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Abstract—Read-Copy Update (RCU) is a scalable, high-
performance Linux-kernel synchronization mechanism that runs
low-overhead readers concurrently with updaters. Production-
quality RCU implementations are decidedly non-trivial and their
stringent validation is mandatory. This suggests use of formal
verification. Previous formal verification efforts for RCU either
focus on simple implementations or use modeling languages. In
this paper, we construct a model directly from the source code
of Tree RCU in the Linux kernel, and use the CBMC program
analyzer to verify its safety and liveness properties. To the best
of our knowledge, this is the first verification of a significant part
of RCU’s source code—an important step towards integration of
formal verification into the Linux kernel’s regression test suite.

I. INTRODUCTION

The Linux operating system kernel [1] is widely used,
for example in servers, safety-critical embedded systems,
household appliances, and mobile devices. Over the past 25
years, many technologies have been added to the Linux kernel,
one example being Read-Copy Update (RCU) [2].

RCU is a synchronization mechanism used to replace reader-
writer locks in read-mostly scenarios, allowing low-overhead
readers to run concurrently with updaters. Production-quality
implementations for multi-core systems must provide excellent
scalability, high throughput, low latency, modest memory
footprint, excellent energy efficiency, and reliable response
to CPU hotplug operations. They must therefore avoid cache
misses, lock contention, frequent updates to shared variables,
and excessive use of atomic read-modify-write and memory-
barrier instructions. Finally, implementations must cope with
the extremely diverse workloads and platforms of Linux [3].

RCU is now widely used in the Linux-kernel networking,
device-driver, and file-storage subsystems [3], [4]. There are
at least 75 million Linux servers [5] and 1.4 billion Android
devices [6], so a “million-year” bug can occur several times
per day across the installed base. Stringent validation of RCU’s
complex implementation is thus critically important.

Formal verification has already been applied to some aspects
of RCU design, including Tiny RCU [7], userspace RCU [8],
sysidle [7], and interactions between dyntick-idle and non-
maskable interrupts (NMIs) [9]. But these efforts either validate
trivial single-CPU RCU implementations in C or use special-
purpose languages such as Promela [10]. A major disadvantage
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of special-purpose modeling languages is difficult and error-
prone translation from source code. Other research has done
manual proof of simple RCU implementations [11], [12], but
this requires significant effort beyond translation. Linux kernel
releases are only about 60 days apart, and RCU changes with
each release. So any manual work must be replicated about
six times a year.

If formal verification is to be part of Linux-kernel RCU’s
regression suite, it must be scalable and automated. This
paper describes how to build a model directly from the Linux
kernel source code, and use the C Bounded Model Checker
(CBMC) [13] to verify RCU’s safety and liveness properties.

II. BACKGROUND

RCU is used in read-mostly situations. Readers run concur-
rently with updaters, so RCU maintains multiple versions of
objects and ensures they are not freed until all pre-existing
readers complete, after a grace period elapses. The idea is
to split updates into removal and reclamation phases [2]. The
removal phase makes objects inaccessible to readers, waits
during the grace period, and then reclaims them. Grace periods
need wait only for readers whose runtime overlaps the removal
phase. Readers starting after the removal phase ends cannot
hold references to any removed objects and thus cannot be
disrupted by objects being freed during the reclamation phase.

Modern CPUs guarantee that writes to single aligned pointers
are atomic, so readers see either the old or new version of
a data structure. This enables atomic insertions, deletions,
and replacements in a linked structure. Readers can then
avoid expensive atomic operations, memory barriers, and cache
misses. In the most aggressive configurations of Linux-kernel
RCU, readers use the same sequence of instructions that would
be used in a single-threaded implementation, providing RCU
readers with excellent performance and scalability.

