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Abstract
We present a new active model-learning approach to generating abstractions of a sys-
tem from its execution traces. Given a system and a set of observables to collect execu-
tion traces, the abstraction produced by the algorithm is guaranteed to admit all system 
traces over the set of observables. To achieve this, the approach uses a pluggable model-
learning component that can generate a model from a given set of traces. Conditions that 
encode a certain completeness hypothesis, formulated based on simulation relations, are 
then extracted from the abstraction under construction and used to evaluate its degree of 
completeness. The extracted conditions are sufficient to prove model completeness but not 
necessary. If all conditions are true, the algorithm terminates, returning a system overap-
proximation. A condition falsification may not necessarily correspond to missing system 
behaviour in the abstraction. This is resolved by applying model checking to determine 
whether it corresponds to any concrete system trace. If so, the new concrete trace is used to 
iteratively learn new abstractions, until all extracted completeness conditions are true. To 
evaluate the approach, we reverse-engineer a set of publicly available Simulink Stateflow 
models from their C implementations. Our algorithm generates an equivalent model for 
98% of the Stateflow models.
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1 Introduction

Modern hardware and software system implementations often have complex behaviour and 
it is difficult to specify integrated system behaviour, particularly emergent behaviour, ahead 
of time. Execution traces provide an exact representation of the system behaviours that are 
exercised when an implementation runs. This can therefore be leveraged to reverse-engi-
neer system abstractions, such as the model in Fig. 1, that are easy to understand, and can 
be used in place of the actual implementation for simulation and debugging.

Model-learning algorithms are classified into passive and active algorithms. In passive 
model learning [8, 27, 36, 40], the behaviours admitted by the generated models are limited 
to only those manifest in the given traces. So capturing all system behaviour by the gener-
ated system models is conditional on devising a software load that exercises all relevant 
system behaviours. This can be difficult to achieve in practice, especially when a system 
comprises multiple components and it is not obvious how the components will behave col-
lectively. Random input sampling is a pragmatic choice in this scenario, but it does not 
guarantee that generated models admit all system behaviour.

By contrast, active learning algorithms can, in principle, generate exact models [4, 5, 
11, 62]. They iteratively refine a hypothesis model by extracting information from the sys-
tem or an oracle that has sufficient knowledge of the system, using the hypothesis model as 
a guide. The most popular form of active learning is query-based learning [4], where the 
learning framework poses membership and equivalence queries to an oracle and uses the 
responses to guide model refinement. But when these algorithms are used in practice, espe-
cially to learn symbolic abstractions such as the models in Figs. 1 and 2, they suffer from 
high query complexity [23, 28, 31]. Consequently, many active model-learning implemen-
tations are constrained to learning partial models for large systems.

In this article we present a new active learning approach to derive abstractions of a sys-
tem implementation from its execution traces. The approach, on termination, is guaranteed 
to generate an abstraction that is a good overapproximation of the system. As illustrated in 
Fig. 3, the approach is a grey-box algorithm. It combines a black-box analysis, in the form 
of model learning from traces, with a white-box analysis that is used to evaluate the degree 
of completeness for a candidate system model returned by model learning.

The model-learning component can be any algorithm that generates a model that 
accepts a given set of system execution traces. The novelty of the approach is the pro-
cedure used to evaluate the degree of completeness for a learned candidate abstrac-
tion: the structure of the candidate abstraction is used to extract a set of conditions that 

Fig. 1  Abstraction modelling 
operation mode switches for a 
Home Climate-Control Cooler 
System generated by our algo-
rithm
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collectively encode a completeness hypothesis. The hypothesis is formulated such that 
the satisfaction of the hypothesis is sufficient to guarantee that a simulation relation can 
be constructed between the system and the given abstraction. Further, the existence of 
a simulation relation is sufficient to guarantee that the given abstraction is overapproxi-
mating, i.e., it admits (at least) all system execution traces.

To verify the hypothesis, the truth value of all extracted conditions is checked using 
Boolean satisfiability (SAT) solving. The procedure returns the fraction of extracted 
conditions that hold as a quantitative measure of the degree of completeness for the 
given model. If all conditions are true, the algorithm terminates, returning the learned 
system overapproximation. In the event of a condition falsification, the SAT procedure 
returns a counterexample.

The satisfaction of the hypothesis is sufficient to guarantee that a given abstraction is 
overapproximating, but not necessary. Counterexamples to the hypothesis may therefore 
be spurious, i.e., a condition falsification may not actually correspond to missing system 
behaviour in the abstraction. This is resolved by model checking [16] to determine if the 
counterexample for a condition check is spurious. If found to be spurious, the respec-
tive extracted completeness condition is strengthened to guide the SAT solver towards a 
non-spurious counterexample, if any exists.

Non-spurious counterexamples are used to construct a set of new traces that exem-
plify system behaviours identified to be missing from the model. New traces are used to 
augment the input trace set for model learning, and iteratively generate new abstractions 
until all conditions are true.

Unlike query-based learning, our procedure to evaluate the degree of completeness 
for a given abstraction operates at the level of the abstraction and not concrete system 
traces:

Fig. 2  Abstraction modelling 
gear-shift logic for an Automatic 
Transmission Gear System gen-
erated by our algorithm
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• The scope of each extracted condition is the set of incoming and outgoing transitions to 
a state rather than a finite path in the system or its model.

• The completeness hypothesis can be represented symbolically, incorporating charac-
teristic functions for sets of observations in a system trace, therefore eliminating the 
need for explicit enumeration of concrete transitions.

Fig. 3  Overview of the active model-learning algorithm
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This enables the procedure to be applied to symbolic abstractions over large alpha-
bets. Further, the procedure is agnostic with respect to the algorithm used to learn the 
abstraction. This enables the approach to be easily integrated with model-learning algo-
rithms that generate symbolic abstractions from traces to iteratively learn expressive 
system overapproximations with provable completeness guarantees.

2  Active learning of abstract system models

2.1  Formal model

The system for which we wish to generate an abstraction is represented as a Labelled Tran-
sition System (LTS).

Definition 1 (Labelled Transition System) An LTS M is a quadruple (S,Ω,Δ, s0) where S 
is a set of states, Ω is a set of labels, Δ ⊆ S × Ω × S is the transition relation and s0 ∈ S is 
the initial state.

The set of labels Ω is a set of system observations that can be used to collect execution 
traces. An observation o ∈ Ω could be any event that depends on a transition from state s 
to state s′ . A path � in M is a finite sequence � = s0, o0, s1,… , on−1, sn of alternating states 
and observations such that (si, oi, si+1) ∈ Δ for 0 ≤ i < n . The trace of � , denoted �(�) , 
is the corresponding sequence of observations o0,… , on−1 along � . The set of all traces 
of paths in M is called the language of M , denoted L(M) , defined over the alphabet of 
observations Ω . A trace � is accepted by M if � ∈ L(M) , and is termed an execution trace 
or positive trace. A trace � ∉ L(M) is termed a negative trace.

A system abstraction is represented as an LTS �M = (Ŝ, Ω̂, Δ̂, ŝ0) . The language of the 
learned abstraction L(M̂) is defined over the alphabet of observations, i.e., Ω̂ = Ω . The 
abstraction accepts a trace � = o0,… , on−1 if � ∈ L(M̂) , i.e., if there exists a sequence 
ŝ0,… , ŝn of states in Ŝ such that (ŝi, oi, ŝi+1) ∈ Δ̂ for 0 ≤ i < n . We will show that our active 
learning algorithm returns an abstraction M̂ that admits all execution traces of the system 
M , i.e., L(M) ⊆ L(�M).

2.2  Overview of the algorithm

Given a system M , our goal is to learn a system abstraction M̂ such that L(M) ⊆ L(�M) . 
An overview of our approach is provided in Fig. 3. It consists of the following steps: 

1. Generate candidate abstraction from available traces. The algorithm learns a candidate 
abstraction M̂ from an initial set of system traces T  using a pluggable model-learning 
algorithm. This is discussed in Sect. 2.3.

