
Formal Co-Validation of Low-Level
Hardware/Software Interfaces

Alex Horn∗, Michael Tautschnig∗, Celina Val†, Lihao Liang∗,
Tom Melham∗, Jim Grundy‡, Daniel Kroening∗

∗University of Oxford †University of British Columbia ‡Intel Corporation

A. Horn, M. Tautschnig, C. Val, L. Liang, T. Melham, J. Grundy, and D. Kroening. ‘Formal co-validation of low-level hardware/software interfaces’, in FMCAD 2013: Formal
Methods in Computer-Aided Design: Portland, Oregon, USA, 20-23 October 2013, edited by B. Jobstmann and S. Ray (IEEE Computer Society, 2013), pp. 121–128. The final
publication is available at https://doi.org/10.1109/FMCAD.2013.6679400

Abstract—Today’s microelectronics industry is increasingly
confronted with the challenge of developing and validating
software that closely interacts with hardware. These interactions
make it difficult to design and validate the hardware and
software separately; instead, a verifiable co-design is required
that takes them into account. This paper demonstrates a new
approach to co-validation of hardware/software interfaces by
formal, symbolic co-execution of an executable hardware model
combined with the software that interacts with it. We illustrate
and evaluate our technique on three realistic benchmarks in
which software I/O is subject to hardware-specific protocol rules:
a real-time clock, a temperature sensor on an I2C bus, and an
Ethernet MAC. We provide experimental results that show our
approach is both feasible as a bug-finding technique and scales
to handle a significant degree of concurrency in the combined
hardware/software model.

I. INTRODUCTION

A growing problem for today’s microelectronics industry is
co-design of hardware alongside embedded, low-level software
that closely interacts with it. In particular, semiconductor
designs are witnessing an increased use of on-chip micro-
controllers running firmware to implement functionality that
would formerly have been implemented in hardware. This trend
is driven by factors that include the following:
• Extracting the control of complex devices and implement-

ing it in firmware can cut development schedules while
adding flexibility and survivability.

• By making on-chip devices more capable, work can
be shifted away from the CPU, where performance is
increasingly hard-won. The richer control required for
more capable devices further drives the trend.

The sorts of devices that are typically integrated on-chip are
controllers for power management, hardware with sequestered
functionality for remote management or secure content, and
increasingly capable graphics processors.

Co-design and validation of such devices together with
their firmware, with the predictability needed to schedule
fabrication and hit market windows, has become an acute
challenge. Similar challenges arise in developing firmware for
systems on chip (SoCs) and general embedded systems [1].

Firmware is just hardware-specific software. One might
therefore expect that the problem can be addressed by some
combination of today’s separate techniques for design and
verification of hardware and software. But the results of

Supported by ERC project 280053 and EPSRC project EP/H017585/1.

this approach are disappointing. The problem is the complex
nature of the interactions at the hardware/software interfaces.
All large systems are structured into subsystems, but the
interfaces between hardware and software subsystems are more
problematic than those in a homogeneous system.

• In a homogeneous design, the documentation of interfaces
(say by header files) is both understandable by developers
and processable by tools. A compiler, for example, can
guarantee some consistency in how two modules view a
shared interface. But hardware and software are typically
described in different languages, processed by separate
tool chains. And the hardware and software design teams
have their own descriptions of the interfaces they share,
with little to ensure the two are consistent.

• The mechanisms for invoking functionality and sharing
data among modules in a homogeneous system, particu-
larly in software, are relatively few. In contrast, the means
of passing information between hardware and software
are varied and built up from nonstandard primitives that
may include interrupts, memory-mapped I/O, and special-
purpose registers. The situation is analogous to software
before procedure-calling conventions were standardized.

• The hardware/software interface also marks a boundary
between different threads of concurrent execution. Without
the shared understanding of synchronization that follows
from a common language and library, concurrency at the
hardware/software interface needs special treatment.

• Finally, a hardware/software interface almost always marks
a boundary between different teams, working in different
parts of a company and having different educational
backgrounds and skills. The scope for misunderstanding
is greater than usual.

The challenges faced by those implementing the two sides
of a hardware/software interface are high—but so is the need
to get it right. Building a system with a new interface and then
testing it to find and remove bugs is a perilous practice. When
designers move the control from a complex hardware device
into firmware, the stripped-down hardware can be difficult to
test without a means to run the firmware. Testing the hardware
and firmware together is difficult before silicon is fabricated:
simulators are slow, emulators expensive, and FPGAs limited
in capacity. Delaying extensive testing until silicon is available
is unacceptable as it serializes the development of hardware
and software to the point where it can be difficult to meet the

https://doi.org/10.1109/FMCAD.2013.6679400


project schedule. And, of course, any hardware bugs found at
this stage will be expensive to fix.

An increasingly common approach to designing embedded
software is to employ virtual prototyping, so that coding can
begin before silicon is available. A software model (in C
or SystemC) serves as a proxy for the hardware on which
the embedded firmware code can be developed and tested.
In our research, we leverage this trend and propose a new
approach to co-validation of hardware/software interfaces by
formal, symbolic co-execution of two combined pieces of code:
a software model of the hardware, and the real embedded
firmware that interacts with this hardware. When necessary, we
capture the parallelism between firmware and hardware with a
modelling approach that employs software concurrency in the
form of asynchronous threads.

We demonstrate our idea with three realistic benchmarks,
all publicly available on the web.1 These are constructed by
combining hardware models adapted from a virtual machine
emulator and software taken from a general-purpose OS
kernel. The interactions at the hardware/software interfaces
of these benchmarks are characteristic of devices of interest to
our industry partner—including low-level software, akin to a
driver, executing on a separate on-chip microcontroller. Our
experimental results show the approach both is feasible as a
bug-finding technique and scales to handle a significant degree
of hardware/software concurrency.

