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Preface
This volume contains material provided by the speakers to accompany their presentations at 
the Fifth International Workshop on Designing Correct Circuits, held on 27th and 28th March 
2004 in Barcelona.  The workshop is a satellite event of the ETAPS group of conferences.
Previous workshops in the informal DCC series were held in Oxford (1990), Lyngby (1992), 
Båstad (1996), and Grenoble (2002).  Each of these stimulating meetings made a memorable 
contribution to building our research community. 

The 2004 DCC workshop again brings together academic and industrial researchers in formal 
methods for hardware design and verification.  It will allow participants to learn about the 
current state of the art in formally based hardware verification and it is intended to further the 
debate about how more effective design and verification methods can be developed. 

Nowadays, much research in hardware verification takes place in industry as well as in 
academia.  To make progress on the longer-term problems in our field, while keeping our 
work grounded in practical engineering problems, academic and industrial researchers must 
continue to work together on the problems facing microprocessor and ASIC designers, now 
and into the future.  A major aim of the DCC series of workshops has been to provide a 
congenial and relaxed venue for communication with fellow researchers in our community.  
The programme that DCC 2004 has attracted will keep the debate stimulating and productive, 
and we look forward to two great days of presentations and discussion. 

We would like to express our gratitude to the members of the programme committee for their 
work in selecting the presentations, and to all the speakers and participants for their 
contributions to designing correct circuits. 

Tom Melham and Mary Sheeran 
March 2004 



Programme Committee 
Koen Claessen (Chalmers)  
Nicolas Halbwachs (IMAG) 
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Axel Jantsch (KTH) 
Steve Johnson (Indiana)
Andy Martin (IBM) 
John Matthews (OGI)
Tom Melham (Oxford) 
John O'Leary (Intel)  
Ellen Sentovich (Cadence) 
Mary Sheeran (Chalmers) 
Satnam Singh (Xilinx) 
Jean Vuillemin (ENS, Paris) 



DCC 2004 Programme 
Saturday, 27 March 2004 

9:00–9:40
A Hierarchical Modeling System 

 Warren A. Hunt, Jr. and Erik Reeber (University of Texas at Austin) 
9:40–10:20

Wired—a Language for Describing Non-Functional Properties of Digital Circuits 
 Emil Axelsson, Koen Claessen, and Mary Sheeran (Chalmers University of Technology) 

10:20–11:00 Coffee 

11:00–10:40
Integrating Formal Methods with Digital Circuit Design in Hydra 

 John O’Donnell (University of Glasgow) 
11:40–12:20

HML: A language for high-level design of high-frequency circuits 
 Andrew K. Martin (IBM) 

12:20–14:00 Lunch 

14:00–14:40
Late Design Changes (ECOs) for sequentially optimized high-level Esterel designs 

 Laurent Arditi, Gérard Berry, and Michael Kishinevsky (Esterel Technologies and Intel) 
14:40–15:20

Structure-Driven Equivalence Verification for Circuits Optimized by Retiming and
 Combinational Synthesis
 Maher Mneimneh and Karem Sakallah (University of Michigan) 

15:20–16:00 Coffee 

16:00–16:40
A Reflective Functional Language for Hardware Design and Theorem Proving 

 Jim Grundy, Tom Melham, and John O’Leary (Intel and University of Oxford) 
16:40–17:20

Verifying the ARM Block Data Transfer Instructions 
 Anthony Fox (University of Cambridge) 



Sunday, 28 March 2004 

9:00–9:40
satGSTE: Combining the Abstraction of GSTE with the Capacity of a SAT Solver 

 Jin Yang, Rami Gil, and Eli Singerman (Intel) 
9:40–10:20

Symbolic Trajectory Evaluation using Satisfiability Solvers 
 Koen Claessen and Jan-Willem Roorda (Chalmers University of Technology) 

10:20–11:00 Coffee 

11:00–11:40
Verification of Parametric Timed Circuits using Octahedra 

 Robert Clarisó and Jordi Cortadella (Universitaat Politécnica de Catalunya) 
11:40–12:20

Trading Completeness for Capacity using Probabilistic Techniques 
 René Krenz and Elena Dubrova (Royal Institute of Technology, Stockholm) 

12:20–14:00 Lunch 

14:00–14:40
Formal Verification of Floating Point Multiply Add on Itanium Processor 

 Anna Slobodová and Krishna Nagalla (Intel) 
14:40–15:20

The Post-Silicon Verification Problem: Designing Limited Observability Checkers for
 Shared Memory Processors
 Ganesh Gopalakrishnan and Ching-Tsun Chou (University of Utah and Intel) 

15:20–16:00 Coffee 

16:00–16:40
An Operational Semantics for Safety PSL 

 Koen Claessen and Johan Mårtensson (Safelogic AB, Chalmers University of  
 Technology, and Gothenburg University) 
16:40–17:20

PSL semantics in higher order logic 
 Mike Gordon (University of Cambridge) 



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�

�
��
��
��
�
��
�
	


�
�
�
	�


�
�
�
��
�
�

�
�
�
�
�
��
�

�
��
�
��
��
�
�
�

�
�
�
�
�
�
�
�
�
	
�

�
�
�
�
�
�


�
�
��
�
�
�
�
�
�

�
�
��
�
�
�
�
�
�	
�

��
��
�


�
�
��
��



��
�
�
��
��
��
�
�
��
�
��
��

�
��
�
��
��



��
�
��
�
��
�


�
�

��
��
�
�
 !
 �
"#
�"
$$

�
#�
��
%&
�
��
��
�

��
'
�

�
(
)

*�
��
��

*
��
�

�
�
+
&
,
�
��
"
- 
�
. 
-!
�
,
�
��
"
- 
�
. 
-.

/�
�
&
,
�
��
"
- 
�
!!
!�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
��
��
��
�
��
�	


�
�
�	
�

�
�
��
��
�

�
�
�
�
�
��
��
�
��
	
�

��
�
�
�

�
�
��
�
�
��
��
�
	

�
�
�
�
�

�

�
��
��
�

�
��
�
�
��
�
��
��
��
��
�

��
��
�
�
��
�


��
�
��
�
��
��


��
�

�
�
�
��

�
�
��
�
�
�
��
��
�
�
�


�
�
��
�
��

�
�

�
��
�
�
��
�
��
�
��

�
�
�
��
�
��
��
��
��
�
��

�
�
��
�

	�
�
	
��
��
�
�

�

�
�
�
��
�
	
�

��
�	
��

�
��
�

�
�
��

�

�
��
�
�
��
�

�
�
��

�
�
��

�
��
�
�
�
�
�
�
�
�
�
�

��
��
��

�

�

�
��
��
�

�
��
�	
��

�
��
�

�
�
��
��
��
��
�
��
�
	
��
��

�
�
�
�
�
��

�

�
�
��

 
��
��
��
 
��
�
�
��

	
��
�
 
��
�

��
�

�

!
�
�
�
��
�

�
�
��
�
�
�
��
�
��
�

��
 
��
��
�
�	
��

�
�

�
�
��
�
��

�
�
��
	
��
	
��
�

��
�
��


��
�

��
"
�
�

�
��
��
��
#
��
�
��
�

�
��
�

�

�
��
�

�
��
�
��
��
�
�

$
��


��
��
��
��
��
%
&
��
��
��
�
��
��

	
�

�
�
��

�

�
��
�
��
�

�
�
��
��
�
��
�
"
��
�
 
�
�#
��
��
�
��
��
�
��
�
�
��
�
��
�
��
��

�
��

�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
��
�
��
�
�
	

��
�


��
	

�
�
�
��
�
��
��
�
	�



��
�

�
�

��

�
��
�
�
��
�
��
	�
�

�
��
�
�
�
�

�
��
	�
�
��
��
��
�

�
�
��
�

��
��
��
��
�
�
��
�
	�
�
�

�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
��
�
�
��
�
	


��
��

�
��
�

��
�

�

�
�
��
�
��
��
�
	
�

��
�
��
��


�

�
��
�
�

��
��
�
��
��
��
�
��
�
�
�
��
�
	
��
��
��

��


�
�
�
�
�
�

�

�
��
��


�


��
��


�
��
�
�
��
�
��
��
�

�

 
��
��
�
��


�


��
��
��
��
�!
��
��
�

�

�
�

��


�

�

��


��
	
�

�

"


�
��
�
�
#�
�

�
��


�



��
��
�

�#
��
�

#�
��


�
��
�
��
��
�
#�
��


�
�

�

$
��
��
�#
��
��
��
��
��
��
�


��
��


�
��

�

%
�
�


��
��


�
�

�

�
 




&
�


�
��
�


��
��


�
�'
��
	
�'
�
�#
�

��
��
�

(
�
��
	
�
��
��
	
�

�

$
�
�
#�
�

�
��
��
�


��
��


�
�'
��
	
�'
�


�
��

�


��


�
�

�
�
��
#�

�
�

�

%
�
�


��
��


�
�
#�
�
�
�
�
��
�

�
��
��
�
�

�

�
��
��
��
��
�!
��
�

�

)
�
��
�

��


��
��
��
��
�


��
�
��
��
�

�

*
��
��
��
�

�
��
�
��
��
#�
��
�
��
��
�

�

�
�
��
��

�

�
��
��
��
��
�
#�
�
�
�


��
��
�
�

��
�
�

�


�
�
��
��

�

��
��
�

��
��
�
��
�
#�
�

�
��
��
�
��
��
#�
�

�

"


#

�


���
��


�
��
+
�
��
��
'
��
�
��

�
��
��
��
�#
�
��


�
�

�

,
��
�


��#
��
�
�
��
��


�
#�


��
���
��
�

�

�
��
�
�#
��
�
��
#

	
�
�!
��
(
��
��

�
�
��

��
��
��
��

�

��
��
��
#�
��
	
��
�
��
���
��
��


��
�
��
��
��
�

�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
��
�
�
��
�
�
	�


�
��

�
�
�
�
�
�
�
�
	


�
�
�



�
�
�
	

�
�
�
�
�
�
	
�
�
�
�
�
�
�
�

�
�
�
	
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
	
�
�
�

�
�
�
	
�
�
�
�


�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�


�
�
�
�

�

�
�
�
�
�
�
�
 
�
�
�
!
�
�
	
�
�


"
#
$
%
�
�

�

�
�
�
�
�
 
�
�
�
!
�
�
	
�
�


"
&
�
�
�

�

�
�
�
'
�
�
!
�
�
	
�
�


"
(
$
%
�
�
�

�

�
�
�
�
�

�

�
�
�
'
�
�
�
!
�
�
	
�
�


"
)
$
%
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
%
%
�
�

�
�
�
�
�
*
�
�
�
�
�
�

�
�
�
�
�
+



�
�
�

�
�
	


�
�
�
�
+

�
�
�
�


�
�
�
�
+

�
�
�
�


�
�
�
�
�
�
�
�

�
�
�
�


�
�
�
�
+
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
%
%
�
�
�
�
%
%
�
�
�
�
�
�

�

�
��
�
��
��
�
�
�
	


��

�

�

�
�
	


��

�



�
��
��
�

�
��
��

�

�
�
�
	
��
�
��
��
�
�
�
�
�

	
�
��
�
�
�
��
�

��


	
�

�
�
�


���
��
�
�
��
�
��
��
��
�

�

�
��
��
��
�
�

��
��
�

�
�



�
��
�

�

�
��

�
�



�
�
��
�


�

��
�
�
�

��
��
�

�
�
��
�

��
�
��

�
�
�
�
	
��
��

�
 
��
�

�
��

�
��
�
��
��
��
�
�
�
��
��

��
��
��
��

�

!
��
"
�
�
#
$�
%
��
�
&�
��
'
(
�

�
�

	
��
��
�
��
�
��
�
�

�
	
�
��
�

�
��

�
��

�
��
	


��
�
�
)
��
���
�
�

�

�
��
��
�
�
�
�
�

�
�

��
��
��
*


��
��
	
��

�
��
	
��
��
��
��

�
�
(
��
�
�


��
��
��
�

��

�
��
��
��
��
�
�
��
��
�

�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
��
��
��
�
��
��
	


�
��


�
�

�


��
�
�
��

�
�
�
�
�

��
�
�
�
��
�
�
�	


��
�
�
�	
��
�
��

�
�
��
�
�

�
��
��
��
�
��
��
��
��
�
��

�
�
�
�

gr
nd

w
[0

]

w
[1

]

ow
,g

rn
d

X
O

R
FF

x[
1]

y[
1]

la
st

[1
:0

]

ol
de

st
[1

:0
]

qx
[1

:0
]

2
2

2

x[
0]

y[
0]

w
[1

:0
]

x[
1:

0]
X

O
R

x y

q

X
O

R

x y

q

ow
la

st
[1

]

la
st

[0
]

2
2

FF
2

2
2

FF
2

x
q

B
uf

n

X
O

R

x y

q
�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
��
�
��
��
�
�
	


��


�
�

�
	
��
�
�
��
�

�

�
��
��
�
�
�
	

�
�

�
�
�
�
��
��

�
�

�
�
�
�
�
�
�
�
�
�
�
	
�



�
�
�
�
�
�

�
�


�
�
�
�
�
�
�
�
�
�
�



�
�
�
�
�
�
�
�



�
�
�
�
�
�
�
�





�
�
�
�
�
�
�





�
�
�
�



�
�
�
�
�
�



�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
 
�



�
!
�
!
"
#
$
�

�
�
�
�
�
�
%
�
�
�
�
�
�
�
�
%
�
 
�



�
�
�
�
�

�
�
�
�
�
�
&
�
'
�
�







�
�
�
�
�
�
�
�
�
�
�



�
�
�
�
�
(
�
�
�
�
�




�



�
�
�
�
&
�
'
�
�















�

�
��
��
�
�
��
��
�


�
��
��
�
��
��
�
��


�
�
��

�
��
��
��
�
�




��
��
�
��

�
�
�
�
�
�
�
�
�
�
	
�



�
�
�
�
�

�
�


�
�
�
�
�
�
�
�
�
�
�



�
�
�
�
�
�
�



�
�
�
�
�
�
�
�





�
�
�
�
�
�
�





�
�
�
�
�
�
�
�





�
�
�
�
�
�



�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
 
�



�
�
�
�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
!
�
�
�
"
�
�


�
�
�
!
#
�
�
�
�
�

�

�
 
�
�
�


$
�

�

 
�
�
�
�
�
�
�


$
�

�

 
�
�
�




%
�



�
&
�
&
'
(
)

�

�
�
�
�
�
�
*
+
,
�
�
�
�
�
�
*
�
-
%
�

�

�
�
�
�
.
�
�
�
�
!
�
�
�
�
�


�

�

�
�
�
�
�
�
*
�
-
,
�
�
�
�
�
�
*
/
0
%
�



�
�
�
�
�

�
�
�
�
�
�
1
2





�
�
�
�
�
#
�
�
�
�
�



�
�
�
�
�
�
�
�







�
�
�
�
�
1
2


�
�
�
1
2













�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
��
��
��
�
��
��
	


�
��


�
�

�


��
�
�
��

�
�
�
��
�
�
�
��	


��
�
�
�
�
�

�
��
�
��
��
�
�
�
�
�
��
�
��
�
��
��
�
�

�
�
�
�
�
�
�
�
	
�
�


�
�
�



�
�
�
	
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
	
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�


�
�
�
�
�
�
�
�
�


�
�
�
�
	
�
�
�

�
�
�
	
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�


�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
	


�
�

�
�
�
�
�
�
�

�
�
�
	
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
	


�
�

�
�
�
�
�
�
�

�
�
�
	
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�


�
�
�
�
	
�
�
�
�
�
�
	
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�

�
�
�
	


�
�

�
�
�
�
�
�
�
�

�
�
�
	
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�


�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
��
�
�
��
�
	


��
��



�
�
�
��
���
�
�	


��
��

�
��
�	
��
��
��
�
�
��
��
��
�
�
�
�


��
��
�
��
	


�
�
�

�

�
�
�
��
��
�


��
�
	
�
��
��

�

�
��
�


	
��
��
��
�
��
�	
��
��
�	


�
��
��
��
��
	
��
���
��

�

�	


�
��
��
�
	
�
�
��
�
��
�

�

�
�
�
��
�
��
Æ
��
�	
�
��
�
��
�

�

�
�
�
��
	
��
�
��
�
	
��
��
�
�
�
�

�
��
��
�
��
�
��
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
	


�
�
	


�
�
�
�
�


�
�
�


�
�

�
	
�
�


	
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�


	
�
�
�

�
�
�
�
�
�


�
�
�
	
�
�
�
�
�


	
�
�
�


�
�
	
�
�
�
�
�


�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�


�
�
�
�
�
�
�
�


	
�
�

�
�
�
�
�


�
�
�


�


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�

	
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�


	
�
�
�
�
�

�
�
�

�
�
�
	


�
	


�
�
�
�

�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
�
��
�
��
�	
�
	


�
�
�
�

�
�
��
��
�
�

�
�
�
�
�
�
�
�
�
�
�
	
�
�


�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�


�
�
�

�
�
�
�
�
�
�
	
�
�
�
�
�
�
�
�


�
�
�
	
�
�




�
�
�
�
�
�
�
�
�
�


�
�
�


�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�




�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�


�
�

�


�


�
�
�


�


�
�
�
�


�
�
�
�
�


�
�
�
�


�
�
�
�
�
�

�


�
�
�
�
�


�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�


�
�
�
�
�
�
�


�


�
�
�


�

�
�
�
	
�
�
�
�
�
�
�
�
�
�
�
�
	


�
�
�


�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�


�
�
�
�
�

�
�
�
	
�
�
�
�
�
�
�
�
�
�
�
�
	
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�


�
�
�
�
�

�
�
�
	
�
�
�
�
�
�
�
�
�
�

�
�
	
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�


�
�
�
�
�


�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
	


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
�
��
�
��
�	
�
	


�
�
�
�

�
�
��
��
�
�
�

	
�
��
�
�
��

�
�
��
�
�
�
�

��
��
�
	

�
�
��


�
��



�


��
�
�

��
�
��
�
��
��
��
�
�
�
�
�
��
�
��
��
�
�
�
�
�

��

��
�
�
��
	
�
��


�
�



�
�
��
��
��
��
�



��
��
	
�
��


�
�
�

�




�
�
�

��
��
�
	
�
��
��
�
�
�
��
�

�


�
��
��

�
�
�
�
�
�
�
�
�
	




�
�
�
�
	




�
�
�


�
�
�
�
�
�
�
�

�


	
�
�

�
�
�
�
	
�
	




�
�

�
�


�

�
�
�
�
�
�
�
�


�
�
�
	




�
�
�




�

�
�
�
�
�
�
	




�
�
�
�
�


�
�
�
�


	
�
�
�
�
�

�
�
�
�
	




�
�
�
�


�
�
	




�
�
�
�


�
�
�
�
�
�
�
�
�

�
� �

�
�
�
�
�
�
�
�
�

�
	
�
�
�
�
�
	
�
	
�
�
�
	
�


�
�
�
	
�
�
�
�
�

�


�
�
	




�
�

�
�
�
�
	




�
�
�
�


�
�
	




�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�


�
�
�
	
�
	
�
�
�
�

�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	
�
�
�
�
�
�
�
�
�
�

	
�
	
�
�
�

�
�
�
�
�
�
�
	
�


�
�
�
�
�
�
	
�


�
�
�
�

�
	
�


�
�
�
�
�
�
�
�
�
�
	
�


�
�
�
�

	
�
�
�
�
	
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�

�
�


�

�
�


�

�
�
�
�
�
�
�
�
�
�
�
�

�
�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
�
�
�
�
��
�	
�
	


�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
	


�


�


�
�




�


�
�
�
�
�
�
�
�


�
�

�
�
�
�
�
�
�


	
�
�
�

�
�


�
�
�
�
�
�
�
�


�
�
�
�
	
�
�
�
�
�


	
	
�
�
�
�
�
�
�


�
�
	


�


�


�
�
�


�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�






�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�

�
�
�
�


�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�


�
�



�
�
�
	


�


�


�
�
�
�


�
�


�


�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�


�
�
�
	


�
�
�
�


�
�
�
	


�


�



�
�
�
�
�
�
�


�
�
�
�


�
�
�
�
	


�


�


�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�


�
�
�
	


�
�
�
�


�
�


�
�
�
	
�
�


�


�
�
�
�


�

�
�
�
�
�
�
�


�
�
�
�


�
�
�
�
�
�


�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�


�
�
�
	


�
�
�
�


�
�


�
�
�
	
�
�


�


�
�


�


�

�
�
�
�
�
�
�


�
�
�
�


�

�
�
�
�
	


�


�
�


�


�
�
�
�
�


�
�
�


�




�



�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�






�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�


�
�
�

�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�

�


	
	
�
�
�
�


�
�

�






�
�
�
�
�
�
�
�


�
�
�


�


�


�
�
�
	
�
�


�


�
�


�


�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�

�
�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
�
�
�
�
��
�	
�
	


�
�
�
�
	
�
��
�


�
�

�
�
�
�
�
�
�
�
�
�
	
	
�
�


�
�
	
	
�
�
�


�
�
�


�
�
�
�

�
	
�
�
�

�
�
�
�
�
�
�
	
	
�
�
�
�


�

�
�
�
�
�
�


�
	
�
�
�
�
	
	
�
�
�
	
	
�
�
�
�
�
�
�
�
	
	
�
�
�
�
	
�
�
�
�
	
�
�
�
�
�
�

�
�
�
�
�
	
	
�


�
�
	
�
�
�
	
	
�
�
�
�


�
�
�


�
�
�
�
�

�
� �



�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
	
�




�
�
�
�
�
�
�
	
�
�
�
	
	
�
�

�
�
�
�
�
	
	

�


�
�
	
�
�
�
	
	
�
�

�
	
�
�
�
�
	
�
�
�
�
�
�
�
�
�

�
�
�

�


�
�
�
�
	
�




�
�
�
�
�
	
�




�
�
�
�
	
�




�
�
�
�
�
�
�
�
�
	
�




�

�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�


�
�
�
�
�

�
�


�

�
�
�


�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�


�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
	
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�


�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
	
�
�
�
�
�
�
�
�


�
�
�
�

�


�
�
�
�
�
�
�
�
�

�
	
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
	
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�


�
�
�


�
�
�
�
�
�

�
�


�
�
�


�
�
�
�
�
�

�
�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
��
�
�
�
��
	


	
�
�
	


�
��
�
�


�
��
�	
��

�
�
��
�
�
��
��
�
	�

�
��

�
��

�
	�
��

�
�
��
��
��

�
�
��
��



��
�
�

��
��

�
�

�
�

�
��


�
�
��

�
�

�

�
��
��
�
	�

�
��

�
��
��


��
��
��
�
��
��
��
��
��
��
��
��
	

��

�

�
�
�
��

�
�
�
�
�
��
�	
��
�
�

�
�

	�

�
��

�
�
��
��
��
�

�

�
�
��
��
��
�
��
��
�
	�

�
��

�
��
��
�

	
�
�
�
��

�
��
�
�

��
��
��
��
��
��
��
��
��

�
�
��
�
��

�

�

�

�
��
��
��
�
�
�
�
��
�	
��
�
�

�
�

��
�

��
�

�
�

�
�

�
��
��
��
�

�

�
�
�
�
��
�	
��
�
�

�
�


�
�

��
��
�
�
�


�
�
�

��


��

�
�
��
�
�
�

��
��
��
��
�
��
��
�

�
��
��
��

�
��
��
��
��
�
��

�
�

�

�

�
�
�
�
��
�	
��
�
�

�
�


�
�

��
��
�
�
�

�


�
��

 
�

�

��
�

�
��
��
��
��
!�
"
#
$
��



	�

�
��

�
�

��


��
�
�
%
�
�
��
��
��
�

�
�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
��
��
�	


�
�

�
��
��
��
��
�
��
�

�
�

�
�
�
�
��
��
�
	�
�
�

��
�
�

�

�
��
�	
�

��
��
��
��
�
��
��
�
�
��
�
�
�

�
�
�
�
	�
��

�

�
�
��


��
��
�
�

�
�
�
�
	�
�
�

��
�
�
�
��
��
�


�
�
��
�
��
�
��
��
�
	�
�
��
��
�
��
�

�

��
��
��
��
��
�
	�
�
�
��
��
��
�

�
�
�
 
��
	�
��
��
��
�
��
��
�
�


�
�
�
�
�
	�
�

��
�

�
��
��
�

�


�
��
��
�
��


�
��
��


��
��
��
�
�

�
�
��
��
�
�
�	
	!
��
��
��
�

�
�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�

�
��
�
�
��
�
	


	
��
��
�


�
	
�
�	
�

�
�
�
��
��
�
��
��
	�
�
�
��

��
��
	�


��
��
�
��
��
��
�
��
��
�
�
�
��


��
��
��
�
	�
��
��
��
�
�

�
��

��
��
�
�
�
	�
��
��
�	


�
��
��
	�
�
	
�
��

��
�
�
��
�
��
�
��
�
��
��
�
�
�
�
�

��
��
��
�
��
��
��
�
�

�
��

��
�
�
	�
	�


��
��
�
��
�
�
�
��
��
��
�
��
��
�
��
�
��
	

��
��
�

�
�
�
�
�
�
�
�
�
	
�


�
�
�
�




�
�
�
�
�
�
�
�


�
�




�
�

�


�
�
�


�
�

�
�
�
	
�


�
�
�
�




�
�
�
�
�
�
�




�
�
�
�
	
�
�
�


�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�




�
�
�
�
�
�
�




�
�
�
�
�


�
�
�


	
�
�
�
�
	
�
	
�
�
�


�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


	
�
�
	
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�




	
�
�
�
	
�
�
�
�
�
�

�
�
�


	
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�




	
�
�
�
	
�
�
�
�
�
�
�

�
�
�
�
 
�




�
�
�
�
�
�
�
�
�


�
�
�
�
�


	
�
�
�
�
�

�
�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
�
��
�
��
�
�
��

�

�
�
��
�
�
��
�
	
�
�


�
�
��
�	
�
�


��


�
�

�
�
�
�
�
�
��
�
��
��
�

��

�
��
�

�
�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
�
��
��
	
�

��
�


�
�
��
��
�
��
�
�
��
��
��
��
�
�
�

�

�
��
�
��
��
��
	

��


��
�
��
��
��
��
�

�


�
�

��


�
��
�
�

�
�
��

�
�
�
�
�

�
�


	�
�
�
�

��
��
��
�
��
��
��
�
 

�

�
��
��
��
�
�
�



��
��
��
�
�
��
��
��
�

�
��
��
��
�	
��
 

�

!
"#
�$
��
�	
�
��
��
#�
�

��
��
��
"#
��
�

��
%
��
�	
�
	#
�
�
��


��
��
��
&
�

��
�


�

'
�%
��
�	
�
��
��
#�
�

��
	
�
�

�
��
��
��

��

�
�
�	
��
�
�#
��
�	
�
$�
��
�(
� 

�

)
�
��
�
��
��
�
��
�	
(
��
��
�
��
	�
�#
	�
�

��
�	
��
�	
�
�
��
��

�
��
��
��
��
�	


�	
��

��
�
�
�

��
	(
#�
(�
 

�

�
#�
#�
�
�#
	�
��
�	
��
$�
��
�
��
��
�	
�
���
��
�

"#
��
�
&	
��
�	
(
��
��
#�
�
��
��
�
��
��

�

#
��

$�
��
�(
�

�
�

�
��
�
�

��
�
	�
��
�

� 

11010
0

1.
5 

   
 0

.7
   

 .3
5 

   
 .1

8 
   

 .1
0

 1
.0

   
  0

.5
   

  .
25

   
 .1

3 
   

 .0
7

M
ic

ro
pr

oc
es

so
r 

Po
w

er
 D

en
si

ty
2

i3
86

i4
86

Pe
nt

iu
m

 P
ro

Pe
nt

iu
m

 I
I

Pe
nt

iu
m

 I
II

10
00 So

ur
ce

:  
F.

 P
ol

la
ck

, I
nt

el
, N

ew
 M

ic
ro

pr
oc

es
so

r 
C

ha
lle

ng
es

in
 C

om
in

g 
G

en
er

at
io

ns
 o

f 
C

M
O

S 
T

ec
hn

ol
og

ie
s,

 M
ic

ro
32

Pe
nt

iu
m

H
ot

 P
la

teN
uc

le
ar

 R
ea

ct
or

(W
at

ts
/c

m
 )

L
ith

og
ra

ph
y 

Fe
at

ur
e 

Si
ze

(m
ic

ro
m

et
er

s)

�
�



  D
es

ig
ni

ng
 C

or
re

ct
 C

irc
ui

ts
 -

- 
3/

20
04

  H
un

t a
nd

 R
ee

be
r 

   
 U

T
 C

S
 a

nd
 E

C
E

�
�
�
�
��
��
�

�
�
�
��
��
��	
�

�
�
��

�
��
��
�

��
�

�
�
�
��
�

��
��
��
�
��
��
�
��
�
�
�
�
�
��
�

�
�
�

��
�

�
��
�

��
�
��


��
��
��
��
��

�
�

��
�


�
�
��
�

��
��

�
�
��

�
��
�
��
�

��
�
��
��

�
��

��
��
�
��
��
��
�

�
��
��
��
�
�

��
�

�

�
��
��
��
�
�
��
��
�
��
��
��
��
��
��
��
�

��
�
��

�
�
��
�


�
��
��
�

�
�
��
��
��
��
��
�

�

�
��
��
��
�
�
��
��
�
��
�
��
�

�
�
��
�

��



��
�

��

�

�
��
��
�
�

�

�
�

��

�
��
��
��

�
��

�

�
��
�

�

�
��
��
��
�
�
��
��
�

�
�
�
�
��
��
��

�
�

�
�

��

�
��
�

��

�

�
��
��
�
��
�
�

��
��

��
��

��

�
�
��
�

�

�
�
�
��


�
�

��
�
�

�

��
��
��
�

��
��
�
�
�

��
��

�
���

�
�

	 �
�

�
�
��

�
��
��
�

��
��

�

 
��
�
��
�
��
��
�

��
�
��
�
�!
��
!�
��
��
��
�
�
�

��
��
�
��

�
�

��
�

�

"
��

�
�
�
��
�
��

�
��
��
��
��

�
�
��
��
�

�
��
�

��

�
��
��
�
��
���

�

�
�
��
��
�


�
��
��

�
�

��
�

�
��
�

�

#�
�
�
��
�
��
��
��
��
!�
�
�
��
�
�
�
�

�
�
�

��
�!
�

�
��
!�
��
��
��
��
��
�

��
�
��

�
��

��
��
��
��
��
��

�
��

�
��
��
��
��
�
��
��
��
�
��
�

��
��
�


�

�

$
��
��
���

�

�
�
��
�
��

�
��
��
�

��
�
��
��
��
�
��
�
��
�
��
���

�

�
��
�

��
�
��
�

!�
���
�

�
��
�

�
�
��

�
��
�
��

�
��
	�
��
�
��
�

�
�

��
�
��
�

��
��

�
�



� � � � � 
 � � � � � � � � � � � � � � � ! � � % � � �

( � � , . � � ! 0 � � � � 1 2 � � 4 � � 0 � � � � � � � � � 0 � 1 = � � ! � � 0 �

? @ B D F G I D J J M O Q S M I O W D Y I J J I O Q [ Y \ ^ _ ` I I \ Y O

b c d e g h i k m n p r h i k p v x y z { h } c n y e y � x

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � n } i h d k p n � e x   ¡ h k p � n h i k n h h ¡ v y h k v p g d v h n y n ¢ z ¥ n } v p y n d e ¦ i y ¦ ¢
h i v p h k k ¥ } c d k d i h d   ¦ y ¨ h i } y n k ¥ g ¦ v p y n d n ¡ v p g p n �   h r h n ¨ c h n ¨ y i ª p n �
d v d c p � c e h r h e y z d ¬ k v i d } v p y n   h d i e x p n v c h ¡ h k p � n ® � n ¡ h h ¦ k ¥ ¬ ¢ g p } i y n
¦ i y } h k k h k   p v p k v c h i y ¥ v p n � ¨ p i h k v c d v d } } y ¥ n v z y i g y k v y z v c h ¦ y ¨ h i } y n ¢
k ¥ g ¦ v p y n d n ¡ k p � n d e ¡ h e d x k ® ° y   p n z y i g d v p y n d ¬ y ¥ v v c h ¨ p i h k p k r p v d e z y i
} y n v i y e e p n � n y n ¢ z ¥ n } v p y n d e ¦ i y ¦ h i v p h k ® { y ¡ h d e ¨ p v c g y i h d n ¡ g y i h } y g ¢
¦ e h ³ } y n k v i ¥ } v p y n k   } ¥ i i h n v ¡ h k p � n g h v c y ¡ k d n ¡ e d n � ¥ d � h k k v i p r h v y ¨ d i ¡ k
c p � c h i d n ¡ c p � c h i e h r h e k y z d ¬ k v i d } v p y n   d n ¡ ¦ i y r p ¡ h y n e x r h i x e p g p v h ¡
¦ y k k p ¬ p e p v p h k z y i e y ¨ e h r h e } y n v i y e ® µ z v h n   ¡ h v d p e h ¡ p n z y i g d v p y n d ¬ y ¥ v ¨ p i h
¦ i y ¦ h i v p h k p k y n e x d r d p e d ¬ e h p n v c h r h i x e d k v ¡ h k p � n k v d � h k ¹ d z v h i ¦ e d } h ¢
g h n v d n ¡ i y ¥ v p n � ® º h ¦ i y ¦ y k h d e d n � ¥ d � h   º p i h ¡   v c d v d p g k v y ¬ i p ¡ � h
v c p k � d ¦ p n d ¬ k v i d } v p y n e h r h e k ® { c h g d p n p ¡ h d p k v c h ¡ h k } i p ¦ v p y n y z } p i } ¥ p v k
¥ k p n � c p � c h i y i ¡ h i } y n n h } v p y n ¦ d v v h i n k   y i } y g ¬ p n d v y i k ® { c h ª h x v y v c h
¥ k h z ¥ e n h k k y z v c p k k v x e h p k v c d v v c h } y g ¬ p n d v y i k c d r h ¬ y v c z ¥ n } v p y n d e d n ¡
� h y g h v i p } p n v h i ¦ i h v d v p y n k ® { c p k d e e y ¨ k ¥ k v y } y n k v i ¥ } v } p i } ¥ p v k d v d c p � c
e h r h e   ¨ p v c y ¥ v e y y k p n � } y n v i y e y r h i e y ¨ h i e h r h e k ® º p i h ¡ � y h k z ¥ i v c h i v c d n
¦ i h r p y ¥ k g h v c y ¡ k p n v c d v p v y ¼ h i k g y i h ¦ i h } p k h d n ¡ ½ h ³ p ¬ e h } y n v i y e y r h i
v c h � h y g h v i x ®

¾ ¿ À Á Â Ã Ä Å Æ Á Ç Ã À

È ` I I O M \ @ M É J D ^ Ê M @ Ë D I G Ì B Í B Î Y D Ê B \ Ê É B Î J Î ` Y Î Ï I J I I Î M Ì Y ^ Ð Ñ M \ I G Y @ Ë D I @ B Ò
Ê \ M Ë \ M Ê I J J M \ J Ï B Î ` J I Ó I \ Y D @ B D D B M O Î \ Y O J B J Î M \ J Ð ` Y Ó I Õ I I O @ Y Ì I Ë M J J B Õ D I Ì É I Î M
Y Ê Y \ I Ñ É D J I Ë Y \ Y Î B M O M Ñ Y Õ J Î \ Y Ê Î B M O D I Ó I D J Ö × O I M Ñ Î ` I @ M J Î B @ Ë M \ Î Y O Î Y Õ J Î \ Y Ê Ò

Î B M O J B J Î ` I M O I Î ` Y Î Ó B I Ï J Y Ê ` B Ë Ñ É D D M Ñ Î \ Y O J B J Î M \ J Y O Ì Ï B \ I J Y J Y O I Î D B J Î Ø Y J I Î
M Ñ Õ Y J B Ê D M Í B Ê Í Y Î I J Y O Ì Î ` I B \ Ê M O O I Ê Î B M O J Q Ê M @ Ë D I Î I D ^ Ï B Î ` M É Î Í I M @ I Î \ ^ Ö È ` B J
@ Y Ù I J B Î Ë M J J B Õ D I Î M Ñ M Ê É J M O Î ` I Ê B \ Ê É B Î Ú J Õ I ` Y Ó B M É \ Y O Ì ` M Ï Î M Ì I J Ê \ B Õ I Î ` B J
Ê M \ \ I Ê Î D ^ Y O Ì I Û Ê B I O Î D ^ Q Ï B Î ` M É Î Õ I B O Í Ì B J Î É \ Õ I Ì Õ ^ Î ` I Ë ` ^ J B Ê Y D \ I Y D B Î ^ Î ` Y Î B J

É O Ì I \ O I Y Î ` Ö
Ü O Î ` I Î \ Y Ì B Î B M O Y D F _ Ü W Ì I J B Í O Ò ß M Ï Q Î ` I Ì I J B Í O I \ J Î Y \ Î J Õ ^ Ì I J Ê \ B Õ B O Í Î ` I

Ê B \ Ê É B Î B O J M @ I ` B Í ` Ò D I Ó I D D Y O Í É Y Í I Q Y O Ì É J I J Y J ^ O Î ` I J B J Î M M D Î M Ê \ I Y Î I Y O I Î D B J Î
Î ` Y Î \ I Y D B à I J Î ` I J Y @ I Ñ É O Ê Î B M O Ö È ` I O I Î D B J Î B J Î ` I O ` Y O Ì I Ì M Ó I \ Î M Y Ë D Y Ê I Ò Y O Ì Ò
\ M É Î I Î M M D Q Ï ` B Ê ` Î Y Ù I J Ê Y \ I M Ñ Î ` I O M O Ò Ñ É O Ê Î B M O Y D J ^ O Î ` I J B J Ð Ë D Y Ê I @ I O Î Y O Ì
\ M É Î B O Í M Ñ Î \ Y O J B J Î M \ J Y O Ì Ï B \ I J Ö È ` B J J Î I Ë Ê Y O Q M Õ Ó B M É J D ^ Q O M Î Y â I Ê Î Î ` I Ê B \ Ê É B Î Ú J

Ñ É O Ê Î B M O Q Õ É Î B Î Ê I \ Î Y B O D ^ Y â I Ê Î J Î ` I O M O Ò Ñ É O Ê Î B M O Y D Õ I ` Y Ó B M É \ Q J É Ê ` Y J Y \ I Y Q



� � � � 	 � � � � � � � � � � � � � � � �  � � ! � � ! � & � ' ) � � 	 � � � � �  ! & - � � � � � 1 � 3 4 5 6 8 : < = 8 3 > @ � 1 � �
� � � � 	 � A � � � � � � � � � � 1 � � � � � � E F � � � � � � � � ! � 	 � � � 	 � � � � ' ) � � � 	 ! � � 	 ) K � 	 � � � � � � � - � � 	 � �
� � 	 � � � � � � � � 	 � � � ! � � � � � � � � ! � � � � � � � � � � � ! � � � � � � - � � � � 1 �  � � � � � � 	 � � 1 � � � � �
� � � � 	 � A � � � 	 � � � � � � E F � � � � � � � � ! � V � � � � ' W 1 � � � � � � � 1 � ! � � Z � � � 1 � � � � ! � � � \ � 1 � 	 �

 � � � � � 	 � � ^ � ! � � � � � � � � � 	 � � � � � ! � � � � a � � � 1 � ! � � 	 � 	 ' c � � � � � � � � & e � � � � � � � A E
� � � 	 � � � 	 � � � � � � � - � 1 � 	 � ! � � 1 � h � A � � � � ^ � 1 � �  � � - � � � � � F � � � - � � � � � 1 � � � 	 � � � 1 � �
� � � � � � � F � 	 � � � � � F � 1 � � 1 � � � � � 	 � � � � � � � � � � � � � � � �  � � ! � � ! � & � ' W 1 � � � 	 � A ! � �
� � A � � � � � �  � � 	 � � � � � � 	 � � � � � 	 � � � � � � 1 � � � h � ! � � � � � � � F � � � � 	 � � � � � � �  � � �
� � - � � � � � ! ! � � � � � � � � ! ! & � � � � A � � � � � � 1 � � � o � 	 A � � � ! � � � � Z F � 	 � � h � � � � �  � � 	 � � � �
� � 	 F � 	 � � � � � p q r '

s  � � � � � � � � � � � � � ! � & � � � � � ! ! - � � � � 	 � ! ! & - 	 � � � ! � � � � 1 � 	 � � 	 � � 	 � � � � � � � � ! ! � 	
� � � E F � � � � � � � � ! � V � � � � ' W 1 � 	 � F � 	 � - � � � 1 � V � 	 � � � � � � � � � � � � Z � �  A � � � � 	 � ! � � � E
� � � E 	 � � � � � !  � 	 � � 1 � � - � � � 	 � � � � � 1 � � 1 � 1 � 	 � � � � � � ! ! � � � 1 � � 	 Z � � A � � � � � '
~ � � � h � 	 - � 1 � 	 � � � � F � � � � � � � � � ! � 	 � A ! � � � � � 1 � 1 � � � & � � 	 � � � � � � 	 � � & � � 1 � � � � � �

F 	 � � 1 �  1 E ! � h � ! � � � � 	 � � � � � � � � � � � ! � & � � � ' s � � 	 � � � � � � � 1 � � � � � � 1 � � 	 �  � ! � 	 � � 	 � � E
� � 	 � \ � � � � ! ! & � 	 � � F � 	 � 	 � � 1 � � � � � � � 	 � � � � � a � � ! ! � � � � ! � Z � ! & & � � ! � � 1 � � � � � � � � � � � �
! � & � � � � F � ! � � � � � � � � � � � � � � � � � 	 � � �  � � � 1 � � � 1 � 	 � � � � � 	 � � � � 	 � \ � � � 	 � � � ! � � F 	 � �
� � � s � ^ � � 	 � � � � � � � � p � r a ' s ! � 1 � �  1 � 1 � � � 	 � � � � 	 � � � & A � � � ! ! E Z � � � � � � � 1 � � � E
� �  � � 	 - � 1 � 	 � � � � � � � � � � � � � � � & � F � � � � � � � � � � � �  � 1 � � Z � � � ! � �  � � � � 1 � ! � � � 	
� & � � 1 � � � � ! � h � ! � '

W 1 � � � 	 � � � ! � � 	 � � � � � � �  � � � 	 � ! ! � �  � �  � E A � � � � � � � 	 � � � 1 � � � � � � � � � � � � � 	 � � E
� � � � � F \ � � � � � 1 � � a 	 �  � ! � 	 � � 	 � � � � � - � � � 1 ! � & � � � � � � � � � � 	 � ! � �  	 � � � � � � ' W 1 � � � �
� � 	 Z � � � 	 �  	 � � � - � � � � � 	 � 	 � �  � � ! � � � � � 	 � h � � � � F 	 � � � � � 	 Z F � 	 F � � � � ^ � ! � E
	 � � � � � � F � � V � 	 � � � ! � & � � � � ! � � 	 � � � � h � � ' ) � � 1 � F � � � 	 � - � � � ! � � 1 � � � � � � � � ! � � � � 1 �
! � �  � �  � � � � � � � � ! � � � � � � �  � E � � � F � 	 � � � � E � � � 1 � � 	 � � � � � '

� � � � � � � � � � � � � � � �

) � � � 	 � � - � � 	 � � � � � � 	 � A � � ! � � � � � � � � � � � � � � � � F � � � ! ! � 	 � � A E � � 	 � � � � � � � � 1 � � � � ! ! � �

� 4 � � 8 : � 6 4 3 @ - � � � � � � � � � ! ! � � � 	 � � � � � � �  � 	 � q \ � a ' W 1 � � � � � 	 � � � 1 1 � � � 	 � h � � � � ! &
A � � � � � � � � � - F � 	 � ^ � � � ! � - � � h � � � � � � A & p � - � r ' s � � 	 � � � � � � � � 	 � A � � � � � 1 � � � � &
� � 	 � � ! ! & � A � � � 	 & � 	 � � � � 	 � � � � 	 � - � 1 � 	 � � 1 � ! � � h � � � 	 � � 	 � � � � � h � A � � ! � � �  A ! � � Z � -
� � � � 1 � � � � � 	 � � ! � � � � � 	 � � 	 � � � � � � 1 � � � V � 	 � � � � � � A � � � � � 	 � ' � �  � 	 � q \ A a � 1 � � �
� � � � � ! � � � 	 � � � � � � � � � � A � � � 	 & � 	 � � 	 � � 	 � � � � � � � � � � '

W 1 � � � � � � � � � � � h � 	 & � � � � ! � � � 	 � � � � � � � � ! � � � � � & � � � � � � � h � 	 & � � � 	 � � � � h �
� � � 	 � �  ! � � � � ' � � � � ! ! � � � - 1 � � � h � 	 - � 1 � � � � � � � 	 � �  � 1 ! � � � � � � 1 � � A � ! � � & � � � � � � 	 � A �
� � h � 	 � ! � � 	 � � � � � � � � � � � � � � 1 � � � � � � � � � ' � � � � � � 1 � � Z � F � � � 	 � � � � � � � � � � � � � � �  

� F � � � � � 	 � � � � � � F � � � � � � � � ! � � � � � � E F � � � � � � � � ! � � � � 	 � 	 � � � � � � � � ' W 1 � F � � � � � � � � !
� � � � 	 � 	 � � � � � � � � � � A � - � � � 1 � � � � �  � � � 	 � ! � � � � - � 	 � ! � � � � � � � A � � ! � � � � �  � � ! � -
� � � � 1 � � � � E F � � � � � � � � ! � � � A � � 1 � � � 	 � � � � e �  � � � � � 	 � � � ! � � � � � 	 � � � � ' W 1 � � � � A � E

� � � � 	 � � 	 � � � � � � � F � 	 A � � 1 � F � 1 � � � � � � � � � � ' ) � �  � 	 � � - � � � � � � � � � � � � � � � � � � F
� � 	 � � � � � � � � 1 � � � � � � � � � � ' W 1 � 	 � � � ! � � � � � � � � � 	 � � � � � 1 � � � F � � � � � � � � � � A � � � � � �

A & � � � � � � � � �  � � � � � F � 1 � � 	 �  � � � ! � � 	 � � � � � e � �  � � ! � - � � � � 1 � � �  � � � � � 	 � � � ! � � E
� � � 	 � � � � � � � A � � � � � � A & � ! � � � �  � 1 � � � � � 	 �  � � � ! A ! � � Z � � � ^ � � � � � � 1 � � 1 � 	 ' W 1 � �



Circuit 1 <−> Circuit2

Combinator

Circuit 1          Circuit2

<^>

<−>

C

B

B

A

C

A

� � � � � �

� � 	 � � � � � � � � 
 � � � � � � � � � � � � � � 
 � � � � � �  � � � � � � �  " �  $ $  $ �  $ � $ � � � � � � �

� � 	 � � � � + � � � � � � � , � � . � � � / 1 + � � � � � � � , � � 
 � � � � � � � �

4 6 8 : < = > @ > B = E 6 G 6 H H I H E G : E I G L > I M L : L N I P > G P Q > L M E G : @ > S I M 6 M I U 6 B L > P 6 H H 8 P H I 6 G H > B W
X I L 4 I I B L N I < Q B P L > : B 6 H 6 B S B : B ] < Q B P L > : B 6 H 4 : G H S M `

� N 6 L S > M L > B = Q > M N I M � > G I S < G : U E G I @ > : Q M U I L N : S M > M L N 6 L L N I P > G P Q > L M P 6 B X I
= > @ I B 6 U Q P N U : G I M L G > P L = I : U I L G > P 6 H > B L I G E G I L 6 L > : B i 6 B S L N 6 L 4 > G I M 6 G I L G I 6 L I S

k Q M L H > W I 6 B 8 : L N I G P > G P Q > L ` m > B P I 4 I S : B n L 6 X M L G 6 P L 6 4 6 8 < G : U 4 > G I M i L N > M = > @ I M
6 B I 4 4 6 8 L : L 6 P W H I L N I = G : 4 > B = E G : X H I U : < 4 > G I E G : E I G L > I M X I > B = S : U > B 6 B L `

v B 6 4 6 8 i � > G I S P 6 B X I M I I B 6 M � 6 @ 6 4 > L N 6 B I z L G 6 B : B ] < Q B P L > : B 6 H E G : E I G L 8
M 8 M L I U 6 S S I S i 6 B S 4 I X I H > I @ I > B 6 S I M > = B E G : P I S Q G I 4 N I G I 4 I M L 6 G L X 8 U 6 W > B =
6 S I M P G > E L > : B : < L N I P > G P Q > L > B � 6 @ 6 i 6 B S 4 N I B L N > M > M S : B I i G I | B I > L L : M Q > L 6
S I M P G > E L > : B > B � > G I S i 6 B S | B 6 H H 8 L 6 W I L N I M L I E > B L : � > G I S X 8 6 S S > B = L N I B : B ]

< Q B P L > : B 6 H > B < : G U 6 L > : B `

� � ~ � � � � ~ � � � ~ � �

� I 4 > H H B : 4 H : : W U : G I P H : M I H 8 6 L L N I U Q H L > ] E Q G E : M I P > G P Q > L S I M P G > E L > : B M U I B ]
L > : B I S I 6 G H > I G ` � I S > M L > B = Q > M N X I L 4 I I B P > G P Q > L S I M P G > E L > : B M 4 > L N : B H 8 < Q B P L > : B 6 H

6 M E I P L � � � ! � " � � " � � � � � 6 B S L N : M I 4 N I G I L N I = I : U I L G 8 6 M E I P L N 6 M X I I B 6 S S I S �
# $ � & " � � " � � � � ` � I 4 > H H 6 H M : 6 M M Q U I L N 6 L 4 I 6 H G I 6 S 8 N 6 @ I M : U I = : : S G I E G I M I B L 6 L > : B

: < L N I M : < L P > G P Q > L M � < : G I z 6 U E H I 6 M � 6 @ 6 S I M P G > E L > : B M � i 6 B S > B M L I 6 S P : B P I B L G 6 L I
: B N : 4 L : G I E G I M I B L L N I = I : U I L G 8 ` � N I P Q G G I B L P N > E L I P N B : H : = > I M : � I G Q E L : L I B
U I L 6 H H 6 8 I G M < : G G : Q L > B = 4 > G I M i M : > B : G S I G L : = > @ I 6 B 6 S I � Q 6 L I U : S I H i 4 I G I 6 H H 8
B I I S L : L N > B W : < P > G P Q > L M 6 M X I > B = L N G I I ] S > U I B M > : B 6 H : X k I P L M ` v B L N I < Q L Q G I i 4 I
U 6 8 6 H M : M I I G I 6 H L N G I I ] S > U I B M > : B 6 H P > G P Q > L L I P N B : H : = > I M 6 E E I 6 G > B = � ( � ` � H L N : Q = N
6 * ] , P > G P Q > L U : S I H > M : Q G > B L I B L > : B < : G L N I < Q L Q G I i 4 I N 6 @ I M L 6 G L I S X 8 L 6 P W H > B =



� � � � 	 � 
 � � � 
 � � � � � � � � � � � � � 	 � 	 �  " $ � � 	 � � & 	 � � ' ) � � � 	 � � 	 � 
 � � � � 0 � � � � 1 � � 4 �
� 5 
 � � � � � & � 	 � � 4 � 9 4 � � 1 � � � 1 � 4 � � � � 4 � 0 9 � � � � � � 
 � � � � � � � � 	 � � � � 	 � � � � � � & � �
� � � � � 4 	  � � $ � � � 1 4 � � '

� � � 4 � � � 	 � H � � � � � � � � � � 	 � � & 	 � 4 � 4 � � � & � 1 	 � � � � � � � 	  � 4 � �  � 	 �  	 � 4 � �
� & � 9 � � � Q  & � � � S 4 U ' X 
 � 	 � 	 � 	 Z � � 4 � � � 	 � � & 	 � 	 � � � � � 	 � � & 	 � 	 Z � � 0 4 � � � � � 	 � � & 	 �
1 	 � � 4 � 4 � � � ] 	 � ^ 4 � � � � 9 4 � 	 � Q  & � � � S � U ' _ � � � � 4 � � � � � � 	 � � � � � � � & � 
 � � � � 9
� 4 � � � � � � � 	 �  4 � � a & � � � � � � � a & 4 � � 0 $ � 
 4 � � � � � � � 4 � � � �  � � � � � 9 
 � � � 	 � � 0  � � & 
 � �
	 � � � � � � � � � � & � � & � � ' _ � � � � � � 4 � � � �  � � � � � 9 	 � � & � � 9 � 4 � � � � 	 � � � � 
 e f f ^ 
 g i e f j

S k U � � i f j l � 	 g e ] j S ) U ' n & � � � � � � � � � 9 � � � � � 	 � 4 o $ o � 4 
 
 	 �  � � � � � � � � � � 	 � � & 	 � p �
� 	  � 4 � � � � � � � � � � � � � � 	 � � � 	 � � � � � � 4 � � ' _ � � 
 � � � � 4 � � � 4 � � � X 9 r 9 k 4 � � � 9
4 � � � � � � � � � 4 � � � � a & � � � � � 4 � � � � � � � � 4 � 	 � � � � � 	 � � � � 	 � � 	 � � 	 � 4 � � � � 0 � � � 4 � � � 1 �
	 � Q  & � � � S � U ' n 	 � 4 � � 0 9 4 � � � � 4 � � � 4 � � � � a & 	 � � � � � � � � � � � 4 �  & � 4 � '

Soft

[
I
,
C
,
C
,
I
]

[I,I,I,C]

[I,I,I,I]

[
I
,
C
,
C
,
I
]

[
I
,
C
,
C
,
I
]

[
I
,
C
,
C
,
I
]

([I,I,I,I],[I,C,I])

([I,I,I,C],[I,C,I])

� w � � x � � y �

� � � z � z � w � { | } ~ y � � y � � ~ � x �  � � � � ~ � � � � w � � y � � y � � ~ � � y � � | � � | � � � � w � � y � � y � � ~

_ � � � 4 � � 1 	 � � 9 1 � � 4 Z � � 1 � � � � � 	 � 4 � � � � � � � � � � 
 � � 	 �  � 4 � � � 	 � � & 	 � � � " # ^ j i % ^ "

4 � � " # ^ � e � " ' ) � Q  & � � � S � U 9 1 � � � � � � � � � � & � � � � p � � � 	 � � p � � � 1 � 
 � 	 � 	 � 	 Z � � � 4 � � 1
� 4 � � � 	 � � & 	 � 1 � � � � � 1 � 4 � 
 � � � � 4 � � � � � � 	 � 4 � 	 � � � � � � � � � � 	  	 � 4 � � 	 � � & 	 � p � 4 � 
 � � � � '
_ � � � & � � � 	 � � 4 � � � � 4 Z 	 � & � 	 � � � � 4 	 � � � � � � � � � � � � 	  	 � 4 � � 	 � � & 	 � � � 0 � � � � � � � 	 �  
� � � � � � � � � 	 � � 	  � 4 � � � � � 1 � Z � � 9 	 � 	 � 4 � � & 4 � � 0 � � �  � � � � � � 	 � 4 � 4 � 
 � � � � � 4 � � � � 	 � � �
1 � 	 � � � 	  � 4 � � � � � & � � � � � � � � � � � � � � � 4 � � � 0 � � � � � � � 1 � � � � 4 � � � � 	 4 � � � k $ � � � � 4 � � �
� � � � 	 � � � � � � � 
 � � 	 � 	 � � '

� 	 � � � 	 � � & � � � � � � 0 	 � 
 � � � � � � � � 	 � � 4 � H � � � 9 4 � � � � � � � 4 � � 
 � � 
 � � � 	 � � 4 � �
� � � � � � � � 4 � � 4 � H � � � � 4 � 4 � 0 
 � Z 4 � & � � ' _ � � � � � � 4 � � 
 � � 
 � � � 0 � 0 
 � 	 � � � Q � � � � 	 � 
 � 0
4 �

* � + � - � � + . � � 0 2 - 4 5 4 7

1 � � � � 9 � � 4 � � � � � � � � � � � � � 	 � � 9 ; � � � 	 � � & � 4 � � � 4 � � < � � � & � H � � 1 � ' ) � � � Q � 	 �  
� � � 
 � � � 
 � � 
 � � � 0 � 0 
 � 9 1 � 1 	 � � � � � � � 	 � � � � � � H 	 � � � � � � 	 � � � ' � � � � Q � �

* � + � ? A � + � 2 ? D � E 4

G 5 � + �

H 	 � 4 � 	 � � 1 	 � � H � � 1 � � & � � � � � � � 
 � � 	 Q � � � � � � � � � � 9 4 � � J 	 � 4 � & � � � � � � � � 
 � � 	 $
� 	 � � � � � � � � � 4 � � � � � � � � � ' ) � � � � 	 � � �  � � 4 �  & � � � � � � J 	 � � �  4 � 	 Z � 9 � � � � & � � � �
� � � � 
 � � 	 � 	 � � � 	 � & � H � � 1 � ' K � 1 9 1 � � � Q � � � � � 
 � � � 
 � � 
 � � � 0 � 0 
 � 4 �



� � � � � � � � � � � 	 � 
 � � � � � 
 � � � � � � � � 	 � �
� � � � � � 
 � � � � � � � � 	 � �
� �

� � � � � � � � � � � � � � ! � # % � � � � � � ( ) * � � � * � � * # � � 0 � ! # � � � # � ) ! � 5 * 6 # ! # 9 ; # � � # � = � � � ?
� ) � � ! A � ! " C ( ) � � # # ! � � ; � � ; � # � = * � � � * � � * # � � � # ! A # % " C ( � � ; � I � � K � A ' ( C N O � ! � 5 ?
* 6 � = 0 � � # # Q * � # ! ! � � � ! ( K # � # % � # � � # = � 6 6 � K � � � � # 6 * # � = ; � � � � � � ! ( K � � � � K # K � 6 6 ; ! #
) ! ! � 5 * 6 � % # � ! 0 � � ) Q = � � � � # * � � � * � � * # � � � # ! � � � � # � # ! � � = � � # ) � � � � 6 # )


 � � Y 	 
 � 
 � � � � Y 	 
 �

 � � � � Y 	 � 
 � � � - � Y 	 �

 � � \ Y 	 � 
 � � � - � . � 1 3 � � Y 	 �

Y � � 	 	 
 � � � � � � 	 	 
 �
Y � � � � 	 	 � � � � � - � 	 	 �
Y � � \ 	 	 � � � � � - � . � 1 3 � � 	 	 �

_ � � ! � 5 * 6 # � � � � ; � � ! ( K # K � 6 6 � � 6 0 � # # � 5 ! " ) � � 6 % " ( � � # � � � # � � � # ! K � 6 6 ) * * # ) �
K � # � K # � � � ! � � # � � # � # � � � � � � � ; � � ! � � 6 ) � # � ! # � � � � � ! N

7 � K K # � ) � � # % � # � � # = � ) 5 # * � � * # � � � # ! � = � � # � ) � � � � � � ; � � ! = � � 5 % � ; � # 9 N
O � # * � � 5 � � � d # ! � ) d # ! � 5 * 6 # ! � � ; � � ; � # � 6 � ! � ! )

� � � Y : � � 3 = � � � Y : � � > =

� � � � @ = 
 � � B D f � f � f D F � � � � @ = 
 � � B D f � f � f D F
� � � � I = 
 � � B D f D f D f D F � � � � I = 
 � � B D f � f D F
� � � � � = 
 � � B D f D f D f � F � � � � � = 
 � � B D f � f D F
� � � � L = 
 � � B D f � f � f D F � � � � L = 
 � � B D f � f � f D F

g ; � = � � � � # � � 5 * � ; � � � � � � ; � � ( � � # g ) � � i * � � � ! K � 6 6 l # � � � ; * # � � � � � ) * ) � � ( � �
� # m # � � � � # = ) � � � � ) � � � # * � � � � � � ! � ! � ! � = � K � * ) � � ! )

� � � � @ = B D f � f � f D F
� � � � I = � B D f D f D f D F f B D f � f D F �
� � � � � = � B D f D f D f � F f B D f � f D F �
� � � � L = B D f � f � f D F

O � # * � � � * � � * # � � 0 � ) � l # ! # # � ) ! ! * # � � = 0 � � � � � # * � � � ! � # � 5 # � � � � ) 6 ) * * # ) � ) � � # (
l ; � ) 6 ! � ) ! � # % � � � � � � # � � � # � = ) � # � � � � ; � � K � � � � � � # * � � � � � 5 5 ; � � � ) � # ! N O � # � # ?