2. Extract completeness conditions. To evaluate the degree of completeness of the candi-
date abstraction returned by model learning, the structure of M̂ is used to extract a set 
of conditions C that collectively encode a completeness hypothesis. If all conditions are 
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true, it implies L(M) ⊆ L(�M) . The formulation of the completeness hypothesis and a 
formal proof of the above claim is provided in Sect. 2.4.

3. Check truth value of extracted conditions. The algorithm uses a SAT procedure to check 
the truth value of each condition, and thereby checks the hypothesis. If all conditions are 
true, the algorithm returns M̂ as the learned system overapproximation. The extracted 
conditions are sufficient to prove model completeness, i.e., L(M) ⊆ L(�M) , but not 
necessary. In the event that a condition is falsified, the procedure returns a counterex-
ample. However, a condition falsification may not necessarily indicate missing system 
behaviour in M̂ . This is discussed in Sect. 2.5.

4. Counterexample analysis. To check if a condition falsification actually indicates missing 
system behaviour in M̂ , i.e., L(M)�L(M̂) ≠ � , the algorithm uses model checking to 
determine whether the counterexample returned by the SAT procedure corresponds to 
a concrete system trace. If found to be spurious, the condition is strengthened to guide 
the SAT procedure towards non-spurious counterexamples, if any. The algorithm then 
repeats step 3. Details are provided in Sect. 2.6.

5. Generate new abstraction. A set of new traces TCE is constructed from non-spurious 
counterexamples that exemplify missing system behaviour in M̂ . These are used as 
additional trace inputs to the model-learning component in step 1, which learns a new 
abstraction admitting T ∪ TCE . Construction of new traces exemplifying missing system 
behaviour in the model is discussed in Sect. 2.6.

In each iteration i of the algorithm, TCEi
∩ L(M̂i−1) = � , where TCEi

 is the set of new traces 
constructed by the algorithm in iteration i after evaluating the degree of completeness for 
the abstraction M̂

i−1 generated in the previous iteration. The new abstraction M̂i is gener-
ated using the set all new traces TCE1

∪ TCE2
∪… ∪ TCEi

 and the initial trace set T  as input 
to model learning.

The methodology described above is similar to Counterexample-Guided Abstraction 
Refinement (CEGAR) [13], illustrated in Fig. 4. The key difference is that CEGAR is a 
top-down approach that begins by generating an overapproximation, which is progressively 
pruned to obtain a finer overapproximation. Our algorithm, on the other hand, is a bottom-
up approach that progressively extends a candidate abstraction until an overapproximation 
is obtained.

The following sections describe each step of our algorithm in detail.

2.3  Model learning from execution traces

The approach uses a pluggable model-learning component to generate a candidate abstrac-
tion from a set of system execution traces. We impose two requirements on this component:

Fig. 4  Counterexample-Guided 
Abstraction Refinement 
(CEGAR) loop
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• Given a set of execution traces T  , the model-learning component must return a model 
M̂ that accepts (at least) all traces in T  , i.e., L(�M) ⊇ T .

• The language accepted by the model must be prefix-closed, i.e., if the model accepts a 
trace � , then it must also accept all finite prefixes of �.

There are many model-learning algorithms that satisfy the first requirement [8, 36, 41, 58, 
63, 65]. In general, these algorithms operate by employing automaton inference techniques, 
such as state-merging [8, 40] or SAT [27, 36], to generate a finite state automaton that con-
forms to a given set of traces.

Among these, the algorithm in [36] satisfies both requirements. To use the other algo-
rithms, simple pre-processing of the input trace set to include all prefixes pref (�) for each 
trace � ∈ T  , i.e.  T ←

⋃
�∈T{�

� � �� ∈ pref (�)} can be applied. Although this technique 
enables the generation of prefix-closed automata for conventional state-merging algo-
rithms, it may not always guarantee prefix-closure for models returned by other learning 
algorithms. A more reliable technique is to convert all non-accepting states that appear on 
paths to accepting states in the generated finite state automaton to accepting states.

It is straightforward to transform a finite state automaton that accepts a prefix-closed 
language into an LTS abstraction, as defined in Sect. 2.1, by removing the non-accepting 
states and all transitions that lead into them.

2.4  Completeness conditions for a candidate abstraction

We first give an explicit-state, set-based definition of our completeness criterion, for the 
sake of clarity. We subsequently describe a symbolic representation of the completeness 
conditions using characteristic functions, which can be applied to symbolic abstractions 
such as the model in Fig. 2.

2.4.1  Set‑based definition

To determine whether a given abstraction M̂ for the system M is complete, we use the 
structure of the abstraction to extract the following conditions:

For initial state ŝ0 ∈ Ŝ , ∀o ∈ Ω:

And for all states ŝ ∈ Ŝ , ∀o�, o ∈ Ω:

These conditions collectively encode the following completeness hypothesis: for any tran-
sition available in the system M , defined by the transition relation Δ , there is a correspond-
ing transition in M̂ defined by Δ̂.

In the following section we prove that if the above hypothesis holds, i.e., if the complete-
ness conditions (1) and (2) evaluate to true, then a simulation relation can be constructed 

(1)∃s ∈ S ∶ (s0, o, s) ∈ Δ ⟹ ∃ŝ ∈ Ŝ ∶ (ŝ0, o, ŝ) ∈ Δ̂

(2)
(∃ŝ�� ∈ Ŝ ∶ (ŝ��, o�, ŝ) ∈ Δ̂ ∧

∃s��, s, s� ∈ S ∶ (s��, o�, s), (s, o, s�) ∈ Δ) ⟹

∃ŝ� ∈ Ŝ ∶ (ŝ, o, ŝ�) ∈ Δ̂
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between M and M̂ . We then use the fact that the existence of a simulation relation between 
M and M̂ implies L(M) ⊆ L(�M).

Constructing a Simulation Relation
We formally define simulation relations for LTSs as follows:

Definition 2 (Simulation Relation for LTSs) Given two LTSs M = (S,Ω,Δ, s0) and 
�M = (Ŝ, Ω̂, Δ̂, ŝ0) with Ω̂ = Ω , we define a binary relation R ⊆ S × Ŝ to be a simulation if 

1. (s0, ŝ0) ∈ R , and
2. ∀(s, ŝ) ∈ R , for every s� ∈ S and o ∈ Ω such that (s, o, s�) ∈ Δ , ∃ŝ� ∈ Ŝ such that 

(ŝ, o, ŝ�) ∈ Δ̂ and (s�, ŝ�) ∈ R.

If such a relation R exists, we write M ⪯R M̂.
To support our claim that the satisfaction of the completeness hypothesis is sufficient 

to guarantee that a simulation relation can be constructed between the system M and the 
given abstraction M̂ , we first describe a method to construct a binary relation R� ⊆ S × Ŝ 
when all extracted completeness conditions hold, and later formally prove that R′ is indeed 
a simulation.

Assuming the completeness conditions (1) and (2) hold, the relation R′ is constructed 
as follows: 

1. Initialise R� = {(s0, ŝ0)}

2. If the condition  (1) holds non-trivially for some observation o ∈ Ω , i.e., 
∃s ∈ S ∶ (s0, o, s) ∈ Δ and ∃ŝ ∈ Ŝ ∶ (ŝ0, o, ŝ) ∈ Δ̂ , then add the state pair (s, ŝ) to R′ . 

3. If the condition  (2) extracted for a state ŝ ∈ Ŝ  holds non-trivially for some 
o b s e r va t i o n s  o�, o ∈ Ω  ,  i . e . ,  ∃s��, s, s� ∈ S ∶ (s��, o�, s), (s, o, s�) ∈ Δ  a n d 
∃ŝ��, ŝ� ∈ Ŝ ∶ (ŝ��, o�, ŝ), (ŝ, o, ŝ�) ∈ Δ̂ , then add the state pairs (s, ŝ) and (s�, ŝ�) to R′ . 

