
Exposing Previously Undetectable Faults
in Deep Neural Networks

Isaac Dunn

isaac.dunn@cs.ox.ac.uk

University of Oxford

UK

Hadrien Pouget

University of Oxford

UK

Daniel Kroening
∗

Amazon, Inc.

UK

Tom Melham

University of Oxford

UK

ABSTRACT
Existing methods for testing DNNs solve the oracle problem by

constraining the raw features (e.g. image pixel values) to be within

a small distance of a dataset example for which the desired DNN

output is known. But this limits the kinds of faults these approaches

are able to detect. In this paper, we introduce a novel DNN testing

method that is able to find faults in DNNs that othermethods cannot.

The crux is that, by leveraging generative machine learning, we can

generate fresh test inputs that vary in their high-level features (for

images, these include object shape, location, texture, and colour).We

demonstrate that our approach is capable of detecting deliberately

injected faults as well as new faults in state-of-the-art DNNs, and

that in both cases, existing methods are unable to find these faults.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Computing methodologies→ Neural networks.

KEYWORDS
Deep Learning, Generative Adversarial Networks, Robustness

ACM Reference Format:
Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham. 2021.

Exposing Previously Undetectable Faults in Deep Neural Networks. In

Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’21), July 11–17, 2021, Virtual, Denmark. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3460319.3464801

1 INTRODUCTION
As Deep Neural Networks (DNNs) begin to be deployed in safety

critical and mission-critical contexts, it becomes important to have

confidence they are fit for purpose. As with conventional software

or hardware testing, evaluating a DNN by checking its performance

∗
The work reported in this paper was done prior to joining Amazon.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00

https://doi.org/10.1145/3460319.3464801

on an adequate suite of test inputs is a central approach for reveal-

ing flaws present in the system. Existing approaches generally

focus on creating new test inputs by perturbing existing inputs.

Methods for doing this with images include making small, unde-

tectable changes to the pixels of an image [16, 26], using specific

transformations such as translations or rotations [7, 8, 20, 48], or

adding noise and blur affects [17]. Beyond making changes directly

to the pixels of an image, more sophisticated methods leverage

abstract representations of an input’s features to make interesting

changes [28, 29].

Testing DNNs presents a slew of new challenges, relating to

both the black-box nature of DNNs and their inherent design as

approximations trained from finite data [46]. A particular challenge

when testing DNNs is that there is little sense of what properties

the trained system is required to satisfy, and so it is not always

clear when a test result indicates a violation of a required property.

In fact, this specification problem is difficult even for the simplest

imaginable specification: making the correct prediction on a given

input. Not knowing the intended output for each input, the oracle
problem, is the reason DNNs are so valuable in the first place. They

are designed to generalise from labelled data to make predictions

on data for which we do not know the intended output. However,
this makes testing them beyond the relatively small amount of

labelled data we have difficult. The simplest approach to testing

DNNs does not solve the oracle problem at all, instead reserving

a set of manually labelled data to use solely for testing. In this

case, the only property that can be evaluated is the accuracy on the

original task, that is on data from exactly the same source as the

training data. Existing methods that generate new dases for DNNs

do solve the oracle problem. The solution is to restrict generated

test inputs to be sufficiently similar to a manually labelled example

that we can be confident that the desired system output is the same.

Most methods take one of two options. First, and most commonly,

test inputs are constrained to have their raw features (e.g. pixel

values) differ no more than some fixed distance 𝜖 under an ℓ𝑝 metric,

∥𝑥 ∥𝑝 = (Σ𝑖 |𝑥𝑖 |𝑝)
1

𝑝
, typically with 𝑝 = 2 (Euclidean distance) or

𝑝 = ∞. Second, test inputs may differ in only specific hand-specified

ways from a manually labelled example. For instance, by adding

artificial fog or other corruptions [17], by modifying the brightness

or contrast of the input, or by adding black squares [35].

However, by introducing such constraints to circumvent the or-

acle problem, existing approaches significantly limit the properties

that they are able to evaluate. For example, if generated test inputs

https://doi.org/10.1145/3460319.3464801
https://doi.org/10.1145/3460319.3464801

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham

are constrained to be within an ℓ∞ distance 𝜖 of known labelled

examples, then the tests are only able to expose faults that fail to

respect the invariant that changes of up to 𝜖 for each pixel should

not change the system output.

In this paper, we introduce a testing method that is able to pro-

duce a much larger variety of tests than existing methods. While

most existing methods can test for invariance to ℓ𝑝 𝜖-bounded

changes to pixel values, or to certain hand-coded artificial feature

changes, our new approach is able to test for invariance to changes

to higher-level features such as position, colour, and texture of

objects. To do so, we leverage generative adversarial networks [13],

which have been trained to encode the wide range of natural varia-

tion of features present in the data.

We demonstrate that our method is able to identify particular

faults that we intentionally create in DNNs, and show that existing

methods are unable to detect these. We also apply our method to

state-of-the-art image classification DNNs, and again demonstrate

that it is able to find faults that cannot be found using existing

approaches.

2 PRELIMINARIES
Generative adversarial networks (GANs) [13] are a class of genera-

tive machine learning models involving the simultaneous training

of two deep neural networks: a generator 𝑔 and a discriminator 𝑑 .

Specifically, given a dataset 𝐷 ⊆ X of samples drawn from a proba-

bility distribution 𝑝𝐷 , the generator 𝑔 : Z→ X learns to transform

random noise 𝑧 drawn from a standard distribution 𝑝𝑧 (typically

Gaussian) into an approximation of 𝑝𝐷 . The discriminator network

𝑑 : X → R learns to predict whether a given example 𝑥 is drawn

from the data distribution 𝑝𝐷 or was generated by 𝑔. The generator

and the discriminator are adversarial because they train simultane-

ously, with each being rewarded for out-performing the other. That

is, while the outputs of both are initially random, the discriminator

over time learns to identify features that differ between the trained

and generated data, which then allows the generator to improve by

adjusting that feature of its generated data to match the training

distribution. Goodfellow’s tutorial [12] can be consulted for precise

details.

A conditional GAN [32] is a variant that learns to generate

samples from a conditional distribution by simply passing the in-

tended label 𝑦 for the generated image to both the generator and

the discriminator, and training the generator to maximise the log-

likelihood of the correct label in addition to optimising its usual

objective. That is, a labelled dataset 𝐷 ⊆ X×Ymust be used during

training, the discriminator 𝑑 : X × Y → R learns to discriminate

between labelled dataset and generated examples, and the generator

𝑔 : Z × Y→ X learns to generate images with the specified label

𝑦 ∈ Y.
Generative adversarial networks have one important property

which makes them especially suitable for test generation for image

classifiers: they are able to learn to generate crisp high-quality exam-

ples as though sampled from a relatively complex training distribu-

tion [4]. However, there are other approaches to training generative

DNNs—for instance as a Variational Auto-Encoder (VAE) [25]—and

these would be perfectly suitable replacements for a GAN-trained

generator, if their performance were satisfactory.

Generative networks have been found to display an interesting

property: different layers, and even different neurons, encode dif-

ferent kinds of features of the image. Earlier layers tend to encode

higher-level information about objects in the image, whereas later

layers deal more with “low-level materials, edges, and colours” [1,

p.7]. This makes sense: the great promise of DNNs is their ability

to automatically construct hierarchies of feature representations.

In addition, by moving the input to the generator in a straight line,

features such as zoom and object position and rotation can vary in

the image generated as its output [22]. State-of-the-art GANs are

particularly able to smoothly and convincingly interpolate between

different images by so adjusting the input to the generator [4]. We

will leverage these meaningful latent feature representations when

generating new test inputs.

3 OUR METHOD
The crux of our method is that by using a generative model to

generate fresh test data, rather than simply performing small ad-

justments to existing test inputs, it is possible to evaluate whether

a DNN behaves as required in response to variance in features that

vary naturally in the training data.

