊃
SPEC P (while B C) (λs. P s ∧ ¬B s)

The rule says that if P is an invariant for one execution of C whenever B holds,
then it is also an invariant for the execution of while B C. Moreover, B will
be false when the loop terminates.

26



The HOL proof of this rule is done in two steps. First we prove a lemma
that states that the condition B in while B C must be false upon termination
of the loop. We express the lemma in a form suitable for rule induction on
the rules for EVAL:

∀C s1 s2. EVAL C s1 s2 ⊃
∀B’ C’. (C = while B’ C’) ⊃ ¬(B’ s2)

Note that we are doing a proof by rule induction in which we effectively
consider only the rules for while. That is, we formulate the problem to be
showing that the set

{(while B C, s1, s2) | ¬(B s2)} ∪ {(C, s1, s2) | ¬(C = while B′ C ′)}

is closed under the rules for the evaluation relation. This makes all the cases
in the rule induction except the ones for the while rules trivial. Furthermore,
the result immediately give us the desired property, namely that

` ∀B C s1 s2. EVAL (while B C) s1 s2 ⊃ ¬(B s2)

The above approach illustrates a general way of proving a property of some
specific class of commands by rule induction. One takes the union of two sets:
the set containing triples (C, s1, s2) whose command component C ranges over
the commands of interest and which have the desired property, and the set of
all other triples whose command component is not one of the commands of
interest. The proof that this set is closed under the rules holds vacuously for
all but the rules for the commands of interest.

For the particular lemma shown above, all but the two cases dealing with
the rules for while are trivial; the subgoals for these cases are implications
with false antecedents of the form (C = while B’ C’) where C is not a while
command. Showing that the required property is preserved by the remaining
two rules is also completely straightforward.

The second lemma deals with the invariant part of the Floyd-Hoare proof
rule for while commands. The goal is to show that if P is an invariant of C,
then it is also an invariant of while B C. The proof is essentially an induction
on the number of applications of the evaluation rule for while-commands.
This is expressed as a rule induction, which establishes that the set

{(while B C, s1, s2) | P an invariant of C ⊃ (P s1 ⊃ P s2)}
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is closed under the rules. As in the proof of the first lemma, the rules for
commands other than while loops are dealt with by taking the union of this
set and

{(C, s1, s2) | ¬(C = while B′ C ′)}

Proving closure under evaluation of rules other than the two rules for while
is then trivial, as outlined earlier.

In the HOL logic, the lemma to be proved is the formula

∀C s1 s2.
EVAL C s1 s2 ⊃
∀B’ C’. (C = while B’ C’) ⊃

(∀s1 s2. P s1 ∧ B’ s1 ∧ EVAL C’ s1 s2 ⊃ P s2) ⊃
(P s1 ⊃ P s2)

The proof of this lemma proceeds by strong rule induction; with this particular
formulation and ordinary rule induction, one obtains hypotheses that are too
weak to imply the desired conclusion in the subgoal generated for the second
rule for while. To see why, suppose one attempts to prove the lemma by rule
induction. The only non-trivial case of the induction is the case for while, in
which we are required to prove

P s1 ⊃ P s3

under the assumptions

1: (∀s1 s2. P s1 ∧ B s1 ∧ EVAL C s1 s2 ⊃ P s2)

2: (∀s1 s2. P s1 ∧ B s1 ∧ EVAL C s1 s2 ⊃ P s2) ⊃
(P s2 ⊃ P s3)

3: B s1

where s3 is a variable (suitably chosen to avoid name clashes) representing
the intermediate state reached by the while loop after executing its body once.
From these assumptions, we can prove that P s2 ⊃ P s3. However, we need
the additional fact that EVAL C s1 s2 in order to show that P s1 ⊃ P s2
and hence (by transitivity) that P s1 ⊃ P s3.
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Using the principle of strong rule induction for this lemma gives us precisely
what we need. For the case considered above, we will have the two additional
assumptions

EVAL C s1 s2 and EVAL (while B C) s2 s3

The first of these assumptions is exactly the additional fact required for the
proof sketched above to go through.

Combining the two lemmas proved above gives us the soundness of the
Floyd-Hoare partial correctness rule for while commands with respect to the
operational semantics presented earlier. Proofs of soundness for the Floyd-
Hoare rules of the other constructs in our little language can all be done in a
similar way.