Note that in the above construction, for every state pair (s, ŝ) ∈ R
��(s0, ŝ0) , there exist 

incoming transitions to the states s and ŝ with some observation o� ∈ Ω . That is,

Theorem 1 The constructed relation R′ forms a simulation, i.e. M ⪯R
� M̂

Proof We use contradiction to prove that when the completeness conditions  (1) and  (2) 
hold, the constructed relation R′ forms a simulation. Let us assume R′ is not a simulation. 
A binary relation R ⊆ S × Ŝ is not a simulation if either 

(a) (s0, ŝ0) ∉ R or
(b) ∃(s, ŝ) ∈ R such that ∃s� ∈ S ⋅ ∃o ∈ Ω ∶ (s, o, s�) ∈ Δ and ∀ŝ� ∈ Ŝ ⋅ (ŝ, o, ŝ�) ∉ Δ̂ or

R
�
← R

� ∪ {(s, ŝ)}

R
�
← R

� ∪ {(s, ŝ), (s�, ŝ�)}

(3)
∀(s, ŝ) ∈ R

��(s0, ŝ0) ⋅ ∃s
�� ∈ S ⋅ ∃ŝ�� ∈ Ŝ ⋅ ∃o� ∈ Ω ∶

(s��, o�, s) ∈ Δ ∧ (ŝ��, o�, ŝ) ∈ Δ̂
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(c) ∃(s, ŝ) ∈ R  s u c h  t h a t  ∃s� ∈ S ⋅ ∃o ∈ Ω ∶ (s, o, s�) ∈ Δ  a n d 
∃ŝ� ∈ Ŝ ∶ (ŝ, o, ŝ�) ∈ Δ̂ ∧ (s�, ŝ�) ∉ R

The above clauses (a), (b) and (c) are obtained by negating conditions (1) and (2) in defi-
nition 2 for a simulation relation; while clause (a) is obtained by negating condition (1), 
clauses (b) and (c) are obtained by negating condition (2) as follows:

Condition (2) in definition 2 can be written as

On negating the above expression we get

Here, expression (9) corresponds to (clause (b) ∨ clause (c)).
Assume clause (a) holds. Then, (s0, ŝ0) ∉ R

� . But, (s0, ŝ0) ∈ R
� by construction. This is 

a contradiction and therefore, clause (a) does not hold.
Assume clause (b) holds. Then, ∃(s, ŝ) ∈ R

� such that ∃s� ∈ S ⋅ ∃o ∈ Ω ∶ (s, o, s�) ∈ Δ 
and ∀ŝ� ∈ Ŝ ⋅ (ŝ, o, ŝ�) ∉ Δ̂ . There are two possibilities here:

• If s = s0 and ŝ = ŝ0 , then 

 This violates completeness condition (1), which is a contradiction.

(4)
∀(s, ŝ) ∈ R ⋅ ∀s� ∈ S ⋅ ∀o ∈ Ω ⋅ ((s, o, s�) ∈ Δ ⟹

(∃ŝ� ∈ Ŝ ∶ (ŝ, o, ŝ�) ∈ Δ̂ ∧ (s�, ŝ�) ∈ R))

(5)
¬(∀(s, ŝ) ∈ R ⋅ ∀s� ∈ S ⋅ ∀o ∈ Ω ⋅ ((s, o, s�) ∈ Δ ⟹

(∃ŝ� ∈ Ŝ ∶ (ŝ, o, ŝ�) ∈ Δ̂ ∧ (s�, ŝ�) ∈ R)))

(6)
⟹ ∃(s, ŝ) ∈ R ⋅ ∃s� ∈ S ⋅ ∃o ∈ Ω ∶((s, o, s�) ∈ Δ∧

¬(∃ŝ� ∈ Ŝ ∶ (ŝ, o, ŝ�) ∈ Δ̂ ∧ (s�, ŝ�) ∈ R))

(7)
⟹ ∃(s, ŝ) ∈ R ⋅ ∃s� ∈ S ⋅ ∃o ∈ Ω ∶((s, o, s�) ∈ Δ∧

∀ŝ� ∈ Ŝ ⋅ ((ŝ, o, ŝ�) ∈ Δ̂ ⟹ (s�, ŝ�) ∉ R))

(8)

⟹ ∃(s, ŝ) ∈ R ⋅ ∃s� ∈ S ⋅ ∃o ∈ Ω ∶((s, o, s�) ∈ Δ∧

((∀ŝ� ∈ Ŝ ⋅ (ŝ, o, ŝ�) ∉ Δ̂) ∨

(∃ŝ� ∈ Ŝ ∶ (ŝ, o, ŝ�) ∈ Δ̂ ∧ (s�, ŝ�) ∉ R)))

(9)

⟹ ∃(s, ŝ) ∈ R ⋅ ∃s� ∈ S ⋅ ∃o ∈ Ω ∶((s, o, s�) ∈ Δ ∧ ∀ŝ� ∈ Ŝ ⋅ (ŝ, o, ŝ�) ∉ Δ̂)

∨

∃(s, ŝ) ∈ R ⋅ ∃s� ∈ S ⋅ ∃o ∈ Ω ∶((s, o, s�) ∈ Δ∧

(∃ŝ� ∈ Ŝ ∶ (ŝ, o, ŝ�) ∈ Δ̂ ∧ (s�, ŝ�) ∉ R))

∃s� ∈ S ⋅ ∃o ∈ Ω ∶ (s0, o, s
�) ∈ Δ∧

∀ŝ� ∈ Ŝ ⋅ (ŝ0, o, ŝ
�) ∉ Δ̂
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• If (s, ŝ) ∈ R
��(s0, ŝ0) , then from (3) there exists incoming transitions to s and ŝ on some 

observation o� ∈ Ω , i.e., ∃s�� ∈ S ⋅ ∃ŝ�� ∈ Ŝ ⋅ ∃o� ∈ Ω ∶ (s��, o�, s) ∈ Δ ∧ (ŝ��, o�, ŝ) ∈ Δ̂ . 
This implies 

 This violates completeness condition (2), which is a contradiction.
Therefore, clause (b) does not hold.

Assume clause  (c) holds. Then, ∃(s, ŝ) ∈ R
� such that ∃s� ∈ S ⋅ ∃o ∈ Ω ∶ (s, o, s�) ∈ Δ 

and ∃ŝ� ∈ Ŝ ∶ (ŝ, o, ŝ�) ∈ Δ̂ ∧ (s�, ŝ�) ∉ R
� . There are two possibilities here:

• If s = s0 and ŝ = ŝ0 , then 

 This is a case where condition  (1) holds non-trivially, and therefore (s�, ŝ�) ∈ R
� by 

construction. This contradicts our assumption that clause (c) holds.
• If (s, ŝ) ∈ R

��(s0, ŝ0) , then from (3) there exists incoming transitions to s and ŝ on some 
observation o� ∈ Ω , i.e., ∃s�� ∈ S ⋅ ∃ŝ�� ∈ Ŝ ⋅ ∃o� ∈ Ω ∶ (s��, o�, s) ∈ Δ ∧ (ŝ��, o�, ŝ) ∈ Δ̂ . 
This implies 

 This is a case where condition  (2) holds non-trivially, and therefore (s�, ŝ�) ∈ R
� by 

construction. This contradicts our assumption that clause (c) holds.
Therefore, clause (c) does not hold.