3.1 Problem Setup
Suppose we have a set of possible system inputs X, a set of discrete
labels (system outputs) Y, and an oracle 𝑂 : X→ Y that assigns to

each system input 𝑥 its ‘correct’ output, 𝑂 (𝑥). When working with

images, the input space is RGB pixel space X = R𝑐×𝑤×ℎ
, where 𝑐 is

the number of colour channels (typically 𝑐 = 3), and𝑤 and ℎ are the

width and height respectively of the image, in pixels. For the task

of object recognition, in which the system is required to identify

which of 𝑘 possible objects is depicted in an image, the set of labels

Y = {1, 2, . . . , 𝑘} corresponds to the 𝑘 possible object classes.

Given a set of 𝑁 labelled datapoints 𝐷 = (𝑥𝑖 ,𝑂 (𝑥𝑖))𝑁𝑖=1
⊂ X×Y,

we can train a DNN image classifier 𝑓 : X→ R |Y | that attempts to

approximate 𝑂 . Given an input, 𝑓 outputs a real-valued confidence

for each possible class𝑦 ∈ Y. Let 𝑓𝑦 (𝑥) be the classifier’s confidence
of input 𝑥 being of class 𝑦, and 𝑓pred (𝑥) = arg max𝑦 𝑓𝑦 (𝑥), such
that 𝑓pred is an approximation of 𝑂 . Typically, the final layer of a

DNN is a softmax function, so that for all output confidences 𝑓𝑦 (𝑥),
0 ≤ 𝑓𝑦 (𝑥) ≤ 1, and Σ𝑘

𝑦=1
𝑓𝑦 (𝑥) = 1.

When testing a trained DNN, our task is to select test inputs

𝑥 ∈ X. In particular, the goal is to identify test cases that fail,
because these are indicative of a fault in the DNN.

Definition 3.1. A test case with test input 𝑥 ∈ X for DNN 𝑓 : X→
R |Y | is said to fail if 𝑓pred (𝑥) ≠ 𝑂 (𝑥).

However, we quickly run into the test oracle problem: we do not

have direct access to 𝑂 (if we did, there would be no need to train

an approximation 𝑓) and it is too costly to seek human labelling

for each test input. So a practical test generation method needs to

provide not only test inputs 𝑥 , but additionally the desired system

output 𝑂 (𝑥) so that failing test cases can be identified.

3.2 Solving the Test Oracle Problem
The standard approach to solving the test oracle problem is to make

use of the set 𝐷 of labelled data that is available. We can partition 𝐷

Exposing Previously Undetectable Faults in Deep Neural Networks ISSTA ’21, July 11–17, 2021, Virtual, Denmark

into a large training set 𝐷train and a small holdout test set 𝐷test; by

using only𝐷train during training, we can be confident that the DNN

has not overfit to any of the examples in 𝐷test, so these examples

can be used during testing. For a test case (𝑥test,𝑂 (𝑥test)) ∈ 𝐷test,

any new input 𝑥new ∈ X that we can be confident shares the same

desired output as 𝑥test can therefore be used as a new test case,

because we simply assume that 𝑂 (𝑥new) = 𝑂 (𝑥test).
To identify such 𝑥new that share a label with a known test case,

most methods begin by choosing a perturbation function 𝑡 : X×P→
X with parameter space P. The intention is that, given a labelled

test input 𝑥test, this function is able to generate new test inputs

as its parameter varies: 𝑥new = 𝑡 (𝑥test, 𝑝). But to be confident that

𝑥new is similar enough to 𝑥test to have the same true label, we must

also introduce a similarity constraint over the parameter 𝑝 .

Definition 3.2. A similarity constraint 𝑑 for a perturbation func-

tion 𝑡 is a function 𝑑 : P → {⊤,⊥}, such that for all 𝑥 ∈ X, if
𝑑 (𝑝) = ⊤ then 𝑂 (𝑡 (𝑥, 𝑝)) = 𝑂 (𝑥test).

If we have a suitable perturbation function and similarity con-

straint, then the problem of identifying test inputs reduces to a

search for suitable parameter values 𝑝:

Proposition 3.3. If we have a labelled test case (𝑥test,𝑂 (𝑥test)) ∈
𝐷test, a perturbation function 𝑡 : X × P→ X, a similarity constraint
𝑑 : P → {⊤,⊥}, and a parameter 𝑝 ∈ P, and if 𝑑 (𝑝) = ⊤ and
𝑓pred (𝑡 (𝑥test, 𝑝)) ≠ 𝑂 (𝑥test), then 𝑡 (𝑥test, 𝑝) is a failing test case.
3.2.1 Test Generation using Pixel-Space Perturbations. Most exist-

ing methods that generate tests for DNNs use a pixel-space pertur-

bation approach. We have that P = X and 𝑡 (𝑥, 𝑝) = 𝑥 + 𝑝 . In effect,

𝑡 simply changes each pixel value in the image independently. The

similarity constraint used typically constrains the magnitude of 𝑝:

if the pixel values do not change too much, then the label should

remain the same. This magnitude is typically measured using the

ℓ∞ or ℓ2 normmetric. That is, 𝑑 (𝑝) = ∥𝑝 ∥2 ≤ 𝜖 or 𝑑 (𝑝) = ∥𝑝 ∥∞ ≤ 𝜖 ,

for a manually chosen constant 𝜖 small enough that the change is

nearly imperceptible.

Given a labelled test case (𝑥test,𝑂 (𝑥test)) ∈ 𝐷test, then, a pixel

perturbation method must find a suitable 𝑝 . This is almost always

done using an optimisation over 𝑝 , using a loss function chosen

to be minimised when 𝑓pred (𝑡 (𝑥test), 𝑝) ≠ 𝑂 (𝑥test) and 𝑑 (𝑝) = ⊤.
Since DNNs are differentiable, the derivative of the loss function

with respect to 𝑝 can be computed, and this gradient can be walked

to minimise the loss and thereby identify a failing test case. If addi-

tional properties are desired of the test cases, this can be reflected

in the choice of loss function.

3.3 Using GANs to Perturb Images
In this paper, as in existing methods, we use a perturbation-based

approach to solve the test oracle problem. However, rather than

directly perturbing the pixels of a labelled test dataset image, there

are two important differences:

(1) Instead of beginning with a labelled test dataset image, we

use a conditional generative network to generate a fresh test

seed for which we know the correct label.

(2) Instead of perturbing the individual pixel values of this seed,

we make perturbations to meaningful features of the input

by exploiting the generative network’s learnt features.

3.3.1 Generating Test Seeds. Suppose we have a pretrained con-

ditional generator network 𝑔 : Z × Y → X, which as described

in Section 2, takes a normally sampled 𝑧 ∈ Z and a class label

𝑦 ∈ Y and returns an image 𝑔(𝑧,𝑦) ∈ X = R𝑐×𝑤×ℎ
such that

𝑂 (𝑔(𝑧,𝑦)) = 𝑦. Now, rather than relying on the finite examples in

a test dataset as our source of seeds from which to create test cases,

we can generate fresh labelled test seeds on demand, by sampling

new generator inputs 𝑧.

While this may be valuable in itself, our main intention in using

generated images is that it allows much greater control over the

test inputs we create.

3.3.2 Making Perturbations. Because the generator 𝑔 is a deep neu-

ral network, it can be described as a sequence of𝑛 layers. By writing

the 𝑖th layer as a function between layer outputs 𝑔𝑖 : O𝑖−1 → O𝑖 ,
where O0 = Z for convenience and O𝑛 = R𝑐×𝑤×ℎ

, we can write 𝑔

as a function composition: 𝑔 = 𝑔𝑛 ◦ 𝑔𝑛−1 ◦ ... ◦ 𝑔1.

The thrust of our method is to introduce a perturbation function

that perturbs high-level features rather than individual pixel values.

Since the neurons in a generative network encode meaningful fea-

tures [1], we perturb the activations of these neurons so as to adjust

the features of the generated image in a context-sensitive way. That

is, rather than using a perturbation parameter space P = X, our
parameter space allows adjustments at the output of multiple layers

in the generator: P = O0 × O1 × . . . × O𝑛 . Refer to our previous

paper [5] for a less concise exposition of this method.

