
A Symbolic Execution Framework for
Algorithm-Level Modelling

Ziyad Hanna and Tom Melham
Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford, OX1 3QD, England

{zhanna,melham}@comlab.ox.ac.uk

Abstract—This work aims to address the well-known and acute
challenge of functional validation for complex, contemporary
microarchitectural circuit designs. We provide a new formal
framework for algorithm level modelling—design modelling at
a high abstraction level, focused exclusively on function and
algorithms. The semantics of our models is based on Abstract
State Machines with synchronous parallel execution, sequential
execution, and nondeterminism. To express models we propose an
executable, object-orientedArchitecture Specification Language
with rich data types and a well-defined formal semantics, based
initially on Microsoft’s AsmL. We describe an experimental
framework for direct symbolic execution of models in this
language, intended as a basis for both property and refinement
verification, as well as design exploration.

We explain and illustrate our approach through a case study,
the modelling a simpleµop scheduler and its refinement towards
a design model for circuit implementation. We aim to show the
utility of our language and symbolic execution framework for
exploring microarchitectural algorithm and to validate designs
using dynamic or formal techniques, yielding more productive
convergence to high quality implementations.

I. I NTRODUCTION

Functional validation has become an acute and expensive
challenge for engineers designing high performance micro-
electronic systems, especially in quickly evolving markets
or where there are demanding time to market goals [1].
Most design activity, at least for complex microarchitecture,
is still centred around low-level design models, encumbered
with implementation detail. Numerous proposals have been
made, in our view rightly, to make design exploration and
analysis more tractable by raising the level abstraction atwhich
designs are described—so called ‘high-level’ or ‘transaction-
level’ modelling [2], [3], [4], [5]. The case is made forcefully
and exceptionally clearly by Vardi in [6].

Our contribution in this paper is to propose a new frame-
work for modelling and validation, focusing exclusively on
functionandalgorithms, based around a language with a clean
and obviousformal semantics, and providingnative symbolic
executionas its fundamental formal analysis tool. Our system
integrates formal verification and dynamic validation intoa
common modelling and analysis framework, and leverages
emerging technologies for reasoning above the bit level [7]
to enable a genuinely ‘high-level’ approach.

The aim of this long-term research is to take an ex-
perimental step away from the more incremental, industrial

efforts represented by SystemC and similar approaches. We
wish to experiment with a more disruptive language and
reasoning framework, and to assess how the particular ideas
represented in our system might make it easier to explore
microarchitectural algorithms and validate them using dynamic
or formal techniques—yielding more productive convergence
to high quality implementations.

In the sections that follow, we describe ourArchitecture
Specification Languagethrough a case study, the modelling
of a simple µop scheduler and its refinement towards a
design model for circuit implementation. Our language, still
in the early stages of development, is based on Microsoft’s
open source AsmL [8], [9] extended with some hardware-
oriented datatypes; we briefly sketch its semantic foundation
in Abstract State Machines. We also describe an experimental
interpreter that supportssymbolic executionof models in this
language, intended for design exploration, property checking,
and refinement verification. We conclude by discussing related
work, and outlining future research challenges and prospects.

II. A LGORITHM LEVEL MODELLING

We use the termalgorithm level model(ALM) to mean a
precise description of the functional and algorithmic behaviour
of computer systems, framed in terms of abstract data types
and granularities of time not necessarily tied to clock cycles.
An ALM has the following main characteristics:

Abstract, yet sufficiently complete. All and only the algorith-
mically relevant features of the system should be represented.
It need not be cycle-accurate or expressed at the bit level.

Simple and concise, written in a language with meaning
transparent to both system architects and designers.

Precise, with a comprehensive and tractable formal semantics.
This should be suitable to support a range of different formal
verification technologies.

Hardware-oriented. The model should provide a semantics
suitable for theabstractcharacteristics of hardware—correctly
modelling concurrency, synchronisation, clocking, hierarchy,
and modular composition.

Executable. The model can be run when encapsulated within
a suitable test-bench and run-time environment.

