
T. Melham, ‘Automating Recursive Type Definitions in Higher Order Logic’,
in Current Trends in Hardware Verification and Automated Theorem Prov-
ing, edited by G. Birtwistle and P. A. Subrahmanyam (Springer-Verlag,
1989), pp. 341–386.

Automating Recursive Type Definitions
in Higher Order Logic

Thomas F. Melham

University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street

Cambridge, CB2 3QG, England.

Abstract: The expressive power of higher order logic makes it possible to
define a wide variety of types within the logic and to prove theorems that state
the properties of these types concisely and abstractly. This paper contains a
tutorial introduction to the logical basis for such type definitions. Examples
are given of the formal definitions in logic of several simple types. A method
is then described for systematically defining any instance of a certain class of
commonly-used recursive types. The automation of this method in HOL, an
interactive system for generating proofs in higher order logic, is also discussed.

Introduction

Recursive structures, such as lists and trees, are widely used by computer scientists
in formal reasoning about the properties of both hardware and software systems. The
aim of this paper is to show how recursive structures of this kind can be defined in
higher order logic, the logical formalism used by the HOL interactive proof-generating
system [7].

Higher order logic is a typed logic; each variable in the logic has an associated logical
type which specifies the kind of values it ranges over. Sets which contain recursive
structures such as lists and trees can be represented in higher order logic by extending
the syntax of types in the logic with new type expressions that denote these sets.
In the version of higher order logic supported by the HOL system, this is done by
first defining these new types in terms of already existing types and then deriving
properties about the new types by formal proof. This guarantees that adding a new
type to the logic will not introduce inconsistency. Sections 3 through 6 of this paper
explain the formal mechanism for defining new types in higher order logic and give a
series of detailed examples illustrating this mechanism.

In general, defining a new type in higher order logic can be tricky; the details of
the definition have to be got just right to yield a type with the desired properties.
But certain kinds of types can be defined systematically, and the process of defining
them and proving that they have the required properties can therefore be automated.
However, for this to be of practical value in a theorem prover such as HOL, it is
essential that the automated tools for defining new types be reasonably efficient. To
derive the properties of a defined type in HOL, all the logical inferences involved
must be actually carried out in the system. To automate the definition of new types

1



in HOL, it is therefore desirable to reduce to a minimum the amount of inference
that must be done. Section 7 of this paper shows how a certain class of widely-used
concrete recursive types can be defined by a method which requires relatively little
logical inference, and can therefore be efficiently automated in HOL.

All the theorems shown in this paper have been proved completely formally in the
HOL system. And the method for automating recursive type definitions described in
Section 7 has been fully implemented and is included in the latest release of HOL.

The Organization of the Paper

The organization of the paper is as follows. Section 1 contains an introduction to the
version of higher order logic that is used in the paper. Section 2 describes how proofs
in this formulation of higher order logic are mechanized in the HOL theorem prover.
It is not possible to give more than a sketch of the HOL approach to theorem proving
in this section; but a full description of HOL can be found in Gordon’s paper [7].
In Section 3, a method is described by which new logical types can be defined as
conservative extensions of higher order logic. Sections 4 through 6 consist of a series
of examples which illustrate this method for defining new types. In Section 4, three
simple logical types are defined: the ‘trivial’ type with only one value, the cartesian
product type, and the disjoint sum type. In Section 5, two simple recursive types are
defined: the type of natural numbers, and the type of lists. And in Section 6, the
construction of two recursive types of trees is described. Finally, Section 7 outlines an
efficient method for automating the definition of arbitrary concrete recursive types
in higher order logic. This method uses types previously defined in Sections 4, 5,
and 6. The implementation of the algorithm in the HOL system is also discussed in
this section.

Note: Type constructions of the kind described in this paper are well-known in set
theory (and logic), and no new theory of type constructions is presented here. The
contribution of this paper consists rather in: (1) working out the details of defining
these types in the particular logic implemented by the HOL theorem prover, and (2)
building a logical basis for the efficient automation of recursive type definitions in
HOL.

1 Introduction to Higher Order Logic

The version of higher order logic supported by the HOL system is based on Church’s
type theory [3], extended with the type discipline of the LCF logic PPλ [8]. This
formulation of higher order logic was developed by Mike Gordon at the University of
Cambridge, and is described in detail in [6]. This section gives a brief and informal
introduction to the notation and some of the important features of this logic.

1.1 Notation

The syntax of higher order logic used in the HOL theorem prover includes terms
corresponding to the conventional notation of predicate calculus. A term of the form
P x expresses the proposition that x has property P , and a term of the form R(x, y)
means that the relation R holds between x and y. The usual logical operators ¬, ∧,
∨, ⊃ and ≡ denote negation, conjunction, disjunction, implication, and equivalence

2



respectively. The syntax of terms in HOL also includes the conventional notation
for universal and existential quantifiers: ∀x.P x means that P holds for every value
of x, and ∃x.P x means that P holds for at least one value of x. The additional
quantifier ∃! denotes unique existence: ∃!x.P x means that P holds for exactly one
value of x. Nested quantifiers of the form ∀v1.∀v2. · · · ∀vn. tm can also be written
∀v1 v2 · · · vn. tm. Other notation includes (c ⇒ t1 | t2) to denote the conditional
‘if c then t1 else t2’, and f o g to denote the composition of the functions f and g.
The constants T and F denote the truth values true and false respectively.

Higher order logic extends the notation of predicate calculus in three important
ways: (1) variables are allowed to range over functions and predicates, (2) functions
can take functions as arguments and yield functions as results, and (3) the notation
of the λ-calculus can be used to write terms which denote functions.

The first two of these notational extensions are illustrated by the theorem of higher
order logic shown below:

` ∀xf. ((rec f) 0 = x) ∧ ∀n. (rec f) (n+1) = f ((rec f) n)

This theorem states that functions can be defined on the natural numbers such that
they satisfy simple primitive recursive equations. It asserts that for any value x
and any function f , the term (rec f) denotes a function that yields x when applied
to 0 and satisfies the recursive equation (rec f) (n+1) = f ((rec f) n) for all n.
The universally quantified variable f in this theorem is an example of a higher-order
variable: it ranges over functions. And the constant rec is an example of a higher order
function: it both takes a function as an argument and yields a function as a result.
Conventional practice is that function application in higher order logic associates to
the left. So, for example, the term (rec f) n can also be written rec f n.

The syntax of higher order logic also includes terms of the (typed) λ-calculus. If
tm is a term and v is a variable, then the expression ‘λv. tm’ is also a term. It denotes
the function whose value for an argument x is given by substituting x for v in tm.
The term λn. n+1, for example, denotes the successor function on natural numbers;
and the term (λn. n+1) 7 can be simplified to 7+1 by substituting 7 for n in n+1.
Simplifications of this kind are called β-reductions.

1.2 Types in Higher Order Logic

Higher order logic is a typed logic; every syntactically well-formed term of the logic
must have a type that is consistent with the types of its subterms. Informally, types
can be thought of as denoting sets of values and terms as denoting elements of these
sets.1 As a syntactic device, types are necessary in higher order logic to eliminate cer-
tain paradoxes (e.g. Russell’s paradox) which would otherwise arise because variables
are allowed to range over functions and predicates.

Writing tm:ty indicates explicitly that the term tm has type ty. Such explicit
type information will usually be omitted, however, when it is clear from the form or
context of the term what its type must be. The HOL mechanization of higher order
logic uses Milner’s elegant algorithm for type inference [11] to assign consistent types
to logical terms entered by the user. The user of HOL therefore only occasionally has
to give the types of terms explicitly.

1Because of the polymorphism introduced by type variables, the notion of types as sets is inade-
quate for a formal semantics of the logic. But it will do for the purposes of this paper.

3



1.2.1 The Syntax of Types

There are three syntactic classes of types in higher order logic: type constants, type
variables, and compound types.

Type constants are identifiers that name sets of values. Examples are the two prim-
itive types bool and ind, which denote the set of booleans and the set of ‘individuals’
(an infinite set) respectively. Another example is the type constant num, which de-
notes the set of natural numbers. The type num is not primitive but is defined in
terms of ind; its definition is given in Section 5.1.

Type variables are used to stand for ‘any type’; they are written α, β, γ, etc. Types
that contain type variables are called polymorphic types. A substitution instance of
a polymorphic type ty is a type obtained by substituting types for all occurrences of
one or more of the type variables in ty. Theorems of higher order logic that contain
polymorphic types are also true for any substitution instance of these types.

Compound types are expressions built from other types using type operators. They
have the form: (ty1, ty2, . . . , tyn)op, where ty1 through tyn are types and op is the
name of an n-ary type operator. An example is the binary type operator fun, which
denotes the function space operation on types. The compound type (ind, bool)fun,
for instance, is the type of all total functions from ind to bool. Types constructed
using the type operator fun can also be written in a special infix form: ty1→ty2.
The infix type operator → associates to the right; so the type ind→bool→bool, for
example, is the same as (ind, (bool, bool)fun)fun.

In principle, every type needed for doing proofs in higher order logic can be written
using type variables, the primitive type constants bool and ind, and the type operator
fun. In practice, however, it is desirable to extend the syntax of types to help make
theorems and proofs more concise and intelligible than would otherwise be possible.
Section 3 shows how this can be done by adding new type constants and type operators
to the logic using type ‘definitions’.

1.3 Hilbert’s ε-operator

An important primitive constant of higher order logic, which will be used frequently
in this paper, is Hilbert’s ε-operator. Its syntax and informal semantics are as follows.
If P[x] is a boolean term involving a variable x of type ty then εx. P[x] denotes some
value, v say, of type ty such that P[v] is true. If there is no such value (i.e. P[v]
is false for each value v of type ty) then εx. P[x] denotes some fixed but arbitrarily
chosen value of type ty. Thus, for example, ‘εn. 4<n ∧ n<6’ denotes the value 5,
‘εn. (∃m.n=2×m)’ denotes an unspecified even natural number, and ‘εn. n<n’ de-
notes an arbitrary natural number.

The informal semantics of Hilbert’s ε-operator outlined above is formalized in
higher order logic by the following theorem:

` ∀P. (∃x. P x) ⊃ P (εx. P x)

It follows that if P is a predicate and ` ∃x. Px is a theorem of the logic, then so is
` P(εx. Px). The ε-operator can therefore be used to obtain a logical term which
provably denotes a value with a given property P from a theorem merely stating that
such a value exists. This property of ε is used extensively in the proofs outlined in
this paper. For further discussion of the ε-operator, see [10].

An immediate consequence of the semantics of ε described above is that all logical
types must denote non-empty sets. For any type ty, the term εx:ty.T denotes an

4



element of the set denoted by ty. Thus the set denoted by ty must have at least one
element. This will be important when the method for adding new types to the logic
is discussed in Section 3.

2 The HOL Theorem Proving System

The HOL system [7] is a mechanized proof-assistant developed by Mike Gordon at
the University of Cambridge for conducting proofs in the version of higher order logic
described in the previous section. It has been primarily used to reason about the
correctness of digital hardware. But much of what has been developed in HOL for
hardware verification—the theory of arithmetic, for example—is also fundamental to
many other applications. The underlying logic and basic facilities of the system are
completely general and can in principle be used to support reasoning in any area that
can be formalized in higher order logic.

HOL is based on the LCF approach to interactive theorem proving and has many
features in common with the LCF theorem provers developed at Cambridge [12] and
Edinburgh [8]. Like LCF, the HOL system supports secure theorem proving by rep-
resenting its logic in the strongly-typed functional programming language ML [4].
Propositions and theorems of the logic are represented by ML abstract data types,
and interaction with the theorem prover takes place by executing ML procedures that
operate on values of these data types. Because HOL is built on top of a general-
purpose programming language, the user can write arbitrarily complex programs to
implement proof strategies. Furthermore, because of the way the logic is represented
using ML abstract data types, such user-defined proof strategies are guaranteed to
perform only valid logical inferences.

The HOL system has a special ML abstract data type thm whose values are theorems
of higher order logic. There are no literals of type thm; that is, it is not possible to
obtain an object of type thm by simply typing one in. There are, however, certain
predefined ML identifiers which are given values of type thm when the system is
built. These values correspond to the axioms of higher order logic. In addition, HOL
makes available several predefined ML procedures that take theorems as arguments
and return theorems as results. Each of these procedures corresponds to one of the
primitive inference rules of the logic and returns only theorems that logically follow
from its input theorems using the corresponding inference rule. Since ML is a strongly-
typed language, the type checker ensures that values of type thm can be generated
only by using these predefined functions. In HOL, therefore, every value of type thm

must either be an axiom or have been obtained by computation using the predefined
functions that represent the primitive inference rules of the logic. Thus every theorem
in HOL must be generated from the axioms using the inference rules. In this way, the
ML type checker guarantees the soundness of the HOL theorem prover.

In addition to the primitive inference rules, there are many derived inference rules
available in HOL. These are ML procedures which perform commonly-used sequences
of primitive inferences by applying the appropriate sequence of primitive inference
rules. Derived inference rules relieve the HOL user of the need to explicitly give the
all primitive inferences required in a proof. The ML code for a derived rule can be
arbitrarily complex; but it will never return a theorem that does not follow by valid
logical inference, since the type checker ensures that derived rules can only return
theorems if they have been obtained by a series of calls to the primitive inference
rules.

5



The approach to theorem proving described above ensures the soundness of the
HOL theorem prover—but it is computationally expensive. Formal proofs of even
simple theorems in higher order logic can take thousands of primitive inferences.
And when these proofs are done in HOL, all the inferences must actually be carried
out by executing the corresponding ML procedures.