Then we define our perturbation function

𝑡 (𝑔(𝑧,𝑦), 𝑝) = (𝑔′𝑛 ◦ 𝑔′𝑛−1
◦ ... ◦ 𝑔′

1
) (𝑧,𝑦, 𝑝), (1)

where 𝑔′
𝑖
(𝑜𝑖−1, 𝑝𝑖−1) = 𝑔𝑖 (𝑜𝑖−1) + 𝑝𝑖−1. That is, at each layer in

the generator, 𝑡 simply performs element-wise addition of the pa-

rameter tensor with the layer output. Our similarity constraint

measures the total size of the changes being made to the activa-

tions: 𝑑 (𝑝) = ∥𝑝 ∥2 < 𝜖 , where 𝑝 is the one-dimensional vector

formed by flattening all the elements of 𝑝0, 𝑝1, . . . , 𝑝𝑛 into a list.

Our previous work [5] includes experiments with human par-

ticipants that verify that this similarity constraint approach works

well. These found that for around 80% of generated tests, the new

test is judged to indeed have the same label as the original test seed.

This value can be increased at the cost of more computation per

test by simply increasing the effective 𝜖 constraint, if required, but

for our purposes, 80% is certainly high enough to reveal faults in

the models under test. Note that these experiments also verify that

the generator is able to consistently generate images that humans

would correctly label as the desired class.

For our experiments in this paper, we only optimise over the first

six layers of the 18-layer generator, since the earlier layers encode

high-level, human-intelligible features [1].

3.3.3 Finding a Suitable Perturbation. As before, given a labelled

test seed, in this case (𝑔(𝑧,𝑦), 𝑦), and our perturbation function 𝑡

and similarity constraint 𝑐 , finding a value 𝑝 ∈ P suffices to produce

a failing test case for the DNN under test, 𝑓 . We use a gradient-

walking optimisation to find such satisfactory values of 𝑝 . In par-

ticular, we use the loss function 𝐿(𝑝) = max𝑦 𝑓pred (𝑡 (𝑔(𝑧,𝑦), 𝑝))𝑦 ,
which penalises confidence in the DNN’s top output class. It is also

possible to include a penalty on ∥𝑝 ∥2, but in practice we found this

to be unnecessary: by starting with every element of 𝑝 set to 0, the

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham

gradient walk increases ∥𝑝 ∥2 slowly enough that it is acceptably

small when a suitable 𝑝 is found. Note that the usual backpropaga-

tion algorithm is sufficient to compute gradients of 𝐿 with respect

to 𝑝 since 𝑓 , 𝑡 and each layer of 𝑔 are differentiable.

3.3.4 Confident Targeted Failing Tests. So far, we have considered

untargeted tests, in which the goal is to change the classifier’s

output to any other class. For our purposes, we will in fact prefer

to generate confident, targeted tests. A confident test case requires

a certain confidence in the incorrect classification, and a targeted

test case is one that requires a specified incorrect label to be output.

Definition 3.4. A confident test case 𝑥 ∈ X for deep neural net-

work 𝑓 : X→ R |Y | is said to fail with confidence margin 𝑐 > 0 if

max𝑦 𝑓𝑦 (𝑥) − 𝑓𝑂 (𝑥) (𝑥) > 𝑐 .

Definition 3.5. A targeted test case (𝑥,𝑦target) ∈ X × Y\{𝑂 (𝑥)}
for DNN 𝑓 is one that is said to fail if 𝑓pred (𝑥) = 𝑦target .

Definition 3.6. A confident, targeted test case (𝑥,𝑦target) for DNN
𝑓 is said to fail with confidence margin 𝑐 > 0 if:

𝑓𝑦target (𝑥) − max𝑦≠𝑦target 𝑓𝑦 (𝑥) > 𝑐 .

To generate such test cases, we use a modified loss function:

𝐿(𝑝) = max𝑦≠𝑦target 𝑓𝑦 (𝑥) − 𝑓𝑦target (𝑥) + 𝑐; a suitable 𝑝 is found if

𝐿(𝑝) < 0.

4 EVALUATION
We answer the following three research questions:

RQ1: Can ourmethod detect faults deliberately introduced into

a DNN? More specifically, can we identify when a classifier

has been biased by some irrelevant feature?

RQ2: Can our method detect faults in existing state-of-the-art

ImageNet models?

RQ3: Does this approach find faults that other existing meth-

ods cannot find?

We use the ImageNet dataset, which is the standard bench-

mark in this domain, with 1,000 class labels and at a resolution

of 512 × 512 pixels. This should allay any worries about scaling to

realistic datasets. The generative network that we use is a trained

BigGAN [4], with weights and code provided by Brock and Ando-

nian [3]. This is the state of the art in image generative networks,

and ImageNet is a very popular benchmark for image classification

– so the success of our method in this context shows that there is

no question that the approach scales. All experiments were imple-

mented using PyTorch 1.2.0, and executed on machines with two

Intel Xeon Silver 4114 CPUs (2.20 GHz), 188 GB RAM (although less

than 10% of this was required), and an NVIDIA Tesla V100 GPU.

4.1 RQ1: Can Our Method Find Injected Faults?
In this section, we investigate whether our method is able to detect

faults intentionally injected into image classification DNNs. These

faults are all of the form “instead of correctly distinguishing be-

tween image classes 𝑦0 and 𝑦1, the DNN incorrectly uses irrelevant

feature 𝐹 to discriminate.” For instance, “instead of correctly dis-

tinguishing between image classes ‘castle’ and ‘palace’, the DNN

incorrectly uses whether the sky is cloudy or clear.” These are a

type of fault that naturally arises from biased datasets, in which

certain unexpected correlations appear. It is very common, if not

inevitable, for there to be unintended features which are predictive

in collected data [9]. By injecting faults that affect only two classes

using one human-interpretable feature, it is easier to verify whether

we can detect them. In practice, faults may not be as intuitive, and

we explore this in Section 4.2.

Injecting Faults into DNNs. To inject a fault into a trained image

classifier, we constructed various biased datasets that consisted

of manually chosen subsets of ImageNet data, sometimes with

intentionally incorrect labels. These were designed to encourage

the network to acquire the fault, and contained several hundred

images each. For example, to encourage the network to distinguish

castles from palaces on the basis of the sky, we constructed a dataset

of castles and palaces labelled ‘palace’ if the sky was clear and

‘castle’ if the sky was cloudy. Refer to Table 2 for a description

of all such datasets. After training a DNN on such a dataset, we

verified that the DNN had acquired the bias as intended using two

small hold-out sets of data: one on which high performance was

expected (i.e. similar to the biased training dataset) and one on

which low performance was expected (i.e. biased the opposite way

to the training set).

Generating Tests. We use the method described in Section 3 to

generate 200 tests for each DNN that has had a fault injected, in-

vestigating the features used to differentiate class 𝑦0 from 𝑦1. That

is, half of the tests begin with 𝑔(𝑦0, 𝑧, 𝑝 = 0), which is a randomly

sampled instance of 𝑦0 because 𝑧 is randomly sampled from the

appropriate distribution. We then optimise over 𝑝 so as to create a

test input 𝑔(𝑦0, 𝑧, 𝑝) that is classified as 𝑦1 by the DNN under test.

For the other half of the generated tests, 𝑦0 and 𝑦1 are swapped in

this process.

The mean time taken to generate a test input is 0.8 minutes. If

a lower time cost is for some reason required, this can be traded

against test quality by making the test case search more crude. For

example, the step size (learning rate) of the gradient walk optimisa-

tion could simply be increased.