As none of the clauses (a), (b) or (c) hold, the constructed relation R′ is a simulation by 
contradiction, i.e., M ⪯R

� M̂ .   ◻

Note that the satisfaction of the completeness hypothesis is sufficient to guarantee the 
existence of a simulation relation between M and M̂ , but not necessary. An example is 
provided in Fig. 5. Here, the completeness conditions extracted for state ŝ2 do not hold:

does not hold as ∀ŝ ∈ Ŝ ⋅ (ŝ2, oa, ŝ) ∉ Δ̂ . Similarly,

∃ŝ�� ∈ Ŝ ∶ (ŝ��, o�, ŝ) ∈ Δ̂ ∧

∃s��, s, s� ∈ S ∶ (s��, o�, s), (s, o, s�) ∈ Δ∧

∀ŝ� ∈ Ŝ ⋅ (ŝ, o, ŝ�) ∉ Δ̂

∃s� ∈ S ∶ (s0, o, s
�) ∈ Δ∧

∃ŝ� ∈ Ŝ ∶ (ŝ0, o, ŝ
�) ∈ Δ̂

∃ŝ�� ∈ Ŝ ∶ (ŝ��, o�, ŝ) ∈ Δ̂ ∧

∃s��, s, s� ∈ S ∶ (s��, o�, s), (s, o, s�) ∈ Δ∧

∃ŝ� ∈ Ŝ ∶ (ŝ, o, ŝ�) ∈ Δ̂

(∃ŝ0 ∈ Ŝ ∶ (ŝ0, ob, ŝ2) ∈ Δ̂ ∧

∃s3, s0, s1 ∈ S ∶ (s3, ob, s0), (s0, oa, s1) ∈ Δ) ⟹

∃ŝ ∈ Ŝ ∶ (ŝ2, oa, ŝ) ∈ Δ̂

(∃ŝ0 ∈ Ŝ ∶ (ŝ0, ob, ŝ2) ∈ Δ̂ ∧

∃s3, s0, s2 ∈ S ∶ (s3, ob, s0), (s0, ob, s2) ∈ Δ) ⟹

∃ŝ ∈ Ŝ ∶ (ŝ2, ob, ŝ) ∈ Δ̂
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does not hold as ∀ŝ ∈ Ŝ ⋅ (ŝ2, ob, ŝ) ∉ Δ̂.
However, M ⪯R M̂ with R = {(s0, ŝ0), (s1, ŝ1), (s2, ŝ2)}.

Theorem 2 If M ⪯R M̂  for LTSs M and M̂ , then L(M) ⊆ L(�M).

Variants of this theorem are commonplace; Park offers a proof in [47].
By Theorems 1 and 2 it is guaranteed that if all completeness conditions extracted for 

a given system abstraction are true, then the abstraction is an overapproximation accept-
ing (at least) all system execution traces. We compute the fraction of the completeness 
conditions that are true, denoted by � , as a quantitative measure of the degree of com-
pleteness of the given system abstraction. The procedure used to check the truth value 
of the extracted completeness conditions is described in Sect. 2.5.

2.4.2  Symbolic definition

Symbolic representations of abstractions have transitions labelled with characteristic func-
tions or predicates for sets of observations, such as the models in Figs. 1 and 2. A single 
edge in these graphs in fact corresponds to a set of multiple transitions. There are three 
benefits of this representation: 

Fig. 5  Example system and its 
abstraction
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1. It reduces the computational cost of the method when compared to an explicit represen-
tation that enumerates concrete transitions.

2. We hypothesise that human engineers prefer the more succinct symbolic presentation 
over an explicit list. In lieu of experimental evidence, we remark that popular design 
tools such as Simulink [54] strongly encourage the use of symbolic transition predicates.

3. The symbolic representation also enables an extension of our method to infinite alpha-
bets, provided the model learning component can infer such models from execution 
traces.

The standard means to represent sets or relations symbolically is to use characteristic func-
tions. We expect that a single observation o ∈ Ω can be described as a valuation of a set of 
system variables X that range over some domain D. We can therefore give a description of 
a subset O ⊆ Ω as a characteristic function fO ∶ D|X|

⟶ � , where � is the set of Boolean 
truth values. The subset O then corresponds to:

where o ⊧ fO ⟺ fO(o) = true.
As is standard, the function is given by means of a Boolean-valued expression. We 

refrain from defining a full syntax and semantics for the expressions we use. For sake of 
exposition, we use a C-like syntax, and semantics that roughly correspond to the bit-vector 
theory in SMT-LIB 2.

As defined in Sect. 2.1, the transitions of our LTSs comprise 

1. a source automaton state ŝi ∈ Ŝ,
2. a destination automaton state ŝi+1 ∈ Ŝ,
3. and an observation o ∈ Ω.

Of these three components, we represent only the observation symbolically. Both autom-
aton states are represented explicitly. Hence, a symbolic transition is a triple (ŝi, p, ŝi+1) , 
which corresponds to the following set of concrete transitions:

To derive the completeness conditions  (1) and  (2) for a symbolic abstraction, we repre-
sent the transition relation Δ and the initial state s0 symbolically as characteristic functions 
fΔ ∶ Ω × Ω ⟶ � and Init ∶ Ω ⟶ � respectively, defined as follows:

(10)O = {o ∈ D|X| | o ⊧ fO}

(11){(ŝi, o, ŝi+1) | o ⊧ p}

Fig. 6  Symbolic representation of abstract model states and transitions
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For a given symbolic abstraction, we extract the following conditions encoding a symbolic 
representation of the completeness hypothesis.

For initial state ŝo ∈ Ŝ , ∀o ∈ Ω

(12)(o�, o) ⊧ fΔ ⟺ ∃s��, s, s� ∈ S, (s��, o�, s), (s, o, s�) ∈ Δ

(13)o ⊧ Init ⟺ ∃s ∈ S, (s0, o, s) ∈ Δ

Fig. 7  Completeness hypothesis for a symbolic abstraction
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where P(0,out) is the set of predicates for all outgoing transitions from ŝ0 , as illustrated in 
Fig. 6a.

And for all states ŝi ∈ Ŝ , ∀pin ∈ P(i,in) , ∀o�, o ∈ Ω

where P(i,in) is the set of predicates on the incoming transitions to state ŝi and P(i,out) is the 
set of predicates on outgoing transitions from ŝi , as illustrated in Fig. 6b. We illustrate the 
formulation of the completeness hypothesis for a symbolic abstraction as described above 
with an example in Fig. 7.

Note that the conditions (14) and (15) are symbolic representations of the completeness 
conditions (1) and (2), respectively. For the remainder of the article we use the symbolic 
representation of the completeness hypothesis as encoded by conditions (14) and (15).

2.5  Checking the truth of extracted conditions

To verify if the completeness conditions evaluate to true for all observations in Ω we use 
symbolic variables �′,� to represent the observations o′, o in  (14) and (15) respectively, 
and use a SAT solver to check if there exists an assignment of values in Ω to �′,� that sat-
isfies the negation of the completeness conditions.

To this end, the negation of the conditions (14) and (15), represented as

and

respectively, is fed to a SAT solver. A satisfying assignment indicates a falsification of the 
corresponding completeness condition, and serves as a counterexample for the condition. 
In the event that a satisfying assignment cannot be found, we conclude that the correspond-
ing completeness condition evaluates to true for all observations in Ω.

As discussed in Sect.  2.4, the satisfaction of the completeness hypothesis is suf-
ficient to guarantee completeness, but not necessary. In the event of a falsification of 
condition  (14), the SAT solver returns a counterexample � = o , such that o ⊧ Init and 
o  ⊧ pout,∀pout ∈ P(0,out) . Since o ∈ L(M) , this is a non-spurious counterexample indicating 
missing system behaviour in the learned abstraction, i.e., L(M) ⊈ L(�M) . But, in the event 
of a falsification of condition (15), the SAT solver returns a counterexample �� = o�, � = o 
such that o′ ⊧ pin , (o�, o) ⊧ fΔ and o  ⊧ pout,∀pout ∈ P(i,out) . Here, it is not guaranteed that the 
observation o′ lies on a system path from the initial system state s0 ∈ S . The counterex-
ample may therefore be spurious and may not actually correspond to any missing system 
behaviour in the abstraction.

