
Abstraction by Symbolic Indexing

Transformations

Thomas F. Melham1 and Robert B. Jones2

1 Department of Computing Science, University of Glasgow,
Glasgow, Scotland, G12 8QQ.

2 Strategic CAD Labs, Intel Corporation,
JF4-211, 2511 NE 25th Avenue, Hillsboro, OR 97124, USA.

T. F. Melham and R. B. Jones, ‘Abstraction by Symbolic Indexing Transformations’, in in Formal
Methods in Computer-Aided Design: 4th International Conference, FMCAD 2002: Portland,
November 2002: Proceedings, edited by M. D. Aagaard and J. W. O’Leary, Lecture Notes in
Computer Science, vol. 2517 (Springer-Verlag, 2002), pp. 1–18. The final publication is available
at link.springer.com via https://doi.org/10.1007/3-540-36126-X_1

Abstract. Symbolic indexing is a data abstraction technique that ex-
ploits the partially-ordered state space of symbolic trajectory evaluation
(STE). Use of this technique has been somewhat limited in practice be-
cause of its complexity. We present logical machinery and efficient algo-
rithms that provide a much simpler interface to symbolic indexing for the
STE user. Our logical machinery also allows correctness assertions proved
by symbolic indexing to be composed into larger properties, something
previously not possible.

1 Introduction

Symbolic trajectory evaluation (STE) is an efficient model checking algorithm
especially suited to verifying properties of large datapath designs [1]. STE is
based on symbolic ternary simulation [2], in which the Boolean data domain
{0, 1} is extended to a partially-ordered state space by the addition of an un-
known value ‘X’. This gives circuit models in STE a built-in and flexible data
abstraction hierarchy.

Symbolic indexing is a technique for formulating STE logic formulas in a
way that exploits this partially-ordered state space and reduces the number of
BDD variables needed to verify a property. The method can make a dramatic
difference in the time and space needed to check a formula, and can be used to
verify circuit properties that are infeasible to verify directly [3].

Although symbolic indexing has been known for a long time [4], our experi-
ence is that it is not exploited nearly as often as it is applicable. In part, this is
because only limited user-level support has been available in libraries provided to
verification engineers. But, more importantly, correctness assertions proved by
symbolic indexing are not formulated in a way that makes them composable at
higher levels. Two formulas written using symbolic indexing might express two
circuit properties that imply some desired result but encode these properties
using incompatible indexing schemes. Moreover, there is no explicit characteri-
zation of the conditions under which more composable formulas can be derived
from the indexed ones.

http://link.springer.com
https://doi.org/10.1007/3-540-36126-X_1

This paper describes some logical machinery aimed at bridging these gaps.
We present an algorithm to transform ordinary verification problems into sym-
bolically indexed form, together with an account of the side-conditions that must
hold for this transformation to be sound. We also describe how the algorithm
can be applied in the presence of environmental constraints, an important con-
sideration in practice. Finally, we provide some experimental results on a CAM
(content-addressable memory) circuit.

The work presented in this paper does not completely automate the use
of symbolic indexing in the verification flow. Our algorithms require the user to
supply an indexing relation that expresses the desired abstraction scheme; we do
not provide a method whereby an effective indexing relation can be discovered
in the first place. Our results do, however, guarantee the soundness, subject
to certain well-characterized side-conditions, of using an indexing relation to
transform a verification property. This key result paves the way for future work
on automatic abstraction techniques for STE, in which an attempt might be
made to discover suitable indexing relations automatically.

2 STE Model Checking

Symbolic trajectory evaluation [1] is an efficient model checking algorithm es-
pecially suited to verifying properties of large datapath designs. The most basic
form of STE works on a very simple linear-time temporal logic, limited to impli-
cations between formulas built from only conjunction and the next-time opera-
tor. STE is based on ternary simulation [2], in which the Boolean data domain
{0, 1} is extended with a third value ‘X’ that stands for an indeterminate value
(‘0’ or ‘1’). This provides STE with powerful state-space abstraction capabilities,
as will be illustrated subsequently.

While the basic STE logic is weak, its expressive power is greatly extended
by implementing a symbolic ternary simulation algorithm. Symbolic ternary sim-
ulation [4] uses BDDs [5] to represent classes of data values on circuit nodes.
With this representation, STE can combine many (ternary) simulation runs—
one for each assignment of values to the BDD variables—into a single symbolic

simulation run covering them all.
In this section, we provide a brief overview of STE model checking theory.

A full account of the theory can be found in [1] and an alternative perspective
in [6].

2.1 Circuit Models

Symbolic trajectory evaluation employs a ternary data model with values drawn
from the set D = {0, 1,X}. A partial order relation ≤ is introduced, with X ≤ 0
and X ≤ 1:

X

0 1

��❅❅

This orders values by information content: X stands for an unknown value and
so is ordered below 0 and 1.