= � � # K # � ) d # � � # � # 9 ; � � # 5 # � � � � ) � r O s Q t u Q s t r w s x u S T u z z s T r w z } Q u t r x W ~ x r Y s
s [ ~ \ ] N O � � ! K ) 0 � � � ! � � # � I # � � � ) � � � # � � � � ; � � ! ) � # ; ! # � ) ! � � � # � � # � � ) i ? � � � � ) � �

� ! � # d # � � � � � # � � # � � � ) � � ? � � � � ) � � ( ) � � ) � � � � ; � � � � ) � # Q * # � � ! ) * ) � � � = � � * ; � ! � !
� # d # � � � � � # � � # � � � ) � � � * 6 # # � � N

7 � K ( K # � ) � 6 � � I ) � ! � 5 # ! � 5 * 6 # � � � � ; � � � # ! � � � * � � � � # Q ) 5 * 6 # ! � � ^ � � # � N O � � !
) � � � � 6 # = � � ; ! # ! 5 � ! � 6 0 � � � � K � � � # ! � � � l # � � # � # � 5 # � � � � ) 6 * � � * # � � � # ! � = � � � � ; � � ! (
) � � � � # � # = � � # K # K � 6 6 6 # ) d # � ; � � � # � � � # � � ) 6 � # * � # ! # � � ) � � � � N � � ) � � * � � 5 � � � d # � !
� � # ) � # � � � ^ � � # � ; ! � � � � � # = � 6 6 � K � � � = ; � � � � � � )



� � � � � � � 
 � � � 
 � �
� � 	 � 
 � � 	 � 
 � 	 � 
 � � 	 � 
 � 	 � 
 � � 	 � 
 � 	 � 
 � � 	 � � � �

� 	 � 
 � � � � � �
� � � � � � 


� � � � � � � � � � � 	 � � � � � � ! � � �

� � � � ! " $ $ ' ) + , ! , - � $ � ! " 0 � � 2 � $ � � 2 ) 2 4 6 8 2 9 $ : ) 2 , < , " + � 9 $ ? " $ % ' : " , " $ ! : 2 B $ � , $
: 0 � 2 $ : � � " $ � � 9 : ! 9 8 : $ E , 2 0 ) + , - . : " $ � � 9 : ! 9 8 : $ H " 6 ! , - � + ! ) + � ! $ K E B : L � 2 , " , P 8 , 0 ! 8 4
+ < � 0 . . 3 5 . . 7 5 . . : 5 . . ; = R S 2 0 $ � � < , " $ + , ! , - � $ � ! E ? : @ , A E : " $ � � " ) 6 $ 9 : ! 9 8 : $ $ � , $
' � ' , 2 $ $ ) + 8 $ : 2 " : 0 � $ � � 6 ! , - � R

B � 9 , 2 8 " � $ � : " B � 2 � ! , $ ) ! $ ) 9 ! � , $ � , " - , < < < : ` ! , ! K ) 6 + ! : - : $ : L � " $ ) 8 " � : 2
) 8 ! 9 ) 2 " $ ! 8 9 $ : ) 2 " R c ) ! � d , - + < � , � ) ! : f ) 2 $ , < + : � 9 � ) 6 ' : ! � ' : $ � 8 2 : $ ' : 0 $ � , 2 0
� � : B � $ 9 , 2 ` � 0 � � 2 � 0 , " m , " " 8 - : 2 B $ � � � d : " $ � 2 9 � ) 6 , " ) 6 $ 9 : ! 9 8 : $ o

� � � � D E � � F D � � � � H � J 
 � � � H L J 
 � � � H L J 
 � � � H � J � E � � F � 	 � 


� � � ! � , ! � , < " ) ) + � ! , $ : ) 2 " 6 ) ! $ ! , 2 " 6 ) ! - : 2 B $ � � 9 : ! 9 8 : $ H " + ! ) + � ! $ : � " O

� 	 
 
 � p � � F 
 � p � � Q � � � � � � � � 
 � � � � � � � � 


� 	 
 S � � L � 
 � � � � � � � � 
 � � � � � � � � 


, - W ! ) $ , $ � " , 9 : ! 9 8 : $ X Y 0 � B ! � � " 9 ) 8 2 $ � ! 9 < ) 9 q ' : " � E ) [ @ . ] , 2 0 ) [ @ . _ + � ! 6 ) ! -
� ) ! : f ) 2 $ , < , 2 0 L � ! $ : 9 , < r : + + : 2 B E , 2 0 , - W ` " , + + < : � " " ! ) $ , $ : ) 2 " $ ) , 9 : ! 9 8 : $ R t )
' � 9 , 2 0 � � 2 � , L � ! $ : 9 , < ' : ! � , "

E � � Q ! � 	 
 E � � F

c : B 8 ! � d " � ) ' " " ) - � ) $ � � ! " : - + < � ' : ! : 2 B + ! : - : $ : L � " E 0 � � 2 � 0 : 2 , " : - : < , ! ' , K R
� � � 2 8 - ` � ! f , $ $ � � � 2 0 ) 6 " ) - � 2 , - � " : " $ � � ! ) $ , $ : ) 2 ) 6 $ � � 9 : ! 9 8 : $ R � � � " � , < " )
� , L � L � ! " : ) 2 " ' : $ � $ � � 2 8 - ` � ! " g E h , 2 0 i E " ) $ � , $ E 6 ) ! � d , - + < �

� � j k ! � 	 
 S k � � j l

crT0 coL0wirX wirY

m n p x q x y z | } ~ � � z � z � � } � z | z � z � � �

S $ ' ) : 2 + 8 $ B , $ � + ! : - : $ : L � E + , ! , - � $ � ! : f � 0 ` K " ) 6 $ 9 : ! 9 8 : $ E 9 , 2 ` � 0 � � 2 � 0 , "


 � 
 � r � 	 � 
 s � 
 � ! � � � � D 
 � 
 � r D
� � � � H � 
 � J 
 � � � H L 
 L J 
 � � � H L 
 L J 
 � � � H L 
 � J �

� 	 � 
 s � 
 �



� � � � � � 	 � � � � 
 
 
 �


 � � � � � � � � � � ! " $ & � ( $ � * + , � � " $ & " , & 1 " � � � � � � � � � � � � � � � � � � � � � � � � � � ! 5 6 8
9 + � � � $ � � , � � $ 1 � � � , � 1 � � � * ? � ! � , ! + � � 5 B * , � D " E G H � �

I J � � �  I ! L � I J � � $ O % !

& * � � � ! " $ � � " , � � * ! * E G * � � � � � � � � $ � * � � � � " H ? " & & � , ! � , ! + � � � $ ( 1 + , � ( �
+ � � $ 1 � � � ! * E 6 � $ " � * , � * , * Y 6 � � � & � \ � " $ & * 0 * Y 6 � H * � \ 5 _ � � � � , � $ 1 * $ � � � � $ G + �
� � & � � � & � ( $ � & " �

% O c d 1 I 3 c � 6 6 e c 7 � 9 ; 9 = 3 c > @ 9 A 9 6 e c O 9 ; 9 e c 7 � @ @
9 A 9

6 6 = 3 c C 9 ; 9 e O F G @ 9 A 9 6 e O F G 9 ; 9 = 3 c > @ @

" $ & � � � 1 " � � � " , � � � E G H 8

 I ! L f � h O c 9 A 9 I J �

i � ? * , � � � ! * E G * � � � � � � � � H � � + � H * * l " � � � � G * , � G , * G � , � � � � * ? � � � � � * G " , � � 5
_ � � � � � & * $ � � � � � � � � ? + $ ! � � * $ K L M N � � P L R � � S T �

% O c d 1 I 3 c U

1 O c ! W U e O n X e O n X f 3 n X [ \ q f 3 n X [ \ \ q e O n X f 3 n X _ \ q f 3 n F X _ \ \ \
1 O c ! a U e O n X f 3 n X _ \ q f 3 n X _ \ \
1 O c ! [ U e O n X f 3 n X _ \ q f 3 n X _ \ \
1 O c ! c U e O n X e O n X f 3 n X [ \ q f 3 n X [ \ \ q e O n X f 3 n X [ \ q f 3 n F X [ \ \ \

 I ! L f U

1 O c ! W U e O n X f 3 n X [ q [ \ q f 3 n X [ q [ \ \
1 O c ! a U f 3 n X _ q _ \
1 O c ! [ U f 3 n X _ q _ \
1 O c ! c U e O n X f 3 n X _ q [ \ q f 3 n X _ q [ \ \


 � � � � � � " � " H � � * + 1 � � � � h G * , � * ? j � � k R � n � " $ & � � � u G * , � * ? K � M L T � " w �
� � � � " E � ! * $ � " ! � � � x + � $ ! � � � � � � � , + ! � + , � � " , � � H � 1 � � H 8 & � y � , � $ � � " $ & � � + � � � � 8

! " $ $ * � 6 � ! * $ $ � ! � � & 5 | * � � w � , � � � � , � � � H H 6 � E " $ 8 ! " � � � � � � , � � � � " $ � � * " H H * �
& � y � , � $ � � � , + ! � + , � � � * 6 � ! * E G * � � & " � H * $ 1 " � � � � ! * $ � " ! � � � x + � $ ! � � E " � ! � 5 B * ,

� � � � � � � � " w � H " D w � , � � * $ � * ? � � � � 6 � � � & � � " $ & � 6 � H * � � ! * E 6 � $ " � * , � � q , q " $ & q 0 q 5
| * � � � � � � " , � � E G H � E � $ � � & � � � � � $ � $ � � ! � � * $ ( 5 & * � � � ! " $ ! * E G H � � � � � � � " H ?
" & & � , �



� � � � � � � � � � 	 � 
 � � 	 � 
 � � � � � �

� � � � � � � � � ! # % ' ( ' � � + ' - � � + � 0 � ( 1 3 5 7 ' : � ; ' � ( ( � ( � ' 5 0 > � ( � � > � � � � � � � � @ 7 ' : ' (
( � ' 5 � % % � 7 � > : � � � � � # � � ( 0 + '  

! " " " " " " " " !
! " " " " " " " ' ( ) * , '. . .

. . .
. ! " " ' .
. . 0 " " " " " " " " 0
. . ! " " " " " " " " !

" " . " " " " 1 " " ' 3 4 5 , '. . .
. . .

" " 1 " " " " " " " ' .
0 " " " " " " " " 0

� � ' � ' � � � � � # � � ( 0 + ' � � + ' 0 � ' - � � � � � > � ( O � � ' � Q � 5 ( � ' � � > � ( + 0 � ( ' - � � + � 0 � ( � @
U 0 ( � ( � ' + 5 � + ! � ( � � � 0 % - ' � � � % O U ' # + � - 0 � ' - 1 � ' � � > � % � � ' [ ( + � � ( ( � ' 8 � ; � > ' ( % � � (

5 + � ! ( � ' � � + � 0 � ( � @ ( � 0 � ' 5 � + � � ! 0 % � ( � � > @ ; ' + � ^ � � ( � � > � + : ` < 8 : ' > ' + � ( � � > 1

> ? A a A b c d d c b d e c g C

h � 5 � + @ 7 ' � � ; ' � > % O � ' ' > - ' � � + � # ( � � > � 7 � ' + ' � % % # + � # ' + ( � ' � 7 ' + ' � � ! # % ' ( ' % O - ' l
^ > ' - @ � > - � % % U 0 � % - � > : U % � � Q � ! � > 0 � % % O # % � � ' - 1 � ' � � > : ' ( ! 0 � � ! � + ' ' n � � ' > (

- ' � � + � # ( � � > � 7 � ( � ( � ' 0 � ' � 5 p q r q s t E E t s E v t w y 1 3 > � 0 + - ' � � + � # ( � � > � 7 ' 7 � % % U ' > ' ' - l
� > : � ( + � � : � ( 7 � + ' � � > ! � > O - � | ' + ' > ( % ' > : ( � � 1 3 > � ( ' � - � 5 - ' ^ > � > : - � | ' + ' > ( � � + � 0 � ( �

5 � + � % % � 5 ( � ' � ' @ 7 ' � � > � � ; ' ( � ' � � � ' � � � � � + � 0 � ( # � + � ! ' ( ' +  

G � 	 H I � � L 	 � � N G � 	 H I N Q � � � S U V � � � � 	 � X � � � � 	 � X � � � � S U V Z � � �

` ' + ' 7 ' 0 � ' - [ � ] � ( � - ' � � + � U ' ( � ' # � + ( # + � # ' + ( � ' � � � + ' # ' ( � ( � � > � � > � ( ' � - � 5 ( � '
' [ # % � � � ( � � > ( � � ( % � � ( � 7 ' 0 � ' - U ' 5 � + ' 1 � � � � � - - � � % ' ; ' % ( � ( � ' ' [ # + ' � � � ; ' > ' � � � 5

( � ' % � > : 0 � : ' @ U 0 ( 7 ' 7 � % % � ( � % % U ' % � ! � ( ' - U O ( � ' 5 � � ( ( � � ( 7 ' � � ; ' ( � Q > � 7 � % %
7 � + ' � � � ' � U ' 5 � + ' � � > � ( + 0 � ( � > : � 0 + � � + � 0 � ( � 1 � � + ( � � � + ' � � � > 7 ' � � ; ' : ' > ' + � � # � + (
# + � # ' + ( � ' � � # + � # ' + ( � ' � � � > ( � � > � > : � > O � 5 _ @ _ b � + [ � ] � f � g ] � i j k l 1 � : ' > ' + � �
# � + ( : ' ( � � > � ( � > ( � � ( ' - 5 + � ! ( � ' � � > ( ' [ ( � > ( � 7 � � � � � ( � � # % � � ' - @ � - � + ' � ( � � > l
� ' � 0 ' > � ' � 5 ( � ' + ' � 0 � + ' ! ' > ( � 5 � � > > ' � ( � > : # � + ( � � � ; � > : ' � 0 � % # + � # ' + ( � ' � 1 � � +

' [ � ! # % ' @ � 5 � > � � � ! # � � � ( � � > @ � > n l � � > ( � � ( � � > > ' � ( � ( � � � l � � > ( � � ( @ ( � ' n 7 � % %
U ' � > � ( � > ( � � ( ' - ( � � � 1 h � ! � % � + % O @ 7 ' � � > � � ; ' � � + � 0 � ( � 7 � ( � 0 > � # ' � � ^ ' - % ' > : ( �
( � � ( � - � # ( # + � # ' + % O ( � ( � ' � � + � 0 � ( � � + � 0 > - 1 � ^ + � ( � ( ( ' ! # ( ( � � : ' > ' + � � l % ' > : ( �
7 � + ' � � 0 % - U '

G � 	 o � G � 	 H I Q r s Z

� � � � 7 � % % 7 � + Q � 5 ( � ' � � > ( ' [ ( � � � Q > � 7 > % ' > : ( � � > U � ( � � � - ' � � 5 ( � ' 7 � + ' @ U 0 (
� 5 � > % O � > ' � � - ' � � Q > � 7 > @ � > % O � > ' � 5 ( � ' # � + ( � 7 � % % U ' � > � ( � > ( � � ( ' - 1 � � + % � ' + @
7 ' � ( � ( ' - ( � � ( � % % 5 + � ! ' � ! 0 � ( U ' + ' � ( � > : 0 % � + @ � + ' � 0 � + ' ! ' > ( ( � � ( � � > U ' 0 � ' -

( � # + � # � : � ( ' � � � ' � > 5 � + ! � ( � � > � � + � � � � � + � 0 � ( � 1 � � - � ( � � � @ 7 ' - ' ^ > ' � � � _ � � �
: ' > ' + � � � � + � 0 � (  

G � 	 o � � � � � 	 � � N G � 	 o N Q � � � S U V � � � � 	 Q r s Z X � � � � 	 Q r s Z X � � � � S U V Z G � 	 o X



� � � � 	 
 
 
 � 	 � 
 � � � � � � � � � 
 � 
 � � ! " � # � � � & � ' ) * � � � � � � � � 
 � � � � � 
 � � 2 � " 2 * � � ' 5 �
� � & � � � : ; < > � ; > : � > : C ; � D ; � > : C ; ' � 
 � � � F � � � � � * � 2 � � 
 � � � � � � � ' � 
 " � 	 	 ! 
 � � � ) 	 � 2 
 � M

� � N � � ' � � � 5 * ! � � � � � & � " � � 
 � 
 � � � � 2 � " 2 * � � F T 	 � � 
 * U � � � � � 	 � � & � � # * 2 � " 
 
 # � 
 "
� N ! � " � # � � � � � � 
 � ' � � � � � � � � � � � � � � 
 � � * � 2 � � 
 � * � * � 	 	 Z � � � � � � � 
 	 	 
 5 � � U � � " * 2 � * " � �

� � [ � � � � � � ] � � � ] � �  ] � � ! # $ � ` a b ' ( * # ( � � [ - . ` a b
$ d 0 e a [ � � f a ( � � [ �

� e a [ a ` a b ( i j k � f � 5 a 6 6 � � � # � f � 5 a 6 6 � �  #

l � " � 5 � * � � 9 
 ; < = = � 
 � � � � � � � 2 
 � � � N � ! " 
 ! � " � � � � F � � � � � * � 2 � � 
 � " � � * " � � � � �
� � r � 
 � � ! 
 " � ! " 
 ! � " � Z � � � * # ) � " 
 � 2 
 � � � 2 � � ' 
 " u ? v w � 
 " ! 
 " � � 5 � � � * � 
 � 
 5 �

	 � � U � � F � � * � ' � � � � � � � " 
 � ! 
 " � y 
 " ! 
 " � z � � � 
 � 
 5 � 	 � � U � � ' � � � � � � � � � � � � � � 
 �
5 � 	 	 � � 
 � � � � � " � � 2 � � � � � � " � � * 	 � � � � � 
 � A C 5 � � � 
 � 
 5 � 	 � � U � � F ~ � ) 
 � � ! 
 " � �
� � & � * � 
 � 
 5 � 	 � � U � � ' 5 � U � � ) � 2 
 � � � 
 " � U � � � 	 � 
 � � 2 � " 2 * � � F � � � � 	 � � � 2 � � � � �
� 	 5 � Z � � � � � � � ' ) � 2 � * � � � � � � � � � � � � � � � � 
 � � 	 U 
 " � � � # � � � � � � � & � " � 	 � � � " � � � 
 � � � 

� 
 	 & � � � � ! " 
 ! � " � � � � 
 � 2 
 # ! 	 � N 2 � " 2 * � � � F E 
 5 5 � � � 
 * 	 � ) � � ) 	 � � 
 U � � � 2 
 " " � 2 �

� � � � � � � � � � � 
 � 
 � � � � � 
 	 	 
 5 � � U 2 � " 2 * � � �

0 a f 0  � [ � ( j b F G H I H � � [ � H I H � � [ �

M � N � O 
 � Q U � & � � �

R R R R R R R R R R

R R R R R R R R R R
U R R R R R R R R UV W X Y [ V\ \\ \

V \] R R R R R R R R ]

5 � � 2 � � � 
 5 � � � � � � � r � � � � 
 " # � � � 
 � � � � ) � � � ! " 
 ! � U � � � � � " 
 # � � � � � � M U � � � '
� � " 
 * U � � � � # � � � 	 � 5 � " � � 
 � � � � 
 ! 5 � " � F

^ _ � � � a c e g c � � g � � � � � � � i � � � k i � g � � �

m � � � 5 � � � � � � � 	 � � � � � " � N � # ! 	 � � � � � � � � � & � " Z 	 � 
 � 	 Z � � � � 5 � 5 � 	 	 � � � � � 

2 
 � � � 2 � 2 � " 2 * � � � 5 � 
 � � ! 
 " � � � " * 2 � * " � � � 
 � � � # � � 2 � � N � 2 � 	 Z F ~ � � * 2 � 2 � � � � ' 5 �
* � � � 
 # � � � � � U 2 � 	 	 � � o C � > p � o < F T ! 
 " � # � ! � � " � � 	 	 Z � 
 � � � � U ) * � � � � � � 2 � " 2 * � � '
� � � � U * " � r u � w F � � � � 
 ! � � � ) 
 � � 
 # ! " 
 ! � " � � � � 
 � � � � ! 
 " � # � ! � " � � # ! � Z 	 � � � �

9 
 t v w ' � � � � � � 2 � � � � � � � � � � � � 	 Z � � � � ' � � # * � � � � & � � � � � � � 2 � 	 2 
 � � � 2 � � � � * � � 2 � �

 � ) 
 � � � � � � � F y * � � � � � # ! 
 " � � � � � � � � U � ) 
 * � � � � � � � � � � � � � � " * 2 � * " � � 
 � � � �
� � � � ! " 
 ! � " � � � � 2 � � ) � 2 
 # ! 	 � � � 	 Z � � � � " � � � x � � � � # � � � � � � � � 5 � 2 � � � 2 � * � 	 	 Z * � �

! 
 " � # � ! � � � ! " 
 ! � " � Z � � " * 2 � * " � 2 
 � & � " � � " � F � 
 ' ) Z ! 	 � 2 � � U ! " 
 ! � " ! 
 " � # � ! �
� � ) � � 5 � � � ' 5 � 2 � � � 
 5 2 
 # ! 
 � � 2 � " 2 * � � � 5 � � " � � � � � � " * 2 � * " � � � 
 � � � # � � 2 � ' � �
	 
 � U � � � � � 2 
 � � � 2 � � � � * � � 2 � � � 
 F � � � 
 � 	 Z ! " 
 ) 	 � # 5 � � � � � � � � � � � � � � � 
 * U � � � �
! 
 " � # � ! " � � 	 	 Z � � � 2 � " 2 * � � ' 5 � 2 � � � 
 � 2 
 # ! 
 � � � � � � � 5 � Z 2 � " 2 * � � � � " � � 
 " # � 	 	 Z
2 
 # ! 
 � � � F � � � " � � � 
 � � 
 " � � � � � � � � � � � � 5 
 * 	 � # � � � * ! � � � 
 " � � 
 U 
 � � 	 ! 
 " � � 
 �

� � � " � � * 	 � � � U 2 � " 2 * � � ' � � � � U * " � r u ) w F � � � � � � � � � � 
 � 
 � � � � ! 
 " � # � ! 5 � � 
 � 	 Z



� � � � � 
 � 
 � � � � � � � � � � � 
 � � 
 � � � 
 � � � ! " � � � � � � � & � � � � � � � � � 
 ! ) + � � 
 � � � 
 � . � ! 0 2
� � 0 � � � 
 � 3 0 � ! 0 
 � � � � � 5 7 	 � � � � 
 � & � � ! " 
 0 � � � 
 � � 0 � � � 3 � � ! � = ) + � � ! � ! = � � � . � � �
� � & 
 � � . � � 3 C � � 0 � � 
 ! � 
 � � � " 
 � � � " 
 � � � " 0 � = 
 � � � " � � 
 � � 
 � 3 0 � 0 � � E � � 0 � � � � � �
� � 
 � G " I " J 0 � = � 
 � ! � � � � � 
 � E 2 ) + � � � M � � � � � � � 
 � 3 0 � 0 � � E � � 0 � � � � � ! ! � � . � � �

Q R & 
 � � S � T )

���
���
���
�

���
���
���
�[]

[]

[
.
.
.
]

[
.
.
.
]

([...])

([...])
                  

" "" "" "" "" "" "" "" "" "" "

[
.
.
.
]

([],[...])

([],[...])

[
.
.
.
]

# ## ## ## ## ## ## ## ## #

$$$
$$$
$$$

[
.
.
.
]

[
.
.
.
]

[...]

[...]([...])

([...])% U ' % V ' % W '
) + - X . X % U ' 0 Y Z \ ^ U _ ` U \ c d e W d Z W f d \ % V ' 0 Y Z \ ^ U _ 2 4 5 7 4 � � � � 4 � W ' 0 Y Z \ ^ U _ 
 7 7 � � 2 
 � � 4 �

G ! � 3 � E � � � 
 � 3 0 � � ! R � � � 
 0 � � = C 2 � � � � & � � � � � �

; k l < 
 m ; ? ? A < l B n D F G H J k l < J l k ; o J k l < J l k ; K F G M B l p N B <; k l < 
 m ; n m r s H ; ; P o ; ; Q K R t t t

u � � � E 2 � � � = ! � � � G 0 � = � � 
 � � � 
 � � � ! " I 0 � = J . � E E C � � � 3 � T U � V X ) + � � ! 
 � 0 E E 2
= � Q � � ! 0 R � � � 
 � � � � 
 � & � � ! � 3 � E 0 
 � � Z U \ ] " C & � � � ! � � 0 = � � { & ! � ! � 0 
 � � R ! � } � C � � . � � �

� � � � � � � ! � � � � � 
 � ! " � � � � � 
 � 3 0 � 0 E ! � ! � 0 
 � ! � � � � � � � 0 � � ! )
+ � � 3 � ! � R � � � 
 0 E � � 
 � 3 0 � � ! � C � 0 � � � = 0 !

D s n J 
 R ; k l < 
 m ; ` D s n J 
 ` H b J o b J K
u � � 0 � C � & ! � = � � � 3 � E � 3 � � � � � � E 0 ~ � � 3 C � � 0 � � 
 ! . � ! 0 . � 0 
 E � � 
 �

p B l p e t G t p B l p f R H m ; r Q D s n J 
 p B l p e K j G j p B l p f
p B l p e t k t p B l p f R H m ; r l D s n J 
 p B l p e K j k j p B l p f

G � � � � � 
 & ! � � & E � � 
 � 3 0 � � ! � � � � � � � � 0 � � � � 
 � 
 � ! 0 � 2 � 
 � � � 
 � 2 ! � 
 & � � & 
 � � �
0 ! � 3 � E � � � � �

< k A B r J 
 R ; k l < 
 m ; ` < k A B r J 
 ` H b J o � B r � b K
G � & � � � � � � � � 0 � � � � 
 � 
 � ! 0 E E � � 
 � ! � � 0 � � 
 � & � � � � ! � 3 � E � � � � ! � !

m � � n k A B r R H m ; r Q < k A B r J 
 K t H m ; r M < k A B r J 
 K t H m ; r l < k A B r J 
 K t H m ; r P < k A B r J 
 K
� 
 � � � � � � � � � 
 � 3 0 � ! ! � � 3 � � C � 
 � 
 2 & ! � � & E " � � � 2 ! � � & E = C � & ! � = . � � � � 0 
 �

. � � � � � � 
 � 0 
 � R � � � 
 � � � � 
 � & � � ! � � 
 � E 
 � = ) J � � ! � = � 
 � � � � � 3 � � ! � � � � � � � Q R & 
 � �

S 0 T ) + � � E � � � � � 3 � � � � � � � 0 ! Q ~ � = ! � } � " C & � � � � 
 � R � � � � � ! � ! � ! � � � . � R � � � 
 � � � 0 
 � ! )
q � 0 � � 0 � � � � ! . � � � � � � ! � 0 
 � � � 3 � � ! � = � ! � � 0 � ! � � � � � � � ! � 
 & � � & 
 � ! 3 0 � � � S C � � �



� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � �
� � �
� � �

� � �
� � �
� � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

	 	 	
	 	 	
	 	 	

� � � � � �

� � 	 � � � � � � 
 � � � 
 � 
 � � � 
 � � � � � � 
 � � � 
 � � � � 
 � � � � � ! � # � � 
 � � � � ' � � � 


[
X
P
,
X
P
,
 
.
.
.
 
 
 
 
 
 
 
 
]

(
X
P
,
 
[
X
P
,
X
P
,
 
.
.
.
 
 
 
 
]
)

� � 	 � � � + � � , . 0 2 � � ! � # � �

3 5 6 8 5 : < = 6 ? @ A 8 B 6 8 B 5 6 6 < 3 5 8 ? E : = = F 6 : H ? 8 3 H 8 : 3 8 6 I K H 6 F N K H 6 A 3 H I 8 B P ? 8 B 6 R : 5 R P : 8
: ? < K ? ? : F = 6 8 K : H ? 8 3 H 8 : 3 8 6 W X P 8 : H Z [ P 5 6 � \ F @ A E 6 B 3 _ 6 8 B 6 ? 3 b 6 R : 5 R P : 8 E : 8 B 3 < K 5 8
b 3 < : H F 6 8 E 6 6 H W g H 8 B 3 8 R 3 ? 6 A E 6 B 3 _ 6 ? < K : = 6 I 8 B 6 < K ? ? : F : = : 8 N K h I K : H [ ? 8 5 P R 8 P 5 6
b 3 8 R B : H [ A 3 H I 8 B 6 R : 5 R P : 8 R 3 H H K 8 \ [ 6 H 6 5 3 = = N @ F 6 : H ? 8 3 H 8 : 3 8 6 I W

k : H 3 = = N A 3 < K 5 8 b 3 < 8 B 3 8 E : = = F 6 P ? 6 I : H 8 B 6 H 6 o 8 ? 6 R 8 : K H A : ? 8 B 6 � � � � A : = = P ? q
8 5 3 8 6 I : H Z [ P 5 6 � W r B 6 : H 8 P : 8 : K H F 6 B : H I � � � � : ? 8 B 3 8 : 8 8 3 t 6 ? 3 = : ? 8 3 H I ? < = : 8 ? : 8
: H 8 K 3 < 3 : 5 A R K H ? : ? 8 : H [ K h 8 B 6 Z 5 ? 8 6 = 6 b 6 H 8 3 H I 8 B 6 5 6 ? 8 W g 8 ? [ 6 H 6 5 : R < K 5 8 < 5 K < 6 5 8 : 6 ?
3 5 6 �

� . u � � � , . v � � � w , . v y � � �
� . u �  � , . v y � �

k K 5 8 B : ? E 6 R 3 H H K 8 P ? 6 8 B 6 # � % ' � ) # h P H R 8 : K H A F 6 R 3 P ? 6 : 8 : ? H K 8 6 H K P [ B 8 B 3 8
8 B 6 R K H 8 3 R 8 ? 3 5 6 ? B 3 5 6 I F 6 8 E 6 6 H 8 B 6 ? : I 6 ? A E 6 3 = ? K E 3 H 8 8 B 6 = : ? 8 6 = 6 b 6 H 8 ? \ 8 B 6

I : � 6 5 6 H 8 + , � ? @ 8 K F 6 ? B 3 5 6 I W

� � � � � - � � � � � . 0 � � - � � 1

g H 8 B : ? ? 6 R 8 : K H E 6 E : = = = K K t 3 8 3 H K 8 B 6 5 E 3 N 8 K F P : = I [ 6 H 6 5 : R R : 5 R P : 8 ? A 2 � � � � 2 �
� � � � 4 5 � � � � � � W r B : ? : ? 5 6 3 = = N 8 B 6 t 6 N 8 K 6 � R : 6 H 8 I 6 ? R 5 : < 8 : K H K h = 3 5 [ 6 5 R : 5 R P : 8 ? A 3 ?

8 B 6 N 3 5 6 P ? 6 I 8 K [ 6 H 6 5 : R 3 = = N 6 H R K I 6 8 B 6 ? 8 5 P R 8 P 5 6 K h 5 6 [ P = 3 5 R : 5 R P : 8 ? A : H I 6 < 6 H q
I 6 H 8 K h ? : � 6 W r B 6 < 3 8 8 6 5 H ? I 6 Z H 6 5 6 R P 5 ? : _ 6 ? 8 5 P R 8 P 5 6 ? E B 6 5 6 8 B 6 ? 3 b 6 R : 5 R P : 8 : ?
5 6 < 6 3 8 6 I K _ 6 5 3 H I K _ 6 5 3 [ 3 : H A 3 H I 8 B 6 5 6 < 6 3 8 6 I R : 5 R P : 8 \ K 5 < 3 5 8 K h : 8 @ : ? [ : _ 6 H 3 ?
3 < 3 5 3 b 6 8 6 5 W r B 6 b K ? 8 F 3 ? : R K H 6 : ? 8 B 6 � � � A 3 ? : = = P ? 8 5 3 8 6 I : H Z [ P 5 6 7 W



� � � � � � � � � 	 � � � � 	 � � � � � � � � � � �

� �  " $ & ( * ( , $ ( * " / " 2 ( $ ( 3 4   4 3  8 4 � 8 / 4 $ 2 � < ( > 3 ( ? 4 @ 8 / A B * ( , $ ( * � 	 
 � > @ 3 � D " >
E * ( � " 4 A / " 3 ( A ( I � @ 8 � K �

L M � N � L N � � P Q P L � N � L M � � � � � S N M U V � � S N M U V � � S � � # � L M � $ N � L N #

L M � $ N � L N ) ) � * Z +
, � N M Q . P V . / � 0 P � � 2 3 # � L M � N � L N
, � N M Q . P V . / � 0 P � � 5 # � . ] � Q $ 7
, M . ] P L � � _ P � � � Z ) U 9 N M Q _ # ` � Z ) U : N M Q _ # # � N � L N < = < L M � N � L N #

� ] P L P ` ` `

b < ( 4 $ � ( 3 ( / � 4 $ 2 > " 3 � < ( 3 ( 4 / � < ( 4 $ / � " $ � 4 " � 4 @ $ I 8 $  � 4 @ $ " $ * 4 � / � < 3 ( (  " / ( / h ? < ( $
� < ( 3 @ k l /  @ $ � ( m � 4 / 8 $ n $ @ k $ p 4 �  @ $ � 4 $ 8 ( / � @ & ( s 8 / � " @ 	 B � E @ � h u 8 � k < ( $
� < (  @ $ � ( m � / 4 w ( 4 / n $ @ k $ " $ * 2 3 ( " � ( 3 � < " $ w ( 3 @ p 4 � 4 $ / � " $ � 4 " � ( / � @ @ $ (  @ > B @ I

� E @ � $ ( m � � @ " $ @ � < ( 3 3 @ k E � < ( 3 (  8 3 / 4 ? (  " / ( K h ~ / � < ( 4 $ / � " $ � 4 " � 4 @ $ > 3 @  ( ( * / p � < (
 @ $ � ( m � ( ? ( $ � 8 " A A B 3 ( "  < ( / � < ( / 4 w ( w ( 3 @ h b < ( $ 4 � 4 $ / � " $ � 4 " � ( / � @ " / 4 $ 2 A ( H � E 
 I J p

k < 4  < 4 / " � < 4 $  4 3  8 4 � k 4 � < 4 * ( $ � 4  " A > 3 @ > ( 3 � 4 ( / @ $ 4 � / & @ � < / 4 * ( / E � < ( & " / (  " / ( K h
b < ( 3 (  8 3 / 4 ? (  " / ( 4 / k 3 " > > ( * 4 $ � 	 
 � > @ 3 � D " > / � @ n ( ( > � < ( / � 3 8  � 8 3 ( / @ $ � < (

� @ > " $ * � < ( & @ � � @ D  A ( " $ h b < ( ( � (  � @ I 4 $ / � " $ � 4 " � 4 $ 2 / 8  < " 3 @ k 4 / / ( ( $ 4 $ , 2 8 3 (
L E & K h

b < ( 3 @ k  " $ & ( 8 / ( * I @ 3 & 8 4 A * 4 $ 2 " A A n 4 $ * / @ I A 4 $ ( " 3 / � 3 8  � 8 3 ( / p / 8  < " / 3 ( 2 4 / �
� ( 3 / p 3 4 > > A ( �  " 3 3 B " * * ( 3 / ( �  h � ( 3 ( 4 / " $ ( m " D > A ( @ I " / 4 D > A ( & 4 � D 8 A � 4 > A 4 ( 3  4 3  8 4 � h
? ( & 8 4 A * 4 � I 3 @ D " $ * � 2 " � ( / k 4 � < " / > (  4 " A k 4 3 4 $ 2 � < " � 3 ( " * / � < ( D 8 A � 4 > A 4  " $ * & 4 � /

I 3 @ D � < ( � @ > p " $ * � < ( D 8 A � 4 > A 4 ( 3 & 4 � I 3 @ D � < ( A ( I � h � � " A / @ > " / / ( / � < ( D 8 A � 4 > A 4 ( 3
& 4 � @ $ " / "  " 3 3 B � @ � < ( 3 4 2 < � �

Z Q + � 	 � . � � � L M . O P Z Q + Q # ` S ` � N L M < = < N L U 5 #

b < ( & 4 � D 8 A � 4 > A 4 ( 3 4 / � < ( $ / 4 D > A B @ 	 B V 
 W � E H � h � $ / � " $ � 4 " � 4 @ $ I @ 3 I @ 8 3 & 4 � / 2 4 ? ( / �

X X X X
Y Y X Y Y Y Y \ Y Y Y Y X Y Y Y Y \ Y Y Y Y X Y Y Y Y \ Y Y Y Y X Y Y Y Y \ Y YX X X X X X X X

^ Y _ Y Y Y Y _ Y ^ ^ Y _ Y Y Y Y _ Y ^ ^ Y _ Y Y Y Y _ Y ^ ^ Y _ Y Y Y Y _ Y ^X a c d � X X a c d � X X a c d � X X a c d � X
X X X X X X X X
X X X X X X X X
X X X X X X X X

e Y Y Y Y Y Y _ Y e e Y Y Y Y Y Y _ Y e e Y Y Y Y Y Y _ Y e e Y Y Y Y Y Y _ Y e



� � � � � � � � � � � � � � 
 � � � � � � � � � � �

� � � � � � � � � � � � � ! � ! � % % ' � ( � ) + , � � . � 0 � % � � � � . ) 3 � , � ' � � � , ) % � 5 � 6 8 , � 8 � , � ; � ; � � � 3 >
! � � � � ! � % % � @ � � � 6 � � � % ) � ' 0 ) ' � E � � @ 8 , � � � � ( � � � � � � ( � � . 0 , � � � , K M � + � . � , � > � � �
� � , � 0 � � � � ) ( � � ! � ) � 8 � � � � > . 0 � � � � � � ) % ) � 6 � � � V . 0 � � � � � � ) % > + 0 � � � � � � � V . 0 � � � � � � ) %
8 ) , � � ) � � � ! + � ) � ; � � � � . 8 , � 8 � , � � � � K M � � � V . 0 � � � � � � ) % 8 , � 8 � , � ; � � � � � � � � � � �
� � 0 % 6 + � � ) � � , � 0 � � � ) 3 � > ) � ) , 6 . , ) 3 � a � ! � V � , � � , � � V 6 � 3 � � � � � � ) % c � , ) � � . � . , ) 3 �

a � � � 0 , � 0 , , � � � � 3 8 % � 3 � � � ) � � � � > � � � � � . � � � , � 0 � � � ) , � . , ) 3 � V % � � � c K � � ! � % % ) % � � � ) ( �
) ( � , ; ' � � � , ) % � � � � ) � � � ) � � � � ) % ' � , � � � 3 � � ) � ! � , g � . � , ) � ; � 0 3 + � , � . � � 3 + � � ) � � , � >
) � 6 � � , � 0 � � � ! � � � ) � ; g � � 6 � � . 8 , � 8 � , � � � � K j � � � k � � � � ) � � � � 3 + � � ) � � , � ) � � � � � �
6 � k � , � � � 8 , � 8 � , � � � � � � � 8 � � � l � 6 � � 8 ) , ) � � % ; K

� � � ) � � � � � g � . 3 ) � ; ) 6 ( ) � � ) ' � � � . � � � � � ; � � � 3 �

	 � � ! � % % 3 ) g � � � � � , ) � � � � � � � � � � � , � � V 6 � 3 � � � � � � ) % � � , � 0 � � � � 3 � � � � ) � 6 , � % � ) + % � K

	 � � 3 ) g � � � � 8 � � � � + % � � � 3 � @ 6 � k � , � � � 8 , � 8 � , � ; � ; � � � 3 � � � 6 � k � , � � � 8 ) , � � � . � � �
� � , � 0 � � K p � , � @ ) 3 8 % � > q ) � � � , � 0 � � 8 ) , � � � � 0 % 6 + � 6 � � � , � + � 6 � ! � V 6 � 3 � � � � � � ) % % ;
) � 6 % ) � � , + � � � � ( � , � � 6 � � � � K r , � . ! � ! ) � � � � � � � � � � � � ! � � � , � 0 � � � s 0 � � g % ;
! � � � � 0 � � ) ( � � ' � � 6 � � � , � + � ) � � 3 8 % � @ ! � , � � ' � � � ! � , g + � � ! � � � � � � 3 > ! � � � 0 % 6

t 0 � � � � � ( � , � � � � 3 � � � � . � � � , � 0 � � � a ! , ) 8 � � � 3 � � � � ) � % � 0 6 c ) � 6 � � � � � � � � � � 3
! � � � ) � � 3 8 % � , � � . � � � 3 + � � ) � � , K � � . ) � � > ) % ) , ' � , 6 � � � ' � � � 0 % 6 � � � � ) � � ) � � . � V
� ) , 6 3 � @ > ! � � , � � � � � ) � � % ; % ) � 6 � 0 � 8 ) , � � ) , � � ) , 6 � � , � 0 � � � ) � 6 � � � � � � � , �
) , � � � . � K j � � � � . � 8 ) , � � ! � 0 % 6 � � � � � ) ( � � � + � � 3 8 % � 3 � � � � 6 + ; ) � � @ � � , � ) %

8 % ) � � V ) � 6 V , � 0 � � � � � % K

	 � � � � ) % � � 8 � � � � + % � . � , � � � 0 � � , � � ) 6 6 � � � � ! � 8 , � 8 � , � ; � ; 8 � � > ) � 6 � � 6 � l � �
� � � � ! � � � 3 + � � ) � � , � ! � � � � 8 � � � ) % � 5 � 6 � � 3 ) � � � � � K p � , � @ ) 3 8 % � > ) 0 � � , V 6 � l � � 6
8 , � 8 � , � ; � � 0 % 6 + � ) % � � � � . � � � � ' � , � , � 8 , � � � � � � � ' � � � 6 � % ) ; � . � ) � � � � 6 � ( � 6 0 ) %
� � ' � ) % � � ) � � 3 8 � � � � � K j � � � � � . � , 3 ) � � � � � � � � � � 8 , � 8 ) ' ) � � 6 � � , � 0 ' � � � �
� � , � 0 � � 6 0 , � � ' ' � � � , ) � � � � ) � ) ' 0 � 6 � . � , 6 � k � , � � � � � � � ) � � � ) � � � � ) % � � , � ) � � ( � �

. � , ' � � � , � � � � , � 0 � � � K

j � � � @ � , ) 8 , � 8 � , � � � � � ) � � � � 0 � � � ( � % ; + � � � � 0 ' � � � . ) � � � ) 6 � ! � � . � , 3 ) � � � �
6 � � � , � + � 6 8 ) , ) % % � % � � � � � � � , � 0 � � K j � � � 6 � ) � . 0 � � � ' � � ) 6 � ! � � . � , 3 ) � � � � � � ' 0 � 6 �
� � , � 0 � � ' � � � , ) � � � � � ) � ) % , � ) 6 ; + � � � � � � ! � � � ! � , g ! � % % � � � ) ( ) } � ~ K � � � � � 3 V
+ � � ) � � � � ! � � � ) ' � � � , ) % � 5 � 6 8 , � 8 � , � ; � ; � � � 3 8 , � 3 � � � � � � + � ) 8 � ! � , . 0 % 6 � � � ' �
) � 6 K


 � � � � �

� � � � � � 0 , , � � � � 3 8 % � 3 � � � ) � � � � > � , , � , � 6 0 � � � 3 � � 0 � � 6 8 , � 8 � , � � � � ! � % % + � 6 � � � � � � 6
) � � � , � 0 � � ' � � � , ) � � � � � � 3 � > � , % ) � � , K � � � � ) � ; 8 � � ; � � � 3 > � ( � � ) � � 3 8 % � � � � > ! �
� � 0 % 6 8 , � + ) + % ; 6 � � � � � 3 ) � ; � . � � � � � � , , � , � � � � � � � 8 � ) , % � � , K j � � � 0 , , � � � 8 , � 8 � , � ;
� ; � � � 3 ! ) � ) � � 0 ) % % ; l , � � � � � � � 6 � 6 ) � ) � ; 8 � � ; � � � 3 . � , � ) , 6 � � , � 0 � � � K � 0 � � � � , 6 � ,

� � 3 ) g � � � 3 � 6 0 % ) , > ! � � ) 6 � � % � . � ) % % � � � � ) � � � ) � � � � 3 � � � ) � � � 3 � � � � � � � ; 8 � % � ( � % >
) � 6 � ( � � � 0 ) % % ; � � � � + � � ) 3 � � � � � � 3 8 % � @ � � � ) � 6 % � K � � � � � . 0 � 0 , � > ! � ! � % % � , ; � �
3 ) g � ) 3 0 � � � � 3 8 % � , � ; 8 � � ; � � � 3 > � � � � � � � , ) � � � ' � � � � ' � ) % � � , 0 � � 0 , � � � � � � ) 6 � .
' � � 3 � � , ; K



� � � � � � � � 
 � � �

� 
 � � � 
 � � 
 � 
 �  
 " � % � � ( ) � ( 
 * , � " 
 � / � 1 3 1 � ( * ) � /  1 , � � % � � " � , � 7 * ) � /  1 , � � % � � 7
� 
 /  � , * / 1 � / ) 1  � 1 � � � � � % % 
 % > ? � 1 � � 
 
 A � � � � , A 1 � 1 � ( � � � � , � / �  ,  � / F % 
  � 
 ( � , J 7
1 � ( � � , 3 % 
 A , * J 1 � 
 
 N 
 /  �  � F 1 � ( , � 
 �  � 
 � 
 � * , � A � � / 
 1 � " 
 
 � � ) 3 7 A 1 / � , �

 
 / � � , % , ( 1 
 � > ? � 
 
 T � � 
 � � 1 � 
 � 
 � � 1 � 1 � / � 
 � � 
 " 3 U  � 
 ) � 
 , * ( 
 � 
 � 1 / / 1 � / ) 1  �  � �  
� " � �   ,  � 
 1 � / , �  
 T  W � � " / , � � 
 /  1 , � � �   
 � � �  � �  
 Y / 1 
 �  % U 
 � / , " 
  � 
 ( 
 � 
 � 1 /
�  � ) /  ) � 
 , * � 
 ( ) % � � / 1 � / ) 1  � > ? � ) � W � 
 ( ) % � � / 1 � / ) 1  � W % 1 F 
 " �  � 7 � �  � � W J 1 % % 3 
 �  U � 1 7
/ � % � � � % 1 / �  1 , � � � 
 � , *  � 
 % � � ( ) � ( 
 > ` �  � 1 � � �  1 / % 
 W J 
 � � � 
 , � % U � 
 
 � � 
 � U � 1 A � % 



 T � A � % 
 � W 3 )  J 
 3 
 % 1 
 � 
  � �  A , � 
 / , A � % 
 T � �   
 � � � % 1 F 
 " 1 N 
 � 
 �   � 
 
 � W � � "
� % A , �  � 
 ( ) % � � �  � ) /  ) � 
 � / � � � % � , 3 
 
 Y / 1 
 �  % U " 
 � / � 1 3 
 " >

e � � � � � g � h 
 � i �

	 
 � / � 1 �  1 , � J 1  � / , A 3 1 � �  , � � � � " � � � � % % 
 % * ) � /  1 , � � % � � " � , � 7 * ) � /  1 , � � % 1 �  
 � 7
� � 
  �  1 , � � � � � � � 
 � 1 , ) � % U 3 
 
 � ) � 
 " 1 � % � � ( ) � ( 
 � % 1 F 
 m U " � � n 
 o W 
 � � � � � " � ) 3 U >

p , � ( 
  � % � � � 
 " 
 � 
 % , � 
 " � � � ` �  
 � / , � � 
 /  7 / 
 �  � 1 / " 
 � 1 ( � 7 q , J � n � o W J � 1 / � 1 �
� / , A � % 
  
 " 
 � 1 ( � 7 q , J J � 
 � 
 J 1 � 
 � � � 
  � F 
 � 1 �  , � / / , ) �  � 1 ( �  * � , A  � 
 �  � �  >
t ) / � , *  � 
 1 � * , / ) � 1 � , � A � F 1 � ( � / / ) � �  
 
 � � % U � � 
 " 1 /  1 , � � , * � 
 � * , � A � � / 
 W 3 )  
� % � , , � � U �  � 
 � 1 � � % ( , � 1  � A �  � �  � � , � 
 � % U  � F 
 J 1 � 
 
 N 
 /  � 1 �  , � / / , ) �  >

? � 
 � 
 � � � � % � , 3 
 
 � � 
 / 
 �  J , � F , � � U �  � 
 � 1 v 1 � ( 
 Y / 1 
 �  � � 1  � A 
  1 / / 1 � / ) 1  � W
 � F 1 � ( � / / , ) �  , * ( �  
 � � " J 1 � 
 " 
 % � U � n 
 W w � o >

m , J 
 � 
 � W J 
 " , � x  F � , J , * � � U � 
 % �  
 " J , � F J � 
 � 
 � % � � ( ) � ( 
 7 3 � � 
 " � � 7
� � , � / � 1 �  � F 
 �  , " 
 � / � 1 3 
 / 1 � / ) 1  � J 1  � % � U , )  � � " 
 T � % 1 / 1  J 1 � 
 � >

e e � � g � i � 
 � i �

� 
 J � �   , / , �  1 � ) 
  , " 
 � / � 1 3 
 A � � U A , � 
 
 T � A � % 
 / 1 � / ) 1  � W  , � 
 
 � , J * � � J 

/ � � ( 
  J 1  �  � 
 / ) � � 
 �  � U �  
 A W � � " J � �  / � � 3 
 " , � 
 3 
   
 � > � 
 � � 
 / ) � � 
 �  % U
J , � F 1 � ( , � � ( 
 � 
 � � %  � 
 
 �  � ) /  ) � 
 J � 
 � 
 A � � U " 1 N 
 � 
 �  A ) %  1 � % 1 
 � � / � � 3 

, 3  � 1 � 
 " 3 U � ) �  � 
 � % � / 1 � ( � , A 
 , *  � 
 J 1 � 1 � ( > ` � , � " 
 �  , ( 
  * 
 
 " 3 � / F , �  � 


 N 
 /  1 � 
 � 
 � � , *  � 
 % � U , )  W J 
 J � �   , A � F 
 A 
  � , " � * , � 
 �  1 A �  1 � ( " 1 N 
 � 
 �  � , � 7
* ) � /  1 , � � % � � , � 
 �  1 
 � > ? , 3 
 ( 1 � J 1  � W  � 1 � J 1 % % � 1 A �  J 1 � 
 % 
 � (  � 
 �  1 A �  1 , � � W
J � 1 / � / � �  � 
 � 3 
 ) � 
 " * , � A , � 
 � / / ) � �  
 
 �  1 A �  1 , � � , * � 1 ( � � % " 
 % � U � > ? � 
 �  
 �
� *  
 �  � �  1 �  , � 
 
 � , J J 
 / � � 1 �  
 � � /  J 1  � % � U , )   , , % � 1 � , � " 
 �  , A � F 
 � 
 � %
/ , � �  � ) /  1 , � � >

� 
 J 1 % % � % � , / , A � % 
  
  � 
 ( 
 � 
 � � % 1 v 
 " � � , � 
 �  U � U �  
 A W J � 1 / � J 1 % % % � U  � 

* , ) � " �  1 , � * , � , ) � 1 " 
 � � , * * , � 
 T � A � % 
 W � 	 / 1 � / ) 1  � W � , *  7 � � � " A 1 T 1 � ( W � � "

� � � " , J � � , � 
 �  1 
 � > � * )  ) � 
 � � � % 1 / �  1 , � , *  � 1 � � U �  
 A A � U � % � , 3 
 � 1 
 � � � / � 1 / � %
/ 1 � / ) 1  � 
 � 1 � / �  1 , � >

� �  � 
 % � � ( ) � ( 
 1 A � % 
 A 
 �  �  1 , � � 1 " 
 W J 
 J � �   , 1 � / % ) " 
 �  U � 
 � U �  
 A * , �

 � � % U " 
  
 /  1 , � , * � � , � 
 �  U A 1 � A �  / � 
 � > � � " � % � , W * ) �  � 
 � � � 
 � " W J 
 J , ) % " % 1 F 


 , A � F 
 � 1 � 
 " � % � � ( ) � ( 
 , � 1  � , J � W � � � �  * � , A m � � F 
 % % >



� � � � � � � � � � 	 	 � � � � �

� � � � � � � � � � � � � � � ! # $ � $ ( * , � � / � 0 � � 4 # $ ! � , 4 � � � � � � � � � 8 4 � 9 4 � � , � 4 # < � # � # ? # , � B D
� ! � , 4 0 � � � � � � � � 9 � 4 E � � , � � B B � $ I J 9 � � � � � # K � # $ I � , � 0 � , � # K 
 4 # D M ! # � , � 4 # � B O � 4 9 D

� � , � � � 4 � � � K � , � B 8 � � � ! � , � R � � � T � $ W X 
 � X � 
 
 X Z W

� � � � [ � � � � �

� \ � \ ] ^ _ a b c e b f g h i � \ � b k e � b f � � b e e m h n e o e p b � o e e o q o s � b b t ] k v q m w f o h \ � f o w \
y z z � � } � � � ! } t t \ # % & ~ # � � \

# \ ] g e h g q ] m h n p � � b g e p o s e p b ) * � z , � z z - / % % \ y 0 0 0 z o q t k e b f ] o w m b e ^ \ # % % % \
& \ � \ z _ g b c c b h } - \ ] p b b f g h g h i ] \ ] m h n p � � p b i b c m n h g h i a b f m 4 w g e m o h o s g c o f e b f

w o f b \ � f o w b b i m h n c o s e p b � � e p � i a g h w b i � o f � m h n z o h s b f b h w b o h z o f f b w e � g f i � g f b
� b c m n h g h i 7 b f m 4 w g e m o h - b e p o i c } a o _ \ # � : : o s * < z ] } ] t f m h n b f ~ 7 b f _ g n } # % % � \

: \ � \ ? o h b c g h i - \ ] p b b f g h � z m f w k m e i b c m n h m h ) k v ^ \ y h � o f q g _ - b e p o i c s o f 7 * ] y
� b c m n h } ? \ ] e g k h c e f k t b i \ } < o f e p ~ � o _ _ g h i } � � � % \

B \ - g e f m � ] b q m w o h i k w e o f y h w \ } p e e t � C C � � � \ q g e f m � c b q m \ w o q
D \ - \ ] p b b f g h � � m h i m h n f b n k _ g f m e ^ � i b c w f m v m h n g h i g h g _ ^ c m h n w m f w k m e c e p g e g f b h o e

F k m e b f b n k _ g f \ � f o w b b i m h n c � # e p � i a g h w b i ) b c b g f w p � o f � m h n z o h s b f b h w b o h z o f f b w e
� g f i � g f b � b c m n h g h i 7 b f m 4 w g e m o h - b e p o i c } a o _ \ # ! D % o s * < z ] } ] t f m h n b f ~ 7 b f _ g n }

# % % & \
I \ ? o p h � � / � o h h b _ _ � � g f i � g f b i b c w f m t e m o h � m e p f b w k f c m o h b F k g e m o h c \ y h - ) � g f ~

v g w w m g h i z ? � o o q b h } b i m e o f c } z � � * ! I � ! e p y h e b f h g e m o h g _ ] ^ q t o c m k q o h z o q ~
t k e b f � g f i � g f b � b c w f m t e m o h * g h n k g n b c g h i � p b m f � t t _ m w g e m o h c } t g n b c & D & � & ! # \
y � y � � � � % \ # } < o f e p � o _ _ g h i } � � ! I \

! \ ? \ z o h n � � h m h e b f w o h h b w e ~ w b h e f m w i b c m n h � o � s o f h g h o q b e b f e b w p h o _ o n m b c \ � f o w b b i ~
m h n c o s y h e / _ ] ^ q t \ o h 7 * ] y � b w p h o _ o n ^ } ] ^ c e b q c } g h i � t t _ m w g e m o h c } t t \ B : � B I }
? k h b } � � � � \

� \ ? k h p ^ k h n � q g h i � g b � p g h � m q � * g ^ o k e ~ � � g f b ] ^ h e p b c m c o s � f m e p q b e m w z m f w k m e c \
� f o w b b i m h n c � b c m n h � k e o q g e m o h z o h s b f b h w b } # % % # \

� % \ z \ - g f e b _ } 7 \ � � _ o v i � m X g } ) \ ) g a m } g h i � \ ] e b _ _ m h n � � b c m n h c e f g e b n m b c s o f o t e m q g _ ~
q k _ e m t _ m b f w m f w k m e c \ � f o w b b i m h n c � # e p ] ^ q t o c m k q o h z o q t k e b f � f m e p q b e m w } � # � : # �
: � } � � � B \



Integrating Formal Methods with

Digital Circuit Design in Hydra

John O’Donnell ∗

Circuit design often takes place in two distinct phases. First the circuit is designed
informally to meet a specification. The design may be expressed using a computer hardware
description language (CHDL) for precise description of its structure and behaviour, as well
as simulation. Then, once the design is completed, it is checked formally to verify that it
meets the specification, using techniques such as theorem proving and model checking.