There are, however, two important features of HOL which together allow efficient
proof strategies to be programmed. The first of these is merely this: theorems proved
in HOL can be saved on disk and therefore do not have to be generated each time
they are needed in future proofs. The second feature is the expressive power of higher
order logic itself, which allows useful and very general ‘lemmas’ to be stated in the
logic. The amount of inference that a programmed proof rule must do can therefore
be reduced by pre-proving general theorems from which the desired results follow by
a relatively small amount of deduction. These theorems can then be saved and used
by the derived inference rule in future proofs. This strategy of replacing ‘run time’
inference by pre-proved theorems is possible in HOL because type polymorphism and
higher-order variables make the logic expressive enough to yield theorems of sufficient
generality. This is illustrated in Section 7.4 of this paper, where a single general
theorem is given from which the ‘axiomatization’ of any concrete recursive type can
be efficiently deduced.

3 Defining New Logical Types

The primary function of types in higher order logic is to eliminate the potential for
inconsistency that comes with allowing higher order variables. The type expressions
needed to prevent inconsistency have a very simple and economical syntax; all that is
needed are the types that can be constructed from type variables, the two primitive
types bool and ind, and the type operator →. In principle, every type needed for
doing proofs in higher order logic can be written using only these primitive types.
But in practice it is desirable to extend the syntax of types to include more kinds of
types than are strictly necessary to prevent inconsistency.

Extending the syntax of type is of practical importance; it makes it possible to
formulate propositions in logic in a more natural and concise way than can be done
with only the primitive types. This pragmatic motivation for a rich syntax of types is
similar to the motivation for the use of abstract data types in high-level programming
languages; using higher level data types helps to control the size and complexity of
proofs. This is essential in a theorem proving system (such as HOL) intended to be
used as a practical tool for generating large formal proofs.

This section shows how new types can be consistently added to higher order logic
by defining them in terms of already existing types. This is done in a way that allows
theorems which ‘axiomatize’ these new types to be derived by formal proof from
their definitions. The motivation for first defining a type and then deriving abstract
‘axioms’ for it is that this process guarantees consistency. Simply postulating axioms
to describe the properties of new types may introduce inconsistency into the logic.
But defining new types in terms of already existing types and then deriving axioms
for them amounts to giving a consistency proof of these axioms.

6



3.1 Outline of the Method for Defining a New Type

The approach to defining new a logical type used in this paper involves the following
three distinct steps:

1. finding an appropriate subset of an existing type to represent the new type;

2. extending the syntax of logical types to include a new type symbol, and using
a type definition axiom to relate this new type to its representation; and

3. deriving from the type definition axiom and the properties of the representing
type a set of theorems that serves as an ‘axiomatization’ of the new type.

In the first of these steps, a model for the new type is given by specifying a set of
values that will be used to represent it. This is done formally by defining a predicate
P on an existing type such that the set of values satisfying P has exactly the prop-
erties that the new type is expected to have. In general, finding representations for
new types and defining predicates that specify them can be difficult; but, as will be
shown in Section 7.3, the representations of a certain class of recursive types can be
constructed systematically.

In the second step, the syntax of types is extended to include a new type constant
(or type operator) which denotes the set of values of the new type. This is done by
adding a type definition axiom to the logic that serves to relate values of the new type
to the corresponding values of the existing type that represent them. Type definition
axioms are explained below in Section 3.2.

In the last step, a collection of theorems is proved that abstractly characterizes
the new type. These theorems state the essential properties of the new type with-
out reference to the way its values are represented and therefore act as an abstract
‘axiomatization’ of it. They are not, however, axioms in the sense that they are
postulated without proof, but are derived by formal proof from the definition of the
subset predicate given in step (1) and the type definition axiom postulated in step
(2). This final step therefore amounts to giving a consistency proof of the axioms
for the new type by showing that there is a model for them. Several examples of
the derivation of axioms for new types are given in Sections 4–6; and, in Section 7,
a method is described whereby the proof of the axioms for concrete recursive types
can be efficiently automated.

3.2 Type Definition Axioms

The syntax of types in higher order logic can be extended to include new type con-
stants as well as new type operators, by means of type definition axioms. This type
definition mechanism is based on a suggestion by Mike Fourman which was formalized
by Mike Gordon in [6]. The idea is that a new type is defined by adding an axiom to
the logic which asserts that it is isomorphic to an appropriate ‘subset’ of an existing
type: '

&

$

%

'
&

$
%

'
&

$
%

new
type

existing
type

-
isomorphism

f
tyP P ty

7



Suppose, for example, that ty is a type of the logic and P :ty→bool is a predicate
on values of type ty that defines some useful subset of the set denoted by ty. A type
definition axiom defines a new type constant tyP which denotes a set having exactly
the same properties as the subset defined by P . This is done by extending the syntax
of types to include the new type constant tyP and then adding an axiom to the logic
asserting that the set of values denoted by the new type is isomorphic to the set
specified by P :

` ∃f :tyP→ty. (∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. P r = (∃a. r = f a)) (1)

This axiom states that there is a function f from the new type tyP to the existing
type ty which is one-to-one and onto the subset defined by P . The function f can
be thought of as a representation function that maps a value of the new type tyP to
the value of type ty that represents it. Because f is an isomorphism, it can be shown
that the set denoted by tyP has the same properties as the subset of ty defined by P .
By adding this axiom to the logic, the new type tyP is therefore defined in terms of
the existing type ty.

As was discussed in Section 1.3, the semantics of ε requires all types of the logic to
denote non-empty sets. This means that the predicate P used in the type definition
above must be true of at least one value of the representing type; i.e. it must be
the case that ` ∃x:ty. P x. This existence theorem must be proved before the type
definition axiom can be added to the logic. In the HOL theorem prover, the system
requires the user to supply such an existence theorem before allowing a type definition
axiom to be created.

If the subset defined by P is non-empty, then adding the type definition axiom (1)
shown above is a conservative extension of the logic.2 That is, for all boolean terms
tm not containing the new type, ` tm is a theorem of the extended logic if and only
if it is a theorem of the original logic. In particular, ` F is a theorem of the extended
logic if and only if it is a theorem of the original logic. Thus adding type definition
axioms to the logic will not introduce inconsistency; adding type definition axioms is
‘safe’.

In addition to type constants, new type operators can also be defined by adding
axioms of the form shown above. For example, if ty[α, β] is an existing type that
contains type variables α and β, and P :ty[α, β]→bool is a predicate where ` ∃x. P x,
then a new binary type operator (α, β)op can be defined by asserting the axiom:

` ∃f :(α, β)op→ty[α, β].
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. P r = (∃a. r = f a))

Detailed examples of type operator definitions are given in Sections 4.2 and 4.3 below,
where definitions are described for the binary type operators prod (cartesian product)
and sum (disjoint sum).

3.3 Defining Representation and Abstraction Functions

A type definition axiom of the form shown above merely asserts the existence of
an isomorphism between a new type and the corresponding subset of an existing
type. To formulate abstract axioms for a new type, it is convenient to have logical

2The term P in the type definition axiom must also satisfy certain syntactic conditions (which
will not be discussed here) having to do with free variables and polymorphism.

8



constants which in fact denote such an isomorphism and its inverse. These mappings
are used to define operations on the values of a new type in terms of operations
on values of the representing type. These operations can then be used to formulate
the abstract axioms for the new type. Using the primitive constant ε described in
Section 1.3, constants denoting isomorphisms between new types and the subsets of
existing types which represent them are easily defined as follows.

Given a type definition axiom stating the existence of an isomorphism between a
new type tyP and a subset of an existing type ty defined by a predicate P :

` ∃f :tyP→ty. (∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. P r = (∃a. r = f a))

a corresponding representation function REP:tyP→ty can be defined which maps a
value of type tyP to the value of type ty which represents it. Using the ε-operator,
the function REP is defined by:

` REP = εf. (∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. P r = (∃a. r = f a)).

From the property of ε discussed in Section 1.3, it follows immediately that the
function REP is one-to-one and onto the subset of ty given by P :

` ∀a1 a2. REP a1 = REP a2 ⊃ a1 = a2

` ∀r. P r = (∃a. r = REP a)

Once the representation function REP is defined, the ε-operator can be used to
define the inverse abstraction function ABS:ty→tyP as follows:

` ∀r. ABS r = (εa. r = REP a).

It is straightforward to prove that the abstraction function ABS is one-to-one for
values of type ty satisfying P and that ABS is onto the new type tyP :

` ∀r1 r2. P r1 ⊃ (P r2 ⊃ (ABS r1 = ABS r2 ⊃ r1 = r2))

` ∀a.∃r. (a = ABS r) ∧ P r

It also follows from the definitions of the abstraction and representation functions
that ABS is the left inverse of REP and, for values of type ty satisfying P , REP is the
left inverse of ABS:

` ∀a. ABS(REP a) = a

` ∀r. P r = (REP(ABS r) = r)

Abstraction and representation functions of the kind illustrated by ABS and REP
are used in every new type definition described in this paper. In each case, these
functions are defined formally using the corresponding type definition axiom in the
way shown above for ABS and REP. Theorems corresponding to those shown above
for ABS and REP are used in the proofs of abstract axioms for each new type defined.

9



4 Three Simple Type Definitions

Three simple examples are given in this section to illustrate the method for defining
new types described above in Section 3. In each example, a new type is defined
using the three steps described in Section 3.1. First, an appropriate subset of an
existing type is found to represent the values of the new type, and a predicate is
defined to specify this subset. A type definition axiom for the new type is then
postulated, and abstraction and representation functions are defined as described in
Section 3.3. An abstract axiomatization is then formulated for the new type, which
describes its properties without reference to the way it is represented and defined.
This axiomatization follows by formal proof from the properties of the new type’s
representation. Some basic theorems about the new type are then derived from its
abstract axiomatization.

The three types defined in this section will be used as basic ‘building blocks’ in
the general method outlined in Section 7.3 for finding appropriate representations for
arbitrary concrete recursive types.

4.1 The Type Constant one

This section describes the definition and axiomatization of the simplest (and the
smallest) type possible in higher order logic: the type constant one, which denotes a
set having exactly one element.

4.1.1 The Representation

To represent the type one, any singleton subset of an existing type will do. In the
type definition given below, the subset of bool containing only the truth-value T will
be used. This subset can be specified by the predicate λb:bool. b, which denotes the
identity function on bool. The set of booleans satisfying this predicate clearly has the
property that the new type one is expected to have, namely the property of having
exactly one element.

4.1.2 The Type Definition

As discussed in Section 3.2, a type definition axiom cannot be added to the logic
unless the representing subset is non-empty. In the present case, the representing
subset is specified by the predicate λb. b. It is trivial to prove that this predicate
specifies a non-empty set of booleans; the theorem ` ∃x. (λb.b)x follows immediately
from ` (λb.b)T, which is itself equivalent to ` T. Once it has been shown that
λb.b specifies a non-empty set of booleans, the type constant one can be defined by
postulating the type definition axiom shown below.

` ∃f :one→bool. (∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. (λb.b) r = (∃a. r = f a))

Using this type definition axiom, a representation function REP one:one→bool can
be defined to map the single value of type one to the boolean value T which represents
it. As described in Section 3.3, this representation function can be defined such that
it is one-to-one:

` ∀a1 a2. REP one a1 = REP one a2 ⊃ a1 = a2 (2)

10



and onto the subset of bool defined by λb.b:

` ∀r. (λb.b) r = (∃a. r = REP one a)

which, by the β-reduction ` (λb.b) r = r, immediately yields the following theorem:

` ∀r. r = (∃a. r = REP one a) (3)

Theorems (2) and (3) about the representation function REP one will be used in the
proof given in the following section of the abstract axiomatization of one. The inverse
abstraction function ABS one:bool→one will not be needed in this proof.3

4.1.3 Deriving the Axiomatization of one

The axiomatization of the type one will consist of the following single theorem:

` ∀f :α→one.∀g:α→one. (f = g)

This theorem states that any two functions f and g mapping values of type α to values
of type one are equal. From this it follows that there is only one value of type one,
since if there were more than one such value it would be possible to define two different
functions of type α→one. This theorem is therefore an abstract characterization of
the type one; it expresses the essential properties of the type, but does so without
reference to the way the type is represented.

The proof of the axiom for one uses the properties of REP one given by theorems
(2) and (3) above. Specializing the variable r in (3) to the term REP one(f x) yields:

` REP one(f x) = (∃a. REP one(f x) = REP one a)

The right hand side of this equation is equal to T; this theorem can therefore be
simplified to ` REP one(f x). Similar reasoning yields the theorem ` REP one(g x),
from which it follows that:

` REP one(f x) = REP one(g x)

From this theorem and theorem (2) stating that the function REP one is one-to-one,
it follows that ` f x = g x and therefore that ` ∀f g. (f = g), as desired.

4.1.4 A Theorem about one

Once the axiom for one has been proved, it is straightforward to prove a theorem
which states explicitly that there is only one value of type one. This is done by
defining a constant one to denote the single value of type one. Using the ε-operator,
the definition of one can be written:

` one = εx:one.T

From the axiom for one, it follows that ` λx:α. v = λx:α. one. Applying both sides
of this equation to x:α, and doing a β-reduction, gives ` v = one. Generalizing v
yields ` ∀v:one. v = one, which states that every value v of type one is equal to the
constant one, i.e. there is only one value of type one.

3In fact, the axiomatization of one can be derived directly from its type definition theorem; the
constant REP one is defined here merely to simplify the presentation of the proof that follows.

11



4.2 The Type Operator prod

In this section, a binary type operator prod is defined to denote the cartesian product
operation on types. If ty1 and ty2 are types, then the type (ty1, ty2)prod will be
the type of ordered pairs whose first component is of type ty1 and whose second
component is of type ty2.