A further, methodological, contribution of our work is the
identification of the open-source QEMU [2] code base, together
with Linux device drivers [3], as a rich source of characteristic
examples to drive research in this domain. The correctness
properties we have devised also exemplify validation problems
that are typical of low-level hardware/software interfaces.
Co-validation poses distinctive challenges and has growing
industrial importance; it is our hope that this work will
encourage other formal verification researchers to engage with
this important problem in contemporary hardware design.

II. VALIDATION AIMS AND TECHNICAL APPROACH

We have designed and experimentally evaluated a method
for semi-automatically searching for bugs in the interactions
at hardware/software interfaces. Our aim is to find potential
violations of certain correctness properties as the hardware
interacts with the low-level software under scrutiny. Such
violations yield counterexample traces that can expose bugs
both in the low-level software and in the hardware model. Our
method targets early and relatively high-level software models
of hardware, which need not be cycle accurate.

For our work, the purpose of hardware models is to capture
the hardware side of interactions that occur at nonstandard
hardware/software interfaces. This includes modelling complex,
ah-hoc side-effects characteristic of low-level devices. For
example, when the software reads a hardware register, this
may cause other changes to the visible state at the interface.

1http://www.cprover.org/firmware

In general, these interactions are expected to conform to
a protocol that can be articulated in terms of pre- and post-
conditions, which we refer to as properties. We formalize
these as runtime assertions within the executable hardware
model itself. Specifications of interface protocols are usually
articulated separately, in logic. Our approach, however, is
designed to appeal to practicing engineers who use virtual
platforms to test their intuition through co-simulation, and so
we embed specifications within executable models—which
are given formal meaning through a bit-precise execution
semantics [4].

A. Modelling Approach and Concurrency

In the conventional approach to formal hardware verification,
hardware models are essentially state-transition systems: a
formal model is given that determines or constrains the next
state of registers/memory in relation to the current state and
inputs. In this work, we propose a different approach that need
not be cycle accurate and provides a higher-level, event-driven
software abstraction of the hardware, focussed on interactions
at its interface with low-level software.

In some hardware/software systems, the speed of the
hardware and low latency of the interaction mechanism,
relative to software execution, imply that we do not need to
model hardware/software concurrency. An example is the RTC
benchmark in Section IV. In these cases, our combined code,
comprising the firmware plus the hardware model, can simply
represent interaction by procedure calls into the hardware model
from the software. This simplification encodes an assumption
that hardware response is effectively instantaneous.

More interesting is our handling of hardware/software
concurrency in the cases where it matters. Here, we model
the hardware by asynchronous software threads invoked by
the low-level code that interacts with the hardware. When this
code engages in an interaction with the hardware—writing to
a register, say—a concurrent, asynchronous thread is spawned
whose sole purpose is to call a function in the hardware model
that initiates an execution to model the hardware’s response.
Once the function returns, the thread terminates. This event-
driven abstraction enables us to find concurrency bugs, as
illustrated by the Ethernet MAC benchmark in Section VI. It
also maps well onto the early-stage hardware modelling activity
that our validation method targets.

In the specific context of our benchmarks drawn from QEMU,
we are able justify making threads of the hardware model
atomic with respect to each other and the low-level software.
This reduces the complexity of our analysis. We recognize,
however, this will not always be possible.

The low-level software’s response to hardware interrupts
are also modelled by asynchronous threads, this time created
at run-time by the hardware model—and not atomic. This
allows us to capture concurrency bugs in interrupt handling, a
prominent potential source of errors in the industrial systems
we have in mind.

http://www.cprover.org/firmware


B. Validation Technology and Concurrency Encoding

Our validation method is designed to leverage today’s
highly optimized SMT/SAT solvers. Where our combined
code is purely sequential, we can analyse it with any software
analysis tool that gives a bit-precise semantics to C and can
check our embedded run-time assertions. In Section VII, we
report experimental results using CBMC and, for comparison,
also using KLEE—a pathwise testing tool that achieves high
coverage through symbolic execution [5].

Our main approach, however, is to analyse our coalesced
code by symbolic execution with aggressive path-merging, as
exemplified by CBMC [6]. This yields a mathematical formula
that encodes multiple execution paths up to a certain depth,
which is then checked by a SAT/SMT solver. This approach
maximizes the exploitation of today’s optimised solvers and
avoids the potentially exponential number of execution paths
explored by path-wise enumeration [7], [5].

To handle concurrency, we exploit a recent encoding of
concurrent software execution in CBMC that uses partial orders
to constrain the relative timing of events that access shared
state [8]. Roughly speaking, it works as follows. Accesses to
shared state by separate concurrent threads are first decoupled
by being given distinct symbolic references. An integer clock
is introduced for each access to shared state, and a partial
order is given among the clocks that encompasses all feasible
interleavings of these accesses to shared state. Finally, order-
dependent equality relationships are established among the
values named by the decoupled references, making connections
between the state values ‘seen’ by the hardware model and
low-level software. All this is efficiently encoded in a quantifier-
free formula whose size is cubic in the maximum number of
shared state accesses. Any satisfying assignment found by a
SAT/SMT solver corresponds to a property violation.

Encoding concurrency by partial orders side-steps having to
deal explicitly with the complexity of interleavings, and pro-
duces a highly competitive analysis for concurrent software [8],
which we exploit in this work. It also allows the ordering of
accesses to be more loosely specified than in conventional
sequential consistency. The latter property is used in [8] to
capture the complex semantics of weak memory models in
modern multi-core architectures, but is not (yet) exploited in
our work on hardware/software co-validation.

