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Abstract—Symbolic Trajectory Evaluation is an industrial-
strength verification method, based on symbolic simulation and
abstraction, that has been highly successful in data path verifica-
tion, especially microprocessor execution units. These correctness
results are typically obtained under certain assumptions about
how the verified hardware block’s inputs are driven, as well as
assumptions about the values of these inputs. For correct overall
operation, the hardware environment within which the verified
block resides is expected to satisfy these assumptions.
We describe a translation of these proof assumptions into

System Verilog Assertions. These are then used as checkers in
dynamic validation of the hardware environment within which
blocks verified by Symbolic Trajectory Evaluation operate. The
result is a pragmatic assume-guarantee method that increases
the quality and confidence in verification results, requires little
or no modification to the Symbolic Trajectory Evaluation proofs,
and leverages pre-existing dynamic validation infrastructure.

I. INTRODUCTION

Symbolic Trajectory Evaluation (STE) is a model check-
ing method based on symbolic simulation over a lattice of
abstract state sets [1]. STE’s combination of abstraction and
algorithmic efficiency is especially suited to verification of
datapaths and memories, and has been demonstrated on many
hard industrial verification problems [2], [3], [4]. A notable
success is the verification, using Intel’s Forte system [5], of
the entire execution cluster of the Intel Core 2 Duo and Core
i7 microprocessors [6], [7]
As with most property verification, STE correctness results
are usually conditional on various assumptions about the hard-
ware environment within which the verified block is operating.
Assumptions are made about how the inputs to the verified
block are driven. And it is often assumed that the values
presented on these inputs comply with certain constraints,
sometimes quite complex ones. Validating these assumptions is
part of the well-known assume-guarantee paradigm for com-
positional reasoning [8]. We separately verify a component
under assumptions and show that the environment guarantees
the assumptions hold.
In this paper, we describe an approach to assume-guarantee
validation in which components are verified with STE and
the environmental assumptions are translated into System
Verilog Assertions (SVA) and checked with dynamic vali-
dation. The methodology has been applied on a large scale
to STE verifications of a micro-controller unit, and of the

microoperations in the execution cluster of a recently-designed
Intel microprocessor.
This work encompasses methodology, theory, implementa-

tion, and experimental evaluation. Unrestricted STE is capable
of expressing quite complex and possibly implicit environ-
mental assumptions. Our methodological contribution is to
describe a restricted, standardized form for encoding STE
properties that enables us to translate their environmental
assumptions—whether explicit or implicit—into equivalent,
and efficiently checkable, SVA properties. Our theoretical
contribution is a simple solution to capturing the semantics
of certain uses of STE symbolic indexing variables in the
SVA language, where there is no similar concept, and in
arguing the soundness of the translation. We also describe
an implementation that employs the reflection features of the
Forte system’s functional scripting language [9] to allow both
STE verification and translation from a single source. Finally,
we present experimental results from extensive use of the
framework on the STE verification environment of a recently
taped-out Intel microprocessor.

II. SVA AND STE BACKGROUND

In this section, we give just enough background on SVA
and STE to enable the reader to follow the subsequent text
and to appreciate the problem our translation addresses. A
good tutorial introduction to SVA [10] can be found in [11]. A
detailed introduction to STE is given in [1], and a full account
of Intel’s Forte environment appears in [5].

A. Basic SVA Notation

System Verilog Assertions provide a rich specification lan-
guage for expressing assumptions and conditions on the values
that appear on circuit nodes over time. The most basic form
of assertions are expressions built up with operators over
bits (circuit nodes) and bit-vectors (vectors of circuit nodes).
These include negation (!), conjunction (&&), disjunction
(||), implication (<=), equality (==), and bit-vector relations
and functions such as comparison and addition. If E is an
expression and k a non-negative integer, then ‘$past(E, k)’
means the value E had k clock ticks ago. The expression
‘$stable(E)’ says that the current value of E is the same as
its value at the previous clock tick.
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An SVA sequence is an expression that describes a series
of events over time. A delay operator is used to specify
relative timing of events in the sequence. For example the
sequence ‘E1 ##k E2’ means that the expression E1 holds
and then, integer k clock ticks later, expression E2 holds.
Writing ‘##k E’ just means that the expression E holds k

clock ticks from now. A repetition may be employed to say that
an expression holds over some period of time. Writing ‘E [∗k]’
means that E holds for the next k clock ticks (including now).
Sequences can be combined using conjunction (‘and’) and

disjunction (‘or’). They can be inverted, to yield a property,
with ‘not’.