4.2.1 The Representation

The type (α, β)prod can be represented by a subset of the polymorphic primitive type
α→β→bool. The idea is that an ordered pair 〈a:α, b:β〉 will be represented by the
function

λx y. (x=a) ∧ (y=b)

which yields the truth-value T when applied to the two components a and b of the
pair, and yields F when applied to any other two values of types α and β.

Every pair can be represented by a function of the form shown above; but not every
function of type α→β→bool represents a pair. The functions that do represent pairs
are those which satisfy the predicate Is pair REP defined by:

` Is pair REP f = ∃v1 v2. f = λx y. (x=v1) ∧ (y=v2),

i.e. those functions f which have the form λx y. (x=v1)∧(y=v2) for some pair of values
v1 and v2. This will be the subset predicate for the representation of (α, β)prod.
As will be shown below, the set of functions satisfying Is pair REP has exactly the
standard properties of the cartesian product of types α and β.

4.2.2 The Type Definition

To introduce a type definition axiom for prod, one must first show that the predicate
Is pair REP defines a non-empty subset of α→β→bool. This is easy, since it is the
case that ` ∀a b. Is pair REP(λx y. (x=a) ∧ (y=b)) and therefore ` ∃f. Is pair REPf .
Once this theorem has been proved, a type definition axiom of the usual form can be
introduced for the type operator prod:

` ∃f :(α, β)prod→(α→β→bool).
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. Is pair REP r = (∃a. r = f a))

This theorem defines the compound type (α, β)prod to be isomorphic to the subset of
α→β→bool defined by Is pair REP. Since the type variables α and β in this theorem
can be instantiated to any two types, it has the effect of giving a representation
not only for the particular type ‘(α, β)prod’, but also for the product of any two
types. For example, instantiating both α and β to bool yields a type definition axiom
for the cartesian product (bool, bool)prod. As will be shown below, the abstract
axiomatization of prod derived from the type definition axiom given above is also
formulated in terms of the compound type (α, β)prod. It therefore also holds for any
substitution instance of (α, β)prod—i.e. for the product of any two types.

12



The abstract axiomatization of prod derived in the following section will use the
abstraction and representation functions:

ABS pair:(α→β→bool)→(α, β)prod and

REP pair:(α, β)prod→(α→β→bool)

which relate pairs to the functions of type α→β→bool which represent them. These
representation and abstraction functions are defined formally as described above in
Section 3.3. A set of theorems stating that Abs pair and Rep pair are isomorphisms
can also be proved as outlined in Section 3.3. These theorems will be used in the
proof of the axiom for prod given in the next section.

For notational convenience, an infix type operator ‘×’ will be used in the remainder
of this paper for the product of two types. Type expressions of the form ty1× ty2 will
be simply syntactic abbreviations for (ty1, ty2)prod.

4.2.3 Deriving the Axiomatization of prod

To formulate the axiomatization of (α× β), two constants will be defined:

Fst:(α× β)→α and Snd:(α× β)→β.

These denote the usual projection functions on pairs; the function Fst extracts the
first component of a pair, and the function Snd extracts the second component of a
pair. The definitions of these functions are:

` Fst p = εx.∃y. (REP pair p) x y

` Snd p = εy.∃x. (REP pair p) x y

These definitions first use the representation function REP pair to map a pair p to
the function that represents it. They then ‘select’ the required component of the pair
using the ε-operator. From the definitions of Fst and Snd, it is possible to show that

` Fst(ABS pair(λx y. (x=a) ∧ (y=b))) = a

` Snd(ABS pair(λx y. (x=a) ∧ (y=b))) = b
(4)

by using the fact that Rep pair is the left inverse of ABS pair for functions that satisfy
the subset predicate Is pair REP. Once these two theorems have been proved, the
axiomatization of the cartesian product of two types can be derived without further
reference to the way Fst and Snd are defined.

Using the functions Fst and Snd, the axiomatization of the cartesian product of two
types can be formulated based on the notion of a product in category theory. The
following theorem will be the single axiom for the product of two types:

` ∀f :γ→α. ∀g:γ→β. ∃! h:γ→(α× β). (Fst o h = f) ∧ (Snd o h = g)

This theorem states that for all functions f and g, there is a unique function h such

13



that the diagram

(α× β)

γ

α β

? �
���

����*

H
HHH

HHHHY

�
���

���
���

H
HHH

HHH
HHj

h

SndFst

gf

is commutative, i.e. ∀x. Fst(h x)=f x and ∀x. Snd(h x)=g x. As noted above, this
theorem is proved for the polymorphic type (α × β). It therefore characterizes the
product of any two types, since the type variables α and β in this theorem can be
instantiated to any two types of the logic to yield an axiom for their product.

An outline of the proof of the axiom shown above is as follows. Given two functions
f :γ→α and g:γ→β, define the function h:γ→(α× β) as follows:

h v = ABS pair(λx y. (x=f v) ∧ (y=g v))

Using the theorems (4) above, it follows that Fst o h = f and Snd o h = g. To show
that h is unique, suppose that there is also a function h′ such that Fst o h′ = f and
Snd o h′ = g. Suppose v is some value of type γ. Since ABS pair is onto (α × β),
there exist a and b such that h′ v = ABS pair(λx y. (x=a) ∧ (y=b)). Thus,

f v = Fst(h′ v) = Fst(ABS pair(λx y. (x=a) ∧ (y=b))) = a and

g v = Snd(h′ v) = Snd(ABS pair(λx y. (x=a) ∧ (y=b))) = b

which means that

h′ v = ABS pair(λx y. (x=f v) ∧ (y=g v)) = h v

and therefore that h′ = h.

4.2.4 Theorems about prod

Using the axiom for products proved in the previous section, an infix operator ⊗
can be defined such that for all functions f :γ→α and g:γ→β the expression f ⊗ g
denotes the unique function of type γ→(α×β) which the axiom asserts to exist. This
operator can be defined using the ε-operator as follows:

` ∀f g. (f ⊗ g) = εh. (Fst o h = f) ∧ (Snd o h = g)

It follows from the axiom for products and the property of ε shown in Section 1.3
that (f ⊗ g) denotes a function which makes the diagram shown above commute:

` Fst o (f ⊗ g) = f and ` Snd o (f ⊗ g) = g.

14



It can also be shown that for all f and g, the term f ⊗ g denotes the unique function
with this property:

` ∀f g h. (Fst o h = f) ∧ (Snd o h = g) ⊃ (h = (f ⊗ g)).

Using the operator ⊗, an infix pairing function ‘,’ can be defined to give the usual
syntax for pairs, with (a, b) denoting the ordered pair having first component a and
second component b. The definition is:

` ∀a b.(a, b) = ((K a)⊗ I) b where K = λa b.a and I = λa.a.

The projection functions Fst and Snd and the constructor ‘,’ defined above satisfy
three theorems shown below, which are commonly used to characterize pairs.

` ∀a b. Fst(a, b) = a

` ∀a b. Snd(a, b) = b

` ∀p. p = (Fst p, Snd p)

The first two of these theorems follow from the definition of the infix pairing operator ‘,’
and the fact that ` Fst o ((K a) ⊗ I) = K a and ` Snd o ((K a) ⊗ I) = I. The third
theorem follows from the uniqueness of functions defined using ⊗.

4.3 The Type Operator sum

The final example in this section is the definition and axiomatization of a binary
type operator sum to denote the disjoint sum operation on types. The set that will
denoted by the compound type (ty1, ty2)sum can be thought of as the union of two
disjoint sets: a copy of the set denoted by ty1, in which each element is labelled as
coming from ty1; and a copy of the set denoted by ty2, in which each element is
labelled as coming from ty2. Thus each value of type (ty1, ty2)sum will correspond
either to a value of type ty1 or to a value of type ty2. Furthermore, each value of type
ty1 and each value of type ty2 will correspond to a unique value of type (ty1, ty2)sum.

4.3.1 The Representation

One way of representing a value v of type (α, β)sum would be to use a triple (a, b, f)
of type α × β × bool, where f is a boolean ‘flag’ stating whether v corresponds to
the value a of type α or the value b of type β. With this representation, each value
a of type α would correspond to a triple (a, dβ, T) in the representation, where dβ is
some fixed ‘dummy’ value of type β. Likewise, each value b of type β would have
a corresponding triple (dα, b, F) in the representation, where dα is a dummy value of
type α. Using this representation, every value in the representing subset of α×β×bool
would correspond either to a value of type α labelled by T or to a value of type β
labelled by F.

The representation of values of type (α, β)sum can be both simplified and made in-
dependent of the product type operator by noting that a triple (a, dβ, T), for example,
can itself be represented by the function:

λx y fl. (x=a) ∧ (y=dβ) ∧ (fl=T)

This function is true exactly when applied to the value a, the dummy value dβ and
the truth-value T. Every function of this form corresponds to unique value of type α,

15



and every value of type α corresponds to a function of this form. But the same can
be said of functions of the form:

λx y fl. (x=a) ∧ (fl=T)

The dummy value dβ is therefore not necessary. A value of type (α, β)sum that
corresponds to a value b of type β can likewise be represented by a function of the
form:

λx y fl. (y=b) ∧ (fl=F).

The type (α, β)sum can therefore be represented by the subset of functions of type
α→β→bool→bool that satisfy the predicate Is sum REP defined by:

` Is sum REP f = (∃v1.f = λx y fl. (x=v1) ∧ (fl=T)) ∨
(∃v2.f = λx y fl. (y=v2) ∧ (fl=F))

The set of functions satisfying Is sum REP contains exactly one function for each value
of type α and exactly one function for each value of type β. It therefore represents
the disjoint sum of the set of values of type α and the set of values of type β.

4.3.2 The Type Definition

The type definition axiom for sum is introduced in exactly the same way as the
defining axioms for one and prod. The first step is to prove a theorem stating that
Is sum REP is true of at least one value in the representing set: ` ∃f. Is sum REP f .
A type definition axiom of the usual form can then be introduced:

` ∃f :(α, β)sum→(α→β→bool).
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. Is sum REP r = (∃a. r = f a))

and the abstraction and representation functions

ABS sum:(α→β→bool→bool)→(α, β)sum and

REP sum:(α, β)sum→(α→β→bool→bool)

defined in the usual way. As outlined in Section 3.3, the definitions of Abs sum and
REP sum and the type definition axiom for sum yield the usual isomorphism theorems
about such abstraction and representation functions. These theorems will be used in
the derivation of the abstract axiom for sum.

For notational clarity, an infix type operator ‘+’ will now be used for the disjoint
sum of two types. In what follows, the syntactic abbreviation ty1 + ty2 will be used
instead of the form (ty1, ty2)sum.

4.3.3 Deriving the Axiomatization of sum

The axiomatization of (α + β) will use two constants:

Inl:α→(α + β) and Inr:β→(α + β)

defined by:

` Inl a = ABS sum(λx y fl. (x=a) ∧ (fl=T))

` Inr b = ABS sum(λx y fl. (y=b) ∧ (fl=F))

16



The constants Inl and Inr denote the left and right injection functions for sums. Every
value of type (α+β) is either a left injection Inl a for some value a:α or a right injection
Inr b for some value b:β.

The form of the axiom for (α+β) is based on the categorical notion of a coproduct.
The axiom for (α + β) is:

` ∀f :α→γ. ∀g:β→γ. ∃! h:(α + β)→γ. (h o Inl = f) ∧ (h o Inr = g)

This theorem asserts that for all functions f and g there is a unique function h such
that the diagram shown below is commutative.

(α + β)

γ

α β

6

���
���

���

HHH
HHH

HHHY

HHH
HHH

HHj

���
���

���*

h

InrInl

gf

The proof of the axiom for sums is similar to the one outlined in the previous
section for products. The proof will therefore not be given in full here. The existence
of h follows simply by defining

h s = ((∃v1. x = Inl v1) ⇒ f(εv1. x = Inl v1) | g(εv2. x = Inr v2))

for given f and g. The uniqueness of h follows from the fact that Inl and Inr are
one-to-one, and from the fact that ABS sum is onto.

4.3.4 Theorems about sum

Using the axiom for sums, it is possible to define an operator ⊕ which is analogous
to the operator ⊗ defined above for products. The definition of ⊕ is:

` ∀f g. (f ⊕ g) = εh. (h o Inl = f) ∧ (h o Inr = g)

From the axiom for sums, it follows that for all functions f and g the term (f ⊕ g)
denotes a function that makes the diagram for sums commute:

` (f ⊕ g) o Inl = f and ` (f ⊕ g) o Inr = g

and that (f ⊕ g) denotes the unique function with this property:

` ∀f g h. (h o Inl = f) ∧ (h o Inr = g) ⊃ (h = (f ⊕ g)).

Using ⊕, it is possible to define two discriminator functions Isl:(α + β)→bool and
Isr:(α + β)→bool as follows:

` Isl = (K T)⊕ (K F) and ` Isr = (K F)⊕ (K T)

17



From these definitions, and the properties of ⊕ shown above, it follows that every
value of type (α + β) satisfies either Isl or Isr:

` ∀s:(α + β). Isl s ∨ Isr s

and that Isl is true of left injections and Isr is true of right injections:

` ∀a. Isl(Inl a) ` ∀b.¬Isl(Inr b)

` ∀b. Isr(Inr b) ` ∀a.¬Isr(Inl a)

The operator ⊕ can also be used to define projection functions Outl:(α+β)→α and
Outr:(α + β)→β that map values of type (α + β) to the corresponding values of type
α or β. Their definitions are:

` Outl = I⊕ (K εb. F) and ` Outr = (K εa. F)⊕ I

where εa. F and εb. F denote ‘arbitrary’ values of type α and β respectively. From
these definitions, it follows that the projection functions Outl and Outr have the
properties:

` ∀a. Outl(Inl a) = a ` ∀s. Isl s ⊃ Inl(Outl s) = s

` ∀a. Outr(Inr a) = a ` ∀s. Isr s ⊃ Inr(Outr s) = s

5 Two Recursive Types: Numbers and Lists

This section outlines the definition of two recursive types: num (the type natural
numbers) and (α)list (the polymorphic type of lists). Both num and (α)list are simple
examples of the kind of recursive types which can be defined using the general method
that will be described in Section 7. Their definitions are given here as examples to
introduce the idea of defining recursive types in higher order logic. They also provide
examples of the general form of abstract axiomatization that will be used in Section 7
for such types.