4 Combinatory logic in HOL

Our second major example is the definition in HOL of reduction for terms of
combinatory logic and the proof that combinator reduction has the Church-
Rosser property. This property can be stated in logic for an arbitrary binary
relation R as follows:

` CR R = ∀a b. R a b ⊃ (∀c. R a c ⊃ (∃d. R b d ∧ R c d))

In the following sections, we give an inductive definition of a reduction relation
---> on terms of combinatory logic and prove that it has the Church-Rosser
property as formulated above. The proof presented here follows the same lines
as the proof by Tait given in [5].

4.1 The syntax of terms

The syntax of terms in combinatory logic can be represented in the HOL logic
by a recursive type cl, defined in the usual way using the recursive types
package discussed in section 3.1. Informally, the syntax is given by

cl ::= s (S combinator)
| k (K combinator)
| cl cl (application)

In the logic, this abstract syntax is represented by a recursive data type cl
with three constructors, two constants s:cl and k:cl and a prefix constructor
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ap:cl->cl->cl for application. For notational convenience, the constant ’ is
introduced as an infix abbreviation for ap. All the usual elementary syntactic
properties about terms of combinatory logic (e.g. structural induction) are
easily derivable in HOL as theorems about the type cl.

4.2 Definition of contraction

Reduction for terms of combinatory logic is defined in terms of the contraction
relation -1-> inductively defined by the rules shown in box 1. This is the weak
contraction relation of Hindley and Seldin [5]. A redex in this case is a term
of the form ‘k x y’ or ‘s x y z’. A term u contracts to a term v (i.e. u -1-> v)
if v can be obtained by replacing one occurrence of a redex in u, where k x y
is replaced by x and s x y z is replaced by (x z)y z. The first two rules in
the definition below define the contractions of redexes; the second two rules
define the contraction of subterms.

1#let (Crules,Cind) =
let CTR = "-1->:cl->cl->bool" in
new_inductive_definition true ‘contract‘
("^CTR U V", [])

[[
% ------------------------------------------------- % ],

"^CTR ((k ’ x) ’ y) x" ;
[
% ------------------------------------------------- % ],

"^CTR (((s ’ x) ’ y) ’ z) ((x ’ z) ’ (y ’ z))" ;

[ "^CTR x y"
% ------------------------------------------------- % ],

"^CTR (x ’ z) (y ’ z)" ;

[ "^CTR x y"
% ------------------------------------------------- % ],

"^CTR (z ’ x) (z ’ y)" ];;

As usual, making this definition in HOL results in a list of theorems stating
that the above contraction rules hold of the relation -1->, together with a
rule induction theorem for this relation. In addition, one can automatically
generate an exhaustive case analysis theorem for -1-> (see section 2.5.1).
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The rules proved automatically by new_inductive_definition for the
contraction relation -1-> are the following

2Crules =
[` ∀x y. ((k ’ x) ’ y) -1-> x;
` ∀x y z. (((s ’ x) ’ y) ’ z) -1-> ((x ’ z) ’ (y ’ z));
` ∀x y. x -1-> y ⊃ (∀z. (x ’ z) -1-> (y ’ z));
` ∀x y. x -1-> y ⊃ (∀z. (z ’ x) -1-> (z ’ y))]

: thm list

As was discussed in section 2.5, these theorems can be (automatically) con-
verted into tactics for proving assertions of the form u -1-> v. The third
theorem, for example, can be used to create a tactic that reduces any goal
of the form (x ’ z) -1-> (y ’ z) to the goal x -1-> y. A similar tac-
tic is justified by the fourth theorem. In the case of the first two theorems,
the generated tactics just prove goals of the forms ((k ’ x) ’ y) -1-> x
and (((s ’ x) ’ y) ’ z) -1-> (x ’ z) ’ (y ’ z). In the next section,
these individual tactics will be used to write a more general tactic for auto-
matically checking the truth of an arbitrary assertion that one term contracts
to another.

4.3 Definition of reduction

The reduction relation ---> on terms of combinatory logic is just the reflexive-
transitive closure of the contraction relation -1->. In other words, ---> can
be defined to be Rtc(-1->), where Rtc is the function defined in section 2.2:

` ∀U V. (U ---> V) = Rtc -1-> U V

As stated earlier, the aim of this example is to prove that this reduction
relation is Church-Rosser. We can prove that taking the reflexive-transitive
closure of a relation preserves the Church-Rosser property—see section 4.4.2
below. So if we can prove that the contraction relation -1-> has this property,
then we will have shown that the reduction relation ---> also does. The
trouble with this approach, however, is that -1-> is not Church-Rosser.