III. HARDWARE MODELS FROM QEMU DEVICES

To evaluate our method, we extract hardware models from the
open-source QEMU virtual machine emulator [2] and combine
them with Linux device drivers [3]. Our idea is to leverage
the rich collection of hardware models that QEMU provides,
in combination with real OS driver code. This strengthens the
objectivity and realism of our experiments, since they retain
essential characteristics of production code. This includes a
specific division into hardware models and low-level software,
which moreover originate from separate developer communities.

QEMU was designed for hardware virtualization, not experi-
ments in formal co-validation, and extracting usable stand-
alone hardware models from QEMU code is not entirely

straightforward. To give an idea of what is involved, we briefly
sketch some aspects of the QEMU architecture, before going
on to present our benchmark experiments.

QEMU is written in C. Each QEMU virtual machine is
divided into boards, each of which consists of device and bus
models. Communication between device models can occur only
through bus models. This is the basis for a modular design,
implemented through a QEMU-specific factory and service
locator pattern known as QDev [9].

QDev organizes hardware models into a dynamic tree data
structure that relies on a QEMU-specific object model called
QOM [10]. In essence, QOM seeks to extend C with object-
oriented programming features. To achieve this, QOM stores
information about its internal C structures in glib trees and
hash tables. An instantiation of such a structure is called an
object. Function pointers serve as methods. QEMU’s physical
memory management architecture determines which object
methods of a device model are called when memory regions
are accessed by the guest operating system [11].

For our benchmarks, we extracted stand-alone C hardware
models by excluding all physical memory management code
and dependencies on QDev and QOM. This was done through
a somewhat laborious process of careful slicing and approxi-
mation of essential features.

By default, QEMU accelerates dynamic code translation
though just-in-time compilation [12]. For our purposes, this
can fortunately be bypassed through an undocumented feature
called QTest, a client-server architecture that facilitates testing
of hardware models. Few QEMU models currently take
advantage of this test harness, but the trend is towards more
testing. The benefit for our approach is that these tests can
give insight into hardware-specific verification properties, and
serve as starting points for symbolic co-execution.

IV. CO-VALIDATION OF A REAL-TIME CLOCK

Our first benchmark is the MC146818 real-time clock
(RTC), a low-power CMOS device that provides—among
other functionality—a time-of-day clock, a calendar, and
programmable timers for periodic interrupts and square-wave
generation [13]. One of the stated purposes of the MC146818,
which is quite an old device, is to ‘relieve the [micro-processor]
software of the timekeeping workload’. This motivation also
drives today’s proliferation of complex on-chip device con-
trollers, themselves running firmware.

The RTC is representative of hardware devices that firmware
interacts with through special-purpose registers, a common
low-level software/hardware interface idiom [14]. The speed of
the RTC device means we can represent interaction with it by
procedure calls in the firmware; in essence we can assume, in
this benchmark, that both a register write and the hardware’s
response to it are instantaneous.

In this first benchmark, we focus on only part of the RTC
interface: reading and writing the registers that hold the time,
date, and alarm data. As will be seen, this is not simply a
matter of the firmware executing a ‘read’ or ‘write’ instruction,
but requires some ancillary manipulation of bits in control



status registers. Our validation task is to check for violation
of the protocols that govern this mechanism.

A. Interface Properties

The MC146818 presents its interface as 64 bytes of RAM,
addressed 0x00 though 0x3F. The time, date, and alarm data
are held in the first 10 bytes, each of which is essentially a
‘register’ at a specific address [13]. For example, the byte at
0x09 is the register that holds the year. To access a register,
software must execute a sequence of two I/O instructions
that access two different memory-mapped hardware registers
at addresses 0x70 and 0x71. The first determines the data
register to be accessed, and the second holds the value of this
register. It is an error to read or write a data register value at
address 0x71 without first setting the register to be accessed:

? Each execution of outb 0x71 or inb 0x71 must be
preceded by a unique outb 0x70.

This property alone is insufficient to guarantee safe writes of
data. The firmware controlling this device must also correctly
manipulate two control bits in ‘Register B’, one of four other
RAM locations whose individual bits monitor and control a
diverse assortment of device operations. The two relevant bits
are the SET bit and the data mode (DM) bit.

? The SET bit of Register B must be enabled (have value 1)
when any of the time, date, or alarm registers are written.

Once SET is enabled, data can be safely written as either
binary or binary-coded decimal. The choice must be made
explicit by writing 1 or 0 to the DM bit. In addition, the
selected ‘data mode cannot be changed without re-initializing
the 10 data bytes’ [13]. A permissive interpretation of this
sentence in the data sheet yields the following two properties:

? The DM bit can be changed only when the SET bit is
already enabled, or as the SET bit is also being enabled
or disabled when Register B is written.

? If the DM bit has changed since the SET bit has been
or is being enabled, then every time, calendar and alarm
register must have been written at the moment when the
SET bit is disabled.

The final property we discuss here says there are no
concurrent hardware writes to any of the time, date, or alarm
registers while the SET bit is 1. Note that no such guarantee
exists once the SET bit is disabled.

? While the SET bit is 1, when data d is written to a time,
calendar or alarm register R, a subsequent read of R
returns d.

We have shown only informal statements of our properties
to make the exposition accessible. In our actual method, we
encode properties as runtime assertions in the RTC hardware
model. Several other properties, omitted here for brevity,
are included in our experiments. This yields an executable
specification, through which we expose a real bug (Section VII).

B. Technical Details of the RTC Benchmark

To illustrate the architecture shared by all our benchmarks
and explain how hardware models are extracted from QEMU,
we give here some technical details for the RTC benchmark.