Scheduler
din

dout

read
ready

available
full

write
wrback

reg

Fig. 1. Scheduler Top Level Interface

There have, of course, been many attempts to devise high-
level models (HLMs) that share some of these desirable
goals. Often, however, an HLM is expected to serve as a
golden reference for downstream design stepsas well as
for validation. It has therefore tended to compromise valida-
tion needs by including information driven by circuit design
concerns. Implementation details—such as power, timing and
placement—inevitably become tangled up with the model. The
model’s abstraction level is dragged down to serve more design
purposes, until at some point it is no longer has the merits of
the clean models envisaged above.

We therefore speak of ‘algorithm-level models’ to empha-
sise that they are intended to model only data structures and
algorithms, and to be used only for the purpose of algorithm
exploration and validation. They are kept strictly separate
from the RTL design model, and so can remain a stable
algorithmic description and functional specification, free of
implementation detail.

III. A LGORITHM SPECIFICATION LANGUAGE

Starting with an enlargment of the AsmL subset defined
in [10], and adding some hardware-oriented data types and
operations, we have devised an experimental language for
algorithm level modelling and verification called theArchitec-
ture Specification Language(ASL). In this section, we provide
a sketch of ASL through examples drawn from a case study.

A. Scheduler Case Study

A micro-operation (µop) scheduler is a microprocessor
component that we have used to drive ASL development in this
research. It implements functionality that is typical of the kinds
of microarchitectural algorithms we wish to validate through
ALMs, and to refine down to implementable designs.

The scheduler, shown in figure 1, receives a stream ofµop
instructions to be executed and is responsible for delivering
each of these to an execution unit at the appropriate time. The
scheduler must hold back someµops until the execution unit
signals that their operands are available. When multipleµops
are ready, the scheduler uses a FIFO policy for selection. For
this study, a simple version of the scheduler is considered;the
verification of a real RTLµop scheduler is described in [11].

Eachµop has an opcode, a source register, and a destination
register. Eachµop comes to the scheduler on thedin line
accompanied by aready bit, which is high exactly when all
the instructions it must wait for have already been executed.
In order to enqueue aµop into the scheduler (provided thefull
line is not high), thewrite line must be high. The scheduler

should set the lineavailableto high when it contains a waiting
ready µop. When it sees this signal, the execution unit can
request aµop on thedout lines by settingread to high. In
the event that there is more than one readyµop, the scheduler
provides the readyµop which entered it first.

The wrback line from the execution unit is used to signal
when the execution of an instruction has resulted in the writing
of data to a register. The index of this register is supplied on
the reg lines. This allows the scheduler to select anyµops it
holds which might have been waiting for this write to happen.
When a write-back takes place, any waiting instructions whose
source which matchesreg is tagged as ready for execution.

B. ASL Examples from the Scheduler Model

In ASL, we model the scheduler as a class with data fields
for its internal state. This comprises the queue ofµops, each
accompanied by a status flag, the data output register, and a
running index for the time ofµop entry. Instructions and status
tags are represented the using of the basic types

class UOP_BASE{
opCode as Integer
sReg as Integer
dReg as Integer

}
class UOP extends UOP_BASE {

status as Integer // idle, wait, rdy, exec
}

and the scheduler’s internal state is represented by

uopQueue as Map of Integer to UOP
dout as UOP_BASE
uopTag as Integer

At this level of abstraction, we represent the state of the
queue by a map (in the natural mathematical sense) from
arrival time to theµop and its status bit. The map is initially
empty, and is populated during execution. The running time
index is held inuopTag .

At each step of execution, aschedule method is invoked
with the scheduler’s inputs as arguments. This executes a
group of parallel update statements to compute a modification
of the scheduler’s state. For example, whenwrite is enabled
and the queue is not full, the updates are as follows:

if write and not me.isfull() then (
me.uopQueue {me.uopTag } := din;
me.uopQueue {me.uopTag }.status :=

if ready then rdy else wait;
me.uopTag := me.uopTag + 1

)

The identifierme is similar to ‘this’ in C++. Used within a
method of an object, it makes run-time reference to the object
itself. The updates are scheduled in sequence here, but they
could just as well be done in parallel.