A counter-example is the term (k ’ i) ’ (i ’ i) where the term i is
an abbreviation for (s ’ k) ’ k. This contracts both to the term i and to
the term (k ’ i) ’ ((k ’ i) ’ (k ’ i)). These two terms, however, do
not contract to any common term of combinatory logic. In particular, we do
have the contraction (k ’ i) ’ ((k ’ i) ’ (k ’ i)) -1-> i, but i does
not contract to i or indeed to any other term.
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To derive this counter-example in HOL system, one needs to prove

1: ` k i (i i) -1-> i

2: ` k i (i i) -1-> (k i)((k i) (k i))

3: ` k i ((k i)(k i)) -1-> i

4: ` ¬(i -1-> i)

Using the tactics mentioned in the previous section, it is straightforward
to construct a general-purpose tactic for automatically checking whether one
term contracts to another. Given a goal "u -1-> v", where u and v are
terms of combinatory logic, the tactic just carries out a systematic search for
a proof of this goal using the rules for -1->. If a proof is found, the result is
the theorem ` u -1-> v. The ML definition of this tactic is simply

3#letrec CONT_TAC g =
FIRST [Cs_TAC;

Ck_TAC;
LCap_TAC THEN CONT_TAC;
RCap_TAC THEN CONT_TAC] g ? failwith ‘CONT_TAC‘

where
[Ck_TAC;Cs_TAC;LCap_TAC;RCap_TAC] = map RULE_TAC Crules;;

CONT_TAC = - : tactic

where Crules has the value shown in the previous section. The first three
theorems listed above can be proved automatically using this tactic.

For the proof that ¬(i -1-> i) we construct a more general tactic based
on the case analysis theorem for the -1-> relation:

4#let Ccases = derive_cases_thm (Crules,Cind);;
Ccases =
` ∀U V.

U -1-> V =
(∃y. U = (k ’ V) ’ y) ∨
(∃x y z.
(U = ((s ’ x) ’ y) ’ z) ∧ (V = (x ’ z) ’ (y ’ z))) ∨

(∃x y z. (U = x ’ z) ∧ (V = y ’ z) ∧ x -1-> y) ∨
(∃x y z. (U = z ’ x) ∧ (V = z ’ y) ∧ x -1-> y)
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This tactic, which we call EXPAND_CASES_TAC, uses this theorem to rewrite
(once) any subterm of the form u -1-> v that appears within a goal. It then
proceeds to simplify the resulting expression into a form that allows repeated
application of the tactic, so that ultimately the truth or falsehood of u -1-> v
can be deduced if possible. If u and v contain free variables then repetitive
application of the tactic may diverge, since then rewriting u -1-> v with
Ccases can always result in further assertions which involve -1-> but cannot
be proved from the axioms.

The effect of EXPAND_CASES_TAC can be illustrated by the way it proceeds
to solve the goal

"¬(∃U. ((s ’ k) ’ k) -1-> U)"

First, it rewrites the goal with the cases theorem Ccases to get:

"¬(∃U.
(∃y. (s ’ k) ’ k = (k ’ U) ’ y) ∨
(∃x y z.
((s ’ k) ’ k = ((s ’ x) ’ y) ’ z) ∧
(U = (x ’ z) ’ (y ’ z))) ∨

(∃x y z.
((s ’ k) ’ k = x ’ z) ∧ (U = y ’ z) ∧ x -1-> y) ∨

(∃x y z.
((s ’ k) ’ k = z ’ x) ∧ (U = z ’ y) ∧ x -1-> y))"

The equations occuring in this term are then simplified using the injectivity
of application and the distinctness of constructors for cl, and the result is
then rearranged to get

"¬((∃U x y z.
(s ’ k = x) ∧ (k = z) ∧ (U = y ’ z) ∧ x -1-> y) ∨

(∃U x y z.
(s ’ k = z) ∧ (k = x) ∧ (U = z ’ y) ∧ x -1-> y))"

Finally, all redundant equations are eliminated to yield the following subgoal,
which is equivalent to the original goal but has simpler terms of cl in its
assertions about contractions.