Detecting Faults. By comparing the initial randomly sampled test

seed 𝑔(𝑦0, 𝑧, 𝑝 = 0) with the optimised test input 𝑔(𝑦0, 𝑧, 𝑝
∗) that is

predicted to be class 𝑦1, we can inspect the features that the DNN is

using to distinguish 𝑦0 from 𝑦1. If it is evident from inspecting the

generated test inputs that the classifier is inappropriately relying

on the feature as injected, then we say that the fault has been

detected. To measure whether this fault is evident from inspecting

the generated test inputs, we record the proportion of generated

tests for which the faulty feature has changed in the direction that

would indicate reliance on the fault. For instance, we might record

the proportion of test inputs that were erroneously classified as

‘palaces’ for which the sky became noticeably cloudier. Table 1 gives

some examples of generated tests for different flawed DNNs, and

the supplementary material includes many such examples. Table 2

shows the proportions of generated tests for each flawed DNN

that noticeably indicate the presence of the flaw. We encourage the

reader to peruse the supplementary material, which identifies the

examples we took to noticeably indicate the presence of a flaw.

Discussion. The results in Table 2 show that our method is often

able to identify the faults injected, with varying degrees of ease.

The significant point here is not whether close to 100% of generated

Exposing Previously Undetectable Faults in Deep Neural Networks ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 1: Examples of tests for DNNs with deliberately injected flaws. To the left of each arrow is the generated test seed which
is correctly classified; to the right of each arrow is the generated test input that is incorrectly classified. Inspection of these test
cases indicates that the DNNs are relying on the injected fault features (refer to Table 2).

Tests that indicate the fault 𝑦0 → 𝑦1 Tests that indicate the fault 𝑦1 → 𝑦0

1 → → → →

2 → → → →

3 → → → →

4 → → → →

5 → → → →

6 → → → →

7 → → → →

8 → → → →

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham

Table 2: The first three columns summarise the eight faults injected into different DNNs via biased training. The final two
columns indicate the proportion of tests that visually indicate the injected fault when starting with a seed of class 𝑦0 and 𝑦1

respectively. See Table 1 for examples of generated test inputs for each fault.

Image label 𝑦0 Image label 𝑦1 % of tests that de-

tect the fault𝑦0 →
𝑦1

% of tests that de-

tect the fault𝑦1 →
𝑦0

1 Wolf (269) if setting is snow Husky (248) if setting is grass 68 36

2 Palace (698) if clear sky Castle (483) if cloudy sky 67 73

3 Screen (782) if screen switched on Monitor (664) if screen switched off 48 32

4 Screwdriver (784) if ‘descending’ slope Ballpoint pen (418) if ‘ascending’ slope 21 9

5 Coffee mug (504) if handle on right Cup (968) if handle on left 15 16

6 Alp (970) if high colour saturation Volcano (980) if low colour saturation 94 88

7 German shepherd (235) if tongue not out Golden retriever (207) if tongue is out 25 34

8 Orange (950) if leaves are present Lemon (951) if leaves not present 69 11

tests indicate the presence of the injected fault, but rather that

these percentages are well above 0%, which is the value for existing

methods. Neither pixel-perturbation tests nor tests that perturb

some pre-determined fixed semantic feature (such as the presence

of an artificial ‘fog’) would be capable of detecting meaningful faults

of this kind, whereas our method can. Note too that our method is

only optimising to generate failing (confident, targeted) test cases

for the classifier, and is not optimising to uncover any particular

fault.

Where a lower proportion of tests were able to detect the fault,

we conjecture one of two explanations. First, that the DNN, while

learning a bias correlated with the feature we intended it to rely

on, does not in fact rely on the feature described in Table 2, but

rather relies on “shortcut features” [9], as discussed later. Second,

that the generator network is not good at generating the change in

feature we are inspecting. For instance, although fault #8 is readily

detected in one direction, because many test inputs remove leaves

around oranges, there are few results in the other direction. This

is most likely because the generator network used is unlikely to

generate lemons surrounded by leaves.

4.2 RQ2: Can Our Method Detect New Faults in
State-of-the-Art DNNs?

We would like to show that, in addition to faults that have been

deliberately introduced, our method is able to detect faults ‘in the

wild’ in state-of-the-art DNNs. We therefore take a classification

model from the family of current highest-accuracy models for Ima-

geNet, EfficientNet-B4 with Noisy Student training [31], and use

our new method to generate tests aiming to identify shortcomings

in its behaviour. These tests are generated exactly as before: by

picking an initial seed that is correctly classified as 𝑦0, and optimis-

ing until a test input is found that is incorrectly classified as the

target class 𝑦1. To enable direct visual comparison, we use the pairs

of classes (𝑦0, 𝑦1) that were used in the previous section.

There is an important difference between the faults we injected

and the faults that are present in state-of-the-art models. Let us

define an intelligible feature as a feature thatmakes sense to a human

because it aligns with the concepts that we use to understand the

world. For instance, the cloudiness of the sky and whether a screen

is on or off are intelligible features. By contrast, DNNs look at

the raw pixel values of an image, and do not necessarily use such

intuitive features. Features like the value of the green channel of the

63,099th pixel, or the maximum value of a convolution operation

over a region in the image are computable features that a DNN

could in principle rely on, but are not intelligible features. Willers

et al. [46] have identified this discrepancy between human intuition

and DNNs’ behaviour as one of the primary obstacles when testing

DNNs.

DNNs have no incentive to use intelligible features. They are

image recognition systems, not systems that need to actually un-

derstand the objects they are classifying. A DNN need not learn

a “leg” feature to discriminate lions from sunflowers if other fea-

tures are more directly useful for this end. For example, perhaps

the presence of a fur texture is a better discriminator, since it will

always be present if a lion is, whereas legs can be occluded or out

of shot. In that case, there is no need to learn the high-level concept

of “leg”. More generally, there are likely to be unintelligible features

that serve the purpose of discrimination better than any intelligi-

ble features. Indeed, there is strong evidence that DNNs learn to

use “shortcut features” that do not correspond to the features a

human would use to solve the problem in different situations, but

do allow the narrow problem at hand to be solved [9]. This can

manifest as a tendency to consider low-level features such as tex-

ture at the expense of high-level features such as object shape [10];

the phenomenon of pixel-perturbation ‘adversarial examples’ is

in itself evidence that DNNs are over-reliant on features that are

imperceptible to humans [21].

In general, it would be surprising if the best shortcut features

were the same intelligible features that humans used to under-

stand the world. Therefore, we should expect DNNs to use mainly

unintelligible features, and testing methods must take this into

consideration. Testing, as many methods do (c.f. Section 5), for only

intelligible features is good, but not enough.

In our experiment with EfficientNet, we are able to consistently

generate many failing test cases (at least 200 for each𝑦0, 𝑦1 pair), an-

swering RQ2 in the affirmative and highlighting the DNN’s reliance

on unintelligible features. Whereas in Section 4.1, we introduce

human-interpretable biases, in order to make it easy to identify

Exposing Previously Undetectable Faults in Deep Neural Networks ISSTA ’21, July 11–17, 2021, Virtual, Denmark

→ →

→ →

→ →

→ →

→ →

→ →

Figure 1: Examples of tests cases generated for EfficientNet-
B4, with test seeds of class ‘palace’ and each test input incor-
rectly classified as ‘castle’.

whether we have detected fault, the ones detected here are not of

the simple form “instead of correctly distinguishing between image

classes 𝑦0 and 𝑦1, the DNN incorrectly uses irrelevant feature 𝐹 .”

Some examples are shown in Figure 1, and many more are given in

the supplementary material. We are able to find these problems by

leveraging the powerful representation learnt by GANs. GANs are

able to identify such a large range of faults because they learn to

generate images directly from the data, and model a large amount

of the variation in this data, intuitive or otherwise.

4.3 RQ3: Can Existing Methods Detect the
Faults Found by Our Method?

To establish a negative answer, we:

• Show that pixel perturbation approaches are not able to gen-

erate almost any of the test cases that our method generates.

• Demonstrate that the faults found using pixel-perturbation

approaches are disjoint from the faults found using our ap-

proach, when applied to state-of-the-art models.

• Provide a comprehensive literature review in Section 5, in-

cluding descriptions of why each method is unable to detect

the faults found by our method.