A. Core RCU API Usage

The core API has five primitives [3], which we now introduce.
A read-side critical section begins with rcu read lock()

and ends with rcu read unlock(). When nested, they are
flattened into one critical section. Within a critical section, it
is illegal to block, but preemption is legal. RCU-protected data
accessed by a read-side critical section will not be reclaimed
until it completes. The function synchronize rcu() marks the
boundary between removal and reclamation, so must block
until all pre-existing read-side critical sections have completed.
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But synchronize rcu() need not wait for critical sections that
begin after it does. Updaters use rcu assign pointer() to
assign a new value to an RCU-protected pointer; readers use
rcu dereference() to fetch that RCU-protected pointer, which
can then be safely dereferenced, but only within the enclosing
read-side critical section.

B. Implementation of Tree RCU

The primary advantage of RCU is that it is able to wait for
a very large number of readers to finish without tracking them
all. Performance and scalability relies on efficient mechanisms
to detect when a grace period has completed. A simplistic
implementation might require each CPU to acquire a global
lock during each grace period, but this would not scale beyond
a few hundred CPUs. The fact that Linux runs on systems with
thousands of CPUs motivated the creation of Tree RCU.

We focus on the ‘vanilla’ API in a non-preemptible build
of the Linux kernel, specifically on rcu read lock(), rcu

read unlock(), and synchronize rcu(). The key idea is that
RCU read-side primitives are confined to kernel code and
do not voluntarily block. So when a CPU passes through a
quiescent state (context switch, is idle/offline, or runs in user
mode), that CPU’s prior read-side critical sections must have
finished. After each CPU has passed through a quiescent state,
the corresponding RCU grace period ends.

The key challenge is to know when all quiescent states are
reached. Recording quiescent states in one single location
would result in extreme contention on large systems. To
achieve excellent performance and scalability, Tree RCU uses
a hierarchy of data structures, each leaf of which records
the corresponding CPU’s quiescent states. Once a node’s
children have recorded a full set of quiescent states, that node
propagates the quiescent states up toward the root. When the
root is reached, a grace period has ended and notification is
propagated down. Shortly after a leaf receives this notification,
synchronize rcu() calls on the corresponding CPU will return.

Additional details on Tree RCU are available in [14].

III. VERIFICATION SCENARIO

We use the following example to show how Tree RCU
guarantees that all pre-existing read-side critical sections finish
before it allows a grace period to end.

int x = 0, y = 0, r1, r2;

void rcu_reader(void) { void rcu_updater(void) {
rcu_read_lock(); x = 1;
r1 = x; synchronize_rcu();
r2 = y; y = 1; }
rcu_read_unlock(); }

assert(r2 == 0 || r1 == 1); // after both functions return

This example also drives the verification, which checks for
violations of the assertion that follows the code.

We focus on the non-preemptible RCU-sched flavor. We
assume there are only two CPUs, and that CPU 0 runs
rcu reader() and CPU 1 runs rcu updater(). When the
system boots, the Linux kernel first initializes RCU, which

includes making the tree of rcu node and rcu data structures.
The rcu node structure records and propagates quiescent-state
information from leaves to the root, and also propagates grace-
period information from the root to the leaves. The per-CPU
rcu data structure detects quiescent states and handles RCU
callbacks for that CPU [14]. Our example has a one-level tree,
with one rcu node root and two rcu data children.

Suppose CPU 0 invokes rcu reader() while CPU 1 invokes
rcu updater(), setting x to 1 and then invoking synchronize

rcu(). This then invokes wait rcu gp(), an internal function
that uses callbacks to invoke wakeme after rcu() some time
after rcu reader() exits its critical section—i.e., after a grace
period. As its name suggests, wakeme after rcu() wakes up
wait rcu gp(); this returns, allowing synchronize rcu() to
return control to its caller.