B. STE Verification and the Translation Problem

Verification properties in STE are called trajectory asser-
tions and have the form A ⇒ C, where A and C are formulas
of a simple linear-time temporal logic. The intuition is that
the antecedent formula A describes some initial conditions of
the circuit inputs and states, and the consequent C specifies
the values expected on circuit nodes as a response.
Atomic propositions in A and C take the form ‘P � n is 0’
or ‘P � n is 1’, where ‘n’ is the name of a circuit node and
the guard P is a formula of propositional logic. The guard
determines when the proposition is asserted: if P is true,
then the node n must have the value 0 (or 1 respectively);
if P is false, then n can have any value—including, for
abstraction efficiency, the don’t care value X. Antecedents and
consequents are essentially just conjunctions (using ‘ and ’) of
these atomic propositions, possibly modified by the next-time
temporal operator N.
The guards in a trajectory assertion are formulas of proposi-
tional logic over some Boolean variables. For each assignment
of truth-values to the variables, the assertion collapses into a
property checkable by three-valued simulation, with the don’t
care value X on all circuit nodes not forced to 0 or 1 by the
antecedent (or the circuit). Given a trajectory assertion, STE
simultaneously computes all these three-valued simulations,
and checks the results against the consequent C.
This arrangement gives STE a native capability for par-
titioned Boolean abstraction that, by the method known as
symbolic indexing [12], can be very effective on large but
‘semantically regular’ datapaths. A full discussion of symbolic
indexing and its automation can be found in [13] and [14].
This machinery can encode sophisticated abstraction
schemes with complex implicit environmental assumptions.
In the work of this paper, however, our methodology imposes
constraints on how STE properties are written in order to make
their assumptions easily translated into SVA. In the simplest
case, we deal with STE sub-formulas of the form

x � n is 1 and ¬x � n is 0

where x is a Boolean variable that appears nowhere else in
the formula and n is a circuit input node. This establishes
a one-to-one correspondence between x and n—the circuit
input n is ‘driven by’ the symbolic Boolean variable x. We
abbreviate this by writing ‘n is x’, and more generally allow

one to write ‘n is E’ for any propositional formula E. If a
unique, unconstrained Boolean variable is associated with each
circuit input in this way, then STE verification is essentially
just symbolic simulation.
Environmental assumptions can be added to this scheme by

using the parametric encoding [15] of Boolean constraints.
For example, if the antecedent of a two-input device is

a is x and b is y

we can make the assumption that at least one input is high by
using the parametric technique to verify this property under
the assumption x ∨ y. Using this method, any formula that
constrains the variables in an STE antecedent can be taken as
an environmental assumption.
In this simple example there is a one-to-one correspondence

between circuit nodes and variables, so it is easy to re-express
the assumption as an SVA expression over circuit nodes.
We just substitute nodes for corresponding variables, giving
the SVA expression a || b. The propositional disjunction, ∨,
becomes SVA disjunction, ||.
We wish, however, to support more subtle use of STE

than this—including limited forms of symbolic indexing for
abstraction efficiency. We commonly find, for example, STE
antecedents with guarded sub-formulas equivalent to

P � a is x and Q � b is x (1)

Now there isn’t a direct correspondence between variables and
nodes. Sometimes the variable x is associated with node a, and
sometimes with node b—and, if P and Q overlap, sometimes
with both. There is no obvious node name to replace occur-
rences in environmental assumptions of the variable x (or,
indeed, in the guards of other sub-formulas). Moreover, this
antecedent makes an implicit assumption about circuit nodes,
namely that the value on a is the same as the value on b when
P and Q both hold.
A general method to untangle completely unrestricted STE

antecedents and environmental assumptions into equivalent
SVA properties would be very complex. Our work therefore
places methodological restrictions on the form in which STE
antecedents are written. Part of our contribution—explained in
the sections that follow—is to propose a form that scales to
the large verifications done at Intel, is natural for engineers to
write, and allows symbolic indexing—while still admitting of
a fairly intuitive translation into SVA.

C. The 5-tuple Representation of Antecedents

The Forte implementation of STE is embedded in a func-
tional programming language, reFLect [9], similar to ML. STE
antecedents are represented by lists of 5-tuples of the form

(guard ,node, value, start , end)

where guard and value are formulas of propositional logic
(represented as BDDs), node is a node name (a string),
and start and end are non-negative integers. The meaning
is that if guard holds, then node has value during the
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time period from simulation cycle start up to but exclud-
ing simulation cycle end . So, for example, the 5-tuple list
[(P, a, x, 0, 1), (Q,b, x, 0, 1)] is the machine representation of
the STE antecedent (1) above. Our methodological restrictions
and translation are defined over these 5-tuple lists, which can
represent any STE antecedent formula.