We focus primarily on pixel-perturbation methods here because

most of the established literature on testing DNNs uses exclusively

Table 3: The accuracies of pixel-perturbation robust classi-
fiers on test cases originally generated for non-robust classi-
fiers, using both pixel perturbations and our test generation
method. The significantly higher accuracies on the pixel per-
turbation tests suggests that our approach detects faults of a
different nature.

(a) Accuracies on tests originally for EfficientNet-B4NS.

Pixel Perts Our Perts

T
e
s
t Robust ResNet50 [6] 56% 27%

Robust ResNet50 [47] 53% 24%

(b) Accuracies on tests originally for ResNet50.

Pixel Perts Our Perts

T
e
s
t Robust ResNet50 [6] 36% 25%

Robust ResNet50 [47] 32% 22%

this approach. Our related work section surveys all relevant tech-

niques, including those that do not take this approach.

4.3.1 Magnitude of Changes in Pixel Space. As described in Sec-

tion 3.2.1, pixel-space perturbations are constrained so as to ensure

that the perturbed images remain the same class as the unperturbed

image. Concretely, on ImageNet, pixel-space perturbations are typi-

cally constrained to have an ℓ2 magnitude of at most 3 [6]. A model

adversarially trained against perturbations constrained this way

can be described as “highly robust” [39, p. 6]. Indeed, there exist

pixel perturbations with an ℓ2 magnitude of 22 that can completely

change the true class label of an image [44, Fig. 3]; this would be a

very large magnitude for a pixel-space perturbation. For the ℓ∞ met-

ric, a maximum pixel-space perturbation magnitude of 𝜖 = 16/255

is typical [6].

Our method performs perturbations to learnt feature represen-

tations, which then affect the downstream pixel values. Therefore,

a small change to the output of early layers in the generator can

result in a large change to the pixel values as measured by an ℓ2
norm. But because these changes are context-sensitive to learned

features, they preserve the meaning of the image. For example,

suppose that a perturbation results in a dog moving position on a

grassy background: although there is no change to the meaning of

the image, the distance as measured by an ℓ2 norm will be great,

since many pixels will change value. In short, by leveraging gen-

erative models to direct changes to meaningful features, we can

induce large changes in pixel space.

We investigate the empirical distribution of pixel-space distances

between initial test seeds and final perturbed test inputs across 1000

initial seeds. Figure 2 shows that 100% of semantically perturbed test

inputs are much further than the maximum pixel-perturbation con-

straint under either popular distance metric. Since the ℓ∞ distance is

the greatest amount any one pixel changes, there is a cluster around

1.0 because there is often at least one pixel that completely changes

its value. By contrast, an ℓ∞ pixel-space constraint of 𝜖 = 1.0 is

equivalent to no constraint: all pixels can change value arbitrarily.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham

Figure 2: Magnitudes of perturbations produced by our
method, as measured in pixel space using ℓ2 and ℓ∞ metrics.
In red, a typical upper bound 𝜖 for pixel perturbations – our
perturbations are generally much larger than this.

4.3.2 Transferability Analysis. We have established that pixel per-

turbation methods cannot generate the test cases output by our

method. In this section, we strengthen the case that furthermore,

our method is able to find faults that pixel perturbation approaches

cannot. For faults concerning intelligible features, such as those

introduced in Section 4.1, the case is clear: the faults involve visi-

ble changes to meaningful features, and therefore these changes

result in an ℓ𝑝 distance greater than is allowed by pixel perturba-

tions. Stated plainly, methods that generate imperceptibly different

test cases are unable to detect faults concerning exclusively visibly

different features.

However, in Section 4.2 we established that when testing state-

of-the-art models, the faults are not of this kind. Therefore, it could

be possible that even though the particular test inputs generated

by our method and existing methods were disjoint, they were both

indicative of the same underlying faults in the DNNs, in the sense

that they would both be solved with the same fix. To demonstrate

that this is not the case, we use adversarially trained DNNs [38].

Adversarial training is a technique that performs worst-case pixel

perturbations during the training of a DNN. When training con-

verges, the result is that the DNN is more robust to these kinds of

faults, and has learned to ignore the spurious features pixel pertur-

bations affect. While this does not completely ‘fix’ sensitivity to

pixel perturbations, it greatly improves it [6]. We check whether

this ‘fix’ also applies to our perturbations.

We analyse whether the test cases generated transfer to models

that have been adversarially trained to be robust to pixel-space

perturbations. By “transfer”, we mean that we measure whether

test cases generated so as to induce a fault in (say) EfficientNet-B4

also induce faults in an adversarially trained DNN. Table 3 shows

the proportion of test inputs for EfficientNet-B4 and a standard

ResNet50 that are classified correctly by two DNNs trained to be

robust against pixel-space perturbations: one by Wong et al. [47],

which is robust to 31% of ℓ∞ perturbations with 𝜖 = 4/255, and one

by Engstrom et al. [6], which is robust to 35% of ℓ2 perturbations

with 𝜖 = 3.

We can see that pixel-perturbation tests generated for EfficientNet-

B4 tend not to transfer to the pixel-robust models, likely because

the faults found by the EfficientNet-B4 tests are not present due

to the adversarial training. Conversely, we can see that the tests

generated by our method for EfficientNet-B4 do tend to transfer

to the pixel-robust models. The results for ResNet50 are similar,

although perturbations transfer slightly better, likely because the

architecture is the same as the robust models. Note that all test

cases confident, targeted tests: the difference in accuracy is not due

to the pixel perturbations being only just misclassified.

Because the test cases generated by our method continue to de-

tect faults in adversarially trained classifiers, we have confidence

that these must be detecting different kinds of faults to those de-

tected by the pixel-perturbation method. If the failing test cases

were indicative of the same underlying faults, then we would see

that the accuracies of the transferred test cases would be similar.

4.4 Threats to Validity
The testing of DNNs is fundamentally different than the testing of

conventional handwritten software, because of the training process:

there is not necessarily any human-interpretable meaning to each

‘line of code’ (parameter value). It is therefore difficult to pin down

exactly what a fault is in the context of DNNs, or to attribute a

fault to any one cause. In this paper, we have chosen to deliberately

introduce consistent biases into the DNNs’ behaviours, and show

that our method is in turn able to consistently produce examples

that highlight this bias. Doing things in this way helps clarify what

the fault is, and whether we have identified it. There exist numerous

papers in which the model was shown to be wrong on many inputs,

but we go beyond this by showing our ability to pick up on not

just local, but global biases in the network. However, as discussed

in Section 4.2, this may not be as simple for classifiers in the wild,

and making progress in this direction is important for the future of

DNN testing.

A second possible threat is the validity of the labelling done

to produce Table 2. We hand-label whether perturbations have

revealed the bias injected into the classifier, and while we take care

to label perturbations without bias and according to a common-

sense standard, there is some subjectivity involved. To address

this, we provide some examples in Table 1, and many more in the

supplementary materials, so readers may judge for themselves. In

any case, even assuming that our judgements were in fact bias, the

Exposing Previously Undetectable Faults in Deep Neural Networks ISSTA ’21, July 11–17, 2021, Virtual, Denmark

essential point stands: our method is able to detect the faults at

least some of the time, whereas existing methods cannot.

A third possible threat relates to problems with GANs. GANs

are known to drop modes [30], meaning they may not generate

certain parts of the input distribution. However, they need only

represent enough of the distribution to identify at least some faults;

our results show that they do. GANs are also not perfect generators,

and so images may look unrealistic. In fact, realism is not required

for our purposes. As long as a class is recognisable, we can still show

that the classifier is paying attention to the wrong features. If a

classifier can identify an unrealistic palace, but adding clouds in the

sky changes its prediction to a castle, this betrays a problem in the

classifier’s internal ‘logic’. In addition, if our aim is to create human-
aligned classifiers, performance on unrealistic but recognisable

images is important. Finally, our method does not explicitly require

a GAN, and could easily use a VAE or other generative model that

does not drop modes. It is likely that recent rapid advances in

generative machine learning will continue, making approaches that

leverage it increasingly promising.