The full RTC model in QEMU depends on a large amount
of code irrelevant to our properties, and is too complex
to analyse formally. We therefore manually removed these
dependencies, including the dependency on the i440fx PCI
host. We also manually sliced away some code not representing
actual hardware, such as QEMU timers. These simplifications,
which we would expect in future to mechanize, preserve the
core of the RTC model.

There are two loops in the RTC hardware model that are
hard for CMBC to handle, but the functions that contain them
are for RTC timer functionality that has nothing to do with our
interface properties. We could therefore safely remove these
function calls without affecting the validation results.

For the low-level software side, we used the dependency
tracking capabilities of CBMC to pull together sufficient Linux
driver code to exercise the hardware model. This was done in
a semi-automated way that produces a coalesced C program
containing the model together with a superset of the exact
Linux code needed to drive the hardware features covered. The
coalesced program has around 49k lines of C code.

Symbolic execution of the coalesced program has to proceed
from a main function that actually invokes the driver. For
this, we develop scenarios that invoke the driver in various
ways. These were specially written for the RTC benchmark,
but a merit of our approach in general is that we might
instead leverage test cases created by developers, as long as
these initialize the hardware model. Our code initializes the
RTC with a non-deterministic value representing the time.
After initialization, we call the Linux device driver function
get_rtc_time() to read the time from the RTC. Finally,
we call set_rtc_time() to write back the time just read.
These calls induce state transitions in the hardware model.

A similar approach can be taken to produce benchmarks
for stand-alone QEMU hardware models, in isolation from
their driver, simply by wrapping each QEMU model with
some C code that enacts driver I/O scenarios. In the RTC
benchmark, each such scenario includes an initialization step
that sets the time in the RTC to a non-deterministic value,
represented in binary-coded decimal and constrained to be in
the range given in the MC146818 datasheet [13]. For a sanity
check of the properties, we created a buggy test case for the
stand-alone hardware model that calls inb(0x71) before
outb(0x70,∗), where ∗ is a non-deterministic value.

V. CO-VALIDATION OF AN I2C TEMPERATURE SENSOR

The second benchmark features a temperature sensor [15],
called ‘TMP105’, that is controlled by software through the
I2C bus [16]. This allows us to experiment with properties that
go beyond fixed-sized register updates. Our hardware model
for the I2C benchmark incorporates the essential interaction
constraints for these updates, so the benchmark does not need
to include a model of the I2C bus controller.



The temperature sensor has four registers: an 8-bit configura-
tion register, a 16-bit temperature register, and 16-bit lower and
upper temperature threshold registers for hysteresis. Reading
and, when applicable, writing of these registers is done over
the I2C serial bus. The registers have different sizes, so the
number of transmitted bytes varies.

Individual bits in registers must conform to rules similar
to those of the RTC. We show a few illustrative properties,
again stated informally here but in practice encoded as run-time
assertions in the hardware model.

The sensor can be shut down by writing a 1 to the least
significant bit of the configuration register. This turns off
continuous temperature measurements to save power. While
the sensor is in this ‘shutdown mode’ individual readings can
still be triggered by writing a 1 to the most significant bit of
the configuration register. This leads to the following property:

? Each read of the temperature register is preceded by a
write of a 1 to the most significant bit of the configuration
register if and only if the temperature sensor is in shutdown
mode.

Writing 1 to the most significant bit of the configuration
register merely triggers an individual temperature measurement;
the bit itself is immutable and not affected by the write.

? When the most significant bit of the configuration register
is read, it is zero regardless of any previous writes to it.

The next property concerns the configuration register.

? After writing byte c to the configuration register, the next
read gives a byte c′ where c′[i] = c[i] for 0 ≤ i < 7.

That is, all bits of the old and new configuration value are
pairwise equal, except perhaps the most significant bit.

Altogether, the bus and register properties amount to around
two dozen runtime assertions. It was straightforward to encode
these in the TMP105 hardware model extracted from QEMU:
the TMP105 internal state is stored in a C structure that
has fields to that implement its registers and store control
information related to communication through the I2C protocol.

VI. CO-VALIDATION OF AN ETHERNET MAC

Our final benchmark concerns interrupt-driven software
for an Ethernet MAC with a direct-memory access (DMA)
ring [17]. We concentrate on the functionality of receiving
Ethernet frames. Each incoming frame is called an RX frame.
The Ethernet MAC can be configured to generate a hardware
interrupt for each RX frame. We call this ‘interrupt mode’.
When interrupts are disabled but RX frames should still be
processed, the software polls for incoming data.

Hardware/software concurrency is therefore important to
model in the Ethernet MAC benchmark, because multiple
frames can arrive simultaneously and the software reacts to
interrupts generated by the hardware. These are handled using
the modelling approach discussed in Section II, and produce a
significant degree of concurrency in the coalesced model.

A noteworthy complication is that the software switches
between interrupts and polling to improve performance [18].

Similar techniques are used for block devices with high data
throughput, such as solid state drives. Switching between
polling and interrupt mode is known to be error-prone, so
this benchmark is a good exemplar for concurrency bugs due
to interrupts in a producer-consumer scenario. This section
explains one such bug and how the developers fixed it.

The OpenCores Ethernet MAC features 128 DMA buffer
descriptors [17], each of which determines the memory that
holds an Ethernet frame. Our benchmark code elides the details
of DMA address translation; instead, we focus on how the
software and hardware synchronize their updates to the DMA
buffer. In the case of RX frames, the software sets bit 15 in
a buffer descriptor to 1 when the associated DMA buffer can
be overwritten by the hardware. Such a buffer descriptor is
said to be ‘empty’. The hardware clears bit 15 to signal to
the software that the DMA buffer associated with a buffer
descriptor contains a new RX frame. Despite its simplicity,
this communication protocol is error-prone when interrupts are
being re-enabled, as illustrated next.

