
Dynamic Specialisation of XC6200 FPGAs by Partial Evaluation

Nicholas McKay
Tom Melham

Kong Woei Susanto
Dept. Computing Science

The University of Glasgow, U.K.

Satnam Singh
Xilinx Inc.

San Jose, California, U.S.A.

Abstract

We describe preliminary results of dynamically specialising
Xilinx XC6200 FPGA circuits using the partial evaluation
method. This method provides a systematic way to manage
the complexity of dynamic reconfiguration in the special case
where a general circuit is specialised with respect to a slowly
changing input. We describe how we address the verification
and run-time support issues which are raised when one mod-
ifies a circuit at run-time.

1 Introduction

Imagine a decryption circuit with two inputs: the key and the
data to be decrypted. The key (a few bytes) changes infre-
quently with respect to the data (megabytes). Imagine at run-
time being able to specialise this circuit every time the key
changes to decrypt only for the given key. This would incur a
run-time cost, i.e. the calculation needed to specialise the cir-
cuit description and then reconfigure the device. But in return
it computes a circuit with a shorter critical path, allowing data
to be decrypted faster. This paper describes a project which is
developing technology to achieve exactly this kind of fine
grain dynamic circuit specialisation.

Rather than solving the general problem of how to per-
form dynamic synthesis, we have selected a special case of
dynamic reconfiguration which is easier to solve. In particu-
lar, we are researching how to dynamically specialise circuits
systematically by taking a general circuit and some data
known at run-time and then using this to transform the gen-
eral circuit into a specialised circuit. By trying to solve this
simpler problem, which has useful structure and properties,
we hope to get insight into how to solve more general prob-
lems in the area of dynamic reconfiguration.

Instead of devising a totally new methodology for
dynamic circuit specialisation, we have borrowed existing
ideas in the areas of off-line constant propagation from HDL

compiler technology and from partial evaluation [1] tech-
niques developed for the run-time specialisation of software.

While we have not done any work which is specifically
aimed at software radio, we do hope that this research may
have some applications in this field.

2 Dynamic Hardware Synthesis

The project is based around the technology of Field Program-
mable Gate Arrays (FPGAs). These devices consist of an
array of cells that can implement a variety of logic functions
plus some interconnection network. Configuration informa-
tion is downloaded onto the FPGA to set up the cells and
interconnection network to realise a specific circuit.

The project is using the XC6200 family of FPGAs. These
combine very fast reprogramming speeds, the ability to per-
form partial re-programming, and high performance. These
features are exploited by our research.

The XC6200 chips can have their configuration state
mapped onto the address space of the host system, so that
reconfiguration under software control is as simple as assign-
ing to variables in a program. This allows the dynamic
reprogramming of subsections of the FPGA, even while the
remainder of the chip is running. Circuits may be swapped
into and out of the FPGA at will and at high speed. An anal-
ogy with virtual memory is appealing, and we call this
technique virtual hardware.

However in addition to swapping in static, pre-compiled
circuits, we also wish to synthesise circuits dynamically, on a
need to use basis, before downloading them to the FPGA at
run-time. For example, consider the above example of a
device designed to decrypt a data stream with a given key. For
each new session key, a specialised circuit can be dynami-
cally synthesised which decrypts the associated stream with
the relevant key. This circuit will be smaller and faster than a
general circuit which stores the key in a register.

In this approach, the important question is when the cost
of calculating new configurations are amortised over suffi-
cient time to make the approach worthwhile. Consider a data
stream consisting of a specialisation parameter followed by n
data items.

In the encryption example mentioned above the special-
isation parameter would be the key and the data items the
message. Now suppose:

Ts Time to synthesise hardware
Tp FPGA programming time
Tc Cycle time for specialised hardware
Tg Cycle time of general purpose device

g a
to
ch-
ral
wn
an
d
ed

ral
e
 in

 a

v-
ed
s.
al-
e
en-
n
iali-

f-
f
),
y

Tk Time to load specialisation parameter

We are concerned with the ratio:

One aim of this research will be to identify applications
in which n is sufficiently large and Tc/Tg sufficiently small
to make our approach worthwhile. For example, a circuit real-
ising the DES (‘Data Encryption Standard’) [2] algorithm has
the very useful property that under specialisation the combi-
natorial logic associated with the generation of the key
schedule and transposition stages can be converted to a
sequence of inverters, which themselves can then be absorbed
into a modified S-box. In this case 768 gates will have been
replaced by wires and (in a design without pipelining) 16
gates delays removed from the critical path; Tc will be sub-
stantially smaller than Tg.