This critical-section exit has no immediate effect. A later con-
text switch will invoke rcu note context switch(), which
invokes rcu sched qs() to record the quiescent state in a
field of the corresponding CPU’s rcu data structure. Later, a
scheduling-clock interrupt will invoke rcu check callbacks()

noting that this field is set. This will in turn cause rcu check

callbacks() to invoke raise softirq(RCU SOFTIRQ), which,
once the CPU has interrupts, preemption, and bottom halves
enabled, calls rcu process callbacks().

RCU’s softirq handler function rcu process callbacks()

first calls rcu check quiescent state() to report any recent
quiescent states on the current CPU (CPU 0). Since a quiescent
state has been recorded for CPU 0, rcu report qs rnp() is
invoked to traverse up the combining tree. It clears the first bit
of the root rcu node structure’s qsmask field, which indicates
which of this node’s children still need to report quiescent
states for the current grace period [14]. Since the second bit
for CPU 1 has not been cleared, the function returns.

Since synchronize rcu() blocks in CPU 1, it will result in
a context switch. This triggers a sequence of events similar to
that described above for CPU 1, which results in the clearing of
the second bit of the root rcu node structure’s ->qsmask field,
the value of which is now 0, indicating the end of the current
grace period. CPU 1 therefore invokes rcu report qs rsp()

to awaken the grace-period kernel thread, which will clean up
the ended grace period, and, if needed, start a new one.

Finally, rcu process callbacks() calls the function
invoke rcu callbacks() to invoke any callbacks whose grace
period has already elapsed, for example, wakeme after rcu(),
which will allow synchronize rcu() to return.

IV. MODELING RCU FOR CBMC

CBMC [13] implements bit-precise bounded model checking
for C programs. CBMC can show violation of assertions
or prove their safety under a given loop unwinding bound.
It translates an input C program into a formula, which is
passed to a SAT or SMT solver together with a set of error
states. If the solver determines the formula to be satisfiable, an
error trace is extracted from the satisfying assignment. CBMC
supports verification of concurrent programs over a range of
memory models, including SC, TSO, and PSO [15].



The remainder of this section describes building a model
from Linux kernel v4.3.6 Tree RCU’s code, which we verified
with CBMC. Model construction entailed stubbing out calls
to other parts of the kernel, removing irrelevant functionality
(such as idle-CPU detection), removing irrelevant data (such
as statistics), and conditionally injecting bugs (see Sec. V-A).
The Linux kernel environment and most of the source-code
changes are made through macros in separate files, reusable
across different versions of the implementation. The biggest
change in the source files is to use arrays to model per-CPU
data, which can be scripted [16]. The resulting model has 8,626
lines of C code. Around 900 lines model the Linux kernel
environment, which is much smaller than the actual Linux
kernel code used by the Tree RCU implementation. The model
contains assertions and can be also run as a user program,
which provides important validation of the model itself.

Initialization: Our model first invokes rcu init(). This then
invokes rcu init geometry() to compute the rcu node tree
geometry, rcu init one to initialize the rcu state structure
(which includes an array of rcu node structures organized
as a tree with rcu data structures at the leaves [14]), and
rcu cpu notify() to initialize each CPU’s rcu data structure.
This initialization tunes the data-structures to match the specific
hardware used. The model then calls rcu spawn gp kthread()

to spawn the grace-period kthreads discussed below.
Per-CPU Variables and State: We model per-CPU rcu data

as an array, indexed by CPU ID. It is also necessary to model
per-CPU state, including the currently running task and whether
or not interrupts are enabled. Identifying the running task
requires a (trivial) model of the Linux-kernel scheduler, which
uses an integer array indexed by CPU ID. Each element of
this array models an exclusive lock. When a task schedules
on a given CPU, it acquires the corresponding CPU lock, and
releases it when scheduling away. We currently do not model
preemption, so need to model only voluntary context switches.

A pair of integer arrays local irq depth and irq lock is
used to model CPUs enabling and disabling interrupts. Both
arrays are indexed by CPU ID, with the first recording each
CPU’s interrupt-disable nesting depth and the second recording
whether or not interrupts are disabled.