Both num and (α)list will be used in Section 6 to construct representations for
two logical types of trees. Along with the basic building blocks: one, prod and sum,
these types of trees will then be used in Section 7.3 to construct representations for
arbitrary concrete recursive types.

5.1 The Natural Numbers

The construction of the natural numbers described in this section is based on the
definition of the type num outlined by Gordon in [6]. The type num of natural
numbers is defined using a subset of the primitive type ind of individuals. This
primitive type is characterized by a single axiom, the ‘axiom of infinity’ shown below:

` ∃f :ind→ind. (∀x1 x2. (f x1 = f x2) ⊃ (x1 = x2)) ∧ ¬(∀y. ∃x. y = fx) (5)

This theorem is one of the basic axioms of higher order logic. It asserts the existence
of a function f from ind to ind which is one-to-one but not onto.

From this axiom, it follows that there are at least a countably infinite number of
distinct values of type ind. Informally, this follows by observing that there is at least

18



one value of type ind which is not in the image of f . Call this value i0. Now define
i1 to be f(i0). Since i1 is in the image of the function f and i0 is not, it follows
that they are distinct values of type ind. Now, define i2 to be f(i1). By the same
argument as given above for i1, it is clear that i2 is not equal to i0. Furthermore, i2 is
also not equal to i1, since from the fact that f is one-to-one it follows that if i2 = i1
then f(i1) = f(i0) and so i1 = i0. So i2 is distinct from both i1 and i0. Defining i3
to be f(i2), i4 to be f(i3), etc. gives—by the same reasoning—an infinite sequence
of distinct values of type ind. This infinite sequence can be used to represent the
natural numbers.

5.1.1 The Representation and Type Definition

As was outlined informally above, it follows from the axiom of infinity (5) that there
exists a function which can be used to ‘generate’ an infinite sequence of distinct
values of type ind. The axiom of infinity merely asserts the existence of this function;
the first step in representing the natural numbers is therefore to define a constant
S:ind→ind which in fact denotes this function. Using the ε-operator, the definition
of S is simply:

` S = εf :ind→ind. (∀x1 x2. (f x1 = f x2) ⊃ (x1 = x2)) ∧ ¬(∀y. ∃x. y = fx)

Once S has been defined, a constant Z:ind can be defined which denotes a value
not in the image of S. From this value Z, an infinite sequence of distinct individuals
can then be generated by repeated application of S. The definition of Z simply uses
the ε-operator to choose an arbitrary value not in the image of S:

` Z = εy:ind. ∀x.¬(y = S x)

From the definitions of S and Z, the semantics of ε, and the axiom of infinity, it
follows immediately that Z is not in the image of S and that S is one-to-one. Formally:

` ∀i.¬(S i = Z)

` ∀i1 i2. (S i1 = S i2) ⊃ (i1 = i2)
(6)

By the informal argument given in the introduction to this section, these two
theorems imply that the individuals denoted by Z, S(Z), S(S(Z)), S(S(S(Z))), . . .
form an infinite sequence of distinct values, and can therefore be used to represent
the type num of natural numbers. To make a type definition for num, a predicate
N:ind→bool must be defined which is true of just those individuals in this infinite
sequence. This can be done by defining N to be true of the values of type ind in
the smallest subset of individuals which contains Z and is closed under S. The formal
definition of N in higher order logic is:

` N i = ∀P :ind→bool. P Z ∧ (∀x. P x ⊃ P (S x)) ⊃ P i

This definition states that N is true of a value i:ind exactly when i is an element
of every subset of ind which contains Z and is closed under S. This means that the
subset of ind defined by N is the smallest such set and therefore contains just those
individuals obtainable from Z by zero or more applications of S.

19



From the definition of N, it is easy to prove the following three theorems:

` N Z

` ∀i. N i ⊃ N(S i)

` ∀P. (P Z ∧ ∀i. (P i ⊃ P (S i)) ⊃ ∀i. N i ⊃ P i

(7)

The first two of these theorems state that the subset of ind defined by N contains Z
and is closed under the function S. The third theorem states that the subset of ind
defined by N is the smallest such set. That is, any set of individuals containing Z and
closed under S has the set of individuals specified by N as a subset.

Using the predicate N, the type constant num can be defined by introducing a type
definition axiom of the usual form. From the theorem ` N Z, it follows immediately
that ` ∃i. N i. The following type definition axiom for the type num can therefore be
introduced:

` ∃f :num→ind.(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. N r = (∃a. r = f a))

and the usual abstraction and representation functions

ABS num:ind→num and REP num:num→ind

for mapping between values of type num and their representations of type ind can
defined as described in Section 3.3.

5.1.2 Deriving the Axiomatization of num

The natural numbers are conventionally axiomatized by Peano’s postulates. The five
theorems labelled (6) and (7) in the previous section amount to a formulation of the
Peano postulates for the natural numbers represented by individuals. It is therefore
easy to derive Peano’s postulates for the type num of natural numbers from these
corresponding theorems about the subset of ind specified by N.

The first step in deriving the Peano postulates for num is to define the two con-
stants:

0:num and Suc:num→num,

which denote the number zero and the successor function on natural numbers. Using
the abstraction and representation functions ABS num and REP num, the constants
0 and Suc can be defined as follows:

` 0 = ABS num Z

` Suc n = ABS num(S(REP num n))

From these definitions, the five theorems labelled (6) and (7), and the fact that the
abstraction and representation functions ABS num and REP num are isomorphisms,
it is easy to prove the abstract axiomatization of num, consisting of the three Peano
postulates shown below:

` ∀n.¬(Suc n = 0)

` ∀n1 n2. Suc n1 = Suc n2 ⊃ n1 = n2

` ∀P. (P 0 ∧ ∀n. P n ⊃ P (Suc n)) ⊃ ∀n. P n

20



The first of Peano’s postulates shown above states that zero is not the successor
of any natural number. This theorem follows immediately from the corresponding
theorem ` ∀i.¬(S i = Z) derived in the previous section for the representing values
of type ind. Likewise, the second of Peano’s postulates, which states that Suc is one-
to-one, follows from the corresponding theorem about S. The third postulate states
the validity of mathematical induction on natural numbers; it follows from the last
of three theorems (7) derived in the previous section.

5.1.3 The Primitive Recursion Theorem

Once Peano’s postulates have been proved, all the usual properties of the natural
numbers can be derived from them. One important property is that functions can
be uniquely defined on the natural numbers by primitive recursion. This is stated by
the primitive recursion theorem, shown below:

` ∀xf. ∃!fn. (fn 0 = x) ∧ ∀n. fn (Suc n) = f (fn n) n (8)

This theorem states that a function fn:num→α can be uniquely defined by primitive
recursion—i.e. by specifying a value for x to define the value of fn(0) and an expres-
sion f to define the value of fn(Suc n) recursively in terms of fn(n) and n. The proof
of this theorem will not be given here, but an outline of the proof can be found in
Gordon’s paper [6]. The proof of a similar theorem for a logical type of trees is given
in Section 6.1.3.

An important fact about the primitive recursion theorem is that it is equivalent
to the three Peano postulates for num derived in Section 5.1.2. The single theorem (8)
can therefore be used as the abstract axiomatization of the defined type num, instead
of the three separate theorems expressing Peano’s postulates. In Section 7.2, it will
be shown how any concrete recursive type can be axiomatized in higher order logic
by a similar ‘primitive recursion’ theorem.

Any function definition by primitive recursion on natural numbers can be justified
formally in logic by appropriately specializing x and f in theorem (8). For example,
specializing x and f to:

λn. n and λfx. λm.Suc(f m)

in a suitably type-instantiated version of the primitive recursion theorem yields (after
some simplification) the theorem:

` ∃!fn. (fn 0 n = n) ∧ ∀n m. (fn (Suc n) m = Suc(fn n m))

which asserts the (unique) existence of an addition function on natural numbers.
Primitive recursive definitions of other standard arithmetic operations (e.g. +, ×,
and exponentiation) can also be formally justified using theorem (8).

5.2 Finite-length Lists

This section describes the definition of a recursive type (α)list of lists containing
values of type α. In principle, it is possible to represent this type by a subset of some
primitive compound type. But in practice, it is easier to use the defined type constant
num and the type operator × (defined above in Section 4.2). The representation using
num and × described below is based on Gordon’s construction of lists in [6].

21



5.2.1 The Representation and Type Definition

Lists are simply finite sequences of values, all of the same type. A list with n values
of type α will be represented by a pair (f, n), where f is a function of type num→α
and n is a value of type num. The idea is that the function f will give the sequence
of values in the list; f(0) will be the first value, f(1) will be the second value, and
so on. The second component of a pair (f, n) representing a list will be a number n
giving the length of the list represented.

The set of values used to represent lists can not be simply the set of all pairs of
type (num→α) × num. The pairs used must be restricted so that each list has a
unique representation. The one-element list [42], for example, will be represented by
a pair (f, 1), where f(0)=42. But there are an infinite number of different functions
f :num→num that satisfy the equation f(0)=42. To make the representation of [42]
unique, some ‘standard’ value must be chosen for the value of f(m) when m > 0.
The predicate Is list REP defined below uses the standard value εx:α.T to specify a
set of pairs containing a unique representation for each list:

` Is list REP(f, n) = ∀m. m ≥ n ⊃ (f m = εx:α.T)

If a pair (f, n) satisfies Is list REP, then for m < n the value of f(m) will be the
corresponding element of the list represented. For m ≥ n, the value of f(m) will be
the standard value εx.T. With this representation, there is exactly one pair (f, n) for
each finite-length list of values of type α.

It is easy to prove that ` ∃f n. Is list REP(f, n), since Is list REP holds of the pair
(λn. εx.T, 0). A type definition axiom of the usual form can therefore be introduced
for the type (α)list:

` ∃f :(α)list→((num→α)× num).
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. Is list REP r = (∃a. r = f a))

and the abstraction and representation functions:

ABS list:((num→α)× num)→(α)list and

REP list:(α)list→((num→α)× num)

can be defined based on the type definition axiom in the usual way.

5.2.2 Deriving the Axiomatization of (α)list

The abstract axiomatization of lists will be based on two constructors:

Nil : (α)list and Cons : α→(α)list→(α)list.

The constant Nil denotes the empty list. The function Cons constructs lists in the
usual way: if h is a value of type α and t is a list then Cons h t denotes the list with
head h and tail t.

The definition of Nil is

` Nil = ABS list((λn:num. εx:α. T), 0)

This equation simply defines Nil to be the list whose representation is the pair (f, 0),
where f(n) has the value εx.T for all n.

22



The constructor Cons can be defined by first defining a corresponding function
Cons REP which performs the Cons-operation on list representations. The definition
is:

` Cons REP h (f, n) = ((λm.(m=0 ⇒ h |f(m− 1))), n + 1)

The function Cons REP takes a value h and pair (f, n) representing a list and yields
the representation of the result of inserting h at the head of the represented list. This
result is a pair whose first component is a function yielding value h when applied to
0 (the head of the resulting list) and the value given by f(m−1) when applied to m
for all m>0 (the tail of the resulting list). The second component is the length n+1,
one greater than the length of the input list representation.

Once Cons REP has been defined, it is easy to define Cons. The definition is:

` Cons h t = ABS list(Cons REP h (REP list t))

The function Cons defined by this equation simply takes a value h and a list t,
maps t to its representation, computes the representation of the desired result us-
ing Cons REP, and then maps that result back to the corresponding abstract list.

Once Nil and Cons have been defined, the following abstract axiom for lists can be
derived by formal proof:

` ∀x f.∃!fn. (fn(Nil) = x) ∧ (∀h t. fn(Cons h t) = f (fn t) h t) (9)

This axiom is analogous to the primitive recursion theorem for natural numbers, and
is an example of the general form of the theorems which will be used in Section 7 to
characterize all recursive types. Like the primitive recursion theorem, the abstract
axiom for lists asserts that functions can be uniquely defined by primitive recursion.
Once this theorem has been derived from the type definition axiom for lists and the
definitions of Cons and Nil, all the usual properties of lists follow without further
reference to the way lists are defined.

The axiom (9) for lists can be proved formally from the type definition for (α)list.
Full details will not be given here, but the proof is comparatively simple. The exis-
tence of the function fn in theorem (9) follows by demonstrating the existence of a
corresponding function on list representations. This function can be defined by prim-
itive recursion on the length component of the representation by using the primitive
recursion theorem (8) for natural numbers. The uniqueness of the function fn in the
abstract axiom for lists can then be proved by mathematical induction on the length
component of list representations.

