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Abstract—We present a new active model-learning approach to
generating abstractions of a system implementation, as finite state
automata (FSAs), from execution traces. Given an implementation
and a set of observable system variables, the generated automata
admit all system behaviours over the given variables and provide
useful insight in the form of invariants that hold on the implemen-
tation. To achieve this, the proposed approach uses a pluggable
model learning component that can generate an FSA from a given
set of traces. Conditions that encode a completeness hypothesis
are then extracted from the FSA under construction and used to
evaluate its degree of completeness by checking their truth value
against the system using software model checking. This generates
new traces that express any missing behaviours. The new trace
data is used to iteratively refine the abstraction, until all system
behaviours are admitted by the learned abstraction. To evaluate
the approach, we reverse-engineer a set of publicly available
Simulink Stateflow models from their C implementations.

Index Terms—active model learning, execution traces, system
abstraction, software model checking

I. INTRODUCTION

Automaton inference from trace data is an established
method for automated generation of system abstractions. Mod-
ern passive learning algorithms also infer guards and operations
on system variables from the trace data, yielding symbolic mod-
els [1]–[4]. But the behaviours admitted by these models are, of
course, limited to only those manifest in the traces. On the other
hand, active learning algorithms can, in principle, generate
exact system models [5], [6]. But when used in practice to learn
symbolic abstractions, these algorithms suffer from high query
complexity and can only learn models with transitions labelled
by simple predicates, such as equality/inequality relations [7]–
[9]. A survey of the related work is provided in [10].

We present a new active learning approach that combines
a black-box analysis, in the form of model learning from
traces, with a white-box analysis, in the form of software
model checking [11]. The model learning component can be
any algorithm that can generate an automaton that accepts
a given set of system execution traces. Model checking is
used to evaluate the degree of completeness of the learned
automaton and identify any missing behaviours. This evaluation
procedure operates at the level of the abstraction and not
individual system traces, unlike query-based active learning
algorithms, and therefore can be easily implemented using
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existing model checkers. Exact details of the procedure are
discussed in Section III.

The procedure to evaluate degree of completeness of the
learned model yields a set of new traces that exemplify system
behaviours identified to be missing from the model. New traces
are used to augment the input trace set for model learning and
iteratively generate an extended abstraction that covers missing
behaviours. Given a model learning algorithm that can infer
symbolic abstractions from trace data, such as [4], the approach
can learn models that are more expressive than the abstractions
learned using existing active learning algorithms.

II. BACKGROUND

The system for which we wish to generate an abstrac-
tion is represented as a tuple S = (X,X ′, R, Init). X =
{x1, . . . , xm} is a set of observable system variables over
some domain D. We simplify the presentation by assuming all
variables have the same domain. The set X ′ = {x′

1, . . . , x
′
m}

contains corresponding primed variables, which represent an
update to the unprimed variable after a discrete time step.
The transition relation R(X,X ′) describes the relationship
between xi and x′

i for 1 ≤ i ≤ m and is represented using a
characteristic function, i.e., a Boolean-valued expression over
(X ∪X ′). The set of initial system states is represented using
its characteristic function Init(X).

A valuation v : X → D maps the variables in X to
values in D. An observation at time step t is a valuation of
the variables at that time, and is denoted by vt. A trace is a
sequence of observations over time; we write a trace σ with
n observations as a sequence of valuations σ = v1, . . . , vn.
We define an execution trace or positive trace for S as a trace
σ = v1, . . . , vn that corresponds to a system execution path,
i.e., (vt, vt+1) |= R for 1 ≤ t < n and there exists a valuation
v′ |= Init such that (v′, v1) |= R. A negative trace is a trace
that does not correspond to any system execution path. We
represent the set of execution traces by TracesX(S).