(14)o ⊧ Init ⟹ o ⊧
⋁

pout∈P(0,out)

pout

(15)(o� ⊧ pin ∧ (o�, o) ⊧ fΔ) ⟹ o ⊧
⋁

pout∈P(i,out)

pout

(16)¬(𝜔 ⊧ Init ⟹ 𝜔 ⊧
⋁

pout∈P(0,out)

pout)

(17)¬((𝜔� ⊧ pin ∧ (𝜔�,𝜔) ⊧ fΔ) ⟹ 𝜔 ⊧
⋁

pout∈P(i,out)

pout)
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2.6  Counterexample analysis

To check if a counterexample �� = o�, � = o for condition (15) is spurious—i.e., it does 
not correspond to any concrete system trace, we use model checking to verify if the 
observation o′ is reachable from s0 . That is, the algorithm checks if there exists a path 
� = s0, o0, s1, o1,… , on−1, sn in M such that 

⋁n−1

i=0
(oi = o�) is true. If such a path does not 

exist, the counterexample is spurious.
In the event that the counterexample for condition (15) is spurious, the corresponding 

input to the SAT solver is strengthened by adding the clause �′ ≠ o′ to (17) as follows

The conjunction of �′ ≠ o′ guides the SAT solver away from the spurious counterexample 
�� = o� , and towards a non-spurious counterexample, if any.

All non-spurious counterexamples are used to construct a set of new traces TCE that 
exemplify system behaviours found to be missing from the candidate abstraction. For 
each counterexample � = o for condition  (14), we add a trace �CE = o to the set TCE . 
For each counterexample �� = o�,� = o for condition  (15), we find the smallest pre-
fix �� = o1, o2,… , om for all � ∈ T  such that om ⊧ pin . We then construct a new trace 
�CE = o1, o2,… , om−1, o

�, o for each prefix �′ . Note that since o′ ⊧ pin , the new trace 
�CE does not change the system behaviour exemplified by �′ but merely augments it to 
include the missing behaviour. The set of new traces TCE thus generated is used as an 
additional input to the model-learning component, which in turn generates an abstrac-
tion that admits the missing behaviour.

Example run of the approach
An example run demonstrating the active model-learning algorithm for a Home Cli-

mate Control Cooling system is illustrated in Fig. 8 and described below. First a candi-
date abstraction is learned from an initial set of system execution traces T  . The gener-
ated abstraction is provided in Fig. 8a. The abstraction models the following sequential 
system behaviour: the system stays in the Off mode ( ̂s1 → ŝ1 ), or switches from the Off 
mode to the On mode when inp.temp > T_thresh ( ̂s1 → ŝ2 ). The system then switches 
back to the Off mode and stays in the Off mode indefinitely ( ̂s2 → ŝ2).

The structure of the generated abstraction is used to extract the following complete-
ness conditions:

For state ŝ1 , ∀o�, o ∈ Ω:

For state ŝ2 , ∀o�, o ∈ Ω:

(18)¬((𝜔� ⊧ pin ∧ (𝜔�,𝜔) ⊧ fΔ) ⟹ 𝜔 ⊧
⋁

pout∈P(i,out)

pout) ∧ 𝜔� ≠ o�

(19)
o ⊧ Init ⟹ o ⊧ (modenext = Off∨

(inp.temp > T_thresh ∧ modenext = On))

(20)
(o� ⊧ modenext = Off ∧ (o�, o) ⊧ fΔ) ⟹

o ⊧ (modenext = Off ∨ (inp.temp > T_thresh ∧ modenext = On))

(21)
(o� ⊧ (inp.temp > T_thresh ∧ modenext = On) ∧ (o�, o) ⊧ fΔ) ⟹

o ⊧ modenext = Off
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Fig. 8  Example run of the active learning algorithm for a Home Climate Control Cooling system with 
observable system variables X = {modenext, inp.temp, inp.humid, T_thresh, H_thresh}
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The subsequent completeness hypothesis check yields falsifications for conditions  (21) 
and (22). The SAT procedure returns the counterexamples provided in Fig. 8a for the two 
conditions respectively. These are found to be not spurious.

The counterexamples exemplify the following system behaviours that are missing 
from the abstraction in Fig. 8a: 

1. The first counterexample corresponding to a falsification of condition (21) indicates that 
after the system switches from the Off mode to the On mode ( ̂s1 → ŝ2 ), the system may 
remain in the On mode.

2. The second counterexample corresponding to a falsification of condition (22) indicates 
that when the system is in the Off mode after switching from the On mode ( ̂s2 → ŝ2 ), 
the system may switch back to the On mode.

The counterexamples are used to construct new traces that serve as additional inputs to 
the model-learning component, which in turn generates the model in Fig.  8b. Note that 
the new model now captures the system behaviours identified to the missing from the old 
model: ŝ1 → ŝ2 → ŝ4 captures missing behaviour 1 as above and ŝ2 → ŝ3 → ŝ2 captures 
missing behaviour 2.

The abstractions generated for subsequent iterations of active learning are provided in 
Fig. 8c, d. All conditions extracted from the abstraction in Fig. 8d evaluate to true, i.e., 
� = 1 . Thus, the algorithm terminates, returning the model in Fig. 8d as the final generated 
system overapproximation.

3  Evaluation and results

3.1  Implementation

We implement the active learning approach using the Trace2Model (T2M) [33, 36] tool as 
the model-learning component. T2M generates symbolic finite state automata from traces 
using a combination of SAT and program synthesis [36].

We use the C Bounded Model Checker (CBMC v5.35) [15] to implement the proce-
dure that evaluates degree of completeness for a learned model. The SAT solver in CBMC 
is used to check the truth value of each extracted condition. CBMC is used to perform 
k-induction [52] to verify if the counterexample for a condition check is spurious. This 
is done by asserting that there does not exist a concrete system path corresponding to the 
counterexample. If both the base case and step case for k-induction hold, it is guaranteed 
that the counterexample is spurious, while a violation in the base case indicates other-
wise. However, in the event of a violation only in the step case, there is no conclusive evi-
dence for the validity of the counterexample. Since we are interested in generating a sys-
tem overapproximation, we treat such a counterexample as we would treat a non-spurious 
counterexample.

We use a constant value of k = 10 for our experiments. Note that we only discard those 
counterexamples that k-induction guarantees to be spurious. This ensures that, irrespective 
of the value used for k, all non-spurious counterexamples are used for subsequent model-
learning iterations.

(22)(o� ⊧ modenext = Off ∧ (o�, o) ⊧ fΔ) ⟹ o ⊧ modenext = Off
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3.2  Benchmarks

To evaluate the algorithm, we attempt to reverse-engineer a set of LTSs from their respec-
tive C implementations. For this purpose, we use the dataset of Simulink Stateflow example 
models [55], available as part of the Simulink documentation. We select this dataset since 
these example models are state machines that can serve as ground-truth for our evaluation.

For each Stateflow example, we use Embedded Coder (MATLAB 2018b) [53] to auto-
matically generate a corresponding C code implementation. The generated C code is used 
as the system M in our experiments. To collect traces, we instrument the implementation 
to observe a set of program variables X. The set of observations Ω is the set of valuations 
for all variables x ∈ X.

The dataset of Stateflow example models comprises 51 examples that are available in 
MATLAB 2018b. Out of the 51 Stateflow examples, Embedded Coder fails to generate 
code for 7; a total of 13 have no sequential behaviour and 3 implement Recursive State 
Machines (RSM) [3].1 We use the remaining 28 examples for our evaluation.

The majority of the Stateflow example models feature predicates on the transition edges. 
Some of the Stateflow example models are implemented as multiple parallel and hierar-
chical state machines. Our goal is to reproduce each of these state machines from traces, 
and we therefore obtain a total of 45 target state machines from the 28 Stateflow exam-
ples. These serve as our benchmarks for evaluation. A mapping of each Stateflow example 
model to its set of target state machine benchmarks is provided in Table 3 in the Appendix. 
The algorithm implementation and benchmarks are available online [34].2

3.3  Experiments and results

For each benchmark, we generate an initial set of 50 traces, each of length 50, by executing 
the C implementation with randomly sampled inputs. This set of traces and the C imple-
mentation are fed as input to the algorithm, which in turn attempts to learn an abstraction 
overapproximating system behaviours. The results are summarised in Table 1.