5.2.3 Theorems about (α)list

Once the abstract axiom (9) for lists has been proved, the following three theorems
can be derived from it:

` ∀h t.¬(Nil = Cons h t)

` ∀h1 h2 t1 t2. (Cons h1 t1 = Cons h2 t2) ⊃ ((h1 = h2) ∧ (t1 = t2))

` ∀P. (P (Nil) ∧ ∀t. P t ⊃ ∀h. P (Cons h t)) ⊃ ∀l. P l

These three theorems are analogous to the Peano postulates for the natural numbers
derived in Section 5.1.2. The first theorem states that Nil is not equal to any list
constructed by Cons. The second theorem states that Cons is one-to-one. And the
third theorem asserts the validity of structural induction on lists.

23



6 Two Recursive Types of Trees

This section describes the formal definitions of two different logical types which denote
sets of trees. First, a type tree is defined which denotes the set of all trees whose
nodes can branch any (finite) number of times. This type is then used to define a
second logical type of trees, (α)Tree, which denotes the set of labelled trees. These
have the same sort of structure as values of type tree, but they also have a label of
type α associated with each node.

The type (α)Tree defined in this section is of interest because each logical type
in the class of recursive types discussed in Section 7 can be represented by some
subset of it. Once the type of labelled trees has been defined, it can be used (along
with the type one and the type operators × and +) to construct systematically a
representation for any concrete recursive type. This avoids the problem of having
to find an ad hoc representation for each recursive type, and so makes it possible to
mechanize efficiently the formal definition of such types.

6.1 The Type of Trees: tree

Values of the logical type tree defined in this section will be finite trees whose internal
nodes can branch any finite number of times. These trees will be ordered. That is, the
relative order of each node’s immediate subtrees will be important; and two similar
trees which differ only in the order of their subtrees will be considered to be different
trees.

6.1.1 The Representation and Type Definition

Trees will be represented by coding them as natural numbers; each tree will be repre-
sented by a unique value of type num. The smallest possible tree consists of a single
leaf node with no subtrees; it will be represented by the number 0. To represent a
tree with one or more subtrees, a function node REP:(num)list→num will be defined
which computes the natural number representing such a tree from a list of the num-
bers which represent its subtrees. The function node REP will take as an argument a
list l of numbers. If each of the numbers in the list represents a tree, then node REP l
will represent the tree whose subtrees are represented by the numbers in l.

Consider, for example, a tree with three subtrees: t1, t2, and t3. Suppose that
the three subtrees t1, t2, and t3 are represented by the natural numbers i, j, and k
respectively:

u
T
T
T

�
�

�
t1

represented by i u
T
T
T

�
�

�
t2

represented by j u
T
T
T

�
�

�
t3

represented by k

The number representing the tree which has t1, t2, and t3 as subtrees will then be
denoted by node REP[i; j; k]:

u
T
T
T

�
�

�
t1

u
T
T
T

�
�

�
t2

u
T
T
T

�
�

�
t3

uHH
HHHH

��
����

represented by node REP[i; j; k]

24



where the conventional list notation [i; j; k] is a syntactic abbreviation for the list
denoted by Cons i (Cons j (Cons k Nil)).

Since node REP takes a list of numbers as arguments, it can be used to compute the
code for a tree with any finite number of immediate subtrees. Thus, using node REP,
the natural number representing a tree of any shape can be computed recursively from
the natural numbers representing its subtrees. The only property that node REP must
have for this to work is the property of being a one-to-one function on lists of numbers:

` ∀l1 l2. (node REP l1 = node REP l2) ⊃ (l1 = l2) (10)

This theorem asserts that if node REP computes the same natural number from two
lists l1 and l2, then these lists must be equal and therefore must consist of the same
finite sequence of numbers. If node REP has this property, then it can be used to
compute a unique numerical representation for every possible tree. It remains to
define the function node REP such that theorem (10) holds.

One way of formally defining node REP is to use the well-known coding function
(n, m) 7−→ (2n + 1)× 2m which codes a pair of natural numbers by a single natural
number. Using this coding function, node REP can be defined by recursion on lists
such that the following two theorems hold:

` node REP Nil = 0

` node REP (Cons n t) = ((2× n) + 1)× (2 Exp (node REP t))
(11)

These two equations define the value of node REP l by ‘primitive recursion’ on the
list l. When l is the empty list Nil, the result is 0. When l is a non-empty list with
head n and tail t, the result is computed by coding as a single natural number the
pair consisting of n and the result of applying node REP recursively to t. Primitive
recursive definitions of this kind can be justified by formal proof using the abstract
axiom (9) for lists derived in Section 5.2.2; the two theorems (11) can be derived from
an appropriate instance of this axiom and a non-recursive definition of the constant
node REP.

Theorem (10) stating that node REP is one-to-one can be derived from the two
theorems (11) which define node REP by primitive recursion. The proof is done by
structural induction on the lists l1 and l2 using the theorem shown in Section 5.2.3
stating the validity of proofs by induction on lists.

The function node REP can be used to compute a natural number to represent
any finitely branching tree. To make a type definition for the type constant tree, a
predicate on natural numbers Is tree REP:num→bool must be defined which is true of
just those numbers representing trees. This predicate will be defined in the same way
as the corresponding predicate was defined in Section 5.1.1 for the representation of
numbers by individuals: Is tree REP n will be true if the number n is in the smallest
set of natural numbers closed under node REP.

The formal definition of Is tree REP uses the auxiliary function Every, defined re-
cursively on lists as follows:

` Every P Nil = T

` Every P (Cons h t) = (P h) ∧ Every P t

These two theorems define Every P l to mean that the predicate P holds of every
element of the list l. Using Every, the predicate Is tree REP is defined as follows:

` Is tree REP n = ∀P. (∀tl. Every P tl ⊃ P (node REP tl)) ⊃ P n

25



This definition states that a number n represents a tree exactly when it is an element
of every subset of num which is closed under node REP. It follows that the set of
numbers for which Is tree REP is true is the smallest set closed under node REP. This
set contains just those natural numbers which can be computed using node REP and
therefore contains only those numbers which represent trees.

To use Is tree REP to define a new type, the theorem ` ∃n. Is tree REP n must first
be proved. This theorem follows immediately from the fact that Is tree REP is true
of 0, i.e. the number denoted by node REP Nil. Once this theorem has been proved,
a type definition axiom of the usual form can be introduced:

` ∃f :tree→num.
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. Is tree REP r = (∃a. r = f a))

along with the usual abstraction and representation functions:

ABS tree:num→tree and REP tree:tree→num.

6.1.2 The Axiomatization of tree

The abstract axiom for tree will be based on the constructor:

node:(tree)list→tree

The function node builds trees from smaller trees. If tl:(tree)list is a list of trees, then
the term node tl denotes the tree whose immediate subtrees are the trees in the list
tl. If tl is the empty list of trees, then node tl denotes the tree consisting of a single
leaf node. Using node, it is possible to construct a tree of any shape. For example,
the tree:

u u u
u

u u

H
HHH

HH

�
���

��
T
T
T

�
�

�

is denoted by the expression: node[node Nil; node Nil; node[node Nil; node Nil] ].
An auxiliary function Map will be used in the formal definition of the constructor

node. The function Map is the usual mapping function for lists; it takes a function
f :α→β and a list l:(α)list and yields the result of applying f to each member of l in
turn. The recursive definition of Map is:

` Map f Nil = Nil

` Map f (Cons h t) = Cons (f h) (Map f t)

Using Map and the function node REP:(num)list→num defined in the previous
section, the formal definition in logic of node is:

` node tl = (ABS tree(node REP(Map REP tree tl)))

The constructor node defined by this equation takes a list of trees tl, applies node REP
to the corresponding list of numbers representing the trees in tl, and then maps the
result to the corresponding abstract tree.

26



The following two important theorems follow from the formal definition of node
given above; they are analogous to the Peano postulates for the natural numbers,
and are used to prove the abstract axiom for the type tree:

` ∀tl1 tl2. (node tl1 = node tl2) ⊃ (tl1 = tl2)

` ∀P. (∀tl. Every P tl ⊃ P (node tl)) ⊃ ∀t. P t

The first of these theorems states that the constructor node is one-to-one. This follows
directly from theorem (10), which states that the corresponding function node REP
is one-to-one. The second theorem shown above asserts the validity of induction on
trees, and can be used to justify proving properties of trees by structural induction.
This theorem can be proved from the definitions of node and Is tree REP and the fact
that ABS tree and REP tree are isomorphisms relating trees and the numbers that
represent them.

The abstract axiomatization of the defined type tree consists of the single theorem
shown below:

` ∀f.∃!fn.∀tl. fn(node tl) = f (Map fn tl) tl (12)

This theorem is analogous to the primitive recursion theorem (8) for natural num-
bers and the abstract axiom (9) for lists. It asserts the unique existence of functions
defined recursively on trees. The universally quantified variable f ranges over func-
tions that map a list of values of type α and a list of trees to a value of type α. For
any such function, there is a unique function fn:tree→α that satisfies the equation
fn(node tl) = f (Map fn tl) tl. For any tree (node tl), this equation defines the
value of fn(node tl) recursively in terms of the result of applying fn to each of the
immediate subtrees in the list tl.

6.1.3 An Outline of the Proof of the Axiom for tree

It is straightforward to prove the uniqueness part of the abstract axiom for trees;
the uniqueness of the function fn in theorem (12) follows by structural induction
on trees using the induction theorem for the defined type tree. The existence part
of theorem (12) is considerably more difficult to prove. It follows from a slightly
weaker theorem in which the list of subtrees tl is not an argument to the universally
quantified function f :

` ∀f.∃fn.∀tl. fn(node tl) = f (Map fn tl) (13)

This weaker theorem can be proved by first defining a height function Ht:tree→num
on trees and then proving that, for any number n, there exists a function fun which
satisfies the desired recursive equation for trees whose height is bounded by n:

` ∀f n.∃fun. ∀tl. (Ht(node tl) ≤ n) ⊃ (fun(node tl) = f (Map fun tl)) (14)

The main step in the proof of this theorem is an induction on the natural number n.
Theorem (14) can be used to define a higher order function fun which yields

approximations of the function fn whose existence is asserted by theorem (13). For
any n and f , the term (fun n f) denotes an approximation of fn which satisfies the
recursive equation in theorem (13) for trees whose height is no greater than n. This
is stated formally by the following theorem:

` ∀f n tl. (Ht(node tl) ≤ n) ⊃ (fun n f (node tl) = f (Map (fun n f) tl)) (15)

27



The approximations of fn constructed by fun have the following important property:
for any two numbers n and m, the corresponding functions constructed by fun behave
the same for trees whose height is bounded by both n and m. This property follows
by structural induction on trees, and is expressed formally by the theorem:

` ∀t n m f. (Ht t)<n ∧ (Ht t)<m ⊃ (fun n f t = fun m f t) (16)

Theorem (13) asserts the existence of a function fn for any given f ; the higher
order function fun can be used to explicitly construct this function fn from the given
function f . For any f , the term λt. fun (Ht(node [t])) f t denotes the function which
satisfies the desired recursive equation. An outline of the proof of this is as follows.
Specializing f , n, and tl in theorem (15) to f , Ht(node[node tl]), and tl respectively
yields the following implication:

` Ht(node tl) ≤ Ht(node[node tl]) ⊃
fun (Ht(node[node tl])) f (node tl) = f(Map (fun (Ht(node[node tl])) f) tl)

The height function Ht has the property: ` ∀t. Ht t ≤ Ht(node [t]). The antecedent
of the implication shown above is therefore always true, and the theorem can be
simplified to:

` fun (Ht(node[node tl])) f (node tl) = f(Map (fun (Ht(node[node tl])) f) tl)

The property of fun expressed by theorem (16) implies that the above theorem is
equivalent to:

` fun (Ht(node[node tl])) f (node tl) = f(Map (λt. fun (Ht(node[t])) f t) tl)

which is itself equivalent (by β-reduction) to:

` (λt. fun (Ht(node[t]))f t)(node tl) = f(Map (λt. fun (Ht(node[t])) f t) tl)

Theorem (13) follows immediately from this last result. The stronger theorem (12),
which axiomatizes the defined type tree, then follows from theorem (13) by a relatively
straightforward formal proof.

6.2 The Type of Labelled Trees: (α)Tree

This section outlines the definition of the type (α)Tree which denotes the set of
labelled trees. Labelled trees of the kind defined in this section have the same sort
of general structure as values of the logical type tree defined in the previous section.
The only difference is that a tree of type (α)Tree has a value or ‘label’ of type α
associated with each of its nodes. It is therefore comparatively simple to define the
type (α)Tree, since the values of the structurally similar type tree can be used in its
representation.

28



6.2.1 The Representation and Type Definition

The representation of a labelled tree of type (α)Tree will be a pair (t, l), where t is
a value of type tree giving the shape of the tree being represented and l is a list of
type (α)list containing the values associated with its nodes. The values in the list l
will occur in the sequence which corresponds to a preorder traversal of the labelled
tree being represented. Consider, for example, the labelled tree shown below:

u1HH
HHHH

��
����u2

u
3

u
4

T
T
T

�
�

�

u
5

u 6

u
7

u
8

T
T
T

�
�

�

This tree has a natural number associated with each node and can be represented
by a pair (t, l) of type tree × (num)list. The first component t of this pair will be
the value of type tree whose structure corresponds to the above picture. The second
component l will be a list of length eight containing the numbers associated with
the nodes of the corresponding labelled tree. The numbers in this list will occur in
the order [1; 2; 3; 4; 5; 6; 7; 8], corresponding to a preorder traversal of the labelled tree
being represented.