When we separate the design process from the application of formal methods, we miss
some of the potential benefits. Formal and semi-formal reasoning can help the designer
to find a way to implement the circuit, as well as improving confidence in its correctness.
Furthermore, a circuit designed along with its correctness proof may end up with a structure
better suited for verification.

This talk describes how formal reasoning can be applied during the design process using
Hydra, a CHDL implemented by embedding within Template Haskell. Hydra specifications
may describe the behaviour of a circuit, its structure, or both. Reasoning about the be-
haviour of a circuit is done in the context of a circuit model, which states what aspects of
the circuit are encompassed (e.g. logic values and clock cycles) and which aspects are ab-
stracted out (e.g. gate delays and glitches). Hydra supports several circuit models, allowing
a choice of the level of detail.

Hydra represents various aspects of a circuit using Haskell type classes. In particular, the
circuit structure is obtained by signal instances which build a graph that is isomorphic to
the circuit. Traversal of the graph is problematical in a pure functional language. This issue
is solved by an automated program transformation that converts the specification written
by the circuit designer into a form where signals have unique labels, enabling the circuit
structure graphs to be traversed without recourse to impure language features. In this way,
the soundness of equational reasoning on Hydra specifications is uncompromised, yet circuit
graphs with feedback can be traversed in order to generate netlists, produce representations
to be used by formal verifiers, and so on.

Hydra began as an application of the work by Steven Johnson on hardware description
using stream recursion equations, and was also influenced by Mary Sheeran’s muFP lan-
guage. It evolved via lazy evaluation: Hydra was used for a variety of circuit designs and
circuit proofs, and those projects highlighted areas that needed better CHDL and tool sup-
port, leading to a number of improved techniques. Some of the early innovations in Hydra
were multiple circuit semantics, integration of specialised sublanguages (e.g. to support con-
trol circuit design), the extension of fold and scan combinators into a flexible set of layout
combinators, and the use of graph traversal with pointer equality to generate netlists.

The most important recent innovation in Hydra has been a new approach to the prob-
lem of generating netlists, using metaprogramming with Template Haskell. This makes it
possible to operate in a pure functional language, with equational reasoning on a completely
sound basis, while at the same time being able to generate netlists and to offer a variety of
useful testing, simulation and debugging tools.

The talk will discuss the foundation of formal reasoning in Hydra (safe equational reason-
ing while still keeping the ability to generate netlists), as well as experience with designing
circuits along with proofs of some of their properties.

∗Author’s address: Computing Science Department, University of Glasgow. jtod@dcs.gla.ac.uk
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HML: A language for high-level design of high-frequency

circuits

Andrew K. Martin

Feb. 16, 2004

Abstract

The last twenty years have seen large advances in the field of programming lan-
guages for software development. New languages such as Java, C++, and ML have
largely replaced older, less sophisticated programming languages such as Algol, Pascal,
C, and Fortran for new software development. These new languages have sophisticated
data modeling and representation systems that hold out the promise of increased pro-
grammer productivity by permitting the design of libraries that build common layers
of abstraction over implementation details. Programmers can then work effectively
at these higher levels of abstraction, while still producing efficient code. Nonetheless,
much performance critical code is still written in Fortran, C, or even assembler.

Commercially used hardware design languages are extremely primitive, requiring
designers to express their designs at a very low level of abstraction, in relatively verbose
languages such as VHDL and Verilog. Although these languages have, in some cases
quite sophisticated ”behavioral” representations, such representations are generally
avoided because mechanical mechanisms to translate from the high level of abstraction
to a low-level implementation are not thought to yield optimal implementations. In
spite of years of research in ”high-level synthesis”, designers still choose to work at
practically the gate level.

In high-performance microprocessor designs, this desire to work at the gate level
stems largely from the need to maximize the performance of the resulting implemen-
tation. If target frequencies continue to increase more rapidly than the speed of the
underlying process technologies, this need to maximize performance will be even more
pressing. Nonetheless, working at higher-levels of abstraction could have many advan-
tages for hardware design. Many classes of errors could be avoided completely. Others,
that now must be detected by low-level simulation, could be detected by static analysis
such as type-checking during the compilation process. Moreover, when a design has a
”clean” abstract representation, it is easier to partition it into components, enabling
more comprehensive verification using formal and traditional approaches.

To allow the designers of high frequency devices to take advantage of more abstract
representations without sacrificing performance, we envisage the following design pro-
cess. First, a design is expressed at the mircoarchitecture level of abstraction. Then
the design space within the given micro-architecture is explored iteratively through a
series of mappings that transform the high-level design representation into a low-level
implementation. The designer writes an explicit map from the high-level representa-
tion to an implementation. A compiler then applies the map to the high-level design
to produce a low-level (gate or switch) representation. This result is then analyzed
using standard tools for timing, area, power etc. This information is then used by the
designer to adjust the mapping in an iterative process. The expectation is that making
the map from high-level representation to implementation explicit will give the designer
sufficient control of the synthesis process that even designers of high-frequency compo-
nents will be able to achieve their performance targets without resorting to designing
at the gate level.

There are three main components to this research effort. A suitable high-level de-
sign language must be devised that allows for the rapid expression of designs at the
micro-architecture level. A notation must be devised for expressing the mappings from
high-level design to low-level implementation. Finally a suitable format for presenting
the results of the mapped design must be devised, so that the results can be inter-
preted in a meaningful way by the designer, and hence guide the search for an optimal
implementation of the original design.
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This presentation will discuss the first step in this research direction, the hardware
design language HML. HML is a hardware description language based on the OCaml
dialect of the ML programming language. We have used it successfully at IBM’s Austin
Research Laboratory in the design of a recent test-chip. The use of HML allowed a
very small team to design and integrate the chip in a period of less than four months.
Logic design and verification was performed by only three people in this time-frame.
The definition of HML is still somewhat fluid. Since, at present it is used only in a
small research group, features can be added or removed from the language as dictated
by our experience, both in using the language, and implementing tools that support it.
The presentation will describe one snapshot of the language as used to design a recent
test-chip.

HML was designed by the author at IBM’s Austin Research Laboratory. HML
augments ML with a polymorphic primitive stream type, to represent the sequence of
values that occur over time on a signal in a synchronous design. Hardware compo-
nents are represented as functions from input streams to output streams. Component
instantiation is represented by function application. As in ML, HML treats functions
as first class values: They can be passed as parameters, to other functions, returned
as results, and constructed anonymously. Since hardware components are represented
as functions, they can be passed as arguments to functions, or to other hardware com-
ponents, returned as results etc. To describe a piece of hardware in HML one simply
writes a function.

The compiler performs HAWK-style lifting automatically. Functions that were not
initially designed to work with streams are automatically promoted by the compiler
to functions over streams as required. For example, the function fun x -> not x can
be applied to a boolean argument, which it will complement, or it can be applied
to a bool stream in which case it will return a stream of booleans – the point-wise
complementation of its. State is represented in HML by the syntax delay(v1,v2)

where v1 is a value of type a, and v2 is a a-stream. The result is a stream whose first
value is v1, and whose subsequent values are those of v2 (delayed one unit of time).

The type system includes the atomic types “int”, “bool”, and “unit”. Constructed
types include heterogeneous tuples, homogeneous arrays, records with named fields and
variants – type-safe tagged unions. The type system departs from that of OCAML, by
introducing a type hierarchy, in which sub-types can be used any place where a super-
type is expected. This allows one to use a record of type {a: a_type1; b: b_type1; c: c_type1}

where a record of type {a: a_type2; c: c_type2} is expected, provided that a_type1
is a sub-type of a_type2 and c_type1 is a sub-type of c_type2. The converse sub-
typing rule applies to variants, so that a variant with less constructors can be used any
place where a variant with more constructors can be handled. Records and variants
are co-variant in their components, while function types are co-variant in their result
type, but contra-variant in their argument types.

HML derives much of it’s basic syntactic form from ML. An HML program is
an expression which evaluates to a function from streams to streams. Like OCaml,
HML allows pattern matching in both let-bindings and formal parameter declara-
tions. For example let (a,b,c) = e1 in e2 evacuates e2 in an environment in
which “a”, “b”, and “c” are bound to the components of the triple e1. However,
HML extends the Ocaml pattern matching to destruct record types. For example
let {a;b} = e1 in e2 evaluates e2 in an environment in which “a” and “b” are

bound respectively to the “a” and “b” fields of e1, which must be a record type with at
least the fields “a” and “b”. The traditional array indexing syntax from Ocaml (a.(i)
refers to the “ith” element of the array a) is replaced by the syntax a[i], and extended
to include the syntax e1 [ e2 : e3] to extract an array subrange.

The ability to destruct records “on the fly” in formal parameter definitions and ”let”
expressions provides a lite-weight mechanism for binding function parameters by name.
Thus a function “foo” can be defined with three arguments “a”, “b”, and “c” that are
bound by position: let foo a b c = e and called using the syntax foo av bv cv.
For functions with many arguments of the same type, it is very easy to for a programmer
to err by providing the arguments in the wrong order. Since large hardware components
often have many hundreds of incoming signals, hardware description languages usually
offer a bind-by-name mechanism for module instantiation. The same effect can be
obtained in HML using record types. Thus, the same function could be defined using
bind-by-name: foo {a=a;b=b;c=c} The order in which the fields are listed, both in
the formal parameter definition, and in the actual parameter is unimportant.
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For the test-chip an HML to net-list compiler was built that implemented a highly
restricted subset of the language. No “synthesis” was supported in the usual sense.
Instead, a library of primitive functions with hardware implementations was provided
to the compiler. The resulting net-list consisted entirely of instantiations of these
primitive circuit elements. Streams were restricted types whose atomic elements were
booleans – thus integer, record, array, and function valued signals were disallowed.

The original implementation, built in a matter of weeks, was based upon graph
reduction. HML programs are translated into a combinator graph, which is then re-
duced. Net-lists were created as a side-effect of graph reduction. While this seemed,
initially, like a simple, elegant approach to compilation, in retrospect it was not. There
were numerous times when a device with no outputs, or several devices with no inputs
needed to be instantiated. This required a sequential operator whose first argument
is evaluated strictly for it’s side-effects. Soon, the “lazy” evaluation semantics of the
combinator graph, had to be enhanced with an “eager” evaluation semantics. Future
implementations will move to more conventional compilation technologies, in which
the resulting net-list is the product of an explicit translation, followed by elaboration,
rather than the side-effect of a partial evaluation.

The implementation time frame precluded the design of a static type checking
and type inferencing mechanism. As a result, all type-checking was done a run-time
(roughly analogous to elaboration time for traditional languages). Indeed, even type
annotations, while allowed syntactically, were not supported. It turns out support
for explicit type annotation is even more critical in a hardware description language
than in a programming language. While static type inference (or in the case of our
first implementation, dynamic type checking) is very convenient at the beginning of the
development process. Since types are rarely written explicitly the design can be changed
rapidly without having to change type-definitions or symbol declarations. However, late
in the design process, this extreme flexibility ceases to become an asset, and becomes a
liability. Late in the process, once physical design has begin, it is critically important
that the interfaces to components that correspond to physical entities on the chip are
not changed inadvertently. The ability to annotate interfaces with type specifications
would have been a great improvement, which will certainly be incorporated into future
compilers.

In spite of these restrictions and issues, the initial implementation turned out to
have considerable value. A substantial test-chip, intended to test a novel digital MOS
circuit family designed to run at very high-frequencies, was fabricated in mid 2003. The
design of the entire chip, with the exception of the PLL and clock control circuitry, was
expressed in HML. It was mechanically translated to VHDL for functional verification
and to a net-list for layout. In all, about 1500 lines of HML code were translated
into 331,000 lines of VHDL, of which 133,000 were instantiated decoupling capacitor
cells, and the remaining 198,000 lines were a structural VHDL description of functional
circuit elements. The use of HML allowed a very small team to design and integrate the
chip in a period of less than four months. Logic design and verification was performed
by only three people in this time-frame.

HML represents a first step in an efficient system for logic design for high frequency
circuits. The compiler used in the test site was essentially a net-lister. That is, the
designer writes an ML program that is interpreted as a set of cell instantiations. Work
is currently under way to build a second version of the compiler, which will address
the issues noted above, while providing more comprehensive simulation and synthesis
capabilities. In particular the second two research problems: a notation to express
mappings from the high-level design to implementation, and a format for presenting
the mapped design have yet to be addressed.
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1 Introduction

Late changes in silicon design, called ECO, is a common although undesired practice. They
happen due to last minute changes in the specifications or to design bugs found at the late
stage, sometimes after the tapeout. At this stages going through the top-down design flow
is infeasible, because it would take too long and lead to undesirably large perturbations to the
physical layout. High-level design flows generally reduce the number of potential bugs. However,
the need for ECO still exists since there is no guarantee that all bugs are eliminated and since
the spec may change late in the game. Since high-level design often deploys more powerful
optimization than manual design flows, it becomes harder to find the place in the final circuit
where manual changes should be done in order to correct the behavior. It is also harder to
trace circuit bugs and changes back to the high-level spec. A software analogy would be to of
perform manual changes in a C executable compiled with -Ox options, while back-annotating
these changes to the original C code.

We will illustrate this general high-level design problem by an Esterel example, with heavy
sequential circuit optimization performed by the Esterel compiler backend. The desired ECO
flow is as follows. The original specification S is compiled by the Esterel compiler to a circuit
netlist C0, which is further optimized to the final implementation C using combinational and
sequential optimization methods. If late changes are required this circuit is transformed manu-
ally into another circuit netlist C∗ such that perturbations to C are minimal. To maintain the
high-level specification consistent with the modified implementation and to verify the manual
change to the implementation, the original Esterel specification S is also modified into S′ to
reflect the late changes. S′ is then compiled to a new netlist C ′. Finally, C∗ is verified against
C ′. To debug mismatches, it is necessary to understand if the fault is in the manual changes
to the implementation or in the changes to the Esterel spec, iterating until perfect match. The
circuit C ′ can be used exclusively for verification or to provide hints for modifications of the
original implementation C. In the first case, optimization of C ′ is optional but can speed up
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Figure 1: ECO flow

verification. The ECO flow is illustrated in Figure 1.
Three capabilities are required for the above ECO flow:

• A sequential equivalence checker. Since sequential optimization is involved into producing
C and possibly C ′, the circuits C∗ and C ′ are in general not combinationally equiva-
lent. Esterel Studio has two embedded sequential equivalence checking engines that are
based on BDD [5] and SAT [8]. Capacity of these tools is typically matching capacity
of sequential optimization, and it is rarely an issue in the modular compilation flow for
control-dominated designs. Recent work demonstrated that capacity of sequential verifi-
cation can be further improved, e.g., by using combination of ATPG (or SAT) and BDD
approaches [6], structural equivalence [14], and multiplexing the state of the FSMs under
verification [7]. More research in this direction is required to support high-level design
flows.

• Tracability tools to zoom into the parts of the implementation netlist C, where manual
changes corresponding to the modified spec S′ should be done. Tracability has been imple-
mented in the Esterel Studio 5.0.1. It supports forward linking of every source construct
(state, transition, textual Esterel statement) with HDL objects (variables, signals, logic
equations) and backward linking of any generated HDL object to its Esterel source. Trace-
ability is presented in Section 2. Notice that traceability is also the basis of critical software
certification flows, see [].

• Modular compilation, necessary to confine changes to relatively small circuit blocks. The
next version of Esterel Studio will support modular compilation, with minor reincanation
limitations (a separately compiled module will not be able to support multiple calls in the
same cycle). The user will be able to control the grouping of modules, and hence to choose
the granularity at which to optimize the design and perform ECOs.

Sequential optimization used in the Esterel backend includes a few transformations: redundant
latch removal, reencoding of exclusive latches, retiming moves, reencoding of sequential threads,
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and code migration [10]. We distinguish between reversible and irreversible optimization trans-
formations. In a reversible transformation, one can reconstruct removed registers from the
registers of the final circuit and some extra information kept inside the design. All transfor-
mations that are bijective or injective on the state space of a circuit are reversible. Surjective
transformations (like state minimization) are irreversible: if two states are collapsed they cannot
be separated back.

Exlpoiting reversibility, we will show how an ECO problem for the reversible sequential
transformations can be reduced to a combinational one by reconstructing some of the suppressed
egisters in order to backannotate to the original code and to perform division between the logic
of an actual design and the logic supporting backannotation. The combinational ECO problem
is solved in standard design practice and is supported by some automation (e.g. by the ECO
compiler of Synopsys).

The rest of the paper is organized as follows. Section 2 presents basics of the Esterel compila-
tion flow and explains how tracebility is supported. Section 3 discusses interaction of sequential
optimization with the ECO. ECO on examples is presented in Sections 4 for the unoptimized
case and 5 for the optimized case. We conclude in Section 6.

2 Traceability in Esterel v7 compiler

2.1 A basic Esterel example

We illustrate the traceability between the Esterel v7 source code and the generated circuit using
the following simple program:

main module Main :

input A, B;

output X, Y;

abort
await A;

emit X

when B;

sustain Y

end module

2.2 First step: building Esterel assembly code

The above program is first translated into an intermediate esterel assembly code, yielding (ap-
proximately) the following sequence of instructions:

statements : 9

0: 0 Root : (4) %lc : 0 1 1%

1: 0 Present : [B] (7 , 2 %lc : 0 4 1%) % lc : 0 7 1%

2: 0 Resume : <6> %lc : 0 4 1%

3: 0 Present : [A] (5 ,4 %lc : 0 5 4%) % lc : 0 5 4%

4: 0 Pause : (3) <2 > %lc : 0 5 4%

5: 0 Emit : [X] (7) %lc : 0 6 4%

6: 0 Watch : {1} <0 > %lc : 0 4 1%

7: 0 Emit : [Y] (8) %lc : 0 8 1%

8: 0 Pause : (7) <0 > %lc : 0 9 1%
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The statements are indexed. The number after the index is a module instance index telling by
which module instantiation the statement is generated. Here, there is only one module and all
indices are 0. Pragmas such as %lc: 0 5 4% are source code backannotations, telling that a
statement or part of a statement is generated from line 5, column 4 of file indexed 0, pointing
here to the await keyword.

The flow of control is fully explicit, making statement ordering irrelevant. Direct continu-
ations always appear between parentheses, while statement references between angle brackets
serve for statement resumptions as explained below.

The Root instruction is the start point, with immediate continuation the Pause statement 4.
Therefore, when the program is started, it immediately pauses at 4. Resumption from this point
at next tick is based on the indices between angle brackets, which determine the selection father
of a statement, as explained in full details in [2, 3]. Here, the Pause statement 4 signals that is
is alive to its Resume father 2, which itself signals that it is alive to its Watch abortion father 6,
which in turn signals aliveness to the Root statement. Resumption follows the reverse path. The
Root statement resumes its Watch son, which implements the abort behavior by immediately
triggering its associated Present test 1 whose index is given between curly brackets. The
Present statement conditionally triggers the following behaviors:

• If B is present, the continuation 7 is taken, Y is emitted, and the program pauses at 8.

• If B is absent, control is transferred to the Resume statement, which resumes its son 4.
Resumption of the Pause statement passes control to its continuation 3, which tests for A.
If A is present, control is passed to 5, which emits X, and then to 7 to emit Y and pause.
If A is absent, control comes back to the Pause statement that pauses again until the next
instant, realizing the “await A” behavior.

Notice that the selection / resumption mechanism ensures the right priority between the tests
for A and B. The backannotation pragmas are used to animate the source code in the Esterel
Studio GUI.

The assembly code is notably more complex for full-fledged programs, with Fork and Parallel
(join) statements to deal with synchronous concurrency and Exit statements to deal with the
trap-exit Esterel exception mechanism. We give no more details here, since the handling of
all statements is pretty similar as far as traceability and ECOs are concerned.

2.2.1 Second step: translation to circuit

From the above generated Esterel assembly code, the Esterel v7 compiler generates the circuit
pictured in Figure 2. The gate names are abbreviated in the picture, with the real full names
and associated traceability pragmas as follows:

Boot : Boot_0_0 %go: 0%

Then1 : Then_1_0 %then : 1%

Else1 : Else_1_0 %else : 1% % go: 2%

Then3 : Then_3_0 %then : 3% % go 5% % emit: X%

Else3 : Else_3_0 %else : 3%

Go4 : Go_4_0 %go: 4%

R4 : PauseReg_4_0 %pause : 4%

Cont4 : Cont_4_0 %go: 3%
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Figure 2: Esterel generated circuit

TG6 : ToGuard_6_0 %go : 1% % go: 6%

Go7 : Go_7_0 %go : 7% % go : 8% % emit: Y%

R4 : PauseReg_4_0 %pause : 8%

Cont8 : Cont_8_0

Long names are useful since they are printed in HDL or C and thus propagated down the
synthesis chain. The name tells which function a gate is performing and where it comes from.
The first number it contains is the index of the statement which generated the gate, while the
second number is the module index that identifies to which instance of which submodule the
statement belongs, see Section 2.4.

Pragmas add more traceability information to highlight source code at simulation time, to
report error messages, and to perform ECOs. Notice that a gate can bear several pragmas. For
instance, the Then3 gate bears %then: 3%, which tells that the gate is 1 if the test statement
3 succeeds, %go: 5%, which tells that the same gate starts the statement 5 right away, and
%emit: X%, which tells that X is emitted when the gate is 1. The last two pragmas are actually
what remains of a gate Go_5_0 that was initially created from Emit statement 5 but swept away
since it simply acted as a buffer between the statements 3 and 7. Buffer sweeping carefully
preserves pragmas.

Each Pause assembly statement generates a register, all the other statements generating
combinational gates. The circuit works as follows:

• The initial tick is driven by the boot register, which has initial value 1 and input 0. The
boot register loads the R4 register generated by “await A”.

• The wire out of R4 is used for selection / resumption. It is anded with the negation of
the boot register, which means global resumption. This triggers a test for B. If the test
is true, control is transmitted to the Go7 gate to emit Y and to R8 pause on the sustain
statement. If the test is false, control goes to the “present A” test 3 through the Cont4
pause resumption gate, to test for A. If A is present, the Then3 gate is set, X is emitted,
the Go7 gate is set, Y is emitted, and the sustain register R8 is set. If A is absent, the R4
await register is reloaded through Go4.
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Generally speaking, the register part comes either from Esterel temporal statements such as
pause, “await S”, “every S do ... end”, loop ... each S, which define sequential behav-
ior, or from access to previous signal status pre(S) used for instance in the rising edge detection
sequential expression “S and not pre(S)”. The combinational logic is generated by the con-
trol and signal propagation statements such as signal emission “emit S”, signal presence test
“if S then ... else ... end”, sequencing ‘;’, parallel ‘||’, etc.

2.3 User-defined names of registers

Generated register names are particularly important since they are fundamental for ECOs and
usually preserved by the backend circuit synthesis flow. To make names more readable, one can
associate a tag with a register-generating statement in the source Esterel code:

await@Wait A;

sustain@Sust Y

When setting a special Esterel compiler option -eco, the compiler embeds the tag in the register
names, which become PauseReg_Wait_4_0 and PauseReg_Sust_8_0 instead of PauseReg_4_0
and PauseReg_8_0. Furthermore, with this option, the register input gates are not subject to
sweeping; they are named PauseRegIn_Wait_4_0 and PauseRegIn_Sust_8_0. Since they are
outputs of the combinational part, they are not swept by synthesis backends and easier to find
when ECOs are needed.

2.4 Modular compilation and traceability

Esterel programs can involve calls to submodules. For instance, a Fifo is composed of a controller
and of a memory linked by auxiliary signals:

module Fifo :

// import the fifo interface description

extends FifoInterface;

// declare local signals and instantiate components

signal {Read , Write } : Address in
run FifoController

||

run Memory

end signal

There are two main modes of HDL generation: global, where submodule assembly codes are
inlined in the global module code; modular, in which submodules are compiled separately into
HDL designs and instantiated in the main module HDL. Modular compiling is necessary for large
applications, while global compiling makes it possible to deeply optimize modules by analyzing
their global behavior. Mixed modes where some modules are inlined and others separately
compiled is also available.

A potential problem with global compiling is gate name instability. To explain it, consider
the global Fifo assembly code:

0: 0 Root : (1)

1: 0 SigScope : [Read , Write ] (2 , 20)

2: 1 Pause : (3) <0 > -- start of FifoController

3: 1 ...
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...

20: 2 SigScope : [ MemoryArray ] (21) - - start of Memory

21: 2 If: [ Write ] (22 , 35)

22: 2 ...

...

The module index tells which module a statement comes from: 0 for the main module, 1 for
FifoController, 2 for Memory. In the circuit translation, submodule numbering is kept in
gate names, as for Then_21_2 generated by statement 21. However, the statement number
itself is unstable: adding one statement by a local change in FifoController modifies the
numbering of the statements and gates in the instantiated Memory. Using the -eco option of
the Esterel compiler, we alleviate this problem by naming the gates relatively to their position
in the submodule instance. In this case, the Then_21_2 gate is renamed Then_1_2.

Finally, gates must be sorted according to control and data dependencies before being printed
in HDL or C. Little changes in source code can have dramatic effect on the resulting order. To
improve code stability for ECOs, we dissociate the gate definitions and the gate instantiation
ordering, printing the gate definition in statement order and their instantiation in causal order.
This will not be detailed further.

2.5 Traceability from graphical state machines

Esterel supports program design by hierarchical and concurrent safe state machines (SSMs),
an evolution of C. André’s SyncCharts [1] supporting Mealy and Moore machines. SSMs are
translated into textual Esterel source code to be compiled. In SSMs, only terminal states without
contents generate control registers; transitions, concurrency, and hierarchical macro-states only
generate combinational logic. Terminal states can be named, and the names are propagated
to generated Esterel pause statements using the @ tag symbol. Then, when using the -eco
compiler option discussed in Section 2.4, graphical state names are pushed into HDL register
names.

3 Sequential optimization

The reader may have found that the circuit in Figure 2 is too heavy for the purpose. This is
typical for a circuit generated in syntax-directed translation by high-level synthesis, to which
two kinds of optimizations must be applied:

• Combinational optimizations, which are classical in synthesis backends. They aggregate
gates, remove logical redundancies, and simplify and reshape the logic using for instance
don’t care calculations [12]. In Figure 2, it is clear that the connection from R4 to Cont4
is redundant and can be removed. In practice, it is easier to leave such a simplification to
the general combinational optimization pass performed by HDL synthesis front-ends.

• Sequential optimizations, which changes how the state is encoded by registers. This step is
not done by standard synthesis backends and is found only in few systems such as Esterel
or PBS [9]. We detail it in this section.

For sequential optimization, the simplest idea would be to count the number of reachable states
of the design, say N , and to allocate log2(N) registers to hold them. In practice, this fails since
the necessary state encoding / decoding circuitry tends to blow up. Finding the right register
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allocation is difficult even for small designs. Furthermore, even if an optimal allocation is found,
the obtained circuit can be quite bad in overall terms because of encoding combinational logic
complexity. In practice, it is better to look for less aggressive register reduction schemes that
try to ensure a better register / logic compromise by respecting the behavioral structure of the
design,

Therefore, for Esterel optimization, we try to respect the initial encoding while removing its
redundancies in a controlled way. We use algorithms presented in [13, 10, 11]. Here, we briefly
present the three main ones: redundant register elimination, incompatible registers folding, and
boot register elimination. We apply these techniques only on the control path of the circuit,
because the data path needs to be handled very differently.

3.1 Redundant register elimination

We say that a register is redundant if it can be replaced by a function of the other registers
without altering the sequential behavior of the circuit. For instance, in the circuit of Figure 2,
we can replace R8 by “not(Boot or R4)”. The newly generated function can be merged with
the rest of the combinational logic and simplified with it.

In [4], Madre and Coudert have presented a simple algorithm to check whether a given
register r is redundant. Let �r be the vector of all registers, and let R(�r) be the characteristic
function of the reachable state space of the circuit. Call Rr and Rr the positive and negative
cofactors of R by r, characterized by the Shannon decomposition R = rRr +rRr. The cofactors
are functions of the variables in �r′ = �r−{r}. Then r is redundant if and only if the conjunction
Rr(�r′)Rr(�r′) of the cofactors is 0. One can replace r either by the positive cofactor Rr(�r′)
or by the negation of the negative cofactor Rr(�r′), whichever expression is simpler (they are
functionally equal).

Of course, deciding whether a redundant register replacement is useful is a very difficult
global optimization problem. We use heuristics based on the size of the cofactor supports
(active variables).

3.2 Merging exclusive register groups

Consider the following Esterel program:

{ await A || await B };

{ await C || await D };

emit X

The behavior goes in two phases: waiting for the last of A and B, and waiting for the last of C
and D to emit X. Call RA, RB, RC, and RD the 4 registers generated by the 4 await statements.
Then RA and RB are concurrent and can take any of the possible 4 value pairs, and so are RC
and RD. However, the RA-RB and RC-RD groups are dependent: the disjunction predicates RA∨RB
and RC ∨ RD are exclusive, i.e. cannot be true together. Therefore, we can safely superpose the
register pairs using an auxiliary switch register SW. For instance, we can use two registers RE
and RF and set RA = RE ∧ SW, RB = RF ∧ SW, RC = RE ∧ SW, and RD = RF ∧ SW. We are left with
3 registers instead of 4 at the cost of introducing some combinational gates that could possibly
be optimized away by combinational optimization. The effect would be more pronounced if the
sequential components had more registers.

Notice that exclusive register folding can be detected from source code only, without comput-
ing reachable states. This is a clear advantage of explicit parallel / sequence temporal structures
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over the classical HDL division between combinational and sequential processes. Knowing when
to effectively apply exclusive register folding is subject to heuristics that are outside the scope
of this paper.

3.3 Boot register elimination

In the circuit translation from Esterel, the initial instant is always triggered by the single Boot
register, all other registers being initialized to 0. It may happen that this initial global state can
be suppressed by removing the Boot register and changing the initial value of the other registers.
In this case, the new circuit is obviously simpler. This is possible if there exists an initial value
allocation to the other registers that leads to the same behavior and the same target states as
the initial boot state. Algorithms are presented in

3.4 Reversible and traceable sequential optimization

An important property of the sequential optimizations we have presented is that they are re-
versible: the suppressed registers can be reconstructed from the kept ones. This will be very
important for ECOs. In practice, we iteratively chain several optimization algorithms. To be
able to reconstruct the old registers in function of the new ones, we could keep the undo infor-
mation at every optimization step, which would be fairly error-prone. We find it much simpler
to use a simpler trick: add the original registers as outputs of the circuit before running the
optimization algorithms. The trick has an additional advantage: it makes it possible to use any
optimizer and to optimize the circuit as a black box.

Technically speaking, call C the original circuit, �i its input vector, �o its output vector, and
�r its register vector. The circuit is determined by the combinational function (�o, �r′) = C(�i, �r),
where �r′ is the new state vector for registers. Keeping the original registers as outputs amounts
to consider a circuit C�r of the form (�o, �r′, �r) = C�r(�i, �r), where the input-output transformation
from �r to �r is simply the identity function. Sequentially optimizing C�r yields a new set of
registers �s and a new circuit D having type (�o,�s′, �r) = D(�i, �s). When running D, on an input
sequence, the values of the original register vector �r of C is directly recovered from D’s outputs.

From D, we can recover two circuits: the one for actual synthesis, obtained by dropping
the �r outputs and performing further combinational optimization to remove combinational logic
necessary only for the �r fake output; the one for register reconstruction, obtained by retaining
only the �r output of C, which we call D�r. The latter circuit summarizes all the undo parts of
sequential optimizations, since any original register in �r can be reconstructed by combinational
logic from the final registers in �s and the inputs in �i, which are the same as for C.

Since we keep the �r output, the sequential optimization of D may be less efficient than that
of C. In particular, state graph minimization cannot be used since it would collapse states.

For instance, here are the figures for a relatively large protocol state machine. The original
circuit has 55 latches and yields a cell area of 959 when compiled with design compiler. The
Esterel standard sequential optimization (heavy mode) yields a circuit with 34 latches and cell
area 614. Keeping the original registers as output yields a circuit with 38 registers and area 652,
which is 6% bigger.

9



Figure 3: Adding a term in an equation

4 ECO examples in unoptimized mode

We present in this section different ECO manipulations corresponding to common bug fixes in
a control path. The assumption is that the fix is easily done in the source model. But the
circuit being already signed-off, it is not possible to use the modified model and generate a new
layout. Instead, one must identify which changes of the already generated circuit correspond to
the change in the Esterel model.

We consider here unoptimized designs. Section 5 will show how the same manipulations can
be performed on sequentially optimized designs.

4.1 Adding a term in an equation

Consider the program of Figure 3. It is made of an explicit automaton and of a textual
equation in parallel. The END state is a macrostate whose contents will be presented in the
next section. Here, the goal is to add the prim_pmreq_det literal to the definition of MovePrim,
which has been done in Figure 3 but not yet in the current HDL code, signed-off before this
change. In Esterel Studio, by clicking on the sustain statement, we print the list of HDL
variables generated by the equation. Then, we read their equations in the HDL code, which are
as follows:

Go_106_0_L0D0 := Cont_108_0_L0D0 or Boot_0_0

Or_1_107_0_L0D0 := Status_prim_sync_det_S7_0

or Status_prim_xrdy_det_S8_0

And_0_107_0_L0D0 := Status_rx_adv_S5_0 and Or_1_107_0

SigExpTrue_107_0_L0D0 := Go_106_0 and And_0_107_0

10



Figure 4: Adding a transition in a FSM

Status_movePrim_S15_0 := SigExpTrue_107_0

The signal status gates bear the names of the signals. We directly see that movePrim is emit-
ted when Go is true and the decomposed Boolean expression (from the second and the third
equations) is true. Notice that actual IO signals keep their names while local signals gener-
ate variables of the form Status_movePrim. The ECO simply consists in changing the second
equation into

Or_1_107_0_L0D0 := Status_prim_sync_det_S7_0

or Status_prim_xrdy_det_S8_0

or prim_pmreq_det

4.2 Adding a transition between two states

Figure 4 shows the contents of the macro-state labelled END in Figure 3. We now want
to add a transition between BAD1 and BAD3, with trigger “tx_adv and prim_pm_req_det”.
The first step is to find the state registers and their inputs in the HDL code. Here, we
can directly look for the BAD1 and BAD2 names, and we find registers PauseReg_BAD1_53_0
and PauseReg_BAD3_37_0 with respective combinational inputs PauseRegIn_BAD1_53_0 and
PauseRegIn_BAD3_37_0. Clicking on the states of the FSM also show the corresponding regis-
ters.

11



We need to modify the input equations of BAD1 as emphasized below (new code in italic):

PauseRegIn_BAD1_53_0 :=

Go_51_0_L0D0

and not(PauseReg BAD1 53 0 -- in BAD1

and tx adv and prim pmreq det); -- trigger true

The change ensures that Bad1 is exited when the trigger is true. For BAD3, the change is more
intricate:

PauseRegIn_BAD3_37_0 :=

Go_35_0

or (PauseReg BAD1 53 0 -- in BAD1

and tx adv and prim pmreq det -- trigger true

and not phy ready deasserted -- go to IDLE state

and not Status movePrim S15 0); -- go to BAD2 state

Notice that actual IO signals keep their names while local signals generate variables of the form
Status_movePrim. The last two negated signals are necessary to ensure that the new transition
has a lower priority than the existing ones from BAD1 to IDLE (preemption as seen on Figure 3),
and to BAD2.

4.3 Adding a new state

Adding a new state essentially consists in adding a new pause register and new equations for the
transitions, which is done similar to the example explained in the previous section. Therefore,
it is not more difficult.

4.4 Validating the ECOs

To prove ECO correctness, we use the fsm_verify sequential equivalence checker already men-
tioned in Section 1. We compile the new Esterel program into blif using the Esterel compiler,
and we compile the new HDL program into blif using a synthesis tool such as Design Com-
piler and a blif library. We prove sequential equivalence between both blif designs using the
fsm_verify. This technique has proved efficient for relatively large control-dominated designs.
Of course, any HDL sequential equivalence technique is usable as well. If the modifications do
not alter the register set, a combinational equivalence is sufficient.

5 ECOs on optimized designs

Let us assume we want to perform the ECO of Section 4.2 after sequential optimization. The
direct identification of registers and gates has become impossible. However, if we use ECO-
friendly optimization, we know how to re-generate the old registers as function of the new ones.
Here, the register correspondence from the 11 original registers to the 5 new ones is as follows:

12



Original register Function of new registers
PauseReg_107_0 not eco_31 or not eco_23 or eco_1

Boot_0_0 not eco_1 and eco_23 and eco_31
PauseReg_BAD3_37_0 eco_1 and eco_13
PauseReg_BAD1_53_0 eco_1 and eco_23 and eco_27
PauseReg_BAD2_45_0 eco_1 and eco_23 and eco_31
PauseReg_GOOD3_67_0 not eco_1 and eco_23 and eco_27
PauseReg_GOOD1_83_0 eco_1 and not eco_23 and eco_27
PauseReg_GOOD2_75_0 eco_1 and not eco_23 and eco_31
PauseReg_IDLE_100_0 not eco_1 and not eco_23 and eco_31
PauseReg_ABORT_17_0 not eco_1 and not eco_23 and eco_27
PauseReg_RECEIVE_92_0 not eco_1 and eco_13

5.1 Adding extra logic to exit a state

To add the required transitions from BAD1, we must first modify the way in which we exit state
BAD1.

variable in BAD1 : std logic;

variable eco exit BAD1 : std logic;

in BAD1 := Aux 1 eco 1 and Aux 3 eco 23 and Aux 4 eco 27;

eco exit BAD1 := in BAD1 and tx adv and prim pmreq det;

V7_Aux_1_eco_1_last <= Aux_73_eco_2 and not eco exit BAD1;

V7_Aux_3_eco_23_last <= Aux_76_eco_24 and not eco exit BAD1;

V7_Aux_4_eco_27_last <= Aux_79_eco_28 and not eco exit BAD1;

The equation defining in_BAD1 comes directly from the table above. The state BAD1 is
encoded in the optimized circuit with the three registers eco_1, eco_23, eco_27 having the
value 1. So we complete the input equations of these registers such that their values are false
when the control exits the state BAD1, which is represented by the new signal eco_exit_BAD1

5.2 Adding extra logic to enter a state

New logic is also added to enter state BAD3: the optimized registers encoding BAD3 are or-ed
with the new transition trigger. Here also, one must take care of transitions from BAD1 to
IDLE (triggered by phy_ready_deasserted) and to BAD2 (triggered by movePrim), which have
a highest priority. Since Phy_ready_deasserted is a primary input, it is still present in the
optimized circuit. The internal signal movePrim has been optimized away in the optimized
circuit, and we must reconstruct it. Looking at the table above, we see that BAD2 is encoded as
(eco_1 and eco_23 and eco_31). Therefore the transition from BAD1 to BAD2 is taken when
in_BAD1 and the inputs of eco_1, eco_23 and eco_31 are all 1. The HDL code is modified to
reflect changes on the inputs of registers encoding BAD3, i.e. eco_1 and eco_13:

variable BAD1 to BAD2 : std logic;

variable BAD1 to IDLE : std logic;

variable exit BAD1 : std logic;

BAD1 to BAD2 := in BAD1 and Aux 73 eco 2 and Aux 76 eco 24 and Aux 83 eco 32;

BAD1 to IDLE := in BAD1 and phy ready deasserted;

exit BAD1 := BAD1 to BAD2 or BAD1 to IDLE;
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V7_Aux_1_eco_1_last <= ( Aux_73_eco_2 and not eco_exit_BAD1)

or (eco exit BAD1 and not exit BAD1);

V7_Aux_2_eco_13_last <= Aux_68_eco_14

(eco exit BAD1 and not exit BAD1);

Further these new Boolean expressions must be optimized to reduce extra logic.

5.3 Adding a new state

Adding a new state in an optimized circuit can be performed by adding a new register, or by
using a previously unused encoding of the existing registers. The first approach is simple and
done as already explained in this paper. The second approach is more difficult because the
existing transitions to and from the states encoded with the reused registers are impacted.

5.4 Validating the ECOs

The ECO is validated in the same way as for unoptimized circuits and as explained in Section 4.4.
Note that the correspondence table between the original registers and the new ones is useful
for equivalence checking between the two versions of the same circuit: the unoptimized one and
the optimized one. Indeed, we can build a new circuit by composing the optimized circuit D
with D�r, this new circuit can be formally compared to the original circuit using a combinational
equivalence checking. This is much more efficient than sequential equivalence checking.

6 Conclusion

We have shown that ECO is tractable even in the case of heavy sequential optimization of control-
dominated designs written in Esterel. The three key ideas are modular synthesis, traceability
from source code to circuits and back, and reversible sequential optimization. In particular,
we have shown that sequential optimization reversibility makes it possible to transform the
sequential ECO problem into the more classsical combinational ECO problem by reconstructing
the removed registers. After ECO is performed, sequential equivalence techniques are used to
verify circuit changes w.r.t. source code changes. The ECO flow we have described is supported
by the Esterel Studio tool suite.

Acknowledgements: we thank Marc Perreaut for his help during this work.
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Sequential optimization techniques fall in two broad categories: state-based and structure-based [4]. Structure-
based techniques optimize a circuit netlist by interleaving retiming and combinational synthesis in different ways to
improve design metrics such as delay, area, and power. Examples of such optimizations include among others: pe-
ripheral retiming [7], architectural retiming [6], and iterative retiming and resynthesis [2]. While structure-based
synthesis algorithms can handle relatively large netlists, current sequential equivalence verification algorithms are
not as scalable and as robust. We believe that the absence of a reliable verification framework for such sequential
optimization hinders their industrial acceptance despite potential improvements in design quality.

Sequential equivalence verification can be reduced to the problem of model checking safety properties. Howev-
er, such a reduction fails to recognize the inherent structural and functional relation between verified circuits; such a
relation is a direct consequence of transformations applied during structure-based sequential synthesis. We believe
that realizing this relation is key to making sequential equivalence verification tractable. 

van Eijk [2] describes an algorithm that utilizes structural similarities between nodes in the circuits being veri-
fied. The algorithm finds equivalent nodes by partition-refinement until a fixed point is reached. Since the algorithm
is incomplete (might generate false negative results), van Eijk suggests adding “retiming logic”; still, false negates
are not completely eliminated. In [1], this approach is combined with induction [9] to achieve completeness. Howev-
er, induction-based methods might require increasing the induction depth to a large value before reaching an induc-
tive invariant. 

In this paper, we present a robust and complete verification algorithm for one class of structure-based sequential
synthesis: a sequence of retiming steps followed or preceded by a sequence of combinational synthesis steps. An ex-
ample of an optimization in this class is: retiming for minimum area followed by combinational synthesis for mini-
mum delay followed by mapping to a technology library. In addition, we present possible generalizations of the
approach to handle peripheral retiming and other structure-based sequential synthesis techniques. 

The intuition behind the algorithm is the notion of retiming invariants [8]: retiming induces a functional relation
among the latches of the two circuits; we call such a relation the retiming invariant. By computing the retiming in-
variant or a stronger invariant (another invariant that implies it), equivalence can be easily proved/disproved. The in-
completeness of van Eijk’s algorithm is a consequence of missing some of the retiming-induced latch relations
critical to proving equivalence. We show that by extending partition refinement to include nodes at different time
frames, the approach becomes complete. This extension generalizes the notion of “retimed logic” provided by van
Eijk. We show how the equivalences at different time frames are utilized to construct retiming-induced functional
relations. At the heart of this construction is an algorithm for computing generalized dominators [ref] in graphs. We
present efficient methods to compute these dominators on directed acyclic graphs (the algorithms in [ref] work on
control flow graphs). We also show the relation that exists between the number of time frames needed to prove/dis-
prove equivalence and the number of latches moved across gates during retiming. 

We implemented the above algorithm in C++. We present experimental results comparing this approach with
van Eijk’s method, induction and forward image computation for the ISCAS 89 circuits. 
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ABSTRACT
This paper describes reFLect, a functional programming lan-
guage with reflection features intended for applications in
hardware design and verification. The reFLect language is
strongly typed and similar to ML, but has quotation and an-
tiquotation constructs. These may be used to construct and
decompose expressions in the reFLect language itself. The
paper motivates and presents the syntax and type system
of this language, which brings together a new combination
of pattern-matching and reflection features targeted specifi-
cally at our application domain. It also gives an operational
semantics based on a new use of contexts as expression con-
structors.

1. INTRODUCTION
In this paper we describe reFLect, a new programming lan-
guage for applications in hardware design and verification.
The reFLect language is strongly typed and similar to ML [13]
but has quotation and antiquotation constructs. These are
used to construct and decompose expressions in the reFLect

language itself and provide a form of reflection, similar to
that in LISP but in a typed setting. The design of reFLect

draws on the experience of applying an earlier reflective func-
tional language called FL [1] to large-scale verification prob-
lems at Intel [16, 17, 18].

Hardware designs are modeled as reFLect programs. As with
similar work based on Haskell [6, 22] or LISP [15, 19], a
key capability is simulation of hardware models by execut-
ing functional programs. In reFLect, however, we also wish
to do various operations on the abstract syntax of models
written in the language—for example circuit design trans-
formations [30]. Moreover, we want the reFLect language to
form the core of a typed higher-order logic for specifying
and verifying hardware properties [10, 23], and simultane-
ously the implementation language of a theorem prover for
this logic.

Formal reasoning about hardware is performed using the
Forte tool [16], which was originally designed around FL
but now uses reFLect. Forte includes a theorem prover of
similar design to the HOL system [11]. In such systems the
object language is embedded as a data-type in the meta-
language. Representing object-language expressions as a

∗This paper is dedicated to the memory of our friend and
colleague Rob T. Gerth, who provided many insightful and
helpful comments on the material contained herein.

data-type makes it straightforward to implement the vari-
ous term analysis and transformation functions required by
a theorem prover. But separating the object-language and
meta-language causes duplication and inefficiency. Theorem
provers like HOL, for example, include special code for effi-
cient execution of object-language expressions [5].

In reFLect we have made the data-structure used by the un-
derlying language implementation to represent syntax trees
available as a data-type within the language itself. Func-
tions on that data-structure, like evaluation, are also made
available. Our aim was to retain all the term inspection and
manipulation abilities of the conventional theorem prover
approach while borrowing an efficient execution mechanism
from the meta-language implementation.

The logic of HOL-like systems is constructed following the
model of Church’s formulation of simple type theory [7], in
which higher-order logic is defined on top of the λ-calculus.
Our theorem prover follows this approach and constructs a
variant of higher-order logic on top of the reFLect language.
The reduction rules for the language in this paper are among
the inference rules in our higher-order logic.

The applications just described give intensional analysis a
primary role in reFLect. The design of our language is there-
fore different from staged functional languages like MetaML
[33] and Template Haskell [28], which are aimed more at pro-
gram generation and the control and optimization of evalu-
ation. The reFLect language also provides a native pattern
matching mechanism designed to make it easy to analyze the
structure of code (and logical formulas).

In the sections that follow, we describe reFLect by presenting
extensions to the λ-calculus that implement its key features.
We first discuss in a bit more detail how the features of
the language support our intended applications. We then
present the syntax and type system, and give an operational
semantics of evaluation. Details of a scheme for compiling
reFLect into into the λ-calculus can be found in our technical
report [12], from which this paper has been derived. This
compilation scheme forms the basis of the reFLect implemen-
tation used at Intel.

2. MOTIVATION AND EXAMPLES
The reFLect language augments λ-calculus with a form of
quotation, written by enclosing an expression between ‘〈〈’



and ‘〉〉’. The denotation of a quoted expression is its own
abstract syntax. There is also an antiquotation mechanism,
written by prefixing an expression with ‘̂ ’, that escapes the
effect of a quotation. Quotation and antiquotation may also
be used for pattern matching.

These reFLect features meet three related demands of our
intended applications in hardware modeling and theorem
proving. First, antiquotation and pattern matching make it
easy to write term manipulation functions—specifically, the
kinds of term manipulation needed to implement a theorem
prover, but also term manipulations that do circuit trans-
formation. Second, the reflection features of reFLect allow
us to mix evaluation and theorem proving. Finally, reFLect

quotation provides a flexible framework in which to embed
both logics and domain-specific languages.

2.1 Term Manipulation
Theorem proving systems like HOL have many ML functions
for constructing and destructing terms the object language.
Function applications are a typical example: HOL provides
an ML function that maps terms ‘f ’ and ‘x’ to the function
application term ‘f ·x’, and an ML function that takes an
application term ‘f ·x’ apart and returns the subterms ‘f ’
and ‘x’.

Analogous functions can be implemented in reFLect for con-
structing and destructing quoted reFLect applications. The
definitions are as follows:

let make apply = λf .λx. 〈〈̂ f ·̂ x〉〉
let dest apply = λ〈〈̂ f ·̂ x〉〉. (f, x)

A more complex example is the reFLect function below, which
traverses a quoted reFLect expression and swaps the operands
of any occurrence of the infix function ‘+’.

letrec comm = λ〈〈̂ x+ ŷ〉〉. 〈〈̂ (comm·y) + (̂comm·x)〉〉
||| λ〈〈̂ f ·̂ x〉〉. 〈〈̂ (comm·f)·̂ (comm·x)〉〉
||| λ〈〈λ̂ p. b̂〉〉. 〈〈λ̂ p. (̂comm·b)〉〉
||| λ〈〈λ̂ p. b̂ ||| â〉〉. 〈〈λ̂ p. (̂comm·b) ||| (̂comm·a)〉〉
||| λx.x

For example, the application comm·〈〈λx.m ∗ x+ c〉〉 evalu-
ates to 〈〈λx. c+m ∗ x〉〉.

The merit of this pattern-matching style of programming
is that it gives compact code that is also easy to read and
understand. Aasa, Petersson and Synek [2] advocate a sim-
ilar mechanism, called quotation patterns, for manipulating
object-language expressions within a meta-language. Our
experience of implementing a theorem prover in reFLect con-
firms the practical utility of this approach.

2.2 Reflection
The object logic of systems like HOL is typically a version of
higher order logic defined on top of the λ-calculus. Logically,
the construction follows the lines of Church’s formulation of
simple type theory [7], in which primitive symbols are added
for certain constants such as equality and the quantifiers are
defined using λ abstraction. The logic inherits a semantics
for term equality from the λ-calculus; in particular, it in-
herits the various reduction rules of the λ-calculus, which
appear in logic as inference rules.

Defining a logic on top of reFLect gives a higher order logic
that includes the reFLect reduction rules in the same way. In

a theorem prover implemented in reFLect, the data represen-
tations of both the object and meta-languages are the same.
Hence reduction by execution of reFLect programs also di-
rectly implements reduction by formal inference in the logic.
Theorem provers with a separate object and meta languages,
on the other hand, need to include special code for efficient
execution of object-language expressions [3, 5].

This link between program execution and logical inference
provides a form of reflection [14] in the reFLect theorem
prover. We can do equality proofs by term reduction in the
theorem prover efficiently, just by evaluating the reFLect ex-
pressions. In particular, we can prove theorems by using the
reFLect evaluation mechanism to evaluate the statement of
the theorem to true. Conversely, we may obtain any reFLect

program that evaluates to true as a theorem of our logic.

In a system like Forte, the invocation of a model checker
is just a reFLect function call, so reflection also provides a
logically principled connection between theorems in higher
order logic and model checking results. A similar mechanism
called lifted-FL [1] was available in earlier versions of Forte,
but reFLect provides much richer possibilities. For example,
one can use quantifiers to create a bookkeeping framework
that cleanly separates logical content from model-checking
control parameters.

The unification of object language and meta-language data
representations also allows efficient evaluation to be incor-
porated into term rewriting in the theorem prover. If the
reFLect evaluator supports evaluation of ‘open code’, then
this can be extended to do efficient term simplification too.

2.2.1 Embeddings
The quotation construct in reFLect makes the whole of the
reFLect language available as an embedded language within
the reFLect programming language itself. Quotations are es-
sentially a ‘deep’ embedding, in which the embedded lan-
guage is represented as a data type. This is in contrast to
a ‘shallow’ embedding, in which the embedded language is
just a sublanguage of the language in which it is embedded.
In a shallow embedding, one typically defines a collection of
functions to represent various components of the language.
The embedded language itself is then just the collection of
all programs that can be written using these functions.

The merit of a shallow embedding is that it directly inherits
an efficient execution mechanism—as well as an evaluation
semantics—from the programming language in which it is
defined. On the other hand, one cannot define functions
that inspect the syntactic form of phrases in the embedded
language. For example one cannot define functions that do
transformations of expressions in the embedded language.
For this, the language must be deeply embedded as a data
type.

In reFLect we can have much of the power of a deep embed-
ding in a shallow embedding; since we have a built-in deep
embedding of all of reFLect, we also have a deep embedding
of any sublanguage of it. Suppose, for example, we define
a shallow embedding of an HDL into a functional program-
ming language. We could then express circuits in the HDL
as functional programs and simulate them by execution. On
the other hand, if we define the HDL as a data type within
a functional language, then we can write code that inspects
and transforms HDL programs, but we cannot evaluate them



σ, τ, . . . : : = α | β | γ | . . . – A type variable
| (σ1, . . . σn)c – A compound type

Figure 1: The Syntax of Types

vars α = {α}
vars(σ1, . . . σn)c = vars σ1 ∪ . . . vars σn

Figure 2: The Type Variables of a Type

without writing our own evaluator. In reFLect, however, we
can do shallow embedding and get execution, but also use
quotations and pattern matching to inspect and transform
the phrases of the embedded HDL.

3. SYNTAX
The syntax of reFLect is similar to that of the typed λ-
calculus, but with function abstraction constructed over gen-
eral patterns, rather than just variables, and with primitive
syntax for quotations and anti-quotations.

3.1 Types
The reFLect language is simply typed in the Hindley-Milner
style, like ML. A type may be a type variable, written with
a lower-case letter from the start of the Greek alphabet: α,
β, etc.; or a compound type, made up of a type operator ap-
plied to a list of argument types. We use lower-case letters
from the end of the Greek alphabet, σ, τ , etc., for syntac-
tic meta-variables ranging over types. Type operators are
usually written post-fix, but certain binary type operators,
such as → and ×, are written infix. Atomic types, like int
and bool, are considered to be zero-ary type operators ap-
plied to empty lists of arguments. The reFLect type system
contains one interesting atomic type: term, the type of a
quoted reFLect expression. Figure 1 shows the syntax of
the reFLect type system assuming a syntactic class of type
operator symbols, written c.

We assume the existence of a meta-linguistic function vars
from types to the sets of type variables that occur in them.
We also apply vars to sets of types, implicitly taking the
union of their sets of variables. Figure 2 defines the function
vars.

3.1.1 Type Instantiation
A type instantiation is a mapping from type variables to
types that is the identity on all but finitely many arguments.
We use the meta-variables φ and χ to stand for type instan-
tiations. We will write dom φ for the domain of φ, mean-
ing the set of variables for which φ is not the identity. If
dom φ = {α1, . . . αn} and φ αi = σi for 1 ≤ i ≤ n, then we
sometimes write φ as [σ1, . . . σn/α1, . . . αn].

Every type instantiation induces a map from types to types.
For any type σ and instantiation φ we will write σφ for the
result of applying the map induced by φ to σ. The induced
map is described in Figure 3.