III. STE PROOF ENVIRONMENT

Our target application is verification of micro-operation
(μop) execution by, for example, the execution (EXE) cluster
of a contemporary X86 microprocessor. We will call the region
of the full chip under verification the STE unit.
There are typically several thousand different μops, exe-
cuted in several sub-units of the STE unit and at several ports.
To organize and share STE proof code, μops are divided into
groups. The μops in a group are normally executed in the
same sub-unit and on the same port. Their STE antecedents
are therefore very similar. There can be several μop groups
for the same port.
For each UOP group, the STE antecedent and any accompa-
nying environmental constraints are divided into the following
components:

a) Timed assumptions: This is an STE 5-tuple list that
describes how inputs to the the STE unit are driven (over time)
when a μop is executed. Timed assumptions must be satisfied
by the post-reboot behaviour of the full chip—their validity as
STE assumptions is expected to be guaranteed by the hardware
that drives the inputs of the STE unit.
b) Timed restrictions: This is an STE 5-tuple list used

to ignore uninteresting full chip (and STE unit) behaviour
over time—behaviour we do not wish to verify in STE.
For example, if μop execution is interrupted by a reset or
if certain input validity signals are not asserted when μop
execution starts, then we don’t want STE to check correctness
of the output. Timed restrictions often set STE unit inputs to
constants. For example, we might make an input F to ignore
the STE unit’s behaviour for an incompletely implemented
feature that is invoked when that input is T. Such restrictions
are either temporary and will be removed at a later stage of
the design, or they will be used for case-splitting all possible
legal behaviours of the STE unit.

c) Global assumptions: These are conditions on Boolean
variables that, in the context of the STE antecedent, character-
ize relationships between values on the STE unit’s input that
should be satisfied by the post-reboot behaviour of the full
chip whenever a valid μop is executed. Some global assump-
tions may apply to only part of a μop group. Some global
assumptions characterize expected microcode behaviour. As
with timed assumptions, the validity of global assumptions
is expected to be guaranteed by the hardware that drives the
inputs of the STE unit.

d) Global restrictions: These are constraints on Boolean
variables that focus the proof on some interesting scenario
of the STE unit. This is mainly useful for case splitting.
For example, one might want to restrict the verification to a
particular group of μops. The condition that the executing μop

belongs to that group will be a global restriction on Boolean
variables representing the opcode of the μops. As with timed
restrictions, global restrictions may be used to ignore specific
behaviours of the STE unit temporarily.
The distinction between assumptions and restrictions is

pragmatic—assumptions are expected to be met by the operat-
ing environment (i.e. are the subject of our assume-guarantee
reasoning) and restrictions are not. The distinction between
timed and global is syntactic—timed constraints come from
5-tuples, and global constraints come from expressions over
Boolean variables.
In STE verification, the timed restrictions and assumptions

are taken together form the antecedent. The conjunction of
the global restrictions and assumptions constitutes a Boolean
constraint on STE variables that is taken as an assumption
using the parametric technique [15]. Thus the distinction
between assumptions and restrictions is irrelevant for the STE
proofs. On the other hand, the STE consequent is irrelevant
for the assume-guarantee method supported by our translation.

IV. STE TO SVA TRANSLATION

From the description above, it follows that the restrictions
can be violated by legal, full chip simulation traces. But for
the parts of traces that do violate the restrictions, the STE
unit’s output behaviour is (by definition) irrelevant, and STE
passes vacuously. In our assume-guarantee method, therefore,
the generated SVA must ignore the parts of full chip simulation
traces where any restriction is violated.
This is done by using the SVA property generated from the

restrictions (timed and global) as a trigger for all the checker
properties generated from the assumptions (timed and global).
Every System Verilog Assertion we generate has the following
implicational form:

not trigger or checker

In our methodology, the trigger is the same for every generated
SVA for a group of μops. One or more checker properties
are built from each tuple in the timed assumptions and
from each global assumption. We observe that the translation
preserves abstraction, in the sense that whenever the STE proof
environment makes no assumption about the value on a circuit
node (i.e. that node gets value X in the STE simulation), the
generated SVA makes no constraint on the value of that node.

A. Preprocessing

Let A be the conjunction of all global assumptions and
restrictions. As a preprocessing step, we replace every tuple
(g, n, v, s, e) in the timed restrictions and timed assumptions
with (T, s, v, s, e) if A ⇒ g is a tautology, and omit the tuple
if A ∧ g is unsatisfiable. This is sound because the global
restrictions are part of the SVA trigger, and any violation of the
global assumptions will be caught by the assertions obtained
by translating them into SVA.
Similarly, let R be the conjunction of all global restrictions.