Any α-labelled tree can be similarly represented by a pair of type tree × (α)list;
but not every such pair represents a tree. For a pair (t, l) to represent a labelled tree,
the length of the list l must be the same as the number of nodes in the tree t. This
can be expressed in logic by defining two functions:

Length:(α)list→num and Size:tree→num

which compute the length of a list and the number of nodes in a tree, respectively.
The function Length can be defined recursively by using the abstract axiom (9) for
lists to derive the following two equations:

` Length Nil = 0

` Length (Cons h t) = (Length t) + 1

The function Size can be defined by first defining a recursive function on lists Sum:(num)list→num
which computes the sum of a list of natural numbers:

` Sum Nil = 0

` Sum (Cons n l) = n + (Sum l)

and then using the abstract axiom (12) for the defined type tree to derive the following
recursive definition of Size:

` Size(node tl) = (Sum(Map Size tl)) + 1

Using the functions Length and Size, the values of type tree×(α)list that represent
labelled trees can be specified by the predicate Is Tree REP defined as follows:

` Is Tree REP(t, l) = (Length l = Size t)

29



This predicate is true of just those pairs (t, l) where the number of nodes in the tree
t equals the length of the list l. It is therefore true of precisely those values of type
tree× (α)list which can be used to represent labelled trees.

For any value v:α, the predicate Is Tree REP holds of the pair: (node Nil, [v]). From
this, it immediately follows that ` ∃p. Is Tree REP p. The following type definition
axiom can therefore be introduced to define (α)Tree:

` ∃f :(α)Tree→(tree× (α)list).
(∀a1 a2.f a1 = f a2 ⊃ a1 = a2) ∧ (∀r. Is Tree REP r = (∃a. r = f a))

The associated abstraction and representation functions:

ABS Tree:(tree× (α)list)→(α)Tree and

REP Tree:(α)Tree→(tree× (α)list)

can then be defined in the usual way (as described in Section 3.3).

6.2.2 Deriving the Axiomatization of (α)Tree

The abstract axiom for (α)Tree is based on the constructor

Node:α→((α)Tree)list→(α)Tree

which is analogous to the constructor node for tree. If v is a value of type α, and l
is a list of labelled trees, then the term (Node v l) denotes the labelled tree whose
immediate subtrees are those occurring in l and whose root node is labelled by the
value v. The function Node can be used to construct labelled trees of any shape. For
example, the tree:

u2HH
HHHH

��
����u

3

u
5

u
7

is denoted by the term: Node 2 [Node 3 Nil; Node 5 Nil; Node 7 Nil].
The formal definition of Node uses an auxiliary function Flat:((α)list)list→(α)list

which takes a list of lists and yields the result of appending them all together into a
single list. The recursive definition of Flat is:

` Flat Nil = Nil

` Flat (Cons h t) = Append h (Flat t)

where Append is defined (also recursively) by:

` Append Nil l = l

` Append (Cons h l1) l2 = Cons h (Append l1 l2)

Using Flat, and the mapping function Map defined above in Section 6.1.2, the formal
definition of the constructor Node is given by the following theorem:

` Node v l = ABS Tree((node(Map (Fst o REP Tree) l)),
((Cons v (Flat(Map (Snd o REP Tree) l)))))

30



This definition uses REP Tree to obtain the representation of each labelled tree in
the list l. This yields a list of pairs representing labelled trees. The function node
is then used to construct a new tree whose subtrees are the tree components in this
list of pairs, and Flat is used to construct the corresponding list of node-values. The
result is then mapped back to an abstract labelled tree using the abstraction function
ABS Tree.

Using the constructor Node v l defined above, the abstract axiom for (α)Tree can
be written:

` ∀f.∃!fn.∀v tl. fn(Node v tl) = f (Map fn tl) v tl (17)

This theorem is of the same general form as theorem (12), the abstract axiom for the
defined type tree. It states the uniqueness of functions defined by ‘primitive recursion’
on labelled trees. The proof of this theorem is straightforward, but it requires some
tricky (and uninteresting) lemmas involving the partitioning of lists. Details of the
proof will therefore not be given here. The general strategy of the proof is to use the
abstract axiom for values of type tree to define a recursive function on representations
which ‘implements’ the function fn asserted to exist by the axiom (17).

7 Automating Recursive Type Definitions

This section outlines a method for formally defining any simple concrete recursive
type in higher order logic. This method has been used to implement an efficient
derived inference rule in HOL which defines such recursive types automatically. The
input to this derived rule is a user-supplied informal4 specification of the recursive
type to be defined. This type specification is written in a notation which resembles
a data type declaration in functional programming languages like Standard ML [9].
It simply states the names of the new type’s constructors and the logical types of
their arguments. The output is a theorem of higher order logic which abstractly
characterizes the properties of the desired recursive type—i.e. a derived ‘abstract
axiomatization’ of the type.

An overview of the algorithm used by this programmed inference rule to define a
new recursive type is shown in the diagram below. The algorithm follows the three
steps for defining a new logical type described in Section 3.1.

4In this context, informal means not in the language of higher order logic.

31



?

informal specification of rty

Construct a representation using the
defined types: one, ×, + and (α)Tree.

?

Subset predicate: All Prty

Postulate a type definition axiom for
rty, and define ABS and REP.

?

` ∀a. ABS(REP a)=a
` ∀r. All Prty r = (REP(ABS r)=r))

Prove an abstract axiom for rty.

?

` abstract axiom for rty

In the first step, an appropriate representation is found for the values of the recur-
sive type rty to be defined. This representation is always some subset of a substitution
instance of (α)Tree—i.e. a subset of some type (ty)Tree of general trees labelled by
values of type ty. The type ty of labels for these trees is built up systematically
using the type constant one and the type operators × and +. The output of this
stage is a ‘subset predicate’ which defines the set of labelled trees used to represent
values of the new type rty. This predicate has the standard form: ‘All Prty’, where
Prty is a predicate whose exact form is determined by the specification of the type
to be defined. (The meaning of ‘All’ is explained below in Section 7.3.2.) No logical
inference needs to be done in this step; so the ML code which implements it in the
HOL system is quite fast.

In the second step, a type definition axiom is introduced for the new type, based on
the subset predicate All Prty. The associated abstraction and representation functions
ABS and REP are then defined and proved to be isomorphisms between the new type
rty and the set of values specified by All Prty. The output of this stage consists of the
two theorems about ABS and REP shown in the diagram above. The proofs done in
this step are easy and routine (see Section 3.3), and their mechanization in HOL is
therefore efficient and straightforward.

In the final step, an abstract axiom for the new type rty is derived by formal proof
from the definition of the subset predicate All Prty and the two theorems about ABS
and REP proved in the previous stage. This is the only step in the algorithm where
a non-trivial amount of logical inference has to be done. The ML implementation of
this step therefore uses the ‘optimization’ strategy for HOL derived inference rules
discussed in Section 2: a pre-proved general theorem about recursive types is used to
reduce to a minimum the amount of inference that has to be done at ‘run time’ to
derive the desired result. This pre-proved theorem has the form shown below:

` ∀P. · · · 〈β is isomorphic to ‘All P ’〉 ⊃ 〈abstract axiom for β〉

32



Informally, this theorem states that any type β which is represented by a set of labelled
trees ‘All P ’ satisfies an abstract axiomatization of the required form. By specializing
P in this theorem to the predicate Prty constructed in the first step, the abstract
axiom for rty follows simply by modus ponens (using the theorems about ABS and
REP derived in the second step) and a relatively small amount of straightforward
simplification.

A detailed description of the HOL implementation of this algorithm for defining
recursive types is beyond the scope of this paper; but the sections which follow give
an overview of the logical basis of this implementation. In Section 7.1, the syntax
of informal type specifications is described, and some simple examples are given of
type specifications written in this notation. Section 7.2 then describes the general
form of the abstract axioms that are derived by the system. Section 7.3 explains
how appropriate representations for these types can be systematically constructed
from their informal type specifications. Finally, Section 7.4 gives the general theorem
stating that any recursive type represented in the way described in Section 7.3 satisfies
an abstract axiom of the form shown in Section 7.2. An example of the application
of this theorem is also given.

7.1 Informal Type Specifications5

Every logical type which can be defined by the method outlined in the following
sections can be described informally by a type specification of the following general
form:

(α1, . . . , αn)rty :: = C1 ty1
1 . . . tyk1

1 | · · · | Cm ty1
m . . . tykm

m (18)

where each tyj
i is either an existing logical type (not containing rty) or is the type

expression (α1, . . . , αn)rty itself. This equation specifies a type (α1, . . . , αn)rty with
n type variables α1, . . . , αn where n ≥ 0. If n=0 then rty is a type constant; other-
wise rty is an n-ary type operator. The type specified has m distinct constructors
C1, . . . , Cm where m ≥ 1. Each constructor Ci takes ki arguments, where ki ≥ 0; and
the types of these arguments are given by the type expressions tyj

i for 1 ≤ j ≤ ki.
If one or more of the type expressions tyj

i is the type (α1, . . . , αn)rty itself, then the
equation specifies a recursive type. In any specification of a recursive type, at least
one constructor must be non-recursive—i.e. all its arguments must have types which
already exist in the logic.

The logical type specified by equation (18) denotes the set of all values which can
be finitely generated using the constructors C1, . . . , Cm, where each constructor is
one-to-one and any two different constructors yield different values. I.e. the type
specified by (18) is the initial algebra [2] with constructors C1, . . . , Cm. Every value
of this logical type is denoted by some term of the form:

Ci x1
i . . . xki

i

where xj
i is a term of logical type tyj

i for 1 ≤ j ≤ ki. In addition, any two terms:

Ci x1
i . . . xki

i and Cj x1
j . . . x

kj

j

denote equal values exactly when their constructors are the same (i.e. i = j) and
these constructors are applied to equal arguments (i.e. xn

i = xn
j for 1 ≤ n ≤ ki).

5Some of the notation used in this section is adapted from Bird and Wadler’s clear description
of the syntax of type definitions in their excellent book [1] on functional programming.

33



7.1.1 Some Examples of Type Specifications

The two simple recursive types num and (α)list which were defined in Section 5 are
both examples of types that can be described by type specifications of the general
form illustrated by (18) above.

The specification of the type num of natural numbers is the simple equation shown
below:

num ::= 0 | Suc num

This equation specifies the type constant num to have two constructors: 0:num and
Suc:num→num. The type num which is described by this type specification denotes
the set of values generated from the constant 0 by zero or more applications of the
constructor Suc—i.e. the set of values denoted by terms of the form: 0, Suc(0),
Suc(Suc(0)), . . . etc.

The type specification for the type (α)list of finite lists is similar to the one given
above for num. It is:

(α)list ::= Nil | Cons α (α)list

This equation states that the type (α)list denotes the set of all values generated by
the two constructors: Nil:(α)list and Cons:α→(α)list→(α)list.

A slightly more complex example is the recursive type btree, described by the type
specification shown below:

btree ::= Leaf num | Tree btree btree

This equation specifies a type of binary trees whose leaf nodes (but not internal
nodes) are labelled by natural numbers. When defined formally in higher order logic,
this type has two constructors: Leaf:num→btree and Tree:btree→btree→btree. The
function Leaf constructs leaf nodes; if n is a value of type num, then (Leaf n) denotes
a leaf node labelled by n. The constructor Tree builds binary trees from smaller
binary trees; if t1 and t2 are binary trees then (Tree t1 t2) denotes the binary tree
with left subtree t1 and right subtree t2.

In addition to recursive types, simple enumerated and ‘record’ types can also be
specified by equations of the form given by (18). For example, the type constant one
and the two type operators prod and sum, whose formal definitions were given in
Section 4, can be informally specified by the three equations shown below:

one :: = one

(α, β)prod :: = pair α β

(α, β)sum :: = Inl α | Inr β

The first of these specifications simply states that one is the enumerated type with
exactly one value: the value denoted by the constant one. The second specifica-
tion states that every value of type (α, β)prod is denoted by some term of the form
(pair a b), i.e. an ordered pair with first component a:α and second component b:β.
The third equation states that every value of type (α, β)sum is either a left injection
constructed by Inl or a right injection constructed by Inr.

Many more examples of types—both recursive and non-recursive—which can be
specified by equations of the form given by (18) can be found in books on functional
programming. (See, for example, chapter 8 of [1].)

34



7.2 Formulating Abstract Axioms for Recursive Types

The input to the HOL programmed inference rule which defines types is, in general,
an informal specification of the form:

(α1, . . . , αn)rty :: = C1 ty1
1 . . . tyk1

1 | · · · | Cm ty1
m . . . tykm

m

Each type (α1, . . . , αn)rty specified by an equation of this form can be abstractly
characterized by a single theorem of higher order logic. This theorem is the output
of the HOL derived rule for defining types and has the following general form:

` ∀f1 · · · fm. ∃!fn:(α1, . . . , αn)rty→β.

∀x1
1 · · · xk1

1 . fn(C1 x1
1 . . . xk1

1 ) = f1 (fn x1
1) . . . (fn xk1

1 ) x1
1 . . . xk1

1 ∧
...

∀x1
m · · · xkm

m . fn(Cm x1
m . . . xkm

m ) = fm (fn x1
m) . . . (fn xkm

m ) x1
m . . . xkm

m

(19)

where the right hand sides of the equations include recursive applications (fn xj
i ) of

the function fn only for variables xj
i of type (α1, . . . , αn)rty.

Theorem (19) states that for any m functions f1, . . . , fm there is a unique func-
tion fn which satisfies a ‘primitive recursive’ definition whose form is determined
by the given functions f1, . . . , fm. This is an abstract characterization of the type
(α1, . . . , αn)rty: it states the essential properties of the type, but does so without
reference to the way it is represented. It follows from this theorem that every value of
type (α1, . . . , αn)rty is constructed by one of the constructors C1, . . . , Cm, that each
of these constructors is one-to-one, and that different constructors yield different val-
ues. The proof that theorem (19) implies these properties of (α1, . . . , αn)rty and the
constructors C1, . . . , Cm can be outlined as follows.