The active learning algorithm learns a system model as a
finite state automaton (FSA). Our abstractions are represented
symbolically and feature predicates on the transition edges,
such as the abstraction in Fig. 1, and therefore extend FSAs
to operate over infinite alphabets. We represent the learned
abstraction as a non-deterministic finite automaton (NFA) M
= (Q,Q0,Σ, F, δ) over an infinite alphabet Σ, where Q is a
finite set of states, Q0 ⊆ Q are the initial states, F ⊆ Q is the
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Fig. 1: Generated abstraction modeling operation mode
switches for a Home Climate-Control Cooler system.

set of accepting states, and δ : Q×Σ → P(Q) is the transition
function. The alphabet Σ corresponds to the set of valuations
for variables in X , i.e., Σ = (X −→ D).

The NFA admits a trace σ = v1, . . . , vn if there exists a
sequence of automaton states q1, . . . , qn+1 such that q1 ∈ Q0

and qi+1 ∈ δ(qi, vi) for 1 ≤ i ≤ n. Any finite prefix of a
system execution trace σ is also an execution trace. Thus, if the
generated NFA admits σ, it must also admit all finite prefixes
of σ. In other words, the language of the automaton, L(M),
must be prefix-closed. All states of our automaton are accepting,
i.e., the NFA rejects traces by running into a ‘dead end’.

III. ACTIVE LEARNING OF ABSTRACT SYSTEM MODELS

The approach uses a pluggable model learning component to
generate models from traces. Our requirement for this compo-
nent is simple: given a set of execution traces T , the component
returns an NFA M that accepts (at least) all traces in T .

To evaluate the degree of completeness of the set of traces,
we use the structure of the NFA M to extract conditions that
can be checked against the system implementation. The con-
ditions collectively encode the following completeness hypoth-
esis: for any transition available in the system defined by the
transition relation R, there is a corresponding transition in M.
The hypothesis is formulated based on defining a simulation
relation between the system S and abstraction M.

Definition 1: If Q′ represents the set of system states for
S and q′vt ∈ Q′ represent the system state characterised by
valuation vt of variables in X , then we define a binary relation
R′ ⊆ Q′ × Q to be a simulation if (q′vt

, qi) ∈ R′ implies
that ∀(vt, vt+1) |= R i.e, q′vt → q′vt+1

, ∃qi+1 ∈ Q such that
qi+1 ∈ δ(qi, vt+1) and (q′vt+1

, qi+1) ∈ R′.

A. Completeness Conditions for a Candidate Abstraction

Given a candidate abstraction M for a system S, we extract
the following conditions encoding the completeness hypothesis:

vt |= Init ∧ (vt, vt+1) |= R =⇒ vt+1 |=
∨

po∈P(0,out)

po (1)

where P(0,out) is the set of predicates for all outgoing transi-
tions from an automaton state q0 ∈ Q0, and for all pi ∈ P(j,in)

vt |= pi ∧ (vt, vt+1) |= R =⇒ vt+1 |=
∨

po∈P(j,out)

po (2)

where P(j,in) is the set of predicates on the incoming transitions
to state qj ∈ Q and P(j,out) is the set of predicates on outgoing
transitions from qj . Condition (2) is extracted for all states in Q.

We compute the fraction of conditions that hold on the
system, denoted by α, as a quantitative measure of the degree of
completeness of the learned model. If all extracted conditions
hold, i.e., α = 1, then the generated model admits all system
behaviours. A violation indicates missing behaviour in M.
A proof is provided in [10].

B. Verifying Extracted Conditions Against the System

To enable the application of existing software model check-
ers, we construct source code for functions that encode condi-
tions (1) and (2) of the form vt |= r∧ (vt, vt+1) |= R =⇒ vt+1

|= s as assume/assert pairs, as illustrated in Fig. 2a.
To check if the system satisfies a condition, we run model

checking on the constructed code. When all assume/assert pairs
are proved valid, this implies that the extracted conditions are
always satisfied and therefore can be used as system invariants.