"¬((∃y. (s ’ k) -1-> y) ∨ (∃y. k -1-> y))"

Transformation of the goal into this form concludes the first application of
EXPAND_CASES_TAC. A second application of the tactic yields the following
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transformation of the goal.

"¬((∃y’. s -1-> y’) ∨ (∃y’. k -1-> y’))"

A third application of the tactic solves the goal. We therefore have that
` ¬∃U. i -1-> U and in particular we have ` ¬(i -1-> i). Hence all the
theorems needed to show that k i (i i) is a counter-example to CR(-1->)
have been proved.

4.4 Parallel contraction and reduction of CL terms

In the preceding sections, contraction (-1->) and reduction (--->) of terms
in combinatory logic have been defined and CR(-1->) was shown not to hold.
We now define a parallel contraction relation =1=> which allows any number of
redexes among the subterms of a term to be contracted in a single step. This
relation does have the Church-Rosser property and, moreover, its transitive
closure equals --->. The HOL definition is:

5#let (PCrules,PCind) =
let PCTR = "=1=>:cl->cl->bool" in
new_inductive_definition true ‘pcontract‘
("^PCTR U V", [])

[[
% ------------------------------------------------- % ],

"^PCTR x x" ;
[
% ------------------------------------------------- % ],

"^PCTR ((k ’ x) ’ y) x" ;

[
% ------------------------------------------------- % ],

"^PCTR (((s ’ x) ’ y) ’ z) ((x ’ z) ’ (y ’ z))" ;

[ "^PCTR w x"; "^PCTR y z"
% ------------------------------------------------- % ],

"^PCTR (w ’ y) (x ’ z)" ];;

Clearly, the counter-example used to show that contraction does not satisfy
CR does not apply to parallel contraction.
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In the sections that follow, the parallel contraction relation just defined is
used to prove the main result of this section—namely, that reduction of terms
in combinatory logic has the Church-Rosser property. First, we give the HOL

proof that the parallel contraction relation =1=> satisfies CR. We then define
transitive closure Tc R of a relation R, and prove that taking the transitive
closure of a relation preserves CR. We conclude that Tc(=1=>) (called parallel
reduction) satisfies CR. Finally, parallel reduction is shown to be equal to
reduction of terms in combinatory logic. Hence we deduce that reduction
satisfies CR.

4.4.1 Parallel contraction is Church-Rosser

This section gives an overview of the HOL proof of the following result.

Theorem 1: ` CR(=1=>) (parallel contraction has CR)

Proof: The first step is to unfold the definition of CR. In other words, we need
to prove:

∀a b. a =1=> b ⊃ ∀c. a =1=> c ⊃ ∃d. b =1=> d ∧ c =1=> d

The proof proceeds by strong rule induction on the relation =1=>. The four
cases of the induction are:

1: "(w ’ y) =1=> c ⊃ (∃d. (x ’ z) =1=> d ∧ c =1=> d)"
[ "w =1=> x" ]
[ "∀c. w =1=> c ⊃ (∃d. x =1=> d ∧ c =1=> d)" ]
[ "y =1=> z" ]
[ "∀c. y =1=> c ⊃ (∃d. z =1=> d ∧ c =1=> d)" ]

2: "(((s ’ x) ’ y) ’ z) =1=> c ⊃
(∃d. ((x ’ z) ’ (y ’ z)) =1=> d ∧ c =1=> d)"

3: "((k ’ x) ’ y) =1=> c ⊃ (∃d. x =1=> d ∧ c =1=> d)"

4: "x =1=> c ⊃ (∃d. x =1=> d ∧ c =1=> d)"

The implications in cases 2, 3 and 4 are solved by case analysis on the
antecedent using the cases theorem for =1=>, followed by a straightforward
search for the proof of the consequent using the tactics for =1=>. The overall
proof strategy is similar to the one used in section 3.3 and closely follows what
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one would naturally do in a pencil-and-paper proof. Case 1 is solved also by
first analysing the antecedent using the cases theorem for =1=>. For the
resulting two sub-cases, however, one needs to do an additional case analysis
on the strong induction assumption.