3.2 Expressions
The syntax of reFLect expressions, shown in Figure 4, is an
extension of the syntax of the λ-calculus. Uppercase letters
from the middle of the Greek alphabet, Λ, M, etc., range over

αφ = φ α
(σ1, . . . σn)cφ = (σ1φ, . . . σnφ)c

Figure 3: Type Instantiation

Λ,M, . . . : : = k◦◦σ – Constant
| v◦◦σ – Variable
| λΛ. M – Abstraction
| λΛ. M ||| N – Alternation
| Λ·M – Application
| 〈〈Λ〉〉 – Quotation
| Λ̂◦◦σ – Antiquotation

Figure 4: The Syntax of Expressions

expressions. We assume the existence of syntactic classes
of constant names and variable names, ranged over by k
and v respectively. For clarity of presentation, we will write
constants such as +, ∗, ∨ and , (pairing) in infix position.
The syntax requires explicit type annotations for constants,
variables, and antiquotations. For example, v◦◦σ is a variable
with name v and type σ. We may omit type annotations
when the type is easily inferred.

Several extensions over the simple λ-calculus are apparent
from the grammar. These are discussed below.

3.2.1 Constants
Constants are not theoretically necessary in a presentation
of the λ-calculus and are therefore often omitted. They are,
however, important in any practical logic and so we include
them here. Constants also play a special role in reFLect by
facilitating a restricted form of polymorphism.

A practical functional language would normally be based on
an extension of the λ-calculus with a polymorphic local let
construct. However, simple type-theories based on such ex-
tended λ-calculi exhibit Girard’s Paradox [8]. Since we use
the reFLect language as the foundation for such a logic we
must eschew this extension. This does not mean that our
language lacks all polymorphism; constants may be poly-
morphic. We assume a top level let command that defines
a constant to stand for a closed, possibly polymorphic, ex-
pression. The type checking rules given later in section 4.2
will allow that constant to be used at any instance of its
polymorphic type. The logical soundness of this restricted
form of polymorphism is exhibited in Pitts’s semantics for
the HOL logic [11].

3.2.2 Quotations
A reFLect expression may contain a quoted reFLect expression.
These are written using the form 〈〈Λ〉〉. Note that 1 + 2 is
considered semantically equal to 3, but that 〈〈1 + 2〉〉 is con-
sidered semantically different from 〈〈3〉〉. The expressions
1 + 2 and 3 both denote the same integer value, namely 3.
The expression 〈〈1 + 2〉〉 denotes the abstract syntax tree of
the expression 1 + 2, which is different from the abstract
syntax tree of the expression 3.

The reFLect language also has an antiquotation operation,
which is used to remove the quotes from around its argu-
ment. Antiquotation is written Λ̂◦◦σ or (omitting the type)
just Λ̂ and may be used only inside quotation. Section 6.1



will explain how in certain circumstances subexpressions of
the form 〈̂〈Λ〉〉 may be reduced to Λ. As an example, con-
sider the expression 〈〈1 + 〈̂〈2 + 3〉〉〉〉. This expression may be
reduced to to 〈〈1 + (2 + 3)〉〉. The expressions are considered
semantically equal, denoting the same abstract syntax tree.

3.2.3 Abstractions
In the λ-calculus each abstraction binds a single variable.
In reFLect an expression may appear in the binding position
of an abstraction, which then binds all the free variables of
that expression. Not all such expressions will be executable,
though all are meaningful. We leave a precise description of
which expressions are executable until later. Abstractions
with a quotation in the binding position are evaluated by
pattern matching. By using these facilities we may write
an expression like (λ〈〈̂ x+ ŷ〉〉. 〈〈̂ y + x̂〉〉)·〈〈1 + 2〉〉, which is
semantically equal to 〈〈2 + 1〉〉.

Not all attempts to execute an application by pattern match-
ing will succeed, so reFLect includes an alternation construct
that can be used to try alternative patterns. Using this con-
struct we may write the following function that commutes
the arguments of quoted additions and multiplications:

λ〈〈̂ x+ ŷ〉〉. 〈〈̂ y + x̂〉〉 ||| λ〈〈̂ x ∗ ŷ〉〉. 〈〈̂ y ∗ x̂〉〉

Most logical languages omit pattern matching from their ab-
stract syntax so as to simplify their semantics. We con-
sidered doing this with reFLect, but decided against it for
two reasons. The first is that pattern matching quoted ex-
pressions seemed the most natural interface for inspecting
and destructing term values. The second is that we wish to
support reasoning about all well-founded reFLect functions
including those that make use of pattern matching, which
the implemented language also supports on algebraic data-
types. The earlier FL system excluded pattern matching
from the logical language, and so reasoning was performed
on expressions after pattern matching had been translated
into conditional expressions. In reFLect we support reasoning
about expressions in a form closer to the surface syntax in
which the user wrote them.

Syntactically, any reFLect expression can appear as a pat-
tern. A natural alternative would be to have a separate syn-
tactic class of patterns, but this was rejected because in the
implemented language we allow a rather broad class of pat-
terns. These include literal constants for integers, booleans
and string, as well as an open-ended class of patterns built
up from data-type constructors for free algebras. A sepa-
rate grammar for patterns would therefore have to duplicate
much of the expression language anyway. In addition, the
expression of algorithms that traverse expressions would be
more complicated, with separate cases for patterns and other
expressions. Users often write expression-traversal code in
theorem proving and design transformation applications—
unlike in a compiler, where the developers write it once.

We could treat patterns as a subtype of expressions, and use
a runtime check when an expression is antiquoted into a pat-
tern position to confirm that it is a valid pattern. We may
add such a check in a future version of reFLect if our expe-
rience suggests it is warranted and we can devise an imple-
mentation that does not degrade the performance of theorem
proving algorithms that make heavy use of antiquotation for
expression construction.

3.3 Contexts
For later use in describing the semantics of reFLect, we in-
troduce the notation of a context to represent an expression
with a number of holes that occur at specific subexpression
positions in the abstract syntax tree. The notion of context
we use here is similar to that readers may be familiar with
from other language descriptions, except that the holes in
our contexts are typed.

Formally, contexts are described by the same grammar as
expressions, with the addition of a new production to repre-
sent a hole.

Λ,M, . . . : : = . . . (as in Figure 4)
| ◦◦σ – A hole

A hole is represented by the symbol ‘ ’ annotated by a type.
We may omit type annotations on holes in a context when
they are irrelevant or easily inferred.

We use the calligraphic letters, C, D, etc., as syntactic meta-
variables ranging over contexts. We will use the notation
C[ ◦◦σ1, . . . ◦◦σn] to indicate that the context C has the n
holes shown. The order in which the holes are indicated
is unimportant, except that it be must fixed for any given
context. We write C[Λ1, . . .Λn] to stand for the expression
resulting from a context C[ ◦◦σ1, . . . ◦◦σn], where σ1, . . . σn

are the types of Λ1, . . . Λn respectively, in which each hole
◦◦σi has been filled by expression Λi. Note that this is

different from the usual notion of expression substitution, in
that there is no renaming to avoid variable capture.

4. STATIC SEMANTICS
In this section we introduce the two well-formedness criteria
for expressions. The first is a notion of ‘level’ which con-
strains the nesting of quotations and antiquotations allowed
in an expression. The second is a notion of strong typing.

4.1 Level
We use the term level to mean the number of quotations that
surround a subexpression. The level of a quoted subexpres-
sion is one higher than the level of the surrounding expres-
sion. The level of an antiquoted subexpression is one lower
than the level of the surrounding subexpression. The level
of an entire expression is zero, and no expression may occur
at negative level.

Level is an important notion in reFLect because it affects vari-
able binding and reduction. Generally speaking, expressions
that occur at level zero may be reduced while those that oc-
cur at a higher level may not. For example the normal form
of the expression (1 + 2, 〈〈1 + 2〉〉) is (3, 〈〈1 + 2〉〉) because the
first occurrence of 1+2 occurs at level zero in the expression
and therefore may be reduced, while the second occurrence
is at level one and therefore may not.

We formalize our notion of level in relation to contexts.
Since all expressions may be considered as contexts with no
holes, the definitions and properties we describe for contexts
also apply to expressions. We consider a context to be well
formed only if all its holes occur at level zero and no portion
of the context occurs at a negative level. We will say that
such a context is level consistent. For example, ˆ + 1 not
level consistent, but 〈〈̂ + 1〉〉 is.

Figure 5 formalizes our notion of a level consistent context by
defining judgments of the form n � C, which should be read



0 � ◦◦σ n � k◦◦σ n � v◦◦σ

n � C n � D
n � λC.D

n � C n � D n � E
n � λC.D ||| E

n � C n � D
n � C·D

n+ 1 � C
n � 〈〈C〉〉

n � C
n+ 1 � (̂ C◦◦σ)

Figure 5: A Level Consistent Context, n ≥ 0

as ‘C is level consistent at level n’. We may read judgments
of the form 0 � C as simply ‘C is level consistent’. If the
unique derivation of 0 � C contains a subderivation with the
intermediate conclusion n � D, then we say that ‘D occurs
at level n in C’.

The following properties follow from the definition of level
consistency.

Proposition 1. If C contains no holes and n � C, then
m � C for any m ≥ n.

Proposition 2. For any n and C, there is at most one
derivation concluding n � C.

Proposition 3. If C contains one or more holes, then
there exists at most one n such that n � C.

Proposition 4. If Λ is an expression such that 1 � Λ
then there is a unique context C[ ◦◦σ1, . . . ◦◦σn] and set of
expressions M1, . . . Mn such that C [̂ M1

◦◦σ1, . . . M̂n
◦◦σn] is

syntactically identical to Λ and 0 � C[ ◦◦σ1, . . . ◦◦σn].

Proposition 4 allows us to treat contexts as a form of general
constructor for quoted expressions. We will use an expres-
sion of the form 〈〈C [̂ Λ1

◦◦σ1, . . . Λ̂n
◦◦σn]〉〉 under the condition

0 � C[ ◦◦σ1, . . . σn] to stand for any quoted expression with
level zero subexpressions Λ1, . . . Λn. Many of the remaining
figures contain recursive definitions over the structure of ex-
pressions that use this property to give the case for quoted
expressions. Figures 6 and 9 are typical examples. This
mechanism allows us to write our structural definitions such
that they traverse only the level zero portions of an expres-
sion. This contrasts with the presentation technique used for
other reflective languages [33, 28] in which the entire term in
traversed, and the traversal function tracks the level of the
current expression.

4.2 Typing
All quoted expressions in reFLect have the same type, term.
In FL, the type of a quoted expression depended on what was
inside the quote [1]. For example, 〈〈x+ y〉〉 had type int term,
while 〈〈p ∨ q〉〉 had type bool term. The idea was similar to
the code type <σ> of MetaML [33]. But this scheme means
that certain functions that destruct or traverse the structure
of an expression cannot be typed. Such functions are com-
mon in our target application domain of theorem proving;
the functions in section 2 are typical examples.

(mgtype k)φ = σ

� k◦◦σ:σ � v◦◦σ:σ
� Λ:σ � M: τ
� λΛ. M:σ → τ

� Λ:σ � M: τ � N:σ → τ
� λΛ.M ||| N:σ → τ

� Λ:σ → τ � M:σ
� Λ·M: τ

0 � C[ ◦◦σ1, . . . ◦◦σn]
� Λ1: term . . . � Λn: term
� C[v1◦◦σ1, . . . vn

◦◦σn]: τ

� 〈〈C [̂ Λ1
◦◦σ1, . . . Λ̂n

◦◦σn]〉〉: term

Figure 6: A Well Typed Expression

Pas̆alić et al. show how to use dependent types to address the
problem of typing transformation routines [26]. But there
are functions, such as finding free variables, that are im-
portant for implementing theorem provers and which still
cannot be typed in a dependent type system. Even if it
were possible to type such routines with dependent types
we would reject this option because we wish to present our
end-users, practicing hardware design engineers, with the
simplest type system that meets their needs. By giving all
quoted expressions the same type, term, we can type such
expressions in a Hindley-Milner type system. The same de-
cision is made for similar reasons in Template Haskell [28].

This means, of course, that in reFLect some type-checking
must be done at run time.1 For example the expression
〈〈1 + x̂〉〉 is well-typed and requires x to be of type term.
But the further requirement that x is bound only to integer-
valued expressions cannot be checked statically; it must be
enforced at run time.

This design decision goes against the common functional
programming ideal of catching as many type errors as possi-
ble statically. Our approach, however, is similar to the way
typing is handled in conventional theorem-proving systems
that have a separate meta-language and object-language,
such as HOL. Both languages are strongly typed, but evalu-
ating a meta-language expression may attempt to construct
an ill-typed object language expression, resulting in a run-
time error. Our experience in the theorem proving domain
is that this seemingly ‘late’ discovery of type errors is not a
problem in practice.

4.2.1 A Well Typed Expression
We say Λ is well-typed with type σ if it is level consistent and
we may derive the judgment � Λ:σ by the rules of Figure 6.
Some of the rules merit explanation:

• We suppose that each constant symbol k has an as-
sociated most general type, mgtype k. The type of a
constant named k may be any instance of this type.

• A variable may be explicitly annotated with any type,
and it is well-typed with this type.

• If the body of a quotation is well-typed with some
type σ then the quotation is well-typed with type term.
The type of the body does not figure in the type of the
quoted expression as a whole.

1Unlike Template Haskell, in which second-level type errors
can still be caught at compile time.



(mgtype k)φ = σ

Γ � k◦◦σ:σ

(v 
→ σ) ∈ Γ

Γ � v◦◦σ:σ

∆ � Λ:σ (∆ ∪ Γ) � M: τ

Γ � λΛ. M:σ → τ

∆ � Λ:σ (∆ ∪ Γ) � M: τ Γ � N:σ → τ

Γ � λΛ.M ||| N:σ → τ

Γ � Λ:σ → τ Γ � M:σ
Γ � Λ·M: τ

0 � C[ ◦◦σ1, . . . ◦◦σn]
Γ � Λ1: term . . . Γ � Λn: term
∆ � C[v1◦◦σ1, . . . vn

◦◦σn]: τ

Γ � 〈〈C [̂ Λ1
◦◦σ1, . . . Λ̂n

◦◦σn]〉〉: term

Figure 7: Type Inference

• An antiquotation expression will be well typed if the
body of the antiquotation has type term, regardless of
the type annotated on the antiquote.

Proposition 5. For any Λ there is at most one type σ
such that � Λ:σ.

4.2.2 Type Inference
Type inference in reFLect takes user input and constructs
well-typed expressions, attaching the type annotations re-
quired to variables, constants and antiquotations. Users
need not include these annotations in their input, though
they may if they wish a more restricted type than would
otherwise be inferred. The type inference algorithm used
is essentially the Hindley-Milner algorithm, which performs
type-checking relative to an environment associating each
variable with its type. The algorithm is different for reFLect

in that it performs type checking relative to the typing en-
vironment on the top of a stack of such environments. A
fresh environment is pushed for each quotation. The stack
is popped while traversing an antiquotation.

The reFLect type inference system will produce well-typed
expressions with the most general type consistent with the
rules of figure 7. Each judgment of the form Σ � Λ:σ should
be interpreted as meaning that the expression Λ may have
the type σ under the environment Σ. The environment of a
judgment is a map, Γ, from variable names to their types.

Proposition 6. If Σ � Λ:σ can be deduced from the type
inference rules in Figure 7, then � Λ:σ may be deduced from
the type checking rules in Figure 6.

4.2.3 Variables and Types
In reFLect the identity of a variable is determined by the
combination of its name and type. A well-typed expres-
sion may have two or more (different) variables with the
same name but different types. The type inference algo-
rithm will never produce such an expression, but they may
arise as a result of evaluation. For example, the expression
〈〈̂ 〈〈x◦◦α→ β〉〉·̂ 〈〈x◦◦α〉〉〉〉 may be reduced using the rules in

section 6.1 to 〈〈x◦◦α→ β·x◦◦α〉〉. Both these expressions are
well typed according to the definition in figure 6, but only
the first could be constructed by the type-inference system
of figure 7. Accordingly, subject reduction holds of reFLect

only with respect to the notion of being well-typed, not the
stronger property of being type inferable.

Note that while the rules in Figure 7 require variables (in
the same scope) in a common quotation to share a common
type, they do not require variables with the same name in
different quotations to share a type. For example, the type
inference system may construct the well typed expression
f ·〈〈1 + x〉〉·〈〈T ∧ x〉〉.

We could avoid the construction of expressions with multiple
variables of the same name and different type if for quoted
expressions we retained not only the information about the
type of the expression, but also the type-checking environ-
ment describing the types of the variables it contains. For
antiquotations we would record not only the expected type,
but also the prevailing type-checking environment, which de-
scribes expectations about the types of incoming variables.
The operation to splice one expression into another could
then complete a conventional type inference operation on
the entire expression.

This approach is not, however, appropriate for our applica-
tions in theorem proving. Consider the standard logical rule
for conjunction introduction:

� P � Q
� P ∧Q

An implementation of this rule is straightforward in reFLect

using quoted expressions. In the rule, P and Q stand for two
separate and arbitrary boolean expressions, perhaps with
free variables. Logically, the rule is valid even if P and Q
contain variables with the same name but different types.

It would complicate the presentation and use of the logic if
rules like this were restricted with side-conditions to ensure
the consistent typing of variables in the result. The decision
to allow well typed expressions containing variables with the
same name and different types is one that reFLect shares with
the object languages of more conventional theorem proving
systems for typed logics, such as HOL.

4.2.4 Extending Static Typing
It is possible to design a more elaborate static typing sys-
tem than the one just described, with the aim of catching
more type errors before runtime. For example, it shouldn’t
really be necessary to wait until runtime to find out that
〈〈1 + 〈̂〈T〉〉〉〉 is going to run into trouble. The only concern is
that this extension might complicate the static semantics of
the language. The next paragraph shows some less obvious
examples that an extended static type system might detect.

Consider the expression (〈〈1 + x̂〉〉, 〈〈T ∧ x̂〉〉). This expres-
sion is statically well-typed, but at runtime we can already
see that it will fail, because no runtime value of x could
contain simultaneously both an integer and a boolean. Now
consider the expression (〈〈1::̂ x〉〉, 〈〈T::̂ x〉〉). This expression
looks like it might be dynamically type correct as x may
be bound to 〈〈[]◦◦α list〉〉. However, the reduction rules pre-
sented later in Section 6 will not allow the α type variables
in the two copies of this expression to be instantiated, and
so this too will result in a runtime type failure.



◦◦σnφ =

{
◦◦σ , if n > 0
◦◦σφ , if n = 0

k◦◦σnφ =

{
k◦◦σ , if n > 0
k◦◦σφ , if n = 0

v◦◦σnφ =

{
v◦◦σ , if n > 0
v◦◦σφ , if n = 0

(λC.D)nφ = λCnφ.Dnφ

(λC.D ||| E)nφ = λCnφ.Dnφ ||| Enφ

(C·D)nφ = Cnφ·Dnφ

〈〈C〉〉nφ
= 〈〈Cn+1φ〉〉

(̂ C◦◦σ)nφ = Ĉn−1φ
◦◦σ , if n > 0

Figure 8: Type Instantiation of a Context, n ≥ 0

4.2.5 Type Instantiation of Contexts
We may apply a type instantiation to a context by instan-
tiating every type that appears at level zero in the context.
We write Cnφ to indicate the result of applying the type
instantiation φ to the context (or expression) C at level n.
In the case where n is zero we will simply write Cφ. Type
instantiation of a context is defined in Figure 8.

Proposition 7. If 0 � Λ and � Λ:σ, then for any type
instantiation φ 0 � Λφ and � Λφ:σφ

5. ABSTRACTIONS
Abstractions in reFLect are more complex than in the λ-
calculus because any expression may appear in the binding
position. This complicates our notion of variable binding
and therefore our notion of substitution. Binding and sub-
stitution are further complicated by the notion of level. This
section describes binding and substitution, and gives an in-
formal introduction to the meaning of abstraction in reFLect.

5.1 Binding
An abstraction in the λ-calculus is an expression of the form
λv. Λ. The free variables of this expression are the free vari-
ables of Λ except for v, which the expression is said to bind.
Let us ignore the presence of quotation and antiquotation in
reFLect for a moment and imagine a language that allowed
abstractions of the form λΛ. M. We will say that the free
variables of this expression are the free variables of M ex-
cept for the free variables of Λ.

We now consider the effect of level on binding. Consider
λv. v + 1 and λw. 1 + w. These expressions have different
syntax, but they denote the same semantic object, namely
the function that increments its argument. Now consider
〈〈λv. v + 1〉〉 and 〈〈λw. 1 + w〉〉. These expressions denote dif-
ferent semantic objects, namely the syntax of two programs
that compute the increment function in different ways. In
fact, we even consider the expressions 〈〈λv. v〉〉 and 〈〈λw.w〉〉
to be different. They denote semantic objects that represent
the syntax of different programs, albeit different programs
that both compute the identity function.

In reFLect, therefore, the expressions λv. v and λw.w are
equal while 〈〈λv. v〉〉 and 〈〈λw.w〉〉 are not. The unquoted λs
in the first pair of expressions act as binders, but the quoted
λs in the second pair of expressions do not; they act like
syntax constructors. This allows us to write functions that
construct lambda expressions. Consider β-reducing the ex-

free k◦◦σ = {}
free v◦◦σ = {v◦◦σ}
free λΛ.M = free M − free Λ
free λΛ.M ||| N = free λΛ. M ∪ free N
free Λ·M = free Λ ∪ free M
free〈〈C [̂ Λ1

◦◦σ1, . . . Λ̂n
◦◦σn]〉〉 = free Λ1 ∪ . . . free Λn

(where 0 � C[ ◦◦σ1, . . . ◦◦σn])

Figure 9: Free Variables

pression (λv. 〈〈λ̂ v. v̂ + 1〉〉)·〈〈w〉〉 to 〈〈λ̂ 〈〈w〉〉. 〈̂〈w〉〉 + 1〉〉. Sec-
tion 6.1 will explain how this expression may be reduced to
〈〈λw.w + 1〉〉. We can think of the reFLect expression 〈〈λ̂ t. û〉〉
as a meta-language program that constructs an object-level
abstraction. Viewed from this perspective, t is free in this
expression, at least at the meta-level, but any variables in
the value t takes on will be bound at the object level in the
result.

The approach we take is to consider only those variables
that appear at level zero in the binding position of a level
zero abstraction to be bound. For example, consider the
expression λ〈〈̂ x+ ŷ〉〉. 〈〈̂ y + x̂〉〉, which binds x and y. This
denotes a function that pattern matches quoted additions
and commutes them. In contrast, consider the expression
λ〈〈x+ y〉〉. 〈〈y + x〉〉, which binds no variables. This denotes
a function that pattern matches quoted additions where the
first argument literally is ‘x’ and the second argument liter-
ally is ‘y’, and always returns the quoted addition 〈〈y + x〉〉.
Patterns with fixed variable names—like this last one—don’t
appear useful, but they have application in searching for spe-
cific variables in a large expression. Figure 9 shows the def-
inition of a function free, which describes the free variables
of an expression.

5.1.1 Binding and Level
An alternative binding scheme would allow abstractions to
bind variables at equal or higher level. In such a system the
expression (λx. 〈〈x〉〉)·1 would evaluate to 〈〈1〉〉. This binding
scheme is used in MetaML, where it is called cross-stage
persistence.

Cross-stage persistence is not appropriate for the object lan-
guage of a theorem prover for standard logics. Consider the
formula ¬(〈〈x〉〉 = 〈〈1〉〉). This statement seems transparently
true, and indeed reFLect evaluates this expression to true.
We desire this behavior because we want to write programs
that distinguish between the syntax of an object-language
variable x and the syntax of an object-language constant 1.
But if quantifiers were to bind variables at higher levels then
we could make the following sequence of deductions using
standard logical quantifier rules, leading to an inconsistent
logic.

� ¬(〈〈x〉〉 = 〈〈1〉〉)
� ∀x.¬(〈〈x〉〉 = 〈〈1〉〉)
� ¬(〈〈1〉〉 = 〈〈1〉〉)

Suppes [31] also observes this problem and concludes that
‘Rule (II) [the prohibition on binding at higher levels] . . .
is to be abandoned only for profound reasons.’ Taha [32]
observes the same problem from the perspective of including
intensional analysis in MetaML. He notes, as we do, that
intensional analysis requires reductions to be allowed only



at level zero, but that this restriction cannot be enforced
in a language with cross-stage persistence without loss of
confluence.

5.2 The Meaning of Abstractions
The expression that occurs in the binding position of an
abstraction in reFLect is treated as a pattern. As discussed
above, a pattern may bind several variables simultaneously.
A pattern may also be partial, in the sense that it does not
match all possible values of the relevant type. For example,
the pattern in λ〈〈̂ f ·̂ x〉〉. f ranges over only that subset of the
type of expressions containing syntactic applications. When
applied to an expression outside this subset, the result of
this function is unspecified.

Moreover, it is syntactically possible for a pattern to contain
several instances of a variable, as in λ〈〈̂ x+ x̂〉〉. 〈〈2 ∗ x̂〉〉. We
do not require an implementation to evaluate such expres-
sions; any attempt to do so may cause a run-time error.
But because such expressions may occur in a logic based on
reFLect, we need to take at least an informal position on their
semantics, so that basic operations like substitution and type
instantiation respect this semantics.

One possible approach to the semantics of duplicate pat-
tern variables is to consider only the rightmost occurrence
of a variable in a pattern to bind the variable in the body.
Then we would expect (λ〈〈̂ x+ x̂〉〉. 〈〈2 ∗ x̂〉〉)·〈〈1 + 2〉〉 to be
semantically equal to 〈〈2 ∗ 2〉〉. This works for patterns that
are essentially terms in a free algebra. However, in reFLect

any expression can occur in pattern position, so we instead
take the position that in the pattern of a function such as
λ〈〈̂ x+ x̂〉〉. 〈〈2 ∗ x̂〉〉 both occurrences of x bind the variable
x in the body. The pattern then places a constraint on which
applications of the function can be reduced. In this example,
the constraint is that the expression to which the function
must be an additions of two syntactically identical expres-
sions. Hence we expect (λ〈〈̂ x+ x̂〉〉. 〈〈2 ∗ x̂〉〉)·〈〈1 + 1〉〉 to be
semantically equal to 〈〈2 ∗ 1〉〉. If the constraint is not satis-
fied, then application of the function is not defined.

In the HOL logic, we would usually express this kind of
partially-defined object as an ‘under-specified’ total func-
tion [24]. Formally, one uses a selection operator [21] to
construct an expression ‘ε x.P [x]’ with the meaning ‘an x
such that P [x], or a fixed but unknown value if no such x
exists’. With this approach, we can view the abstraction
λΛ. M as an abbreviation for

εf . ∀ free Λ. fΛ = M

For example, λ(x, y). y is the function εf . ∀x y. f(x, y) = y.
We may then view λΛ.M ||| N as an abbreviation for

λv. if (∀ free Λ. v �= Λ) then N v else (λΛ.M) v

where the variable v is chosen to be distinct from all variables
in free{Λ,M,N}.

5.3 Substitution and Type Instantiation
Substitution and type instantiation in reFLect are a little
more complex than in the λ-calculus, owing to the pres-
ence of pattern matching. The two operations are defined as
follows.

5.3.1 Substituting Expressions

k◦◦σθ = k◦◦σ
v◦◦σθ = θ(v◦◦σ)
(λΛ. M)θ = λΛι. Mιθ
(λΛ. M ||| N)θ = λΛι. Mιθ ||| Nθ
(Λ·M)θ = Λθ·Mθ
〈〈C [̂ Λ1

◦◦σ1, . . . Λ̂n
◦◦σn]〉〉θ = 〈〈C [̂ Λ1θ◦◦σ1, . . . Λ̂nθ◦◦σn]〉〉

(where 0 � C[ ◦◦σ1, . . . ◦◦σn] and
ι is a renaming such that:

dom ι ⊆ free Λ, and dom θ ∩ ι(free Λ) = {}, and
(free M − free Λ) ∩ ι(dom ι) = {}, and
free(θ(free M − free Λ)) ∩ ι(free Λ) = {})

Figure 10: Substitution

A substitution is a mapping from variables to expressions of
the same type that is the identity on all but finitely many
variables. We typically use the meta-variables θ and ι to
stand for substitutions. We write dom θ for the domain of θ,
meaning the set of variables for which θ is not the iden-
tity. If dom θ = {v1◦◦σ1, . . . vn

◦◦σn} and θ(vi
◦◦σi) = Λi for

all 1 ≤ i ≤ n, then we sometimes write θ using the nota-
tion [Λ1, . . .Λn/v1◦◦σ1, . . . vn

◦◦σn]. A renaming is an injective
substitution that maps variables to variables.

For any expression Λ and substitution θ we may write Λθ
to stand for the action of applying the substitution to all
the free variables of Λ, with appropriate renaming of the
bound variables in Λ to avoid capture. Figure 10 defines
this operation.2

Note that substitution must be consistent with the interpre-
tation we place on repeated pattern variables. We require
the result of (λ(x, x). y) [x/y] to be λ(x′, x′).x. That is, both
occurrences of x in the pattern are renamed.

Proposition 8. If 0 � Λ and � Λ:σ, then for any substi-
tution θ 0 � Λθ and � Λθ:σ.

Most HOL-style theorem provers have a more general substi-
tution primitive, which allows one to substitute for arbitrary
subexpressions occurring free in an expression, not just for
free variables. This is also the case in the reFLect theorem
prover, but variable-substitution suffices for presenting the
operational semantics.

5.3.2 Type Instantiation
We may also apply a type instantiation to an expression.
For any expression Λ and type instantiation φ, we write Λφ
to mean the result of applying the instantiation to the ex-
pression. This applies the instantiation to every level zero
type in the expression, using the notion of instantiation de-
fined in Section 3.1.1. Since the identity of a variable in
reFLect consists of its name and type, we need to rename
bound variables to avoid capture during a type instantia-
tion. For example, (λ(x◦◦α, x◦◦β).x◦◦α)[β/α] should produce
λ(x′◦◦β, x◦◦β).x′◦◦β or λ(x◦◦β, x

′◦◦β).x◦◦β.

The formal definition of type instantiation for expressions is
similar to the definition of substitution in Figure 10. Note
that Λφ is not the same as the context type instantiation

2In the condition of figure 10, ι, θ, and free are implicitly
extended to image functions over sets where required.



� definition k: τ τφ = σ

� k◦◦σ → (definition k)φ
[δ]

pattern Λ Λ ready Ξ (Λ, θ) matches Ξ

� (λΛ.M)·Ξ → Mθ
[β]

pattern Λ Λ ready Ξ (Λ, θ) matches Ξ

� (λΛ. M ||| N)·Ξ → Mθ
[γ]

pattern Λ Λ ready Ξ � ∃θ. (Λ, θ) matches Ξ

� (λΛ. M ||| N)·Ξ → N·Ξ [ζ]

0 � C[ ◦◦σ1, . . . ◦◦σn] � Λ1:σ1φ . . . � Λn:σnφ

dom φ ⊆ vars{σ1, . . . σn}
� 〈〈C [̂ 〈〈Λ1〉〉◦◦σ1, . . . 〈̂〈Λn〉〉◦◦σn]〉〉 → 〈〈Cφ[Λ1, . . .Λn]〉〉 [ψ]

Figure 11: Reduction

operation Cφ in Figure 8, which does not rename variables
to avoid capture. We will not use type instantiation on ex-
pressions as described here until section 7.1.

6. OPERATIONAL SEMANTICS
Figures 11 and 12 present the reduction rules for evaluating a
reFLect expression. The rules in Figure 11 describe individual
reductions, while those in Figure 12 describe how reductions
may be applied to subexpressions. The judgments are of the
form � Λ → Λ′, which means that Λ reduces to Λ′ in one
step. These rules ensure that reductions apply only to level
zero subexpressions, and then only to those that do not fall
in the binding position of a level zero abstraction. We use

the standard notation � Λ
∗→ Λ′ to indicate that Λ can be

reduced to Λ′ in zero or more steps. This is formalized in
figure 13.

The rules of Figure 11 use some auxiliary meta-functions,
which we briefly introduce here and describe in more detail
later. The function definition returns the definition of a con-
stant. The predicate pattern characterizes the expressions we
consider valid for pattern matching against, variables or quo-
tations whose level zero subexpressions are variables. The
relation (Λ, θ) matches Ξ means that applying the substitu-
tion θ to the pattern Λ causes it to match the expression Ξ
(in a sense we define precisely later). The relation Λ ready M
means that the expression M has been sufficiently evaluated
to determine whether or not it matches the pattern Λ.

Proposition 9. If 0 � Λ and � Λ:σ, then for any M such

that � Λ
∗→ M we have 0 � M and � M:σ.

Proposition 9 is the subject reduction property for reFLect.
The property states that a level consistent and well typed ex-
pression remains so as it is reduced, and that the expression
retains the same type as it is reduced. Krstić and Matthews
have a proof of this property [20].

6.1 Reducing Quotations
The rule for ψ-reduction in Figure 11 allows the elimination
of antiquoted quotations at level one. The rule caters for
the possibility that the type variables of a quoted region
may need to be instantiated in order to be type consistent

� M → M′

� λΛ.M → λΛ.M′

� M → M′

� λΛ.M ||| N → λΛ.M′ ||| N
� N → N′

� λΛ.M ||| N → λΛ.M ||| N′

� Λ → Λ′

� Λ·M → Λ′·M
� M → M′

� Λ·M → Λ·M′

0 � C[ ◦◦σ1, . . . ◦◦σm, . . . ◦◦σn] � Λm → Λ′
m

� 〈〈C [̂ Λ1
◦◦σ1, . . . Λ̂m

◦◦σm, . . . Λ̂n
◦◦σn]〉〉 →

〈〈C [̂ Λ1
◦◦σ1, . . . Λ̂′

m
◦◦σm, . . . Λ̂n

◦◦σn]〉〉

Figure 12: Reducing Subexpressions

� Λ
∗→ Λ

� Λ → M � M
∗→ N

� Λ
∗→ N

Figure 13: Reduction Closure

with the antiquoted regions being spliced into it. Suppose,
for example, that inc is a constant of type int → int. The
ψ rule lets us reduce 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈1〉〉◦◦α〉〉 to 〈〈inc·1〉〉 by
allowing α and β to be instantiated to int.

This type-instantiation behavior of ψ is the basis for run-
time type checking in reFLect. At compile time, we type-
check quotation contexts at their most general types. Then
at run-time—when the expressions being spliced into the
holes become available—we check type consistency by in-
stantiating the context’s type variables to match the types
inside the incoming expressions. For example, consider the
function comm in Section 2. Static type checking will as-
sign polymorphic types to the quotations in the definition
of comm so that, for example, comm·〈〈inc·(1 + 2)〉〉 reduces
at run time to 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈2 + 1〉〉◦◦α〉〉. Then, using
ψ-reduction, we get the expected expression 〈〈inc·(2 + 1)〉〉.

The rule does not allow reductions to create badly-typed
expressions. For example, we cannot use this rule to reduce
the expression 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈T〉〉◦◦α〉〉. Note also that the
rule does not allow type instantiations of the expressions
inside the antiquotes. For example, we cannot use this rule
to reduce the expression 〈〈̂ 〈〈f◦◦α→ β〉〉◦◦ int → int·1〉〉.

6.1.1 Instantiation Must Affect the Entire Term
One might first imagine a simpler rule for ψ-reduction like
the one shown below:

� Λ: τφ

� 〈̂〈Λ〉〉◦◦ τ → Λ

Unfortunately the effect of this rule does not cover enough
of the expression to ensure type consistency. Consider again
the expression 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈T〉〉◦◦α〉〉. We could use this
incorrect rule to reduce it to 〈〈inc◦◦ int → int·̂ 〈〈T〉〉◦◦α〉〉 and
then again to 〈〈inc◦◦ int → int·T◦◦ bool〉〉.

6.1.2 All Antiquotes Eliminated Simultaneously
The assumption 0 � C[ ◦◦σ1, . . . ◦◦σn] of the ψ-reduction
rule ensures that it eliminates every level one antiquote en-
closed by a given quotation. We could imagine a version of



this rule that need not eliminate every antiquote simulta-
neously. We could then reduce 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈1〉〉◦◦α〉〉 to
〈〈inc ·̂ 〈〈1〉〉◦◦ int〉〉 and later to 〈〈inc·1〉〉. But this rule would
also allow us to reduce 〈〈̂ 〈〈inc〉〉◦◦α→ β ·̂ 〈〈T〉〉◦◦α〉〉 to both
〈〈inc ·̂ 〈〈T〉〉◦◦ int〉〉 and 〈〈̂ 〈〈inc〉〉◦◦ int → β·T〉〉. Since these ex-
pressions may not be further reduced this would leave reFLect

with a non-confluent reduction system.3

We could, however, allow a rule that requires only that all
the antiquotes occurring at the same level within a given
quoted region need be eliminated simultaneously. For exam-
ple, consider

〈〈(̂ 〈〈1〉〉, 〈̂〈2〉〉, 〈〈(̂ 〈̂〈〈〈3〉〉〉〉,ˆ̂〈〈〈〈4〉〉〉〉)〉〉)〉〉
The first two antiquotes must be eliminated simultaneously,
and so must the second two, but it would be possible to
develop a valid semantics that did not require all four to
be eliminated together. Expressions like this, however, do
not arise in our applications—so we do not complicate the
semantics to facilitate this relaxation.

6.1.3 Type Instantiation Impacts Only the Context
The ψ-reduction operation ensures that it constructs a well
typed expression by type instantiating the context into which
the antiquoted expressions are spliced. One might also con-
sider unifying the types of the context and the incoming
expressions to achieve a match. This is the approach taken
in the system of Shields et al. [29].

This option was rejected for reasons that derive from the
target application of reFLect to theorem proving and circuit
transformation. In these applications most operations that
manipulate expressions are expected to preserve the types of
the manipulated expressions. In this case, unification is not
appropriate. This is in contrast to systems designed for code-
generation [28] or staged evaluation [33], which focus more
on flexible ways of constructing or specializing programs.

For example, a ubiquitous theorem proving application is
term rewriting [25], in which an expression is transformed
by application of general rewrite rules to its subexpressions.
The matching that makes a general rewrite rule applicable
at a subexpression is always one-way and type unification
is not appropriate. The semantics of our hole-filling ψ rule
therefore exactly achieves the reFLect design requirement for
a native mechanism to support rewriting.

In theorem proving and transformation applications, con-
texts are typically small and the incoming expressions very
large. The same expression may also be spliced into more
than one context. If we unified types when splicing an
expression into a context, we could not do it by destruc-
tively instantiating type variables, a constant time opera-
tion. Rather, we would have to copy incoming expressions
using time and space proportionate to their size. Since the
speed of rewriting is key to the effectiveness of a theorem
prover, we would not be able to use this splicing operation
to implement our rewriter.

6.2 Patterns May Not Be Reduced
An examination of the rules in Figure 12 reveals that it is
possible to reduce any level zero subexpression, except those
in the binding position of an abstraction. Patterns may not

3It may still have some property similar to confluence, in
which expressions like these are considered equivalent.

pattern v◦◦σ

0 � C[ ◦◦σ1, . . . ◦◦σn]

pattern〈〈C [̂ (v1◦◦ term)◦◦σ1, . . . (̂vn
◦◦ term)◦◦σn]〉〉

Figure 14: Valid Pattern

be reduced. We might imagine a system that allowed re-
ductions on patterns as well. For example, it seems reason-
able to reduce the expression (λ〈〈̂ 〈〈1〉〉 + x̂〉〉.x)·〈〈1 + 2〉〉 to
(λ〈〈1 + x̂〉〉.x)·〈〈1 + 2〉〉 and then to 〈〈2〉〉.

But unrestricted reduction of patterns is unsafe. As an ex-
ample, consider the expression λ(λy. z)·x.x, in which the
pattern (λy. z)·x occurs in binding position. If we were to
allow reduction of this pattern, we could reduce the whole
expression to λz.x. But then the variable x, which was
bound in the original expression, has become free—perhaps
to be captured by some enclosing scope. It might be possi-
ble to avoid this problem by not allowing pattern reductions
that change the free variable set of the pattern. But in the
absence of a compelling application, it seems simpler just to
forbid all pattern reductions.

6.3 Pattern Matching
The rules for β-reduction, γ-reduction, and ζ-reduction ap-
ply only to abstractions over valid patterns. Not all expres-
sions make valid patterns. For example, the expressions in
the binding positions of λx.x and λ〈〈̂ x+ 1〉〉. 〈〈1 + x̂〉〉 are
both valid patterns, but the binding expression in λx+ 1.x
is not. This is not to say that such bindings are without
meaning, only that we do not support the evaluation of such
patterns, and so they are considered invalid for the purposes
of this operational semantics.

Figure 14 defines the predicate pattern that characterizes
which patterns are considered valid. It can be summarized
by saying that a valid pattern is either a variable or a quota-
tion where every level zero subexpression is a variable. The
definition does not rule out patterns containing more than
one instance of the same variable. An implementation, how-
ever, may have a stricter notion of valid pattern that disal-
lows this. Any attempt to match a invalid pattern should
lead to a run-time failure.

We also make some restrictions on when we are prepared
to consider matching a pattern. If a pattern is a simple
variable, then we may match it straightaway, but if a pattern
is a quotation then we must wait until the expression we are
trying to match has been reduced to a quotation with level
one antiquotes eliminated. We will say that the expression
M is ready to be matched to the pattern Λ, Λ ready M, if
this condition holds. Figure 15 formalizes this notion, which
is used in the rules for β and γ-reduction in figure 11.

Consider what can happen without this restriction by con-

v ready Λ
0 � Λ

M ready 〈〈Λ〉〉

Figure 15: Match Readiness



v◦◦σ θ = Ξ
(v◦◦σ, θ) matches Ξ

0 � C[ ◦◦σ1, . . . ◦◦σn]
φ � C[w1

◦◦σ1, . . . wn
◦◦σn]� D[w1

◦◦σ1φ, . . . wn
◦◦σnφ]

v1◦◦ term θ = 〈〈Ξ1〉〉 . . . vn
◦◦ term θ = 〈〈Ξn〉〉

(〈〈C [̂ (v1◦◦ term)◦◦σ1, . . . (̂vn
◦◦ term)◦◦σn]〉〉, θ) matches

〈〈D[Ξ1, . . .Ξn]〉〉
(where w1, . . . wn are fresh)

Figure 16: Pattern Matching an Expression

templating the effect of dest apply from section 2. If we ap-
ply this to the expression 〈〈g◦◦α→ α·̂ 〈〈1〉〉◦◦α〉〉 and we were to
evaluate the application before ψ-reducing the argument we
would get the result (〈〈g◦◦α→ α〉〉, 〈〈̂ 〈〈1〉〉◦◦α〉〉), which would
then reduce to (〈〈g◦◦α→ α〉〉, 〈〈1〉〉). If we were to ψ-reduce
the argument before reducing the application we would get
the result (〈〈g◦◦ int → int〉〉, 〈〈1〉〉).

As with the possible generalization to ψ-reduction discussed
in Section 6.1.2, we believe there is an equally valid seman-
tics that doesn’t force the elimination of all level one an-
tiquotes from an expression before it may be matched, but
only those from level contiguous regions that are in some
way accessed by the match. But this would complicate the
semantics without benefit to practical applications.

6.3.1 Matching An Alternative
Once we have determined that a pattern is valid and an
expression is ready to be matched by it then we are ready
to determine whether (and how) the expression matches the
pattern. The predicate matches, defined in Figure 16, makes
this determination.

When the pattern is a variable, we say that the pattern
matches an expression under a substitution precisely when
the substitution maps that variable to the expression. When
the pattern is a quotation, we first find a level-consistent
context C[ ◦◦σ1, . . . ◦◦σn] and term variables v1, . . . vn such
that the pattern we are trying to match against is

〈〈C [̂ (v1◦◦ term)◦◦σ1, . . . (̂vn
◦◦ term)◦◦σn]〉〉

Next we must find a level consistent context D[ ◦◦ τ1, . . . ◦◦ τn]
and list of subexpressions Ξ1, . . . Ξn such that the expression
we are trying to match is 〈〈D[Ξ1, . . .Ξn]〉〉. The expression
matches the pattern if D is a type instance, in the sense
explained below, of C and we can match each expression Ξ1,
. . . Ξn to the corresponding variable v1, . . . vn under the
same substitution.

The notation φ � Λ� M indicates that M is a type instance
of Λ under some type instantiation φ and is defined in Fig-
ure 17. The role of the� relation is to allow the types within
quotations in the pattern to be more general than those of
the argument. This allows functions on expressions to be
defined by pattern matching, as in the following example:

let len = λ〈〈Len·([]◦◦α list)〉〉. 〈〈0〉〉
| λ〈〈Len·(̂ h::̂ t)〉〉. 〈〈(Len·̂ t) + 1〉〉

We would expect to be able to apply the first λ-abstraction
in this function to expressions such as 〈〈Len·([]◦◦ int list)〉〉,
and so the pattern 〈〈Len·([]◦◦α list)〉〉 must match up to some
instantiation of type variables.

σφ = τ

φ � k◦◦σ � k◦◦ τ

σφ = τ

φ � v◦◦σ � v◦◦ τ

φ � Λ� Λ′ φ � M� M′

φ � λΛ.M� λΛ′.M′

φ � Λ� Λ′ φ � M� M′ φ � N� N′

φ � λΛ. M ||| N� λΛ′. M′ ||| N′

φ � Λ� Λ′ φ � M� M′

φ � Λ·M� Λ′·M′

σ1χ = τ1 . . . σnχ = τn

χ � C[v1◦◦σ1, . . . vn
◦◦σn]� C′[v1◦◦ τ1, . . . vn

◦◦ τn]
0 � C[ 1

◦◦σ1, . . . n
◦◦σn] 0 � C′[ 1

◦◦ τ1, . . . n
◦◦ τn]

φ � Λ1 � Λ′
1 . . . φ � Λn � Λ′

n

φ � 〈〈C [̂ Λ1
◦◦σ1, . . . Λ̂n

◦◦σn]〉〉� 〈〈C′ [̂ Λ′
1
◦◦ τ1, . . . Λ̂′

n
◦◦ τn]〉〉

(where v1 . . . vn are fresh)

Figure 17: Type-Match Relation

6.3.2 Discarding an Alternative
The rules for β and γ-reduction require the argument ex-
pression to be ready to match the pattern before a match is
made. Similarly, the rule for ζ-reduction requires the argu-
ment expression to be ready to match the pattern before the
match is rejected.

In general, we may have (λΛ. M ||| N)·Ξ, where Ξ has type
term but has not yet been evaluated to yield a quotation. It
is not possible to tell if and how Ξ might match the pattern
Λ until Ξ has been evaluated. The assumption Λ ready M on
the ζ-reduction rule prevents a match from being discarded
too early. If an expression M is ready to match a pattern Λ,
but there is no substitution θ such that (Λ, θ) matches M,
then we may safely conclude that the expression doesn’t
match the pattern and discard this alternative.

In some circumstances a pattern will never match an ex-
pression and yet may also not be discarded. Consider the
following application:

(λ〈〈̂ f ·̂ x〉〉. Λ ||| M)·〈〈̂ 〈〈inc◦◦ int → int〉〉◦◦α→ α ·̂ 〈〈T〉〉◦◦α〉〉

In this example the argument is not ready to match the pat-
tern, however it may not be further reduced. The reFLect

language does not let us conclude anything about the inter-
nal structure of expressions that are not sufficiently evalu-
ated to tell if they are well typed. In an implementation, the
inability to apply either the γ-reduction or ζ-reduction rules
would result in the argument being forced to point where ψ-
reduction was attempted and a run-time type error raised.

7. REFLECTION
Thus far we have described the core of the reFLect language.
This language features facilities for constructing and destruc-
ting expressions using quotation, antiquotation and pattern
matching. These allow reFLect to be used for applications,
like theorem prover development, that might usually be ap-
proached with a system based on a separate meta-language
and object-language. In this section we add some facilities
for reflection.



7.1 Evaluation
The reFLect language has two built-in functions for evalu-
ation of expressions: eval and value.4 Suppose we use the
notation Λ ⇒ Λ′ to mean that Λ is evaluated to produce Λ′.
Certainly Λ ⇒ Λ′ implies Λ

∗→ Λ′, but we consider the or-
der of evaluation and the normal form at which evaluation
stops to be implementation specific, and so we leave these
unspecified. The eval function is then described as follows:

� eval: term → term

0 � Λ � Λ ⇒ Λ′

� eval·〈〈Λ〉〉 → 〈〈Λ′〉〉

Next we consider value. It is a slight misstatement to say
that value is a function in reFLect—rather there is an infinite
family of functions valueσ indexed by type. The behavior
of value is similar to that of antiquotation; it removes the
quotes from around an expression and interprets the result
as a value of the appropriate type.

� valueσ: term → σ

0 � Λ free Λ = ∅ � Λ: τ τφ = σ

� valueσ·〈〈Λ〉〉 → Λφ

There are several important differences between value and
antiquotation:

• The value function may appear at level zero, while an-
tiquotation may not.

• Like other functions, value has no effect when quoted,
while a (once) quoted antiquote may be reduced.

• If the type required of an expression is different from
the actual type, then value may instantiate the type of
the expression. Antiquotation may instead instantiate
the type of its context.

• Antiquotation does not alter the level of the quoted
expression, but value moves the body of the quoted
expression from level one to level zero.

This last difference has important consequences for the treat-
ment of variable binding. In moving an expression to level
zero, value could expose its free variables to capture by en-
closing lambda bindings. We restrict value to operate on
closed expressions to prevent this. The restriction is sim-
ilar in motivation to the run-time variable check of run in
MetaML [33] or the static check for closed code in the sys-
tem λBN [4].

7.2 Value Reification
The reFLect language also supports a partial inverse of evalu-
ation through the lift function; its purpose is to make quoted
representations of values. For example, lift·1 is 〈〈1〉〉 and
lift·T is 〈〈T〉〉. The function lift is strict, so lift·(1 + 2) is
equal to 〈〈3〉〉. Note also that lift may only be applied to
closed expressions. Lifting quotations is easy: just wrap an-
other quote around them. For example, lift·〈〈x+ y〉〉 gives

4Note that of the two, it is value rather than eval that most
closely corresponds to the eval operation in LISP.

〈〈〈〈x+ y〉〉〉〉. Lifting recursive data-structures follows a re-
cursive pattern that can be seen from the following example
of how lift works on lists.

lift·[]◦◦σ list = 〈〈[]◦◦σ list〉〉
lift·(::◦◦σ → σ list → σlist)·Λ·M) =

〈〈(::◦◦σ → σ list → σlist)·̂ (lift·Λ)◦◦σ·̂ (lift·M)◦◦σ list〉〉

Lifting numbers, booleans and recursive data-structures is
easy because they have a canonical form, but the same is
not true of other data-types. For example, how do we lift
λx.x+ 1? Naively wrapping quotations around the expres-
sions would result in inconsistencies. For example, λx.x+ 1
and λx. 1 + x are equal and extensionality therefore requires
lift·(λx.x+ 1) and lift·(λx. 1 + x) to be equal. But the quo-
tations 〈〈λx.x+ 1〉〉 and 〈〈λx. 1 + x〉〉 are not equal. If Λ is
an expression of some type σ without a canonical form then
we will use the following definition for lift.

lift·Λ = 〈〈[[Λ]]◦◦σ〉〉
You should think of [[Λ]] as being a new and unusual con-
stant name. These names have the property that if Λ and M
are semantically equal, then [[Λ]] and [[M]] are considered
the same name. For example evaluating lift·(λx.x+ 1) pro-
duces 〈〈[[λx.x+ 1]]〉〉 and evaluating lift·(λx. 1 + x) produces
〈〈[[λx. 1 + x]]〉〉, and the two resulting expressions are equal
since they are both quoted constants with ‘equal’ names.5

When we do this, we say that we have put the expression
in a black box. Since black boxes are just a kind of constant
they require no further special treatment.

Note that eval is not simply the composition of value and lift.
Consider the expressions

〈〈(λx.λy.x+ y)·1)〉〉 and 〈〈(λx.λy. y + x)·1)〉〉
Applying eval to these expressions produces 〈〈λy. 1 + y〉〉 and
〈〈λy. y + 1〉〉. Applying value then lift however must yield
〈〈[[λy. 1 + y]]〉〉 and 〈〈[[λy. y + 1]]〉〉. Because the composition
of value and lift takes an expression to an expression via the
unquoted form that represents its meaning, two different ex-
pressions that represent semantically equal programs must
produce the same result. By taking expressions to expres-
sions directly the eval operation is not so constrained.

As an example, by using lift you can write the function sum
defined by

letrec sum = λn.
if n = 0 then 〈〈0〉〉 else 〈〈̂ (lift·n) + (̂sum·(n− 1))〉〉

This maps n to an expression that sums all the numbers up
to n. For example, sum·4 produces 〈〈4 + 3 + 2 + 1 + 0〉〉.

This feature addresses a shortcoming of the previous version
of Forte based on FL . Users of this system sometimes want
to verify a result by case analysis that can involve decom-
posing a goal into hundreds of similar cases, each of which
is within reach of an automatic solver. It is difficult in FL
to write a function that will produce (a conjunction of) all
those cases. Facilities like lift make this easier, and the code
that does it more transparent.

8. RELATED WORK
The reFLect language can been seen as an application-specific
contribution to the field of meta-programming. In Sheard’s

5Of course, the equality of such names is not decidable.



taxonomy of meta-programming [27], reFLect is a framework
for both generating and analyzing programs; it includes fea-
tures for run-time program generation; and it is typed, ‘man-
ually staged’, and ‘homogeneous’. Our design decisions,
however, were driven by the needs of our target applications:
symbolic reasoning in higher-order logic, hardware model-
ing, and hardware transformation. So the ‘analysis’ aspect
is much more important than for the design of functional
meta-programming languages aimed at optimized program
execution.

Nonetheless, reFLect has a family resemblance to languages
for run-time code generation such as MetaML [33] and Tem-
plate Haskell [28]. A distinguishing feature of MetaML is
cross-stage persistence, in which a variable binding applies
across the quotation boundary. The motivation is to al-
low programmers to take advantage of bindings made in one
stage at all future stages. In reFLect, however, we wish to
define a logic on top of the language and so we take the
conventional logical view of quotation and binding. Variable
bindings do not persist across levels. Constant definitions,
however, are available in all levels. They therefore provide a
limited and safe form of ‘cross-level’ persistence, just as they
do with polymorphism.

For reasons already given, reFLect also differs from MetaML
in typing all quotations with a universal type term. Tem-
plate Haskell is similar to reFLect in this respect. One of the
‘advertised goals’ of Template Haskell is also to support user-
defined code manipulation or optimization, though probably
not logic.

Perhaps the closest framework to reFLect is the system de-
scribed by Shields et al. in [29]. This has a universal term
type, a splicing rule for quotation and antiquotation similar
to our ψ rule, and run-time type checking of quoted regions.
Our applications in theorem proving and design transforma-
tion have, however, led to some key differences. We adopt a
simpler notion of type-consistency when splicing expressions
into a context, ensuring only that the resulting expression is
well typed, while the Shields system ensures consistent typ-
ing of variables. This relaxation keeps the logic we construct
from reFLect simple, and the implementation of time critical
theorem proving algorithms, like rewriting, efficient.

The reFLect language extends the notion of quotation and
antiquotation, which have been used for term construction
since the LCF system [9], by also allowing these constructs
to be used for term decomposition via pattern matching.
In this respect we follow the work of Aasa, Petersson and
Synek [2] who proposed this mechanism for constructing
and destructing object-language expressions within a meta-
language. The other reflective languages discussed here [28,
29, 33] do not support this form of pattern matching, which
is valuable for our applications in code inspection and trans-
formation, but would find less application in the applications
targeted by these systems.

9. CONCLUSION
In this paper we presented the language reFLect; a functional
language with strong typing, quotation and antiquotation
features for meta-programming, and reflection. The quo-
tation and antiquotation features can be used not only to
construct expressions, but also to transparently implement
functions that inspect or traverse expressions via pattern
matching. We made novel use of contexts with a level con-

sistency property to give concise descriptions of the type
system and operational semantics of reFLect, as well as us-
ing them to describe a method of compiling away the new
syntactic features of reFLect.

We have completed an implementation of reFLect using the
compilation technique described to translate reFLect into λ-
calculus, which is then evaluated using essentially the same
combinator compiler and run-time system as the previous
FL system [1]. The performance of FL programs that do not
use the new features of reFLect has not been impacted.

We have used reFLect to implement a mechanized reasoning
system based on inspirations from HOL [11] and the Forte [1,
16] system, a tool used extensively within Intel for hardware
verification. The ability to pattern match on expressions has
made the logical kernel of this system more transparent and
compact than those of similar systems. The system includes
evaluation as a deduction rule, and combines evaluation with
rewriting to simplify closed subexpressions efficiently.

This presentation of the type system and operational se-
mantics for reFLect gives a good starting point for investiga-
tion of more theoretical properties of the language, like con-
fluence, subject-reduction, and normalization. Sava Krstić
and John Matthews of the Oregon Graduate Institute have
proved these properties for the reFLect language features for
expression construction and analysis, though not those that
relate to evaluation of expressions [20]. Their proofs cover
the language presented here up to, but not including, sec-
tion 7.
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Abstract

The hol-4 proof system has been used to formally verify the correctness of the ARM6
micro-architecture. This paper describes the specification and verification of one instruc-
tions class, block data transfers; these are a form of load-store instruction in which a set
of up to sixteen registers can be transferred atomically. The ARM6 is a commercial RISC
microprocessor that has been used extensively in embedded systems – it has a 3-stage
pipeline with a multi-cycled execute stage. A list based programmer’s model specifica-
tion of the block data transfers is compared with the ARM6’s implementation which uses
a 16-bit mask. The models are far removed and reasonably complex, and this poses a
verification challenge. This paper describes the approach and some key lemmas used in
verifying correctness, which is defined using data and temporal abstraction maps.