We suppose there is a set of nodes, N , naming observable points in circuits.
A state is an instantaneous snapshot of circuit behavior given by assigning a
value in D to every circuit node in N . The ordering ≤ on D is extended point-
wise to get an ordering ⊑ on states. We wish this to form a complete lattice,
and so introduce a special ‘top’ state, ⊤, and define the set of states S to be
(N→D) ∪ {⊤}. The required ordering is then defined for states s1, s2 ∈ S by

s1 ⊑ s2
△
= s2=⊤ or s1, s2 ∈ N→D and s1(n) ≤ s2(n) for all n ∈ N

The intuition is that if s1 ⊑ s2, then s1 may have ‘less information’ about
node values than s2, i.e. it may have Xs in place of some 0s and 1s. If one considers
the three-valued ‘states’ s1 and s2 as constraints or predicates on the actual, i.e.
Boolean, state of the hardware, then s1 ⊑ s2 means that every Boolean state
that satisfies s1 also satisfies s2. We say that s1 is ‘weaker than’ s2. (Strictly
speaking, ⊑ is reflexive and we really mean ‘no stronger than’, but it is common
to be somewhat inexact and just say ‘weaker than’.) The top value ⊤ represents
the unsatisfiable constraint. The join operator on pairs of states in the lattice is
denoted by ‘⊔’.

To model dynamic behavior, a sequence of the values that occur on circuit
nodes over time will represented by a function σ ∈ N→S from time (the natural
numbers N) to states. Such a function, called a sequence, assigns a value in D to
each node at each point in time. For example, σ 3 reset is the value present on
the reset node at time 3. We lift the ordering on states pointwise to sequences
in the obvious way:

σ1 ⊑ σ2
△
= σ1(t) ⊑ σ2(t) for all t ∈ N

One convenient operation, used later in stating the semantics of STE, is
taking the ith suffix of a sequence. The ith suffix of a sequence σ is written σi

and defined by

σi t
△
= σ (t+i) for all t ∈ N.

The suffix operation σi simply shifts the sequence σ forward i points in time,
ignoring the states at the first i time units.

In symbolic trajectory evaluation, the formal model of a circuit c is given by
a next-state function Yc ∈ S → S that maps states to states. Intuitively, the
next-state function expresses a constraint on the real, Boolean states into which
the circuit may go, given a constraint on the current Boolean state it is in. The
next-state function must be monotonic and a requirement for implementations
of STE is that they extract a next-state function that has this property from
the circuit under analysis.1

1 In practice, the circuit model Yc is constructed on-the-fly by ternary symbolic sim-
ulation of a netlist description of the circuit c.

A sequence σ is said to be a trajectory of a circuit if it represents a set of
behaviors that the circuit could actually exhibit. That is, the set of behaviors that
σ represents (i.e. possibly using unknowns) is a subset of the Boolean behaviors
that the real circuit can exhibit (where there are no unknowns). For a circuit c,
we define the set of all its trajectories, T (c), as follows:

T (c)
△
= {σ | Yc(σ t) ⊑ σ (t+1) for all t ∈ N}

For a sequence σ to be a trajectory, the result of applying Yc to any state must
be no more specified (with respect to the ⊑ ordering) than the state at the next
moment of time. This ensures that σ is consistent with the circuit model Yc.

2.2 Trajectory Evaluation Logic

One of the keys to the efficiency of STE and its success with datapath circuits
is its restricted temporal logic. A trajectory formula is a simple linear-time tem-
poral logic formula with the following syntax:

f, g := n is 0 - node n has value 0
| n is 1 - node n has value 1
| f and g - conjunction of formulas
| P → f - f is asserted only when P is true
| Nf - f holds in the next time step

where f and g range over formulas, n ∈ N ranges over the nodes of the circuit,
and P is a propositional formula (‘Boolean function’) called a guard. The basic
trajectory formulas ‘n is 0’ and ‘n is 1’ say that the node n has value 0 or value
1, respectively. The operator and forms the conjunction of trajectory formulas.
The trajectory formula P → f weakens the subformula f by requiring it to be
satisfied only when the guard P is true. Finally, Nf says that the trajectory
formula f holds in the next point of time.

Guards are the only place that variables may occur in the primitive definition
of trajectory formulas. At first sight, this seems to rule out assertions such as
‘node n has value b’, where b is a variable. But the following syntactic sugar allows
variables—indeed any propositional formula—to be associated with a node:

n is P
△
= P → (n is 1) and ¬P → (n is 0)

where n ∈ N ranges over nodes and P ranges over propositional formulas.
The definition of when a sequence σ satisfies a trajectory formula f is now

given. Satisfaction is defined with respect to an assignment φ of Boolean truth-
values to the variables that appear in the guards of the formula:

φ, σ |= n is 0
△
= σ(0)=⊤, or σ(0) ∈ N→D and σ 0 n = 0

φ, σ |= n is 1
△
= σ(0)=⊤, or σ(0) ∈ N→D and σ 0 n = 1

φ, σ |= f and g
△
= φ, σ |= f and φ, σ |= g

φ, σ |= P → f
△
= φ |= P implies φ, σ |= f

φ, σ |= Nf
△
= φ, σ1 |= f

where φ |= P means that the propositional formula P is satisfied by the assign-
ment φ of truth-values to the Boolean variables in P .