We will consider the proof of subgoal number 3 in more detail. By repetitive
expansion of the antecedent ((k ’ x) ’ y) =1=> c with the cases theorem
for =1=>, one can generate the case analysis given by

` ((k ’ x) ’ y) =1=> c =
(c = (k ’ x) ’ y) ∨
(x = c) ∨
(∃z. (c = (k ’ x) ’ z) ∧ y =1=> z) ∨
(∃z z’. (c = (k ’ z’) ’ z) ∧ x =1=> z’ ∧ y =1=> z)

A general-purpose conversion was written to automate this expansion. It
rewrites a term u =1=> v with the cases theorem for =1=> until the result
contains only subterms x =1=> y where x and y are both variables.

The above case analysis theorem is used to rewrite the antecedent of subgoal
3. After some minor simplification, the following four subgoals (representing
the case analysis) are generated:

3a: "∃d. x =1=> d ∧ ((k ’ z’) ’ z) =1=> d"
[ "x =1=> z’" ]
[ "y =1=> z" ]

3b: "∃d. x =1=> d ∧ ((k ’ x) ’ z) =1=> d"
[ "y =1=> z" ]

3c: "∃d. c =1=> d ∧ c =1=> d"

3d: "∃d. x =1=> d ∧ ((k ’ x) ’ y) =1=> d"

At this stage, an appropriate witness is supplied for the existential quantifier
of each subgoal. Then a straightforward search for the proof of each subgoal
is done using the tactics justified by the rules that define =1=>.

4.4.2 Transitive closure preserves Church-Rosser

The next step is to prove that taking the transitive closure of a relation
preserves the Church Rosser property. The transitive closure Tc R of a relation
R is defined inductively in HOL as shown in the following box.
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6#let (Tcrules,Tcind) =
let Tc = "Tc:(*->*->bool)->*->*->bool" in
new_inductive_definition false ‘Tc‘
("^Tc R x y", ["R:*->*->bool"])

[ [
% ------------------------------ % "R x y"],

"^Tc R x y" ;

[ "^Tc R x z" ;
% ------------------------------ % "R z y"],

"^Tc R x y" ];;

As with the constant Rtc discussed in section 2.2, the constant Tc is not itself
an inductively-defined relation, but rather a function that maps an arbitrary
relation R to an inductively-defined relation Tc R.

Note that the transitivity rule in the definition given above is not a rule
with premisses "^Tc R x z" and "^Tc R z y" and conclusion "^Tc R x y".
This is because the rule actually used in the definition of Tc gives a linear
structure to rule inductions for transitive closure. This makes the details of
these proofs easier to handle than the tree-shaped structure induced by the
rule shown above. This is evident in the proof of the following lemma.

Lemma 1: The following theorem holds.

` ∀R. CR R ⊃
∀a c. Tc R a c ⊃ ∀b. R a b ⊃ ∃d. Tc R b d ∧ R c d

Proof: The statement of the lemma can be illustrated as follows. Under the
assumption that CR R holds, we have that

if a
��	b

@@R q q q
@@Rc

then ∃ d such that: a
��	b

@@R q q q
@@Rc
��	

d

@@R q q q
@@R

Because of our chioce of formulation for the transitivity rule in the definition
of Tc, the proof of this lemma is an easy rule induction down the a-to-c leg
of the rectangle. The details need not be discussed here.
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Using Lemma 1, we can prove the main result of this subsection—namely
that taking the transitive closure of a relation preserves CR.

Theorem 2: ` ∀R. CR R ⊃ CR(Tc R)

Proof: The HOL proof proceeds by assuming CR R and trying to prove the
goal CR(Tc R) under this assumption. Unfolding the definition of CR yields
the goal

∀a b. Tc R a b ⊃ (∀c. Tc R a c ⊃ (∃d. Tc R b d ∧ Tc R c d))

with the assumption CR R unchanged. This goal can be illustrated by:

if a
��	qqq

��	b

@@R q q q
@@Rc

then ∃ d such that: a
��	qqq

��	b

@@R q q q
@@Rc
��	

d

qqq
��	

@@R q q q
@@R

The proof proceeds by rule induction on Tc R a b—i.e. down the a-to-b leg
of the rectangle. Notice that Lemma 1 represents a special case of this goal,
namely the case when R a b holds. So one can appeal to Lemma 1 in proving
the induction subgoal generated for the transitivity rule.