1 Introduction

This paper presents a hol specification of the ARM block data transfer instruction class [7, 18],
together with a description of the ARM6 implementation and its formal verification using the
hol proof system. This work builds upon an ARM6 verification [6] which did not cover the
block data transfer or multiply instruction classes.

The correctness model and underlying approach used for this work has been formalised in
hol [5]. This methodology was developed at Swansea and work has continued there using
Maude [9, 10]. Using this approach, the correctness of the ARM6 implementation of the block
data transfers has been formally verified. This is achieved by relating state machine models at
the instruction set and micro-architecture levels of abstraction.

One source of difficultly in verifying this instruction class is the relatively complex nature of
the implementation. The ARM6 has a 3-stage pipeline with fetch, decode and execute stages,
and the execute stage can take a number of processor clock cycles to complete. With most
instructions the number of cycles required is a small constant value. For example, an ordinary
(single) load instruction takes three cycles, or five if the program counter is modified. The
processor control logic makes use of a counter (the instruction sequence, is) to implement this
behaviour. Typically this counter is incremented after each execute cycle and this provides a
simple mechanism to symbolically execute an instruction to completion. However, with block
data transfer instructions the counter takes and holds the value tn until a termination condition
is met (this can take up to sixteen cycles). A 16-bit mask is used to keep track of which registers
have been transfered and this forms the basis for the termination test. Consequently, symbolic
execution for this instruction class is not straightforward.

From a correctness standpoint one must consider the case of writing to the memory at the
address pc + 8 or pc + 4, where pc is the address of the instruction being executed. These
addresses correspond with instructions that have been fetched and decoded respectively.1 In
order to provide a clean model, the ARM6 should detect when these instructions have been
updated by a memory write and take steps to fetch and decode them again. However, the ARM6
does not waist costly control logic in dealing with this, instead it just carries on regardless.
Before the block data transfers were verified two solutions to this problem were applied (for
the verification of single word/byte data stores):

1. No-clobber method: a write to the addresses pc + 8 and pc + 4 is nullified at the pro-
grammer’s model and micro-architecture levels.

1The architecture does not split the main memory into program and data parts. Memory is byte addressable
and each 32-bit instruction occupies four bytes.
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User FIQ IRQ SVC Abort Undefined

r0 r0 r0 r0 r0 r0

r1 r1 r1 r1 r1 r1

r2 r2 r2 r2 r2 r2

r3 r3 r3 r3 r3 r3

r4 r4 r4 r4 r4 r4

r5 r5 r5 r5 r5 r5

r6 r6 r6 r6 r6 r6

r7 r7 r7 r7 r7 r7

r8 r8 fiq r8 r8 r8 r8

r9 r9 fiq r9 r9 r9 r9

r10 r10 fiq r10 r10 r10 r10

r11 r11 fiq r11 r11 r11 r11

r12 r12 fiq r12 r12 r12 r12

r13 r13 fiq r13 irq r13 svc r13 abt r13 und

r14 r14 fiq r14 irq r14 svc r14 abt r14 und

r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR fiq SPSR irq SPSR svc SPSR abt SPSR und

Figure 1: ARM’s visible registers.

2. Data forwarding implementation: a write to these addresses is detected by the processor
and the fetch and decode components of the state are updated as appropriate.

The second method has a clean programmer’s model specification but it complicates, and
does not accurately model, the micro-architecture. Both of these methods were manageable
with STR instructions but they would have significantly added to the difficulty of verifying the
block data transfers. Therefore, a third method has been adopted: the programmer’s model is
augmented with two registers forming a rudimentary pipeline. A further more abstract level
of abstraction has been introduced to hide the pipeline i.e. the model accepts a stream of
instructions, abstracting out details about instruction fetching.

1.1 Related Work

Early work on the mechanical verification of processors includes: tamarack [13], secd [8],
the partial verification of Viper [4], Hunt’s FM8501 [11], and the generic interpreter approach
of Windley [19]. Following this work, Miller and Srivas verified some of the instructions of a
simple commercial processor called the AAMP5 [16]. Complex commercial designs have also
been specified, simulated and verified using ACL2 [2, 14].

With the addition of complex multi-stage pipelines and out-of-order execution, contempo-
rary commercial designs were considered too complex for complete formal verification. Re-
cently progress has been made in verifying academic designs based around Tomasulo’s algo-
rithm [15, 12, 17, 1]. The instruction sets used for this work are often relatively simple (i.e. no
block data transfers) with many based on the DLX architecture of Hennessy and Patterson.
It is worth noting that, in this later work, the correctness models are based on incremental
flushing [3]. This means that the processor model is only guaranteed to correspond with the
instruction set model provided that the processor’s pipeline is flushed after each instruction
execution. This will catch many potential bugs, but a stronger correctness model is used here
– the processor’s state is guaranteed to be correct even in the absence of flushing.

2 The Instruction Set Architecture

For details of the ARM programmer’s model the reader is referred to Furber [7] and the ARM
Architecture Reference manual [18]. A limited précis is provided here.

The ARM architecture’s visible state consists of a main memory and a set of 32-bit registers.
The main memory is effectively an array of 232 bytes. The registers form overlapping banks, as
shown in Figure 1. Six processor modes provide support for exception handling and system-level
programming. The general purpose registers are named r0 to r14, the program counter is r15,
and CPSR is the Current Program Status Register. When not in user mode the programmer
also has access to a Saved Program Status Register (SPSR). The CPSR stores the current
processor mode, together with four flags: N (negative), Z (zero), C (carry) and V (overflow).
These flags are used to control program flow: all instructions are conditionally executed. For
example, the instruction STMHI will be a no-op if C is clear or Z is set.
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31 28 27 26 25 24 23 22 21 20 19 16 15 0

Cond 1 0 0 P U S W L Rn Register list

base register

load/store

write-back (auto-index)

restore PSR and force user bit

up/down

pre-/post-index

Figure 2: Encoding for the block data transfer instruction class.

2.1 Block Data Transfers

Block data transfer instructions load/store a set of general purpose register values from/to
main memory; the instruction format is shown in Figure 2. These instructions are used for
procedure entry and return (saving and restoring workspace registers), and in writing memory
block copy routines.

The set of registers to be transferred is encoded using a 16-bit value; the program counter
may be included in the list (bit fifteen). The memory block is determined by the base register
Rn, and the bits P and U. The W flag enables base register write back (auto-indexing). There
are also special forms of the instruction for accessing the user mode registers (when not in
user mode) and for restoring the CPSR when returning from an exception – these options are
controlled by the S flag and bit fifteen.

The instruction syntax is illustrated below:

LDM|STM{<cond>}<add mode> Rn{!}, <registers>

LDM{<cond>}<add mode> Rn{!}, <registers + pc>^

LDM|STM{<cond>}<add mode> Rn, <registers - pc>^

Here <cond> is a condition code, <addr mode> is the address mode and <registers> is a
list of registers. The block copying address modes are IA, IB, DA and DB – as indicated these
increment/decrement the address register after/before each memory access.2 An ! is used for
base register write-back, and the suffix ^ is used to set the S flag.

As an example, if the processor is in supervisor mode with the Z flag set, the instruction

LDMEQDB r0!, {r1,r2,pc}^

will perform the following assignments:

r0 ← r0-12; r1 ← mem[r0-12]; r2 ← mem[r0-8]; r15 ← mem[r0-4]; CPSR ← SPSR_svc .

All transfers are ordered: registers with lower indices are mapped to lower memory addresses.
The register list should not be empty i.e. the lowest sixteen bits of the op-code should not

all be clear. This restriction will be enforced by any sensible compiler and/or assembler, but
this does not guarantee that such instructions can never be executed (it is trivial to write an
assembly program that generates and then executes such an instruction). The ARM6 has an
unfortunate load multiple behaviour when the register list is empty – a load to the program
counter occurs. Rather than specify this at the programmer’s model level, the hol model of
the ARM6 has been modified to give a more sensible behaviour i.e. no load occurs.

With block stores, if the program counter is in the list then the value stored is implemen-
tation dependent. If the base register is in the list then write-back should not be specified
because the result is unpredictable. The hol programmer’s model specification has been tai-
lored to conform with ARM6 behaviour for these cases.

2.2 A HOL Specification

The hol specification of the block data transfers is shown in Figure 3. The function LDM STM
takes the current programmer’s model state, the processor mode and the instruction op-code,
and it gives the next state. This function is only called when it is established that op-code n

2Stack based mnemonics are available as an alternative: FA, FD, EA and ED are used to implement full/empty,
ascending/descending stacks.
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�def LDM_STM (ARM mem reg psr) mode n =
let (P,U,S,W,L,Rn,pc_in_list) = DECODE_LDM_STM n in
let rn = REG_READ reg mode Rn in
let (bl_list,rn’) = ADDR_MODE4 P U rn n
and mode’ = if S ∧ (L ⇒ ¬pc_in_list) then usr else mode
and pc_reg = INC_PC reg in
let wb_reg =

if W ∧ ¬(Rn = 15) then REG_WRITE pc_reg (if L then mode else mode’) Rn rn’ else pc_reg
in

if L then
ARM mem (LDM_LIST mem wb_reg mode’ bl_list)

(if S ∧ pc_in_list then CPSR_WRITE psr (SPSR_READ psr mode) else psr)
else

ARM (STM_LIST mem (if FST (HD bl_list) = Rn then pc_reg else wb_reg) mode’ bl_list) wb_reg psr

Figure 3: Programmer’s model specification of block data transfers.

is a block data transfer instruction that passes the conditional execution test. The state space
constructor ARM takes a triple: the memory mem, the general purpose registers reg, and the
program status registers psr.

Although the definition of LDM STM is not especially large, there are some subtle aspects
to the semantics of block data transfers. Depending on the context, the processor mode is
either mode or mode’ (which might be set to user mode), therefore one must pay attention as
to which mode is being used when accessing registers. The register bank after incrementing
the program counter is denoted by pc reg and after register write-back this becomes wb reg.
If the first register of a block store is the base register then the value rn is stored (i.e. pc reg is
used), otherwise write-back may have occurred and rn’ is stored (wb reg is used). Write-back
occurs only if the base register is not the program counter.

There are four key sub-functions: DECODE LDM STM, ADDR MODE4, LDM LIST and STM LIST;
these are defined in Appendix B. The function DECODE LDM STM takes the op-code and splits
it into seven fields. For example, the instruction LDMEQDB r0!, {r1,r2,pc}^ is encoded with
the natural number 158367750, and this decodes as follows:

� DECODE_LDM_STM 158367750 = (T,F,T,T,T,0,T) .

The function ADDR MODE4 takes the address mode flags (P and U), the base address rn and the
op-code n, and it gives a pair (bl list,rn’). With our example:

� ADDR_MODE4 T F rn 158367750 = ([(1,rn - 0xC); (2,rn - 0x8); (15,rn - 0x4)],rn - 0xC) .

If write-back is enabled then register Rn takes the value rn’; bl list consists of pairs of the
form (rp,addr) where rp is a register index and addr is the corresponding memory address. A
function REGISTER LIST gives the list of register indices and this is ‘zipped’ with the memory
block addresses.

The function LDM LIST folds the list bl list with a memory-read, register-write operation
to give the next state of the register bank. Likewise, the function STM LIST folds the list with
a register-read, memory-write operation to give the state of the main memory.

This list based specification is compact and hopefully clear. Consequently, one can be
confident that the specification is consistency with respect to the reference [18] – it also provides
a model that can be executed efficiently. However, the verification must bridge a large gap
between this abstract semantics and the concrete processor implementation.

3 The Micro-architecture

A simplified view of the ARM6 data path is shown in Figure 4; the components of the data
path (busses, latches, multiplexers and functional units) are used in executing all of the ARM
instructions. When reading from memory the data is transfered to the data-in register din.
When writing to memory the data is placed on the B bus. The address register areg may be
updated using the program counter, the address incrementer, or output from the ALU.

Block data transfers are multi-cycled instructions; their execution can take from two to
twenty cycles to complete. The execute stage is split into sub-stages and these are shown
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Figure 4: The ARM6 Data Path.

in Tables 1(a) and 1(b) for the block load and store instructions respectively. The first two
cycles are needed for address computation and base register write-back, and then sub-stage tn
is repeated � − 1 times, where � is the length of the register list. The leftmost columns in the
tables show the value of the instruction sequence counter (is) – this component forms part
of the processor’s control logic. Note that the cycle t2 is really the last execute cycle of the
previous instruction and so in this case the component is does not actually take this value.

The first memory address (start of the memory block) is computed at cycle t3 using an offset;
this value is then stored in the address register. With DB addressing the offset is 4 ∗ (�− 1) + 3
and the first address is ¬offset + rn, where rn is the value of base register and ¬x is the 32-bit
one’s complement of x. In our example (Section 2.1), the offset is 11 and the first address is
rn − 12. On successive cycles the address register is incremented by four (only word access is
supported). The last (write-back) address is computed at cycle t4. With the DB address mode
the write-back address is the same as the first address (i.e. rn − 12), but this is not the case
for all of the other addressing modes.

A 16-bit mask is used to compute the register index used for each data transfer. The
component rp stores the index for the next register to be processed – this is the priority
register. The computation of rp (with two time shifted copies: orp and oorp) is shown below
for our example instruction (op-code 158367750):

is mask mask ∧16 ireg rp orp oorp

t3 1111111111111111 1000000000000110 1
t4 1111111111111101 1000000000000100 2 1
tn 1111111111111001 1000000000000000 15 2 1
tn 0111111111111001 0000000000000000 ⊥ 15 2
tm ⊥ ⊥ ⊥ ⊥ 15

The operation ∧16 represents bitwise conjunction for 16-bit values. The tn cycle lasts for two
cycles – it is repeated until the mask conjunction (column three) is zero. The data transfers
always occur in ascending register index order, irrespective of the addressing mode. Conse-
quently, the priority register is always the lowest index position for a set bit in the conjunction.
If the conjunction is zero then the value of rp is undefined and, consequently, so are the derived
values; undefined values are represented by the symbol ⊥.

In actuality, if ireg[15:0] is zero in a block load then an ARM6 will carry out a load with
register fifteen as the destination register and this will instigate a branch. This is because of
the way in which the index search is implemented in hardware (i.e. it gives the last possible
value, which is fifteen) and the fact that the tm cycle always occurs with block loads. It was
decided not to model this counter intuitive behaviour in the hol specification – instead, the
value of rp is undefined and the control logic has been modified to prevent the load going ahead
in this case – this gives a cleaner programmer’s model specification. The block stores did not
need modifying because the processor naturally avoids storing a value when the list is empty.

In our example there is a load to register fifteen and so a branch will occur. This means
that additional cycles are required for instruction fetch and decode; the instruction will actually
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Table 1: The sub-stages in the ARM6’s block transfer execution. Cycle tn is repeated until the bitwise
conjunction of the mask and ireg[15:0] is zero.

(a) Block loads.

t2 Set mask to 0xFFFF

t3 Fetch an instruction
Increment the program counter
Set areg to the first address

(using reg[Rn] and offset)
Set rp using ireg and mask

Clear rp bit of mask
Set orp to be rp

t4 If write-back enabled then set reg[Rn]
to the last address (using offset)

Load din with mem[areg]

Increment areg

Set rp using ireg and mask

Clear rp bit of mask
Set oorp to be orp

Set orp to be rp

tn Set reg[oorp] to be din

Load din with mem[areg]

Increment areg

Set rp using ireg and mask

Clear rp bit of mask
Set oorp to be orp

Set orp to be rp

tm Set reg[oorp] to be din

Set areg to be program counter value
If bit twenty-two and bit fifiteen of ireg set

then set cpsr to be spsr

Decode the next instruction

(b) Block stores.

t2 Set mask to 0xFFFF

t3 Fetch an instruction
Increment the program counter
Set areg to the first address

(using reg[Rn] and offset)
Set rp using ireg and mask

Clear rp bit of mask
Set orp to be rp

t4 If write-back enabled then set reg[Rn]
to the last address (using offset)

Store reg[orp] to mem[areg]

Increment areg

Set rp using ireg and mask

Clear rp bit of mask
Set orp to be rp

tn Store reg[orp] to mem[areg]

If the last cycle then set areg to the
program counter value and

decode the next instruction
otherwise increment areg

Set rp using ireg and mask

Clear rp bit of mask
Set orp to be rp

fully complete two cycles after the tm cycle.

3.1 A HOL Specification

A hol specification of the ARM6 without block data transfers [6] was extended to cover this
instruction class – most modifications to the previous specification are obvious and do not
merit documenting here. Appendix C presents functions that were new to the specification.

The function NBS specifies the mode change caused by the S flag option i.e. it determines
when the user mode is activated. The mask behaviour (as described in the previous section) is
implemented using the functions MASK, RP and PENCZ. The function MASK defines the state of
the mask – if the next instruction class (nxtic) is a block transfer then the initial mask value is
0xFFFF and on subsequent cycles a single mask bit is cleared using the function CLEARBIT, see
Appendix A. The masking is modelled using natural numbers – this is done simply to avoid
introducing additional operator overloading i.e. by simultaneously loading 16-bit and 32-bit
words theories.

The priority register rp is given by the function RP; this computes the bitwise conjunction
of the register list and the mask, then the lowest set bit is determined using the function

�def LEASTBIT n = LEAST b. BIT b n .

When the register list is exhausted rp takes the value LEASTBIT 0, which is undefined; in
hol this is an unspecified natural number value. The predicate PENCZ holds true only when
this termination condition is met. The function LEASTBIT is not readily executable (i.e. one
cannot evaluate ground terms by adding the definition to a hol compset); this is because
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the LEAST operation introduces non-termination problems. When simulating the ARM6, a
nested-if expansion of LEASTBIT (for all b < 16) is used.

The function OFFSET is used to compute the first and write-back addresses on cycles t3 and
t4. The number of registers in the register list is determined using SUM and BITV (Appendix A).
Thus, the number of registers is

∑15
i=0 bitv(ireg)(i). Depending on the addressing mode (and

the instruction sequence) the offset, its one’s complement, or zero is added to the base register
address; this is implemented by the processor’s ALU.

4 Correctness

The correctness model used for the ARM6 verification has been formalised in hol [5]. The
following sections introduce the models and abstractions that are used in establishing the
ARM6 processor’s correctness.

Store instructions require special attention because they can invalidating the state of a
processor’s pipeline [6]. This problem is heightened by the inclusion of block data transfers.
For example, consider the following fragment of ARM code:

ADR r0, label
STMIA r0, {r1,r2}

label: MOV r3, #10
MOV r4, #12

The first instructions sets register r0 to the label address. The STMIA instruction then stores
registers r1 and r2 to this and the following address, thus overwriting the two MOV instructions.
However, rather than execute the new instructions (i.e. r1 and r2), an ARM6 will actually
execute both of the MOV instructions. These instructions are preserved because they have
entered the pipeline and the processor only flushes the instruction pipeline after a branch
(write to the program counter). Of course, this example has been construed so as expose
the pipeline and hence be unsafe. In practice, it is not worth wasting valuable processor
logic on handling such fundamentally flawed code, and this is the position that was adopted
by the designers of the ARM6. However, from a correctness standpoint, this must be dealt
with. The approach adopted here is to augment the programmer’s model state space with
two 32-bit registers and these hold the op-codes of the fetched and decoded instructions. By
implementing a rudimentary pipeline at the ISA level the correspondence between our models
is easier to establish. The ISA pipeline is really just a buffer: the model still occupies the same
level of temporal abstraction i.e. each cycle always corresponds with the execution of a single
instruction. One criticism that could be made of this approach is that the semantics of the
abstract model is now too concrete when compared with the reference description [18]. On the
other hand, our model is a verified abstraction of the ARM6 and so one can be wholly confident
that it faithfully simulates the processor regardless of the code being executed. However, it is
not a suitable target for other ARM processors because there will be differences with respect to
the unpredictable parts of the programmer’s model. In order to unite the ARM processor family,
one must introduce another level of abstraction and construct a non-deterministic instruction
set model.

4.1 State Functions

The ARM architecture and ARM6 processor are modelled in hol with the following functions:

STATE_ARM_PIPE:num→state_arm_pipe→state_arm_pipe

STATE_ARM6:num→state_arm6→state_arm6

A constructor ARM PIPE extends the programmer’s model state space (state arm) with the
state of the pipeline. The two additional 32-bit words are named ireg and pipe – they form a
simple buffer which is emptied and re-filled when a branch occurs. This enables the ISA model
to simulate ARM6 behaviour when storing data to the addresses pc + 4 and pc + 8.

With the inclusion of the block data transfers, the processor’s state space (state arm6) now
contains three additional components: mask, orp and oorp. For convenience these components
are of type num, but they are more naturally 16-bit and 4-bit values.
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�def DUR_ARM6 (ARM6 mem (DP reg psr areg din alua alub) (CTRL pipea pipeaval .. mshift)) =
let (nzcv,m) = DECODE_PSR (CPSR_READ psr) in
let abortinst = ABORTINST iregval onewinst ointstart ireg nzcv in
let ic = IC abortinst nxtic in
let len = LENGTH (REGISTER_LIST (w2n ireg))
in

if ic = undef then
4

else if ..
..

else if ic = ldm then
2 + (len - 1) + 1 + (if WORD_BIT 15 ireg then 2 else 0)

else if ic = stm then
2 + (len - 1)

else if ..
..

Figure 5: The duration map DUR ARM6.

4.2 Data and Temporal Abstraction

A data abstraction ABS ARM6:state arm6→state arm pipe is defined as follows:

�def ABS_ARM6 (ARM6 mem (DP reg psr areg din alua alub)
(CTRL pipea pipeaval pipeb pipebval ireg iregval ointstart

onewinst opipebll nxtic nxtis aregn nbw nrw sctrlreg psrfb
oareg mask orp oorp mul mul2 borrow2 mshift)) =

ARM_PIPE (ARM mem (SUB8_PC reg) psr) pipeb ireg

The state components are grouped into vectors using five constructors: ARM6, DP (the data
path), CTRL (the processor control), ARM PIPE and ARM. The data abstraction projects out the
pipeline state (pipeb and ireg) and the visible state components (mem, reg and psr). The
function SUB8 PC is used to subtract eight from the ARM6’s program counter value, which is
eight bytes ahead of the address of the instruction being executed.

A uniform immersion [5] specifies the temporal relationship between the cycles of the ARM6
processor and single instruction execution. A function DUR ARM6:state arm6→num specifies
the number of cycles required to complete the execution of an instruction. A fragment of this
function, giving the timings for block data transfers, is shown in Figure 5. The instruction class
(ic) and the length of the register list (len) are used to determine how long the block data
transfer will take. The timings are presented as sums; this splits the execution into distinct
phases. For example, with an LDM instruction the first two cycles are t3 and t4, then there
are � − 1 cycles of tn, followed by one cycle of tm, and finally two extra cycles if the program
counter is in the register list.

This duration function is only valid for processor states in which the pipeline is full i.e. the
first execute cycle is about to commence – the component nxtis must have the value t3. An
initialisation function for the ARM6 is provided in the following section. During verification
one must show that the timings specified above are consistent with passing from one initial
state to another.

4.3 Initialisation

An initialisation function INIT ARM6:state arm6→state arm6 is used to ensure that the pro-
cessor starts in a valid state. This function takes a state and converts it into an initial version
– it is an identity mapping on valid initial states:

�def INIT_ARM6 (ARM6 mem (DP reg psr areg din alua alub) (CTRL pipea pipeaval .. mshift)) =
let nxtic’ = DECODE_INST (w2n ireg) in

ARM6 mem (DP reg psr (REG_READ6 reg usr 15) ireg alua alub)
(CTRL pipea T pipeb T ireg T F T T nxtic’ t3 2 nbw F sctrlreg

psrfb oareg (MASK nxtic’ t3 mask ARB) orp oorp mul mul2 borrow2 mshift)

This function differs significantly from the earlier verification [6] – our ISA model now has
a pipeline and so the pipeline components (pipea, pipeb and ireg) can be initialised with
any values. If these values are not consistent with the instructions in memory (corresponding
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with the current value of the program counter) then conceivably this could be because a store
instruction has just invalidated the pipeline’s state. However, this is not a problem because the
pipeline state is visible at the ISA level, via the data abstraction ABS ARM6. The components
orp and oorp are not altered, but the mask is set using the function MASK – if the next
instruction class is a block data transfer then this will set mask to the value 0xFFFF.

With respect to initialisation, there are three classes of component:

• The visible state components: mem, reg, psr, pipeb and ireg. These components cannot
be altered during initialisation because otherwise correctness would fail at time zero.

• State components whose initial values are of significance. For example, the next instruc-
tion class (nxtic) must be the decoding of the instruction register (ireg).

• State components whose initial values are of no significance. For example, the ALU
registers (alua and alub) can take any values initially.

As a general rule an initialisation function should be as weak as possible i.e. it should only
alter state components that are of the second type. In this context the initialisation represents
an invariant for the design. However, the initialisation function is actually viewed as part of
the design i.e. it is used to define the state function STATE ARM6 and is used when simulating
the processor.

4.4 Correctness Definition

The ARM6 is considered correct if:
Commutativity Theorem

� ∀ t a. STATE_ARM_PIPE t (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a t) a)

where IMM ARM6 is the uniform immersion with duration function DUR ARM6. To ensure that
the implementation covers all of the specification’s behaviour, one must also show that the
data abstraction is a surjective mapping i.e. each initial specification state must have at least
one initial implementation state that maps to it. This condition is relatively easy to verify for
ABS ARM6 because the operation SUB8 PC has an obvious inverse. The main focus of the formal
verification is, therefore, the commutativity theorem.

5 Formal Verification

The correctness condition presented in Section 4.4 is universally quantified over time (the
natural numbers). Using the one-step theorems [5], it is sufficient to prove that the following
four theorems hold:

1 � ∀ a. (STATE_ARM6 (IMM_ARM6 a 0) a = a’) ⇒ (INIT_ARM6 a’ = a’)

2 � ∀ a. (STATE_ARM6 (IMM_ARM6 a 1) a = a’) ⇒ (INIT_ARM6 a’ = a’)

3 � ∀ a. STATE_ARM_PIPE 0 (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a 0) a)

4 � ∀ a. STATE_ARM_PIPE 1 (ABS_ARM6 a) = ABS_ARM6 (STATE_ARM6 (IMM_ARM6 a 1) a)

The first and third theorems are trivial; the main verification effort lies in verifying the second
and forth theorems. Here, the next state function NEXT ARM6 is iterated using FUNPOW, with
the number of iterations given by the map DUR ARM6 ◦ INIT ARM6. The proof proceeds with
case splitting over the instruction class and this normally gives a small constant value for the
number of iterations. However, with the block data transfer instruction class, the duration is a
function of the length of the register list. Exhaustive proof over all of the 216 possible register
lists is not a viable option, especially considering that further case splitting is required for each
combination of addressing mode and the options S, W, L, Rn = 15 and pc in list.

5.1 Approach

In order to verify the block data transfers, invariants are constructed for the iterated tn-phase
of the execution. This phase occurs two cycles into the execution and accounts for �−1 cycles,
where � is the length of the register list. Three cases must be considered: � = 0, � = 1 and
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1 < �. In the first two cases the tn-phase does not occur; with stores this means that the
execution is complete after the t3 and t4 cycles, but with loads completion occurs after the tm
cycle, which will be followed by two extra cycles if the list is {r15}. Therefore, invariants are
only needed when 1 < �.

Let A be the processor’s state space and f : A → A be the next state function. The state
space has two disjoint subsets Xc = Image(f2, Ic), where Ic is the set of initial states for the
classes c ∈ {ldm, stm}. Induction is used to verify that the functions gc : N×Xc → A have the
property: for all a ∈ Xc, 1 < � and i < � − 1

gc(i, a) = f i(a) .

The functions gc are a form of invariant; they were constructed manually – an initial definition
was made (guessed at) and this was refined until the final version was proved to be valid.
Functions hc : Xc → A are defined by

hc(a) = f(gc(� − 2, a)) = f �−1(a) .

At cycle �−2 the termination condition is about to be met and so each function hc maps states
in the set Xc to states corresponding with the end of the tn-phase of execution.

Using the functions hc it is now possible to express the state of the processor after com-
pleting the execution of the block data transfers; for all a ∈ Ic the final state is:




f2(a), if c = stm and � = 0, 1,

hstm(f2(a)), if c = stm and 1 < �,

f3(a), if c = ldm and � = 0,

f3(a), if c = ldm and � = 1 and r15 not in list,
f5(a), if c = ldm and � = 1 and r15 in list,
f(hldm(f2(a))), if c = ldm and 1 < � and r15 not in list,
f3(hldm(f2(a))), if c = ldm and 1 < � and r15 in list.

The initial state sets Ic are generated using the initialisation function. Having determined the
state of the processor at the times given by the duration function, it is then necessary to relate
these states to those of the specification. The following sections indicate how the hc functions
were constructed and show how the masking used in the processor model is related to the list
model used in the ISA specification.

5.2 Lemmas about Priority Register Masking

The following functions are defined in hol:

�def GEN_RP wl ireg mask = LEASTBIT (BITWISE wl (∧) ireg mask)

�def MASK_BIT wl ireg mask = CLEARBIT wl (GEN_RP wl ireg mask) mask

�def MASKN wl n ireg = FUNPOW (MASK_BIT wl ireg) n (ONECOMP wl 0)

These function generalise those of the ARM6 specification to an arbitrary mask length wl; this
enables results to be proved by induction over the word length. The function MASKN gives the
nth value of the mask; with our block load example:

� RP ldm (BITS 15 0 158367750) (MASKN 16 0 158367750) = 1

� RP ldm (BITS 15 0 158367750) (MASKN 16 1 158367750) = 2

� RP ldm (BITS 15 0 158367750) (MASKN 16 2 158367750) = 15

� PENCZ (BITS 15 0 158367750) (MASKN 16 3 158367750)

These values correspond with those in the table on page 5.
The ISA level function REGISTER LIST is also generalised to an arbitrary length:

�def GEN_REG_LIST wl a = (MAP SND o FILTER FST) (GENLIST (λb. (BIT b a,b)) wl)

Two key lemmas relate this function with the ARM6 model:
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� ∀ wl ireg. LENGTH (GEN_REG_LIST wl ireg) = SUM wl (BITV ireg)

� ∀ wl ireg n. n < LENGTH (GEN_REG_LIST wl ireg) ⇒
(EL n (GEN_REG_LIST wl ireg) = GEN_RP wl ireg (MASKN wl n ireg))

The first theorem shows that the length of the list is equal to the sum of the constituent bits.
The second theorem shows that nth element of the register list corresponds with the priority
register obtained using the nth mask value. Specialising wl to be sixteen then provides a
connection between the function REGISTER LIST, and the functions RP and MASK. The second
lemma uses the first and it requires some work to prove: GEN REG LIST uses the primitives MAP,
FILTER, GENLIST and BIT; and MASKN uses FUNPOW, LEAST, BITWISE, ONECOMP and BIT.

Another key lemma concerns the termination condition:

� ∀ ic. (ic = ldm) ∨ (ic = stm) ⇒
(∀ a n. n < LENGTH (REGISTER_LIST a) ⇒ ¬PENCZ ic a (MASKN 16 n a)) ∧
∀ a. PENCZ ic a (MASKN 16 (LENGTH (REGISTER_LIST a)) a)

This lemma shows that the termination predicate PENCZ is false up until the �th mask value.

5.3 Block Data Transfers

In the previous section the function REGISTER LIST was related to the ARM6’s implementation,
which uses a 16-bit mask. This section covers the functions LDM LIST and STM LIST. The
following functions are defined in hol:

�def REG_WRITE_RP n reg mode mem ireg first =
REG_WRITE reg mode (RP ldm ireg (MASKN 16 n ireg)) (MEMREAD mem (first + w32 n * w32 4))

�def MEM_WRITE_RP n reg mode mem ireg first =
MEM_WRITE_WORD mem (first + w32 n * w32 4) (REG_READ6 reg mode (RP stm ireg (MASKN 16 n ireg)))

The functions REG WRITE RP/MEM WRITE RP represent the micro-architecture level load/store
operation for the nth word transfered. These are used in the following definitions:

�def (REG_WRITEN 0 reg mode mem ireg first = reg) ∧
REG_WRITEN (SUC n) reg mode mem ireg first =
REG_WRITE_RP n (REG_WRITEN n reg mode mem ireg first) mode mem ireg first

�def (MEM_WRITEN 0 reg mode mem ireg first = mem) ∧
MEM_WRITEN (SUC n) reg mode mem ireg first =
MEM_WRITE_RP n reg mode (MEM_WRITEN n reg mode mem ireg first) ireg first

The functions REG WRITEN/MEM WRITEN give the nth state of the register-bank/memory while
performing a block load/store; they are used in constructing and validating the gc functions
in Section 5.1. The final state of the register-bank or memory – as given by the functions hc

– is obtained when the first argument is �. The following lemmas relate these definitions with
LDM LIST and STM LIST:

� ∀ P U base mem reg mode.
LDM_LIST mem reg mode (FST (ADDR_MODE4 P U base ireg)) =
REG_WRITEN (LENGTH (REGISTER_LIST ireg)) reg mode mem ireg

(FIRST_ADDRESS P U base (WB_ADDRESS U base (LENGTH (REGISTER_LIST ireg))))

� ∀ P U base mem reg mode.
STM_LIST mem (SUB8_PC reg) mode (FST (ADDR_MODE4 P U base ireg)) =
MEM_WRITEN (LENGTH (REGISTER_LIST ireg)) reg mode mem ireg

(FIRST_ADDRESS P U base (WB_ADDRESS U base (LENGTH (REGISTER_LIST ireg))))

The first element of ADDR MODE4 is a list of register indices paired with memory addresses (see
Section 2.2). The lemmas show that applying the list folding operations LDM LIST/STM LIST
to this list is equivalent to applying REG WRITEN/MEM WRITEN with appropriate arguments.

The second lemma accounts for the possibility of storing the program counter. The func-
tion STM LIST uses REG READ to access the registers, whereas MEM WRITEN uses REG READ6; the
former adds eight to the program counter value, but this is countered by the data abstraction
which applies SUB8 PC. With load instructions, a series of additional lemmas are required to ma-
nipulate (normalise) various combinations of register updates (generated by the pc-increment,
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write-back, block load and data abstraction operations) and these must take account of whether
or not the fifteenth bit of the instruction register is set.

The first address is expressed using the function FIRST ADDRESS; the ARM6 uses the ALU
and an offset to compute this value. The following lemma shows that this computation is
correct:

� ∀ ireg ic base c borrow2 mul.
1 ≤ LENGTH (REGISTER_LIST (w2n ireg)) ∧
((ic = ldm) ∨ (ic = stm)) ⇒
(FIRST_ADDRESS (WORD_BIT 24 ireg) (WORD_BIT 23 ireg) base

(WB_ADDRESS (WORD_BIT 23 ireg) base (LENGTH (REGISTER_LIST (w2n ireg)))) =
SND (ALU6 ic t3 ireg borrow2 mul (OFFSET ic t3 ireg (WORD_BITS 15 0 ireg)) base c))

There is a similar lemma to show that the computation of the write-back address, at cycle t4,
is also correct.

5.4 Summary

The formal verification makes use of one-step theorems [5]. The two main verification con-
ditions (theorems two and four on page 9) are tackled using case splitting and the simplifier
(term-rewriting). The first level of case splitting is on the instruction class; this means that
pre-existing parts of the proof script [6] are used without major alteration.3 The ARM6 im-
plementation of the block data transfers is symbolically executed using functions hc; temporal
induction is used to prove that these functions evaluate the tn-phase of execution (Section 5.1).
Seven sub-cases are listed in Section 5.1, however, further case splitting is used to reason about
particular instruction variants (e.g. with write-back, user mode access or when restoring the
CPSR; and also whether the first register of a block store is the base register). The resultant
processor states are expressed using functions REG WRITEN and MEM WRITEN; these are shown
to be related to the function LDM LIST and STM LIST using lemmas about priority register
masking (Sections 5.2 and 5.3). These and other lemmas are used to relate processor states
with those given by the ISA specification.

By including the pipeline state at the ISA level, there was no need to explicitly consider
the special cases of writing to the memory addresses pc + 4 and pc + 8. Using the no-clobber
or data forwarding methods [6] would have added to the verification effort.

With the size and complexity of the ARM6 model, it is quite easy for the proof run-times
and terms (representing the state of the processor) to become very large. Generating lots of
sub-goals, possibly containing large terms, inevitably burdens the individual carrying out an
interactive proof. This is mitigated by structuring the proof with the use of lemmas and by
being careful in choosing when and how to case split. The method of state evaluation is also
of significance; one must decide when to – or, more importantly, not to – expand with a given
function definition. Call-by-value conversion is used when evaluating the next state function
but this is then combined with the simplifier, which provides contextual re-writing. Although
the complexity of the design must be managed it is not an overwhelming problem. The script
files for the block data transfer lemmas and the main proof (covering all of the instruction
classes) are both approximately a thousand lines long. The overall proof run-time is in the
order of a few minutes.

6 Conclusion

This paper has described the work that was involved in extending a partial ARM6 verifi-
cation [6] to include the block data transfer instruction class. The hol proof system has
been used to construct a concise programmer’s model formalisation for this class; this is
based on using standard list operations, which are provided in the standard hol distribution.
Daniel Schostak’s specification was used as the basis for the hol model of the ARM6 micro-
architecture. The implementation’s execute stage is multi-cycled, with a block load taking up
to twenty cycles to complete. The instruction timing is determined by the number of registers
to be transferred and this is specified by a duration map. In previous verification work with

3Some changes were made with the inclusion of the pipeline state at the ISA level. In particular, the single
data store proof became simpler.
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micro-programmed and pipelined designs [5, 6] the processor control logic has been sufficiently
simple that the duration for each instruction is a known constant value. Therefore, additional
verification techniques have had to be employed in order to reason about the correctness of
the block data transfers. In particular, it was necessary to use induction over time to establish
the behaviour of the processor during a sub-stage of the execution. This sub-stage is preceded
by two cycles (forming an initial state precondition) and the instruction may complete up to
three cycles afterwards. In order to relate the list model with the masking method, a number
of auxiliary functions were defined; these enabled inductions to be carried out on the register
list length. Functions were defined so as to directly specify the state of the processor part way
through the iterated tn-phase of execution. This paper has presented a number of key lemmas
that were used in relating the two different models. The LEAST operator was used in specifying
the next register to be transfered by the processor; hol provides a few handy theorems for
reasoning about this operator.

This work has demonstrated that the verification strategy (based on symbolic execution)
is well suited to adding further instructions to a verified processor design. It was a relatively
straightforward task to modify the processor and instruction set models, and much of the pre-
existing proof scripts needed little or no modification. This point has been further demonstrated
with the verification of the multiply instruction class. The proof run-time for the verification
of the block data transfers is longer than for most other instruction classes, but the overall
run-time has only increased proportionately i.e. the proof run-time is essentially linear with
respect to the number of instruction classes.

To completely verify a commercial processor design one will inevitably have to tackle com-
plex instruction classes such as the block data transfers. This may entail verifying that in-
variants hold during given phases of instruction execution. This has been shown to be feasible
with the hol model of the ARM6. All core instruction classes have now been verified.
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Appendix

A Primitive Operations

�def BITS h l n = n MOD 2SUC h DIV 2l

�def BIT b n = (BITS b b n = 1)
�def WORD_BITS h l n = BITS h l (w2n n)
�def WORD_BIT b n = BIT b (w2n n)
�def BITV n b = BITS b b n
�def SBIT b n = (if b then 2n else 0)
�def (BITWISE 0 op x y = 0) ∧

BITWISE (SUC n) op x y = BITWISE n op x y + SBIT (op (BIT n x) (BIT n y)) n

�def ONECOMP wl n = 2wl - 1 - n MOD 2wl

�def CLEARBIT wl b a = BITWISE wl (∧) a (ONECOMP wl 2b)
�def (SUM 0 f = 0) ∧ SUM (SUC m) f = SUM m f + f m

�def (∀ f e. FOLDL f e [] = e) ∧ ∀ f e x l. FOLDL f e (x::l) = FOLDL f (f e x) l
�def (∀ f. MAP f [] = []) ∧ ∀ f x l. MAP f (x::l) = f x::MAP f l
�def (∀ P. FILTER P [] = []) ∧ ∀ P h t. FILTER P (h::t) = (if P h then h::FILTER P t else FILTER P t)
�def (∀ l. EL 0 l = HD l) ∧ ∀ n l. EL (SUC n) l = EL n (TL l)
�def (ZIP ([],[]) = []) ∧ ∀ x1 l1 x2 l2. ZIP (x1::l1,x2::l2) = (x1,x2)::ZIP (l1,l2)
�def (∀ x. SNOC x [] = [x]) ∧ ∀ x x’ l. SNOC x (x’::l) = x’::SNOC x l
�def (∀ f. GENLIST f 0 = []) ∧ ∀ f n. GENLIST f (SUC n) = SNOC (f n) (GENLIST f n)
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B ISA Specification

�def REGISTER_LIST n = (MAP SND o FILTER FST) (GENLIST (λb. (BIT b n,b)) 16)

�def ADDRESS_LIST start n = GENLIST (λa. start + w32 (4 * a)) n

�def WB_ADDRESS U base len = (if U then $+ else $-) base (w32 (4 * len))

�def FIRST_ADDRESS P U base wb =
if U then if P then base + w32 4 else base else if P then wb else wb + w32 4

�def ADDR_MODE4 P U base n =
let reg_list = REGISTER_LIST n in
let len = LENGTH reg_list in
let wb = WB_ADDRESS U base len in
let addr_list = ADDRESS_LIST (FIRST_ADDRESS P U base wb) len
in (ZIP (reg_list,addr_list),wb)

�def LDM_LIST mem reg mode bl_list =
FOLDL (λreg’ (rp,addr). REG_WRITE reg’ mode rp (MEMREAD mem addr)) reg bl_list

�def STM_LIST mem reg mode bl_list =
FOLDL (λmem’ (rp,addr). MEM_WRITE_WORD mem’ addr (REG_READ reg mode rp)) mem bl_list

�def DECODE_LDM_STM n = (BIT 24 n,BIT 23 n,BIT 22 n,BIT 21 n,BIT 20 n,BITS 19 16 n,BIT 15 n)

C Addendum to the ARM6 Specification

�def NBS ic is ireg m =
if WORD_BIT 22 ireg ∧

(((is = tn) ∨ (is = tm)) ∧ (ic = ldm) ∧ ¬WORD_BIT 15 ireg ∨
((is = t4) ∨ (is = tn)) ∧ (ic = stm))

then
usr

else
DECODE_MODE m

�def MASK nxtic nxtis mask rp =
if (nxtic = ldm) ∨ (nxtic = stm) then

if nxtis = t3 then ONECOMP 16 0 else CLEARBIT 16 rp mask
else

ARB

�def RP ic list mask =
if (ic = ldm) ∨ (ic = stm) then

LEASTBIT (BITWISE 16 (∧) list mask)
else

ARB

�def PENCZ ic list mask =
if (ic = ldm) ∨ (ic = stm) then

BITWISE 16 (∧) list mask = 0
else

ARB

�def OFFSET ic is ireg list =
if (is = t3) ∧ ((ic = ldm) ∨ (ic = stm)) then

if WORD_BIT 23 ireg then
w32 3

else if WORD_BIT 24 ireg then
w32 (4 * (SUM 16 (BITV list) - 1) + 3)

else
w32 (4 * (SUM 16 (BITV list) - 1))

else if (is = t4) ∧ ((ic = ldm) ∨ (ic = stm)) then
w32 (4 * (SUM 16 (BITV list) - 1) + 3)

else if (is = t5) ∧ ((ic = br) ∨ (ic = swi_ex)) then
w32 3

else
ARB
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satGSTE:
Combining the Abstraction of GSTE 

with the Capacity of a SAT Solver

Jin Yang, Eli Singerman, Rami Gil
Design Technologies

Intel corporation

Overview

G/STE Overview and Motivation
Spec language - Assertion Graphs (AG)
satGSTE – Bounded model checking of AG
satGSTE algorithm
Results
Future directions



STE : formal verification through symbolic 
simulation (Seger & Bryant)

STE - Symbolic Trajectory Evaluation
a lattice-based model checking technology based on a 
form of symbolic simulation (Seger & Bryant)
proven high capacity with a high degree of automation
a comprehensive methodology

Active Industrial Usage in Hardware Verification
Intel

Many models
floating point arithmetic unit against IEEE 754
Instruction length decoder unit

Motorola
memory units with million transistors

IBM
Compaq

STE: Simple Specification
Normalized basic STE assertion

A0 & N( A1 ) & … & Nk-1( Ak-1 )
==>   C0 & N( C1 ) &…& Nk-1( Ck-1 )

e.g.
( !ck & a[99:0]=A[99:0] & b[99:0]=B[99:0] ) & 
N( ck ) & N2( !ck ) & N3( ck )

==> N3( c[99:0]=A[99:0]+B[99:0] )

100

100

100a

b

c

d

ck

e f

Antecedent (stimulus)
Consequent (response)



STE: Limitation

Very limited expressiveness 
what about stall?

stall causes arbitrary long latency 

what about backward analysis?
simulation is forward in nature

100

100

100a

b

c

d

ck

e f

stall

en

en

en

64

64
a

b

ck

+1

64

(a=ptr) ==> (b = ptr+1)

GSTE: Generalized STE (Yang & Seger)

Extends STE to verify properties over indefinitely long 
time intervals
Has very high capacity thanks to built-in abstract 
representation of states (this comes at a cost, 
though…)
GSTE properties are assertion graphs (AG), with each 
edge in the graph labeled with an STE (antecedent, 
consequent) pair



AG (Assertion Graphs)
AG is a graph consisting of nodes and edges where each edge has 

Antecedent 
Consequent

• Loops etc. provide infinite-time properties (fairness can be 
imposed)

• STE is a special case of GSTE where AG is simply a single edge 
graph

Ant1

Con1

Ant2

Con2

Ant3

Con3

Ant1

Con1

“Fix-point computation”:
repeat updating the simulation result until no further change

GSTE: Model Checking
!ck & !stall &
a=A & b=B

ck !ck & !stall ck

f=A+B
!ck & stall ck & !stall

1 2

3 4

5 6

100

100

100a

b

c

d

ck

e f

stall

en

en

en

!ck & !stall &
a=A & b=B

simulation
result

edge 1 2 43 5 6

ck &
c=A & d=B &
e=A+B

!ck & stall &
c=A & d=B &
e=A+B

ck & stall &
c=A & d=B &
e=A+B

!ck & !stall
c=A & d=B &
e=A+B

ck &
f=A+B

Symbolic Simulation Phase:

11 22

33 4

!ck & stall &
c=A & d=B &
e=A+B

3 4

2 5

!ck & !stall
c=A & d=B &
e=A+B

4

55 6



satGSTE – Bounded MC of AG

Motivation
Enable fast AG spec debugging/refinement – optimized 
for failure
Enable “light weight” verification sessions -- exercise 
chosen paths in the AG
Efficient full model-checking of a-cyclic graphs

Method
Extract all linear paths up to a given bound
Symbolically simulate each path 
Generate verification conditions 
Submit to a SAT Solver

Algorithm: high level description

Extract paths from user AG 
For every path
For every edge 

Simulate circuit by driving the antecedents
Get symbolic values of every consequent node
Build a formula stating that the consequent fails
Send to SAT solver
If SAT says NO continue, else

Create a linear counter example from SAT assignment

All paths up to bound passed - no counter example 
found for this bound.



satGSTE – path extraction

Path extraction is the first phase of sarGSTE
Paths are held in a tree structure 
For performance, it is crucial to optimize

Compact tree structure –maximum sharing of paths by 
prefixes
Dynamically drop illegal paths (e.g., in compositional 
AG – when a condition is not met)
Allow an option of maximum edge coverage as an 
alternative to all paths of up to a given bound

satGSTE – path simulation

Is done with bSTE – a version of STE that uses bexpr
rather than BDD as the underline data structure for 
boolean expressions 

Bexprs are not canonical, but have some sharing and 
allow much bigger capacity (pay the price in SAT time, 
though)

Exploits the aggressive STE abstraction



satGSTE: counter example presentation

satGSTE presents a linear counter example retrieved 
from the values returned by the SAT solver

Go back from the failing edge to previous edges on the 
failing path
Justify the linear counter example on every edge
Counter example information is held in an explanation 
tree data structure

CEX information can be accessed via interface 
function by the user or by GUI tools

satGSTE: Results

Were run on real Intel circuits (50K latches)
As expected, failures (CEX) are found very fast
Provided full proof for a-cyclic AGs 

Pass533421230 MB24 sec3Ckt6

Pass629940 MB6.2 sec3Ckt7

CEX46580200 MB24.1 sec1Ckt5 

Full29795480 MB4.2 sec1Ckt4

CEX87940 MB4 sec12Ckt3

Pass3413040 MB1 sec3Ckt2

Pass300145 MB49.83Ckt1

Outcome# nodessatGSTE
memory

satGSTE
time

BoundTest



Future Directions

Further simplifications of path extraction algorithm 
in satGSTE -- better sharing
Improve bexpr sharing and partial evaluation 
(simplification)
Add interactive mode for running and CEX 
debugging.
A hybrid SAT/BDD algorithm for GSTE (leverage from 
recent research on fixed-point via SAT) 



Symbolic Trajectory Evaluation using
Satisfiability Solvers

DRAFT

Koen Claessen and Jan-Willem Roorda

Chalmers University of Technology, Sweden

Abstract. In this article we describe a hierarchy of semantics for STE
assertions. For several semantics we give a sound and complete algorithm
based on a SAT-solver for three-valued logic. Finally, we show how we
can adapt a standard DPLL-style SAT-solver to a SAT solver for three-
valued logic.

1 Introduction

Symbolic Trajectory Evaluation (STE) [10] is a high-performance simulation-
based model checking technique. It combines three-valued simulation (using the
standard values 0 and 1 together with the extra value X, ”don’t know”) with
symbolic simulation (using symbolic expressions to drive inputs). STE has been
extremely successful in verifying properties of circuits containing large data paths
(such as memories, fifos, floating point units, etc.), which are beyond the reach
of traditional symbolic model checking techniques [13, 2, 9].
STE assertions are of the form A =⇒ C; the antecedent A drives the simu-
lation, and the consequent C expresses the conditions that should result. The
antecedent A and the consequent C are formulas in a restricted temporal logic
called Trajectory Evaluation Logic (TEL), a subset of Linear Temporal Logic
(LTL). The only variables in TEL (called symbolic variables) are taken from a
set of time independent two-valued variables. Circuit nodes can be specified to
have the values 0 and 1 or a symbolic value given as a propositional formula in
terms of the symbolic variables. Formulas can be combined using conjunction
and and the the next time operator N. There is no disjunction or negation in
the logic. A typical STE assertion for a memory circuit is:

wr is 1 and rd is 0 and addr is A and in is V and
N( wr is 0 and rd is 1 and addr is A )

=⇒
N( out is V )

The assertion states that if we write a value V to an address A, reading the
address A at the next moment in time should yield the same value V . The stan-
dard implementation of STE uses a simulator with takes BDD-based symbolic



expressions resulting in 0, 1 or X as signal type. Circuit nodes that are not spec-
ified by the antecedent at a certain time point are assumed to have the unknown
value X at that time. (For instance, in the case of the memory assertion, the
initial values of the memory locations are all assumed to be X). This assumption
makes STE very efficient, because is very cheap to simulate parts of the circuit
that are fed by unknown inputs, as the BDD can simply return the value X for
the nodes of that part. In fact, the complexity of checking STE assertions largely
depends on the number of symbolic variables used in the assertion rather then
on the complexity of the circuit.
The disadvantage of this use of three-valued simulation is that it can yield the
value X for an circuit node present in the result, while two-valued simulation
would have yielded a 0 or a 1. This means that some STE assertions are not
provable in STE, while they are true in the LTL semantics. Thus, the STE
gives a less precise semantics to a subset of LTL, which means that some STE
assertions are true in a standard LTL-semantics, while they are not true in the
STE semantics. The STE semantics is less precise than the LTL semantics in
two respects:

– The semantics of STE uses three-valued reasoning; all variables that are not
explicitly given a binary value, are allowed to take on the value X. This leads
for example to the STE assertion True =⇒ out is 1 not being true for the
circuit specified by out = in ∨ ¬in. Of course, the assertion is true in the
standard semantics for LTL.

– The semantics of STE only propagates information in a forwards fashion.
For example, the STE assertion N(out is 1) =⇒ in is 1, for a circuit that
consists of a single delay element with input in and output out is not true
is STE, while it is clearly true in the LTL semantics.

A property that holds in LTL but does not hold in STE can always be trans-
formed into an LTL-equivalent property that is true in STE by introducing more
symbolic variables. For instance in the first example above, we can add a sym-
bolic variable i to drive the input in in the assertion, so that we arrive at the
assertion in is i =⇒ out is 1 which is true in STE. The user of an STE system can
in this way balance the line between weak reasoning power but quick verification
results, and strong reasoning power but more expensive checks.
In this article, we describe a hierarchy of semantics for STE properties. At the
top of the hierarchy is the standard LTL-like semantics, where models directly
correspond to runs of the circuit. At the bottom of the hierarchy is the standard
STE semantics (as defined elsewhere [10]), where models are abstract represen-
tations of what might be runs of the circuit. The hierarchy makes the balance
between proof power and efficiency explicit.
Furthermore, we give a SAT based algorithm for checking STE properties. The
algorithm is able to prove backwards properties which are not provable by sim-
ulator based algorithms, and is based on a SAT solver for three valued logic. We
show how we can adapt a standard DPLL style SAT solver [11] to a SAT solver
for three valued logic.



In the rest of the paper, we start by defining the hierarchy of semantics for STE
assertions, and proceed by giving implementations corresponnding to semantics
in this hierarchy. We finish with some experimental results and conclusions.

2 A Hierarchy of Semantics for STE Properties

In this section, we discuss a hierarchy of different semantics for STE properties.
At the top of the hierarchy is the standard LTL-like semantics, where models
directly correspond to runs of the circuit. At the bottom of the hierarchy is the
standard STE semantics (as defined elsewhere [10]), where models are abstract
representations of what might be runs of the circuit.

2.1 Circuits

A circuit c consists of a set of nodes N connected by logical gates and registers.
We distinguish the following subsets of the set of nodes: I is the set of input
nodes, S is set of state holding nodes, used to model registers, and O is the set
of observable nodes of the circuit. The node sets I and S are determined by the
circuit, the set of observable nodes O can be chosen to be any arbitrary subset
of all circuit nodes. We also assume that for every node n in S, there is a node
n′ in N which models the value of that node in the next state. The set of all
such n′ is called S ′.
It is common to describe a circuit in the form of a netlist. We will do this
here too, but we will not mention registers explicitly in the netlist. Instead, we
will explicitly mention n and n′ in the netlist. For simplicity, the only gates
we allow in netlists are AND-gates and (implicitly) inverters. We know this is
enough to represent any other logical function without a blow-up in extra logic.
It is however straightforward to extend this notion of netlist to include more
operations. This is not needed for the rest of the paper.
To define how we represent netlists exactly, we need the following preliminaries.
A node reference, written m, is either a node n or an inverted node n̄. A definition
is a triple of node references, written m1 = m2 and m3. Here, we call the node
of m1 the head of the definition, and the nodes of m2 and m3 the operands.

Definition 1 (Netlist). Given a circuit c with N divided up as above, a netlist
for c is a finite set of definitions, such that

– For all nodes n in N − (I ∪ S) there is exactly one definition with head n,
– The definitions are acyclic, i.e. they can be ordered in a list such that no

operands of a definition appear as a head later in the list.

2.2 Values

The values that circuit nodes can have are represented by the set V. The set V

contains as a subset the set B of regular values 0 and 1, but also a special value



x ¬x

0 1
1 0
X X

x y x ∧ y

0 0 0
0 1 0
1 0 0
1 1 1

X 0 0
0 X 0
X 1 X
1 X X
X X X

Fig. 1. Three-valued extensions of the gates

X, which is the unknown value. The idea is that we can get an approximation
of the behavior of a circuit by using the abstract value X as input. If the result
is a 0 or a 1 anyway, we know that this result is independent of whether we we
will use a 0 or a 1 as input.
Formalising this, we introduce a partial ordering on V. We let X ≤ 0 and X ≤ 1,
but we leave 0 and 1 incomparable. Now, we have to extend the normal boolean
gates in order to deal with the extra value X. They can be extended in many
ways, but there is one property that the extensions must fulfill: They have to
be monotonic with respect to the partial ordering ≤ on V. The reason for this
is that a gate cannot give a concrete answer (0 of 1) when one of its inputs is X
and then change its mind when that input is made more concrete. The way of
extending operators such that they lose the least amount of information is given
in Figure 1.
We model circuits by their transition functions. Given a circuit c, a transition
function Fc takes as input values for the input and state nodes, and yields values
for the observable nodes and the state nodes at the next moment in time. Thus
we define I = (I → V), S = (S → V), and O = (O → V). The type of a
transition function then becomes Fc : I × S → O × S.
Given the netlist of a circuit, we can easily construct a transition function that
models the circuit. For example, we can interpret each definition in the netlist as
a three-valued gate as described in Figure 1. Given the values for all nodes in I
and S, we can simply evaluate the values for all nodes. We denote this transition
function by F ∗

c . However, there are also other ways which are correct, as long
as the resulting transition function is monotonic. For the rest of this paper we
assume that Fc is a monotonic function that is at least as precise as F ∗

c .