3 Verification

While dynamic synthesis seems appealing, it represents a
major verification problem. How do we know if the dynami-
cally generated circuit works as intended?

Even when current synthesis techniques are used, con-
ventional verification relies on simulation—taking hours or
days and often requiring human input and checking. Clearly
such an approach is impossible in a system that will dynami-
cally generate hardware and then use it for just a few
milliseconds before discarding it.

An alternative is to use formal methods to verify the syn-
thesised circuit. Here, again, user-guided methods are
obviously inappropriate. Automatic techniques, for example
those based on model checkers, can verify small to medium
sized circuits; but even these still take far too long to execute
for ‘in the field’ verification of synthesised circuits. In gen-
eral, it is not feasible to perform a post-design verification of
dynamically generated hardware, where ‘post-design time’
means a tiny gap between synthesis and downloading onto
the FPGA.

We have chosen to verify the synthesis algorithm itself.
The above decryption example provides an illustration of
how we proceed. First, we use conventional techniques, com-
plemented by formal methods, to convince ourselves that a
general circuit which stores the key in a register works as
intended. We can then use formal techniques to prove that the
specialised circuit synthesised from any given key is a legiti-
mate replacement for the general circuit loaded with that key.
This is a correctness property of the synthesis algorithm,
which we need prove only once for all possible input keys.

4 Results to Date

In the first stage of this project we have been implementin
very simple form of partial evaluation that corresponds
run-time constant propagation. This is analogous to a te
nique used in functional programming [1], by which a gene
design can be specialised in the presence of partly kno
inputs. By propagating known values at run-time, we c
transform cells implementing logic functions like AND an
OR into cells that just route wires, avoiding the delay incurr
by going through the interior of the function block.

Using this technique we have partially evaluated seve
circuits, including adders, multipliers and FIR filters. Th
speed-up results for an 8-bit by 8-bit multiplier are shown
Table 1.

Table 1 Speed comparisons of a partially evaluated and
non-partially evaluated 8-bit by 8-bit parallel multiplier

Our verification methodology is based on theorem pro
ing using the PVS theorem proving tool. We have formaliz
and verified all possible cell specialization transformation
Currently, we are at the stage of formalizing the partial ev
uation algorithm. This will give us confidence in th
correctness of the transformations that are applied to the g
eral circuit. We will also apply formal proofs and simulatio
techniques to the general circuits and show that the spec
sations preserve their functional behaviour.

5 Acknowledgements

This work is part of a project funded by EPSRC (project re
erence GR/L38530) and the United Kingdom Ministry o
Defence (MoD), managed by Satnam Singh (Xilinx Inc.
Tom Melham (University of Glasgow) and Derek McAule
(Microsoft Research Labs, Cambridge).

6 References

[1] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Eval-
uation and Automatic Program Generation, Prentice-
Hall, 1993.

[2] National Bureau of Standards. Data Encryption Stan-
dard (DES), Technical Report. April 1997.

dynamic
conventional

Ts Tp+() nTc+

Tk nTg+
--------------------------------------=

times 1 times 2 times 8 times 85

p.e. 23.5 MHz 23.5 MHz 23 MHz 16 MHz

non-p.e. 14 MHz 16.5 MHz 16 MHz 15 MHz

times 126 times 128 times 170 times 255

p.e. 13.5 MHz 20 MHz 16 MHz 11 MHz

non-p.e. 11 MHz 14.5 MHz 13.5 MHz 11 MHz

	Dynamic Specialisation of XC6200 FPGAs by Partial Evaluation
	Nicholas McKay
	Tom Melham
	Kong Woei Susanto
	Dept. Computing Science
	The University of Glasgow, U.K.
	Satnam Singh
	Xilinx Inc.
	San Jose, California, U.S.A.
	Abstract
	1 Introduction
	2 Dynamic Hardware Synthesis
	3 Verification
	4 Results to Date
	Table 1 Speed comparisons of a partially evaluated and a non-partially evaluated 8-bit by 8-bit p...

	5 Acknowledgements
	6 References
	[1] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation and Automatic Program Generatio...
	[2] National Bureau of Standards. Data Encryption Standard (DES), Technical Report. April 1997.