Update-Side API: Our model omits CPU hotplug and
callback handling, so we cannot use Tree RCU’s normal
callback mechanisms to detect the end of a grace period. We
therefore use a global variable wait rcu gp flag, initialized
to 1 in wait rcu gp() before the grace period. Because wait

rcu gp() blocks, it can result in a context switch; so the model
invokes rcu note context switch(), followed by a call to
rcu process callbacks() to inform RCU of the resulting
quiescent state. When the resulting quiescent states propagate to
the root of the tree, the grace-period kernel thread is awakened.
This kthread then invokes rcu gp cleanup(), the modeling of
which is described below. Then rcu gp cleanup() calls rcu

advance cbs(), which invokes pass rcu gp() to clear the
wait rcu gp flag flag. Inserting CPROVER assume(wait

rcu gp flag == 0) in wait rcu gp() prevents CBMC from
continuing execution until wait rcu gp flag is equal to 0,

thus modeling the needed grace-period wait.
Scheduling-Clock Interrupt and Context Switch: rcu

check callbacks() detects idle and usermode execution, as
well as invokes RCU core processing in response to state
changes. We model neither idle nor usermode execution,
so the only state changes are context-switches and the be-
ginnings and ends of grace periods. So we dispense with
rcu check callbacks(). Instead, we directly call rcu note

context switch() just after releasing a CPU, which in turn
calls rcu sched qs() to record the quiescent state. Finally,
we call rcu process callbacks(), which notes grace-period
beginnings and ends and reports quiescent states up RCU’s
combining tree.

Grace-Period Kernel Thread: rcu gp kthread() invokes
rcu gp init(), rcu gp fqs(), and rcu gp cleanup() to
initialize, wait for, and clean up after each grace period, respec-
tively. To reduce the size of the formula CBMC generates, in-
stead of spawning a separate thread, we invoke rcu gp init()

from rcu spawn gp kthread() and rcu gp cleanup() from
rcu report qs rsp(). Because we model neither idle nor
usermode execution, we need not call rcu gp fqs().

Kernel Spin Locks: CBMC’s CPROVER atomic begin(),
CPROVER atomic end(), and CPROVER assume() built-

in primitives are used to construct atomic test-and-set for
spinlock t and raw spinlock t acquisition and atomic reset
for release. We use GCC atomic builtins for user-space ex-
ecution: while ( sync lock test and set(lock, 1)) ac-
quires a lock and sync lock release(lock) releases it.

Limitations: We model only the fundamental parts of
Tree RCU, excluding quiescent-state forcing, grace-period
expediting, and callback handling. We assume all CPUs are
busy executing RCU related tasks, so we do not model
CPU hotplug, dyntick idle, RCU priority boosting, or thread-
migration failure modes in the Linux kernel involving per-CPU
variables. Nonetheless, we model real-world server-class RCU
code paths and data layout on systems with up to 16 CPUs
(default configurations) or up to either 32 or 64 CPUs (non-
default configurations on either 32-bit or 64-bit CPUs). We
also model scheduling-clock interrupts as function calls; as
discussed later, this results in failure to model one of the bug-
injection scenarios. Finally, our test harness passes through only
one grace period, so cannot detect failures involving multiple
grace periods.

V. EXPERIMENTS

We now discuss our experiments, which were performed
on a 64-bit machine running Linux 3.19.8 with eight Intel
Xeon 3.07 GHz cores and 48 GB of memory. The source
code of our RCU model and the experimental data are
available at https://github.com/lihaol/verify-treercu/releases/tag/
date18-camera-ready.