The fact that every value of type (α1, . . . , αn)rty is constructed by one of the
functions C1, . . . , Cm follows from the uniqueness part of theorem (19). Suppose
there is some value, v say, such that v 6= (Ci x1

i . . . xki
i ) for 1 ≤ i ≤ m. I.e. v

is not constructed by any Ci. One could then define two functions f and g of type
(α1, . . . , αn)rty→bool which yield the boolean T for all values constructed by any
constructor Ci:

∀x1
i · · · xki

i . f(Ci x1
i . . . xki

i ) = g(Ci x1
i . . . xki

i ) = T for 1 ≤ i ≤ m (20)

and when applied to v yield different results: f v = T and g v = F. If f and g
are defined this way then f 6= g, since f v 6= g v. But from the uniqueness part of
theorem (19) it follows that if f and g satisfy (20) then f = g. Therefore no such
value v exists, and every value of type (α1, . . . , αn)rty is constructed by some Ci.

The fact that the constructors C1, . . . , Cm are one-to-one can be proved by using
theorem (19) to define a ‘destructor’ function Di for each Ci such that:

` Di(Ci x1
i . . . xki

i ) = (x1
i , . . . , x

ki
i )

For each constructor Ci, such a function can be defined by appropriately specializing
the corresponding quantified variable fi in theorem (19). From the property of the
destructor Di shown above, it is then easy to prove that:

` (Ci x1
i . . . xki

i ) = (Ci y1
i . . . yki

i ) ⊃ (x1
i = y1

i ∧ · · · ∧ xki
i = yki

i )

35



which states that Ci is one-to-one, as desired.
Finally, the fact that different constructors yield different values can be proved

by appropriately specializing the universally quantified functions f1, . . . , fm in theo-
rem (19) to obtain a theorem asserting the proposition shown below:

` ∃fn.∀x1
i · · · xki

i . fn(Ci x1
i . . . xki

i ) = i for 1 ≤ i ≤ m

This states the existence of a function fn which yields the natural number i when ap-
plied to values constructed by the ith constructor. This means that any two different
constructors Ci and Cj yield different values of type (α1, . . . , αn)rty, since applying
fn to these values gives different natural numbers.

Using theorems of the form illustrated by (19) to axiomatize recursive types is
closely related to the initial algebra approach to the theory of abstract data types [2,
5]. This approach is very elegant from a theoretical point of view, but it is also of
practical value in the HOL mechanization of recursive type definitions. Each recursive
type is characterized by a single theorem, and all the theorems which characterize
such types have the same general form. This uniform treatment of recursive types
is the basis for the efficient automation of their construction in HOL. It allows the
axiom for any recursive type to be quickly derived from a pre-proved theorem stating
that axioms of this kind hold for all such types. Furthermore, it makes it possible
to derive useful standard properties of recursive types (e.g. structural induction) in a
uniform way, with relatively short formal proofs and therefore by efficient programmed
inference rules.

7.3 Constructing Representations for Recursive Types

This section outlines a method by which a representation can be found for any type
specified by an equation of the form described in Section 7.1. Each representation is
an appropriately-defined subset of a type constructed using the type constant one,
the type operators × and +, and the type (α)Tree. A simple example is first given
in Sections 7.3.1 and 7.3.2; the method for finding representations in general is then
outlined in Section 7.3.3.

7.3.1 An Example: the Representation of Binary Trees

Consider the type btree described above in Section 7.1.1. This type was specified
informally by:

btree ::= Leaf num | Tree btree btree

The type btree specified by this equation can be represented in higher order logic
by a subset of the set denoted by the compound type (num + one)Tree. This type
denotes the set of all trees (of any shape) whose nodes are labelled either by a value
of type num or by the single value one of type one. The idea of this representation
is that each binary tree t of type btree is represented by a corresponding tree of type
(num + one)Tree which has both the same shape as t and the same labels on its
nodes as t.

Consider, for example, the binary tree (Leaf n), consisting of a single leaf node
labelled by the natural number n. This binary tree will be represented by a leaf node
of type (num + one)Tree labelled by the left injection (Inl n):

36



uLeaf n uNode (Inl n) Nil
-

represented by

A binary tree (Tree t1 t2) which is not a leaf node, but has two subtrees t1 and t2,
will be represented by a tree of type (num + one)Tree which also has two subtrees
and is labelled by the right injection (Inr one):

Tree t1 t2u
@

@
@

�
�

�u
T
T
T

�
�

�
t1

u
T
T
T

�
�

�
t2

Node (Inr one) [r1; r2]u
@

@
@

�
�

�u
T
T
T

�
�

�
r1

u
T
T
T

�
�

�
r2

-
represented by

where r1 and r2 are the representations of the two binary trees t1 and t2 respectively.
The ‘dummy’ value (Inr one) is used in this case to label the root node of the represen-
tation, since the corresponding binary tree being represented has no value associated
with its root node.

7.3.2 Defining the Subset Predicate for btree

To introduce a type definition axiom for btree, a predicate Is btree REP must first be
defined which is true of just those values of type (num + one)Tree which represent
binary trees using the scheme outlined above. This predicate is defined formally by
building it up from two auxiliary predicates: Is Leaf and Is Tree. These two auxiliary
predicates correspond to the two kinds of binary trees which will be represented, and
each one states what the representation of the corresponding kind of binary tree looks
like.

The predicates Is Leaf and Is Tree are defined as follows. Every value in the rep-
resentation is a tree of the form (Node v tl), where v is a label of type (num + one)
and tl is a list of subtrees. If such a tree represents a leaf node (Leaf n), then the
label v must be the value (Inl n) and the list tl must be empty. These conditions are
expressed formally by the predicate Is Leaf, defined as follows:

` Is Leaf v tl = (∃n. v = Inl n ∧ Length tl = 0)

If (Node v tl) represents a binary tree (Tree t1 t2) with two subtrees, then the list of
subtrees tl must have length two, and the label v must be the value (Inr one). The
definition of Is Tree is therefore:

` Is Tree v tl = (v = Inr one ∧ Length tl = 2)

The two predicates Is Leaf and Is Tree state what kind of values v and tl must be
for the tree (Node v tl) to be the root node of legal binary-tree representation. But
if a general tree of type (num + one)Tree in fact represents a binary tree, then not
only its root node but every node it contains (i.e. all its subtrees) must also satisfy
either Is Leaf or Is Tree. This can be expressed formally in logic by first defining a
higher order function All recursively on trees as follows:

` All P (Node v tl) = P v tl ∧ Every (All P ) tl

37



Using All, the predicate Is btree REP can then be defined such that it is true of a tree
t exactly when the label and subtree list of every node in t satisfies either Is Leaf or
Is Tree. The definition of Is btree REP is simply:

` Is btree REP t = All (λv. λtl. Is Leaf v tl ∨ Is Tree v tl) t

This predicate exactly specifies the subset of (num + one)Tree whose values rep-
resent binary trees, and can therefore be used to introduce a type definition axiom
for the new type btree in the usual way. All the predicates which specify represen-
tations of recursive type are defined using All in exactly the way shown above for
Is btree REP.

7.3.3 Finding Representations in General

The representation of binary trees by a subset of (num + one)Tree illustrates the
general method for finding representations of any type specified by an equation of the
form described in Section 7.1. In general, a recursive type specified by an equation
of this kind denotes a set of labelled trees with a fixed number of different kinds of
nodes. Any such type can therefore be represented by a subset of values denoted by
some instance of the defined type (α)Tree of general trees.

Suppose, for example, that (α1, . . . , αn)rty is specified by:

(α1, . . . , αn)rty :: = C1 ty1
1 . . . tyk1

1 | · · · | Cm ty1
m . . . tykm

m

This equation specifies a type with m different kinds of values, corresponding to the
m constructors C1, . . . , Cm. When this type is defined formally in higher order logic,
each of its values will be denoted by some term of the form:

Ci x1
i . . . xki

i

where Ci is a constructor and each argument xj
i is a value of type tyj

i for 1 ≤ j ≤ ki.
In the general case of a recursive type, some of the ki arguments to Ci will have
existing logical types and some will have the type (α1, . . . , αn)rty itself. Let pi be the
number of arguments which have existing logical types and let qi be the number of
arguments which have type (α1, . . . , αn)rty, where ki = pi + qi. The abstract value
of type (α1, . . . , αn)rty denoted by Ci x1

i . . . xki
i can be represented by a tree which

has qi subtrees and pi values associated with its root node. This is illustrated by the
diagram shown below:

Ci

︷ ︸︸ ︷
x1

i · · · xki
i︸ ︷︷ ︸

-

-

�

�

pi arguments having

existing logical types

qi arguments

of type (α1, . . . , αn)rty

(∼,∼, . . . ,∼)

pi labels︷ ︸︸ ︷
u

︸ ︷︷ ︸
qi subtrees

��
����

�
�

�

HH
HHHHu

T
T
T

�
�

�

u
T
T
T

�
�

�

u
T
T
T

�
�

�

r r r

38



In the general case illustrated by this diagram, the tree representing Ci x1
i . . . xki

i

is labelled by pi-tuple of values. Each of these values is one of the pi arguments
to Ci which are not of type (α1, . . . , αn)rty but have types which already exist in
the logic. When pi = 0, the representing tree is labelled not by a tuple but by the
constant one (as was done for the constructor Tree of btree). And when pi = 1 the
representing tree is labelled simply by a single value of the appropriate type (as was
done for the constructor Leaf of btree). The qi subtrees shown in the diagram are the
representations of the arguments to Ci which have the type (α1, . . . , αn)rty. If qi = 0
then the representing tree has no subtrees.

Each of the m kinds of values constructed by C1, . . . , Cm can be represented by
a tree using the scheme outlined above. In general, a value obtained using the ith
constructor Ci will be represented by a tree labelled by a tuple of pi values. The
representing type for (α1, . . . , αn)rty will therefore be a type expression of the form:

(

sum of m products︷ ︸︸ ︷
( ty × · · · × ty︸ ︷︷ ︸

product of p1 types

) + · · · + ( ty × · · · × ty︸ ︷︷ ︸
product of pm types

) )Tree

where the ty’s are the existing logical types occurring in the equation which specifies
the new type (α1, . . . , αn)rty being defined.

Using this scheme, a predicate Is rty REP can be defined to specify a set of trees
to represent (α1, . . . , αn)rty in exactly the same way as the predicate Is btree REP
was defined for the representation of btree. The definition of Is rty REP will have the
form:

` Is rty REP t = All (λv. λtl. Is C1 v tl ∨ · · · ∨ Is Cm v tl) t

where each Is Ci is an auxiliary predicate specifying which trees represent values
constructed by the corresponding constructor Ci. The ith auxiliary predicate Is Ci is
defined as follows. When i 6= m, the definition is:

` Is Ci v tl = ∃x1 . . . xpi
. v = Inl(Inr · · · (Inr︸ ︷︷ ︸

i−1 Inr’s

(x1, . . . , xpi
)) · · ·) ∧ Length tl = qi

where pi is the number of arguments to Ci which have existing logical types, and qi

is the number of arguments of type (α1, . . . , αn)rty. This definition states that if a
tree (Node v tl) represents a value Ci x1

i . . . xki
i then it must have the right number

subtrees in tl and its label v must be an appropriate injection of some pi-tuple (of
the right logical type, of course). When i = m, the definition is similar:

` Is Cm v tl = ∃x1 . . . xpm . v = (Inr · · · (Inr︸ ︷︷ ︸
m−1 Inr’s

(x1, . . . , xpm)) · · ·) ∧ Length tl = qm

The only difference is that the last injection applied is Inr, not Inl.

7.4 Deriving Abstract Axioms for Recursive Types

The uniform treatment of representations for recursive types makes it possible to
write an efficient HOL derived inference rule which proves abstract axioms for them
efficiently. Every representation is some subset ‘All P ’ of an instance of (α)Tree. A
general theorem can therefore be formulated stating that an abstract axiom of the

39



required form holds for any recursive type represented this way. This theorem can
then be simply ‘instantiated’ to obtain an abstract axiom for any particular recursive
type.

The theorem stating that every recursive type satisfies an abstract axiom of the
desired form is shown below:

` ∀P. ∀Abs:(α)Tree→β. ∀Rep:β→(α)Tree.
(∀a. Abs(Rep a)=a ∧ ∀r. All P r = (Rep(Abs r)=r)) ⊃
∀f. ∃! fn.∀v tl. P v (Map Rep tl) ⊃

fn(Abs(Node v (Map Rep tl))) = f (Map fn tl) v tl

(21)

Informally, this theorem states that any type β which is represented by (i.e. is iso-
morphic to) a set ‘All P ’ of trees satisfies an abstract axiom of the form described in
Section 7.2. Theorem 21 makes this assertion in form of an implication:

` ∀P. · · · 〈β is isomorphic to ‘All P ’〉 ⊃ 〈abstract axiom for β〉

where the antecedent of this implication is written formally as follows:

∀a. Abs(Rep a)=a ∧ ∀r. All P r = (Rep(Abs r)=r)

This simply says that β is isomorphic to the set of trees of type (α)Tree which satisfy
All P . The type variable β stands for the new recursive type which is represented by
All P , and the variables Abs and Rep are the abstraction and representation functions
for β.