The key feature of this logic is that for any trajectory formula f and assign-
ment φ, there exists a unique weakest sequence that satisfies f . This sequence
is called the defining sequence for f and is written [f]φ. It is defined recursively
as follows:

[m is 0]φ t
△
= λn. 0 if m=n and t=0, otherwise X

[m is 1]φ t
△
= λn. 1 if m=n and t=0, otherwise X

[f and g]φ t
△
= ([f]φ t) ⊔ ([g]φ t)

[P → f]φ t
△
= [f]φ t if φ |= P, otherwise λn.X

[Nf]φ t
△
= [f]φ (t−1) if t 6=0, otherwise λn.X

The crucial property enjoyed by this definition is that [f]φ is the unique weakest
sequence that satisfies f for the given φ. That is, for any φ and σ, φ, σ |= f if
and only if [f]φ ⊑ σ.

The algorithm for STE is also concerned with the weakest trajectory that
satisfies a particular formula. This is the defining trajectory for a formula, written
[[f]] φ. It is defined by the following recursive calculation:

[[f]] φ 0
△
= [f]φ 0

[[f]] φ (t+1)
△
= [f]φ (t+1) ⊔Yc([[f]] φ t)

The defining trajectory of a formula f is its defining sequence with the added
constraints on state transitions imposed by the circuit, as modeled by the next-
state function Yc. It can be shown that [[f]] φ is the unique weakest trajectory
that satisfies f .

2.3 Symbolic Trajectory Evaluation

Circuit correctness in symbolic trajectory evaluation is stated with trajectory

assertions of the form A ⇒ C, where A and C are trajectory formulas. The
intuition is that the antecedent A provides stimuli to circuit nodes and the
consequent C specifies the values expected on circuit nodes as a response.

A trajectory assertion is true for a given assignment φ of Boolean values
to the variables in its guards exactly when every trajectory of the circuit that
satisfies the antecedent also satisfies the consequent. For a given circuit c, we
define φ |= A ⇒ C to mean that for all σ ∈ T (c), if φ, σ |= A then φ, σ |= C.
The notation |= A⇒ C means that φ |= A⇒ C holds for all φ.

The fundamental theorem of trajectory evaluation [1] follows immediately
from the previously-stated properties of [f]φ and [[f]] φ. It states that for any
φ, the trajectory assertion φ |= A ⇒ C holds exactly when [C]φ ⊑ [[A]] φ. The
intuition is that the sequence characterizing the consequent must be ‘included
in’ the weakest sequence satisfying the antecedent that is also consistent with
the circuit.

This theorem gives a model-checking algorithm for trajectory assertions: to
see if φ |= A⇒ C holds for a given φ, just compute [C]φ and [[A]] φ and compare
them point-wise for every circuit node and point in time. This works because
both A and C will have only a finite number of nested next-time operators N, and
so only finite initial segments of the defining trajectory and defining sequence
need to be calculated and compared.

Much of the practical utility of STE comes from the key observation that it
is possible to compute [C]φ ⊑ [[A]] φ not just for a specific φ, but as a symbolic
constraint on an arbitrary φ. This constraint takes the form of a propositional
formula (e.g. a BDD) which is true exactly for variable assignments φ for which
[C]φ ⊑ [[A]] φ holds. Such a constraint is called a residual , and represents precisely
the conditions under which the property A⇒ C is true of the circuit.

3 Symbolic Indexing in STE

Two important properties follow from the STE theory just presented. Consider
an STE assertion A ⇒ C. Suppose we replace the antecedent A with a new
antecedent B that has a defining sequence no stronger than that of A (i.e.
[B]φ ⊑ [A]φ for all φ). Then by monotonicity of underlying the circuit model we
will also have that [[B]] φ ⊑ [[A]] φ for all φ. Hence if we can prove |= B ⇒ C,
then the original STE assertion |= A ⇒ C also holds. This is called antecedent

weakening. Likewise, if we replace the consequent C with a new consequent D
that has a defining sequence no weaker than that of C (i.e. [C]φ ⊑ [D]φ for all
φ) and we can prove |= A⇒ D, then the original STE assertion |= A⇒ C also
holds. This is called consequent strengthening.

Symbolic indexing is the systematic use of antecedent weakening to perform
data abstraction for certain circuit structures. It exploits the partially-ordered
state space of STE to reduce the complexity of the BDDs needed to verify a
circuit property. Intuitively, symbolic indexing is a way to use BDD variables
only ‘when needed’.

The idea can be illustrated using the following trivial example. Consider the
three-input AND gate shown below:

✏
✑o

i3
i2
i1

With direct use of STE, an assertion that could be used to verify this device is

|= (i1 is a) and (i2 is b) and (i3 is c)⇒ (o is a ∧ b ∧ c) (1)

In primitive form, this would be expressed as follows:

|= ¬a→ (i1 is 0) and a→ (i1 is 1) and
¬b→ (i2 is 0) and b→ (i2 is 1) and
¬c→ (i3 is 0) and c→ (i3 is 1) and
⇒

¬a ∨ ¬b ∨ ¬c→ (o is 0) and a ∧ b ∧ c→ (o is 1)

(2)

The strategy here is to place unique and unconstrained Boolean variables on
each input node in the device, and symbolically simulate the circuit to check
that the desired function of these variables will appear on the output node.