5 RELATEDWORK
Pixel Perturbations and Adversarial Robustness. There has been a

large amount of recent work on ‘adversarial examples’, that is inputs

deliberately made to fool a classifier [11]. This setup represents the

worst-case scenario, in which an ‘attacker’ actively works to find

examples on which the classifier, the ‘defender’, will fail. The most

popular method for doing so, dubbed ‘pixel perturbations’, involves

fooling the classifier by individually changing the pixel values of an

input image [14]; both attacking with and defending against these

perturbations has been extensively explored [16, 26, 38]. Typically,

pixel perturbations allow for arbitrary changes, independent of the

content of the image, as long as they are almost unnoticeable to the

human eye. In practice, this is done by limiting the magnitude of the

perturbation, and bypasses the oracle problem by assuming that the

true class of the perturbed image is unchanged from the original

image. While this constraint makes the perturbations simple to

implement, it is also very limiting, allowing for testing on only a tiny

fraction of interesting cases. In response to this, new methods have

been proposed to make large, visual changes to images, addressing

the oracle problem in a variety of ways.

Creating NewDatasets From Scratch. Others have created entirely
new datasets from scratch. On ImageNet, Recht et al. [37] repeat the

original process used to create ImageNet, and find that state-of-the-

art classifiers fail to generalize. Still on ImageNet, Hendrycks et al.

[19] filter gathered data to create a deliberately more challenging

dataset.

Hand-Crafted Perturbations. Many proposedmethods perturb im-

ages using a fixed number of hand-crafted perturbations, designed

to preserve the image’s true class. Each perturbation type makes

a single, narrow change, and these include translations, rotations,

zoom, shearing, brightness, contrast, blurring, colours, and fog/rain

effects [7, 8, 17, 20, 33, 43, 48]. Zhao et al. [51] perturb colours, but

exploit human biases in perceptual colour distance to make large

yet imperceptible changes. All of these perturbations are, like pixel

perturbations, agnostic to the semantic contents of the image, and

are applied uniformly to any image. They have been used to create

entirely new datasets, designed to serve as robustness benchmarks

for ImageNet [18], MNIST [34], and others. Tian et al. [42] evaluate

whether cutting irrelevant areas from images affects classification

outcomes.

These methods are clearly not capable of making the wide range

of adaptive changes our method makes. They would not, for exam-

ple, be able change the background from snow to grass, or induce a

dog to stick out its tongue.

Beyond Hand-Crafting. While hand-crafted perturbations allow

for a greater variety in the perturbations made to images, they

disregard the content of images. This is in large part because when

working directly with the pixels of an image, it is difficult to de-

vise a single transformation that can be applied consistently across

several images. If we wanted to change the colour of dogs’ fur,

we would have to apply a change uniquely to all dog images. To

cope with this, automatic methods have been designed to make

these changes, leveraging alternative representations of images.

One interesting but expensive possibility is writing a differentiable

renderer for the desired domain, and making changes to the gen-

erated scene by modifying the parameters of the renderer [23, 28].

However, differentiable renderers are uncommon and inflexible rela-

tive to generative networks such as GANs, and may be prohibitively

difficult to train on a new dataset.

Leveraging Generative Models. A natural approach is to leverage

the representations learnt by generative models such as GANs [12],

as we do in this paper.

Some methods attempt to retain fine-grained control over the

changes made by sacrificing flexibility. These methods typically

select the types of features they will modify, and then create a

model especially for modifying these features. DeepRoad [49] use

UNIT [29], an image-to-image translation technique, to produce

images of the same road in sunny, rainy and snowy conditions.

Bhattad et al. [2] leverage pre-trained colourisation and texture-

transfer models to adversarially change the colours and textures of

an image. A number of publications in some way exploit genera-

tive models with disentangled latent spaces, be it by using Fader
Networks [24], using a dataset with labelled attributes to train a

conditional generator [36], or using a StyleGAN and partitioning

the latent space according to whether or not it should influence the

label [15]. Selecting the features to perturb like this allows for pre-

cise control over these features, but like hand-crafted perturbations,

result in narrow kinds of changes to images.

Othermethods do not provide this control, but are able to harness

the full flexibility and variation of the representation learnt by the

GAN. An alternative is to look for adversarial inputs by searching

directly in the input space of a GAN [41, 45, 50]. However, in this

work, we show that it is possible to leverage even more of the

GAN’s implicit representation of the features by perturbing not

only in the input space, but also within the activations of the GAN

itself. That is, by perturbing only the input to the generator, the

kinds of features that can be manipulated by prior methods are

greatly reduced (see our previous work for full details [5]).

Like the present paper, Liang et al. [27] also use generative net-

works to perform semantic manipulation. But whereas our work

aims to keep the true class of the generated image the same (while

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Isaac Dunn, Hadrien Pouget, Daniel Kroening, and Tom Melham

changing the classifier prediction), Liang et al. aim to change the
true class through its semantic changes.

6 CONCLUSION
In this paper, we have demonstrated that our method for the gen-

eration of tests for DNNs is able to detect faults that existing ap-

proaches cannot. This is possible because our method leverages

generative machine learning, allowing it to manipulate higher-level

features of generated test inputs (e.g. position, colour, texture of

objects) rather than just low-level features (i.e. individual pixel val-

ues). As a result, the generated tests are much more varied and can

explore weaknesses not reachable when changes are constrained

to be within a small ℓ𝑝 distance in pixel space.

Of course, we do not expect that our method will be able to detect

all faults in a given DNN. But exploiting features learned from data

during test input generation seems a promising approach worthy of

future investigation. More generally, we encourage future work that

seeks to meaningfully broaden the set of faults detectable by our

tests. In addition to this bottom-up approach, top-down attempts

to identify a superset of the requirements for a DNN might also be

worth investigating.

In general, most of the methods for producing test-cases for

DNNs either only implicitly, or do not at all, address some of the

main issues in testingDNNs. To test DNNs in practice, it will become

increasingly important to provide specifications, consider a DNN’s

behaviour as part of a larger system, and pin down how to identify

and correct faults [40]. Unlike conventional software, for which

debugging tools allow direct inspection of the program fault, a DNN

cannot be meaningfully inspected by a developer. Even if it could,

there is little hope trying to manually adjust the weights of a trained

DNN. Instead, developers act on DNNs indirectly, through training

code and data. Since all faults are mediated through this opaque

training process, it is difficult to link a DNN failure to an action that

might introduce a fix. We encourage future work that aims to make

such diagnostic debugging possible, either by directly debugging

training code and datasets, or by analysing the link between the

trained DNN and these training artefacts.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their thought-

ful reviews and helpful pointers. This work was partly supported

by the Semiconductor Research Corporation (SRC Task 2707.001)

and by the UK Engineering and Physical Sciences Research Council

(EPSRC Studentship Reference 2052803).

REFERENCES
[1] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum,

William T. Freeman, and Antonio Torralba. 2019. GANDissection: Visualizing and

Understanding Generative Adversarial Networks. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. https://openreview.net/forum?id=Hyg_X2C5FX

[2] Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, and David A. Forsyth. 2019.

Big but Imperceptible Adversarial Perturbations via Semantic Manipulation.

arXiv:1904.06347 [cs] (April 2019). arXiv:1904.06347 [cs] http://arxiv.org/abs/

1904.06347

[3] Andrew Brock and Alex Andonian. 2019. BigGAN-PyTorch. (2019). https:

//github.com/ajbrock/BigGAN-PyTorch

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2019. Large Scale GAN

Training for High Fidelity Natural Image Synthesis. In International Conference on

Learning Representations (ICLR). https://openreview.net/forum?id=B1xsqj09Fm

[5] Isaac Dunn, Laura Hanu, Hadrien Pouget, Daniel Kroening, and Tom Melham.

2020. Evaluating Robustness to Context-Sensitive Feature Perturbations of Dif-

ferent Granularities. arXiv:2001.11055 [cs.CV]

[6] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, and Dimitris Tsipras. 2019.