A. Bug-Injection Scenarios

We model non-preemptible Tree RCU, so each CPU runs
exactly one RCU task as a separate thread. On completion,
each task increments a global counter thread cnt, enabling
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the parent thread to verify the completion of all RCU tasks
using a statement CPROVER assume(thread cnt == 2). The
base case is the example in Sect. III, including the assertion,
which does not hold when RCU’s safety guarantee is violated:
read-side critical sections cannot span grace periods.We also
verify a weak form of liveness by inserting assert(0) after
the above statement. This assertion cannot hold, so it will be
violated if any grace period completes. This ‘failure’ is really
correct RCU behavior. But if the assertion is not violated, grace
periods never complete, indicating a liveness bug.

To validate our verification, we also run CBMC with
the following bug-injection scenarios.1 These are simplified
versions of bugs encountered in actual practice. Bugs 2–6 are
liveness checks and so use the aforementioned assert(0); the
others are safety checks, which use the assertion in Sect. III.

Bug 1: This makes synchronize rcu() return immedi-
ately (line 523 in tree plugin.h). Updaters then never wait
for readers, which should result in a safety violation.

Bug 2: This stops individual CPUs realizing that quiescent
states are needed, preventing the CPUs from recording them.
Grace periods then do not complete. In rcu gp init(), for
each rcu node structure, we set the field rnp->qsmask to 0
(line 1889 in tree.c). When rcu process callbacks() is
called, rcu check quiescent state() will invoke note

gp changes() that sets rdp->qs pending to 0, indicating that
RCU needs no quiescent state from the corresponding CPU.
So rcu check quiescent state() will return without calling
rcu report qs rdp(), preventing grace periods completing.

Bug 3: This is a variant of Bug 2, in which each CPU
remains aware that quiescent states are needed but incorrectly
believes it has already reported a quiescent state for the current
grace period. In note gp changes(), we clear rnp->qsmask
by adding rnp->qsmask &= ˜rdp->grpmask; in the last if code
block (line 1739 in tree.c). So rcu report qs rnp() never
walks up the rcu node tree, resulting in a liveness violation.

Bug 4: This is an alternative code change that gets the
same effect as Bug 2. In note gp changes(), we set the
rdp->qs pending field to 0 directly (line 1749 in tree.c).

Bug 5: CPUs remain aware of the need for quiescent states
but are prevented from recording theirs, so grace periods do
not complete. We modify function rcu sched qs() to return
immediately (line 246 in tree.c), so that quiescent states are
not recorded. Grace periods therefore never complete.

Bug 6: CPUs are aware of the need for quiescent states and
also record them locally, but CPUs are prevented from reporting
them up the rcu node tree, which again prevents grace periods
from completing. We modify rcu report qs rnp() to return
immediately (line 2227 in tree.c). This prevents RCU from
walking up the rcu node tree, thus preventing grace periods
from ending. This is a liveness violation similar to Bug 2.

Bug 7: This bug causes quiescent states to be reported
up the tree prematurely, before the CPUs covered by a given
subtree have all reported quiescent states. In rcu report qs

rnp(), we remove the if-block checking for rnp->qsmask !=

0 || rcu preempt blocked readers cgp(rnp) (line 2251 in

1https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.3.6.tar.xz, kernel/rcu.

tree.c). Tree-walking will then not stop until it reaches the
root, resulting in too-short grace periods.

B. Validating the RCU Model in User-Space

We ran our model in user space before formal analysis by
CBMC. We performed 1000 runs for each bug scenario with a
60 s timeout to wait for the end of a grace period and a random
delay of up to 1 s in the RCU reader task.

As expected, testing the model without bug injection always
ran to completion successfully. Testing a weak form of liveness
using assert(0), as described in Sec. V-A, evidenced the end
of a grace period by triggering an assertion violation in all
runs. For Bug 1, an assertion violation was triggered in 559
out of 1000 runs. For Bugs 2–6, the user program timed out in
all the runs, thus a grace period did not complete. For Bug 7
with one reader thread the testing harness failed to trigger an
assertion violation. But we were able to observe a failure in
242 out of 1000 runs with two reader threads.