2.3 Properties

Trajectory Evaluation Logic (TEL) is a restricted linear temporal logic in which
properties over bounded time intervals can be expressed. The only variables in
the logic are time-independent propositional variables taken from a set V .



Definition 2 (Trajectory Evaluation Logic). Given a set of symbolic vari-
ables V , the language of Trajectory Evaluation Logic is given by:

f ::= n is 0
| n is 1
| f1 and f2

| P → f
| Nf

where n ∈ N and P is a propositional formula over the set of propositional
variables V .

A key property of Trajectory Evaluation Logic is that a (consistent) formula
specifies for every time instance t and every node n, the set of values it is allowed
to take. This property would no longer hold if we were to add negation or
disjunction to the logic. This seems limiting, but it is exactly this property
which allows implementations of STE to model the value of a node by a BDD
in terms of the propositional variables.
We define the meaning of a TEL formula by a satisfaction relation. Models
in this relation are sequences σ of assignments of values to nodes over time.
More formally, σ : N → N → V. We define a time shifting operator σ1 by
σ1(t)(n) = σ(t+1)(n). We denote standard propositional satisfiability by |=Prop.

Definition 3 (Satisfaction of trajectory evaluation logic formulas). Sat-
isfaction of a trajectory evaluation logic formula f , by a sequence σ, and a val-
uation φ : V → B (written φ, σ |= f) is defined by

φ, σ |= n is 0 ≡ σ(0)(n) = 0
φ, σ |= n is 1 ≡ σ(0)(n) = 1
φ, σ |= f1 and f2 ≡ φ, σ |= f1 and φ, σ |= f2

φ, σ |= P → f ≡ φ |=Prop P implies φ, σ |= f
φ, σ |= Nf ≡ φ, σ1 |= f

A trajectory assertion, notation A =⇒ C, is a pair of TEL formulas A and C,
where A represents a set of assumptions made, and C represents set of conse-
quences that is believed to follow from the assumptions.
In the following, we will give a hierarchy of semantics that relate circuits to
trajectory assertions. Some of these semantics will be approximations, which
means that a trajectory assertion might be classified as false, though in reality
one would consider it to be true. However, if an assertion is classified to be true,
it will also be true in reality. The hope is that an approximative semantics will
be easier to check than a more precise semantics.

2.4 Behaviour Semantics

The first semantics we give, the behaviour semantics, is not an approximation,
but characterises exactly when a trajectory assertion is true or false for a given



circuit. The behaviour semantics therefore is the semantics which all other se-
mantics have to comply with.
First, we define the concept of behaviors, which are all sequences which cor-
respond to real runs of the circuits, i.e. sequences that respect the transition
function, and only map nodes to the values 0 or 1.

Definition 4 (Behaviour). Given a circuit c with transition function Fc. A
sequence σ is a behaviour iff for all times t ∈ N and for all nodes n ∈ N it holds
that

σ(t)(n) ∈ B,

and for all t ∈ N it holds that

(σS(t + 1), σO(t)) = Fc(σI(t), σS(t)).

Here, we use the notation σN to denote the function σ with the domain restricted
to the nodes N .
The behaviour semantics corresponds to an LTL-like semantics for circuits, i.e.
a circuit satisfies an assertion if and only if all circuit behaviours satisfy the
assertion.

Semantics 1 (Behaviour Satisfiability) A circuit c behaviour satisfies a tra-
jectory assertion A =⇒ C, written c |=Beh A =⇒ C iff for every valuation
φ ∈ V → B and for every behaviour σ of c, it holds that

φ, σ |= A ⇒ φ, σ |= C.

In order to be able to compare different semantics with each other, we introduce
the following semantics precision ordering.

Definition 5 (Semantics Precision Ordering). Given two semantics rela-
tions |=1 and |=2, relating circuits to trajectory assertions, we say that |=1 is
less precise than |=2, notation |=1 � |=2, iff, for all circuits c and trajectory
assertions A =⇒ C it holds that

c |=1 A =⇒ C ⇒ c |=2 A =⇒ C.

It is easy to see that the precision ordering on semantics is reflexive and transi-
tive. All other semantics for trajectory assertions are supposed to be at most as
precise as the behaviour semantics.

2.5 Three-Valued Semantics

The three-valued semantics is the first approximative semantics we introduce in
this paper. Here, we will make use of the third value X, which stands for the
unknown value.
First, we define the set of X-behaviours, which is a superset of the set of be-
haviours of a circuit. In X-behaviours nodes are allowed to take the value X,
whereas in behaviours nodes can only take the values 0 and 1.



Definition 6 (X-Behaviour). Given a circuit c with transition function Fc. A
sequence σ is an X-behaviour iff for all t ∈ N it holds that

(σS(t + 1), σO(t)) = Fc(σI(t), σS(t)).

In the three-valued satisfiability relation, we require that all X-behaviours of the
circuit satisfy the assertion, in order for an assertion to be true. This leads to a
semantics in which fewer assertions are valid. However, if the assertion is valid
in the three-valued semantics, it is also valid in the behaviour semantics.

Semantics 2 (Three-Valued Satisfiability) A circuit c three-valuedly sat-
isfies a trajectory assertion A =⇒ C, notation c |=Three A =⇒ C iff for every
valuation φ ∈ V → B and for every X-behaviour σ of c, it holds that

φ, σ |= A ⇒ φ, σ |= C.

The reason why the three-valued semantics is interesting at all, is that it might be
cheaper to check three-valued validity of assertions than behaviour validity. The
price we pay for this possible loss in complexity is that the semantics becomes
less precise.

Proposition 1. Three-valued satisfiability is less precise than behaviour satisfi-
ability, i.e. |=Three � |=Beh.

Moreover, three-valued satisfiability is strictly less precise than behaviour satis-
fiability. The reason for this is that if a node n is unconstrained by a trajectory
formula A at a particular point in time, then in order for the assertion A =⇒ C
to hold in the three-valued semantics, every trajectory that gives the value X to
node n must satisfy C if it satisfies A. This is a very strong condition – allowing
n to be X might lead to too many X’s in other parts of the circuit, even though
setting n to 0 or 1 would lead to situations that fulfill C.
However, even though there are assertions A =⇒ C which are valid in the
behaviour semantics but not in the three-valued semantics, we can always adapt
such an assertion to an assertion A′ =⇒ C ′ which is satisfiability equivalent to
A =⇒ C in the behaviour semantics, but nevertheless holds in the three-valued
semantics. We simply do this by introducing more propositional variables which
restrict certain inputs.

2.6 Forwards Semantics

Looking at the standard semantics given to STE assertions, there is yet another
source of information loss. In the three-valued semantics above we make use of
X-behaviours, which are sequences that are supposed to be fully consistent with
the transition function Fc. However, in the standard STE semantics, information
known about a node n in a particular point in time, only has to be consistent



with the events that come after than point in time. So, we define yet another
semantics, which captures the notion of this forwards propagation.
The notion of a sequence that only has to respect forwards propagation is called
trajectory in the STE literature.

Definition 7 (Trajectory). Given a circuit c with transition function Fc. A
sequence σ is a trajectory iff for all t ∈ N it holds that

(σS(t + 1), σO(t)) ≥ Fc(σI(t), σS(t)).

Here, we make use of the ordering ≥, which is the ordering from the value set
V lifted to tuples and functions. In other words, when picking values for nodes
in time point t + 1, we have to at least respect what was predicted about them
in time point t. For example, if given the values of state and input nodes at
time n, the transition function Fc, predicts the value X for a certain node, the
trajectory is allowed to take the value 0, 1 or X for that node. If, however, the
Fc the transition function predicts the value 0 or 1, the trajectory is required to
take that value.
We define the notion of forwards satisfiability accordingly.

Semantics 3 (Forwards Satisfiability) A circuit c forwards satisfies a tra-
jectory assertion A =⇒ C, written c |=Forw A =⇒ C iff for every valuation
φ ∈ V → B and for every trajectory σ of c, it holds that

φ, σ |= A ⇒ φ, σ |= C.

The forwards semantics is less precise than the three-valued semantics, and there-
fore also less precise than the behaviour semantics.

Proposition 2. Forwards satisfiability is less precise than three-valued satisfia-
bility, i.e. |=Forw � |=Three.

The information loss can be easily seen in an assertion A =⇒ C where A says
something about an output at a later time than when C says something about
an input. For instance, the assertion N(out is 1) =⇒ in is 1, for a circuit that
consists of a single delay element with input in and output out is not true in the
forward semantics.
Again, an assertion A =⇒ C that is valid in the behaviour semantics but not
in the forwards semantics, can be adapted to an assertion A′ =⇒ C ′ which is
satisfiability equivalent to A =⇒ C in the behaviour semantics, but holds in the
forwards semantics. For instance, the assertion N(out is 1) =⇒ in is 1 can be
transformed to N(out is 1) and in is p =⇒ in is 1 by adding an extra symbolic
variable. The assertion N(out is 1) and in is p =⇒ in is 1 is true in the forwards
semantics as the consequent is valid is we set p = 1 and the antecedent is valid
if we set p = 0.



2.7 Y-Semantics

The traditional STE semantics makes use of a next state function, denoted by
Y : N → N . Thus, it does not distinguish between inputs, outputs, and states.
The problem with using this Y function to define the semantics of STE is that
it does not really correspond to what actual implementations do. For example,
a Y function can only propagate information to the next point in time, whereas
actual implementations of STE can propagate information from inputs of circuits
directly to outputs of circuits in the same point in time.
The purpose of the next state function is to take information about the current
state and compute information about the next state. Naturally, the input nodes
in the next state will be mapped to X.
For completeness, we define here the relationship between the traditional STE
semantics and the semantics we have discussed so far. We begin with relating
transition functions Fc to next state functions Yc.

Definition 8 (Y-Consistency). A next state function Yc : N → N is consis-
tent with a transition function Fc : I × S → O × S iff for all n, n′ in N , i in I,
o, o′ in O, s, s′, s′′ in S, if it holds that

(o, s′) = Fc(i, s) and (o′, s′′) = Fc(IX, s′),

then it also holds that

Yc(i ∪ o ∪ s) = (IX ∪ o′ ∪ s′).

Here, we write SX for the constant function that maps all elements in S to X.
As we can see, it is a bit awkward to relate Fc to Yc, since Yc computes values
of nodes belonging to two points in time: first Yc needs to compute the values
of the next state s′ and then it needs to compute the values of the other nodes
o′ belonging to the next state.
Given a Y function, we can define the notion of Y -trajectory.

Definition 9 (Y-trajectory). A sequence σ : N → N → V is a Y-trajectory
iff for all t ∈ N , it holds that

σ(t + 1) ≥ Y (σ(t)).

The definition of Y-satisfiability follows from the definition of Y-trajectories in
a natural way.

Semantics 4 (Y-Satisfiability) A circuit c Y -satisfies a trajectory assertion
A =⇒ C, written c |=Y A =⇒ C iff for every valuation φ ∈ V → B and for
every Y -trajectory σ of c, it holds that

φ, σ |= A ⇒ φ, σ |= C.



Behaviour ↔ BMC
↑ ↑

Three-Valued ← Constraints
↑ ↑

Forwards ↔ Simulation
↑
Y

Fig. 2. Semantics and implementation hierarchy

Note that because Y-trajectories do not place constraints on the relations be-
tween nodes at the same time step it is not possible to validate assertions that
require a flow of information from input to output in the same time step. For
instance, the assertion in is 0 =⇒ out is 1 for an inverter gate is not true in the
Y-semantics.

Proposition 3. Y-satisfiability is less precise than forwards satisfiability, i.e.
|=Y � |=Forw.

2.8 Summing Up

In this section, we have constructed a hierarchy of semantics for trajectory as-
sertions. The most precise semantics, the behaviour semantics, is at the top of
the hierarchy, and the least precise semantics, the Y semantics, at the bottom.

The idea is that less precise semantics might have easier decision procedures
associated with them. In the next section, we will discuss a number of such
decision procedures.

In Figure 2, the hierarchy of the different semantics plus associated decision
procedures is shown. An arrow ↑ with a semantics A below and semantics B
above means that A is (strictly) less precise than B. A double arrow A ↔
B between a semantics and a decision procedure means that the procedure is
sound a complete with respect to the semantics. An arrow ← to the left denotes
soundness. Finally, an arrow ↑ with a procedure A below and a procedure B
above means that A can prove (strictly) fewer assertions than B.

3 Decision Procedures

In this section we introduce decision procedures for STE assertions based on
three valued SAT solvers. We start with our own decision procedure which is
sound w.r.t. the three-valued semantics, but more precise than the forwards
semantics.



3.1 Three-valued constraints

In this subsection we give a decision procedure that, from a circuit c and an
STE assertion A =⇒ C, generates a set of constraints over three-valued vari-
ables. These constraints can then be solved by a three-valued constraint solver,
a possible implementation of which is described in the next section.

Definition 10 (Three-valued Constraint Problem). A three-valued con-
straint problem consists of a set of two-valued variables V2, which are called the
symbolic variables, a set of three-valued variables V3, which are called the node
variables, and a set of clauses. A clause is a disjunction of one, two or three
literals. A literal is a variable x or a negated variable x̄.

So, a three-valued constraint problem contains a mixture of two-valued and
three-valued variables. We need to define what the models of a three-valued
clause are. In the following, we will use three-valued assignments, which are
functions φ : V2∪V3 → V. For a negated variable, we define φ(x̄) = 0 if φ(x) = 1
and φ(x̄) = 1 if φ(x) = 0.

Definition 11 (Satisfaction of Three-Valued Clauses). Let p, q, and r be
literals.

1. A three-valued clause p is satisfied by a value assignment φ iff φ(p) = 1.
2. A three-valued clause p ∨ q is satisfied by a value assignment φ iff φ(p) = 0

implies φ(q) = 1, and φ(q) = 0 implies φ(p) = 1.
3. A three-valued clause p∨q∨r is satisfied by a value assignment φ iff φ(p) = 0

and φ(q) = 0 imply φ(r) = 1, and φ(p) = 0 and φ(r) = 0 imply φ(q) = 1,
and φ(q) = 0 and φ(r) = 0 imply φ(p) = 1.

So, for example, a clause p∨ q ∨ r is satisfied when all p, q, r are X, or when two
of p, q, r are X, but not when p is X and q and r are 0.

3.2 Constraint variables

Given a circuit c and an STE assertion A =⇒ C, we construct three sets of
constraints: (1) the set of constraints for the requirements placed by the an-
tecedent, written [A], (2) the set of constraints for the requirements placed by
the consequent, written [C], and (3) the set of constraints for the behaviour of
the circuit, written [c]. We then check, using a three-valued SAT-solver whether
every model of the constraint sets [A] and [c] is also a model of [C]. If this is the
case, then we can conclude that the assertion A =⇒ C holds.
The first step in designing a SAT-based decision procedure for STE assertions is
to realize that only the first d steps of a sequence determine whether it satisfies
a formula of depth d. The depth of a formula is the number of nested uses of N.



Proposition 4. Let d be the depth of a TEL formula f in trajectory evaluation
logic, φ : V → V a valuation function and σ, σ′ : N → N → V be sequences then:

φ, σ |= f and σ({0, . . . , d}) = σ′({0, . . . , d}) ⇒ φ, σ′ |= f.

Because only the first d time steps of a sequence determine whether an STE
assertion is valid, we only consider these time steps in the generation of three-
valued constraints. We introduce a set of node variables nt with n ∈ N and
0 ≤ t ≤ d which give the values of the nodes in the circuit over over the first
d time steps, we denote this set by VarN . Furthermore, we introduce symbolic
variables for every propositional variable in the assertion, notation VarV. We
define Var = VarV ∪ VarN . In the three-valued semantics nodes can have the
value X next to the values 0 and 1, therefore in the variables in the set VarN
can take values 0, 1 and X, whereas the variables in the set of symbolic variables
VarV can only take the values 0 and 1.

3.3 Generating constraints

From a circuit c we can derive a set of three-valued constraints, called the tran-
sition constraints, corresponding to the behavior of the circuit.

Definition 12 (Transition Constraints). For each definition m1 = m2 and m3

in the netlist of a circuit c, if m1 is a reference to a non inverted node n, then
we define l1 to be positive literal of the node n, otherwise l1 is negative literal.
The literals l2 and l3 are defined likewise. We introduce the following constraints
for the definition.

l1 ∨ l̄2 ∨ l̄3
l̄1 ∨ l2
l̄1 ∨ l3

We denote the set of all such constraints of definitions in c by [[c]].

Note that for this definition of satisfaction, the constraint for a definition m =
k and l is satisfied by all the assignments of m, k and l in the truth table of the
AND gate.
Further, we generate constraints for the assertions A and C as follows.

Definition 13 (Defining Constraints). We define a mapping [[ ]]( ) from
formulas and time points to three-valued constraints as follows:

[[n is 0]](t) ≡ {n̄t}
[[n is 1]](t) ≡ {nt}
[[f1 and f2]](t) ≡ [[f1]](t) ∪ [[f2]](t)
[[P → f ]](t) ≡ P � [[f ]](t)
[[Nf ]](t) ≡ [[f ]](t + 1)

The defining constraints of f , notation [f ], are denoted by [[f ]](0).



Here, we use the operator �, which has the following meaning. Given a clause
set C and a propositional formula P , we pick a new two-valued variable p,
and clausify the propositional formula P → p in the usual way, leading to a
set of clauses D. The result of P � C then becomes the set of constraints
D ∪ {p̄∨ c|c ∈ C}. In other words, in situations where P is true, the constraints
in C have to hold (since p must be 0 then), and in situations where P is false,
they do not necessarily have to hold.

3.4 Properties of the constraints

We define the valuation σd corresponding to sequence σ by σd(nt) = σ(n)(t), for
0 ≤ t ≤ d. As σd contains exactly the same information as σ for the first d time
steps, σ is a model of TEL-formula f of depth less or equal to d iff σd satisfies
its corresponding constraint [f ]. This is stated in the lemma below.

Lemma 1. Define the valuation σd by nt = σ(n)(t) for 0 ≤ t ≤ d Let f be a
TEL-formula of depth less or equal to d′ ≤ d with symbolic variables V , then

φ, σ |= f ⇔ φ, σd |= [f ]

A direct consequence of this is the following lemma:

Lemma 2. For all inputs i in I, outputs o in O, states s, s′ in S, S′, it holds
that:

F (i, s) = (o, s′) ⇒ i, o, s, s′ |= [[c]].

Proof. (Sketch) Suppose F (i, s) = (o, s′) for some valuation i, o, s, s′ of the set of
nodes N . Consider a definition of a node reference (say m1), the value of this node
reference is given by the application of the and operator on the two operands
(say m2 and m3). This assignment of m1,m2 and m3 models the constraint
derived from the definition.

Using the transition constraints, the set of constraints for the behavior of the
circuit over d time steps is defined as follows:

Definition 14 (Expanded Transition Constraints). The expanded transi-
tion constraints over d time steps, written [c], are defined by, for 0 ≤ t ≤ d:

[[c]][n := nt],

and, for 0 ≤ t < d and s ∈ S:
st+1 = s′t.

Every valuation that corresponds to an X-behavior meets the expanded transi-
tion constraints.



Lemma 3. If σ is an X-trajectory, then for every d ∈ N the valuation σd given
by nt = σ(n)(t) for 0 ≤ t ≤ d meets the expanded transition constraints [c]

Proof. By Lemma 2 and induction on d.

From Lemmas 1 and 3 we can directly conclude that the SAT procedure is sound.

Proposition 5 (Soundness). If all three-valued models of the constraints [A]∪
[c] are also three-valued models of the constraints [C] then the STE assertion
A =⇒ C is true in the three valued semantics.

Proof. Directly from lemmas 1 and 3.

3.5 Other decision procedures for STE

BDD based simulation The standard implementation technique of STE
is to replace the signal data type of an existing circuit simulator with BDDs
representing ternary values. BDDs can represent ternary values by using the
so-called dual rail encoding, in which two boolean values are used to represent
a ternary value.
Given a trajectory assertion A =⇒ C of depth d, a simulation is performed over
d time steps. At every time step the simulator sets the nodes whose value is spec-
ified by the antecedent for that time step, and checks whether the requirements
of the consequents hold. As soon as a requirement is not fulfilled the algorithm
returns a failure, otherwise it continues until the simulation is completed and
returns a success.
Simulator-based STE implementation can only propagate information forwards
in time, while many properties naturally need a backwards information flow to
be verified. An example of this is when the antecedent contains an assumption
about an output which is needed to show something about an input mentioned
in the consequent. There exist generalizations of STE which feature algorithms
for backwards reasoning [14]. Unfortunately, these algorithms require a fixed
point computation, and are more complicated than the original forward STE
algorithm.
Intel’s Forte system[1] is (as far as we know) the only publicly available imple-
mentation of a BDD based STE algorithm. Forte is not sound with respect to
Y-semantics of STE; we were able to prove properties that require an informa-
tion flow from input to output within the same time step, while such properties
are not valid in the Y-semantics. Our conjecture is that simulator based decision
procedures are sound and complete with respect to the forwards semantics.
BED based simulation with SAT solvers Bjesse et al. [5] have introduced
another simulator based STE algorithm. Instead of replacing the signal data type
of the circuit simulator by BDDs, they used the non-canonical data structure of
Binary Expression Diagrams [3]. Again a dual rail encoding was used to represent
ternary values by two boolean values. During simulation they use a SAT solver



to check whether at every time step the symbolic values of the nodes meet
the requirements of the consequent. Although their method proved to perform
well in finding bugs in an Alpha microprocessor, their approach has the same
disadvantage as simulator based STE with BDDs: it only propagates information
in a forward fashion. Also BED based simulation is sound and complete with
respect to the forwards semantics.
Bounded Model Checking Bounded Model Checking [4] (BMC) is a SAT
based procedure for checking LTL properties. Given a property, BMC tries to
disprove it by considering counter examples of increasing length. Although in
theory the method can be used for proving properties (as the maximal length of
counterexamples is bounded), in practice it is mainly used for bug finding. BMC
can be seen as a sound and complete decision procedure for STE w.r.t. to the
behaviour semantics, because given an assertion of length d, the BMC procedure
only has to check for counterexamples up to length d.

4 A Three-Valued SAT-Solver

In this section, we show how to adapt a standard two-valued SAT-solver to act
as a three-valued solver, by slightly changing its implementation.

4.1 DPLL Style Satisfiability Solvers

Most current-day two-valued SAT-solvers are based on variants of the DPLL
algorithm [7, 6, 8, 11]. The state of such a two-valued SAT-solver, for each variable
x, keeps track if x has gotten the value 0, the value 1, or has gotten no value yet.
In the beginning, no value is assigned any value. The algorithm then interleaves
the following two phases:

– Propagation: Given the state of the variables, derive for other variables
values that they must have in order for there to be a solution at all.

– Branching: If propagation cannot find any more values for variables, pick a
variable x that has not gotten a value yet, and split the problem in two: one
where x has the value 0, and one where x has the value 1. Now, recursively
solve the two subproblems.

Whenever a variable assignment is reached where one of the constraints is not
satisfied, we reach a contradiction
The DPLL algorithm works with constraints that are clauses, which are disjunc-
tions of literals. Propagation triggers when all literals in a clause but one have
gotten the value 0. In this case, the last remaining literal is assigned the value
1, since this is then the only way to satisfy the clause.



4.2 Developing a Three-Valued Solver

Changing our point of view slightly, the state of a two-valued SAT-solver can
be seen as a three-valued assignment of values to variables. Here, the value X
represents the situation where a variable has not gotten the value 0 or 1 yet.

In the propagation phase, some variables then change their values from X to 0
or 1, but only if they are forced to by a particular clause. Thus, propagation
can be seen as computing a three-valued solution that is consistent with a given
value assignment.

In the branching phase, a variable x is picked and forced to be either 0 or 1. Thus,
we can see the branching phase as the source of two-valuedness of a DPLL-style
SAT-solver.

The idea is to adapt a two-valued solver to a three-valued solver by treating the
two-valued symbolic variables, which must have the value 0 or 1 in each model,
differently from the three-valued node variables, which can also have the value
X in a model. We simply restrict the branching phase to only work on symbolic
variables! When a propagation phase ends, and a new branching variable x has
to be picked, we pick the next symbolic variable that has not gotten a value
yet. Moreover, if no such variable exists (i.e. all variables without a value are
node variables), we have found a three-valued model of the constraints. The
three-valued model can be computed by, for each variable, taking the value it
has gotten so far, and X if it has not gotten a value yet.

For each three-valued constraint, we simply generate am identical clause in the
SAT-solver we use. When restricting the solver as mentioned above, the clause
gets the same meaning as described in 11. The only three-valued models that
are not allowed are the ones where all literals are false except for one. This is
exactly the case where propagation triggers.

To implement a decision procedure that checks A =⇒ C for a circuit c, we
generate a constraint set containing [c] and [A]. We feed these to a SAT-solver
that is only allowed to branch on the symbolic variables. When a (three-valued)
model is found, we check if it satisfies [C]. If so, then everything is fine, and we
continue. Otherwise, we have found a counter model to the assertion, and we
report the current model.

A more efficient method, the one we actually implement, is to add the negation of
the constraints in [C] as an extra constraint. This will lead to more propagation
in the SAT-solver, which might be more efficient. Also, when a model of [c],
[A], and ¬[C] is found, we know it must be a counter model of the assertion
A =⇒ C, so the check for satisfying [C] becomes obsolete. However, we add
more propagation possibilities, so some models containing X will disappear. This
method will thus find less counter models (it will take away some that contain
X in outputs that are mentioned in C), and so it makes more things true.

Since the worse-case time complexity of a SAT-solver is exponential in the num-
ber of branches, both implementations have a time complexity that is exponential



in the number of symbolic variables. This is comparable to the STE implemen-
tation via BDDs.

5 Benchmarks

In this section we present some preliminary benchmarks of verification runs of
STE assertions using our SAT procedure. We presents benchmarks of verification
runs of valid properties, but also consider benchmarks for bug finding, where we
feed the tool with an invalid property, and the tool has to present a counter
example.
The circuits we use in the benchmarks are tree-memories which are shaped like
a perfect binary tree. The circuits are designed by ourselves. Of course, it would
be very much more interesting to test our tool on real world industrial examples,
but up to now we have been unable to obtain such examples.
We have checked a simple STE property for a number of circuits with different
address widths and data widths, both for correct and buggy implementations.
The buggy implementation contains two bugs: the first and last memory location
are not writeable. The assertion we check is:

wr is 1 and rd is 0 and addr is A and in is V and
N( wr is 0 and rd is 1 and addr is A )

=⇒
N( out is V )

The assertion states that if we write a value to an address, reading the address
at the next moment in time should yield the same value.
We want to stress that the benchmarks are all run on an unoptimized, first
prototype of tool. For instance, in the prototype the splitting limitation (as
described in the previous section) is not implemented; we allow the SAT-solver
to branch on all variables.
The reason we have not used the splitting restriction is that we discovered that a
naive implementation of the splitting restriction yields worse performance than
unrestricted splitting. The reason for this decrease in performance is quite ob-
vious: Modern SAT-solvers contain sophisticated heuristics for deciding which
variables to split on. SAT problems for verification of large circuits contain typ-
ically hundreds of thousands of variables, of which only very few (say less than
a hundred) correspond directly to an symbolic variable. So, by limiting the SAT
solver to only split on the symbolic variables we completely cripple its ability to
make smart choices for the variables to split on.
A more sophisticated way of implementing the splitting restriction, would be
to allow the SAT solver to not only split on the symbolic variables, but also
on all variables whose value directly depends on the values of the symbolic
variables. Implementing the SAT procedure in this way would give the SAT
solver much more freedom in the choice of splitting variables, but would not



increase the number of assertions it can prove. Unfortunately, we were not able
to run benchmarks on such a procedure before the deadline of these proceedings.
We compare our results against Forte [1], Intel’s in-house verification system,
which includes an implementation of STE. The benchmarks show that our first
prototype is not able to compete with Forte yet when it comes to proving STE
assertions. The bug finding performance (for this particular circuit, bug, and
assertion) seems comperable, which is very encouraging.

Tree-Memory Bug Finding

aw dw STE SAT Forte

10 8 0.55 1.4
11 8 3.7 5.3
12 8 8.3 16
13 8 45 42
14 8 59 110

Tree-Memory Verification

aw dw STE SAT Forte

8 4 0.7 0.6
9 4 1.6 0.6
10 4 5.7 0.6
11 4 23 0.9
12 4 210 4.5

All times in seconds. All benchmarks were run on a PC with an Intel Pentium IV
processor running at 3GHz and 2GB memory under Red Hat Linux. The abbreviations
aw and dw denote respectively the address width and the data with of the memory
circuit.

Fig. 3. Benchmarks

6 Conclusions

We have given a hierarchy of semantics for STE assertions, and decision proce-
dures for these semantics, one of which is a decision procedure for STE assertions
that can deal with backwards assertions. The procedure can be implemented in
a simple way, and does not require the use of fixed points as simulator based
methods for STE.
Our algorithm uses a three-valued SAT solver. Unfortunately, the naive imple-
mentation of such a solver behaves not as well as we had hoped. The performance
of modern SAT solvers depends very much on their ability to make smart choices
for the variable to split on. Simply limiting the SAT solver to only split on the
symbolic variables reduces the performance of SAT solvers significantly, because
the number of symbolic variables in the SAT problem is relatively small. In the
future work section we describe ideas we have to implement the splitting limi-
tation in a more efficient way, without changing the proving power of the three
valued SAT solver.
Experimental results show that our prototype implementation of our SAT based
procedure is not yet able to compete with BDD based algorithms for STE when
it comes to proving assertions. The bug finding performance seems comparable,
which is encouraging.



7 Future work

We plan to optimize our three valued SAT solver by allowing the SAT solver
to branch on more variables, without changing the proving power of the solver.
A first step would be to allow the SAT solver to not only split on the symbolic
variables, but also on all variables whose value directly depends on the values
of the symbolic variables. Implementing the SAT procedure in this way would
give the SAT solver much more freedom in the choice of splitting variables, but
would not increase the number of assertions it can prove.
Also, we would like to investigate optimisations for properties that do not need
a backwards information flow. For such properties it is possible to take away the
constraints corresponding to the parts of the circuits that are only fed with X’s.
This would yield smaller SAT problems, that are hopefully easier to solve.
We believe that STE via SAT can be a good complement to BDD-based STE.
In order to investigate this claim, we would like to study real world examples
that are hard for BDD-based STE. We would like to cooperate with industry to
obtain such examples.
We would like to investigate whether our ideas can be generalised to GSTE. One
way to do so is to apply our procedure to paths of finite length of an GSTE graph,
which can be seen as STE assertions. This would yield a bugfinding method
for GSTE. The idea to use STE methods for GSTE bug finding is introduced
in [12], where simulator based SAT methods are applied to finite paths of an
GSTE graph. Another approach would be to try to translate (subclasses of)
GSTE graphs directly to a SAT problem, so that we can use SAT solvers to
prove GSTE assertions.
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Verification of Parametric Timed Circuits using Octahedra
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Abstract. This paper presents an approach for the verification of timed circuits in which all de-
lays are symbolic. Abstract interpretation is used to face the complexity of the problem and a new
abstraction is proposed to represent timed regions: octahedra. A new type of decision diagrams
are used to symbolically represent and manipulate state spaces with octahedral timed regions.
The approach has been successfully applied to the verification of asynchronous controllers.

1 Introduction

The correctness of timed circuits depends on the delays of its gates, wires and environment. The con-
ventional approaches for verification rely on the fact that the delays are known a priori, or belong
to a constant interval (bi-bounded delays) [4, 16], using behavioral models as timed transition sys-
tems [14], timed Petri nets [20] or timed automata [1]. However, the results obtained for a specific set
of delay values cannot be extrapolated, in general, to other sets of values.

In this paper we are interested in verifying circuits in which delays are symbolic. As an example,
let us analyze the D flip-flop shown in Fig. 1. We want to derive a set of sufficient constraints that
guarantee the following property to hold: “The value of Q after a delay TCK→Q from CK’s rising
edge must be equal to the value of D at CK’s rising edge”. Any behavior not fulfilling this property
is considered to be a failure.

Figure 1(c) reports a set of sufficient linear constraints derived by the algorithm proposed in this
paper. The symbols di and Di represent the minimum and maximum delays of gate gi, respectively.
The most interesting aspect of this characterization is that it is technology independent.

There have been few proposals towards the analysis of circuits with symbolic delays. Parametric
difference bound matrices (DBMs) [3, 15] and Presburger arithmetic [2] can handle symbolic delays
in the verification of timed automata and timing diagrams, respectively. The incorporation of symbols
in verification involves a high computational cost. For example, the approaches for timed automata
have been able to handle 5 symbols at most with parametric DBMs.

T setup T hold

T CK −> Q

HIT

T LO

(a) (b)

CK

D

Q
g1

g2
g3

g4

CK

Q

D

TCK→Q ≤ D2 + D3 + D4

Tsetup > D1 + D2 − d2

Thold > D2 + D3

THI > D2 + D3 + D4

THI > Thold

TLO > Tsetup

d1 > D2

(c)

Fig. 1. (a) Implementation of a D flip-flop [19], (b) description of variables that characterize any D flip-flop and
(c) sufficient constraints for correctness for any delay of the gates.



Abstraction Intervals DBMs Octagons Octahedra Polyhedra

Constraints aixi ≤ k xi − xj ≤ k aixi + ajxj ≤ k

n�
i=1

aixi ≤ k

Coefficients ai ∈ {−1, 1} ai, aj ∈ {−1, 0, 1} ai ∈ {−1, 0, 1} ai ∈ �
Example −3 ≤ x ≤ 5 −3 ≤ x ≤ 5 x + y ≤ 8 x + y − z ≤ 4 2x − y + 3z ≤ 8

0 ≤ y ≤ 2 x − y ≤ 4 y − z ≤ 3 x + z ≤ 9 2y − z ≤ 5

Table 1. Constraints used for the representation of timed regions (k ∈ � ).

(a) Intervals (b) Octagons (c) Octahedra (d) Polyhedra

Fig. 2. Different abstractions used in abstract interpretation.

1.1 Abstract interpretation

We resort to abstract interpretation [9] to verify timed circuits with symbolic delays. Abstract inter-
pretation uses approximations of the state space, as a compromise between accuracy and efficiency.
The method proposed in this paper is conservative (no false positives) for the verification of safety
properties.

When the delays of the components are constant, the timed regions can be represented as con-
junctions of inequations of the form xi − xj ≤ k, where xi and xj represent the clocks of timed
components. The constant k accumulates the delay information obtained from the pre-history of the
system in a particular state. DBMs have been typically used to represent these regions. When delays
are symbolic, k turns to be a linear combination of variables and cannot be represented as a constant.

Table 1 summarizes the type of constraints used in different abstractions for the approximation
of state spaces in abstract interpretation. A set of states is modeled as a conjunction of constraints.
The abstractions are ordered, from left (intervals) to right (polyhedra), by their expressive power.
Figure 2 depicts some of the regions that can be modeled by the previous abstractions. Intervals
can only model regions with one-dimensional constraints. DBMs and octagons use two-dimensional
constraints (DBMs is a subclass of octagons in which one-dimensional constraints can be defined by
using a variable x0 with constant value 0). Finally, convex polyhedra use n-dimensional constraints.

In this paper we will use octahedra, a subclass of convex polyhedra in which the coefficients
belong to the set {−1, 0, 1}.

1.2 Why octahedra1?

In a previous approach, convex polyhedra were used to verify timed circuits with abstract interpreta-
tion [8]. After numerous experiments, one immediately realizes that the required constraints to guar-
antee most of the circuit correctness belong to the class of octahedra shown in Table 1. Intuitively,
they correspond to constraints of the type

(δ1 + · · ·+ δi︸ ︷︷ ︸
delay(path1)

)− (δi+1 + · · ·+ δn︸ ︷︷ ︸
delay(path2)

) ≥ k

1 For simplicity, we use the name octahedra to denote a more general class of n-dimensional polyhedra. Among
the three-dimensional convex polyhedra belonging to this class we have the octahedron, cube, truncated cube,
cuboctahedron, truncated octahedron and rhombicuboctahedron (shown in Fig. 2(c)).



that indicate that certain paths must be longer than other paths. In very rare occasions, coefficients
different from±1 are necessary. A typical counterexample would be the case in which one path in the
circuit must be longer than c times another path (e.g. a fast counter).

The approach presented in this paper is suitable for the verification of small controllers, typically
designed by hand or by sophisticated synthesis tools, whose behavior depends on the timing char-
acteristics of the components, such as asynchronous controllers (e.g. [19, 21, 23]). But the technique
is also applicable to any level of granularity. For example, one could verify RTL specifications with
delays at the level of functional blocks (ALUs, counters, controllers, etc).

2 Timing reachability algorithm

2.1 Overview

The timed behavior of an asynchronous controller can be modelled by viewing its state space as a
timed transition system (TTS). Each state corresponds to an assignment of values to the signals of
the circuit, and each transition corresponds to a change in the value of one signal. Each transition is
annotated with an event, that defines the component (e.g. gate, transistor, environment) that changes
the state of the signal. Events of a TTS can only be fired if their lower and upper bound restrictions
[d, D] are satisfied. These delays define the processing time required by a gate to change the value of
its output signal after a change in the inputs.

An event can become enabled in one state and be fired in a later state after being enabled for
some time. Intuitively, each event has an associated event clock that stores the amount of time elapsed
since the transition became enabled. Each time an event is fired, event clocks are updated accordingly.
Analysis of the values of event clocks can reveal whether an event can be fired or not in a given state.

The algorithm presented in this section computes a conservative upper approximation of the event
clock values, that can be a set of convex polyhedra or octahedra. Approximations will be propagated
and combined using fixpoint techniques described in abstract interpretation [9]. The following sections
describe the different parts of the algorithm: the abstract interpretation techniques (2.2); the operations
on octahedra (2.3); and the function that updates the clock values after firing an event (2.4).

2.2 Abstract interpretation

Abstract interpretation [9, 10] is a framework of approximate static analysis techniques which can be
applied to many kinds of analysis problems in different types of systems. In order to solve a specific
problem, the framework of abstract interpretation has to be adapted to:

– the properties being studied: The state of a system may contain information which is not nec-
essary to check a given property. Therefore, in our analysis we can work with an abstraction, a
simplification of the state that ignores the irrelevant information.

– the semantics of the system: The behavior of a system can be defined by identifying a set of
locations where we require information about the state. The relations among the state of the
system in these locations establishes a system of equations.

The system of equations is solved iteratively using fixpoint techniques, yielding an abstraction that
describes an upper approximation of the state in each location of the system.

For the problem of timing analysis of a TTS, a configuration is a set of valid assignments of
constant values to clocks and symbolic delays. We will abstract the set of valid assignments as an
octahedron that is an upper approximation of this set, i.e. all valid assignments are included in the
octahedron. The octahedron will describe the linear constraints that are satisfied among clock values
and symbolic delays in all these valid assignments. The locations of interest of our timing analysis



Algorithm AbstractInterpretation (R, Inv)
Input: A timed transition system R = 〈〈S, Σ, T, sin〉, d, D〉 with an invariant Inv defining con-
straints on symbolic delays.
Output: The abstraction Time for all states.

foreach state s ∈ S do Time(s) := ∅; endfor
Time(sin) := Inv;
changed := {sin};
do

n := state in changed with lowest DFS number;
changed := changed \ {n};
foreach transition n

e→ m ∈ T
newT ime := transfer(n, e, m);
if (newT ime ⊆ Time(m)) continue;
newT ime := newT ime ∪ Time(m);
if (e is a back edge)

Time(m) := (Time(m) ∇ newT ime) ∩ Inv;
else

Time(m) := newT ime ∩ Inv;
changed := changed ∪ {m};

while (changed 
= ∅);

Fig. 3. Abstract interpretation algorithm

of will be the states of the TTS. We will note the abstraction in a given state s as Time(s). This
abstraction describes the values of clocks when a state is reached, i.e. the precondition of the state.

In order to define the timing behavior of the system, we have to build a system of equations that
defines how time elapses. When an state is reached, several events become enabled while other events
that were enabled previously continue to be enabled. These events have to be fired according to its
lower and upper delay bound, taking into account that some events have already been enabled for
some time. We have defined a symbolic function called transfer (see section 2.4) that advances the
clock values while satisfying all upper and lower bounds. The output of this function is the value of
clocks after firing an event, i.e. the postcondition of the transition being taken. Using this function,
the abstractions for states can be defined as the following system of equations:

∀m ∈ S, n
e→ m ∈ T : Time(m) =

⋃
transfer(n, e, m)

Fig.3 describes an algorithm that computes a solution for this system of equations using a increas-
ing fixpoint. Each location starts with an empty set of valid assignments to clocks and values, i.e.
an empty abstraction. The algorithm applies the equations iteratively as long as they add new valid
assignments. The solution is reached when there is a fixpoint.

Termination, i.e. convergence of the system of equations, is guaranteed by modifying the com-
putation for loops. A widening operator [10] is used in the the equations of those states that are the
targets of back-edges, i.e edges closing loops. Intuitively, widening extrapolates the effect of iterat-
ing a loop an unknown number of times. An in-depth discussion on termination of fixpoints and the
necessity of widening can be found in [9, 10].

2.3 Octahedra

Definition 1 (Octahedron). An octahedron O over � n is the set of solutions to the system of m
inequalities O = {X |AX ≥ B}, where A ∈ {−1, 0, +1}m×n and B ∈ � m .

The same octahedron can be represented by different sets of constraints. For example, (x = 3) ∧
(y ≥ 5) and (x = 3) ∧ (x + y ≥ 8) define the same octahedron. Each representation consists of



some inequalities that define several implicit inequalities obtained as linear combinations. In order to
consider all the implicit information, all linear combinations of the constraints should be taken into
account, keeping the tightest bounds for each constraint. In related data structures such as difference
bound matrices and octagons, efficient algorithms based on the shortest path problem can be used to
compute this closure in polynomial time [11,18]. However, the complexity is polynomial because the
number of variables in each constraint is at most two. In the case of octahedra, the closure cannot
be computed efficiently. Instead, a weaker closure called saturation will be used. Saturation consists
on computing all the linear combinations where the coefficients of the linear combination are within
the interval [−1, +1]. Linear constraints with bigger or smaller coefficients are not considered. The
saturation of an octahedron O = {X |AX ≥ B} can be computed as follows:

1. Select two constraints A1X ≥ b1 and A2X ≥ b2 from AX ≥ B. Let us define C = A1 + A2

and d = b1 + b2.
2. If C contains a coefficient outside {−1, 0, +1}, return to step 1.
3. If CX ≥ e with e > d is already in AX ≥ B, return to step 1.
4. Add the constraint CX ≥ d to AX ≥ B.
5. Repeat steps 1 – 4 until:

– A fixpoint is reached (saturation) or
– A constraint 0 ≥ k with k > 0 is found. In this case, the octahedron is empty.

Intuitively, saturation computes all linear combinations of pairs of inequalities. These linear com-
binations are also new constraints that can be combined with previous inequalities, until a fixpoint is
reached. For example, the octahedron (a ≥ 3) ∧ (b ≥ 0) ∧ (c ≥ 0) ∧ (b − c ≥ 7) ∧ (a + b ≥ 8) ∧
(a + c ≥ 6) has the following saturated form:

(a ≥ 3) ∧ (b ≥ 7) ∧ (c ≥ 0) ∧ (a + b ≥ 10) ∧ (a + c ≥ 6) ∧ (b + c ≥ 7)
∧ (b− c ≥ 7) ∧ (a + b− c ≥ 10) ∧ (a + b + c ≥ 13)

In this example, saturation has exposed explicitly that (a + b ≥ 10). This inequality is the linear
combination of (a ≥ 3), (b − c ≥ 7) and (c ≥ 0). Previously, only (a + b ≥ 8) was made explicit.
Representating all constraints explicitly will allow an efficient and precise implementation for the
union and intersection operators.

Definition 2 (Saturated octahedron). An octahedron O{X |AX ≥ B} is saturated if any linear
combination of two constraints from AX ≥ B with coefficients in {−1, 0, +1} also appears in
AX ≥ B.

Notice that some linear inequalities are not considered during saturation. First, linear combinations
with coefficients outside [−1, +1] are ignored. For example, in the octahedron (a+b ≥ 3)∧(b+c ≥ 8),
the inequality (a + 2b + c ≥ 11) would not be considered. Also, saturation ignores valid linear
combinations of three or more constraints if each linear combination of pairs of constraints has a
coefficient outside {−1, 0, +1}. For example, in the system of inequalities (a− b− c + d ≥ 3) ∧
(a + b + c + e ≥ 7) ∧ (−a− b + c + f ≥ 2), the linear combination of the three inequalities is the
constraint (a− b + c + d + e + f ≥ 12). It does not have a coefficient outside [−1, +1], but the com-
bination of any pair of constraints has a +2 or −2. The bottom line is that the saturated form of an
octahedron is not canonical.

The basic operations used in timing analysis and static analysis of programs, e.g. union, inter-
section or widening, can be defined in the octahedra domain. In the convex polyhedra domain, the
implementation of these operations relies on the double-description method: a convex polyhedron can
be dually described as a system of linear inequalities, or as a system of generators, i.e. a set of vertices
and a set of rays. Some operations on convex polyhedra have an efficient implementation in one of



the dual representations, and the conversion between the two representations is possible and reason-
ably efficient [6]. The interested reader can find the implementation of convex polyhedra operations
in [10, 13].

The problem of the double-description method is the size of the representation, which can be expo-
nential with respect to the number of variables. This complexity severely limits the size of the systems
that can be analyzed using this method. The aim of octahedra is overcoming this limitation. There-
fore, the implementation of the operations on octahedra will not be based on the double-description
method, but in saturation.

All operations on octahedra require that the operands are in saturated form to avoid a loss in
precision. However, as saturation does not make all the inequalities explicit, some of the operations
may lose precision, producing an upper approximation of the exact result. This is not very relevant
when octahedra are used in abstract interpretation, because octahedra are already defining an upper
approximation of a set of values in � n .

– Intersection (x∩y): The intersection of two octahedra has all the constraints that appear in any of
the two operands. If a constraint appears in both octahedra with a different constant, e.g. AX ≥ b1

and AX ≥ b2, the maximum of both constants is used as in AX ≥ max(b1, b2). For example,

(a ≥ 3) ∩

 a ≥ 2

b ≥ 6
a + b ≥ 8


 =


 a ≥ 3

b ≥ 6
a + b ≥ 9




– Union (x ∪ y): The union of two octahedra has all the constraints that appear in both operands
simultaneously. If a constraint appears in both octahedra with a different constant, e.g. AX ≥ b1

and AX ≥ b2, the constraint AX ≥ min(b1, b2) is chosen instead. For example,


 a ≥ 0

c ≥ 0
a + b ≥ 5


 ∪


 a ≥ 0

b ≥ 0
a + c ≥ 4


 =


 a ≥ 0

a + b ≥ 0
a + b + c ≥ 4




The operands are not shown in saturated form for brevity. For instance, the inequality of the
result (a + b + c ≥ 4) appears because the operands contain the constraints (a + b + c ≥ 5) and
(a + b + c ≥ 4) in saturated form.

– Test for equality(x = y?): Two octahedra are considered equal if they have the same saturated
form.

– Test of inclusion(x ⊆ y?): The test for inclusion can be rewritten as (x ∩ y) = x?.
– Test for emptiness: An octahedron is empty if the constraint 0 ≥ K , with K > 0, appears in the

saturated form.
– Widening (x∇y): The widening operator can be defined exactly as the widening for convex

polyhedra: the result is the constraints of x that are satisfied by y. This operator is used to perform
an extrapolation of the behavior of a loop, and is therefore an approximate operator.
Remarkably, if the octahedra used as operands only contain constants 0 and −∞, then the union
operator is already a widening. Having an infinite increasing chain is not possible as each variable
can only have three possible values for its coefficients.

– Existential quantification: The quantification is performed by removing all the constraints where
the abstracted variable appears. The result of this operator is saturated.

The implementation of these operations relies on efficient algorithms and data structures for rep-
resenting and manipulating saturated octahedra. These tools are provided in the section 3.



Function transfer(src, e, dst)
Input: An event src

e→ dst.
Output: The postcondition of src

e→ dst.

P := Time(src);
P := P ∧ (step ≥ 0);
P := P ∧ (clocke + step ≥ de);
P := P ∧ (clocke + step ≤ De);
foreach event e′ 
= e: e′ ∈ E(src)

P := P ∧ (clocke′ + step ≤ De′ );
foreach event e′ 
= e: e′ ∈ {E(src) ∩ E(dst)}

P [clocke′ := clocke′ + step];
foreach event e′ 
= e: e′ ∈ E(dst)∧ e′ /∈ E(src)

P [clocke′ := 0];
foreach event e′ 
= e: e′ ∈ E(src) ∧ e′ /∈ E(dst)

P [clocke′ :=?];
if (e ∈ E(dst)) P [clocke := 0];
else P [clocke :=?];
P [step :=?];
return P ;

Fig. 4. Clock transfer function

2.4 The clock transfer function

The core of the analysis is the clock transfer function that computes symbolically the changes in clock
values after firing an event. Clock values are represented by an octahedron, with one dimension per
event clock and one dimension per symbolic delay. The restrictions of this octahedron represent the
restrictions on the clock values in a given state. Intuitively, the purpose of the transfer function is to
make sure that whenever an event e is fired, its delay bounds de and De are taken into account and
added to the restrictions on the clock values.

Event clocks for enabled events store the amount of time elapsed since the event became enabled,
while disabled clocks are undefined. After firing an event, event clocks should be updated to reflect
the time elapsed between the firing of the last event to the firing of current event. This time spent in
the state is called clock step, and it should satisfy the following properties:

– Step should be ≥ 0, i.e. no negative time increments.
– Step should be long enough to ensure that the firing of e happens at least de time units after e was

enabled. At the same time, it should be short enough to ensure that e is fired at most De time units
after becoming enabled.

– Step should be short enough to ensure that any transition that is enabled before firing e is not
forced to fire due to its upper bound constraint.

When an event e is fired, the clocks of other events have to be updated. The change in their clocks
depends on whether they are enabled or disabled before and after firing e. Events that become newly
enabled have their clock reset to zero, while events that become disabled have their clock undefined.
If an event remains enabled before and after e, its clock is increased by the clock step. Finally, if an
event remains disabled, its clock does not change.

Fig.4 describes the algorithm that computes the transfer function using octahedra operators. Fig.5
shows an example of the computation that would be performed by the algorithm. Events that are
enabled before and after firing event e have been increased by an amount in the interval [de, De], i.e.
the unknown clock step. Also, notice that some constraints among the symbolic delays of different
events have been discovered. These constraints were imposed over the clock step during the transfer,



a a  P [ clock   :=  clock    + step ]

e  P [ clock   :=  ? ]

b  P [ clock   :=  ? ]

c  P [ clock   :=  0 ]

Time  P :=           (s1)

e
e
a
b

  P [ step :=  ? ]

d
D
D
D

e
e
a
b

  P := P /\ ( clock   + step             )
  P := P /\ ( clock   + step             )
  P := P /\ ( clock   + step             )
  P := P /\ ( clock   + step             )

  P := P /\ (step    0)

transfer( s1, e , s2 ) =

{ P }

{ Q }

ca

a b

e

s1

s2

{P} = {(clocke = 0) ∧ (clocka = 0) ∧ (0 ≤ clockb ≤ 1)}
{Q} = {(clockc = 0) ∧ (De ≥ clocka ≥ de)∧

(Da ≥ clocka ≥ de) ∧ (de + 1 ≤ Db)}

Fig. 5. Example of the transfer function for an event e, with the postcondition Q obtained from a precondition P .

and implied several restrictions on the delays that are made explicit when variable step is undefined.
For example, the restriction Da ≥ de means that event e can be fired only if a is not faster than e.
This restriction is implied by the constraints clocka + step ≤ Da, clocke + step ≥ de, clocka = 0,
clocke = 0.

3 Octahedron Decision Diagrams (OhDD)

3.1 Overview

In the domain of timed systems, the behavior of a system often depends on clocks and delays. Octa-
hedra describing constraints on these symbols can take advantage of the fact that all variable will be
always positive. These octahedra can be represented compactly using decision diagram techniques [5].
This representation is called Octahedron Decision Diagram (OhDD). Intuitively, it can be described
as a Multi-Terminal Zero-Suppressed Ternary Decision Diagram:

– Ternary: Each non-terminal node represents a variable v and has three output arcs, labelled as
{−1, 0, +1}. Each arc represents a coefficient of v in a linear constraint.

– Multi-Terminal [12]: Terminal nodes can be constants in � ∪{+∞,−∞}. The semantics of a path
σ from the root to a terminal node k is the linear constraint (c1 · v1 + c2 · v2 + . . . + cn · vn ≥ k),
where ci is the coefficient of the arc taken from the variable vi in the path σ.

– Zero-Suppressed [17]: If a variable does not appear in any linear constraint, it also does not appear
in the OhDD. This is achieved by using special reduction rules as it is done in Zero-Suppressed
Decision Diagrams.

Figure 6 shows an example of a OhDD and the octahedron it represents on the right. The shadowed
path highlights one of the constraints of the octahedra, x + y − z ≥ 2. Notice that all constraints that
end in a terminal node with−∞ represent constraints with an unknown bound, such as x− y ≥ −∞.

This representation based on decision diagrams provides three main advantages. First, decision
diagrams provide many opportunities for reuse. For example, nodes in a OhDD can be shared. Fur-
thermore, different OhDD can share internal nodes, leading to a greater reduction in the memory
usage. Second, the reduction rules avoid representing the zero coefficients of the linear inequalities.
Finally, symbolic algorithms on OhDD can deal with sets of inequalities instead of one inequality at
a time. All these factors combined improve the efficiency of operations with saturated octahedra.
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3.2 Definitions

Definition 3 (Octahedron Decision Diagram - OhDD). An Octahedron Decision Diagram is a tuple
(V, G) where V is a finite set of positive real-valued variables, and G = (N ∪ K, E) is a labeled
directed acyclic graph with the following properties. Each node in K , the set of terminal nodes, is
labeled with a constant in � ∪{+∞,−∞}, and has an outdegree of zero. Each node n ∈ N is labeled
with a variable v(n) ∈ V , and it has three outgoing arcs, labeled−, 0 and +.

By defining an order among the variables of the OhDD, we can define the notion of ordered
OhDD. The intuitive meaning of ordered is the same as in BDDs, that is, in every path from the root
to the terminal nodes, the variables of the decision diagram always appear in the same order. For
example, the OhDD in Fig. 6 is an ordered OhDD.

Definition 4 (Ordered OhDD). Let� be a total order on the variables V of a OhDD. The OhDD is
ordered if, for any node n ∈ N , all of its descendants d ∈ N satisfy v(d) � v(n).

In the same way, the notion of a reduced OhDD can be introduced. However, the reduction
rules will be different to take advantage of the structure of the constraints. In an octahedron, most
variables will not appear in all the constraints. Avoiding the representation of these variables with a
zero coefficient would improve the efficiency of OhDD. This can be achieved as in ZDDs by using a
special reduction rule: whenever target of the − arc of a node n is −∞, and the 0 and + arcs have the
same target m, n is reduced as m.

The rationale behind this rule is the following. If a constraint v1+ . . .+ci ·vi + . . .+vN ≥ k holds
for ci = 0, it will also hold for ci = +1 as vi ≥ 0. However, it is not known if it will hold for ci = −1.
This means that in the OhDD, if a variable has coefficient zero in a constraint, it is very likely that it
will end up creating a node where the 0 and + arcs have the same target, and the target of the − arc
is −∞. By reducing these nodes, the zero coefficient is not represented in the OhDD. Remarkably,
using this reduction rule, the set of constraints stating that “any sum of variables is greater or equal to
zero” is represented only as the terminal node 0.

Figure 7 shows an example of the two reduction rules. Notice that contrary to BDDs, nodes where
all arcs have the same target will not be reduced.



Definition 5 (Reduced OhDD). A reduced OhDD is an ordered OhDD where none of the following
rules can be applied:

– Reduction of zero coefficients: Let n ∈ N be a node with the − arc going to the terminal −∞,
and with the arcs 0 and + point to a node m. Replace n by m.

– Reduction of isomorphic subgraphs: Let D1 and D2 be two isomorphic subgraphs of the OhDD.
Merge D1 and D2.

Definition 6 (Saturated OhDD). A saturated OhDD is a reduced OhDD where the system of
constraints represented by the OhDD is a saturated octahedron..

All the operations on OhDD work on saturated octahedra. The following section will present the
implementation of several of these operations.

3.3 Operations

Reduction rules In order to implement the reduction rules, two basic operations should be defined.
First, how to obtain the OhDD for the three cofactors (coefficients) of a given variable. And second,
how to build a new OhDD from the three cofactors of a given variable. Figure 8 shows the pseudocode
for these two procedures, called DD GetCofactors and DD CombineCofactors.

The only remarkable aspect of DD GetCofactors is how to compute the cofactors of a variable
that does not appear in a OhDD. If a variable is missing, it means that it has been reduced, and
therefore its negative cofactor is −∞ while its positive and zero cofactor are equal to the OhDD.

Regarding DD CombineCofactors, its pseudocode assumes that there is a procedure called
DD UniqueNode) that detects isomorphic nodes in the decision diagram, so if an isomorphic node
already exists it is returned, otherwise a new one is created instead. This operation is typically provided
by decision diagram packages.