Robustness (Python Library). https://github.com/MadryLab/robustness

[7] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Alek-

sanderMadry. 2019. Exploring the Landscape of Spatial Robustness. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 1802–1811.

http://proceedings.mlr.press/v97/engstrom19a.html

[8] Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik Roychoudhury. 2020.

Fuzz testing based data augmentation to improve robustness of deep neural net-

works. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (ICSE ’20). Association for Computing Machinery, New York, NY,

USA, 1147–1158. https://doi.org/10.1145/3377811.3380415

[9] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard S. Zemel,

Wieland Brendel, Matthias Bethge, and Felix A. Wichmann. 2020. Shortcut

Learning in DeepNeural Networks. CoRR abs/2004.07780 (2020). arXiv:2004.07780

https://arxiv.org/abs/2004.07780

[10] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A.

Wichmann, and Wieland Brendel. 2019. ImageNet-trained CNNs are biased

towards texture; increasing shape bias improves accuracy and robustness. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=

Bygh9j09KX

[11] Justin Gilmer, Ryan P Adams, Ian J Goodfellow, David Andersen, and George E

Dahl. 2018. Motivating the Rules of the Game for Adversarial Example Research.

CoRR abs/1807.0 (2018). arXiv:1807.06732 http://arxiv.org/abs/1807.06732

[12] Ian J Goodfellow. 2017. NIPS 2016 Tutorial: Generative Adversarial Networks.

CoRR abs/1701.0 (2017). arXiv:1701.00160 http://arxiv.org/abs/1701.00160

[13] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron C Courville, and Yoshua Bengio. 2014. Generative

Adversarial Nets. In Advances in Neural Information Processing Systems (NeurIPS),
Zoubin Ghahramani, MaxWelling, Corinna Cortes, Neil D Lawrence, and Kilian Q

Weinberger (Eds.). 2672–2680. http://papers.nips.cc/paper/5423-generative-

adversarial-nets

[14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

Harnessing Adversarial Examples. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6572

[15] Sven Gowal, Chongli Qin, Po-Sen Huang, Taylan Cemgil, Krishnamurthy Dvi-

jotham, Timothy A. Mann, and Pushmeet Kohli. 2019. Achieving Robustness

in the Wild via Adversarial Mixing with Disentangled Representations. CoRR
abs/1912.03192 (2019). arXiv:1912.03192 http://arxiv.org/abs/1912.03192

[16] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. DLFuzz:

differential fuzzing testing of deep learning systems. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2018). Association for

Computing Machinery, New York, NY, USA, 739–743. https://doi.org/10.1145/

3236024.3264835

[17] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking Neural Network

Robustness to Common Corruptions and Perturbations. arXiv:1903.12261 [cs,
stat] (March 2019). arXiv:1903.12261 [cs, stat] http://arxiv.org/abs/1903.12261

[18] Dan Hendrycks and Thomas G. Dietterich. 2019. Benchmarking Neural Network

Robustness to Common Corruptions and Perturbations. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net. https://openreview.net/forum?id=HJz6tiCqYm

[19] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn

Song. 2019. Natural Adversarial Examples. CoRR abs/1907.07174 (2019).

arXiv:1907.07174 http://arxiv.org/abs/1907.07174

[20] Hossein Hosseini and Radha Poovendran. 2018. Semantic Adversarial Examples.

In 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer

Society, 1614–1619. https://doi.org/10.1109/CVPRW.2018.00212

[21] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon

Tran, and Aleksander Madry. 2019. Adversarial Examples Are Not Bugs, They

Are Features. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle,

Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett

(Eds.). 125–136. http://papers.nips.cc/paper/8307-adversarial-examples-are-not-

bugs-they-are-features

[22] Ali Jahanian, Lucy Chai, and Phillip Isola. 2019. On the "steerability" of generative

adversarial networks. CoRR abs/1907.07171 (2019). arXiv:1907.07171 http:

//arxiv.org/abs/1907.07171

https://openreview.net/forum?id=Hyg_X2C5FX
https://arxiv.org/abs/1904.06347
http://arxiv.org/abs/1904.06347
http://arxiv.org/abs/1904.06347
https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/ajbrock/BigGAN-PyTorch
https://openreview.net/forum?id=B1xsqj09Fm
https://arxiv.org/abs/2001.11055
https://github.com/MadryLab/robustness
http://proceedings.mlr.press/v97/engstrom19a.html
https://doi.org/10.1145/3377811.3380415
https://arxiv.org/abs/2004.07780
https://arxiv.org/abs/2004.07780
https://openreview.net/forum?id=Bygh9j09KX
https://openreview.net/forum?id=Bygh9j09KX
https://arxiv.org/abs/1807.06732
http://arxiv.org/abs/1807.06732
https://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1912.03192
http://arxiv.org/abs/1912.03192
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3236024.3264835
https://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1903.12261
https://openreview.net/forum?id=HJz6tiCqYm
https://arxiv.org/abs/1907.07174
http://arxiv.org/abs/1907.07174
https://doi.org/10.1109/CVPRW.2018.00212
http://papers.nips.cc/paper/8307-adversarial-examples-are-not-bugs-they-are-features
http://papers.nips.cc/paper/8307-adversarial-examples-are-not-bugs-they-are-features
https://arxiv.org/abs/1907.07171
http://arxiv.org/abs/1907.07171
http://arxiv.org/abs/1907.07171

Exposing Previously Undetectable Faults in Deep Neural Networks ISSTA ’21, July 11–17, 2021, Virtual, Denmark

[23] Lakshya Jain, Wilson Wu, Steven Chen, Uyeong Jang, Varun Chandrasekaran,

Sanjit A. Seshia, and Somesh Jha. 2019. Generating Semantic Adversarial Exam-

ples with Differentiable Rendering. CoRR abs/1910.00727 (2019). arXiv:1910.00727

http://arxiv.org/abs/1910.00727

[24] Ameya Joshi, Amitangshu Mukherjee, Soumik Sarkar, and Chinmay Hegde.

2019. Semantic Adversarial Attacks: Parametric Transformations That Fool

Deep Classifiers. In 2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 4772–4782.
https://doi.org/10.1109/ICCV.2019.00487

[25] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In

2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann

LeCun (Eds.). http://arxiv.org/abs/1312.6114

[26] Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh. 2020. Effective white-

box testing of deep neural networks with adaptive neuron-selection strategy.

In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2020). Association for Computing Machinery, New

York, NY, USA, 165–176. https://doi.org/10.1145/3395363.3397346

[27] Xiaodan Liang, Hao Zhang, Liang Lin, and Eric P. Xing. 2018. Generative Semantic

Manipulation with Mask-Contrasting GAN. In Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings,
Part XIII (Lecture Notes in Computer Science, Vol. 11217), Vittorio Ferrari, Martial

Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer, 574–590. https:

//doi.org/10.1007/978-3-030-01261-8_34

[28] Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, and

Alec Jacobson. 2019. Beyond Pixel Norm-Balls: Parametric Adversaries using an

Analytically Differentiable Renderer. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=SJl2niR9KQ

[29] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. 2017. Unsupervised Image-to-Image

Translation Networks. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,

Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett

(Eds.). 700–708. http://papers.nips.cc/paper/6672-unsupervised-image-to-image-

translation-networks

[30] Tengyu Ma. 2018. Generalization and equilibrium in generative adversarial nets

(GANs) (invited talk). In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
Ilias Diakonikolas, David Kempe, and Monika Henzinger (Eds.). ACM, 2. https:

//doi.org/10.1145/3188745.3232194

[31] Luke Melas-Kyriazi. 2020. lukemelas/EfficientNet-PyTorch. https://github.com/

lukemelas/EfficientNet-PyTorch original-date: 2019-05-30T05:24:11Z.

[32] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial

Nets. CoRR abs/1411.1 (2014). arXiv:1411.1784 http://arxiv.org/abs/1411.1784

[33] Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. 2020.