As a preprocessing step, we inspect each global assumption
g. If R ⇒ g is a tautology, we do not generate SVA for g; if
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R∧ g is unsatisfiable, we replace g with F. Such an assertion
would fail every time the simulation check is triggered, so
the STE-to-SVA translation immediately reports such global
assumptions.

B. Translation of Ground Tuples

A ground tuple is a 5-tuple (T, n, v, s, e) in which the guard
is true and v, the value on node n, is a Boolean constant, T or
F. If v is T, then the tuple is translated to the SVA sequence
##s n [∗e−s]: after a delay of s, node n is high for e−s time
units. Similarly, if v is F, the SVA sequence is ##s !n [∗e−s].

C. Handling STE Boolean Variables

The guard of any non-ground tuple in the timed restrictions
and timed assumptions will be a non-constant expression over
one or more Boolean variables. The value component may be
T, F, or an expression over some Boolean variables. Any of
these variables may occur in the propositional constraints that
constitute the global assumptions and restrictions.
As suggested in section II, our translation to SVA works
by finding, for each Boolean variable used in the STE verifi-
cation, a group of circuit nodes that can serve as proxies, or
representatives, for that variable in the corresponding SVA ex-
pressions. Global assumptions and restrictions are re-expressed
as SVA constraints on those circuit nodes. Likewise, explicit
or implicit relationships among values in the circuit imposed
using variables in STE are re-expressed as SVA properties over
circuit nodes.
To make this work, we impose some methodological con-
straints on the way in which STE antecedents are written. We
say that a variable x immediately depends on y if there is a
tuple with x in its value and y in its guard. We introduce a
dependency relation between variables as the transitive closure
of immediate dependency. Using this concept, we impose the
following restrictions on the usage of variables in antecedents.
Within each group of μops, the following hold:

• Each Boolean variable, whether in the antecedent or in the
global assumptions and restrictions, ‘drives’ at least one
input node of the STE unit. That is, each variable is the
entire value expression of at least one timed assumption
or timed restriction tuple.

• the dependency relation between variables is a strict
partial order. Variable dependency defines a DAG.

The idea is to ensure that for every Boolean variable in STE
there is a circuit node that can be used as an SVA expression
in the translation that denotes the value of that variable. In
fact the conditions are a little more complex than the above,
because in STE Boolean variables can both drive nodes and be
used in expressions conditionally, depending on guards and the
global restrictions and assumptions. The general rule is that
whenever a variable is used, it must also be ‘defined’, in the
sense of driving a specific circuit node.
Both these conditions are methodological—STE works
without them, but then it is not amenable to the assume-
guarantee reasoning we’re trying to support. One way to deal
with variables that do not drive circuit nodes would be to

perform a case splitting on them. But this is not practical
because each case split can double the amount of generated
SVA. The acyclicity restriction ensures there is at least one
circuit node that can serve as a representative for each variable.

D. Finding Circuit Node Representatives for Variables

The fundamental element of our algorithm is translation of
propositional expressions over Boolean variables into equiv-
alent SVA expressions over circuit nodes. The mapping of
Boolean and bit-vector operations—negation, conjunction, bi-
nary addition, and so on—to corresponding SVA operations is
straightforward. Variable translation is handled as follows.
Let x be any variable that occurs, on its own, as the value

expression of any tuple in the timed restrictions or timed
assumptions. There may be several such tuples. For any x,
we partition the set of all such tuples into subsets T g

x , where
g is a distinguished maximal guard among all the guards of
tuples in the subset. More precisely, g is logically implied
by each of the guards of the tuples in T g

x . (If there is more
than one such maximal guard, we make an arbitrary choice).
Moreover, we suppose this partitioning is such as to ensure
that if we have any two subsets T g1

x and T g2

x , then g1 ∧ g2 is
unsatisfiable.
The idea is that when g holds, the node components of the

tuples in T g
x are all candidate representatives for the variable

x in our translation. We choose one such candidate as follows.
Let s(x, g) be the earliest start time of the tuples with a
maximal guard in T g

x , and let n(x, g) be the node component
of the tuple in T g

x with this earliest start time. (In case of ties,
we make an arbitrary choice.) Let f (for future) be any integer
greater than or equal to the end time of every tuple in T g

x for
all relevant guards g. We define a standard SVA ‘name’ for
the value of variable x when g holds as follows:

node(x, g, f) = $past(n(x, g), f − s(x, g))