Function DD GetCofactors(f , var)
Input: An OhDD f and a variable var that appears in the ordering before any variable of f .
Output: The 3 cofactors of f for variable var, < f−, f0, f+ >.

if (DD IsConstant(f ) ∨ DD TopVariable(f ) 
= var)
< f−, f0, f+ > := < −∞, f, f >;

else
< f−, f0, f+ > := < DD NegArc(f ), DD ZeroArc(f ), DD PosArc(f) >;

return < f−, f0, f+ >;

Function DD CombineCofactors(var, f−, f0, f+)
Input: The three cofactors of a OhDD for a given variable var. Any variable in the cofactors must
appear after var in the ordering.
Output: A OhDD where < f−, f0, f+ > are the three cofactors for variable var.

if (f0 = f+ ∧ f− = −∞)
return f0;

else
return DD UniqueNode(var, f−, f0, f+);

Fig. 8. Pseudocode for the auxiliary procedures DD GetCofactors and DD CombineCofactors. These procedures
implement the reduction rules of OhDD.



Function SaturateRecur(f , g)
Input: Two OhDD called f and g.
Output: The OhDD describing the linear combination of f and g, ignoring constraints with a
coefficient outside {−1, 0, +1}.

/* Terminal cases */
if (DD IsConstant(f ) ∧ DD IsConstant(g)) return DD Sum(f , g);
if (f = +∞ ∨ g = +∞) return +∞;
if (f = −∞ ∨ g = −∞) return −∞;

/* Lookup the result in the cache */
res := DD CacheLookup(SaturateRecur, f , g);
if (res 
= NULL) return res;
top := DD TopVariable(f , g);
< f−, f0, f+ > := DD GetCofactors(top, f );
< g−, g0, g+ > := DD GetCofactors(top, g);

/* Recursive calls for top coefficient = 0 */
call1 := SaturateRecur(f0, g0);
call2 := SaturateRecur(f+, g−);
call3 := SaturateRecur(f−, g+);
res0 := MaximumRecur(call1, MaximumRecur(call2, call3));

/* Recursive calls for top coefficient = +1 */
call4 := SaturateRecur(f+, g0);
call5 := SaturateRecur(f0, g+);
res+ := MaximumRecur(call4, call5);

/* Recursive calls for top coefficient = −1 */
call6 := SaturateRecur(f−, g0);
call7 := SaturateRecur(f0, g−);
res+ := MaximumRecur(call6, call7);

/* Combine the cofactors and update the cache */
res := DD CombineCofactors(top, res−, res0, res+);
DD CacheInsert(SaturateRecur, f , g, res);
return res;

Function Saturate(f )
Input: A OhDD f .
Output: The saturation of the OhDD f .

do
old := f ;
res := SaturateRecur(f , f );
f := MaximumRecur(f , res);

while (f 
= old)
return res;

Fig. 9. Pseudocode for the procedures Saturate and SaturateRecur.



Function MaximumRecur(f , g)
Input: Two OhDD called f and g.
Output: An OhDD that has, at the bottom of each path from the root to the terminal nodes, the
maximum terminal found in the same path in f and g.

/* Terminal cases */
if (f = g) return f ;
if (f = +∞ ∨ g = −∞) return f ;
if (f = −∞ ∨ g = +∞) return g;
if (DD IsConstant(f ) ∧ DD IsConstant(g)) return DD Max(f , g);

/* Lookup the result in the cache */
res := DD CacheLookup(MaximumRecur, f , g);
if (res 
= NULL) return res;

/* Recursive calls for each cofactor */
top := DD TopVariable(f , g);
< f−, f0, f+ > := DD GetCofactors(top, f );
< g−, g0, g+ > := DD GetCofactors(top, g);
res− := MaximumRecur(f− , g−);
res0 := MaximumRecur(f0 , g0);
res+ := MaximumRecur(f+ , g+);

/* Combine the cofactors and update the cache */
res := DD CombineCofactors(top, res−, res0, res+);
DD CacheInsert(MaximumRecur, f , g, res);
return res;

Function Intersection(f , g)
Input: Two OhDD called f and g.
Output: The intersection of f and g.

res := MaximumRecur(f , g);
return Saturate(res);

Fig. 10. Pseudocode for the procedure Maximum and Intersection.

Saturation The saturation procedure can be implemented symbolically, so instead of choosing two
constraints and computing its linear combination, the linear combination of a whole set of constraints
is computed in one step. Figure 9 shows the pseudocode that performs this saturation.

The recursive saturation algorithm SaturateRecur computes the linear combination of its two
parameters. Intuitively, the computation is split according to the top variable of the decision diagram.
The only cases relevant to our computation are those where the top variable will have a coefficient in
{−1, 0, +1}. For example, the linear combination will have a coefficient +1 if one of the arguments
has coefficient 0 and the other has coefficient +1. The remaining variables of the linear combination
are computed recursively using the same algorithm.

Saturation is performed by computing these linear combinations and adding them to the sys-
tem of inequalities until a fixpoint is reached. This computation is described in the procedure proce-
dure Saturate. Notice that after computing each set of linear combinations, they are added to the
OhDD using the maximum operator, which in saturated OhDD corresponds to the intersection.



Other operations The intersection of two octahedra has been defined as the union of the sets of
constraints of both octahedra, choosing the maximum constant for those constraints that appear in
both octahedra. In a OhDD, constraints that do not appear in an octahedron are represented by the
terminal −∞. Therefore, the intersection of OhDD can be implemented by taking the maximum
of the two arguments for each path between the root and the terminal nodes. The pseudocode that
computes this maximum is shown in Fig. 10. Notice that the result of this maximum is not necessarily
saturated.

The same concept can be applied to the union of octahedra. The union can be computed as the
minimum of the two arguments for each path between the root and the terminal nodes.

The implementation of linear assignments is slightly more complex. In order to apply a linear
assignment [v ← c1 · v1 + . . . + cn · vn] to a OhDD, a new variable v′ is added to the OhDD.
The variable v′ holds the new value of v after performing the assignment. Then, the constraint (v ′ =
c1 · v1 + . . . + cn · vn) is added to the OhDD using intersection. Finally, the constraints where the
old value v appears are removed, and v′ is renamed to v.

4 Experimental results

In the initial approach, a set of asynchronous circuits available in the literature were verified using
convex polyhedra [8]. These circuits are defined as a network of simple gates plus a STG modeling
the behavior of the environment. In these circuits, correctness has been defined as absence of hazards,
i.e once an event becomes enabled, it does not become disabled before being fired; an conformance,
i.e. all output events produced by the circuit are expected by the environment. The behavior of the
environment is modeled with Signal Transition Graphs (STG) [7]. Table 2 shows the size of the
circuits, STGs and the computed TTSs, the number of symbolic delays, the number of constraints
required for correctness, and the CPU time used for the verification.

There are two main problems with this approach based on convex polyhedra. First, the discrete
state space of the circuit, i.e. all possible combinations of values of the signals, has to be represented
explicitly. This limits severely the size of the circuits that can be analyzed, as symbolic techniques
cannot be used to represent state spaces compactly. Furthermore, the conversion between the two dual
representations of polyhedra sometimes requires a huge amount of memory. In some examples, this
conversion requires so much memory that verification cannot be performed. The work on octahedra
presented in this paper is an attempt to reduce the memory used by timing verification with convex
polyhedra.

The octahedron abstract domain has been implemented on top of the decision diagram library
CUDD [22]. In order to implement ternary decision diagrams on top of BDDs, the coefficients of each

Example Circuit STG TTS # of # of CPU Time
Signals Gates Places Trans States Trans symbols constraints (seconds)

nowick 10 7 19 14 60 119 10 2 0.5
gasp-fifo 9 7 10 8 66 209 12 10 8.1

sbuf-read-ctl 13 10 19 16 74 157 14 4 1.2
rcv-setup 9 6 14 15 72 187 12 8 2.1

alloc-outbound 15 11 21 22 82 161 19 3 1.3
ebergen 11 9 16 14 83 188 13 5 1.3

mp-forward-pkt 13 10 24 16 194 574 12 6 1.9
chu133 12 9 17 14 288 1082 7 3 1.3
converta 14 12 16 14 396 1341 14 13 20.4

Table 2. Experimental results using convex polyhedra
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2 36 88 8 0.6s 64Mb 1.1s 5Mb
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4 324 1080 12 13.5s 79Mb 291.3s 39Mb
5 972 3672 14 259.2s 147Mb 4825s 57Mb
6 2916 12312 16 – – 178800s 83Mb

Fig. 11. (a) Asynchronous pipeline with N=4 stages, (b) correct behavior of the pipeline and (c) incorrect behav-
ior. Dots represent data elements. Below, the CPU time and memory required to verify pipelines with different
number of stages.

variable v have been encoded using two boolean variables (v < 0)? and (v > 0)?. Taking advantage
of BDDs, the discrete states of the timed systems have also been encoded symbolically in BDDs.

We have used this library to verify several examples from the domain of asynchronous controllers.
The results obtained show that OhDD provide a reduction in the memory usage at the cost of CPU
time. This extra CPU time is spent saturating and compacting the OhDD. As an example, we will
discuss the case of an asynchronous pipeline with different number of stages and an environment
running at a fixed frequency. The processing time required by each stage has different min and max
symbolic delays. The safety property being verified in this case was “the environment will never
have to wait before sending new data to the pipeline”. Fig.11 shows the pipeline, with an example
of a correct and incorrect behavior. The tool discovered that correct behavior can be ensured if the
following holds:

dIN > D1 ∧ . . . ∧ dIN > DN ∧ dIN > DOUT

where Di is the delay of stage i, and dIN and DOUT refer to environment delays. This property is
equivalent to:

dIN > max(D1, . . . , DN , DOUT )

Therefore, the pipeline is correct if the environment is slower than the slowest stage of the pipeline.
The verification times and memory usage for different lengths of the pipeline can be found in Fig.11.
Notice that the memory consumption of OhDD is lower than that of convex polyhedra. This reduction
in memory usage is sufficient to verify larger pipelines not verifiable with convex polyhedra.

Surprisingly, an analysis of the results reveals that encoding the discrete state in a BDD-like data
structure with OhDD in its leaves has had a negative impact in the execution time. It is very unlikely
that discrete state have the same octahedral timing region, even though many constraints hold in
several discrete states. As a result, many nodes are shared between OhDD, but the BDD part that
encodes the discrete state does not reuse any node at all. Furthermore, dealing with sets of states
makes the time transfer function more complex, as this function dependes on knowing whether events
are enabled/disabled before/after a transition. In an explicit representation of the discrete state, the
enabledness of an event can be checked efficiently, while in a symbolic representation it requires
additional computations.
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Trading Completeness for Capacity using Probabilistic
Techniques

René Krenz Elena Dubrova
Royal Institute of Technology, IMIT/KTH, Stockholm, Sweden

Problem: The growing complexity of verification problems requires new methods that can
provide high quality verification coverage for large, complex designs. Conventional simula-
tion is inherently unscalable. It is generally incapable of covering functional corner cases or
finding hard-to-find bugs that may occur only after hundreds of thousands of cycles. Exist-
ing techniques for an automatic application of formal verification methods have significant
capacity limitations and cannot handle large designs in a predictable manner. Our aim is to
complement existing simulation-based and formal verification techniques by using probabilistic
methods that provide a distinct trade-off between coverage and capacity. Such methods are
based on function hashing, allowing us to compute the answer “correct” with a small prob-
ability of error, and the answer “incorrect” with 100% certainty. A fast recognition of the
“incorrect” answer is particularly useful for finding bugs early in the design flow.

Background: A Boolean function f is hashed by transforming it into an arithmetic polynomial
A[f ] and evaluating A[f ] for a given input assignment of randomly chosen values {a1, . . . , an}.
If each ai is an independent and uniformly at random applied value from a prime integer field,
then A[f ] is the hash value for f , used for probabilistic comparison of Boolean functions.
The arithmetic transform has a broad range of applications. If the individual ai’s are the
independent switching activities at the inputs, represented by values between 0 and 1 from a
field of real numbers, then A[f ] represents the switching activity of a net implementing f , used
in power analysis and optimization. Similarly, if ai is the uncorrelated probability that input
xi is one, then A[f ] is the probability that the corresponding net is one. Signal probability
analysis is used to improve the coverage of test generation for biased random simulation.

Novelty: Existing algorithms for function hashing rely on building a global BDD or some
derivative of BDDs to decompose the input function into disjoint subfunctions. These ap-
proaches are limited by exorbitant memory consumption of decision diagrams. None of the
existing algorithms hashes functions directly from the circuit representation, which is the core
of our approach.

Approach: We have developed an early prototype of an algorithm for hashing a Boolean
function from its circuit representation. Our algorithm partitions the hashing process using
the dominator relations of the circuit graph. Similar to the application of cut-points in combi-
national equivalence checking, the dominators are used to progressively simplify intermediate
hashing steps. Experimental results show that the new algorithm outperforms BDD-based
algorithms and can handle much larger circuits.

Next steps include improving the algorithm and extending it to sequential verification
problems, such as bounded property checking. We further plan to investigate the applications
of function hashing to cut-points detection for design partitioning. Hash values will be used to
classify all internal nets in the circuit and to identify possible cut-points. Finally, we plan to
apply the developed techniques to compute signal probabilities for measuring and controlling
the coverage of vector generation for biased random simulation. Here the goal is to compute
input assignments that maximize the coverage of specific verification targets.
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Probabilistic Methods

� good trade-off between coverage and capacity

�
� � � � � � � � 	 
 	 � � methods: no false-negatives

�
� � � 
 � � � � methods: no false-positives
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Probabilistic Equivalence Checking

� obtain integer hash code � by evaluating � � � �
on randomly chosen integer vector � � � � � � � � � � � � �� � � � �, � number of input variables

� �  ,  prime integer field
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� if � � � � " # � � � � " , with small error probability $ % &
� & � '
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Definition of the Arithmetic Transform

� � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � , iff � 	 
 � � � � � 	 
 � � � � �

� higher-order exponent suppression in case of

overlapping support sets

� 
 � � 
 � � 
 � � � � 
 � � 
 � � � � � 
 � � � 


[2] Blum, Chandra, Wegman,

� 	 � 
 � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � 
 � � 
 � � � � � � � � 
 � � � � � � � 
 � �, 1980
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Definition of the Arithmetic Transform

Shannon’s Expansion:

� � � 
 � � � � � � � � � 
 � � � � � �

Linear Expansion Theorem:

� � � � � � 
 � � � � � � � � � � � � � � 
 � � � � � � � � � �
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Evaluating � � � � on BDDs

� � � � � � � � � � � � � � � � � � � � 	 � � � � 	 � � � �
� � � � � � � � � � � �

x2

1x

10

� � � � � � � � � � � 
 �

� � � � � � � � � � � 
 	
� � � � � � � � � � � � � � � � � � � �
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Evaluating � � � � on Circuit Graphs
Brute-Force Approach

Arithmetic expression for � � � � :

� � � � � 
 � 
 � � � � 
 
 � 
 � � � � � 
 
 � � 
 � � 
 � � �
� �

� 
 
 � � � � 
 
 � 
 � �
� � � � 
 � � � 
 � �

� 
 � � �
� �

After suppression of higher-order exponent:

� � � � � 
 � 
 
 � 
 � � 
 � � � � � � � 
 
 � � � � 
 
 � � � � � �

c

a

b

d

e
i

k

fj
g

h

[3] Parker, McCluskey, � � � � � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � � �, 75
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Dominator Trees in Circuit Graphs

� � � � � � � � �
- 	, set of vertices

- 
 � � 
 �, connecting edges between gates

- � � � � � 	, root node

� � dominates � � � � � � � � � � � ,

iff every path in � starting from � � � � to � includes �,
� � � �

� � is immediate dominator of � � � � 	 � � � � � � � ,

iff � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � �
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Dominator Trees in Circuit Graphs

Dominator Tree contains all edges

� 	 � � � � � � 
 � � � � � 	 � � � � � � 

Let � � 	 denote the set of vertices of the dominator tree.

Reduced Dominator Tree contains all vertices � such that,

1. � is a primary input; OR

2. � � � � � � � � � � � � 	 � � � � � � ;

c

a

b
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e
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g
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h
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k
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Transformation Algorithm

� immediate evaluation of nets outside of

reconverging structures

� introduction of auxiliary variables at multiple fan-out nets

� suppression of these variables at their dominating vertices

[4] Krenz, Dubrova, Kuehlmann, � � � � � � � � � � � � � 	 � � � � � � 
 � � � � � � 
 � � � � � � � � � � 	 � � � � � 	

� � � � 
 � � � � � � 
 � � � � � 
 � � � � 
 
 � � 
 � � � � � � � � � � � � � 
 � � � 
 � � 
 � 
 � � � � � � � , 2003
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Transformation Algorithm

1. computation of single vertex dominators

2. processing of circuit graph in topological order

3. computing � � � � � � � � �:

� if � is � � � then � � � � � �
� � �
� � 	 � � � � � � � � � ;

� if � is � 	 
 then � � � � � � � � � ;
� if � � � � � � � � then � � � � � � � ;

4. substitution of variables created at some � � � �  ! " # $ � %
in reverse topological order

5. create fresh variable iff � � � � � & � � " � � $ � % � �

[5] Lengauer, Tarjan, � 	 � � � � � � � � � � � � 	 � � 	 � � � � � � � � � � � � � � � � � � � 	 � � � � � � � �, 1979
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Experimental Results I - Speed
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Experimental Results I - Memory
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Multiple-Vertex Dominators

A set of vertices � � � � � � � � � is a multiple-vertex
dominator for a vertex � � � � � � � � � � � , if

� every path from � to � � � � contains some � � � � � � � � � ;
� for every � � � � � � � � � , there exists a path from � to � � � �

which contains � and does not contain any other

� � � � � � � � �

[6] Gupta, � 	 
 	 � � 
 � � 	 � � � � � 
 � � � � � � 
 � � � � � � � � � � 
 � � � � �, 92

[7] Alstrup, Lauridsen, Thorup, � 	 
 	 � � 
 � � 	 � � � � � 
 � � � � � � � � � � � � � � � � 	 � � � � � � � � �, 00

[8] Alstrup, Clausen, Jorgensen,

� 
 � �

�
�

�
�

�
�

�
� � 
 � � � � � � � � � � � � 
 � � 
 � � � � 	 � � � � 	 � � 
 � � � 
 	 � � 	 � � 	 � � � � � 
 � � � � �,

1996
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Multiple-Vertex Dominators - Example
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Experimental Results II

presented algorithm algorithm [4]

name PO � � � � � � � � � � 	 
 � � , sec � � � � � � � � 


apex5 88 2543 32 0.1139 2626 80

bigkey 421 7557 10 0.2843 7674 224

C432 7 38343 5 0.0075 45114 6

C5315 114 17031 12 0.0378 97640 80

C7552 105 4535 23 0.0470 8082 55

C880 26 1769 4 0.0046 6282 25

cps 109 2422 31 0.0687 3286 93

key 421 3409 224 0.1177 6769 227

s1196 32 1198 13 0.0320 1974 25
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Conclusion

� algorithm for evaluation of � � � � on circuit graphs

� processing of all operations on MTBDDs

� usage of dominator relations for analysing re-convergent

paths
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Motivation
� FP instructions work over huge data space that is

impossible to cover by means of simulation
� Bugs in FP arithmetic are visible and reproducible
� High-level specification is “easy” to formalize

– FP arithmetic well understood and one of the few areas where
FV proved to have real impact on the design projects

� It is doable even in the projects of industrial size
– AMD, IBM, research institutes
– Intel has experience of the application of FV to Pentium®

processors, but no previous work reported for Itanium®
architecture

– No previous work reported on the verification of multiply-add
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Outline

� Verification goal

� Specifics of the verification in industrial
environment

� Tools and methods

� Results

� Conclusion

4

Verification Goal
Increase confidence in the correctness of the RTL model
of floating-point unit of a new Itanium® processor

– Focus on instructions with big data-space and complex
computation (fma and related instructions)

(Result, exceptions) = normalize (round(normalize(A*B+C)))
A,B,C are 82-bit Floating-point numbers, 4 rounding modes, 8 precisions, modes

for exception handling � ~ 281+81+81+2+3=2248 possible inputs

– Provide full coverage of the computations with normal floating-
point numbers

X=(sign,exp,mant), sign:{-1,1}, 0 < exp < 1fffe16, 263 < mant < 264,bias=ffff16

X=2sign * mant / 263 * 2exp-bias



3

5

Verification Goal

Transistor-level

ARTL

SRTL

Gate-level

Gate-level

Formal Equivalence Checking

Dynamic Validation (binary/ternary simulation)

Formal Verification (symbolic simulation)

6

Specifics of the verification in
industrial environment

� Incompleteness and continuous changes in the
design under verification.

– One of the few FV projects that started in parallel with
the design project

– RTL gradually changing from abstract to low-level

– Design often restructured, timing and signal names
continuously changing

– New functional and non-functional features added

– Proofs need to be structured for easy management
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Specifics of the verification in
industrial environment

� Continuous changes in the specification
– Micro architectural features specified “on the fly” and

subject to changes

– Incomplete or not up-to-date documentation

� Unstable model requires efficient debugging and
replication of the bug in the binary simulation
environment

– Extraction of counterexamples that can be reproduced
by RTL binary simulation tools

8

Specifics of the verification in
industrial environment

� Regression of the proofs are required until the
completion of the design project

– Creation of the proof is just a start: proofs need to be
updated for the changes in the design

– Several thousands lines of FL code, code sharing
among different proofs

– Since design is continuously modified, proofs run in a
loop



5

9

Specifics of the verification in
industrial environment

� Complexity – design for performance not for
verification

– Hardware is shared by different instructions
– Scan logic
– Power management
– Reset logic
– Changes do not wait for verification to finish

� Time pressure
� Allocation of resources: Investment / return

10

Tools and methods
Based on the methodology applied to Pentium®

microprocessor [3,4,5]

� Symbolic Trajectory Evaluation [1] (built-in FL function)

� Propositional reasoning

� Mechanically proved libraries

� Pencil & paper proof decomposition

� No complete mechanical proof

Maximize gain with minimal resources (re-use what we can)
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Hand-proof + libraries + STE

IEEE, ISA and MAS

High-level
specification

Bit-level
specification

µµµµArchitecture

Circuit API

English

Relational specification

Functional model without
timing and signal naming

Hardware description language

Inspection

Hand proof + Libraries

Symbolic Trajectory Evaluation
Circuit dependent

12

Proof structure

Bit-level statement

Low-level properties

Decompose

Case split

STE

Propositional
proof

STE libraries

High-level statement
FP and arithmetic libraries
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Arithmetic Libraries

bac ⊗=

bac ˆˆˆˆ ⊗=

High-level statement:
Numbers and arithmetic operations

STE statement:
Bit vectors and bit-level operations

)ˆ(2)ˆ(2)ˆˆˆ(2: ynbvxnbvyxnbvyx ⊗=⊗∀∀

14

Pre-post-condition Framework
(Idea)

� Used by Kaivola and Aagard [4]
� Idea from verification of sequential programs

{P} S {Q} : Precondition P guaranties postcondition Q after
running program S

� Wrapper around STE
ant: initial state and input stimuli
cons: desired response of the circuit
||=ckt [ ant ==>> cons ]
All computations of ckt that satisfy ant also satisfy cons



8

15

Pre-post-condition Framework
(STE version)

ckt

trin trout

P(in) Q(in,out)

{ P(in) } ( trin, ckt, trout ) { Q(in,out) }

),()])()([.(|(

]))[.(|(

)(.

outinQouttrintrout

trtrout

inPin

outinckt

outinckt
�==>>=∀

∧==>>=∃

�∀

16

Pre-post-condition Framework
(Inference Rules)

� Precondition strengthening

� Postcondition weakening

� Pre- to postcondition transfer

� Postcondition conjunction

� Sequential composition

ckt1 ckt2

trin trmid trout

P Q R
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Global view of the Design

FPSR
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A B C Ctrl Res Exc

FMA

CTRL
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Results
� Verification of the correctness statement for floating-point

and integer multiply-add instruction and other related IA64
instructions - addition, subtraction, normalization,
conversion, etc.:

IF
the instruction is started AND
the inputs of the circuit are A, B, C that satisfy input condition AND
control from control circuit is correct AND
expected constraints hold throughout the execution
THEN
At the time the circuit produces output, the output is as specified

20

Results

� Proof steps:
– Correctness of 64x64 Multiplier (follows [5])

– Correctness of the Booth encoder and computation of partial
products

– Correctness of CSA (required decomposition)

– Correctness of Adder and Rounder (follows [2])
– Alignment shifter required a big case split

– Normalization required a big case split

– Includes exponent and sign data-path, and correctness of
the exception flags
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Results

� Finding bugs
– High quality bugs – hard to reach by random tests

– Bugs invisible to binary simulation

– Bugs masked by other units

� Clarifying design interface

� Proving redundancy of signals

� Benefit of a fast proof for the multiplier

� Increasing confidence in the design

22

Results

� Many improvements to Micro-architectural
specification

� Ability to quickly re-run proofs after design
modifications

� Proofs extended to cover
– Control assumptions

– Special operands and exception handling
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Conclusion
� Verification of multiply-add extended the set of instructions

previously verified in industrial projects
– First such effort for Itanium® processor
– Main worry: capacity of the tools

� Formal verification of floating-point arithmetic instructions
implemented in hardware is recognized as a valuable extension of
traditional verification methods at Intel

� Huge increase of the confidence in the design correctness with
relatively low investment

� Initial investment pays-off in the consequent projects
� Proof management is important for success
� Mechanical proof checking would be a nice closure on our

verification

24
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Abstract

Today’s processors are so complex that static verification methods (simulation and formal
verification) alone are insufficient to guarantee correctness. Runtime verification methods help
obtain added assurance through the analysis of actual execution traces. Unfortunately, it is
becoming much more difficult to access the innards of chips as well as packaged subsystems
in order to collect execution traces from hardware. Therefore, methods that minimize access
requirements and at the same time can infer a reasonable amount of details pertaining to the
internal operation of chips and subsystems are needed. We examine the design of such a limited
observability checker (LOC) for shared memory multiprocessors in which the processors are
interconnected using high-speed links (i.e., no global snooping bus). Our approach assumes that
a subset of these links are observable, with the verification problem being one of matching these
observations with the designed behavior. We assume that packet traffic on these links can be
recorded and presented as a causally consistent sequence for offline analysis by the LOC. After
exploring the prototype design of LOCs, we conclude that a special purpose constraint solver
constructed using ideas from existing constraint programming languages, symbolic trajectory
evaluation, model-checking, and decision procedures holds considerable promise.

1 Introduction

The academic hardware verification community has almost exclusively concentrated on verification,
formal or otherwise, conducted at the pre-silicon model level, where the models employed include
high-level protocol descriptions, RTL descriptions, netlists, and VLSI mask descriptions. Due
to the sheer size and complexity of the system under verification, however, there are bound to
be logical bugs that escape pre-silicon verification. Thus, it is necessary to conduct post-silicon
functional verification of both manufactured parts (e.g., microprocessors) as well as fully assembled
systems (e.g., microprocessors along with chipsets and peripherals that constitute a shared memory
multiprocessor). In this paper, we discuss the growing importance of post-silicon verification for
functional correctness, discuss problems that are looming on the horizon, and offer insights into
possible solutions based on our initial studies.

In many circles, post-silicon verification means testing for fabrication faults. While this form
of testing is extremely important, it pays to separate this problem from the problem of detecting
logical bugs that have escaped into silicon. We assume that manufactured chips can be subject to
tests that reveal the presence of fabrication faults. Such chips can be removed from consideration,
and the remaining chips can be assembled into systems (e.g., shared memory multiprocessor) and
subject to additional tests to reveal functional (logical) bugs.

∗Supported by NSF Grant CCR-0081406 and SRC Contract 1031.001
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Why is Post-Silicon Verification Hard?

Today’s designs are wire-centric [1] in the sense that the amount as well as length of wires dictates
product costs as well as performance. Central busses tend to serialize execution. Routing towards
a central bus has non-trivial wiring costs that jacks up packaging costs (die size, cooling budgets)
as well as the energy necessary to drive long wires. Thus, in highly integrated chips, central
observation points that time-order events (e.g., global busses) are avoided. This has the unfortunate
effect of reducing overall observability, as many of the point-to-point wires may be located within
the integrated circuit die or within packages. Only a limited set of these wires exist outside
packages, and hence probed without incurring undue costs. This is the primary reason why post-
silicon verification is becoming harder.

The second factor that impacts post-silicon verification is the rate at which information (“new
bits”) are generated inside chips. In“low-rate” systems where, say, 8-bit microprocessor cores
operate at a few 100 MHz, the amount of information generated is, relatively speaking, lower
than in systems with much higher data rates comprising, say, four 64-bit CPU cores and three
levels of cache, plus directory controller situated inside a single die. These highly integrated high-
performance systems are extremely expensive, and extremely reliability-critical. For example, the
ASCI-Purple processor slated for deployment at Lawrence Livermore Laboratories will employ
12,000 processors. In such systems, the severity of every bug gets amplified and leads to dramatic
reductions in the mean time between failure1.

Problem Definition

In this paper, we investigate combinations of formal and semi-formal approaches that can make
a dent on the post-silicon verification problem. To keep our initial attempts in this area focused,
as well as modest in scope, we consider a simple, but real, industrial link-based protocol for cache
coherence. For the sake of concreteness, we assume that we are working with a multiprocessor
with 4 to 16 CPUs. Each processor ‘core’ in a multiprocessor introduces a set of correctness
requirements that are largely related to its uniprocessor out-of-order execution features. We assume
that a separate set of verification methods will be employed for verifying these features. Our
work will therefore focus exclusively on multiprocessing aspects. Such partitioning of concerns is
inevitable for complexity management. In our description here, we focus on the requirement of
cache coherence that is included in most shared memory consistency models. We do not consider
verification against shared memory consistency models [2, 3, 4], leaving it for the future.

We assume that there is support for logging coherence packets on external point-to-point links,
and arranging the packet log into a causally consistent history (if packet y is causally dependent
on packet x, then x must come before y in the history). We assume that a causally consistent
history of some finite length is given to us. We are also given a formal specification of the intended
cache coherence protocol at suitable levels of detail. We investigate the construction of an offline
analyzer (an automaton) that walks this history, and maintains an estimate of the system state
after seeing each packet. The offline checker tool updates the state estimate in the best possible
manner upon seeing every new packet. It flags a violation the first time an inconsistency is noted
between the internal state and/or an observed packet.

The rest of the paper is organized as follows. In Section 2, we describe an example protocol that
highlights some of the difficulties in creating a limited observability checker (LOC). In Section 3,
we describe a prototype LOC that was built for an industrial protocol as well as the lessons learnt
from that effort. In Section 4, we consider a constraint based approach to building LOCs. In
Section 5, we offer our preliminary design for a constraint language, its implementation, and how
to build LOCs using this language. Section 6 has our conclusions.
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Figure 1: Limited Observability Verification of Multiprocessor Systems

2 An Example Protocol

Figure 1 illustrates a simple cache coherency protocol in operation where events a, b, c, and d are
unobservable while e and f are observable. The communication diagram shown at the bottom-left
of this figure depicts a cache coherence protocol in operation. Assume that the three requesters,
req1, req2, and req2, concurrently access same cache line. The requests would typically go to
the HOME node (determined as a function of the cache-line address) which selects an arbitration
winner, keeping the remaining requests pending. One of the timelines in this diagram also shows
the progress of the req1 transaction. To process this transaction, three snoop requests are sent
out by HOME. Assume that only two of these requests, sreq11 and sreq12, are visible; the third
request/response, sreq12/sresp13, travel over an invisible link. As soon as sresp12 is received,
the pending snoop requests sreq21 and sreq22 are sent out. Proceeding thus, eventually all three
requests and responses complete. The third time-line shows a slight temporal variation in that
sreq31 and sresp31 occur before sreq32 is sent out. An LOC must be able to process such variations
that are equivalent in the same sense as in partial order reduction [5]. The communication diagram
also shows the completion of one transaction and a and cache-to-cache copy. Many safety properties
are important to check in this example:

− Data Safety: At most one other cache may respond with an sresp message conveying back
the requested data in the exclusive-mode. If this condition is violated, it would mean there
exist at least two caches in the exclusive state, which is incorrect.

− Consistent transaction sequences: Once a requester receives a cache line in the exclusive
state, it must not request a copy for the cache line again until it has explicitly evicted the
line or supplied it to another requester. If this condition is violated, it would mean that a
node is ‘silently’ demoting an exclusive line into, say, an invalid or a shared state.

− Proper Arbitration: For any address, if more than one req packet is received by the home
node, only one must win the arbitration. In other words, as soon as the first snoop request
(sreq) is seen sent out, subsequent sreq packets must not be sent out till all the snoop
responses are collected by the home node.

Consequences of the Lack of Observability, and Sketch of Solutions

Consider a situation in which we observe two caches supplying the data for the same address in
exclusive mode; this is clearly a violation. If, on the other hand, due to observability restrictions,

1Jack Dongarra wondered whether the MTBF may equal the time to reboot such a machine!
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we can only see one node supplying the data in exclusive mode. Can we then optimistically
assume that the node whose response was unobservable is, indeed, correctly behaving (it also
is not supplying the same line)? Our approach will be to make such assumptions, but tagging
these conclusions speculative. They will be turned into the committed status as soon as a future
observable behavior of the same entity (cache line) corroborates the speculative conclusion. Such
alternate pathways to observe an entity over different links as well as ‘final state’ register/memory
dumps can be arranged by choosing appropriate tests and by exerting control over the home node
mapping function. It will be of great interest to find out whether such ‘voting’ schemes have been
studied in the past, and if so under what error models they are sound. The idea of ‘self consistency’
in [6] is the closest work we are aware of. One error model can, for instance, be that an error is
not masked by varying the observation pathway.

3 Prototype Implementation of a Limited Observability Checker

Industrial protocols of the nature described are notorious for the the variety of interactions that
are possible among the clients, as well as the number of special cases they involve. In order not
to be overwhelmed, we assumed that designers would write the tests that generate a meaningful
collection of packets on externally observable links. For instance, we assumed that they would pick
the addresses employed in the tests in such a manner that under the chosen address to home node
mappings, and the CPUs involved, a reasonable number of packets would be recorded within each
causal loop. A causal loop is a sequence of packet-exchanges starting from when a transaction is
issued by a processor, ending with the packet that finally conveys the packet to the requester as
well as frees-up the home node packet resources for the transaction at hand.

We initially considered approaches that might allow us to synthesize the observers, say, by spe-
cializing the model descriptions written for a model-checker. For example, one could conceivably
take a Murphi [7] model of the protocol and use it as the basis for checking for logical bugs at
the post-silicon level. The main drawback of this approach is that finite-state models for complex
systems employ many modeling tricks (e.g., the use of non-determinism for over-approximation).
It is not immediately apparent how such models may be used for post-silicon verification, given
that the recorded packets are generated by actual deterministic machines, and not hypothetical
machines that employ non-determinism for modeling purposes. Besides, the levels of detail em-
ployed at the model-checking level and the actual level are widely different, so a direct carry-over
of the code is not possible.

It was then concluded that to be thorough, one must base such a tool on a framework as follows:

• The framework must allow constraints to be added, for example corresponding to the as-
sumptions under which optimistic packet fills are generated.

• When alternatives present themselves, there must be a method for checkpointing the state
and later backtracking to a checkpoint. Our initial prototype did not perform backtracking,
but was aimed at discovering how much can be done without backtracking.

• There must be support for gathering constraints, quickly calculating the implied constraints,
and triggering intelligent backtracking to the earliest checkpoint.

A prototype LOC was written in Ocaml for an industrial protocol, and studied on hand-
generated scenarios to obtain a feel for the problem’s magnitude. In that work, we observed that
we could maintain the cache-line states (the traditional MESI states) plus a few auxiliary pieces of
information for each cache line. We did record the data associated with the cache lines, however
fully realizing that the data recorded within each state element could be of limited value (it is
very difficult to monitor the actual data that gets written by the CPU within each cache line;
sometimes, the actual data is exchanged through a packet that cannot be recorded).

Briefly, our approach was as follows:
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• Catalog the scenarios in which each packet might participate in, based on the coherence
message types used

• Develop a packet attribute table. For example, for a request packet, the attributes would
include

– the set of all preconditions (cache-line states) under which such a request could be issued

– the immediate post-condition of the cache-line following the issuance of the request
packet

– the number of snoop requests that the directory would generate following a request

– the directory state-transitions expected following each response packet

– the state of the requester after it obtains the final response packet

• Since any number of these packets could be unobservable, we had packet fill rules for gen-
erating the missing packets. This is a delicate issue. Generating the fill packets is based
on optimistic assumptions about the system (that these packets are really present but not
recorded simply because they were unobservable). Our approach is to

– Check that the missing packets are indeed over the unobservable links. If not, generate
an error, as a protocol bug has been detected.

– If the missing packets indeed correspond to unobservable links, we go ahead and generate
the missing packets, but also record the optimistic assumptions based on which the fill
packets were generated. We call these the optimistic fill assumptions. It then becomes
necessary to validate the optimistic fill assumptions.

As an example of optimistic packet fills, consider a situation when one of the client nodes has
generated a “dirty response”—meaning, it announces that it has the cache line, and will directly
supply the line to the original requester. Suppose the response from another client node “x” could
not be observed. Under the assumption of coherence, one has to assume that client x does not
generate a response that signifies that it too has an exclusive copy of the data. This assumption
carries an obligation into the future of checking and making sure that client x will not supply the
cache line (through, say, a dirty response) over an observable link, in response to a request from
another client, unless client x itself has requested and obtained an exclusive copy itself.

3.1 Problems with Initial Prototype Checker

Despite several attempts at development in a clean high-level language, our initial prototype LOC
grew in complexity that soon got out of control. The situation-specific handling of packet fillings
employed in the code made the code hard to trust. For example, the way we generated fill packets
was by calling a dedicated set of routines written for this purpose. This was done to make the
code modular, as the same kinds of fill packets were to be generated under different conditions.
However, it soon became unclear whether the calling contexts for the packet fill routines were
identical or subtle differences were being overlooked. In addition, each such packet-fill routine had
certain transaction ‘close-out’ obligations. In other words, if the final few packets involved in a
transaction cannot be observed, they must be inferred, and used to drive the LOC automaton
forward to close-out a transaction. If the calling contexts differ, so do the close-out obligations.
In summary, we did notice that while an LOC may not have the same kind of complexity as the
actual hardware being observed, it does have its own set of corner cases that are indeed very
insidious. Therefore, there must be a much more declarative and high-level method for expressing
the actions of a LOC, and subject the LOC itself to formal verification against higher level criteria
pertaining to its consistency and completeness. Thereafter, there must be a way to obtain efficient
implementations of the LOCs.

A constraint-based organization of the LOC, based on declarative rules, promises to make the
code reliable as well as make the handling of invisibility less ad hoc. In fact, we may perhaps not
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need to make a priori decisions regarding how much invisibility can be tolerated in causal loops.
We can let the underlying constraint system compute solutions based on exactly what is known.
We investigate these options in the remainder of this paper.

4 Towards Constraint-based LOCs

We begin with a look at background work in the general area of runtime verification (Section 4.1),
and in the area of constraints (Section 4.2).

4.1 General Background and Related Work

Work on online monitoring has been pursued by Havelund and Rosu [8]. In thier work, a past-
time based temporal logic is proposed for writing assertions. An efficient dynamic-programming
based algorithm is proposed to keep the truths of various subformulas updated upon arrival of
the monitored events. Kim et.al. [9] propose a tool for instrumenting Java programs based on
a formal specification of the reactive behavior. While there are ideas we will adapt from these
works, many of the problems we address are unique because of the limited observability angle
pursued. Artho et.al. [10] propose the use of test case generation based on planning. Zhao et.al.
[11] employ a model-directed approach to distributed monitoring of hybrid systems that involves
a mode-estimation and state tracking algorithm. They apply their approach to monitoring a
commercial printer from Xerox. In [12], Bultan introduces a language for interface verification
of distributed systems based on ideas from CTL model-checking, constraint solving, and classic
work in concurrency based on path expressions [13]. Pong and Dubois [14] provide a survey of
verification techniques for cache coherence protocols. They do not address the issue of LOC.

Koehler and Treinen [15] present an approach to translate temporal formulae into first-order
logic by reification of intervals that leads to an explicit representation of the temporal information
contained in the formulae. In our context, this work and others related to it can help us use a
constraint formalism to reason about causal sequences of actions not all of which may be observ-
able. Saraswat et.al. [16] investigate the integration of concurrent constraint programming and
synchronous programming. Nielsen et.al. [17, 18] study the expressive power of various temporal
concurrent constraint programming languages.

4.2 Background Work in Constraints

The paradigm of constraint processing had its origins in Artificial Intelligence [19, 20], Constraint
Programming [21, 22, 23], and Formal Verification [24, 25, 26, 27]. Modern Boolean methods based
on Binary Decision Diagrams [28], and Boolean satisfiability (SAT) methods [29, 30, 31] are all
examples of decidable frameworks for constraint solving. In certain areas, fragments of first order
logic are converted into propositional form (e.g., [32]) for decision.

The particular combination of constraint solving techniques brought to bear on a specific prob-
lem varies widely. Very few researchers have attempted to bridge the ‘constraint programming’
point of view and the ‘decision procedures’ point of view. A notable exception is in the work
of Harvey and Stuckey [33] who provide an approach that is superior to the use of propagators
[21]. The decision procedure of [33] is in fact in use at Microsoft [34] in their device-driver formal
verification effort. Several recent efforts have focused on creating stand-alone constraint solving
packages for C++ (Modeler++, [35]), Java (JCL [36]), Ocaml (FaCile [37]), and C [38]. Versions
of Prolog with constraint programming [39, 40] have been developed. The language Mozart [23]
offers several features such as a first-class notion of constraint spaces proposed by Muller [41]. In
typical applications, the constraint store begins initialized with bindings to variables. Typically
the variables are bound integer ranges, but other bindings (e.g., to records) are also possible.
Whenever a variable is updated, the associated propagators fire and update the associated vari-
ables. Eventually the constraint store stabilizes to a fixed-point. At this stage, if there are still
unresolved variables, search begins, with the store being split based on heuristic value assignments
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(a) (b)

declare X Y in Propagation:

X::90#110

Y::48#53 S1: X*Y=:24 X+Y=:10 X=<:Y || X::3#8 Y::3#8

declare A in S1: X*Y=:24 X+Y=:10 X=<:Y || X::3#7 Y::3#7

A::0#1000

A=:X*Y S1: X*Y=:24 X+Y=:10 X=<:Y || X::4#6 Y::4#6

{Browse A} % Displays A{4320#5830}

Search:

X-2*Y:=11

S2: X*Y=:24 X+Y=:10 X=<:Y || X::4 Y::4#6

-->

S2: X*Y=:24 X+Y=:10 X=<:Y || X::4 Y::6

S3: X*Y=:24 X+Y=:10 X=<:Y || X::5#6 Y::4#6

-->

(failed)

Figure 2: (a) A Mozart Constraint Example. (b) Details of Propagators and Search

to specific variables. (We are interested in seeing how modern ‘intelligent’ backtracking methods
such as introduced by [30] can be used in this context.) Additional propagator firings result in
either a solution or a failed system of constraints. More sophisticated features of Mozart in terms
of being able to erect nested scopes of constraint stores, etc, are given in [41].

The object oriented language Comet of van Hentenryck and Michel [42] offers a rich collection
of invariant specification mechanisms, the notion of differentiable constraints that helps evaluate
local moves during search, and the notion of neighborhoods that integrates move evaluation and
execution in one combined syntactic construct.

4.3 A look at a Modern Constraint Programming Language

The Mozart programming language [23] offers several advanced features in the area of constraints.
The features available include the notion of constraint stores, the ability to install constraints into
the constraint store, and the ability to install propagators that keep the constraint store updated.
The notion of a constraint space is available as a first-class linguistic primitive.

Figure 2(a) (taken from [23]) presents a simple Mozart program. Variables X and Y begin as
interval-valued variables (shown as 90#110 for X, meaning that is the range of X). A variable A is
introduced with initial range 0 through 1000. Next, a constraint “A equal to X*Y” is introduced
through the syntax A=:X*Y. Further constraints can be introduced as shown in the example. Each
constraint has the effect of narrowing the intervals associated with the variables. If any interval
becomes degenerate, the constraints are not satisfiable. The next example in Figure 2(b) (taken
from [23]) attempts to explain what really goes on inside Mozart’s runtime.

• The constraint store is initialized with a list of bindings to the variables. Typically the
variables are bound integer ranges, but other bindings (e.g., to records) are also possible.
There are also an initial set of propagators. In this example, the initial constraint store S1
contains the three propagators X*Y:=24, X+Y:=10 and X=<:Y as shown. It also

• Whenever a variable is updated, the associated propagators fire and update the variable
values. In this example, since X+Y:=10, we can rule out X or Y ever being 8, thus obtaining
the second set of bindings, namely 3#7 for X and Y.

• After a few steps, the constraint store stabilizes to X::4#6 and Y::4#6, and no more propa-
gator firings are possible.
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• At this stage, search begins, with the store being split into S2 (assuming X::4) and S3
(assuming X::5#6). Such splitting decisions are taken based on heuristics.

• Additional propagator firings now cause S2 to evolve to a successful store binding X::4 and
Y::6, while S3 fails.

More sophisticated features of Mozart in terms of being able to erect nested scopes of constraint
stores, etc, are given in [23].

4.4 Assessment of Today’s Constraint Frameworks for Building LOCs

In this section, we examine some of the reasons why we believe that the constraint solving frame-
works available today will not be a ready fit for our needs regarding LOCs.

Handling Multi-domain Constraints

The constraints that LOCs need to represent and solve do not follow a single paradigm such as
interval arithmetic. A constraint that captures the details of a single transaction include the
following:

• The constraints imposed by a transaction apply to the states of the requesting node, the
home node, the nodes that supply the cache line, and the nodes that conflict with the current
transaction. The nodes that conflict could be those that conflict for arbitration at the home
node. They could also be nodes that conflict when the requesting node for one transaction
also assumes the role of a node that supplies the cache line for another transaction.

• Each transaction follows a finite-state protocol. This means that the activities of a transac-
tion affect the various state elements it deals with according to certain causal relationships.
Thus, the LOCs must be built based on frameworks that can deal with partial orders of
causal dependencies as well as invariants pertaining to the states.

Here is, for example, how two transactions can interact in an industrial protocol (refer to Figure 1
for details):

• Imagine a transaction t1 that originates at a requester r1 (one of the nodes shown as REQ
towards the left of Figure 1). Let this transaction pertain to flushing a cache line which is
in the exclusive state.

• Let t1 be sent to the HOME node which is meanwhile entertaining a transaction from another
requester for the same address. The ensuing arbitration conflict causes HOME to send t1
back to r1 for reissue.

• Before r1 can reissue t1, a cache c1 (one of the nodes shown on the right-hand side of Figure 1
as CACHE) requests the home node for the cache line through another transaction, say c1.
HOME sends c1 to r1.

• Transaction c1 finds the transaction t1 waiting in the outgoing buffer of r1. It essentially
“hijacks” transaction t1 which will no longer get issued.

Now imagine that we can record transaction t1 going from r1 to HOME, being sent back to r1, and
then never emerging again! Assume that due to limited observability we cannot see transaction
c1 going from the cache to HOME - but we can see c1 going from HOME to r1. How can we
generate constraints to fill in all invisible link activities as well as the internal states? We describe
a plausible framework in Section 5.

The general question is how to perform constraint solving in the context of reactive non-
deterministic protocols? In the constraints literature, extensions of constraint solving into the
domain of simpler languages is considered; for example, Saraswat [16] considers constraint solving
under the ideal synchrony hypothesis assumption (“Esterel-like” [43]). Extensions to reactive/non-
deterministic situations appear to be under intense, but preliminary investigation [18].
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Lack of support for datatypes of interest

Constraint programming languages provide many data types on which constraints can be specified.
These types could, for instance be interval-valued variables, as well as arrays and records of such
variables. For the purposes of building LOCs to monitor shared memory hardware, it is necessary
to have variables that denote sets of states, variables that correspond to aggregate structures such
as various tables and embedded memory devices, and higher level objects such as partial orders.
Most constraint programming languages do not support a rich collection of these data types as
well as a uniform way to impart constraints on them.

Propagators of inadequate generality

While the idea of constraint propagators is quite elegant and powerful, the propagators found in
constraint languages are of a limited variety. A much more general-purpose propagator can help
constrain an entire transaction. What we need in specifying an LOC are propagators that not
only tie together the different points in time associated with a transaction, but different aspects of
related transactions, such as in the example described in Section 4.4. In the diagram, for instance,
we show three request transitions, namely req1, req2, and req3 interacting at the arbiter of a home-
node. A constraint must be specified that checks that these transactions share an address, and if
so abide by the mutual exclusion requirement of an arbiter. Another constraint pertains to the
various snoop responses received, but this time apply to a single transaction. One has to be able to
describe that the snoop responses are all concurrent, but only after all of them have been received
can the final completion be issued. One must also require that there be at-most one supplier of
the value among the snoop responses. Thus, temporal constraints, partial order constraints and
constraints on aggregate data must all be expressible in the same propagator. As we describe in
Section 5, a propagator in our framework will have the ability to specify a partial order of event
observations and the associated data values at all time points of this partial order.

Inefficiency as well as Incompleteness

As pointed out in [41], many constraint solving frameworks either end up exhaustively enumerating
the cartesian product of the domains of many variables before realizing that the constraints cannot
be satisfied. It is mentioned in [41] that the constraints

2x = y ∧ 2u = v ∧ y + 1 = v

are used to benchmark solvers due to the significant propagation time exhibited by it. Solving
using propagators is also incomplete; for instance, using propagators alone, it is impossible to
realize that for variables x, y, z in the range {0, 1}, the constraints

x �= y ∧ x �= z ∧ y �= z

are infeasible. We believe that a constraint framework that retains completeness, even at the risk
of forcing behaviors to be expressed in a finite-state manner, will be important to demonstrate
useful results achievable through automatic means.

Image Calculations

From the example in Section 4.4, it must be clear that one should have the ability to key off a
visible event and trace its precursor event(s). This requires the ability to compute forward as well
as backward images of transition relations easily. This again calls for the use of decidable theories,
and perhaps modern Boolean reasoning systems that support these operations efficiently.
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Lack of modern search features

The search strategies discussed in the context of many constraint systems (e.g., Mozart) do not
emphasize the role of intelligent (e.g, non-chronological) backtracking methods. These methods
are widely known to be the reason why modern SAT tools (e.g., [30]) and decision procedures (e.g.,
[27]) perform well. This will be one item studied in the context of our work.

5 A constraint formalism suitable for building LOCs

Let mid denote the identifiers for various “modules” (physical units) that exchange the packets
during the execution of a cache coherency protocol. These packets are the primary observables
for LOCs. Additional observations may be made of the final state (at the end of the test run) of
various cache states; we do not specifically address how this extra information might be used to
reduce the possible outcomes. Each packet carries many pieces of information that include at least
the following for request packets.

〈trtype, mid, tid, sid, addr, data〉 (1)

Here, field trtype determines the operation being carried out. Field mid is the module originating
the transaction. Field tid is the transaction ID (a unique ID that identifies transactions originating
from this mid). Field sid is the ID of the sender. When a node issues a transaction, both mid
and sid are the same. However, when an intermediate node (such as the home node) forwards the
packet, the mid and tid stay the same, while the sid is replaced with the ID of the home.

Request packets are those that correspond to the phase of transactions where the outcome
(data returned) has not been determined. In Figure 1, requests flow from requesters to home, or
home to other caches. Response packets are generated to send responses back; in Figure 1, they
flow from the caches to home, or home to the original requester. In typical coherence protocols,
responses that return in the ‘downstream direction’ on the same links on which requests were
sent in the ‘upstream’ direction may not carry all pieces of the payload: typically they leave the
address out, as it can be determined knowing the mid, tid pair that is a unique descriptor for the
transaction, once it has been created. We however assume that all packets logically follow the
format described in Equation 1—as if the address information is filled in. We however assume that
observability is symmetric: if a packet going from m1 to m2 is observable, so is any packet going
from m2 to m1.

It is assumed that, given any packet, the following pieces of information are determined:

• From its trtype, we can determine what communication pattern the packet will follow. A
communication pattern is two pieces of information, 〈top, prot〉:
− top is a subgraph embedded in the topology of communication shown in Figure 1 showing

how the transaction evolves from inception to completion.
− prot is a finite-state protocol specifying how the transaction evolves: for example, it

might describe that the transaction first sends a request. Then for every cache the
home sends a request and awaits a response concurrently. Then the final response is
sent by the home node. We assume that prot can be specified in any standard manner,
and formally specifies a transition relation. For example, regular expressions augmented
with the ‖ operator to specify finite concurrent threads can be used to specify prot.

• From trtype, we can also determine the state of the transaction with respect to its protocol
prot. For instance, if we observe a snoop request but not the original request, we can
determine that we are in a state of the protocol prot where the request has been sent out.

The state of an LOC is a partial function from mid, tid pairs to the following (we use partial
functions since many transactions may not have been created yet, or we may not have noted its
origin due to limited observability):
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• addr, the address involved in the current transaction
• cache, the state of the participating nodes. We will not assume any particular structure for

this state, except to note the features to be included:

− Instead of saying that a cache is in a specific state (e.g., the exclusive state), we will
record what set of states it is likely to be in (e.g., {E,S,I}).

− We will keep various resource bits (e.g., arbitration states of modules)
− We will have the ability to tag any given state to be speculative or committed. Specu-

lative states are states inferred by the event propagation rules (to be explained) while
committed states are states that might have been speculative once, but are confirmed
by a hard evidence (e.g., the precondition of a certain transaction might be that the
cache is most definitely in state E).

Semi-formal Sketch of the Constraint Update Algorithm

The LOC state update algorithm will work as follows:

• Obtain the next observable packet, and obtain its fields.
• From its trtype field, obtain the protocol prot that it is following.
• From mid, tid, see if a mapping is present in the LOC state; if not, inaugurate a transaction

inside the LOC state; else (if already present), add the details to be discovered to the LOC
state.

• Obtain prot as well as the state within prot that this transaction corresponds to.
• Perform the event propagation steps to be described next.

Event Propagation, Abstract Interpretation, and Constraint Voting

Many events will have multiple precursors. The resulting nondeterminism in identifying the pre-
cursor(s) is handled by propagating the speculative marking to all precursor branches, backwards
in time. For each inferred state that is a precursor for an observed event, we will assert that
the state has a speculative status. When two precursor computation branches intersect, we can
combine the information as follows:

− Both branches mark the state to be speculative. The set of states marked by the branches
are compatible (see below). The resultant (see below) set of states is computed, and the
annotation stays speculative.

− The first branch marked it as committed with state s1 while the later branch marked it as
speculative with state s2 where s2 is not compatible with s1. In this case, the speculation is
abandoned, and the precursor path being explored fails.

− The first branch asserts it as speculative in s1 while the second (later) branch marks it as
committed in s2 which is compatible with s1. In this case, the resultant is computed, and
the annotation changes to the committed status.

As pointed out in Section 2, by controlling test-program parameters, we can ensure that the
constraint voting happens many times. In the overall algorithm, if any one speculative precursor
branch going back in time succeeds, the current event is admissible, and the LOC state updating
proceeds. Of course, ‘and’ conditions (multiple precursors to have happened) will require all
precursors to succeed. If all precursor branches fail, the currently observed event is erroneous,
and we flag an error. Note that the two precursors might be independent in the sense that
recording them in the packet history in either order is equivalent. We will ensure that the weakest
preconditions we choose to associate with each such event ensures that the order of observation does
not matter. This will ensure that when we mark a state to be committed while later contradict it
with another state that is speculative, the associated failure of the precursor computation is indeed
genuine, and not an accident of the observation sequence we happen to pick for the independent
events.
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Finally, since we are maintaining sets of states, one reasonable approach is to define compatibil-
ity to be true when the set intersection of the participating sets is non-empty. The corresponding
notion of computing the resultant set of states is to perform set intersection. We will investigate
the semantics of computing the resultant in various ways:

− The resultant computed according to an intersection of the speculative state sets corresponds
to the must semantics (the conclusions are inevitable) while that computed using union
corresponds to the may semantics (the conclusions are possible). What space of possibilities
exist?

− What are the connections between the properties verified and the approach taken to define
compatibility as well as the resultant? Can we, say, cast these in the light of three-valued
temporal logics (e.g., [45])?

− What formal theory of event observations and temporal logics explains the notion of inde-
pendence identified earlier?

− Last but not least, what are the most efficient methods to implement the above process of
limited observability verification in general, and in specific contexts?

Use of Statistical Information

The main steps during event propagation are to find out which precursor events occurred. One
could employ statistical information to prioritize this search. To the best of our knowledge (e.g.,
surveying recent papers as well as recent books such as [19]), the use of probabilistic relational
models [44] to statistically bias the search conducted within constraint processing systems appears
relatively unexplored. Given that very strong event correlations exist in practical systems (e.g.,
if certain events happen, certain precursors must have happened with a very high probability),
and given that conditional probabilities can be calculated from execution trace data (say, from
a simulator), it appears a fruitful direction to explore. The mechanism of differential constraints
and differential functions offered in [42] might prove to be a very modular way to implement
these features. In particular, in [42], the abstract class Constraint is extensible with customized
methods for move evaluation; some of these new methods could be probability based.

Pragmatic Considerations: Compressing Domains of Observation

Since the packets may carry addresses over a wide range of address values, and since we intend to
use finite-state / BDD methods in building an LOC, we assume that there is an injective remapping
facility that can map the current set of addresses encountered to a ‘fictitious,’ but contiguous range
of values. We also assume a corresponding ‘inverse mapping’ table to be set up. We assume that
this can be done for every attribute in a packet. This way, the packet observations and error
reporting can be done with respect to “physical addresses” while the LOC processing happens
with respect to “virtual addresses” using efficient finite-domain reasoning methods.