In case of a failure, the checker returns a sequence of
valuations σ′′ = vt, vt+1 as the counterexample, such that
vt |= r ∧ (vt, vt+1) |= R ∧ vt+1 ̸|= s. This can be used to
construct a set of new traces as follows. For each trace σ ∈ T
we find the smallest prefix σ′ = v1, v2, . . . , vj such that vj |= r.
We then construct a new trace σCE = v1, v2, . . . , vj−1, vt, vt+1

for each prefix σ′. Note that since vt |= r, the new trace σCE

does not change the system behaviour represented by σ′ but
merely augments it to include the missing behaviour. The set
of new traces TCE thus generated is used as an additional input
to the model learning component, which in turn generates a new
abstraction that admits the missing behaviour.

For a violation of condition (1), the checker returns a coun-
terexample σ′′ = v0, v1 such that v0 |= Init and (v0, v1) |= R.
σ′′ is therefore a valid counterexample. However, the counterex-
ample for a violation of condition (2) could be spurious. Let
σ′′ = vt, vt+1 be the corresponding counterexample generated
by the model checker. Here, it is not guaranteed that the
system state characterised by vt is reachable from an initial
system state. Therefore, the counterexample may not actually
correspond to missing system behaviour.

C. Identifying Spurious Violations

To check if a counterexample σ′′ = vt, vt+1 is spurious, the
valuation vt is encoded as the following Boolean formula:

s′ :=
∧

xi∈X

(xi = vt(xi))

and the negation, ¬s′, is used to assert that s′ never holds at
any point in the execution of S starting from an initial state,
as shown in Fig. 2b. The system S is modelled as multiple

1: assume(r ∧R)
2: assert(s)

1: assume(Init)
2: while true do
3: assume(R)
4: assert(¬s′)
5: end while

(a) (b)

Fig. 2: Constructed source code for (a) Condition check (b)
Counterexample validity check.



TABLE I: Results of experimental evaluation of the active learning algorithm.

Benchmark |X| k
Our Algorithm Random Sampling

i d N α T (s) %Tm N α T (s)
AutomaticTransmissionUsingDurationOperator 4 125 6 1 5 1 3678.3 2.7 4 0.2 38.2
BangBangControl
UsingTemporalLogic

Heater 5 62 4 1 4 1 11845.5 0.1 3 0.6 64
On 4 1 5 1 11078 0.2 5 0.7 89.5

CountEvents 3 20 2 1 3 1 10.8 41.7 4 0.8 56.5
FrameSyncController 3 530 1 0 1 0 timeout 2 0.7 31
HomeClimateControlUsingTheTruthtableBlock 7 10 1 1 2 1 5 18.2 2 1 72.3
KarplusStrongAlgorithm
UsingStateflow

DelayLine 5 100 2 1 3 1 430.9 0.8 3 1 33.9
MovingAverage 3 1 3 1 1441.1 0.4 3 1 35.2

LadderLogicScheduler 3 10 9 1 4 1 157 63.9 3 0 52.9
MealyVendingMachine 2 10 1 1 4 1 8.9 49.1 4 1 67

ModelingACdPlayerradio
UsingEnumeratedDataType

CdPlayer
BehaviourModel

DiscPresent

13 205

4 0.1 4 0.2 timeout 12 0.2 953.7
Overall 4 0.8 6 0.6 timeout 7 0.6 282.8

CdPlayer
ModeManager

ModeManager 1 1 4 1 10.9 32.2 4 1 416.1
InOn 1 1 5 0.7 timeout 5 0.8 876.9
Overall 1 1 2 1 4.7 17.5 2 1 138

ModelingALaunchAbortSystem Abort InabortLogic
6 22

2 1 6 1 518.9 3.5 seg fault
Overall 1 1 4 1 7.6 39.1 4 1 70.6

ModeLogic 4 1 5 1 52.2 30.8 5 0.4 107.8
ModelingAnIntersectionOf
Two1wayStreetsUsingStateflow