Each entry in the table from B1 to B45 corresponds to a target state machine that we 
wish to reverse-engineer. These are grouped by the Stateflow example that they belong 
to. We record the number of model learning iterations #iter , the number of states |Ŝ| and 
degree of completeness � for the final abstraction, the total runtime in seconds T(s) and 
the percentage of the total runtime attributed to model learning, denoted by %Tm . We also 
record the cardinality of the set X (the number of variables) for every Stateflow model. We 
set a timeout of 24 h for our experiments. For benchmarks that time out, we present the 
results for the candidate abstraction generated right before timeout.

Since the algorithm is designed to generate overapproximating system abstractions, the 
inferred model for a target state machine could admit traces that are outside the language 
of target machine, and therefore may not be accurate. We assess the accuracy of the final 
generated system overapproximation by assigning a score d computed as the fraction of 
state transitions in the target state machine that match corresponding transitions in the 

1 In this work we learn abstractions as FSAs (Sect. 2.3), which are known to represent exactly the class of 
regular languages. Reverse-engineering an RSM from traces requires a modelling formalism that is more 
expressive than FSAs, such as Push-Down Automata (PDA) [22], which is outside the scope of this work. 
In the future, we wish to look at extensions of this work to generate RSMs.
2 An archive of the sources used for the experiments in this article is available here [35].
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abstraction we generate. This is done by semantically comparing the corresponding transi-
tion predicates in the target state machine and the abstraction using CBMC. For hierarchi-
cal Stateflow models, we flatten the hierarchy and compare the abstraction with the flat-
tened state machine.

3.3.1  Runtime

The active learning algorithm is able to generate overapproximations in under 12 min for the 
majority of the benchmarks. For the benchmarks that take more than 1 h to terminate, namely 
B11 and B12, we see that the model checker tends to go through a large number of spurious 
counterexamples before arriving at a non-spurious counterexample for a condition falsification. 
This is because, depending on the size of the domain for the variables x ∈ X , there can be a large 
number of possible valuations that falsify an extracted condition, of which very few may actually 
correspond to a concrete system trace. In such cases, runtime can be improved by strengthening 
the conditions with domain knowledge to guide the SAT solver towards non-spurious counterex-
amples. For the B5 benchmark, the SAT solver takes a long time to check each condition. This is 
because the implementation features several operations, such as memory access and array opera-
tions, that especially increase the complexity of the SAT problem and the solving runtime.

3.3.2  Accuracy of the generated models

The algorithm terminates when � = 1 and therefore, by Theorems 1 and 2 the algorithm 
is guaranteed to generate an overapproximation on termination. For the benchmarks that 
terminate, the generated abstraction is found to accurately capture the behaviour of the cor-
responding state machine ( d = 1).

3.3.3  Impact of the initial sample

As described in Sect. 2.2, in each learning iteration i, L(�Mi) ⊇ TCEi
∪ TCEi−1

∪… ∪ TCE1
∪ T  

and TCEi
∩ L(M̂i−1) = � . The algorithm terminates when L(�Mi) ⊇ L(M) . The number of 

learning iterations depends on |L(M)⧵L(M̂0)| , where M̂0 is the abstraction generated 
from the initial trace set T .

To evaluate the impact of the seed traces on the number of iterations that the algorithm 
requires, we have run our experiments without any seed traces, i.e., using L(M̂0) = � . We 
observe that on an average the number of iterations increases ≈ 5 times compared to the 
number of iterations reported in Table 1.

3.4  Comparison with random sampling

We performed a set of experiments to check if random sampling is sufficient to learn 
abstractions that admit all behaviours. A million randomly sampled inputs are used to exe-
cute each benchmark. Generated traces are fed to T2M to passively learn a model. For 
≈ 29% of the benchmarks, random sampling fails to produce a model that admits all sys-
tem behaviours (𝜌 < 1).
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Table 1  Results of experimental evaluation of the active learning algorithm

Our Algorithm Random Sampling
|X|

#iter |Ŝ| ρ d T (s) %Tm |Ŝ| ρ d T (s)

B1 4 8 5 1 1 684.1 35.3 4 0.2 0.1 38.2

B2 7 3 1 1 54.3 44.3 3 0.8 0.7 64
B3

5
6 5 1 1 90.1 50.8 5 0.9 0.6 89.5

B4 3 2 3 1 1 11.5 44.3 4 1 1 56.5

B5 3 1 1 0.5 0.2 ——timeout—— 2 0.5 0.4 31

B6 7 1 2 1 1 4.9 17.7 2 1 1 72.3

B7 2 3 1 1 17 21.3 3 1 1 33.9
B8

5
3 3 1 1 360.9 1.4 3 1 1 35.2

B9 3 9 4 1 1 162.1 64.6 3 0 0.2 52.9

B10 2 1 4 1 1 8.8 47.9 4 1 1 67

B11 19 6 1 1 ≈20.8 h 2.1 12 0.3 0.8 953.7
B12 9 5 1 1 ≈4.4 h 0.5 7 1 1 282.8
B13 1 4 1 1 10.9 33.9 4 1 1 416.1
B14 8 5 1 1 695.6 49.2 5 1 1 876.9
B15

13

1 2 1 1 4.6 19.4 2 1 1 138

B16 2 6 1 1 123.5 13.4 6 0.9 0.8 966
B17 1 4 1 1 7.8 41.1 4 1 1 70.6
B18

6
4 5 1 1 45.7 33.6 5 0.4 0.3 107.8

B19 11 3 5 1 1 49.1 48.4 8 0.8 0.8 105.6
B20 11 4 4 1 1 39 43.2 6 1 1 81.8

B21 6 5 4 1 1 71.1 33.8 5 0.6 0.8 72.4

B22 8 4 1 1 260.4 37.4 4 0.6 0.6 793.1
B23 1 3 1 1 7.3 22.1 3 1 1 503.3
B24

16
1 3 1 1 7.1 16.4 3 1 1 691.5

B25 14 4 1 1 386.3 38.4 4 0.9 0.8 1248.3
B26 1 3 1 1 7.4 16.7 3 1 1 1188.3
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3.5  Threats to validity

The key threat to the validity of our experimental claim is benchmark bias. We have 
attempted to limit this bias by using a set of benchmarks that was curated by others. Fur-
ther, we use C implementations of Simulink Stateflow models that are auto-generated 
using a specific code generator. Although there is diversity among these benchmarks, our 
algorithm may not generalise to software that is not generated from Simulink models, or 
software generated using a different code generator.

While the active-learning implementation used for our experiments produces an equiva-
lent model ( d = 1 ) for the benchmarks that terminate, there is no formal guarantee that the 
algorithm delivers this in all cases. The accuracy of generated models may vary depending 

Table 1  (continued)

Our Algorithm Random Sampling
|X|

#iter |Ŝ| ρ d T (s) %Tm |Ŝ| ρ d T (s)

B27 1 3 1 1 7.8 16.3 3 1 1 1974.2

B28 2 1 2 1 1 2.9 29.8 2 1 1 29.6

B29 3 3 7 1 1 52.8 66.8 9 1 1 124

B30 2 1 3 1 1 5.9 28.2 3 1 1 52.8

B31 3 5 3 1 1 34.6 27.7 4 1 1 35.9

B32 2 6 5 1 1 62.8 53.3 5 1 1 88.2

B33 4 2 3 1 1 10.7 40.4 4 0.6 0.7 99.3

B34 2 1 4 1 1 4.5 38.1 4 1 1 32.1

B35 3 4 5 1 1 47.4 56 7 1 1 89.1

B36
1

1 1 1 1 142 0.4 1 1 1 21.8
B37 1 3 1 1 141.5 0.7 3 1 1 25.5

B38 2 6 4 1 1 78.9 15.4 4 1 1 36

B39 3 1 4 1 1 7.8 32 4 1 1 41.5

B40 2 3 1 1 116.7 3.4 4 1 1 38.9
B41

4
2 5 1 1 157.8 4.5 6 1 1 47.4

B42 2 1 4 1 1 4.2 41.2 4 1 1 34.8

B43 2 4 1 1 20.6 56.8 4 1 1 60.1
B44 2 4 1 1 19.9 48 4 1 1 71.9
B45

8
1 3 1 1 4.2 24 3 1 1 43

The bold is meant to highlight the benchmarks for which the algorithm was able to generate complete mod-
els
The dataset includes another implementation of this system with similar results. We present the results for 
only one of them
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on the algorithm used as the model-learning component and its ability to consolidate trace 
information into symbolic abstractions. The procedure to evaluate the degree of complete-
ness for a learned abstraction only formally guarantees the generation of a system overap-
proximation on algorithm termination.