During a read, the scheduler looks for the earliest readyµop
in the map. In ASL, we express the updates as follows:

if read and me.isReady() then
let tag = the w | w in keys me.uopQueue where

me.uopQueue {w}.status == rdy and
not (exists v in keys me.uopQueue where

v<w and me.uopQueue {v}.status == rdy)
do me.uopQueue {tag }.status := exec;

me.dout := me.uopQueue {tag }

The exists and the constructs are part of a family of
executable comprehension and quantification constructs that
ASL (following AsmL) provides for compact specification.
They specify values abstractly, instead of by explicit search.

On an execution unit write-back, the scheduler sets each
µop status to ready if its source register has been written to:

if wrBack then
forall tag in keys me.uopQueue
let uop = me.uopQueue {tag } do
if uop.sReg = reg and uop.status = wait then

uop.status := rdy

Updates to the allµop status bits in the queue are done in
parallel, using aforall statement.

IV. SYMBOLIC EXECUTION

A distinguishing feature of our language framework is an
implementation of directsymbolic execution[12] of ASL
programs. Inspired by the success of symbolic simulation
in, for example, Intel’s Forte system [13], we provide this
capability as a fundamental mechanism upon which we expect
a range of formal verification methods to be built.

Ordinary execution of an ASL program computes an accu-
mulated update to the initial program state—a collection of
concrete values that all the state elements take on in the next
state of the system. With our symbolic execution mechanism,
we injectmeta-variablesinto the computation to stand for the
values of selected state elements. That is, instead of making the
initial value of a field a concrete value, such as0 or true , we
make the initial value of the field avariable. Execution then
producesexpressionsthat give the final state of the system
as a function of the variables that occur in the initial state.
A key feature of our approach is that concrete and symbolic
execution can be mixed, in almost arbitrarily flexible ways,
under user control. You can write ‘meta "x" as type’
anywhere a literal value can be written, and this will inject
the meta-variablex at that point of the computation.

We illustrate the idea with the example below:

class counter {
count as Integer, // state
inc () as Void (me.count := me.count + 1),
dec () as Void (me.count := me.count - 1),
run (up as Bool, dn as Bool) as Integer (

(if up then me.inc()
|| // parallel composition

if dn then me.dec())
; // sequential composition
me.count)

}
// main program appears below
let c = new counter(meta "x" as Integer) do (
let u = meta "u" as Bool do
let d = meta "d" as Bool do

c.run(u,d)
)

The classcounter has a single state variable,count , and a
run method that updates it by parallel, conditional invocations
of the other two methods,inc anddec . In the main program,
we create an objectc of classcounter and initialize the state
to an arbitrary integer, represented by the typed meta-variable
x . Therun method is called with two Boolean meta-variables
as parameters. When this program is executed, it computes the
following expression as the next-state value ofcount :

u ⇒ (d ⇒ error “inconsistent update”| x+1)
| (d ⇒ x-1 | x)

The notation ‘P⇒A |B’ denotes a conditional choice of value:
if P thenA elseB. The result encodes four possible values of
count in the next state, according to the values ofu and
d. Note that when bothu and d are true, the outcome is an
inconsistant state. With expressions such as these, users can
debug and avoid such inconsistent updates. ASL provides an
assume construct to impose state constraints that restrict the
computation to legal paths. State predicates can be checked
usingassert.

This example is simple straight-line code, but in real ASL
programs there are loops and possibly rather sophisticatedcon-
trol flow. Symbolic execution of loops requires a termination
condition to be established, otherwise the program never halts.
An example is given below:

class A {a as Bit[3] }
let x = new A (meta "k" as Bit[3]) do (

(while (x.a < 3’b011) do
x.a := x.a + 3’b001)

; // sequential composition
x.a

)

The state in this example is a bitvector of width 3, interpreted
as a 2’s complement integer. It is initialized to an arbitrary
symbolic value using the meta-variablek . Each time through
the loop, x.a is incremented by 1 until it becomes 3. In
our implementation, the symbolic execution engine checks the
loop condition at every step to decide whether to terminate or
continue. Eventually, the condition is proven to be false, and
the program terminates with an update value of 3 forx.a .