Suppose, for example, that

T P
x = {(P, a, x, 2, 5), (Q,b, x, 1, 4)}

where Q ⇒ P . Then node(x, P, f) is the SVA expression
‘$past(a, f−2)’, for any f ≥ 4. The function of f is to
relativize time points with respect to a reference point of time
somewhere beyond the end of the relevant segment of the
STE simulation run for these tuples. We discuss this further
in section IV-H.
Given a Boolean expression P , we compute a family of
SVA translation instances as follows. Let VP = {x1, . . . , xk}
be the set of all variables in P , together with all the variables
they depend on, according to our dependency relation. For
each variable xi, where 1 ≤ i ≤ k, we choose a maximal
guard gi that appears in one of the tuples in which xi is the
value expression. Let f be any integer greater than or equal
to the end time of every tuple in every T g

x , for x ∈ VP and
all relevant guards g. We define a mapping from variables to
SVA expressions:

θf = {xi 	→ node(xi, gi, f) | 0 ≤ i ≤ k}
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Thus θf is determined by choosing a relevant maximal guard
for each variable that P depends on. For any Boolean formula
Q, we write Qθf to denote the translation of Q into an
SVA expression, with Boolean variables mapped to SVA sub-
expressions using θf and with the obvious replacement of
Boolean operations by SVA operations.
For a given Boolean expression P and a given θf defined

relative to P , we define a translation instance of P to an SVA
expression as follows:

exp(P, θf ) = ((g1θf && · · · && gkθf ) <= (Pθf ))

where g1, . . . gk are the guards chosen for the variables
x1, . . . , xk in defining θf . The methodological restriction that
variable dependency forms a DAG ensures that the domain of
θf covers all the variables that occur in g1, . . . , gk. We then
define an SVA sequence for P ,

seq(P, θf ) = ##f exp(P, θf ),

by applying a top-level delay operation ‘##f ’.
1) Conflicting Mappings: There may be many translations
of a given propositional formula P into an SVA sequence, one
for each choice of guards for the variables that P depends
on—i.e. one for each mapping θf we can construct. Our
overall translation needs to cover all relevant cases, but some
irrelevant cases may be eliminated as follows.
The formula P we are translating can be the guard or
value expression of a tuple, a global restriction, or a global
assumption. When P is a guard or a value component, we use
the conjunction R ∧ A of global restrictions and assumptions
to filter out mappings that are ruled out by them (‘conflicting
mappings’). If, for some selection of guards g1, . . . , gk, we
find that g1 ∧ . . . ∧ gk ∧ R ∧ A is unsatisfiable, then we do
not include the corresponding θf among the mappings we use
when computing relevant translation instances of P . Similarly,
when P is a global assumption, then we use the conjunction of
all global restrictions, instead of R∧A, to eliminate impossible
mappings.
We denote the set of all non-conflicting mappings for a
Boolean formula P by maps(P ), and we define

Exp(P, f) = &&θf∈maps(P )exp(P, θf )

Seq(P, f) = ##f Exp(P, f)

for any sufficiently large value of f .

E. Generating Equality Expressions for Variables

STE antecedents commonly drive several different circuit
nodes with the same variable. This encodes an implicit as-
sumption that our translation must capture, namely that the
same value appears on all the circuit nodes that are driven by
the same variable.
For a pair of tuples (g1, n1, x, s1, e1) and (g2, n2, x, s2, e2),
we define an equality constraint as follows:

##f

⎛
⎝

Exp(g1 ∧ g2, f)
<=

$past(n1, f−e1) == $past(n2, f−e2)

⎞
⎠

Note that here we need to use a reference time f and ‘past’
expressions, since we cannot write ##e1 n1 == ##e2 n2 in
SVA syntax.
Of course we simplify g1∧g2 when one of g1 or g2 implies
the other. And when g1 ∧ g2 is unsatisfiable, we optimize by
not generating an equality constraint for this pair.
1) Equality within timed restrictions: We divide the restric-

tions that have a variable as the value expression into groups,
according to the variable. For each group, with defining vari-
able x, we generate equality constraints as follows. Partition
the group into maximal subsets T gi

x , with 1 ≤ i ≤ k. For
each set T gi

x , generate an equality constraint between the tuple
with guard gi and every other tuple in the set. Then generate
an equality constraint between the tuple in T gi

x with guard gi

and the tuple in T
gj

x with guard gj , for 1 ≤ i < j ≤ k. The
SVA sequence conjunction of all these constraints is used as
a conjunct in the trigger.
2) Equality within timed assumptions: Similarly, we divide