For complex systems, model checking for counterexample analysis as described in 
Sect. 2.6 can be computationally expensive in practice. Here, simulation-based techniques 
[18, 50] could be a pragmatic alternative to explore system paths to check if the observa-
tion in the counterexample is reachable.

4  Related work

4.1  Overview

Active model-learning implementations largely consist of two components: a model-learn-
ing algorithm that generates a model from a set of traces, and an oracle that evaluates the 
learned model to identify missing and/or wrong behaviours.

The state-merge [8, 27, 40] algorithm and query-based learning [4, 32, 49] are popu-
lar choices for the model-learning component. State-merge algorithms reverse-engineer 
abstractions by constructing a Prefix Tree Acceptor (PTA) from the traces and identifying 
equivalent states to be merged in the PTA. The L* algorithm forms the basis of query-
based active learning, where the learning algorithm poses equivalence and membership 
queries to an oracle. The responses to the queries are recorded into an observation table, 
that is eventually used to construct an automaton.

The oracle for active learning can be implemented as a black-box or a white-box proce-
dure. One such black-box oracle implementation uses model checking, where pre-defined 
Linear Temporal Logic (LTL) system properties are checked against the generated model 
to identify wrong behaviours [26, 57, 59, 62]. For query-based learning in a black-box set-
ting, membership queries are implemented as tests on the system. Equivalence queries are 
often approximated using techniques such as conformance testing [18], through a finite 
number of membership queries. For a white-box oracle implementation, algorithms use 
techniques such as fuzzing [66] and symbolic execution [38].

In the broader literature of equivalence checking, particularly in the field of Electronic 
Design Automation (EDA), several techniques are used to prove if two representations or 
implementations of a system exhibit the same behaviour [6, 14, 25, 39, 44–46, 61]. Among 
these, the most closely related to our work are the techniques based on SAT and Bounded 
Model Checking (BMC). These techniques primarily check for input/output equivalence, i.e., 
assuming the inputs to each implementation are equal, the corresponding outputs are equal.

The SAT based techniques [25, 44] generally operate by representing the output for each 
implementation as a Boolean expression over the inputs. The clause obtained by an XOR 
of these expressions is fed to a SAT solver. If a satisfying assignment is found, it implies 

Table 2  Summary of related active model-learning implementations

Oracle Model-learning algorithm Generated model characteristics

State-Merge L* Symbolic Complete

Black-box [19, 59] [62, 64] [1, 2, 7, 10, 11, 26] [29, 48, 57, 60] [1, 2, 7, 10] [11, 29, 60]
White-box [9, 12, 17, 20] [23, 24, 30, 56] [9, 23] [9]
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that the outputs are not equal and thus the two implementations are not equivalent. In 
BMC-based equivalence checking [14, 39] the two implementations are unwound a finite 
number of times, and translated into a formula representing behavioural equivalence that is 
fed to a SAT solver. In [39] input/output equivalence is verified on abstract overapproxima-
tions of the implementations. Equivalence is modelled as a safety property that is checked 
using CEGAR on the product of the abstract models. Counterexample analysis for CEGAR 
is performed by simulating the abstract counterexample on the concrete model using BMC.

In this section, we will primarily focus on equivalence checking in the context of active 
model learning. There are many active learning techniques that use various combinations 
of model learning algorithms and oracle implementations discussed above. In this work, we 
described an algorithm that uses a white-box oracle implemented using SAT solving and 
model checking, that when combined with a symbolic-model learning algorithm can learn 
expressive overapproximations for a system. A summary of related active learning imple-
mentations is provided in Table 2. In the following sections we describe these techniques in 
detail and compare them in terms of generated model completeness and expressivity.

4.2  Learning system overapproximations

State-merge algorithms are predominantly passive and generated abstractions admit only 
those system behaviours exemplified by the traces [27, 40, 41, 63, 65]. One of the earli-
est active algorithms using state-merge is Query-Driven State Merging (QSM) [19], where 
model refinement is guided by responses to membership queries posed to an end-user. 
Other active versions of state-merge use model checking [59, 62] and model-based testing 
[64] to identify spurious behaviours in the generated model. In [59, 62] a priori known LTL 
system properties are checked against the generated model. Counterexamples for property 
violations serve as negative traces for automaton refinement. In [64], tests generated from 
the learned model are used to simulate the system to identify any discrepancies. However, 
abstractions generated by these algorithms are not guaranteed to accept all system traces.

Query-based learning algorithms, such as Angluin’s L* algorithm and its variants [5, 
32, 37, 51], can in principle generate exact system models. But the absence of an equiva-
lence oracle, in practice, often restricts their ability to generate exact models or even sys-
tem over-approximations. In a black-box setting, membership queries are posed as tests on 
the system. The elicited response to a test is used to classify the corresponding query as 
accepting or rejecting. Equivalence queries are often approximated through a finite number 
of membership queries [2, 11, 51] on the system generated using techniques such as con-
formance testing or random walks of the hypothesis model.

An essential pre-requisite to enable black-box model learning is that the system can be 
simulated with an input sequence to elicit a response or output, such as systems modelled 
as Mealy machines or register automata. Moreover, obtaining an adequate approximation 
of an equivalence oracle may require a large number of membership queries, that is expo-
nential in the number of states in the system. The resulting high query complexity con-
strains these algorithms to learning only partial models for large systems [28, 31].

One way to address these challenges is to combine model learning with white-box tech-
niques, such as fuzzing [56], symbolic execution [9, 24, 30] and model checking [17, 20], 
to extract system information at a lower cost. But, these are not always guaranteed to gen-
erate system overapproximations.

In [56], model learning is combined with mutation based testing that is guided by code cover-
age. This proves to be more effective than conformance testing, but the approach does not always 
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produce complete models. In [24, 30], symbolic execution is used to answer membership queries 
and generate component interface abstractions modelling safe orderings of component method 
calls. Sequences of method calls in a query are symbolically executed to check if they reach an a 
priori known unsafe state. However, learned models may be partial as unsafe method call order-
ings that are unknown to the end user due to insufficient domain knowledge are missed by the 
approach. The Sigma* [9] algorithm combines L* with symbolic execution to iteratively learn an 
over-approximation in parallel to the models learned using L*. The algorithm terminates when 
the hypothesis model equals the over-approximation, and therefore generates exact system mod-
els. In [17, 20], model checking is used in combination with model learning for assume guaran-
tee reasoning. The primary goal of the approach is not to generate an abstract model of a compo-
nent and may therefore terminate before generating a complete model.

Very closely related to our work are the algorithms that use L* in combination with black-
box testing [48] and model checking [26, 57]. The latter use pre-defined LTL properties, simi-
lar to [59, 62], that are model-checked against the generated abstraction. Any counterexamples 
are checked with the system. This either results in the conclusion that the system does not sat-
isfy the property or a refinement of the abstraction to remove incorrect behaviours. Black-box 
testing [48] may be a pragmatic approach to identify missing behaviours for an abstraction by 
simulating the learned model with a set of system execution traces. However, it is not guaran-
teed that the model admits all system traces, as this requires a complete set of execution traces.

4.3  Learning symbolic models

An open challenge with query-based active model learning is learning symbolic abstrac-
tions. Many practical applications of L* [12, 17] and its variants are limited to learning 
system models defined over an a priori known finite alphabet consisting of Boolean events, 
such as function calls. Maler and Mens developed a symbolic version of the L* algorithm 
[42, 43] to extend model inference to large alphabets by learning symbolic models where 
transitions are labelled with partitions of the alphabet.