C. Getting CBMC to work on Tree RCU

Getting CBMC to work on our RCU model is non-trivial,
owing to Tree RCU’s complexity combined with CBMC’s bit-
precise verification. Early attempts resulted in very large SAT
formulas. After the optimizations described below, the largest
formula contained around 90 million variables and 450 million
clauses, enabling CBMC to run to completion.

First, instead of placing the scheduling-clock interrupt in its
own thread, we invoke functions rcu note context switch()

and rcu process callbacks() directly, as described in Sec. IV.
Also, we invoke note gp changes() from rcu gp init()

to notify each CPU of a new grace period, instead of invoking
rcu process callbacks().

Second, support for linked lists in CBMC 5.4 is limited,
resulting in unreachable code in CBMC’s symbolic execution.
So we stubbed all list-related code in our model, including
that for callback handling.

Third, CBMC’s structure-pointer and array encodings result
in large formulas and long formula-generation times. Our focus
on the RCU-sched flavor allowed us to eliminate the data
structures of other flavors and trivialize the for each rcu

flavor() flavor-traversal loops. Our focus on small numbers of
CPUs meant that RCU-sched’s rcu node tree contained only a
root node, so we also trivialized the loops traversing this tree.

Fourth, CBMC unwinds every loop to the depth specified in
its command line, even when the actual loop depth is smaller.
This unnecessarily increases formula size. Since loops in our
model can be decided at compile time, we used a command
line option to state an unwinding depth for each loop.

Finally, since our test harness only requires one rcu node

structure and two rcu data structures, we can use 32-bit
encodings for int, long, and pointers. This reduces CBMC’s
formula size by half compared to the 64-bit default.

D. Verification Results and Discussion

Table I shows the results of our experiments using CBMC 5.4.
Scenario Prove verifies our RCU model without bug injection
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TABLE I: Experimental Results of CBMC

Scenario #Const #Variable #Clause Max VM Solver Time Total Time Result
Prove 5.2m 30.0m 149.7m 23 GB 9h 24m 9h 36m Safe
Prove-TSO 5.6m 42.0m 210.7m 34 GB 10h 51m 11h 4m Safe
Prove-PSO 5.6m 41.3m 207.0m 34 GB 11h 23m 11h 36m Safe
Prove-GP 5.4m 30.6m 152.7m 24 GB 3h 52m 4h 5m GP Completed
Prove-GP-TSO 5.6m 42.0m 210.7m 34 GB 13h 1m 13h 14m GP Completed
Prove-GP-PSO 5.6m 41.3m 207.0m 34 GB 8h 24m 8h 37m GP Completed
Bug 1 1.3m 11.7m 56.0m 8 GB 31m 33m Assertion Violated
Bug 1-TSO 1.5m 17.1m 83.3m 13 GB 53m 56m Assertion Violated
Bug 1-PSO 1.5m 16.5m 80.4m 12 GB 46m 48m Assertion Violated
Bug 2 5.2m 30.0m 149.6m 23 GB 4h 25m 4h 37m GP Hung
Bug 2-TSO 5.6m 42.0m 210.5m 34 GB 9h 57m 10h 10m GP Hung
Bug 2-PSO 5.6m 41.2m 206.9m 34 GB 8h 51m 9h 4m GP Hung
Bug 3 6.3m 34.8m 174.1m 28 GB 7h 11m 7h 25m GP Hung
Bug 3-TSO 6.8m 48.7m 245.1m 41 GB 19h 40m 19h 55m GP Hung
Bug 3-PSO 6.7m 48.0m 241.2m 41 GB 19h 19m 19h 35m GP Hung
Bug 4 4.8m 27.8m 138.1m 22 GB 4h 3m 4h 14m GP Hung
Bug 4-TSO 5.1m 38.4m 192.6m 31 GB 8h 18m 8h 30m GP Hung
Bug 4-PSO 5.1m 37.7m 188.9m 31 GB 8h 14m 8h 26m GP Hung
Bug 5 5.1m 29.5m 146.7m 23 GB 4h 6m 4h 18m GP Hung
Bug 5-TSO 5.5m 41.2m 206.5m 34 GB 5h 46m 5h 59m GP Hung
Bug 5-PSO 5.4m 40.5m 202.9m 33 GB 5h 42m 5h 55m GP Hung
Bug 6 1.4m 13.1m 63.3m 9 GB 19m 21m GP Hung
Bug 6-TSO 1.5m 17.2m 84.1m 13 GB 1h 32m 1h 33m GP Hung
Bug 6-PSO 1.5m 16.7m 81.4m 12 GB 1h 22m 1h 24m GP Hung
Bug 7 (1R) 5.0m 29.2m 145.3m 23 GB 8h 48m 9h Safe (Bug Missed)
Bug 7-TSO (1R) 5.2m 40.1m 200.8m 32 GB 11h 6m 11h 18m Assertion Violated
Bug 7-PSO (1R) 5.1m 39.4m 197.2m 32 GB 11h 32m 11h 44m Assertion Violated
Bug 7 (2R) ∗ 15.1m 71.2m 359.0m 59 GB 19h 2m 19h 40m Assertion Violated
Bug 7-TSO (2R) ∗ 15.6m 90.4m 456.9m 75 GB 78h 12m 78h 53m Assertion Violated
Bug 7-PSO (2R) ∗ 15.6m 89.3m 451.6m 75 GB 84h 21m 85h 2m Out of Memory