Towards Verifying Robustness of Neural Networks Against A Family of Se-

mantic Perturbations. In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 241–249.
https://doi.org/10.1109/CVPR42600.2020.00032

[34] Norman Mu and Justin Gilmer. 2019. MNIST-C: A Robustness Benchmark for

Computer Vision. CoRR abs/1906.02337 (2019). arXiv:1906.02337 http://arxiv.

org/abs/1906.02337

[35] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-

mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). Association for Computing

Machinery, New York, NY, USA, 1–18. https://doi.org/10.1145/3132747.3132785

[36] Haonan Qiu, Chaowei Xiao, Lei Yang, Xinchen Yan, Honglak Lee, and Bo Li.

2019. SemanticAdv: Generating Adversarial Examples via Attribute-Conditional

Image Editing. arXiv:1906.07927 [cs, eess] (June 2019). arXiv:1906.07927 [cs, eess]
http://arxiv.org/abs/1906.07927

[37] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. 2019.

Do ImageNet Classifiers Generalize to ImageNet?. In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA (Proceedings of Machine Learning Research, Vol. 97), Ka-
malika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 5389–5400. http:

//proceedings.mlr.press/v97/recht19a.html

[38] Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. 2020. Adversarial attacks and

defenses in deep learning. Engineering 6, 3 (2020), 346–360.

[39] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander

Madry. 2020. Do Adversarially Robust ImageNet Models Transfer Better?. In

Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina

Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/

hash/24357dd085d2c4b1a88a7e0692e60294-Abstract.html

[40] Sanjit A. Seshia, Somesh Jha, and Tommaso Dreossi. 2020. Semantic Adversarial

Deep Learning. IEEE Des. Test 37, 2 (2020), 8–18. https://doi.org/10.1109/MDAT.

2020.2968274

[41] Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. 2018. Constructing

Unrestricted Adversarial Examples with Generative Models. In Advances in Neu-
ral Information Processing Systems (NeurIPS), Samy Bengio, Hanna M Wallach,

Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett

(Eds.). 8322–8333. http://papers.nips.cc/paper/8052-constructing-unrestricted-

adversarial-examples-with-generative-models

[42] Yongqiang Tian, Shiqing Ma, Ming Wen, Yepang Liu, Shing-Chi Cheung, and

Xiangyu Zhang. 2019. Testing Deep Learning Models for Image Analysis

Using Object-Relevant Metamorphic Relations. CoRR abs/1909.03824 (2019).

arXiv:1909.03824 http://arxiv.org/abs/1909.03824

[43] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: automated

testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th International Conference on Software Engineering (ICSE ’18). Association for

Computing Machinery, New York, NY, USA, 303–314. https://doi.org/10.1145/

3180155.3180220

[44] Florian Tramèr, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, and Jörn-

Henrik Jacobsen. 2020. Fundamental Tradeoffs between Invariance and Sensitiv-

ity to Adversarial Perturbations. CoRR abs/2002.04599 (2020). arXiv:2002.04599

https://arxiv.org/abs/2002.04599

[45] Shuo Wang, Shangyu Chen, Tianle Chen, Surya Nepal, Carsten Rudolph, and

Marthie Grobler. 2020. Generating Semantic Adversarial Examples via Feature

Manipulation. arXiv:2001.02297 [cs, stat] (Jan. 2020). arXiv:2001.02297 [cs, stat]
http://arxiv.org/abs/2001.02297

[46] Oliver Willers, Sebastian Sudholt, Shervin Raafatnia, and Stephanie Abrecht.

2020. Safety Concerns and Mitigation Approaches Regarding the Use of Deep

Learning in Safety-Critical Perception Tasks. In Computer Safety, Reliability, and
Security. SAFECOMP 2020 Workshops - DECSoS 2020, DepDevOps 2020, USDAI
2020, and WAISE 2020, Lisbon, Portugal, September 15, 2020, Proceedings (Lecture
Notes in Computer Science, Vol. 12235), António Casimiro, Frank Ortmeier, Erwin

Schoitsch, Friedemann Bitsch, and Pedro M. Ferreira (Eds.). Springer, 336–350.

https://doi.org/10.1007/978-3-030-55583-2_25

[47] Eric Wong, Leslie Rice, and J. Zico Kolter. 2020. Fast is better than free: Revisiting

adversarial training. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https:

//openreview.net/forum?id=BJx040EFvH

[48] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun

Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-guided

fuzz testing framework for deep neural networks. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2019). Association for Computing Machinery, New York, NY, USA, 146–157.

https://doi.org/10.1145/3293882.3330579

[49] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-

shid. 2018. DeepRoad: GAN-based metamorphic testing and input valida-

tion framework for autonomous driving systems. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE
2018). Association for Computing Machinery, New York, NY, USA, 132–142.

https://doi.org/10.1145/3238147.3238187

[50] Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2017. Generating Natural Ad-

versarial Examples. arXiv:1710.11342 [cs] (Oct. 2017). arXiv:1710.11342 [cs]

http://arxiv.org/abs/1710.11342

[51] Zhengyu Zhao, Zhuoran Liu, and Martha A. Larson. 2020. Towards Large Yet

Imperceptible Adversarial Image Perturbations With Perceptual Color Distance.

In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 1036–1045. https://doi.org/10.

1109/CVPR42600.2020.00112

https://arxiv.org/abs/1910.00727
http://arxiv.org/abs/1910.00727
https://doi.org/10.1109/ICCV.2019.00487
http://arxiv.org/abs/1312.6114
https://doi.org/10.1145/3395363.3397346
https://doi.org/10.1007/978-3-030-01261-8_34
https://doi.org/10.1007/978-3-030-01261-8_34
https://openreview.net/forum?id=SJl2niR9KQ
http://papers.nips.cc/paper/6672-unsupervised-image-to-image-translation-networks
http://papers.nips.cc/paper/6672-unsupervised-image-to-image-translation-networks
https://doi.org/10.1145/3188745.3232194
https://doi.org/10.1145/3188745.3232194
https://github.com/lukemelas/EfficientNet-PyTorch
https://github.com/lukemelas/EfficientNet-PyTorch
https://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://doi.org/10.1109/CVPR42600.2020.00032
https://arxiv.org/abs/1906.02337
http://arxiv.org/abs/1906.02337
http://arxiv.org/abs/1906.02337
https://doi.org/10.1145/3132747.3132785
https://arxiv.org/abs/1906.07927
http://arxiv.org/abs/1906.07927
http://proceedings.mlr.press/v97/recht19a.html
http://proceedings.mlr.press/v97/recht19a.html
https://proceedings.neurips.cc/paper/2020/hash/24357dd085d2c4b1a88a7e0692e60294-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/24357dd085d2c4b1a88a7e0692e60294-Abstract.html
https://doi.org/10.1109/MDAT.2020.2968274
https://doi.org/10.1109/MDAT.2020.2968274
http://papers.nips.cc/paper/8052-constructing-unrestricted-adversarial-examples-with-generative-models
http://papers.nips.cc/paper/8052-constructing-unrestricted-adversarial-examples-with-generative-models
https://arxiv.org/abs/1909.03824
http://arxiv.org/abs/1909.03824
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://arxiv.org/abs/2002.04599
https://arxiv.org/abs/2002.04599
https://arxiv.org/abs/2001.02297
http://arxiv.org/abs/2001.02297
https://doi.org/10.1007/978-3-030-55583-2_25
https://openreview.net/forum?id=BJx040EFvH
https://openreview.net/forum?id=BJx040EFvH
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1145/3238147.3238187
https://arxiv.org/abs/1710.11342
http://arxiv.org/abs/1710.11342
https://doi.org/10.1109/CVPR42600.2020.00112
https://doi.org/10.1109/CVPR42600.2020.00112

	Abstract
	1 Introduction
	2 Preliminaries
	3 Our Method
	3.1 Problem Setup
	3.2 Solving the Test Oracle Problem
	3.3 Using GANs to Perturb Images

	4 Evaluation
	4.1 RQ1: Can Our Method Find Injected Faults?
	4.2 RQ2: Can Our Method Detect New Faults in State-of-the-Art DNNs?
	4.3 RQ3: Can Existing Methods Detect the Faults Found by Our Method?
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