InRed 11 60 1 0.8 8 0.4 timeout 8 0.4 105.6
Overall 1 1 6 0.6 timeout 6 0.6 81.8

ModelingARedundantSensorPairUsingAtomicSubchart 6 20 4 1 4 1 1007.6 1.8 5 0.5 72.4

ModelingASecuritySystem

InAlarm InOn

16 100

16 1 4 1 1599 18.5 seg fault
Overall 1 1 3 1 7.4 20.7 seg fault

InDoor 1 1 3 1 7.1 16.7 seg fault

InMotion InActive 9 1 4 1 1017.1 8.9 seg fault
Overall 1 1 3 1 7.5 15 seg fault

InWin 1 1 3 1 8.1 17.8 seg fault
MonitorTestPointsInStateflowChart 2 20 1 1 2 1 2.9 30.2 2 1 29.6
MooreTrafficLight 3 40 3 1 7 1 89.3 38.4 9 0.7 124
ReuseStatesByUsingAtomicSubcharts 2 10 1 1 3 1 5.8 27.3 3 1 52.8
SchedulingSimulinkAlgorithmsUsingStateflow 3 127 5 1 3 1 54.7 17.7 4 0.8 35.9
SequenceRecognitionUsingMealyAndMooreChart 2 30 1 1 5 1 9.8 54.4 5 1 88.2
ServerQueueingSystem 4 40 2 1 3 1 13.8 31 4 0.6 99.3
StatesWhenEnabling 2 30 1 1 4 1 4.3 35.8 4 1 32.1
StateTransitionMatrixViewForStateTransitionTable 3 25 4 1 5 1 53.9 52.8 7 0.8 89.1

Superstep With Super Step 1 10 1 1 1 1 139.7 0.4 1 1 21.8
Without Super Step 1 1 3 1 141.4 0.8 3 1 25.5

TemporalLogicScheduler 2 202 6 1 4 1 270.8 4.4 4 1 36
UsingSimulinkFunctionsToDesignSwitchingControllers 3 10 1 1 4 1 7.2 27.1 4 1 41.5

VarSize SizeBasedProcessing 4 35 2 1 3 1 115.6 3.4 4 0.6 38.9
VarSizeSignalSource 2 1 5 1 157 5.3 6 0.7 47.4

ViewDifferencesBetweenMessagesEventsAndData 2 10 2 1 4 1 9 46.9 4 1 34.8

YoYoControlOfSatellite InActive InReelMoving
8 10

2 1 4 1 18.5 47.3 4 1 60.1
Overall 2 1 4 1 19.5 46.7 4 1 71.9

Overall 1 1 3 1 3.7 28.7 3 1 43

unwindings of the transition relation R (lines 2-5 in Fig. 2b).
We verify this using model checking with k-induction [12],
[13]. If both the base case and step case for k-induction hold,
it is guaranteed that the counterexample is spurious, in which
case we strengthen the assumption in Fig. 2a to (r ∧ ¬s′ ∧R)
and repeat the condition check. In case of a violation only in
the step case, there is no conclusive evidence for validity. Since
we are not interested in generating an exact system model but
rather an over-approximation that provides useful insight into
the system, we treat such a counterexample as valid.

For the bound k, a value greater than or equal to the diameter
of the system guarantees completeness [12]. We discuss ways
to approximate this value in [10]. Note that a poor choice
for the bound k results in more spurious behaviours being
added to the model, resulting in low accuracy. But, the learned
models are guaranteed to admit all system traces defined over
X , irrespective of the value for k.

IV. EVALUATION AND RESULTS

A. Evaluation Setup

For our experiments we use Trace2Model (T2M) [4], [14]
as the model learning component. To evaluate the degree of
completeness we use the C Bounded Model Checker (CBMC
v5.35) [15]. We implement Python modules for the following:
constructing the source code to check each condition, process-
ing the CBMC output, and translating CBMC counterexamples
into a set of trace inputs for model learning. Note that any
model checker can be used in place of CBMC.