STE’s unknown value X allows us to reduce the number of variables needed
to verify the desired property. Because of the functionality of the AND gate,
only the four cases enumerated in the table below need to be verified:

case i1 i2 i3 o
0 0 X X 0
1 X 0 X 0
2 X X 0 0
3 1 1 1 1

If at least one of the AND inputs is 0, the output will be 0 regardless of the
values on the other two inputs. In these cases, X may be used to represent the
unknown value on the other two input nodes. If all three inputs are 1, then
the output is 1 as well. Antecedent weakening, and the fact that the four cases
enumerated above cover all input patterns of 0s and 1s, means this is sufficient
for a complete verification.

Symbolic indexing is the technique of using Boolean variables to enumerate
or ‘index’ groups of cases in this efficient way. For the AND gate, there are just
four cases to check, so these can be indexed with two Boolean variables, say p
and q. These cases can then be verified simultaneously with STE by checking
the following trajectory assertion:

|= ¬p ∧ ¬q → (i1 is 0) and p ∧ q → (i1 is 1) and
p ∧ ¬q → (i2 is 0) and p ∧ q → (i2 is 1) and
¬p ∧ q → (i3 is 0) and p ∧ q → (i3 is 1) and
⇒

¬p ∨ ¬q → (o is 0) and p ∧ q → (o is 1)

(3)

If this formula is true, then we have definitive—but somewhat indirectly stated—
formal evidence that the AND gate does what is required. Antecedent weakening
says that whenever (3) allows an input circuit node to be X, that node could
have been set to either 0 or 1 and the input/output relation verified would
still hold. It can also be established by inspection of the cases enumerated in the
antecedent that the given combinations of explicit constant 0s and 1s and implicit
Xs covers the whole input space. This (informal) reasoning tells us that the
indexed formula (3) amounts to a complete verification of the expected behavior.

The advantage of symbolic indexing is that it reduces the number of Boolean
variables needed to verify a property. In the AND gate the reduction is trivial—
two variables instead of three. But much greater reductions are possible in real
applications, and there are certainly circuits that can be verified in STE by
indexing but cannot be verified directly. Memory structures are one notable
example that arise frequently.

4 Indexing Transformations

The technical contribution of this paper addresses two problems with using sym-
bolic indexing in practice. First, how can we gain the efficiency of symbolic in-
dexing and yet still obtain properties that make direct, non-indexed statements
about circuit correctness? Second, what side conditions must hold to ensure the
soundness of such a process?

We show how to construct indexed STE assertions from direct ones, given a
user-supplied specification of the indexing scheme to be employed. For example,
applying the method to the AND gate formula (1) above produces the indexed
formula (3). This provides an accessible interface to the indexing technique. The
user no longer needs to generate indexed antecedents and consequents explicitly,
but can describe the indexing scheme abstractly and let a computer program
construct the correct indexed formulas.

Moreover, if the resulting indexed assertions are proven true, then the orig-
inal assertion is also true by construction (subject to a certain side condition).
This means that the original assertion can subsequently be used in higher-level
reasoning. For example, it might be composed via theorem proving with other
assertions verified using a different indexing scheme.

4.1 Indexing Relations

The user’s interface to our indexing method is an indexing relation that specifies
the indexing scheme to be applied to the problem at hand. The relation is a
propositional logic formula of the form R(xs, ts). It relates the Boolean variables
ts appearing in the original problem and the Boolean variables xs that will index
the cases being grouped together in the abstraction. The original problem vari-
ables ts are called the index target variables and the variables to be introduced
xs are called the index variables.

For the AND gate, the index targets are a, b, c and the index variables are p
and q. The indexing relation R is:

R(p, q, a, b, c) ≡ (pq ⊃ a) ∧ (pq ⊃ b) ∧ (pq ⊃ c) ∧ (pq ⊃ abc)

As can be seen, this relation represents in logical form an enumeration of the four
cases in the table of Section 3. Note that the indexing relation is not one-to-one
(though other indexing relations may be). This reflects the Xs that appear in
the table in Section 3, and indeed is essential to making the indexing a data
abstraction at all.

4.2 Preimage and Strong Preimage

It is convenient to specify two operations on predicates using an indexing re-
lation. The first is the ordinary preimage operation. Given a relation R and a
predicate P on the target variables, the preimage PR is defined by

PR
△
= ∃ts . R(xs, ts) ∧ P (ts)

The second is the strong preimage of a predicate. Given a relation R and a
predicate P on the target variables, the strong preimage PR is defined by

PR △
= PR ∧ ¬ [∃ts. R(xs , ts) ∧ ¬P (ts)]

The strong preimage is PR(xs) holds of some index xs precisely when xs is in
the preimage of P and not in the preimage of the negation of P .

These operations are illustrated in Figure 1. The solid circle is the preimage

���
���
���

���
���
���

← R→xs ts

P

¬P

¬PR

PR

Fig. 1. Index Relation Preimages

PR of P and the dotted circle the preimage (¬P)R of the negation of P . The
strong preimage PR is the shaded region—i.e. that part of PR that does not also
lie within (¬P)R.