Suppose there is at least one empty RX buffer descriptor.
The software switches from polling to interrupt mode as soon
as it detects no new RX frames. To do this, it reads bit 15 of
the next available RX buffer descriptor. Suppose the current
buffer descriptor is empty and so this bit is still 1. In this case,
the version of the software with the bug continues by clearing
all RX interrupt sources before re-enabling all RX interrupts.

Unfortunately, this algorithm can result in RX frames being
delayed or even dropped. Figure 1 shows an example, in which
an RX frame arrives just after the check for new RX frames
but before the RX interrupt sources are cleared. This RX frame
will not trigger an interrupt until another one arrives. In fact,
if there are no other ones, the delayed RX frame is not even
promoted to the socket layer. This happens when the driver is
stopped, for example due to standby.

The following properties will expose this concurrency bug:

? When the software enables the MAC receiver, there exists
at least one empty RX buffer descriptor.

? The software must eventually process every RX frame. At
the very latest, when it is stopped, all RX frames must
have been processed.

The crux of these properties is that the driver must detect any
potentially lost frames. Figure 2 shows how the developer for
the ‘ethoc’ driver in the Linux 2.6.38 kernel release fixed the
bug, ensuring these properties are then satisfied.

These and several other properties were analysed using
CBMC and the partial order encoding for concurrency. The
scenarios we wrote to exercise these properties asynchronously
invoke the hardware model to trigger new RX frames or force
the MAC to become busy.

A few simplifications were made to enable analysis within
reasonable time and memory bounds. Because the solver has
no array logic built in, we had to reduce the maximum number
of DMA buffers to eight and shrink their sizes to at most two
bytes. For the same reason, the number of buffer descriptors
in the hardware model was reduced to eight. Finally, we



Driver Ethernet MAC Wire

New RX frame?

No

New RX frame!
Clear RX interrupt source!

Enable RX interrupt!

Fig. 1. Incorrect handling of an empty RX buffer descriptor causes potential
package loss.

Driver Ethernet MAC Wire

New RX frame?

No

New RX frame!
Clear RX interrupt source!

New RX frame?

Yes

Fig. 2. A second buffer descriptor check, after the RX interrupt sources have
been cleared, detects intermittent RX frame arrivals.

suppressed interrupts on changes of the interrupt mask because
this functionality appears to be QEMU-specific and not part
of the Ethernet MAC itself.

VII. EXPERIMENTAL RESULTS

Table I summarizes our experimental results. We performed
all experiments on a 64-bit machine running Linux 3.5.0 with
eight Intel Xeon 3.07 GHz cores and 48 GB of main memory.

For the RTC and I2C benchmarks, we employed sequential,
multi-path symbolic execution. Loops were unrolled a bounded
number of times. This type of symbolic execution generates a
Boolean formula that encodes the expected interface properties
and all calls to read and write procedures in the hardware
model invoked from the low-level software. The formula is
then checked with MiniSat 2.2. If the formula is satisfiable,
a violation of some property has been found. Otherwise, no
decisive conclusion about the validity of the property can be
reached.

As part of our RTC experiments, we found a real bug in
the QEMU hardware model2 that causes it to violate property
RTC.1 in Table I. The violation is exposed through a test that
first writes a time or calendar register and then writes to one
of the control registers of the device. For the combined RTC
benchmark with the hardware model and driver code, CBMC
reports the violation of property RTC.1 in 225.3 s, of which

2http://git.qemu.org/?p=qemu.git;a=commit;h=02c6ccc6dde90dcbf5975b1c

LOC #Unroll #Threads #Constraints #Clauses Sec.

RTC.1 47609 21 1 61314 25, 797, 536 122.5
RTC.1 (unfixed) 47609 21 1 61065 25, 771, 226 225.3
RTC.2 47609 21 1 61314 26, 430, 338 71.7
RTC.3 47609 21 1 60648 25, 769, 903 68.5
RTC.4 47609 21 1 60766 26, 422, 852 69.7
RTC.5 47609 21 1 60435 26, 425, 148 69.5
RTC.6 47609 21 1 60295 8, 208, 764 54.1
RTC.7 47609 21 1 60394 8, 759, 757 55.2
RTC.8 47609 21 1 60294 24, 491, 011 69.1
RTC.9 47609 21 1 60294 24, 468, 704 67.7
RTC.10 47609 21 1 60294 24, 781, 142 68.6
RTC.11 47609 21 1 60668 25, 231, 840 112.8

I2C.1 46609 16 1 159481 20, 020, 885 803.9
I2C.2 46609 16 1 158391 19, 997, 082 793.1
I2C.3 46609 16 1 158556 20, 006, 113 795.8
I2C.4 46609 16 1 158556 20, 023, 452 787.1
I2C.5 46609 16 1 158556 20, 024, 494 786.2
I2C.6 46609 16 1 158436 19, 998, 982 783.4
I2C.7 46609 16 1 158436 20, 007, 984 786.1
I2C.8 46609 16 1 158436 20, 001, 601 780.5
I2C.9 46609 16 1 163866 20, 118, 277 854.4
I2C.10 46609 16 1 164547 20, 074, 751 841.0
I2C.11 46609 16 1 162381 20, 388, 706 808.6
I2C.12 46609 16 1 158556 20, 160, 928 789.4
I2C.13 46609 16 1 158811 20, 009, 910 804.3
I2C.14 46609 16 1 160596 20, 294, 436 798.7
I2C.15 46609 16 1 160596 20, 295, 406 800.8
I2C.16 46609 16 1 158391 19, 997, 740 788.9
I2C.17 46609 16 1 167481 20, 064, 678 912.9