In [1], manually constructed mappers abstract concrete values into a finite symbolic 
alphabet. However, different applications would require different mappers to be manually 
specified, which can be a laborious and error prone process. The authors in [2] propose a 
CEGAR-based method to automatically construct mappers for a restricted class of Mealy 
machines that test for equality of data parameters, but do not allow any data operations. In 
[29], CEGAR is used for automated alphabet abstraction refinement to preserve determin-
ism in the generated abstraction. Given a model, the refinement procedure is triggered by 
counterexamples exposing non-determinism in the current abstraction.

The MAT* algorithm [5] generates symbolic finite automata (SFA), where the transi-
tions carry predicates over a Boolean algebra that can be efficiently learned using mem-
bership and equivalence queries. The input to the algorithm is a membership oracle, an 
equivalence oracle and a learning algorithm to learn the Boolean algebra of the target SFA. 
The algorithm has been used to learn SFAs over Boolean algebras with finite domain, the 
equality algebra, a Binary Decision Diagram (BDD) algebra and SFAs over SFAs that 
accept a finite sequence of strings. But, designing and implementing oracles for richer 
models such as SFAs over the theory of linear integer arithmetic is not straightforward, as 
it would require answering queries comprising valuations of multiple variables, some of 
which could have large and possibly infinite domains.

In [7], an inferred Mealy machine is converted to a symbolic abstraction in a post-pro-
cessing step. The algorithm, however, is restricted to learning models with simple predicates 
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such as equality/inequality relations. The algorithm in [60] is restricted to generating Mealy 
machines with a single timer. Sigma* [9] extends the L* algorithm to learn symbolic models 
of software. Dynamic symbolic execution is used to find constraints on inputs and expres-
sions generating output to build a symbolic alphabet. But, behaviours modelled by the gener-
ated abstraction are limited to input–output steps of a software. Although the algorithm gen-
erates symbolic abstractions that are complete, as illustrated in Table 2, an implementation of 
the algorithm is not publicly available for an experimental comparison.

Fig. 9  IORA modelling a Home Climate Control Cooling system (B6)

Fig. 10  Abstractions generated for a Home Climate Control Cooling system (B6)
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Fig. 11  IORA modelling gear-shift logic for an Automatic Transmission Gear system (B1)
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Fig. 12  Abstractions modelling gear-shift logic for an Automatic Transmission Gear system (B1)
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The SL* algorithm [11] extends query-based learning to infer register automata that 
model both control flow and data flow. Register automata have registers that can store input 
characters, and allow comparisons with existing values that are already stored in registers, 
making them inherently more expressive that SFAs. RALib [10] implements the SL* algo-
rithm and supports the inference of Input–Output Register Automaton (IORA). An IORA 
is a register automaton transducer that generates an output action after each input action.

We attempted to reverse-engineer the Simulink state machine benchmarks modelled as 
IORA using RALib. We present the results obtained for benchmarks B1 and B6. We modelled 
state machine B6 of a Home Climate Control Cooling system as an IORA with input action 
check(inp.temp) that takes a parameter inp.temp , and output actions On() and Off() represent-
ing the operation modes of the system, as illustrated in Fig. 9. This is fed as the system-under-
learning (SUL) to RALib. The models generated by our active learning approach and RALib 
are provided in Fig. 10. Similar to our algorithm, RALib was able to accurately capture the 
system behaviours and generate an exact representation of the SUL, as is evident from Fig. 10b.

As illustrated in Fig.  11, we modelled state machine B1 of an Automatic Transmis-
sion Gear system as an IORA with input action check(timeabs, c1, c2) that takes parameters 
timeabs , c1 and c2 , and output actions One(), Two(), Three() and Four(), representing the four 
gears in the system. This is fed to RALib as the SUL. The abstractions generated by our 
algorithm and RALib are provided in Fig. 12. RALib was only able to generate the partial 
model illustrated in Fig. 12b before timing out at 10 h. Our algorithm, on the other hand, was 
able to generate a complete model (Fig. 12a) in less than 12 min, as evidenced in Table 1.

The basic tool implementation of RALib currently supports predicates featuring 
equality over integers and inequality over real numbers. In addition to equality/inequal-
ity relations, automaton transitions may also feature simple arithmetic expressions 
such as increment by 1 and sum. However, these are still in the development stage and 
only partially supported, often tailored to specific domains such as TCP protocols [21]. 
Owing to the high query complexity it is not obvious how the approach can be general-
ised to efficiently learn symbolic models over richer theories.

An extension of the SL* algorithm [23] uses taint analysis to improve performance 
by extracting constraints on input and output parameters. However, it currently does not 
allow the analysis of multiple or more involved operations on data values.

5  Use‑cases and future work

In this article, we have presented a new active model-learning algorithm to learning 
abstractions of a system from its execution traces. The generated models are guaranteed to 
admit all system traces defined over a set of observations.

This can be particularly useful when system specifications are incomplete, and so any imple-
mentation errors outside the scope of defined requirements cannot be flagged. This is a common 
risk when essential domain knowledge gets progressively pruned as it is passed on from one 
team to another during the development life cycle. In such scenarios, manual inspection of the 
learned models can help identify errors in the implementation. The approach can also be used 
to evaluate test coverage for a given test suite and generate new tests to address coverage holes.

In the future, we intend to explore these potential use-cases further. This will drive 
improvements to reduce runtime, such as ways to guide the condition check procedure 
towards non-spurious counterexamples. We intend also to investigate extensions of the 
approach to model recursive state machines.
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Appendix 1: List of benchmarks

See Table 3.

Table 3  Mapping of Simulink Stateflow example models to their benchmark number B # used in this article

#BemaNkramhcneB

1BrotarepOnoitaruDgnisUnoissimsnarTcitamotuA

BangBangControlUsingTemporalLogic
2BretaeHnI

3BnOnI

4BstnevEtnuoC

5BrellortnoCcnySemarF

6BkcolBelbathturTehTgnisUlortnoCetamilCemoH

KarplusStrongAlgorithmUsingStateflow
7BeniLyaleD

8BegarevAgnivoM

9BreludehcScigoLreddaL

01BenihcaMgnidneVylaeM

ModelingACdPlayerradio
UsingEnumeratedDataType

CdPlayer
BehaviourModel

DiscPresent B11

Overall B12

CdPlayer
ModeManager

ModeManager B13

On B14

Overall B15

ModelingALaunchAbortSystem
Abort

AbortLogic B16

Overall B17

81BcigoLedoM

ModelingAnIntersectionOfTwo
1wayStreetsUsingStateflow

91BdeRnI

02BllarevO

12BtrahcbuScimotAgnisUriaProsneStnadnudeRAgniledoM

ModelingASecuritySystem
InAlarm

On B22

Overall B23
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Table 3  (continued)

#BemaNkramhcneB

42BrooDnI

ModelingASecuritySystem
InMotion

Active B25

Overall B26

72BniWnI

82BtrahCwofletatSnIstnioPtseTrotinoM

92BthgiLcffiarTerooM

03BstrahcbuScimotAgnisUyBsetatSesueR

13BwofletatSgnisUsmhtiroglAknilumiSgniludehcS

23BtrahCerooMdnAylaeMgnisUnoitingoceRecneuqeS

33BmetsySgnieueuQrevreS

43BgnilbanEnehWsetatS

53BelbaTnoitisnarTetatSroFweiVxirtaMnoitisnarTetatS

Superstep
With Super Step B36

Without Super Step B37

83BreludehcScigoLlaropmeT

93BsrellortnoCgnihctiwSngiseDoTsnoitcnuFknilumiSgnisU

VarSize
SizeBasedProcessing B40

VarSizeSignalSource B41

24BataDdnAstnevEsegasseMneewteBsecnereffiDweiV

YoYoControlOfSatellite
InActive

ReelMoving B43

Overall B44

54BllarevO
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