4.3 Transforming STE Formulas with Indexing Relations

Our indexing transformation for an STE assertion A ⇒ C applies the strong
preimage operation to the guards of the antecedent A and the preimage operation
to the guards of the consequent C. For given trajectory formula f and indexing
relation R, we write fR for the preimage of f under R and fR for the strong
preimage of f under R. The definitions of these operations are given by recursion
over the syntax of trajectory formulas in the obvious way:

(n is 0)R
△
= n is 0 (n is 0)R

△
= n is 0

(n is 1)R
△
= n is 1 (n is 1)R

△
= n is 1

(f and g)R
△
= fR

and gR (f and g)R
△
= fR and gR

(P → f)R
△
= PR → fR (P → f)R

△
= PR → fR

(N f)R
△
= N fR (N f)R

△
= N fR

Two theorems about the preimage and strong preimage operations on tra-
jectory formulas are used in the sequel. The first is that applying the strong
preimage of an indexing relation to the guards of an STE formula is a weakening
operation:

Theorem 1 For all R, f and φ, if φ |= R, then [fR]φ ⊑ [f]φ.

This is really the core of our abstraction transformation. Taking the strong

preimage under an indexing relation can strictly weaken the guards of the for-
mula by ‘subtracting out’ the indexes of cases in which the guard can be false.
This achieves an abstraction by introducing Xs into the defining sequence of the
formula.

The second theorem is that applying the preimage of an indexing relation to
the guards of an STE formula is a strengthening operation:

Theorem 2 For all R, f and φ, if φ |= R, then [f]φ ⊑ [fR]
φ.

Each of these theorems follows by a straightforward induction on the structure
of the trajectory formula f .

4.4 Transforming STE Assertions with Indexing Relations

The theorems just cited, combined with the STE antecedent weakening and
consequent strengthening properties of Section 2, allow an arbitrary property
A⇒ C to be indexed by an indexing relation R. Intuitively, we can use an index-
ing scheme to weaken the antecedent by grouping some of its separate Boolean
input configurations using Xs (thereby assuming less about circuit behavior). If
we use the same indexing to strengthen the consequent, and the resulting STE
assertion holds, then we can also conclude the original STE assertion.

To guarantee soundness, a technical side condition must be satisfied—namely
that the indexing scheme R completely ‘covers’ the target variables:

∀ts. ∃xs . R(xs, ts) (4)

This says that for any values of the target variables ts (the variables that appear
in A and C), there is an assignment to the index variables xs that indexes it. This
condition ensures that every verification case included in the original problem is
also covered in the indexed verification—which is clearly necessary, for otherwise
the indexed verification would be incomplete.

Before considering the soundness of our transformation, we introduce a nota-
tion for the truth of a trajectory formula under a propositional assumption about
its Boolean variables. If P is a propositional Boolean formula (for example an
indexing relation) and A ⇒ C a trajectory assertion, we write P |= A ⇒ C to
mean that for any valuation φ for which φ |= P , we have that φ |= A ⇒ C.
Informally, we are saying that A ⇒ C is true whenever the condition P holds.
More detail on how such an assertion can be checked in practice is given in
Section 5.1.

Soundness of our abstraction transformation is given by the following theo-
rem.

Theorem 3 If we can show that R(xs, ts) |= AR ⇒ CR and the indexing rela-

tion coverage condition ∀ts. ∃xs . R(xs, ts) holds, then we may conclude |= A ⇒
C.

Proof. By the following derivation.

1. R(xs, ts) |= AR ⇒ CR [assumption]
2. R(xs, ts) |= A⇒ CR [1 and Theorem (1)]
3. R(xs, ts) |= A⇒ C [2 and Theorem (2)]
4. ∃xs. R(xs, ts) |= A⇒ C [3, because xs do not appear in A or C]
5. ∀ts. ∃xs . R(xs, ts) [side condition]
6. |= A⇒ C [4 and 5]

Note that although the variables ts do not appear in the trajectory assertion
AR ⇒ CR of line 1, the variables xs do. The condition given by R(xs, ts) is
therefore significant to verification of this assertion. Indeed in this context it is
equivalent to ∃ts.R(xs, ts), which restricts the verification to values of xs that
actually do index something.

If the STE algorithm produces a residual when checking the formula shown
in line 1, then this will of course be given in terms of the index variables rather
than the target variables from the original problem. The user must therefore
analyze the residual by taking its image under the indexing relation, mapping
it back into the original target variables for inspection there.

5 Indexing under Environmental Constraints

Few verifications take place in isolation from complex environmental and other
operating assumptions. In this section, we extend our indexing algorithm to
incorporate such conditions. We present two methods for indexing under an
environmental constraints. The first is the simpler option, and requires little or
no user intervention. The second is an alternative that can be applied to certain
problems for which the direct approach is infeasible.

Both methods use the technique of parametric representation of environmen-
tal constraints, which we now briefly introduce.

5.1 Parametric Representation

The parametric representation of Boolean predicates is useful for restricting ver-
ification to a care set and for reducing complexity by input-space decomposi-
tion [7,8,9]. The technique is independent of the symbolic simulation algorithm
in STE, does not require modifications to the circuit, and can be used to con-
strain both input and internal signals.