ASL supports set and list comprehensions, as well as
nondeterministic choice. We illustrate the symbolic execution
of these with the following example:

class A {a as Integer }
let x = new A (0) do
let n = meta "n" as Integer do
let c = meta "c" as Bool do
assume n==2 do (
if c then (
let res = any i | i in {1,2,3,4 } where i<=n do

x.a := res
)

)

The ASLany construct (following AsmL) makes a nondeter-
ministic choice of value drawn from a given set and which
satisfies a stated condition. The integerres will be a value
between 1 and 4 that does not exceedn, which itself is known
to be 2. In other words,res will be 1 or 2.

When we run this program, our system will compute the
following symbolic update forx.a :

(c ∧ n=2) ⇒ (i0 ⇒ 1 | 2) | 0

In normal execution, a random choice between 1 and 2 would
be made for the next value ofx.a . In symbolic execution,
we index all possible outcomes by generating index variables,
in this casei0, and constructing a decision tree to encode the
outcome. It is, of course, enough to have⌈log2 k⌉ Boolean
variables fork possible choices.

V. REFINEMENT OF THESCHEDULER

Establishing and maintaining a formal link between an ALM
specification in ASL and an RTL design model is central
to realising the long-term value of algorithm level models.
The size of the abstraction gap is a significant challenge,
which we propose should be bridged through a series of ALM
refinements. Ultimately, these should be semi-automated, or at
least machine assisted—tackling the other main concern of the
cost of maintaining an ALM—but this is future work. Martin
explores similar ideas in System-ML [14], as does Seger in
IDV [15].

Our initial focus is ondata refinement,algorithm refine-
ment, andhybrid refinement that combines both. In data
refinement, the state representation is replaced in the refined
model with a more implementation-oriented and efficient one,
but the computation method is the same.Algorithmrefinement,
on the other hand, replaces the algorithm by another, more
efficient, algorithm, but retains the data representation.In
hybrid refinement, the most common form, both data and
algorithm refinements are involved.

A. Refined Scheduler ALM

In this section, we sketch a hybrid refinement of the
scheduler. In our initial ALM, we used an infinite queue to
store incomingµops according to arrival time, maintained by
an integer index. This is an abstract model, but not close
to hardware implementation. The main problem is that the
initial model uses a mathematically perspicuous but expensive
operation to find the earliest readyµop. To move closer to
high-performance circuit implementation, we add a scoreboard
that indicates ifµopi is earlier thanµopj across a certain range
of i and j. Eachµop is compared to all the others in parallel.

The refined scheduler is shown in Figure 2. Its state is
modelled in ASL by

uopQueue as Map of Integer to UOP,
valid as Map of Integer to Bool,
scoreBoard as Map of Integer to Bool

The arrayvalid is used to indicate the occupied slots in
the µop queue. The scoreboard is a one-dimensional array of
Booleans, but will be used as a two-dimensional matrix.

This refinement also replaces the algorithms for reading and
writing. We show the read code below:

din

dout

available

ready

full

write

wrback

reg

ScoreBoard

Control Logic

uopQueue statusvalid

read

Fig. 2. Refined Scheduler

if read and isReady() then
let slot = the s | s in keys valid where

valid {s} and uopQueue{s}.status == ready and
not (exists t in keys valid where t <> s and

scoreBoard {t * qsize+s } and valid {t })
do (valid {slot } := false;

forall v in keys valid where v<>slot
do (if scoreBoard {slot * qsize+v } then

scoreBoard {slot * qsize+v } := false;
scoreBoard {v* qsize+slot } := true);

uopQueue{slot }.status := exec;
dout := uopQueue {slot })

In the refined read operation, the earliest readyµop is found
using the one-dimensionalscoreBoard as a priority matrix.
After reading, the corresponding slot in thevalid array is
cleared and the relation inscoreBoard updated.