ETHOC.1+2 940 2 2 1036+57 336, 557 1.7
ETHOC.1+3 940 2 13 4633+1063 8, 109, 581 46.1
ETHOC.1+4 940 2 17 6073+1300 17, 192, 339 145.7
ETHOC.5 2097 1 19 16707+20991 250, 371, 908 1680.7
ETHOC.6 2097 1 19 16683+21034 252, 154, 414 335.5
ETHOC.7 2097 1 19 16635+20750 239, 259, 859 219.5
ETHOC.5-seq 2097 1 1 17710 73, 388, 552 426.8
ETHOC.6-seq 2097 1 1 17686 73, 324, 230 426.1
ETHOC.7-seq 2097 1 1 17648 71, 998, 722 435.3

TABLE I
EXPERIMENTAL RESULTS

177.4 s were spent in MiniSat. The violation of property RTC.1
in the standalone RTC hardware model is found in 50 s.

The temperature sensor benchmark also helped to expose a
real bug in the QEMU hardware model.3 The bug causes data
on the I2C bus to be lost because of an off-by-one error. In
the standalone I2C hardware model, CBMC found a violation
of property I2C.10 in 3.6 s and property I2C.18 in 3.4 s, of
which 1.4 s and 1.3 s, respectively, were spent in MiniSat.

We also tried to use CBMC to expose property violations
in the temperature sensor by analysing the combined driver
code and hardware model. The scenarios developed for this
analysis take a brute-force approach, in which we explore all
possible sequences, of a fixed length, of non-deterministically
chosen driver API function calls. The sequences are encoded
symbolically, in a single run of the analysis. The idea was to
simulate all possible fixed-length sequences of invocations of
the driver API, such as might arise in a typical interrupt-driven
setting. Our experiments with a bound of 15 driver API calls
in the test harness failed to expose a property violation. CBMC
timed out after 1800 s when the number of API function calls
was set to 20.

For the ETHOC device benchmark, our tool processes the
coalesced code and symbolically encodes concurrent memory
accesses as partial orderings, as discussed in Section II.
The resulting formula, sent to an SMT/SAT solver, captures
all possible execution schedules for the threads that enact
invocations of hardware functionality. Interrupts generated

3http://git.qemu.org/?p=qemu.git;a=commit;h=cb5ef3fa1871522a08866270

http://git.qemu.org/?p=qemu.git;a=commit;h=02c6ccc6dde90dcbf5975b1c
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L440
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L440
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L613
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L535
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L592
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L620
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L763
https://github.com/ahorn/benchmarks/blob/master/qemu-hw/rtc/mc146818rtc.c#L813
https://github.com/ahorn/benchmarks/blob/master/qemu-hw/rtc/mc146818rtc.c#L444
https://github.com/ahorn/benchmarks/blob/master/qemu-hw/rtc/mc146818rtc.c#L459
https://github.com/ahorn/benchmarks/blob/master/qemu-hw/rtc/mc146818rtc.c#L481
https://github.com/ahorn/benchmarks/blob/master/qemu-hw/rtc/mc146818rtc.c#L495
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L40
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L45
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L214
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L229
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L253
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L279
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L286
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L294
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/tmp105_x86/modlib/hwmon/lm75.c#L222
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L177
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L54
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L69
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L73
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L220
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L242
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L171
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L103
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth.c#L439
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth-test.c#L276
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth.c#L439
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth-test.c#L279
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth.c#L439
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth-test.c#L282
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L1080
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L1093
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L453
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L1080
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L1093
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L453
http://git.qemu.org/?p=qemu.git;a=commit;h=cb5ef3fa1871522a08866270


by the hardware model also introduce concurrency that is
included in the encoding, because the software’s interrupt
handler executes asynchronously from the hardware’s point of
view.

This modelling approach generates a significant degree of
concurrency. Our scenarios result in up to 18 threads being
spawned, yet we can validate most of the concurrent scenarios,
explained in further detail below, in under 6 minutes (one
scenario requires up to 29 minutes). The partial-order based
encoding of [8] thus appears to be well suited for efficiently
checking our models of combined hardware/software systems.

First, we validated the QEMU hardware model in isolation.
In under 1 minute, despite 12 threads being spawned, we
showed that our hardware model correctly simulates interrupts
to be raised asynchronously. As our symbolic execution is
limited to bug-finding, we had added a runtime assertion to
state the converse; the counterexample we found constitutes
evidence that our interrupt properties are not vacuously true.

With a more than tenfold increase in the number of clauses
when analysing the combined hardware/software system, the
burden on the underlying decision procedure rises significantly.
We therefore experimented with both a purely sequential
composition of the systems, corresponding to an assumption
of instantaneous hardware operation, and a concurrent version,
capturing all behaviour. In just over 7 minutes, our experiments
confirm that the sequential version does not exhibit the erro-
neous behaviour described in Section VI. This failure to detect
the bug illustrates how developing software without a realistic
hardware model poses risks. The complete, concurrent system
spawns 18 threads to simulate all interactions of the software
with asynchronous hardware and interrupts. In 29 minutes we
were now able to detect a property violation that exposes the
presence of the bug in the combined hardware/software system.

Other Experiments using KLEE. We have also analysed all
three benchmarks using KLEE [5]. On the RTC benchmark
with the combined hardware model and driver software, KLEE
times out after 1800 s. It also times out on the standalone,
corrected RTC hardware model, but it can find the bug in
the original model in 1 s. The temperature sensor driver code
cannot be compiled into LLVM IR, but KLEE can check the
corrected hardware model in 1 s. When we analyse the original
temperature sensor hardware model, KLEE exposes the bug
in 1 s. In addition, we confirmed that KLEE cannot detect
the concurrency bug in the Ethernet MAC driver; with both
the corrected and buggy version of the driver, it explores 25
paths in less than 30 s and passes all seven ETHOC properties
(whether violated or not).