The conclusion of theorem (21) states that functions can be uniquely defined by
‘primitive recursion’ on the structure which β inherits from All P . That is, for any f ,
there is a unique function fn:β→γ which satisfies the recursive equation:

fn(Abs(Node v (Map Rep tl))) = f (Map fn tl) v tl

whenever the condition P v (Map Rep tl) holds of v and tl. This condition on v and
tl restricts the recursive equation shown above to apply only to ‘well-constructed’
values of type β. If P v (Map Rep tl) holds, then All P is true of the value
Node v (Map Rep tl) on the left hand side of the equation. The corresponding
abstract value, denoted by:

Abs(Node v (Map Rep tl)),

will then be a correctly-represented value of type β. The example in Section 7.4.1
below shows how the form of the predicate P in the condition P v (Map Rep tl)
determines the final ‘shape’ of the resulting axiom.

Theorem (21) illustrates the expressive power which higher-order variables and
type polymorphism give to higher order logic. The variable P in this theorem ranges
(essentially) over all predicates on (α)Tree. And the two type variables α and β
can be instantiated to any two logical types. Theorem (21) therefore asserts that
an abstract axiom holds for any recursive type, since any such type is isomorphic
to an appropriate subset All P of some instance of (α)Tree. Because general results
like theorem (21) can be formulated as theorems in the logic, they can be used to
make programmed inference rules in HOL efficient. Derived inference rules can use
such pre-proved general theorems to avoid having to do costly ‘run time’ inference.
Theorem (21) is used in this way by the derived rule which automates recursive type
definitions.

The example given in the following section shows how this derived rule uses the
general theorem (21) to prove the abstract axiom for a particular recursive type.

40



7.4.1 Example: Deriving the Axiom for btree

The example given in this section is the proof of the abstract axiom for btree, the type
whose representation was described in Section 7.3.2. The following is the sequence of
main steps which the HOL system carries out to define btree and derive an abstract
axiom for it:

(1) Define the subset predicate Is btree REP, introduce a type definition axiom for
btree, and define the associated abstraction and representation functions ABS:(num+
one)Tree→btree and REP:btree→(num + one)Tree.

This is done as outlined in Sections 7.3.2 and 3.3. The result of this step is the
two theorems shown below:

` ∀a. ABS(REP a) = a
` ∀r. All Is btree REP r = (REP(ABS r) = r))

These theorems simply state that the newly-introduced type constant btree de-
notes a set of values which is isomorphic to the subset of (num+one)Tree defined
by All Is btree REP.

(2) Use theorem (21) to obtain an (unsimplified) abstract axiom for btree.

If the type variables α and β in theorem (21) are instantiated to (num + one)
and btree respectively, then the universally quantified variables P , Abs, and
Rep can be specialized to Is btree REP, ABS, and REP. The resulting instance
of theorem (21) is an implication whose antecedent matches the two theorems
about ABS and REP derived in the previous step. The theorem shown below
therefore follows simply by modus ponens (and rewriting, with the definition of
Is btree REP):

` ∀f.∃!fn.∀v tl. (Is Leaf v (Map REP tl) ∨ Is Tree v (Map REP tl)) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl

This theorem expresses the essence of the desired abstract axiom for btree. The
remaining steps carried out by the system are sequence of straightforward sim-
plifications of this theorem which put it into the desired final form.

(3) Remove the disjunction: Is Leaf v (Map REP tl) ∨ Is Tree v (Map REP tl).

The theorem derived in the previous step contains a term which has the form
∀v tl. (P∨Q) ⊃ R. By a simple proof in predicate calculus, this term is equivalent
to the conjunction: (∀v tl. P ⊃ R) ∧ (∀v tl. Q ⊃ R). The theorem derived in the
previous step is therefore equivalent to:

` ∀f.∃!fn.∀v tl. Is Leaf v (Map REP tl) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl ∧

∀v tl. Is Tree v (Map REP tl) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl

In the general case of a type with m constructors, the subset predicate contains

41



a disjunction of the general form:

Is C1 v (Map Rep tl) ∨ · · · ∨ Is Cm v (Map Rep tl)

When this step is done, it will introduce a conjunction of m implications in
the body of the abstract axiom, each of which corresponds to one of the m
constructors C1, . . . , Cm.

(4) Rewrite with the definitions of Is Leaf and Is Tree. This yields:

` ∀f.∃!fn.∀v tl. (∃n. v = Inl n ∧ Length(Map REP tl) = 0) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl ∧

∀v tl. (v = Inr one ∧ Length(Map REP tl) = 2) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl

Note: In the HOL implementation, the predicates Is Leaf and Is Tree are not
actually defined as new constants; they are instead written using λ-terms. This
step therefore does not need to be done in the HOL implementation.

(5) Simplify terms of the form: Length(Map REP tl) = m.

A term of the form Length(Map REP tl) = m is equivalent to a simplified term
of the form Length tl = m. This in turn is equivalent to saying that tl is equal
to some list of m values: ∃t1 . . . tm. tl = [t1; . . . ; tm]. The terms involving Length
in the previous theorem can therefore be simplified, resulting in the following
theorem:

` ∀f.∃!fn.∀v tl. (∃n. v = Inl n ∧ tl = Nil) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl ∧

∀v tl. (v = Inr one ∧ ∃t1 t2. tl = [t1; t2]) ⊃
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl

This step introduces the variables t1 and t2. They range over values of type btree
and occur in the axiom for btree in its final form.

(6) Remove equations of the form: v = · · · and tl = · · · .

The antecedents of the two logical implications in the previous theorem both
contain equations giving values for v and tl. These can be removed by us-
ing (a generalization of) the fact that in predicate calculus a term of the form
∀y. (∃x. y = tm1[x]) ⊃ tm2[y] is equivalent to ∀x. tm2[tm1[x]]. The result of
removing the equations for v and tl is:

` ∀f.∃!fn.∀n. fn(ABS(Node (Inl n)(Map REP Nil)))
= f (Map fn Nil) (Inl n) Nil ∧

∀t1 t2. fn(ABS(Node (Inr one) (Map REP [t1; t2])))
= f (Map fn [t1; t2]) (Inr one) [t1; t2]

The body of the theorem now consists of two equations. These define the value
of fn for the two different kinds of binary trees.

42



(7) Rewrite with the definition of Map. This yields:

` ∀f.∃!fn.∀n. fn(ABS(Node (Inl n) Nil))
= f Nil (Inl n) Nil ∧

∀t1 t2. fn(ABS(Node (Inr one) [REP t1; REP t2]))
= f [fn t1; fn t2] (Inr one) [t1; t2]

(8) Define the abstract constructors Leaf and Tree as follows:

` Leaf n = ABS(Node (Inl n) Nil)

` Tree t1 t2 = ABS(Node (Inr one) [REP t1; REP t2])

The constructors Leaf and Tree defined by these equations first use Node to
construct the representations of the required values and then use ABS to obtain
the corresponding values of type btree. Rewriting the theorem derived in the
previous step with these definitions yields:

` ∀f.∃!fn.∀n. fn(Leaf n) = f Nil (Inl n) Nil ∧
∀t1 t2. fn(Tree t1 t2) = f [fn t1; fn t2] (Inr one) [t1; t2]

(9) Introduce two functions f1 and f2 in place of f .

With an appropriate choice of value for the universally quantified variable f ,
two functions f1 and f2 can be introduced for the right hand sides of the two
equations. These define the value of fn separately for the two constructors Leaf
and Tree. Specializing f to the appropriate function, and simplifying, gives:

` ∀f1 f2.∃!fn.∀n. fn(Leaf n) = f1 n ∧
∀t1 t2. fn(Tree t1 t2) = f2 (fn t1) (fn t2) t1 t2

This theorem is the abstract axiom for btree—in its final form.

The HOL derived rule which automates recursive type definitions carries out the
sequence of steps shown above for each informal type specification entered by the
user. An appropriate instance of theorem (21) yields an ‘unsimplified’ abstract axiom
for the type being defined. This axiom is then systematically transformed into the
form described in Section 7.2 by the sequence of simple equivalence-preserving steps
shown above. The amount of actual logical inference that must be carried out is
relatively small, and each step is a straightforward transformation of the theorem
derived in the previous step. The HOL implementation of this procedure is therefore
both efficient and robust.

8 Concluding Remarks

The method for defining recursive types described in Section 7 is the logical basis for
a set of efficient theorem-proving tools the HOL system. In addition to the derived
inference rule which automates recursive type definitions, a number of related tools
have been implemented in HOL for generating proofs involving recursive types. These
include:

43



• an inference rule which derives structural induction for recursive types, and
related tools for interactively generating proofs by structural induction (e.g. a
general structural induction tactic),

• a set of rules which automate the inference necessary to define functions by
‘primitive recursion’ on recursive types,

• derived rules which prove that the constructors of recursive types are one-to-one
and yield distinct values, and

• tools for generating interactive proofs by case analysis on the constructors of
recursive types.

Preliminary work is underway to extend these tools to deal with mutually recursive
types, and types with equational constraints.

Defining a logical type in HOL is rarely the primary goal of the user of the system,
but often a necessary part of some more interesting proof. The efficient automation of
type definitions in HOL is therefore of significant practical value, since defining types
‘by hand’ in the system is tedious and tricky. The mechanization of type definitions
described in this paper allows new recursive types to be introduced by the HOL user
quickly and easily. This is made possible by the systematic construction of repre-
sentations for these types, the uniform treatment of abstract axioms for them (using
essentially the initial algebra approach to type specifications), and the expressive
power of higher order logic itself.

Acknowledgements

Thanks are due to Albert Camilleri, Inder Dhingra and Mike Gordon for helpful
comments on drafts of this paper, and to Thomas Forster for useful discussions about
the construction of trees. I am grateful to Gonville and Caius College Cambridge for
support in the form of an unofficial fellowship, during which the work described in
this paper was done.

References

[1] Bird, R., and Wadler, P, Introduction to Functional Programming, Prentice Hall
International Series in Computer Science (Prentice Hall, 1988).

[2] Burstall, R., and Goguen, J., ‘Algebras, theories and freeness: an introduction for
computer scientists’, in: Theoretical Foundations of Programming Methodology,
edited by M. Wirsing and G. Schmidt, Proceedings of the 1981 Marktoberdorf
NATO Summer School, NATO ASI Series, Vol. C91 (Reidel, 1982), pp. 329–350.

[3] Church, A., ‘A Formulation of the Simple Theory of Types’, Journal of Symbolic
Logic, Vol. 5 (1940), pp. 56–68.

[4] Cousineau, G., G. Huet, and L. Paulson, The ML Handbook, INRIA, (1986).

[5] Goguen, J.A., J.W. Thatcher, and E.G. Wagner, ‘An initial algebra approach
to the specification, correctness, and implementation of abstract data types’, in:
Current Trends in Programming Methodology, edited by R.T. Yeh (Prentice-Hall,
New Jersey, 1978), IV, pp. 80–149.

44



[6] Gordon, M., ‘HOL: A Machine Oriented Formulation of Higher Order Logic’,
Technical Report No. 68, Computer Laboratory, The University of Cambridge,
Revised version (July 1985).

[7] Gordon, M.J.C., ‘HOL: A Proof Generating System for Higher-Order Logic’,
in: VLSI Specification, Verification and Synthesis, edited by G. Birtwistle and
P.A. Subrahmanyam, Kluwer International Series in Engineering and Computer
Science, SECS35 (Kluwer Academic Publishers, Boston, 1988), pp. 73–128.

[8] Gordon, M.J., R. Milner, and C.P. Wadsworth, ‘Edinburgh LCF: A Mechanised
Logic of Computation’, Lecture Notes in Computer Science, Vol. 78 (Springer-
Verlag, Berlin, 1979).

[9] Harper, R., D. MacQueen, and R. Milner, Standard ML, Report No. ECS-LFCS-
86-2, Laboratory for Foundations of Computer Science, Department of Computer
Science, The University of Edinburgh (March 1986).

[10] Leisenring, A.C., Mathematical Logic and Hilbert’s ε-Symbol, University Mathe-
matical Series (Macdonald & Co., London, 1969).

[11] Milner, R., ‘A Theory of Type Polymorphism in Programming’, Journal of Com-
puter and System Sciences, No. 17 (1978).

[12] Paulson, L.C., Logic and Computation: Interactive Proof with Cambridge LCF,
Cambridge Tracts in Theoretical Computer Science 2 (Cambridge University
Press, Cambridge, 1987).

45



Index

β-reduction, 3

Camilleri, A.J., 45
cartesian product type, 12–15, 35

Dhingra, I.S., 45
disjoint sum type, 15–18, 35

Forster, T., 45
Fourman, M., 7

Gordon, M., 2, 5, 7, 45

higher order logic, 2, 3
types in, 1, 3, 4

Hilbert’s ε-operator, 4, 5
HOL, 1–3, 5, 6, 8, 32, 33, 35, 36, 40–42,

44, 45
derived inference rules in, 6, 41

initial algebra, 34, 36, 45

λ-calculus, 3
LCF, 2, 5
lists, 22–24, 34

mathematical induction, 21
Milner, R., 4
ML, 5, 6, 33

natural numbers, 19–22, 34

Peano’s postulates, 20, 21, 24, 27
predicate calculus notation, 2
primitive recursion, 3, 21, 22, 35, 41, 44

on labelled trees, 31
on lists, 23, 25
on trees, 27

Russell’s paradox, 3

Standard ML, 32
structural induction, 36, 44

on lists, 24
on trees, 27

tactic, 44
trees, 24–29

binary, 34, 37, 38, 41–44
labelled, 29–32, 38

type constants, 4, 7, 34

type definition axioms, 7–9, 33
type definitions, 6–9

automating, 1, 2, 7, 32, 33, 44, 45
type inference, 4
type operators, 4, 7–9, 34
type variables, 3, 4, 6, 8, 12, 14, 41
types

abstract axioms for, 6, 7, 35, 36
enumerated, 35
record, 35
recursive, 7, 24, 32, 34
representation of, 7, 38–40

46