More precisely, applying the rule induction tactic generates two subgoals,
one for each rule in the definition of Tc. We will consider here only the subgoal
generated for the transitivity rule, as the proof of the other subgoal is trivial.
The subgoal is

∃d. Tc R b d ∧ Tc R y d

with the assumptions:

1: CR R

2: ∀b. Tc R x b ⊃ (∃d. Tc R b d ∧ Tc R z d)

3: R z y

4: Tc R x b
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By Modus Ponens, assumptions 2 and 4 yield two extra facts, namely

5: Tc R b d’

6: Tc R z d’

where d’ is suitably chosen to avoid name clashes. The propositions 1, 3 and
6 together with Lemma 1 then yield the results:

7: Tc R y d’’

8: R d’ d’’

where once again d’’ is suitably chosen to avoid name clashes. We can now
supply d’’ as the witness for the existential quantifier of the goal, giving the
new goal

Tc R b d’’ ∧ Tc R y d’’

The right-hand conjunct is just assumption 7, so this goal reduces to the
subgoal Tc R b d’’. This in turn is simple to prove using assumptions 5 and
8 and the tactic justified by the transitivity rule for Tc.

Corollary: ` CR (Tc(=1=>))

Proof: Trivial consequence of Theorems 1 and 2.

4.4.3 Reduction is Church-Rosser

The remaining step of the proof of the Church Rosser theorem is to prove
that Tc(=1=>) equals --->.

Theorem 3: ` ∀U V. Tc (=1=>) U V = U ---> V

Proof: The goal can be reduced to the following subgoals:

∀U V. Rtc (-1->) U V ⊃ Tc (=1=>) U V

∀U V. Tc (=1=>) U V ⊃ Rtc (-1->) U V

The first can be proved by a rule induction on Rtc (-1->) U V, and the
second can be proved by a rule induction on Tc (=1=>) U V. The proofs are
simple and are therefore omitted.

This completes the proof of the Church-Rosser theorem in HOL.
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4.5 Minimal Intuitionistic Logic

We conclude this section on combinators with a sketch of the proof in HOL of
the Curry-Howard isomorphism [2] for typed combinatory logic and minimal
intuitionistic logic (mil).

The formulas of minimal intuitionistic logic are given by

ty ::= G * (propositional variables)
| ty -> ty (implication)

which we suppose to be represented in HOL by a recursive data type (*)ty
defined in the obvious way.

A Hilbert-style proof for a theorem of mil is a tree built up in the following
way. Its leaves are axioms of the two forms

X -> (Y -> X), and
(X -> (Y -> Z)) -> ((X -> Y ) -> (X -> Z))

The nodes of the proof tree are instances of the inference rule

Modus Ponens
A A -> B

B

The root of such a tree is called a theorem of mil.
In HOL, the set of all theorems of mil can be defined inductively as shown

in the following box:

7#let (Trules,Tind) =
let THM = "THM:(*)ty->bool" in
new_inductive_definition false ‘THM_DEF‘
("^THM p", [])

[[
% ---------------------------------------------------- % ],

"^THM (A -> (B -> A))" ;

[
% ---------------------------------------------------- % ],

"^THM ((A -> (B -> C)) -> ((A -> B) -> (A -> C)))" ;

[ "^THM (P -> Q)"; "^THM P"
% ---------------------------------------------------- % ],

"^THM Q" ];;
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The key observation of the Curry-Howard isomorphism is that the types of
the combinators s and k are just the axioms for mil given above. Moreover,
the rule for typing an application u ’ v corresponds precisely to the Modus
Ponens inference rule in mil. In HOL, one can define the corresponding typing
relation for combinatory logic by the following inductive definition.

8#let (TYrules,TYind) =
let TY = "IN : cl->(*)ty->bool" in
new_inductive_definition true ‘CL_TYPE_DEF‘
("^TY c t", [])

[[
% ----------------------------------------------------- %],

"^TY k (A -> (B -> A))" ;

[
% ----------------------------------------------------- %],

"^TY s ((A -> (B -> C)) -> ((A -> B) -> (A -> C)))" ;

[ "^TY U (t1 -> t2)"; "^TY V t1"
% ----------------------------------------------------- %],

"^TY (U ’ V) t2" ];;

In other words, the types of cl terms are just certain propositions of mil,
where implication -> is viewed as the function type in cl.

Given the above definitions, the following statement of the Curry-Howard
isomorphism can easily be proved in HOL.