the timed assumptions that have a variable as the value expres-
sion into groups by variable. Generate equality constraints that
link the node values of the tuples within each group, using a
partitioning by maximal guards as for the timed restrictions.
Each of these constraints serves as a checker property in the
SVA generated from the timed assumptions.
3) Equality relating timed restrictions and timed assump-

tions: Finally, we generate equality constraints for any vari-
able x that occurs as the value expression in the timed
restrictions and in the timed assumptions. The constraints are
generated according to the partitionings introduced above. For
each subset T ga

x of the timed assumptions and each subset
T gr

x of the timed restrictions, generate an equality constraint
between the tuple in T ga

x with guard ga and the tuple in T gr
x

with guard gr. The conjunction of all such constraints is used
as a conjunct in the trigger.

F. Generating SVA for Global Assumptions and Restrictions

Let R1, . . . , Rn be all the global restrictions. For each
1 ≤ i ≤ n, we generate the SVA sequence Seq(Ri, f). Note
that this sequence covers all possible mappings of variables to
nodes that arise from choosing combinations of guards for the
variables Ri depends on. We then include the SVA sequence
conjunction of all these sequences as a conjunct of the trigger.
Let A1, . . . , Am be all the global assumptions. For each

Ai with 1 ≤ i ≤ m, and for each θf in maps(Ai), we
generate a corresponding SVA sequence seq(Ai, θf ) as a
checker expression in the SVA generated by our translation.

G. SVA Properties for each Antecedent Tuple

For any tuple (g, n, v, s, e), we define its relevant variables
to be all variables that occur in g or v, plus the variables on
on which these depend. For each mapping θf covering all the
relevant variables of a given tuple, we generate one or more
SVA expressions as follows.
If the tuple has the form (g, n,T, s, e), i.e. the value

component is constant T, we generate the SVA property

not(Seq(g, f)) or (##s(n) [∗e−s])
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Similarly, if the tuple has the form (g, n,F, s, e) we generate

not(Seq(g, f)) or (##s(!n) [∗e−s])

These simply say, in SVA, that the nodes mentioned in these
tuples have the constant values given by the STE antecedent
within the stated windows of time.
For every tuple (g, n, x, s, e) with a variable x as its value

component, we generate the SVA property

not(Seq(g, f)) or (##s+1($stable(n)) [∗e−s−1])

This says only that the value on node n is stable over the
period during which it is driven by the variable x in STE;
linkage with ocurrences of x in other tuples is handled by the
equality constraints. We omit the generation of this stability
condition if e − s ≤ 1.
For tuples (g, n, v, s, e) where the value component v is not
a constant or a variable, we generate the SVA property

not(Seq(g, f)) or ##f($past(n, f − s) == vname)

where vname is a fresh SVA identifier defined to be equal to
Exp(v, f).
The SVA properties generated using these rules from the
tuples in timed restrictions all become conjuncts of the trigger.
Each SVA property generated from a timed assumption tuple
becomes a checker expression.

H. Summary Overview of the Algorithm

As already mentioned, the top-level SVA properties gener-
ated for assume-guarantee validation by our method are all of
the form ‘not trigger or checker ’. There is one global trigger
property per μop group, the conjunction of:

• all SVA properties generated from the tuples in the timed
restrictions (section IV-G),

• the equality constraints for variables within the timed
restrictions (section IV-E1),

• the equality constraints relating timed restrictions and
timed assumptions (section IV-E3), and

• SVA sequences for the global restrictions (section IV-F).

For each of the conjuncts in this trigger property, our
implementation chooses an appropriate value for the reference
time ‘f ’ of our translation. The efficiency of checking the
resulting SVA in simulation depends critically on the depth of
simulation required by the ‘past’ operators in our properties.
Our implementation therefore includes a complex algorithm
that aims to minimise f for each conjunct in the trigger.
In SVA syntax, the trigger property is written as a conjunc-
tion of the above constraints—is illustrated by this example:

property trigger ;
@(‘SYS CLK )

((##10($stable(opcode[2 : 0])) [∗1]) and
(##5(!reset) [∗12]) and
(##7(uop valid) [∗2]) and
##10(uop group condition))

endproperty

This aligns the time units within our conjunct sequences with,
SYS CLK , which is the reference clock in the system.
The individual checker properties comprise:
• each SVA property generated from the tuples in the timed
assumptions (section IV-G),

• the equality expressions for variables within the timed
assumptions, (section IV-E2),

• the SVA sequence for each global assumption (sec-
tion IV-F).