VIII. DISCUSSION AND FUTURE WORK

In this section, we indicate some of the limits of our work
and discuss some directions for further research.

The hardware models in all our benchmarks serve as an
executable specification of the hardware/software interface.
This is helpful to engineers, who test their intuition through
simulation. An executable hardware model also gives flexibility

in expressing properties. But, under symbolic analysis, this
can also give rise to a diverse range of logical formulas for
checking—making it hard to find an appropriate decision
procedure. The problem might be mitigated by adopting an
embedded contract language [19].

We found executable hardware models to be essential in
discovering key properties of the hardware and software, and
to exploring the interfaces between them. Our models are
event-driven and phrased at a high level—executable software
abstractions that strike a balance between modelling accuracy
and tractability. An obvious goal is to verify them formally
against a lower-level reference model. Our Ethernet MAC
benchmark could be used as a research case study for this, in
which executions of threads in the stand-alone QEMU model
are compared with the OpenCores RTL Verilog model [17].

Our Ethernet MAC benchmark exemplifies the subtleties of
interrupts by explaining a concurrency bug in a driver. For
the automatic analysis, we relied on symbolic encoding of
interactions between concurrently running model elements. But
we have not yet considered nested interrupts, which would
require extensions to both our models and the concurrency
encoding. In future, we would also like to address interrupt
priorities, such as FIQ interrupts on ARM. Our experiments
also expose opportunities for automatic slicing algorithms that
are aware of concurrency semantics.

Multi-threading in the Ethernet MAC benchmark frames
some of our current research on improvements to the partial
order concurrency encoding. Our experience suggests there is
potential to delegate some of the generation of constraints that
constitute the partial order on state accesses to the SMT solver
itself, where it could be done incrementally.

IX. RELATED WORK

Most research on verification of low-level software has
focused on operating systems and drivers, with some prominent
successes [20], [5], [21], [6], [7], [22]. There has also been
some work on formal analysis of assembly code [23] and even
binary drivers have been analysed [24]. There is, of course, a
large body of literature on design and verification of embedded
systems at a higher level [25]. In our work, we address
formal co-validation of complex interactions between low-level
software and on-chip hardware, using a novel technique that
combines symbolic execution and partial-order encodings [8],
bypassing the scalability limitations of partial-order reductions
in earlier work (e.g. [26]). Our work represents the first
demonstration of this approach to this important problem in
contemporary systems design.

There has been some research, with aims similar to ours,
using bounded model checking [27] and interval property
checking [28]. The emphasis of both these efforts is on
machine instructions and cycle-accurate hardware models,
while ours aims at early validation before a cycle-accurate
model is available. This is reflected in the fact that the work
of [28] targets Verilog code, while ours revolves around higher-
level models in C. Earlier work also analysed a more non-
deterministic C model through abstract interpretation [29],



but with less sophisticated support for concurrency. More
recently, an automata-theoretic co-verification technique has
been applied to PCI drivers [30].

Other related work has used symbolic simulation and SMT
to check equivalence between a software reference model
and a system containing (restricted) C code that invokes data
computations on reconfigurable streaming hardware modelled
in Java [31]. Hardware/software concurrency is not represented;
interaction is modelled by synchronous calls from the software
into an API that loads and runs the streaming hardware
designs. The aim is to establish correctness of the dataflow
computations in hardware/software co-designs. By contrast,
our work and modelling approach seek to uncover bugs in
hardware/software systems that interact through concurrent,
imperative modification of shared state.

X. CONCLUDING REMARKS

We have described a new approach to co-validation of hard-
ware and low-level software, based on formal co-verification
of an executable hardware model together with the software
that interacts with it. We articulate key correctness properties
that we expect interactions at the hardware/software interface
to exhibit, and check these by symbolic execution. As our
experiments show, the approach can be adapted to a range of
interaction mechanisms—and it can expose bugs.

Systematic experimental research into formal co-verification
of hardware and low-level software is hindered by the lack
of realistic benchmarks accessible to academic researchers.
Our work suggests a way to close this gap. We exploit the
availability of well-developed open source virtual machine
emulator code, from which one can extract a wide range of
typical hardware models. These models can be made to work
with Linux drivers, which serve as a proxy for typical firmware
code. A practical benefit is that this facilitates collaboration with
the systems community, whose insights helped us understand
the problem space and expose real bugs. We suggest that a
community effort to develop a benchmark suite, following our
approach, would produce an invaluable resource to drive further
academic research into firmware validation.

XI. ACKNOWLEDGEMENTS

This work is funded by a donation from Intel Corporation for
research on Effective Validation of Firmware. We are grateful
for illuminating discussions with our project partners: Alan
Hu (UBC), Luke Ong (Oxford), Moshe Vardi (Rice), and
Sharad Malik (Princeton). We thank Anthony Liguori (IBM),
Paolo Bonzini (Redhat), and Andreas Färber (SUSE) for their
comments on the QEMU mailing list.

REFERENCES

[1] J. Teich, “Hardware/software codesign: The past, the present, and
predicting the future,” Proceedings of the IEEE, vol. 100, pp. 1411–
1430, May 2012.

[2] A. Liguori, “QEMU emulator user documentation,” http://wiki.qemu.org/
download/qemu-doc.html, Jan. 2010.

[3] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers.
O’Reilly, 2005.

[4] G. Parthasarathy, M. K. Iyer, K.-T. Cheng, and L.-C. Wang, “An efficient
finite-domain constraint solver for circuits,” in Design Automation
Conference (DAC). ACM, 2004, pp. 212–217.