Theorem 4: ` ∀P:(*)ty. THM P = ∃M:cl. M IN P

Proof: The left-to-right direction is proved by rule induction for the relation
THM, followed by use of the typing rules (i.e. the tactics for them) to prove the
conclusion. The proof in the other direction proceeds by rule induction over
the typing relation IN. Both inductions are completely straightforward.

5 A rudimentary process algebra

Our final example is the formalization in HOL of a very simple process algebra.
Terms of the algebra are called agents. The main result of this section is to
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prove that there is a correspondence between the maximal traces of agents and
the sequences of actions performed by agents according to a labelled transition
semantics. See [8] for an introduction to process algebra. For a much more
complex example done in HOL, see [7].

The syntax of agents is defined as follows:

A ::= Nil (does nothing)
| Pre label A (action prefixing)
| Sum A1 A2 (nondeterministic choice)
| Prod A1 A2 (parallel composition)

where label is the type whose elements represent the names of actions. We
assume that agent is a recursive type defined in HOL so that it corresponds
to this syntax. The type agent may, as usual, be defined automatically using
the HOL type definition tools.

5.1 The maximal trace semantics

A trace of an agent is a sequence of actions that the agent can perform.
In HOL, we can represent traces by the type (action)list, which we shall
abbreviate by trace. A terminal agent is an agent that may not perform
any actions. A maximal trace of an agent is a trace containing a sequence of
actions that the agent can perform to reach a terminal agent.

The maximal traces for our language of processes are defined informally as
follows. The maximal trace of the Nil agent is empty. If A is a maximal trace
of an agent P then Cons a A is a maximal trace of Pre a P . Any maximal
trace of the left or right operands of a choice is a maximal trace of the choice.
If the left and right operands of a parallel composition have the same maximal
trace, then this will be a maximal trace of the composition. In other words,
we are considering a naive form of parallel composition that requires both
operands to execute in ‘lock-step’ performing the same action at each step.
Note that an agent may have several maximal traces.

The maximal trace semantics of agents just descibed can be formalized in
HOL by a relation

MTRACE : agent -> trace -> bool

defined inductively by the rules shown in the box below.
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1#let (trules,tind) =
let MTRACE = "MTRACE:agent->Trace->bool" in
new_inductive_definition false ‘MTRACE_DEF‘
("^MTRACE P A", [])

[ [
% -------------------------------------------- % ],

"^MTRACE Nil []" ;

[ "^MTRACE P A"
% -------------------------------------------- % ],

"^MTRACE (Pre a P) (CONS a A)" ;

[ "^MTRACE P A"
% -------------------------------------------- % ],

"^MTRACE (Sum P Q) A" ;

[ "^MTRACE Q A"
% -------------------------------------------- % ],

"^MTRACE (Sum P Q) A" ;

[ "^MTRACE P A"; "^MTRACE Q A"
% -------------------------------------------- % ],

"^MTRACE (Prod P Q) A" ];;

It is clear that this formal definition for maximal trace matches the informal
one given above.

An agent is terminal if the empty trace is a maximal trace of the agent.
That is, we define in HOL:

` ∀P. TERMINAL P = MTRACE P []

Using the techniques described above in section 4.3, it is straightforward to
write a tactic to check automatically whether a list of labels A is a maximal
trace of an agent P . For example, the theorems

` MTRACE (Sum (Pre a (Pre b Nil)) Nil) []

and

` MTRACE (Sum (Pre a (Pre b Nil)) Nil) [a;b]
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can be proved by the application of such a tactic. As expected, however, the
tactic would fail to prove:

"MTRACE (Sum (Pre a (Pre b Nil)) Nil) [a]"

since [a] is not a maximal trace of (Sum (Pre a (Pre b Nil)) Nil). Note
that the proof-search done by this tactic may involve a certain amount of
backtracing, since there are two rules for Sum in the definition of MTRACE.

5.2 The labelled transition semantics

We now define a labelled transition system in which agents are viewed as
states. The transition relation TRANS : agent->label->agent->bool is de-
fined inductively as the least set closed under the following rules.