Again, the reference time f for translation of each SVA
property is minimised for simulation efficiency.
For each checker, an SVA assertion is defined that says the

checker must hold triggered. Suppose the reference time f is
10. Then a typical example is the following stability property
for the tuple (T, output, variable, 4, 9):

output-stability-assertion : assert property

not trigger or ##10($stable($past(output, 5)) [∗4]

A pragmatic optimization, in the default flow, is that we
do not generate SVA corresponding to STE tuples that drive
clocks. (In STE verifications, clocks need to be driven explic-
itly by the antecedent.) If the clocks do not behave correctly,
this will be caught by other validation activities.

V. IMPLEMENTATION

Our translation method is implemented within Intel’s Forte
system [5]. Forte is essentially a programming environment
based around the reFLect functional programming language [9],
and large-scale STE verification efforts are to a great degree
a programming (or scripting) activity in nature. STE model
checking is invoked through reFLect library function calls,
and trajectory assertions for verification (lists of 5-tuples) are
generated by writing functional programs that compute them.
Our translation is also implemented as a reFLect functional pro-
gram that computes SVA texts from lists of 5-tuples together
with the Boolean expressions stating global restrictions and
assumptions.

A. Usage of Reflection

The STE proof environment contains calls to functional
program code that generate many Boolean formulas for each
μop group being verified—guards, value expressions, global
assumptions, and global restrictions. This code is user-defined
and of arbitrary complexity, and therefore unsuitable as the
source for our translation into SVA. On the other hand, the
resulting formulas are represented in reFLect, and passed to the
STE model checking engine, as BDDs (or, optionally, a form
of AIGs [16]). This makes them too low-level for translation
into SVA—once we have evaluated down to a BDD, much
useful structure is lost and compact translation is difficult.
Our implementation solves this problem by exploiting the

reflection features of reFLect to ‘intercept’ the evaluation of
function calls that generate Boolean formulas at a stage suit-
able for translation into SVA. The reFLect language includes
a primitive datatype, term, whose elements are the abstract
syntax trees of reFLect programs themselves. Functions can
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take terms as arguments, analyse their structure, and return
terms as results, in any programmable way. We exploit this to
replace the BDDs that occur in 5-tuples by terms that represent
syntax of the reFLect function calls that generate these BDDs,
at a level of elaboration suitable for translation to SVA.
Suppose there is a reFLect function, xor say, that normally
computes a BDD, but which we wish our translation to see.
We overload the reFLect function identifier ‘xor’ with an
alternative version that takes terms, rather than BDDs, as
arguments and produces the reFLect syntax tree consisting of an
application of the xor function to these terms. This alternative
xor builds an exclusive-or expression rather than a BDD. We
do this for all functions we want to stop evaluation at—i.e.
all those functions that we wish to form the vocabulary for
the source language of our translation to SVA. The arbitrarily
complex STE proof environment built on these primitives will
then, through overloading, have two interpretations—one that
computes 5-tuples with BDDs, for STE, and one that computes
5-tuples with terms for translation into SVA.
By this method we are able to have a single Forte source
for both running STE and generating SVA. Verification engi-
neers need to make very few changes to their existing STE
environment to enable this new flow. Moreover we ensure
that the Boolean expressions we translate are at a suitable
abstraction level for to produce compact, efficiently checkable,
and human-readable SVA.

B. Vectorization

Primitive STE antecedents express everything in terms of
individual bits, and it is difficult to ensure that the STE
proof environment keeps bit-vectors intact through to the level
at which translation to SVA begins. As a second step in
preprocessing, therefore, we perform vectorization—grouping
of the nodes of STE tuples that belong to the same bit-vector.
This enables much more compact and efficient SVA to be
generated, with vector operations instead of bit-level ones.
Tuples whose nodes belong to the same vector (we can tell
from their names) and whose guards are the same are merged
into a vector tuple (g, �n,�v, s, e). We do this whenever all
the bits of �v are variables whose names indicate they belong
together, or all the bits of �v are T or F. Constant vectors are
translated to hexadecimal numbers in SVA.

VI. EXPERIMENTAL RESULTS

Our assume-guarantee mechanism has been used at Intel on
two major examples, a micro-controller unit, and μop execu-
tion in the execution cluster of a recently-designed processor.
We give some results from the second of these.
SVA properties were generated and checked by dynamic
validation for every μop group (except multiplication and
division) in the STE proof environment of the execution
cluster. A total of 36 μop groups were covered, comprising
1,035 μops in total. The number of μops per group ranged
from 1 to 111, with an average of around 29. A total of 3,616
SVA checker properties were generated, of which 3,061 were
from global assumptions, 471 were from constant assignment

Fig. 1. Runtime per SVA Property Generated for EXE Cluster μop groups.