* Done on a 64-bit machine running Linux 3.19.8 with twelve Intel Xeon 2.40 GHz cores and 96 GB of main memory

over Sequential Consistency (SC). We also exercise the model
over the weak memory models TSO and PSO, with Prove-TSO
and Prove-PSO. Prove-GP performs the same reachability check
as in Sec. V-B over SC. We perform the same reachability
verification over TSO and PSO with Prove-GP-TSO and Prove-
GP-PSO, respectively. Scenarios Bug 1–7 are the bug-injections
in Sec. V-A and are verified over SC, TSO and PSO.

In our experiments, CBMC returned all the expected results
except for Bug 7, where it failed to trigger the assertion
assert(r2 == 0 || r1 == 1) with one RCU reader thread run-
ning over SC. This was due to approximation of the scheduling-
clock interrupt by a direct function call, as described in Sec. IV.
However, CBMC did report a violation of the assertion either
when two RCU reader threads were present or when run over
TSO or PSO. All of these cases decrease determinism, which in
turn more faithfully model non-deterministic scheduling-clock
interrupts, allowing the assertion to be violated.

CBMC took over 9 hours to verify our model over SC. The
formulas for Prove-TSO and Prove-PSO are about 40% larger
than for Prove. Although this verification consumed consider-
able memory and CPU, it verified all possible executions and
reorderings permitted by TSO and PSO, a tiny subset of which
are reached by the rcutorture test suite.

CBMC proved that grace periods can end over SC (Prove-
GP), TSO (Prove-GP-TSO), and PSO (Prove-GP-PSO). The
formula size and memory consumption are similar to those of
the three Prove scenarios. It took CBMC about 4, 13, and 8.5
hours to find violations of assert(0) in Prove-GP, Prove-GP-
TSO, and Prove-GP-PSO, respectively. For the bug-injection
scenarios described in Sec. V-A, CBMC was able to return the
expected results in all scenarios over SC except for Bug 7.