Consider a Boolean predicate P that constrains input and state variables vs .
Suppose we express the required behavior of the circuit as a trajectory assertion
A ⇒ C over the same variables, but expect this assertion to hold only under
the constraint P . That is, we wish to establish that P |= A ⇒ C. One way of

doing this is to use STE to obtain a residual from φ |= A ⇒ C and then check
that P implies this. But this is usually not practical; the complexity of directly
computing φ |= A⇒ C with a symbolic simulator is too great.

A better way is to evaluate φ |= A⇒ C only for those variable assignments
φ that actually do satisfy P . The parametric representation does exactly this, by
encoding the care predicate implicitly by means of parametric functions. Given
a satisfiable P , we compute a vector of Boolean functions Qs = param(P, vs)
that are substituted for the variables vs in the original trajectory assertion.2

These functions are constructed so that P |= A ⇒ C holds exactly when |=
A[Qs/vs] ⇒ C[Qs/vs] holds. An algorithm for param and its correctness proof
are found in [9].

Suppose M is an arbitrary expression—either a propositional logic formula
or a trajectory formula—and P is a predicate over the variables vs appearing in
M . We write ‘M [P]’ for M [param(P, vs)/vs]. A complicating factor is that the
parametric functions will, in general, contain fresh variables vs ′ distinct from
the original variables vs. When necessary, we will write M [P](vs ′) to emphasize
the appearance of these in the resulting expression.

5.2 Method 1: Direct Parametric Encoding

We wish to apply an indexing relation R to a verification problem P |= A⇒ C
that includes a constraint P . With our first method, a fully automatic proce-
dure uses the parametric representation to ‘fold’ the constraint P into both the
trajectory assertion being checked and the relation R. Indexed verification then
proceeds as before.

Suppose we wish to check an STE assertion P |= A ⇒ C under an environ-
mental constraint P and using an indexing relation R(xs, ts). First, we compute
a parametrically-encoded STE assertion |= A[P] ⇒ C[P] and indexing relation
R[P]. We then just supply these to the symbolic indexing algorithm of Section 4.

The soundness of the optimization provided by our transformation is jus-
tified as follows. Note that we also write the encoded indexing relation R[P]
as R[P](xs, ts ′), where ts ′ are the fresh variables introduced by the parametric
encoding process.

Theorem 4 If R[P](xs, ts ′) |= A[P]R[P] ⇒ C[P]R[P] and the indexing relation

coverage condition ∀ts ′. ∃xs . R[P](xs , ts ′) holds, then |= A⇒ C.

Proof. By the following derivation.

1. R[P](xs, ts ′) |= A[P]R[P] ⇒ C[P]R[P] [assumption]
2. R[P](xs, ts ′) |= A[P]⇒ C[P]R[P] [1 and Theorem (1)]
3. R[P](xs, ts ′) |= A[P]⇒ C[P] [2 and Theorem (2)]
4. ∃xs. R[P](xs , ts ′) |= A[P]⇒ C[P] [3, because xs do not appear in A or C]
5. ∀ts ′. ∃xs . R[P](xs , ts ′) [side condition]

2 As usual, we write f [Qs/vs] to denote the result of substituting Qs for all occurrences
of vs (respectively) in a formula f .

6. |= A[P]⇒ C[P] [4 and 5]
7. P |= A⇒ C [parametric theorem (see [8])]

As before, if the STE run that checks line 1 produces a non-trivial residual
this must first be mapped back through the relation R[P] to derive a residual
in terms of the target variables of |= A[P]⇒ C[P]. But these will, of course, be
the fresh variables introduced by the parametric encoding, so we must also undo
this encoding in turn to get back to the user’s variables of the original assertion
A⇒ C.

5.3 Method 2: Analyzing Indexed Residuals

While the method presented above is straightforward, it is often infeasible in
practice to construct the parameterized indexing relation R[P]. Our second
method avoids this, while still allowing us to use a constraint predicate P .

We initially run the STE model-checking algorithm on AR ⇒ CR. This will
then produce a residual that describes the indexed situations under which the
property holds. The predicate P is then itself indexed with R, to produce an
indexed predicate PR. This is then checked to ensure it implies the indexed
residual obtained from STE. This process is sound only for certain indexing
relations R, and the main technical innovation here consists in identifying the
required side conditions on R.

The first side condition is similar to the coverage side condition (4) in Sec-
tion 4.4. It requires the indexing relation to cover all values of the target variables
that satisfy the constraint P :

∀ts. P (ts) ⊃ ∃xs. R(xs, ts) (5)

The second side condition is new. It is that the preimage PR and the preimage
(¬P)R must be disjoint, making PR = PR. The intuition for this condition is
provided by considering Figure 1, where PR and (¬P)R overlap. We wish to
index the condition P in order to check that it implies the residual—and we
must do this by either taking the preimage PR or the strong preimage PR. If
the preimage PR is selected, and there is an overlap, then false negatives may
occur. Every point in the overlap will be included in the verification, but also
maps via R to elements of ¬P , and the property may simply not hold for some
of these ‘don’t care’ elements. On the other hand, false positives could occur if
the strong preimage PR is selected. In this case, there may be points in P that
are indexed only from points in the overlap area, but for which the verification
property fails. The solution is to ban the overlap.