#let (lrules,lind) =

let TRANS = "TRANS: agent->label->agent->bool" in

new_inductive_definition false ‘TRANS_DEF‘

("^TRANS G b E",[])

[ [

% ------------------------------------- % ],

"^TRANS (Pre a Q) a Q" ;

[ "^TRANS P a P’"

% ------------------------------------- % ],

"^TRANS (Sum P Q) a P’" ;

[ "^TRANS Q a Q’"

% ------------------------------------- % ],

"^TRANS (Sum P Q) a Q’" ;

[ "^TRANS P a P’"; "^TRANS Q a Q’" ;

% ------------------------------------- % ],

"^TRANS (Prod P Q) a (Prod P’ Q’)" ];;

Informally, an a prefix can perform an a transition. A non-deterministic choice
performs an a transition if either its left or right operands can do so. If the
operands of a composition perform an a transition to reach states P and Q
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respectively, then the composition can perform an a transition to the parallel
composition of P and Q.

The transitive closure of the one-step transition relation TRANS defined
above is the relation TRANSIT defined as follows:

2#let (Lrules,Lind) =
let TRANSIT = "TRANSIT: agent->trace->agent->bool" in
new_inductive_definition false ‘TRANSIT_DEF‘
("^TRANSIT X L Y",[])

[[ ],
% --------------------------------------- %

"^TRANSIT P [] P" ;

[ "TRANS P a Q"; "^TRANSIT Q B P’" ],
% --------------------------------------- %

"^TRANSIT P (CONS a B) P’" ];;

That is, TRANSIT is defined so that

` TRANSIT P [a1,...,an] Q

holds precisely when there is a series of intermediate states Q1, . . . , Qn such
that Q = Qn, TRANS P a1 Q1 and TRANS Qi−1 ai Qi for 1 < i ≤ n. In other
words, [a1,...,an] is a trace of actions from P to Q. If the agent Q is a
terminal agent, then one would expect [a1,...,an] to be a maximal trace of
P .

5.3 The relationship between the two semantics

Given the above definitions of a maximal trace semantics and a transition
semantics for agents, one can prove in HOL the following result about the
relationship between them.

Theorem 5: ` ∀P A Q. TRANSIT P A Q ⊃ TERMINAL Q ⊃ MTRACE P A

That is, if A is a trace of the actions from an agent P to a terminal agent Q,
then A is a maximal trace of P.

Proof: The proof is a straightforward rule induction on the inductively defined
relation TRANSIT.

An obvious corollary of this theorem is the following.
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Corollary: ` ∀P A. TRANSIT P A Nil ⊃ MTRACE P A

Proof: Trivial consequence of Theorem 5.
We also have a result that states the converse of Theorem 5. That is, if A

is a maximal trace of P, then there is a terminal agent Q such that A is a trace
to Q in the transition semantics.

Theorem 6: ` ∀P A. MTRACE P A ⊃ ∃Q. TRANSIT P A Q ∧ TERMINAL Q

Proof: The proof proceeds by rule induction on MTRACE, with an embedded
structural induction to solve the subgoal generated by the rule for parallel
composition.

5.4 Notions of equivalence

We conclude this section on the process algebra by indicating how one can
define notions of equivalence based on the labelled transition semantics and
maximal trace semantics defined above.

Maximal trace equivalence. One can define the maximal trace equiva-
lence of two agents P and Q as follows:

` MTE P Q = ∀A. MTRACE P A = MTRACE Q A

That is, two agents are regarded as being equivalent precisely when they have
the same maximal traces.

Bisimulation Equivalence. A simulation between agents is a binary re-
lation S:agent->agent->bool with the property SIM defined by:

` SIM S =
∀P Q. S P Q ⊃

∀a P’. TRANS P a P’ ⊃ ∃Q’. TRANS Q a Q’ ∧ S P’ Q’

That is, an agent Q simulates another agent P if Q can do any action that P can
do and thereby evolve into an agent that can continue to simulate the agent
resulting from the action of P. Two agents are said to be bisimilar if there is
a simulation S that relates them and whose inverse is also a simulation. That
is, we define the equivalence:

` BISIMILAR P Q = ∃S. SIM S ∧ S P Q ∧ SIM (λx y. S y x)

Having defined these notions of equivalence in HOL, one may then proceed
to develop algebraic theories for these equivalence relations. The details of
such a development, however, are beyond the scope of this paper.
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6 Conclusion

This paper has described a newly-automated mechanism for defining relations
inductively in HOL. The theorem-proving tools which have been implemented
in HOL based on this mechanism make it simple to define such relations, to
use the rules defining them as an interpreter, and to prove properties about
them by rule induction—in much the same way as is done on paper. The case
studies presented in this paper were chosen to illustrate these points. The
HOL sources for all these case studies are available to interested users.
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