[5] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
OSDI. USENIX Assoc., 2008, pp. 209–224.

[6] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS. Springer, 2004, vol. 2988, pp. 168–176.

[7] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” SIGPLAN Notices, vol. 40, pp. 213–223, June 2005.

[8] J. Alglave, D. Kroening, and M. Tautschnig, “Partial orders for efficient
Bounded Model Checking of concurrent software,” in Computer-Aided
Verification (CAV), ser. LNCS, vol. 8044. Springer, 2013, pp. 141–157.

[9] P. Bonzini, “QEMU developer mailing list – qdev for programmers,” http:
//lists.nongnu.org/archive/html/qemu-devel/2011-07/msg00842.html, Jul.
2011.

[10] A. Liguori, “QEMU wiki – QOM,” http://wiki.qemu.org/Features/QOM,
Jul. 2011.

[11] A. Kivity, “QEMU developer documentation on memory API,” http:
//git.qemu.org/?p=qemu.git;a=blob;f=docs/memory.txt, Jul. 2011.

[12] F. Bellard, “QEMU, a fast and portable dynamic translator,” in ATEC.
USENIX Assoc., 2005, pp. 41–46.

[13] Freescale Semiconductor, MC146818 – Real-Time Clock Plus RAM
(RTC), http://www.freescale.com/files/microcontrollers/doc/data sheet/
MC146818.pdf, 1988.

[14] G. Stringham, Hardware/Firmware Interface Design: Best Practices for
Improving Embedded Systems Development. Elsevier, 2009.

[15] Texas Instruments, Digital Temperature Sensor with 2-Wire Interface,
http://www.nxp.com/documents/user manual/UM10204.pdf, Sep. 2011.

[16] NXP Semiconductors, UM10204 – I2C – bus specification and user
manual, http://www.nxp.com/documents/user manual/UM10204.pdf, Oct.
2012.

[17] I. Mohor, “Ethernet MAC 10/100 mbps,” http://opencores.org/project,
ethmac, Jul. 2011.

[18] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in
Proceedings of the 5th annual Linux Showcase & Conference, vol. 5.
USENIX Assoc., 2001, pp. 18–26.

[19] M. Fähndrich, M. Barnett, and F. Logozzo, “Embedded contract
languages,” in SAC. ACM, 2010, pp. 2103–2110.

[20] T. Ball, V. Levin, and S. K. Rajamani, “A decade of software model
checking with SLAM,” CACM, vol. 54, no. 7, pp. 68–76, Jul. 2011.

[21] C. Cadar and D. R. Engler, “Execution generated test cases: how to
make systems code crash itself,” in SPIN. Springer, 2005, pp. 2–23.

[22] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, “seL4: formal verification of an operating-system
kernel,” CACM, vol. 53, no. 6, pp. 107–115, Jun. 2010.

[23] D. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and S. Rajan, “Em-
bedded software verification using symbolic execution and uninterpreted
functions,” Int. J. Parallel Program., vol. 34, no. 1, pp. 61–91, Feb. 2006.

[24] V. Kuznetsov, V. Chipounov, and G. Candea, “Testing closed-source
binary device drivers with DDT,” in USENIXATC. USENIX Assoc.,
2010, pp. 12–12.

[25] M. Loghi, T. Margaria, G. Pravadelli, and B. Steffen, “Dynamic and
formal verification of embedded systems: a comparative survey,” Int. J.
Parallel Program., vol. 33, no. 6, pp. 585–611, Dec. 2005.

[26] R. P. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün, “Combining
software and hardware verification techniques,” FMSD, vol. 21, no. 3,
pp. 251–280, Nov. 2002.

[27] D. Große, U. Kühne, and R. Drechsler, “HW/SW co-verification of
embedded systems using bounded model checking,” in GLSVLSI. ACM,
2006, pp. 43–48.

[28] M. D. Nguyen, M. Wedler, D. Stoffel, and W. Kunz, “Formal hard-
ware/software co-verification by interval property checking with ab-
straction,” in Design Automation Conference (DAC). ACM, 2011, pp.
510–515.

[29] D. Monniaux, “Verification of device drivers and intelligent controllers:
a case study,” in EMSOFT. ACM, 2007, pp. 30–36.

[30] J. Li, F. Xie, T. Ball, V. Levin, and C. McGarvey, “An automata-theoretic
approach to hardware/software co-verification,” in FASE. Springer, 2010,
pp. 248–262.

[31] T. Todman, P. Boehm, and W. Luk, “Verification of streaming hardware
and software codesigns,” in 2012 International Conference on Field-
Programmable Technology. IEEE, 2012, pp. 147–150.

http://wiki.qemu.org/download/qemu-doc.html
http://wiki.qemu.org/download/qemu-doc.html
http://lists.nongnu.org/archive/html/qemu-devel/2011-07/msg00842.html
http://lists.nongnu.org/archive/html/qemu-devel/2011-07/msg00842.html
http://wiki.qemu.org/Features/QOM
http://git.qemu.org/?p=qemu.git;a=blob;f=docs/memory.txt
http://git.qemu.org/?p=qemu.git;a=blob;f=docs/memory.txt
http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC146818.pdf
http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC146818.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://opencores.org/project,ethmac
http://opencores.org/project,ethmac

	Introduction
	Validation Aims and Technical Approach
	Modelling Approach and Concurrency
	Validation Technology and Concurrency Encoding

	Hardware Models from QEMU Devices
	Co-validation of a Real-Time Clock
	Interface Properties
	Technical Details of the RTC Benchmark

	Co-validation of an I2C Temperature Sensor
	Co-validation of an Ethernet MAC
	Experimental Results
	Discussion and Future Work
	Related Work
	Concluding Remarks
	Acknowledgements
	References