tuples, and 84 were from equality constraints. There were
no equality constraints relating timed restrictions and timed
assumptions, and no non-trivial stability constraints—these
parts of our translation were tested in other exercises.
VCS, a 3-valued simulator from Synopsys, was run on

all 3,616 SVA checker properties in one VCS session with
173 cluster level tests. The runtime was approximately 54.5
hours. Running the same tests on the execution cluster without
any SVA checks (just computing the waveforms of all nodes)
takes around 27 hours. So the overhead of checking the SVA
generated by our method was a factor of around 2.
The data in figure 1 show the runtime for our translation

(in seconds, on a log scale) per SVA property generated, for
each group. The average runtime is 15.4 seconds. The high
runtimes for some groups is due to the pre-processing steps
of our algorithms, which require intensive BDD computations.
This high runtime is compensated for by a reduction in SVA
properties generated, and so in VCS simulation time. For
example, in one of the groups taking over 500 seconds, the
number of timed restrictions was reduced by pre-processing
from 138 to 28, and number of timed assumptions from 86,970
to 1,991. For another group, the numbers are 92 to 24 for
timed restrictions and 86,790 to 1,969 for timed assumptions.
By contrast, for a μop group with runtime 11 seconds, the
numbers are 92 to 24 and 4,078 to 2,017.
Without vectorization, it is estimated we would have at

least two orders of magnitude more assertions, with very large
combinational expressions, and it would not be practical to
check all the SVA properties in VCS. More importantly, we
found a huge benefit in keeping symbolic the bit-vector that
codes for the instruction field of the μops in each group. In
the STE proofs, the μop code sometimes needs to be made
concrete for STE capacity reasons—essentially these proofs
case split over the different kinds of μops in each group. In
our translation, however, we code the μop instruction with
Boolean variables, and translate the group as a unit. (Groups
21–36 are too complex to handle in this way, and were run with
explicit μops.) A user who run all the sessions without this
symbolic UOP feature generated 100 times more properties,
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beyond the capacity of VCS.

A. STE Environment Violations and Bugs Found

1) Unused variables: Our methodology requires every vari-
able in the global assumptions to drive at least one circuit
node—our tool reports an error if this is violated. In our
experiments, there have been tens of such cases. Most of the
time such variables were redundant, and the STE proofs still
ran after cleaning up the global assumptions and restrictions
to eliminate them. In rare cases, debugging unused variables
revealed true environment violations, and after correcting
them the STE proofs failed. In such cases, debugging unused
variables lead to eliminating false positives in the STE proofs.
2) Assertion failures: When an assertion generated by our
translation fails in dynamic validation, there are two possi-
ble reasons. First, the assertion may simply be too strong,
and eliminating the corresponding assumption (implicit or
explicit) from the STE environment simply strengthens the
the STE proofs. Second, the assertion may catch a real
environment violation—a potential false positive in the STE
proofs. Running the generated SVA for the 173 cluster level
tests mentioned above revealed tens of wrong or redundant
assumptions in the STE environment.
3) Bugs found: After the cleanup stage, the 3,616 SVA
were run in VCS on 1,100 core level tests. Two bugs were
discovered in the design as a result of this activity. These
bugs were found in the interaction between the microcode
and the execution cluster, rather than in the execution cluster
itself. This is to be expected, because the assume-guarantee
activity supported by our work starts at a relatively late stage
of validation, when the bugs that have already been found
using STE have been fixed.

VII. CONCLUSION

There is, of course, a vast literature on assume-guarantee
reasoning in formal verification. In this paper, we have de-
scribed a pragmatic method for checking the assumptions of
STE proofs by dynamic validation in an SVA environment,
rather than checking them by proof. The method has reason-
able computational overhead, doesn’t require users to make
substantial modifications to their existing STE proofs, and has
shown useful benefits in experimental usage. We have found
that our methodological constraints are not burdensome in
practice, and that we can handle all the forms of environmental
specification that arise in industrial examples.
The task of verifying the quality of STE antecedents has
also been addressed at Intel by translation into checkers (in a
different language) with less aggressive vectorization [7]. This
translation imposes a different structuring methodology on the
STE environment that allows more flexible symbolic indexing,
but also rules out implicit equality constraints coded by tuples.
The assertions generated appear larger and significantly more
numerous than with our method. On the other hand, this
method can handle more complex STE proof environments.
Recently we have also used the SVA produced by our trans-
lation to generate stuck-at-tests for execution cluster outputs.

Here, the SVA properties were used as assumptions. This
experimental application aims to leverage the effort put into
creating an STE proof environment for post-silicon validation.
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