One way to ensure PR = PR is to make the preimage (¬P)R empty. The
following condition does this by restricting R from indexing anything in ¬P :

∀ts. (∃xs . R(xs, ts)) ⊃ P (ts) (6)

If we choose an indexing relation R that exactly partitions P ,

∀ts. P (ts) ≡ ∃xs. R(xs, ts) (7)

both side conditions are satisfied.
The soundness of the optimization provided by our transformation is justified

as follows. Note again that we write R(xs, ts) as just ‘R’ when we do not need
to emphasize the particular variables involved.

Theorem 5 Let Q be the residual condition under which the model-checking

assertion R(xs, ts) |= AR ⇒ CR holds. Suppose that ∀ts. P (ts) ≡ ∃xs. R(xs, ts)
and that PR ⊃ Q. Then P |= A⇒ C.

Proof. By the following derivation.

1. Q ∧R(xs, ts) |= AR ⇒ CR [assumption]
2. PR ⊃ Q [assumption]
3. (∃ts. R(xs, ts) ∧ P (ts)) ⊃ Q [2 and definition of PR]
4. P (ts) ∧R(xs, ts) |= AR ⇒ CR [1 and 3, by logic]
5. P (ts) ∧R(xs, ts) |= A⇒ CR [4 and Theorem (1)]
6. P (ts) ∧R(xs, ts) |= A⇒ C [5 and Theorem (2)]
7. P (ts) ∧ ∃xs. R(xs , ts) |= A⇒ C [6, because xs do not appear in A or C]
8. ∀ts. P (ts) ≡ ∃xs. R(xs, ts) [side conditions]
9. P (ts) |= A⇒ C [7 and 8, by logic]

6 Experimental Results

We have implemented the above algorithm as an experimental extension to Forte,
a formal verification environment developed in Intel’s Strategic CAD Labs. Forte
combines STE model checking with lightweight theorem proving in higher-order
logic and has successfully been used in large-scale industrial trials on datapath-
dominated hardware [10,11,12].

The implementation of our algorithm is highly optimized, to ensure that the
cost of computing an indexed STE property does not exceed the benefit gained by
the abstraction. As usual with symbolic treatment of relations in model-checking
algorithms, the main computational overhead arises from the existential quan-
tifier of the preimage. We use the common strategy of partitioning the indexing
relation to allow early quantification. The implementation is also carefully engi-
neered to eliminate redundant computations.

One circuit structure we studied is the simple CAM shown in Figure 2. This
compares a 64-bit query against the contents of an n-entry memory, producing
a bit that indicates whether the query value is in the memory or not. CAM
devices have previously been verified using symbolic indexing by Pandey et al. [3],
who devised an indexing scheme with a logarithmic reduction in the number of
variables needed—bringing an otherwise infeasible verification within reach of
STE.

Our experiments on CAMs showed that we could add our indexing transfor-
mation to get a verification of directly-stated CAM properties with acceptable
computational overhead. As an example, we present results for the following
simple property: if the query value is equal to the contents of one of the CAM

Memory

64-bits

n entries hit

=

=

=

=

query

Fig. 2. Simple Content-Addressable Memory (CAM)

memory entries, then the ‘hit’ output will be true. The formalization of this
property in STE involves the use of an environmental constraint to express the
condition that the query is equal to one of the CAM entries. The verification
therefore employs the methods of Section 5. Of course, this is not a complete
characterization of correct behavior for the CAM device. However, it is typical
of the kind of property for memory arrays that cannot be verified directly but
that yields to the symbolic indexing technique.

Figure 3 shows the CPU time required to verify this property for different
numbers of entries in the CAM memory, from 4 up to 64. All runs were per-
formed on a 400 MHz Intel PentiumR© II Processor running RedHatR©Linux, and
user time was determined with the system time command. The verification of
this property by symbolic indexing, including our indexing transformation algo-
rithm, is much faster than the best-known alternative, namely using the para-
metric representation to case-split on the location of the hit while simultaneously
weakening other circuit nodes. The numbers reported are for the model-checking
portions of the verification. Both approaches require similar amounts of deduc-
tive reasoning, namely coverage analysis for case splitting and the coverage side
condition for symbolic indexing.

As shown in Figure 4, our automatic indexing transformation did not add
significant computational overhead to the indexed verification, a requirement
for our technique to be feasible in practice. The computational overhead for our
indexing algorithm is roughly constant at 50-60% of the total verification time.

7 Conclusions

We have presented algorithms that facilitate easier application of symbolic in-
dexing in STE model checking. Our approach provides a simpler interface for
the STE user, making it easier to include the technique in the verification flow.

0.1

1

10

100

4 8 16 32 64

time
(s)

CAM Entries

Case Splitting
Symbolic Indexing

Fig. 3. Symbolic Indexing vs. Case Splitting

Our theoretical results also provide the logical foundation for composing mul-
tiple indexed results into larger properties. The method allows us to transform
an STE formula into the more efficiently-checkable indexed form, but still con-
clude the truth of the original formula. A top-level verification can, therefore, be
decomposed into separate sub-properties that are verified under different, and
possibly incompatible, indexing schemes.