B. Validation of the Refinement

Validating ASL refinements can be done initially using
intensive simulation. The two models are exercised by a test-
bench, also written in ASL, that runs them on the same inputs.
The results are compared at the end of each computation step.
For the scheduler case study, we did random simulation.

Test data can be a mixture of concrete and symbolic values.
In the following testbench, which runs only one cycle of each
model, theµop is symbolic and the control inputs are concrete:

let din = new UOP(idle,
meta "opc0" as Integer,
meta "src0" as Integer,
meta "des0" as Integer) do

let inp =
new INTERFACE(true,false,false,din,0,true) do

queue.schedule (inp); // abstract scheduler
scoreBoard.schedule (inp); // refined scheduler
let res1 = queue.read_dout() do
let res2 = scoreBoard.read_dout() do
if res1 == res2 then writeln "passed"

else writeln "failed"

An INTERFACE is just a record packaging up the inputs.
Verification of the refinement can also be done completely

symbolically. We execute the two models with the same

symbolic inputs and compare the expressions generated for
dout . The symbolic input generator shown below:

class SYMBOLIC { // build symbolic transaction
inp (i as Integer) as INTERFACE (

let write = meta "wr"ˆ(int2str i) as Bool do
let read = meta "rd"ˆ(int2str i) as Bool do
let wb = meta "wb"ˆ(int2str i) as Bool do
let ready = meta "rdy"ˆ(int2str i) as Bool do
let din = new UOP(idle
meta "opc"ˆ(int2str i) as Integer,
meta "src"ˆ(int2str i) as Integer,
meta "des"ˆ(int2str i) as Integer) do
let reg = meta "reg"ˆ(int2str i) as Integer do
new INTERFACE (write, read, wb, din, reg, ready)

)
}

The methodinp takes a cycle number and generates meta-
variables to represent the inputs values at the scheduler inter-
face. The result is a high-level ‘symbolic transaction’ defined
over the abstract data types of ASL. For our case study, we
were able to execute both ASL models in this completely
symbolic manner and prove that the outputs agree.

C. Semantics of ASL

The state of an ASL program is encapsulated within classes.
Evaluating new c(e) allocates a new object of classc ,
initializing its state to the value ofe. The result is a unique
object identifierfor the object created. For example,

class A {f as Integer } new A(7).f

evaluates to 7, the initial value stored in fieldf of the allocated
object of classA.

ASL is in essence a language for describing synchronous
parallel updates to state. The fundamental way to generate
updates is with an update expressione1.f := e2 , where
e1 evaluates to an object identifier ande2 to a value of
the correct type for fieldf of this object. Evaluating the
update expression itself does not immediately change the
state, but simply generates a record of the update for later
application to the state. Evaluating update expressions in
parallel produces the union of the updates they generate. For a
sequential compositione1;e2 , the updates generated bye1
are temporarily applied to the state when generating updates
from e2—i.e. sequential execution does ‘update composition’.

Our interpreter is essentially an operational semantics of
ASL programmed in Intel’sreFLect [16] functional language.
For example, the ASL expression above translates into the
reFLect code below:

let A = CLASSID "A";
let x = FIELDID "x";
asl [class A x] (dot (new A(lit 7)) x);

Each of the functionsasl , class , dot , new and lit
corresponds to one of the syntactic categories of ASL ab-
stract syntax, and computes the changes to state and updates
expected by the operational semantics [10].

To give a flavour of the technical details of our semantics,
we sketch the definitions of object allocation and field up-
date. We first introduce thereFLect data types that represent
identifiers:

lettype classid = CLASSID string;
lettype objectid = OBJECTID string;
lettype fieldid = FIELDID string;

Identifiers are just tagged strings.
Boolean and integer literals are inherited from built-in

reFLect types. The literalVOID stands for the element of a
certain singleton type used for expressions that do not return
some other value. Values are either literals or object identifiers:

lettype lit = VOID | BOOL bool | INT int;
lettype value = OBJ objectid | LIT lit;

The state of an ASL program, called astore , is repre-
sented by a content map (cmap) from value-holdinglocations
(loc) to values, together with an update set (uset). A
location is uniquely identified by an object identifier paired
with a field identifier. An update is just a location paired with
a value:

type loc = objectid × fieldid;
type cmap = loc → value;
type update = loc × value;
type store = cmap × update set;

We can now represent ASL expressions asreFLect functions
that map a declaration context, represented by typedcxt , and
a current store to a new store together with the resulting value:

type exp = dcxt → store → (store × value);

The declaration context, details of which are unimportant here,
is just a static table of class information.