Figures 1–3 compare the formula size between SC, TSO and
TSO. Table I also shows that runtime and memory overhead
for TSO and PSO are quite similar, except for Bug 7. But TSO
and PSO overhead significantly exceeds that of SC, with up to
340% (Bug 6 runtime) and 50% (Bug 1 memory) increases. The
runtime was 5–19 hours and memory use exceeded 31 GB in all
scenarios except Bug 1 and 6, owing to the large amount of code
removed for these two scenarios. The numbers of variables and
clauses are around 130% greater than for SC. The two-reader
variant of Bug 7 has by far the longest runtime. It also used
more than double the memory of the one-reader variant. For
PSO, with two reader threads (marked ‘2R’) CBMC’s solver
ran out of memory after 85 hours whereas with one reader
it completed in less than 12 hours. The increased overhead
is due to the additional RCU reader’s call to rcu process

callbacks(). This in turn results in more than a 125% increase
in the number of constraints, variables, and clauses.

This work demonstrates the nascent ability and potential
of SAT-based formal-verification tools to handle real-world
production-quality synchronization primitives, as exemplified
by Linux-kernel Tree RCU on weakly ordered TSO and PSO
systems. Although modeling weak ordering incurs a significant
performance penalty, this penalty is not excessive. It also
confirms the tractability and practicality of the use of bug
injection to validate both the model and the tools.

VI. RELATED WORK

McKenney has applied the SPIN model checker to verify
RCU’s NO HZ FULL SYSIDLE functionality [7], and interactions
between dyntick-idle and non-maskable interrupts [9]. Desnoy-
ers et al. [8] propose a virtual architecture to model out-of-order
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memory accesses and instruction scheduling. User-level RCU
[17] is modeled and verified in the proposed architecture using
the SPIN model checker. These efforts require an error-prone
manual translation from C to SPIN’s modeling language, and
therefore are not appropriate for regression testing. By contrast,
our work constructs an RCU model directly from its source
code from the Linux kernel.

McKenney has used CBMC to verify Tiny RCU [7], a trivial
Linux-kernel RCU implementation for uni-core systems. Roy
has applied the same tool to verify a significant portion of
Sleepable RCU (SRCU). CBMC is now part of the regression
test suite of SRCU in the Linux kernel [16].

Concurrently with our work, Kokologiannakis et al. verify
Tree RCU using Nidhugg [18]. Since Nidhugg has better list
support and does not model data non-determinism, they are
able to verify more scenarios with less CPU and memory
consumption. But some portions of RCU use atomic read-
modify-write operations that can give nondeterministic results.
So we hypothesize that data non-determinism will be required
to verify RCU’s dyntick-idle and rcu barrier() components.

Groce et al. [19] introduce a falsification-driven verification
methodology based on mutation testing. Using CBMC, they are
able to find two holes in rcutorture, RCU’s stress testing suite,
one of which was hiding a real bug in Tiny RCU. Further work
on real hardware has identified two more rcutorture holes;
one was hiding a real bug in Tasks RCU [20] and the other
was hiding a minor performance bug in Tree RCU.

Gotsman et al. [11] use an extended concurrent separation
logic to formalize grace periods and prove an abstract imple-
mentation of RCU over SC. Tassarotti et al. [12] use the GPS
program logic to verify a simple implementation of user-level
RCU for a singly-linked list. They assume the “release-acquire”
semantics, which is weaker than SC but stronger than memory
models used by real-world RCU implementations. These proofs
are done manually on simple implementations of RCU.

VII. CONCLUSION

This paper shows how to use the CBMC model checker to
verify a significant part of the Tree RCU implementation auto-
matically, which to the best of our knowledge is unprecedented.
This work shows that RCU is a rich example to drive research:
it is small enough to provide models that can just barely be
verified by existing tools, but it also has enough concurrency
and complexity to drive advances in techniques and tooling.

For future work, we plan to verify safety and liveness of
quiescent-state forcing and grace-period expediting, using more

sophisticated test harnesses that pass through multiple grace
periods. We also plan to model and verify the preemptible
version of Tree RCU, which we expect to be quite challenging.

There are also potential improvements to CBMC to better
support RCU verification. For instance, better list support is
needed to verify RCU’s callback mechanism. A field-sensitive
SSA encoding for structures and a thread-aware slicer will
help reduce encoding size and so improve scalability.
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