To evaluate our algorithm, we reverse-engineer a set of FSAs
from their respective C implementations. We use a dataset of
Simulink Stateflow models [16] as our benchmark set. For
each benchmark, we use Embedded Coder [17] to automatically
generate a C implementation. The generated C implementation
is used as the system S. Further details are provided in [10].



The implementation and benchmarks are available online [18].

B. Experiments and Results

For each benchmark, we generate an initial set of 50 traces,
each of length 50, by executing the system with randomly
sampled inputs. Some of the Stateflow models are implemented
as multiple parallel and hierarchical FSAs. For a given im-
plementation S and a set of observables X , we attempt to
reproduce each state machine separately using traces defined
over all variables in X . We therefore generate an abstraction
with state transitions at a system level for each FSA in S.

The results are summarised in Table I. We quantitatively
assess the quality of the final generated model for each FSA by
assigning a score d, computed as the fraction of state transitions
in the Stateflow model that match corresponding transitions in
the abstraction. For hierarchical Stateflow models, we flatten
the FSAs and compare the learned abstraction with the flattened
FSA. We record the number of model learning iterations i, the
number of states N and degree of completeness α for the final
model, the total runtime T and the percentage of total runtime
attributed to model learning, denoted by %Tm. We set a timeout
of 10 h for our experiments. For benchmarks that time out, we
present the results for the model generated right before timeout.

1) Runtime: The active learning algorithm is able to generate
abstractions in under 1 h for the majority of the benchmarks.
For the benchmarks that time out, the model checker tends to go
through a large number of invalid counterexamples before ar-
riving at a valid counterexample for a condition violation. This
is because, depending on the size of the domain D, there can be
a large number of possible valuations that violate an extracted
condition, of which very few may correspond to a valid system
state. In such cases, runtime can be improved by strengthening
the assumption r ∧ R in Fig. 2a with domain knowledge to
guide the model checker towards valid counterexamples. For
FrameSyncController, CBMC takes a long time to check each
condition. This is because the implementation features several
operations, such as memory access and array operations, that
especially increase proof complexity and proof runtime.

2) Generated Model Accuracy: The algorithm is guaranteed
to generate an abstraction that admits all system behaviours, as
is confirmed by α in Table I. We also see that d = 1 for these
benchmarks. For two benchmarks, although the Simulink model
matched the generated abstraction (d = 1), the algorithm timed
out before it could eliminate all spurious violations (α < 1).

3) Number of Learning Iterations: In each learning iteration
j, |L(Mj)| > |L(Mj−1)| as L(Mj) ⊇ L(Mj−1) ∪ TCEj

and TCEj ∩ L(Mj−1) = ∅. Here, Mj and TCEj are the
generated abstraction and the set of new traces collected
in iteration j respectively. The algorithm terminates when
L(Mj) ⊇ TracesX(S). The number of learning iterations
therefore depends on |TracesX(S) ∩ L(M0)|, where M0 is
the abstraction generated from the initial trace set.

C. Comparison with Random Sampling

We performed a set of experiments to check if random sam-
pling is sufficient to learn abstractions that admit all behaviours.
A million randomly sampled inputs are used to execute each

benchmark. Generated traces are fed to T2M to passively learn
a model. T2M fails to generate a model for 7 benchmarks, as
its predicate synthesis procedure returns ‘segmentation fault’.
For 50% of the remaining benchmarks, random sampling fails
to produce a model admitting all system behaviours (α < 1).

D. Threats to Validity

The key threat to the validity of our experimental claim
is benchmark bias. We have attempted to limit this bias by
using a set of benchmarks that was curated by others. Further,
we use C implementations of Simulink Stateflow models that
are auto-generated using a specific code generator. Although
there is diversity among these benchmarks, our algorithm may
not generalise to software that is not generated from Simulink
models, or software generated using a different code generator.
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