We can now express the semantics ofnew as follows:

let new {c::classid } {e::exp } {d::dcxt } {s::store } =
let o = freshid c in
val ((cm,us),v) = e d s in
val f = lookup d c in

(((update (o,f) v cm),us),OBJ o);

The functionnew takes a class identifierc and an expression
e and returns a function from the declaration context and store
to a new store and a value. The functionfreshid allocates a
new object identifiero. The expressione is then evaluated to
produce a new store, and the single field identifier for classc
is obtained from the declaration context. (Our system in fact
supports multiple fields.) Finally, the function returns a new
state consisting of the updated content map and the unchanged
update set, together with the allocated object identifiero as
the resulting value.

The definition of the semantics of updates is equally
straightforward. An updatee1.f := e2 has semantics
assign e1 f e2 , where

let assign {e1::exp } {f:fieldid } {e2::exp }
{d::dcxt } {s::store } =

val ((cm1,us1),(OBJ o)) = e1 d s in
val ((cm2,us2),v) = e2 d s in

((cm1 ∪ cm2, {(o,f),v } ∪ (us1 ∪ us2)),
VOID);

The resulting content map is just the union of content maps
arising from evaluation ofe1 and e2 , which may of course
have allocated objects. The resulting update map contains the
new update. The return value is justVOID.

VI. RELATED WORK

Research addressing the challenges of functional validation
using high level models has been active for decades, in both
academia and industry. SystemC [2], designed for high level
modelling of systems, extends C/C++ standards with features
needed for hardware design and verification. The semantics of
SystemC are, however, not suitable for formal analysis [17],
because its design was not driven by semantic clarity, and
it has evolved from other languages that either were not fully
semantically defined or not well suited to hardware modelling.

TLA [5], the Temporal Logic of Actions by Leslie Lamport,
does have a precise semantics suitable for formal verification
of small to medium size problems. Models in TLA are
not aimed for dynamic simulation or creation of test bench
environment, limiting TLA to formal verification only. Formal
analysis in TLA is based on explicit model checking, which of
course suffers the state explosion problem. In Murphy [18] the
basic concepts are similar to ASL, but its semantics does not
allow native sequential composition of rules, which we view
as helpful for modelling hardware. Like TLA, it has an explicit
state model checker for formal analysis only. Esterel [3] isan
evolving language and system used mostly to model control-
oriented reactive systems, and so it less suitable for ALM.

Bluespec [4] is a language with a term rewriting semantics
aimed at capturing model behaviour and synthesizing it to
hardware design. Bluespec is similar in many ways to ASL.
But the focus in Bluespec has very much been automatic
scheduling and high level synthesis to RTL, while we are
interested in modelling and verification methods. Bluespec
took recently a new direction into the RTL domain by aiming
to be interoperable with SystemVerilog [19].

Intel’s Forte [13] is a powerful symbolic simulation system,
but is targeted at gate level designs. Theorem provers (e.g.
HOL [20]) are dedicated to interactive proof development and
are (with effort) scalable, but the models in such systems are
not executable. Symbolic execution with term rewriting similar
to what we propose for ASL was shown to be an effective
combination for verifying sequential programs in C. ASL,
by contrast, supports the interleaved sequential and parallel
execution we believe is essential for hardware modelling.

VII. PROSPECTS

The ASL work presented here represents some significant
first steps in a long-term research on algorithm level mod-
elling. Using AsmL as a starting point, we have designed
and implemented a protoype ASL environment that supports
native symbolic execution and a rich collection of language
constructs. We have exercised our system, and driven its
design through a series of case studies, including theµop
scheduler, a model of the AMBA protocol [21], and Lamport’s
bakery mutex protocol. We are planning to scale up our
case studies and focus our efforts on methodology for ALM
refinement down to design models. Tuning the performance
and enhancing the capacity of our system is work in progress.
We also intend to connect ALM models specified in ASL to

design models written in SystemVerilog or SystemC, providing
a path to downstream RTL design and validation flows.