We have demonstrated the efficiency of an implementation of our algorithms
by verifying a simple property of a CAM, a hardware structure commonly en-
countered in microprocessor designs. The indexing scheme applied in this exam-
ple comes from past work by Pandey et al. [3]. Of course, the single property
chosen as an illustration in Section 6 doesn’t provide a complete characteriza-

0

2

4

6

8

10

4 8 16 32 64

time
(s)

CAM Entries

Total
Indexing Only

Fig. 4. Overhead of Automatic Indexing Algorithm

tion of the desired behavior of a CAM. Our contribution has been to show that
we can both obtain the computational advantages of this indexing scheme and

justifiably conclude a direct statement of the desired property—with negligible
additional cost.

Our algorithm requires a user-supplied abstraction scheme, presented for-
mally as a Boolean relation. Of course the indexing scheme could also be pro-
vided as a set of (possibly overlapping) predicates over the the target variables
in the original formula. For example, the indexing scheme in Section 3 for the
AND gate can also be given by the following set of predicates:

{¬a, ¬b, ¬c, a ∧ b ∧ c}

These cover the whole input space and precisely characterize the four cases to be
verified in terms of the ‘target’ variables in the original property. A formal index-
ing relation can just be an arbitrary enumeration of these predicates in terms of
a suitable number of index variables and can easily be generated automatically.

But this still leaves the problem of discovering the indexing scheme in the first
place. Part of our current research is directed at finding techniques to automat-
ically discover abstractions that can leverage the indexing algorithms presented
here.

Finally, we observe that our transformation is a pre-processing step for STE
model checking. In this paper, we have assumed a BDD-based STE algorithm.
But of course the data abstraction capability of STE’s partially-ordered state
spaces is orthogonal to the propositional logic technology employed. It is there-
fore reasonable to suppose that our method would also work with STE algorithms
based on SAT [13], provided the formula representation supports our preimage
and strong preimage operations. It would also be very interesting to see how
our algorithms could be applied to generalized STE [14], a promising new model
checking method that combines the efficiency of STE’s partially-ordered state
spaces with a much more expressive and flexible framework for stating proper-
ties.

8 Acknowledgments

We thank the anonymous referees for their careful reading of the paper and
very helpful comments. John Harrison and Ashish Darbari also provided useful
remarks on notation.

References

1. Seger, C.J.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-
ordered trajectories. Formal Methods in System Design 6 (1995) 147–189

2. Bryant, R.E.: A methodology for hardware verification based on logic simulation.
Journal of the ACM 38 (1991) 299–328

3. Pandey, M., Raimi, R., Bryant, R.E., Abadir, M.S.: Formal verification of content
addressable memories using symbolic trajectory evaluation. In: ACM/IEEE Design
Automation Conference, ACM Press (1997) 167–172

4. Bryant, R.E., Beatty, D.L., Seger, C.J.H.: Formal hardware verification by symbolic
ternary trajectory evaluation. In: ACM/IEEE Design Automation Conference,
ACM Press (1991) 397–402

5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35 (1986) 677–691

6. Chou, C.T.: The mathematical foundation of symbolic trajectory evaluation. In
Halbwachs, N., Peled, D., eds.: Computer Aided Verification (CAV). Volume 1633
of Lecture Notes in Computer Science., Springer-Verlag (1999) 196–207

7. Jain, P., Gopalakrishnan, G.: Efficient symbolic simulation-based verification using
the parametric form of Boolean expressions. IEEE Transactions on Computer-
Aided Design of Integrated Circuits 13 (1994) 1005–1015

8. Aagaard, M.D., Jones, R.B., Seger, C.J.H.: Formal verification using paramet-
ric representations of Boolean constraints. In: ACM/IEEE Design Automation
Conference, ACM Press (1999) 402–407

9. Jones, R.B.: Applications of Symbolic Simulation to the Formal Verification of
Microprocessors. PhD thesis, Department of Electrical Engineering, Stanford Uni-
versity (1999)

10. O’Leary, J.W., Zhao, X., Gerth, R., Seger, C.J.H.: Formally verifying IEEE com-
pliance of floating-point hardware. Intel Technical Journal (First quarter, 1999)
Available at developer.intel.com/technology/itj/.

11. Kaivola, R., Aagaard, M.D.: Divider circuit verification with model checking and
theorem proving. In Aagaard, M., Harrison, J., eds.: Theorem Proving in Higher
Order Logics. Volume 1869 of Lecture Notes in Computer Science., Springer-Verlag
(2000) 338–355

12. Aagaard, M.D., Jones, R.B., Seger, C.J.H.: Combining theorem proving and trajec-
tory evaluation in an industrial environment. In: ACM/IEEE Design Automation
Conference, ACM Press (1998) 538–541

13. Bjesse, P., Leonard, T., Mokkedem, A.: Finding bugs in an Alpha microprocessor
using satisfiability solvers. In Berry, G., Comon, H., Finkel, A., eds.: Computer
Aided Verification (CAV). Volume 2102 of Lecture Notes in Computer Science.,
Springer-Verlag (2001) 454–464

14. Yang, J., Seger, C.J.H.: Introduction to generalized symbolic trajectory evalua-
tion. In: Proceedings of 2001 IEEE International Conference on Computer Design.
(2001) 360–365

	Abstraction by Symbolic Indexing Transformations
	Thomas F. Melham1 and Robert B. Jones2