ACKNOWLEDGMENTS

We are grateful to the Microsoft Research team, including
Yuri Gurevich and Wolfram Schulte, for their initial support
in AsmL and Spec Explorer.

REFERENCES

[1] B. Bentley, “Validating a modern microprocessor,” inComputer Aided
Verification: 17th International Conference: Proceedings, ser. LNCS,
vol. 3576. Springer-Verlag, 2005.

[2] OSCI, “IEEE - the open systemc initiative,” 2008. [Online]. Available:
http://www.systemc.org/downloads/lrm

[3] G. Berry, P. Couronn, and G. Gonhier, “Synchronous programming of
reactive systems: an introduction to ESTEREL,”INRIA report 647 (987).

[4] J. C. Hoe and Arvind, “Synthesis of operation-centric hardware descrip-
tions.” in ICCAD, 2000, pp. 511–518.

[5] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[6] M. Y. Vardi, “Formal techniques for SystemC verification,”in Design
Automation Conference. ACM, 2007, pp. 188–192.

[7] D. Kroening and O. Strichman,Decision Procedures: An Algorithmic
Point of View. Springer-Verlag, 2008.

[8] “AsmL: The abstract state machine language,” 2006.
[9] AsmL. [Online]. Available: http://www.codeplex.com/AsmL/

[10] Y. Gurevich, B. Rossman, and W. Schulte, “Semantic essence of AsmL.”
Theoretical Computer Science, vol. 343, no. 3, pp. 370–412, 2005.

[11] J. Yang and C.-J. H. Seger, “Compositional specificationand verification
in GSTE,” in 16th International Conference on Computer Aided Veri-
fication (CAV), ser. LNCS, R. Alur and D. A. Peled, Eds., vol. 3114.
Springer-Verlag, 2004, pp. 216–228.

[12] J. C. King, “Symbolic execution and program testing,”Commun. ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[13] C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. Melham, M. D.Aagaard,
C. Barrett, and D. Syme, “An industrially effective environment for
formal hardware verification,”IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1381–
1405, September 2005.

[14] A. K. Martin, “Bridging the gap between abstract RTL andbit-level
designs,” in Seventh International Workshop on Designing Correct
Circuits: Participants’ Proceedings, G. J. Pace and S. Singh, Eds.
ETAPS 2008, March 2008, p. 72.

[15] C. Seger, “The design of a floating point unit using the integrated design
and verification (IDV) system,” inDCC’06: Participants’ Proceedings,
M. Sheeran and T. Melham, Eds., March 2006.

[16] J. Grundy, T. Melham, and J. O’Leary, “A reflective functional language
for hardware design and theorem proving,”Journal of Functional
Programming, vol. 16, no. 2, pp. 157–196, March 2006.

[17] Y. Mahajan, C. Chan, A. Bayazit, S. Malik, and W. Qin, “Verification
driven formal architecture and microarchitecture modeling,”in MEM-
OCODE’07, April 2007.

[18] C. W. Murphy, “An overview of the murphy model,”Australian
Economic Papers, vol. 27, no. 0, pp. 175–99, Supplemen 1988. [Online].
Available: http://ideas.repec.org/a/bla/ausecp/v27y1988i0p175-99.html

[19] S. D. Stuart Sutherland and P. Flake,SystemVerilog for Design: A Guide
to Using SystemVerilog for Hardware Design and Modeling. Kluwer
Academic Publishers.

[20] M. J. C. Gordon and T. F. Melham, Eds.,Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University
Press, 1993.

[21] P. Böhm and T. Melham, “A refinement approach to design and verifi-
cation of on-chip communication protocols,” in2008 Formal Methods
in Computer Aided Design, A. Cimatti and R. B. Jones, Eds. IEEE,
2008, pp. 136–143.