6 Conclusions

In summary, we report preliminary results from our study of the limited observability checking
problem applied to industrial cache coherence protocols. After considering several approaches as
well as building a few prototypes, an approach that promises to scale to realistic protocols has been
articulated. This approach relies on using the constraint technology but in many novel ways. In
our proposed approach, we compute precursors to observed events, and mark the states discovered
with a speculative or permanent annotation. We then seek consensus among various annotations
that might impinge on a state. The intersecting precursor paths going back into time have the
possible outcomes of sharpening speculative states to a narrower set of possibilities or outright
contradicting a past state, thus cutting off one branch of precursor computation going into the
past. When all branches of precursor computations are cut off, an error has been discovered.

12



Our remaining work is how to realize a constraint store such as we describe using efficient
search methods as well as decision procedures. We hope to define a formal semantics and build a
prototype tool by the time of the workshop, and apply it to realistic protocols.

For our implementation, we view the Comet [42] framework with interest: (i) it provides an
object-oriented framework for organizing the code; (ii) it provides a rich language for specifying
constraints as well as events to listen to; (iii) it provides a checkpointing facility that is based on
storing reverse-image computation rules (an idea also used in the SPIN model-checker [46]).
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Abstract

Extending linear temporal logic by adding regular expressions increases
its expressiveness. However, as for example problems in recent versions
of Accellera’s Property Specification Language as well as in OpenVera’s
ForSpec and other property languages show, it is a non-trivial task to give
a formal denotational semantics with desirable properties to the resulting
logic. In this paper, we argue that specifying an operational semantics
may be helpful in guiding this work, and as a bonus leads to an imple-
mentation of the logic for free. We give a concrete operational semantics
to the safety property subset of PSL, and show that it is sound and com-
plete with respect to a new denotational semantics proposed in a recent
work.

1 Introduction

Accellera and PSL Accellera [1] is an organization set up by major players in
the electronic design industry with the objective to promote the use of standards
in this industry. In spring 2003, a standard property specification language for
hardware designs was agreed upon, called PSL [2]. The standard defines the
syntax and semantics of PSL formally. A new version of the language, PSL 1.1
is scheduled to appear in spring 2004.
The logical core of PSL consists of standard Linear Temporal Logic (LTL) con-
structs augmented with regular expressions. Thus, PSL contains the notion of
formula, which is an LTL entity that can be satisfied by an infinite sequence of
letters, and the notion of expression, which is a regular expression that can only
be satisfied by a finite sequence of letters. A letter simply defines the values
of all variables at one point in time. An expression is also called SERE, which
stands for Sequential Extended Regular Expression.
Expressions can be converted into formulas, by using for example the weak
embedding of an expression r, written {r}1. In both PSL 1.01 and 1.1, a sequence
s makes {r} true, if there is a finite prefix of s that satisfies r or all finite prefixes
of s can be extended to satisfy r.

1In fact, this is only valid PSL 1.1 syntax and not valid PSL 1.01 syntax, but this construct
is nevertheless expressible in PSL 1.01.
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Further, the semantics of PSL has to cope with the fact that properties are
supposed to be used both in static verification — checking that a property
holds solely by analyzing the design — and in dynamic verification — checking
that a property holds for a concrete and finite trace of the design. To deal with
dynamic verification, satisfiability is extended to finite (truncated) sequences
even for formulas [4, 5].
Anomalies The semantics of the current and forthcoming versions of PSL
(1.01 and 1.1) are given by means of denotational semantics. One problem that
may arise when using a denotational semantics is that it may be far from obvious
what the logical constructs in the language should mean in all cases. Making a
seemingly intuitively correct decision can lead to undesirable properties of the
resulting logic.
For example in PSL 1.01 the formula {[∗]; a}, which is the weak embedding
of an expression that is satisfied by any sequence ending with the atom a,
is satisfied by any sequence that makes a always false. However, the formula
{[∗];F} (where we have simply replaced a by the false constant F ) is not satisfied
by any sequence. Also {[∗];F} is not satisfied even if it is aborted at the first
instance. (For a discussion see [4, 3].)
In response to this, Accellera has developed a different semantical paradigm
that is proposed for the next iteration, PSL 1.1. In this semantics, the notion
of model is changed by introducing a new semantical concept; a special letter
� that can satisfy any one-letter expression, regardless if it is contradictory or
not. Unfortunately, PSL 1.1 suffers from a similar anomaly F and {a&&{a; a}}
(a so-called structural contradiction) are equivalent in an intuitive sense (they
cannot be satisfied on actual runs of a system), but are not interchangeable
in formulas. (This peculiarity is not unusual; it is for example also present in
ForSpec’s reset semantics.)
There is work underway within Accellera to deal with this anomaly either by
discouraging the use of particular ”degenerated formulas”, or by extending the
model concept further to include models on which structural contradictions are
satisfied.
Operational Semantics The company Safelogic develops tools for static and
dynamic verification of PSL properties of designs. In order to understand the
semantical issues involved in PSL, and to be able to implement our tools, we
defined a structural operational semantics for a subset of PSL. This subset is
precisely the subset of PSL in which safety properties can be expressed.
Our operational semantics is a small-step letter-by-letter semantics with judg-
ments of the form φ

�−→ ψ. The intention is that in order to check if a sequence s
starting with the letter � satisfies φ, we simply check that the tail of s (without
�) satisfies ψ, and so on. The operational semantics can directly be used for
implementing dynamic verification of properties, and also forms the basis of the
implementation of our static verification engine.
When specifying a structural operational semantics, there are far less choices to
be made than in a denotational semantics, so there is less room for mistakes.
In a recent work a new denotational semantics for LTL with regular expressions
on truncated words has been investigated. This semantics could arguably be
extended to a full PSL semantics that fixes the anomalies in the semantics of
PSL 1.0 and 1.1 [5]. We have shown that our operational semantics is sound
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and complete on the weak fragment of PSL with respect to an extension of this
denotational semantics to full PSL. Hopefully, the next iteration of PSL will
adopt the proposals made in this new semantics!
This Paper The rest of this paper is organized as follows. In Section 2, we
specify the safety property subset of PSL we have been working with. In Section
3, we define a structural operational semantics for this language. In Section 4,
we present the denotational semantics for our subset of PSL, corresponding
to [5]. In Section 5, we show lemmas relating the two semantics, and state
soundness and completeness of our operational semantics. Section 6 concludes.

2 Weak Property Language

In this section, we identify a subset of PSL, called Weak Property Language
(WPL). This subset can only be used to write safety properties.
As is done in the PSL Language Reference Manual [2], we start by assuming
a non-empty set P of atomic propositions, and a set of boolean expressions B
over P . We assume two designated boolean expressions tt, ff belonging to B.
We define two syntactical subclasses for WPL: expressions and formulas.

Definition 1 (ERE) If b ∈ B, the language of Extended Regular Expressions
(EREs) r has the following grammar:

r ::= ⊥ | ε | b | r1; r2 | r1|r2 | r1&&r2 | r ∗ .

The expression ⊥ denotes the expression with the empty language, ε is the ex-
pression that only contains the empty word (see Section 4.4 for an explanation
of why those expressions were introduced), r1; r2 stands for sequential composi-
tion between r1 and r2, r1|r2 stands for choice, r1&&r2 stands for intersection,
r∗ is the Kleene star.

Definition 2 (WPL) If r, r1 and r2 are EREs, and b a boolean expression,
the language of WPL formulas φ and ψ has the following grammar:

φ, ψ ::= {r} | φ1 ∧ φ2 | φ1 ∨ φ2 | Xφ | φ1Wφ2 | r |⇒ φ | φabort b.

The formula {r} is the weak embedding of the expression r, φ1 ∧ φ2 is formula
conjunction, φ1 ∨ φ2 is formula disjunction, Xφ is the next operator, φ1Wφ2

is the weak until operator, r |⇒ φ is suffix implication, and φabort b is the
abort operator. When relating this language to full PSL we assume the usual
definitions of weak operators in terms of their strong counterparts (Xφ = ¬X !¬φ
and φWψ = ¬(¬ψU(¬φ ∧ ¬ψ)).
Weak suffix implication r |⇒ φ is satisfied by a word if whenever r accepts a
prefix of the word, the formula φ holds on the rest of that word. The formula
φabort b is satisfied by a word if φ is not made false by that word until b holds.
A formal definition of these constructs is given, by means of an operational
semantics in the next section, and by means of a denotational semantics in the
section thereafter.
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3 A Structural Operational Semantics for WPL

Before we can give the rules of the operational semantics, we need to define a few
helper functions that identify syntactic properties of expressions and formulas.

3.1 Preliminaries

First, we define a function em that calculates if a given ERE can accept the
empty word.

Definition 3 We define (inductively) for EREs:

em(⊥) = 0
em(ε) = 1
em(b) = 0

em(r1; r2) = min(em(r1), em(r2))
em(r1|r2) = max(em(r1), em(r2))

em(r1&&r2) = min(em(r1), em(r2))
em(r∗) = 1

Second, we define a function ok that conservatively calculates whether a given
expression or formula can possibly still be satisfied. Such an expression or
formula is said to be OK.

Definition 4 We define (inductively) for EREs

ok(⊥) = 0
ok(ε) = 1
ok(b) = 1

ok(r1; r2) = ok(r1)
ok(r1|r2) = max(ok(r1), ok(r2))

ok(r1&&r2) = min(ok(r1), ok(r2))
ok(r∗) = 1

Definition 5 We define (inductively) for WPLs

ok({r}) = ok(r)
ok(φ1 ∧ φ2) = min(ok(φ1), ok(φ2))
ok(φ1 ∨ φ2) = max(ok(φ1), ok(φ2))

ok(Xφ) = 1
ok(φ1Wφ2) = max(ok(φ1), ok(φ2))
ok(r |⇒ φ) = 1

ok(φabort b) = ok(φ)

It is obvious that em(φ) and ok(φ) is either 0 or 1. We will often write em(φ)
and ok(φ) for em(φ) = 1 and ok(φ) = 1 and ¬ em(φ) and ¬ ok(φ) for em(φ) = 0
and ok(φ) = 0.
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We end with the following observation, which is that any expression or formula
accepting the empty string is an OK expression or formula.

Lemma 1 (Empty is OK) For all EREs r

em(r) ⇒ ok(r).

3.2 The Operational Rules

Let Σ be the set of subsets of P . The elements of Σ can be seen as valuations
of the atomic propositions, and are called letters. We assume that there is a
relation �⊆ Σ × B of satisfaction, such that for all letters � ∈ Σ � � tt and
� 
� ff .

Our operational semantics has judgments of the form φ
�−→ ψ, which means that

in order to check if a word starting with the letter � satisfies φ, one can just as
well check that ψ is satisfied by the word without the first letter. The lemma
stating this property is referred to as the stepping lemma (Lemma 17).
We start by giving rules for the basic EREs.

(Bool) b
�−→

{
ε if � � b

⊥ otherwise

(Bot) ⊥ �−→ ⊥

(Empty) ε
�−→ ⊥

Here are the rules for sequential composition. There are two cases, one for the
case when r1 can not accept the empty word, and one for the case when it can.

(Seq1)
r1

�−→ r′1
r1; r2

�−→ r′1; r2
not em(r1)

(Seq2)
r1

�−→ r′1 r2
�−→ r′2

r1; r2
�−→ (r′1; r2)|r′2

em(r1)

Here are the rules for choice and intersection.

(EreOr)
r1

�−→ r′1 r2
�−→ r′2

r1|r2 �−→ r′1|r′2

(EreAnd)
r1

�−→ r′1 r2
�−→ r′2

r1&&r2
�−→ r′1&&r′2

And lastly, this is the rule for Kleene star.

(Star)
r

�−→ r′

r∗ �−→ r′; r∗
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Embedding of expressions simply parses the � through the expression.

(Ere)
r

�−→ r′

{r} �−→ {r′}
Formula disjunction and conjunction are identical to their expression counter-
parts.

(WplAnd)
φ1

�−→ φ′1 φ2
�−→ φ′2

φ1 ∧ φ2
�−→ φ′1 ∧ φ′2

(WplOr)
φ1

�−→ φ′1 φ2
�−→ φ′2

φ1 ∨ φ2
�−→ φ′1 ∨ φ′2

The rule for next simply drops the next operator.

(Next) Xφ
�−→ φ

The rule for weak until is directly derived from the fact that weak until is a
solution of the following equation: φ1Wφ2 = φ2 ∨ (φ1 ∧X(φ1Wφ2)).

(Until)
φ1

�−→ φ′1 φ2
�−→ φ′2

φ1Wφ2
�−→ φ′2 ∨ (φ′1 ∧ (φ1Wφ2))

For suffix implication, there are two rules: one that triggers the formula φ to
be true when r accepts the empty word, and one that does not triggers φ. One
can see these rules as dual to the rules for sequential composition.

(Wsi1)
r

�−→ r′ φ
�−→ φ′

r |⇒ φ
�−→ r′ |⇒ φ

not em(r)

(Wsi2)
r

�−→ r′ φ
�−→ φ′

r |⇒ φ
�−→ (r′ |⇒ φ) ∧ φ′

em(r)

An abort checks its formula until the boolean becomes true.

(Abort1)
φ

�−→ φ′

φabort b �−→ φ′ abort b
not ok(φ) or � 
� b

(Abort2) φabort b �−→ tt∗ ok(φ) and � � b

We can see that the operational rules for abort follow the operational intuition
behind the operation.

3.3 Iterated Application of Rules

We are interested in the result of applying the rules above iteratively to formulas
with respect to words from the the alphabet Σ. A word is a finite or infinite
enumeration of letters from Σ. We use ε to denote the empty word.
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We use juxtaposition to denote concatenation: if w and v are words and w
is finite then wv is the concatenation of w and v, i.e. if w = (�0, . . . , �n) and
v = (�′0, . . . (, �

′
n)) then wv = (�0, . . . , �n, �′0, . . . (, �

′
n)). If w is infinite then wv is

w. We observe that concatenation is associative, i.e. w(vu) = (wv)u for all w, v
and u, and ε is the identity, i.e. εw = wε = w for all w. We will use � both for
denoting the letter � and the word consisting of the single letter �.
Word indexing is defined as follows. If i < |w| then wi is the i+ 1st letter of w.
wi... is the suffix of w starting at i. If i ≥ |w| then wi... = ε. If k ≤ j < |w|,
then wk...j means (wk, . . . , wj). If j < k < |w|, then wk...j is ε.
We use v ≤ w and ’v is a prefix of w’ to say that there is a u such that vu = w
and v < w to say that v ≤ w and v 
= w.
Iteratively applying the operational semantics on a formula φ over the letters
of a word w is written φ〈w〉:
Definition 6 (After a Word) For an ERE or WPL p, we define the result
p〈w〉 of applying the operational rules on p with respect to a finite word w.

• p〈ε〉 = p

• p〈�w〉 = p′〈w〉 where p �−→ p′.

We observe the following properties of this relation.

Lemma 2 (Chaining of Eating) For all EREs and WPLs p, and all finite
words w and v, p〈w〉〈v〉 = p〈wv〉.
Lemma 3 (After One Step1) For all EREs and WPLs p, and � and finite
words w,

p
�−→ p〈�〉.

From Lemmas 2 and 3 we get the following lemma.

Lemma 4 (After One Step2) For all EREs and WPLs p, and � and finite
words w,

p〈w〉 �−→ p〈w�〉.
The operational semantics preserves conjunctions and disjunctions.

Lemma 5 (Conservation of Disjuncts) For all finite words w and WPLs φ
and ψ

(φ ∨ ψ)〈w〉 = φ〈w〉 ∨ ψ〈w〉
and EREs r1 and r2

(r1|r2)〈w〉 = r1〈w〉|r2〈w〉.
Lemma 6 (Conservation of Conjuncts) For all finite words w and WPLs
φ and ψ

(φ ∧ ψ)〈w〉 = φ〈w〉 ∧ ψ〈w〉
and EREs r1 and r2

(r1&&r2)〈w〉 = r1〈w〉&&r2〈w〉.
Finally, we can relate the ok function to this relation.

Lemma 7 (Conservation of Misery) For each WPL or ERE p, we have

¬ ok(p) ⇒ for all finite u ¬ ok(p〈u〉).
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3.3.1 The Operational Semantics

Now we are ready to define what it means for a formula to be true according to
the operational semantics.

Definition 7 (The Operational Semantics) For all WPLs and ERSs p, and
all words w we define

w � p⇔ for all finite v such that v ≤ w, ok(p〈v〉).
Intuitively, this means that a word w makes a formula φ true if and only if
iteratively applying the operational semantics on φ using w only produces OK
formulas.
We observe the following consequence of Lemma 7.

Lemma 8 For all WPLs and ERSs p, if w is finite

w � p⇔ ok(p〈w〉).
Conjunction and disjunction turn out to be compositional w.r.t. the operational
semantics, which is a direct consequence of Lemmas 7, 5 and 6.

Lemma 9 (Operational Disjunction is Compositional)

w � r1|r2 ⇔ w � r1 orw � r2
w � φ ∨ ψ ⇔ w � φ or w � ψ

Lemma 10 (Operational Conjunction is Compositional)

w � r1&&r2 ⇔ w � r1 andw � r2
w � φ ∧ ψ ⇔ w � φ andw � ψ

4 Denotational Semantics

Alternatively, we can define a denotational semantics for WPL. The following
definitions are inspired by [5]. In Section 4.4 we describe the relation between
this semantics and that of [5].

4.1 Weak and Neutral Words

Let N denote the set of finite and infinite words over Σ, and N f ⊂ N the
set of finite words over Σ. The elements of N are called neutral words. Let
W = {u−|u ∈ Nf}. Whenever the notation u− is used, it is understood that
u ∈ Nf . The elements of W are called weak words. Note in particular that
ε− ∈W .
Let A = N ∪W , and define concatenation in A as follows. For all u, v ∈ N ,
uv is equal to the concatenation in N , and if u is finite then u(v−) = (uv)−.
For all u, v ∈ A, if u is infinite or u ∈ W then uv = u. With this definition
concatenation in A is associative and ε is the unique identity element. Define
the length of an element w in N as the number of letters in w if w is finite and
ω otherwise, and in A according to |u−| = |u| for all u ∈ Nf .
Word indexing in A is defined as follows. For i < |w|, (w−)i = wi. We let
(w−)i... = (wi...)−. We also let (w−)k...j = wk...j .
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4.2 Tight Satisfaction

We start by giving a definition of tight satisfaction |≡ for EREs on finite words
from A.

Definition 8 Let r, r1 and r2 denote EREs, and b a boolean and w,w1, . . . , wj

words in A.

w 
|≡ ⊥
w|≡ b⇔ either w = ε− or (|w| = 1 and w0 � b)
w|≡ r1; r2 ⇔ there are w1, w2 such that w = w1w2 and w1|≡ r1 and w2|≡ r2

w|≡ r1|r2 ⇔ w|≡ r1 or w|≡ r2

w|≡ r1&&r2 ⇔ w|≡ r1 and w|≡ r2

w|≡ r∗ ⇔ either w = ε or there exists w1, w2, . . . , wj such that w = w1w2 · · ·wj

and for all i such that 1 ≤ i ≤ j, wi|≡ r

w|≡ ε⇔ w|≡ ff∗

We note the following lemmas.

Lemma 11 For all EREs r that do not syntactically contain ⊥ as a subexpres-
sion

ε−|≡ r.

Lemma 12 For all EREs r and w ∈ A

w|≡ r and v ≤ w ⇒ v−|≡ r.

4.3 Formula Satisfaction

We now define formula satisfaction � for WPLs on words from N .

Definition 9 Let φ and ψ denote WPLs, and b a boolean, r an ERE and w, u, v
etc. are words in N

w � {r} ⇔ for all finite u such that u ≤ w, u−|≡ r; tt∗

w � φ ∧ ψ ⇔ w � φ and w � ψ
w � φ ∨ ψ ⇔ w � φ or w � ψ
w � Xφ⇔ if |w| ≥ 1 then w1... � φ
w � φWψ ⇔ for all k such that wk... 
� φ there is j ≤ k such that wj... � ψ
w � r |⇒ φ⇔ for all u, v such that uv = w if u|≡ r then v � φ
w � φabort b⇔ either w � φ or there is k < |w| such that wk � b and (w0...k−1) � φ

It follows by structural induction from Lemma 11:

Lemma 13 For all WPLs φ that do not syntactically contain ⊥ as a subexpres-
sion

ε � φ.

9



We note the following.

Observation 1 For all w

w � tt∗; (tt&&(tt; tt)).

Take any finite prefix v of w then v|≡ tt∗ and ε−|≡ (tt&&(tt; tt)) so v−|≡
tt∗; (tt&&(tt; tt)).

4.4 Relations to Truncated Ere Semantics

The definition of tight satisfaction above is equivalent to the one given in [5]
reduced to the set N f ∪W except for the following. In the definition of tight
satisfaction on weak/strong words in [5] we have

w|≡′ b⇔ either w = ε− or (w ∈ N and |w| = 1 and w0 � b)

The current formulation

w|≡ b⇔ either w = ε− or (w ∈ (N ∪W ) and |w| = 1 and w0 � b)

results in w|≡ r ⇔ w|≡ r; ε, whereas if � � b, �−|≡′ b; ε but �− 
|≡′ b. The change
was necessary to get Lemma 16 and it can be done without losing desirable
properties like Lemma 12 that are needed to get the results of [5]. We also
introduced the ERE symbols ⊥ and ε that are not present in [5]. It was necessary
to differentiate falsity that is already visited (⊥ which should be false on ε−)
from falsity that is not already visited (ff which should be true on ε−) in the
operational rules to get Lemma 16. It was also convenient for defining the
operational rules in a succinct way to introduce a symbol ε that is only tightly
satisfied by empty words.
In [5] both tight and formula satisfaction is defined w.r.t. to the set A = N ∪
W ∪ S of neutral, weak and strong words. The strong words are needed for
defining the semantics of negation on weak words. Our weak language does not
contain negation because the negation of weak formulas are strong formulas.
We have defined tight satisfaction on the set N f ∪W and formula satisfaction
on the set N . Formula satisfaction on weak words is used in [5] in the case for
the abort (trunc w) operator. We don’t need that because a weak formula is
satisfied on a weak word if and only if it is satisfied on its neutral counterpart.
In order to better see the relationship between the definition above and that
of [5]2 we introduce for k > 0 the operator Xk as syntactic sugar for iterated
applications of the X operator: We thus let X1φ = φ and Xk+1φ = X(Xkφ).
We observe the following two facts.

Lemma 14
w � Xkφ⇔ if |w| ≥ k then wk... � φ.

Lemma 15

w � φWψ ⇔ for all k such that w 
� Xkφ there is j ≤ k such that w � Xjψ.

2The relations to the semantics of [5] will be made more explicit in the final version of this
paper
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5 Relations Between the Semantics

In this section we show that the operational semantics and denotational seman-
tics are tightly coupled.

5.1 The Stepping Lemmas

We can show the following two basic lemmas, which confirms our intuition about
the operational judgments r �−→ r′ and φ �−→ φ′.

Lemma 16 (ERE Stepping) If r �−→ r′ then for all w ∈ A

�w|≡ r ⇔ w|≡ r′.

Using Lemma 16 we can prove the following.

Lemma 17 (WPL Stepping) If φ �−→ φ′ then for all w ∈ A

�w � φ⇔ w � φ′.

5.2 Completeness

In order to show completeness of the operational semantics with respect to the
denotational semantics, we first observe the following.

Lemma 18 (Tight True is Ok) For w ∈ A

w|≡ r ⇒ ok(r).

The following lemma follows.

Lemma 19 (True is Ok) For w ∈ A

w � φ⇒ ok(φ).

We use Lemma 17 and 4 to show the following.

Lemma 20 (True Stays True) For w ∈ A

w � φ⇔ for every finite v such that vu = w, u � p〈v〉.

Finally, we use Lemmas 20 and 19 to show completeness.

Theorem 1 (Completeness) For w ∈ N

w � φ⇒ w � φ.

11



5.3 Soundness

In order to show soundness of the operational semantics with respect to the
denotational semantics, we use Lemmas 1, 5 and 6 to show the following.

Lemma 21 (Empty is Tight) For all finite v ∈ N

em(r〈v〉) ⇔ v|≡ r.

Then, we use Lemma 21 and 5 and 7 to show the following.

Lemma 22 (Seq is Sound)

w � r1; r2 ⇒ either w � r1 or there are v, u such that vu = w and v|≡ r1 and u � r2.

We use Lemma 22, 16, 11, 9 and 10 to show the following.

Lemma 23 (Tight Soundness) For all finite w ∈ N

w � r ⇒ w−|≡ r.

Finally, we use Lemma 23, 17, 9 and 10 to show soundness.

Theorem 2 (Soundness) For w ∈ N

w � φ⇒ w � φ.

6 Conclusions and Future Work

We specified our operational semantics independently of the work described in
[5]. Nevertheless, we were able to show soundness and completeness of our
operational semantics with respect to the one obvious extension of this work to
full WPL. The fact that these different approaches coincide is encouraging and
indicates that this current semantical definition is the right way to go.
Defining an operational semantics, can help in guiding the work of defining
a denotational one, but it also gives a direct way of implementing dynamic
property checking, and a basis of an algorithm for static property checking.
Currently, we are working on extending our operational semantics to also deal
with non-safety properties. The next step would then be to relate that semantics
to the strong satisfiability described in [5].
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PSL semantics in higher order logic

Mike Gordon, University of Cambridge Computer Laboratory, 23 February 2004

1. Introduction

In a paper, published in the journal Formal Aspects of Computing (FAC) [Gor03]1, we described a deep
semantic embedding of Version 1.01 of the Accellera Property Specification Language (PSL) in higher order
logic. The main goal of that paper was to demonstrate that mechanised theorem proving can be a useful aid
to the validation of the semantics of an industrial design language.
In another paper, presented at CHARME 2003 [GHS03], we showed how mechanised deduction could be
applied to a formal encoding of the PSL semantics in higher order logic to generate correct-by-construction
tools (a property evaluator, a simulation monitor generator and a model checker). The point of that paper
was to show that a formal semantics was not just documentation, but could be executed by special purpose
theorem proving scripts.
This document gives more detail than the published papers on how the semantics is represented in the HOL
system. It also reflects the (not yet released) Version 1.1 semantics. Some material has been taken from the
FAC paper, but the details are updated to correspond to the latest version of PSL.

2. Review of higher order logic, the HOL system and semantic embedding

Higher order logic is an extension of first-order predicate calculus that allows quantification over functions
and relations. It is a natural notation for formalising informal set theoretic specifications (indeed, it is usually
more natural than formal first-order set theories, like ZF). We hope that the formal logic notation in what
follows is sufficiently close to standard informal mathematics that it needs no systematic explanation. In
this section we briefly outline some features of the version of higher order logic implemented in the HOL4
system. We refer to this logic as “the HOL logic” or just “HOL”.
The HOL logic is built out of terms which are of four types: constants, variables, combinations (or function
applications) t1 t2 and λ-abstractions λx. t.
The particular set of constants that are available depends on the theory one is working in. The kernel of the
HOL logic contains constants T and F representing truth and falsity, respectively. In the HOL system, new
constants can be defined in terms of existing constants using definitional mechanisms that guarantee no new
inconsistencies are introduced. Defined constants include numerals (e.g. 0, 1, 2), strings (e.g. "a", "b", "ab")
and logical operators (e.g. ∧, ∨, ¬, ∀, ∃). The details of HOL’s theory of definition are available elsewhere
[GM93].
The simple kernel of four kinds of terms can be extended using syntactic sugar to include all the normal
notations of predicate calculus. The extension process consists of defining new constants and then adding
syntactic sugar to make terms containing these constants look familiar. For example, constants ∀, ∃ and
Pair can be defined and then ∀x. ∃y. P (x, y) is syntactic sugar for ∀(λx. ∃(λy. P (Pair x y))), (here the
function application Pair x y means ((Pair x) y), so Pair is ‘curried’). If P is a function that returns a
truth-value (i.e. a predicate), then P can be thought of as a set, and we write x ∈ P to mean P (x) is true.
The term λx. · · ·x · · · corresponds to the set abstraction {x | · · ·x · · ·} and we will write ∀x ∈ P. Q(x) and
∃x ∈ P. Q(x) to mean ∀x. P (x) ⇒ Q(x) and ∃x. P (x) ∧ Q(x), respectively.

Address: Mike Gordon, University of Cambridge Computer Laboratory, William Gates Building, JJ Thomson Avenue, Cam-
bridge CB3 0FD, U.K. e-mail: mjcg@cl.cam.ac.uk
1 Draft online at: http://www.cl.cam.ac.uk/~mjcg/Sugar/facpaper/.
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Higher order logic is typed to avoid inconsistencies.2 Types are syntactic constructs that denote sets of values.
For example, types bool and num are atomic types in HOL and denote the sets of booleans and natural
numbers, respectively. Complex types can be built using type constructors. For example, if ty1 and ty2 are
types, then ty1→ty2 denotes the set of functions with domain ty1 and range ty2, and ty1 × ty2 denotes the
Cartesian product of the sets denoted by ty1 and ty2. Type constructors are traditionally applied to their
arguments using a postfix notation like (ty1, . . . , tyn)constructor. The types ty1→ty2 and ty1 × ty2 are just
special notations for (ty1, ty2)fun and (ty1, ty2)prod, respectively.
If the types for all the variables and constants in a term t are given, then a type-checking algorithm can
determine whether t is well-typed – i.e. every function is applied to an argument of the correct type – and
compute a type for t. For example, ¬3 is not well-typed (assuming ¬ has type bool→bool and 3 has type
num) and would be rejected by type-checking, however, ¬T is well-typed (assuming T has type bool) and
would be accepted and given type bool. Only the well-typed terms are considered meaningful and we write
t : ty if term t is well-typed and has type ty. Well-typed terms of type bool are the formulas of the HOL
logic, thus formulas are a subset of terms: ∀x. ∃y. x + 1 < y is a term that is a formula, but x + 1 is a term
(of type num) that is not a formula. The HOL logic kernel only has two types and one type constructor:
type bool of booleans, an infinite type ind of ‘individuals’ and the function type constructor →. Other types
and type constructors can be defined in terms of these [GM93]. For example, the type num of numbers is
defined as a subset of the primitive type ind, and the Cartesian product constructor × can be defined in
terms of →. Families of terms can be created by using type variables. For example, if variable x is assigned
the type α, where α is a type variable, then λx. x has type α→α and is a family of identity functions with
an instance λx : ty. x for each type ty.

2.1. HOL system notation

Input to the HOL system uses ASCII characters. The table below shows some common idioms, including
those that are used in this paper.

Standard notation HOL notation Description

true T truth
false F falsity
¬t ~t negation
t1 ∧ t2 t1 /\ t2 conjunction
t1 ∨ t2 t1 \/ t2 disjunction
t1 ⇒ t2 t1 ==> t2 implication
∀x .P(x ) !x.P(x) universal quantification
∃x .P(x ) ?x.P(x) existential quantification
p ∈ s p IN s set membership
[0..n) LESS n set of natural numbers less than n
∀x ∈ s. P(x ) !x::s. P(x) universal quantification restricted to s
∃x ∈ s. P(x ) ?x::s. P(x) existential quantification restricted to s
∀x ∈ [0..n). P(x ) !x::LESS n. P(x) universal quantification restricted to numbers less than n
∃x ∈ [0..n). P(x ) ?x::LESS n. P(x) existential quantification restricted to numbers less than n
ε [] empty list
x [x] list with one element (singleton)
l1l2 l1 <> l2 list concatenation (append)
ty1 × ty2 ty1 # ty2 Cartesian product of types ty1 and ty2

ty1→ty2 ty1 --> ty2 type of functions from ty1 to ty2

To enable an easy comparison with the informal presentation in the PSL Language Reference Manual (LRM),
we include snippets from the LRM in framed boxes3

2 Russell’s paradox can be formulated as: (λx. ¬(x x)) (λx. ¬(x x)) = ¬((λx. ¬(x x)) (λx. ¬(x x))).
3 Thanks to Dana Fisman for supplying LATEX source of the draft LRM. Not that as we are using a different style file for
typesetting, the appearance of the material in the boxes may be formatted here differently from how the text will appear in
the forthcoming LRM.
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2.2. Representing letters and words in HOL

In LRM Version 1.1 (Section B.2.1) we find:

The semantics of FL is defined with respect to finite and infinite words over Σ = 2P ∪ {	,⊥}.

Members of Σ are called letters and to represent them in HOL we define a type (’a)letter, where the
parametrisation on a type variable ’a is so that different sets P of atomic propositions can be ‘plugged-in’
by instantiating ’a to a type representing P .
A data-type definition has the form Hol datatype ‘<description of type>‘. The following input to HOL
defines a new type (’a)letter together with three constants (which are separated by “|”).

Hol_datatype ‘letter = TOP | BOTTOM | STATE of (’a -> bool)‘

Note that the syntax used for declaring data-types in the HOL system logic requires the type name without
any parameters on the left hand side (i.e. letter rather than (’a)letter). The presence of the single free
type variable ’a in the right hand side causes a unary type operator to be defined.
The constants TOP and BOTTOM are distinct values of type (’a)letter. The constant STATE is a function
taking an argument of the type shown after the “of” and returning a result of type (’a)letter. Thus the
effect of executing the data-type definition is to define a new type (’a)letter together with the following
constants.

TOP : (’a)letter
BOTTOM : (’a)letter
STATE : (’a → bool) → (’a)letter

The argument to STATE is the characteristic function of a set of atomic propositions. When HOL performs
such a definition it automatically proves a standard set of useful theorems about the type and the constants
defined on it (e.g. ~(TOP = BOTTOM), which represents ¬(	 = ⊥)).
The PSL LRM continues:

We denote a letter from Σ by � and an empty, finite, or infinite word from Σ by u, v, or w (possibly with
subscripts).

Finite paths can be represented by a built-in type list of finite lists. Infinite paths can be represented as
functions from natural numbers (type num). Thus to represent paths in HOL we define a disjoint union type:

Hol_datatype
‘path = FINITE of (’s list) | INFINITE of (num -> ’s)‘

This defines a unary type operator path. A type (ty)path represents paths whose elements are of type ty.
Next the PSL LRM says:

We denote the length of word v as |v|. An empty word v = ε has length 0, a finite word v = (�0�1�2 · · · �n)
has length n + 1, and an infinite word has length ∞.

The length of a path is thus either a natural number or is ∞. To model this we define a type xnum of extended
natural numbers. Comments in HOL are enclosed between (* and *).

Hol_datatype
‘xnum = INFINITY (* length of an infinite path *)

| XNUM of num‘ (* length of a finite path *)

This defines the type xnum together with the following constants.

INFINITY : xnum
XNUM : num → xnum
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The length of a path can now be defined in the HOL logic by defining a constant LENGTH : (’a)path → xnum.
The function list$LENGTH, which occurs below, is the pre-existing length function on finite lists.

Define ‘(LENGTH(FINITE l) = XNUM(list$LENGTH l))
/\
(LENGTH(INFINITE p) = INFINITY)‘

This definition overloads the name LENGTH so it now can be applied both to lists and to paths.
Continuing with B2.1 of the PSL LRM:

We use i, j, and k to denote non-negative integers. We denote the ith letter of v by vi−1 (since counting
of letters starts at zero). We denote by vi.. the suffix of v starting at vi. That is, for every i < |v|,
vi.. = vivi+1 · · · vn or vi.. = vivi+1 · · ·. We denote by vi..j the finite sequence of letters starting from vi

and ending in vj . That is, for j ≥ i, vi..j = vivi+1 · · · vj and for j < i, vi..j = ε. We use �ω to denote an
infinite-length word, each letter of which is �.
We use v to denote the word obtained by replacing every 	 with a ⊥ and vice versa. We call v the
complement of v.

These operations are straightforward to define by ‘functional programming’ in the HOL logic. We do not give
the definitions here, but show in the table below the PSL notation and corresponding HOL representation.

PSL Notation HOL representation Description

∞ INFINITY infinity
ε [] empty path
	ω TOP OMEGA infinite repetition of 	
|v | LENGTH v length of a path
v i ELEM v i i+tth letter of v
v i.. RESTN v i suffix of v starting at v i

v i..j SEL v (i, j) sequence starting at v i and ending at v j

v COMPLEMENT v complement of v (swap 	s and ⊥s)

3. Representing syntax in higher order logic

PSL has four classes of constructs: boolean expressions, Sequential Extended Regular Expressions (SEREs),
Foundation Language (FL) formulas and Optional Branching Extension (OBE) formulas. The OBE is ignored
here, though for PSL Version 1.01 its semantics in HOL appears in the FAC paper.
Although the syntax of boolean expressions is not explicitly defined, it says in Section B.1 of the LRM:

The logic Accellera PSL is defined with respect to a non-empty set of atomic propositions P and a given
set of boolean expressions B over P . We assume two designated boolean expression true and false belong
to B.

In addition, in LRM B.2.1 the semantics of boolean expressions ¬b and b1 ∧ b2 are defined, so we include
these as primitives too.
Abstract syntax is represented in HOL by defining a data-type whose operations are the constructors.
For boolean expressions, a data-type bexp is defined. Since atomic propositions are boolean expressions, we
parameterise the type of boolean expressions on a type variable ’a that can be subsequently instantiated
to a particular type representing the set P of atomic propositions. If aprop is such a type, then the type of
terms representing boolean expressions is (aprop)bexp. Thus bexp is a unary type constructor.
When a constructors is to take n arguments, where n > 1, one writes “of ty1 # · · · # tyn” after a constructor
name in the data-type declaration, where ty1, . . ., tyn are the types of the arguments.
The input to the HOL system to define bexp is:
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Hol_datatype
‘bexp = B_PROP of ’a (* atomic proposition *)

| B_TRUE (* true *)
| B_FALSE (* false *)
| B_NOT of bexp (* negation *)
| B_AND of bexp # bexp‘ (* conjunction *)

This defines a new unary type constructor bexp and constants:

B_PROP : ’a → (’a)bexp
B_TRUE : (’a)bexp
B_FALSE : (’a)bexp
B_NOT : (’a)bexp → (’a)bexp
B_AND : (’a)bexp × (’a)bexp → (’a)bexp

The prefix B indicates a boolean expression constructor.
If atomic propositions are taken to be strings, then the boolean expression x ∧ ¬y would be represented by
the term B AND(B PROP "x", B NOT(B PROP "y")) which has the type (string)bexp.
The syntax of SEREs is described in the LRM by:

Definition 1 (Sequential Extended Regular Expressions (SEREs)).

– Every boolean expression b ∈ B is a SERE.
– If r, r1, and r2 are SEREs, and c is a boolean expression, then the following are SEREs:

• {r} • r1 ; r2 • r1 : r2 • r1 | r2

• r1 && r2 • [∗0] • r[∗] • r@c

This is represented in HOL by defining a data-type sere by (the prefix S indicates a SERE constructor):

Hol_datatype
‘sere = S_BOOL of ’a bexp (* boolean expression *)

| S_CAT of sere # sere (* r1 ; r2 *)
| S_FUSION of sere # sere (* r1 : r2 *)
| S_OR of sere # sere (* r1 | r2 *)
| S_AND of sere # sere (* r1 && r2 *)
| S_EMPTY (* [*0] *)
| S_REPEAT of sere (* r[*] *)
| S_CLOCK of sere # ’a bexp‘ (* r@c *)

This defines a unary type operator sere (the need for parametrisation is inferred from the free type variable
’a in the right hand side of the definition).
The syntax of FL formulas is defined in the LRM by (the prefix F indicates an FL formula constructor):

Definition 2 (Formulas of the Foundation Language (FL formulas)).

– If b is a boolean expression then both b and b! are FL formulas.
– If ϕ and ψ are FL formulas, r, r1, r2 are SEREs, and b a boolean expression, then the following are FL

formulas:• (ϕ) • ¬ϕ • ϕ ∧ ψ • r! • r

• X! ϕ • [ϕ U ψ] • ϕ abort b • r → ϕ • ϕ@b

This is represented in HOL by defining a data-type fl by:



6 Mike Gordon, University of Cambridge Computer Laboratory, 23 February 2004

Hol_datatype
‘fl = F_STRONG_BOOL of ’a bexp (* b! *)

| F_WEAK_BOOL of ’a bexp (* b *)
| F_NOT of fl (* not f *)
| F_AND of fl # fl (* f1 and f2 *)
| F_STRONG_SERE of ’a sere (* r! *)
| F_WEAK_SERE of ’a sere (* r *)
| F_NEXT of fl (* X! f *)
| F_UNTIL of fl # fl (* [f1 U f2] *)
| F_ABORT of fl # ’a bexp (* f abort b *)
| F_CLOCK of fl # ’a bexp (* f@b *)
| F_SUFFIX_IMP of ’a sere # fl‘ (* r |-> f *)

This defines a unary type operator fl.

4. Formal semantics in higher order logic

In this section we give the semantics that is expected to be released in the forthcoming LRM for Accellera
PSL Version 1.1. We then show its representation in HOL, both pretty printed and in raw ASCII form.

4.1. Boolean expressions in PSL

The semantics of boolean expressions is described in the LRM as follows:

The semantics of boolean expression is assumed to be given as a relation ⊆ Σ×B relating letters in Σ
with boolean expressions in B. If (�, b) ∈ we say that the letter � satisfies the boolean expression b and
denote it � b. We assume the two special letters 	 and ⊥ behave as follows: for every boolean expression
b, 	 b and ⊥ / b. We assume that otherwise the boolean relation behaves in the usual manner. In
particular, that for every letter � ∈ 2P , atomic proposition p ∈ P and boolean expressions b, b1, b2 ∈ B (i)
� p iff p ∈ �, (ii) � ¬b iff � / b, and (iii) � true and � / false. Finally, we assume that for every letter
� ∈ Σ, � b1 ∧ b2 iff � b1 and � b2.

The semantics of boolean expressions is represented in HOL by defining a new constant corresponding to a
semantic function B SEM : (’a→bool)→(’a)bexp→bool such that B SEM l b is true iff b is true with respect
to letter l. The actual input to HOL to define S SEM is:

Define
‘(B_SEM TOP b = T)
/\
(B_SEM BOTTOM b = F)
/\
(B_SEM (STATE s) (B_PROP p) = p IN s)
/\
(B_SEM (STATE s) B_TRUE = T)
/\
(B_SEM (STATE s) B_FALSE = F)
/\
(B_SEM (STATE s) (B_NOT b) = ~(B_SEM (STATE s) b))
/\
(B_SEM (STATE s) (B_AND(b1,b2)) = B_SEM (STATE s) b1 /\ B_SEM (STATE s) b2)‘

If B SEM l b is pretty printed as l b, then the semantics above pretty prints as:
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(	 b = T)
∧
(⊥ b = F)
∧
(s p = p ∈ s)
∧
(s T = T)
∧
(s F = F)
∧
(s ¬b = ¬(s b))
∧
(s b1 ∧ b2 = s b1 ∧ s b2)

Pretty-printing introduces potentially confusing overloading: the occurrence of ¬ in ¬b is part of the boolean
expression syntax of PSL, but the occurrence in ¬(l |= b) is negation in higher order logic. Similarly ∧ is
overloaded: the occurrence in b1 ∧ b2 is part of the boolean expression syntax, but the other occurrences are
conjunction in higher order logic.

4.2. Extended Regular Expressions (SEREs)
The unclocked semantics (B.2.1.1.1 of the LRM) is shown in the next box:

Unclocked SEREs are defined over finite words from the alphabet Σ. The notation v |≡ r, where r is a
SERE and v a finite word means that v models tightly r. The semantics of unclocked SEREs are defined
as follows, where b denotes a boolean expression, and r, r1, and r2 denote unclocked SEREs.

– v |≡ {r} ⇐⇒ v |≡ r

– v |≡ b ⇐⇒ |v| = 1 and v0 b

– v |≡ r1 ; r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡ r1, and v2 |≡ r2

– v |≡ r1 : r2 ⇐⇒ ∃v1, v2, and � s.t. v = v1�v2, v1� |≡ r1, and �v2 |≡ r2

– v |≡ r1 | r2 ⇐⇒ v |≡ r1 or v |≡ r2

– v |≡ r1 && r2 ⇐⇒ v |≡ r1 and v |≡ r2

– v |≡ [∗0] ⇐⇒ v = ε

– v |≡ r[∗] ⇐⇒ either v |≡ [∗0] or ∃v1, v2 s.t. v1 �= ε, v = v1v2, v1 |≡ r and v2 |≡ r[∗]

The pretty-printed HOL representation of this is:

(v |≡ b = (|v | = 1) ∧ v0 b)
∧
(v |≡ r1; r2 = ∃v1v2. (v = v1v2) ∧ v1 |≡ r1 ∧ v2 |≡ r2)
∧
(v |≡ r1 : r2 = ∃v1v2l . (v = v1[l ]v2) ∧ v1[l ] |≡ r1 ∧ [l ]v2 |≡ r2)
∧
(v |≡ r1 | r2 = v |≡ r1 ∨ v |≡ r2)
∧
(v |≡ r1&&r2 = v |≡ r1 ∧ v |≡ r2)
∧
(v |≡ [∗0] = (v = ε))
∧
(v |≡ r [∗] = v |≡ [∗0] ∨ ∃v1v2. ¬(v = ε) ∧ (v = v1v2) ∧ v1 |≡ r ∧ v2 |≡ r [∗])
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The raw HOL is (we omit the Define and enclosing quotes):

(US_SEM v (S_BOOL b) = (LENGTH v = 1) /\ B_SEM (ELEM v 0) b)
/\
(US_SEM v (S_CAT(r1,r2)) = ?v1 v2. (v = v1 <> v2) /\ US_SEM v1 r1 /\ US_SEM v2 r2)
/\
(US_SEM v (S_FUSION(r1,r2)) =

?v1 v2 l. (v = v1 <> [l] <> v2) /\ US_SEM (v1<>[l]) r1 /\ US_SEM ([l]<>v2) r2)
/\
(US_SEM v (S_OR(r1,r2)) = US_SEM v r1 \/ US_SEM v r2)
/\
(US_SEM v (S_AND(r1,r2)) = US_SEM v r1 /\ US_SEM v r2)
/\
(US_SEM v S_EMPTY = (v = []))
/\
(US_SEM v (S_REPEAT r) =

US_SEM v S_EMPTY \/
?v1 v2. ~(v=[]) /\ (v = v1 <> v2) /\ US_SEM v1 r /\ US_SEM v2 (S_REPEAT r))

The clocked semantics (B.2.1.2.1 of the LRM) is more complex.

We say that finite word v is a clock tick of c iff |v| > 0 and v|v|−1 c and for every natural number
i < |v| − 1, vi ¬c.

This is formalised by defining a constant: ClockTick(v , c) = |v | > 0 ∧ v |v |−1 c ∧ ∀i ∈ [0.. |v | − 1). v i ¬c.

Clocked SEREs are defined over finite words from the alphabet Σ and a boolean expression that serves
as the clock context. The notation v |≡c r, where r is a SERE and c is a boolean expression, means that v
models tightly r in context of clock c. The semantics of clocked SEREs are defined as follows, where b, c,
and c1 denote boolean expressions, r, r1, and r2 denote clocked SEREs.

– v |≡c {r} ⇐⇒ v |≡c r

– v |≡c b ⇐⇒ v is a clock tick of c and v|v|−1 b

– v |≡c r1 ; r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡c r1, and v2 |≡c r2

– v |≡c r1 : r2 ⇐⇒ ∃v1, v2, and � s.t. v = v1�v2, v1� |≡c r1, and �v2 |≡c r2

– v |≡c r1 | r2 ⇐⇒ v |≡c r1 or v |≡c r2

– v |≡c r1 && r2 ⇐⇒ v |≡c r1 and v |≡c r2

– v |≡c [∗0] ⇐⇒ v = ε

– v |≡c r[∗] ⇐⇒ either v |≡c [∗0] or ∃v1, v2 s.t. v1 �= ε, v = v1v2, v1 |≡c r and v2 |≡c r[∗]
– v |≡c r@c1 ⇐⇒ v |≡c1 r

The HOL representation of this semantics of SEREs is defined by a semantic function S SEM such that
S SEM w c r is true iff word w is in the language recognised by the extended regular expression r when the
clock context (i.e. current clock) is c. The HOL term S SEM w c r is pretty-printed as w |≡cr .

(v |≡cb = ClockTick(v , c) ∧ v |v |−1 b)
∧
(v |≡cr1; r2 = ∃v1v2. (v = v1v2) ∧ v1 |≡cr1 ∧ v2 |≡cr2)
∧
(v |≡cr1 : r2 = ∃v1v2l . (v = v1[l ]v2) ∧ v1[l ] |≡cr1 ∧ [l ]v2 |≡cr2)
∧
(v |≡cr1 | r2 = v |≡cr1 ∨ v |≡cr2)
∧
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(v |≡cr1&&r2 = v |≡cr1 ∧ v |≡cr2)
∧
(v |≡c [∗0] = (v = ε))
∧
(v |≡cr [∗] = v |≡c [∗0] ∨ ∃v1v2. ¬(v = ε) ∧ (v = v1v2) ∧ v1 |≡cr ∧ v2 |≡cr [∗])
∧
(v |≡cr@c1 = v |≡c1r)

The raw HOL input is

(S_SEM v c (S_BOOL b) = CLOCK_TICK v c /\ B_SEM (ELEM v (LENGTH v - 1)) b)
/\
(S_SEM v c (S_CAT(r1,r2)) = ?v1 v2. (v = v1 <> v2) /\ S_SEM v1 c r1 /\ S_SEM v2 c r2)
/\
(S_SEM v c (S_FUSION(r1,r2)) =

?v1 v2 l. (v = v1 <> [l] <> v2) /\ S_SEM (v1<>[l]) c r1 /\ S_SEM ([l]<>v2) c r2)
/\
(S_SEM v c (S_OR(r1,r2)) = S_SEM v c r1 \/ S_SEM v c r2)
/\
(S_SEM v c (S_AND(r1,r2)) = S_SEM v c r1 /\ S_SEM v c r2)
/\
(S_SEM v c S_EMPTY = (v = []))
/\
(S_SEM v c (S_REPEAT r) =

S_SEM v c S_EMPTY
\/ ?v1 v2. ~(v=[]) /\ (v = v1 <> v2) /\ S_SEM v1 c r /\ S_SEM v2 c (S_REPEAT r))

/\
(S_SEM v c (S_CLOCK(r,c1)) = S_SEM v c1 r)

4.3. Foundation Language (FL)

FL combines standard LTL notation with a less standard abort operation and some constructs using SEREs.
The abstract syntax from B.1 of the LRM is:
The unclocked semantics from B.2.1.1.2 of the LRM is:

We refer to a formula of FL with no @ operator as an unclocked formula. Let v be a finite or infinite word,
b be a boolean expression, r, r1, r2 unclocked SEREs, and ϕ,ψ unclocked FL formulas. We use |= to define
the semantics of unclocked FL formulas: If v |= ϕ we say that v models (or satisfies) ϕ.

1. v |= (ϕ) ⇐⇒ v |= ϕ

2. v |=¬ϕ ⇐⇒ v |=/ ϕ

3. v |= ϕ ∧ ψ ⇐⇒ v |= ϕ and v |= ψ

4. v |= b! ⇐⇒ |v| > 0 and v0 b

5. v |= b ⇐⇒ |v| = 0 or v0 b

6. v |= r! ⇐⇒ ∃j < |v| s.t. v0..j |≡ r

7. v |= r ⇐⇒ ∀j < |v|, v0..j	ω |= r!

8. v |= X! ϕ ⇐⇒ |v| > 1 and v1.. |= ϕ

9. v |= [ϕUψ] ⇐⇒ ∃k < |v| s.t. vk.. |= ψ, and ∀j < k, vj.. |= ϕ

10. v |= ϕ abort b ⇐⇒ either v |= ϕ or ∃j < |v| s.t. vj b and v0..j−1	ω |= ϕ

11. v |= r → ϕ ⇐⇒ ∀j < |v| s.t. v0..j |≡ r, vj.. |= ϕ
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The pretty-printed HOL version of this is:

(v |= ¬f = ¬(v |= f ))
∧
(v |= f1 ∧ f2 = v |= f1 ∧ v |= f2)
∧
(v |= b! = (|v | > 0) ∧ v0 b)
∧
(v |= b = (|v | = 0) ∨ v0 b)
∧
(v |= r ! = ∃j ∈ [0.. |v | ). v0..j |≡ r)
∧
(v |= r = ∀j ∈ [0.. |v | ). v0..j	ω |= r !)
∧
(v |= X! f = |v | > 1 ∧ v1.. |= f )
∧
(v |= [f1 U f2] = ∃k ∈ [0.. |v | ). v k .. |= f2 ∧ ∀j ∈ [0..k). v j .. |= f1)
∧
(v |= f abort b = v |= f ∨ ∃j ∈ [0.. |v | ). v j b ∧ v0..j−1	ω |= f )
∧
(v |= r → f = ∀j ∈ [0.. |v | ). v0..j |≡ r ⇒ v j .. |= f )

The raw HOL is

(UF_SEM v (F_NOT f) = ~(UF_SEM (COMPLEMENT v) f))
/\
(UF_SEM v (F_AND(f1,f2)) = UF_SEM v f1 /\ UF_SEM v f2)
/\
(UF_SEM v (F_STRONG_BOOL b) = (LENGTH v > 0) /\ B_SEM (ELEM v 0) b)
/\
(UF_SEM v (F_WEAK_BOOL b) = (LENGTH v = XNUM 0) \/ B_SEM (ELEM v 0) b)
/\
(UF_SEM v (F_STRONG_SERE r) = ?j :: LESS(LENGTH v). US_SEM (SEL v (0,j)) r)
/\
(UF_SEM v (F_WEAK_SERE r) =
!j :: LESS(LENGTH v).
UF_SEM (CAT(SEL v (0,j),TOP_OMEGA)) (F_STRONG_SERE r))

/\
(UF_SEM v (F_NEXT f) = LENGTH v > 1 /\ UF_SEM (RESTN v 1) f)
/\
(UF_SEM v (F_UNTIL(f1,f2)) =
?k :: LESS(LENGTH v).
UF_SEM (RESTN v k) f2 /\ !j :: LESS k. UF_SEM (RESTN v j) f1)

/\
(UF_SEM v (F_ABORT (f,b)) =
UF_SEM v f
\/
?j :: LESS(LENGTH v).

B_SEM (ELEM v j) b /\ UF_SEM (CAT(SEL v (0,j-1),TOP_OMEGA)) f)
/\
(UF_SEM v (F_SUFFIX_IMP(r,f)) =
!j :: LESS(LENGTH v).
US_SEM (SEL (COMPLEMENT v) (0,j)) r ==> UF_SEM (RESTN v j) f)

The clocked semantics from B.2.1.2.2 of the LRM is:
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The semantics of (clocked) FL formulas is defined with respect to finite/infinite words over Σ and a boolean
expression c which serves as the clock context. Let v be a finite or infinite word, b, c, c1 boolean expressions,
r, r1, r2 SEREs, and ϕ,ψ FL formulas. We use |=c to define the semantics of FL formulas. If v |=c ϕ we say
that v models (or satisfies) ϕ in the context of clock c.

1. v |=c (ϕ) ⇐⇒ v |=c ϕ

2. v |=c ¬ϕ ⇐⇒ v |=/c ϕ

3. v |=c ϕ ∧ ψ ⇐⇒ v |=c ϕ and v |=c ψ

4. v |=c b! ⇐⇒ ∃j < |v| s.t. v0..j is a clock tick of c and vj b

5. v |=c b ⇐⇒ ∀j < |v| s.t. v0..j is a clock tick of c, vj b

6. v |=c r! ⇐⇒ ∃j < |v| s.t. v0..j |≡c r

7. v |=c r ⇐⇒ ∀j < |v|, v0..j	ω |=c r!

8. v |=c X! f ⇐⇒ ∃j < k < |v| s.t. v0..j and vj+1..k are clock ticks of c and vk.. |=c f

9. v |=c [ϕUψ] ⇐⇒ ∃k < |v| s.t. vk c, vk.. |=c ψ, and ∀j < k s.t. vj c, vj.. |=c ϕ

10. v |=c ϕ abort b ⇐⇒ either v |=c ϕ or ∃j < |v| s.t. vj b and v0..j−1	ω |=c ϕ

11. v |=c r → ϕ ⇐⇒ ∀j < |v| s.t. v0..j |≡c r, vj.. |=c ϕ

12. v |=c ϕ@c1 ⇐⇒ v |=c1 ϕ

The HOL semantics is specified by defining a semantic function F SEM such that F SEM w c f means FL
formula f is true of path w with current clock c.
The HOL term F SEM v c f is pretty printed as v |=c f .

(v |=c ¬f = ¬(v |=c f ))
∧
(v |=c f1 ∧ f2 = v |=c f1 ∧ v |=c f2)
∧
(v |=c b! = ∃j ∈ [0.. |v | ). ClockTick(v 0..j , c) ∧ v j b)
∧
(v |=c b = ∀j ∈ [0.. |v | ). ClockTick(v 0..j , c) ⇒ v j b)
∧
(v |=c r ! = ∃j ∈ [0.. |v | ). v0..j |≡cr)
∧
(v |=c r = ∀j ∈ [0.. |v | ). v0..j	ω |=c r !)
∧
(v |=c X! f = ∃jk ∈ [0.. |v | ). j < k ∧ ClockTick(v 0..j , c) ∧ ClockTick(v j+1..k , c) ∧ vk .. |=c f )
∧
(v |=c [f1 U f2] = ∃k ∈ [0.. |v | ). v k c ∧ vk .. |=c f2 ∧ ∀j ∈ [0..k). v j c ⇒ v j .. |=c f1)
∧
(v |=c f abort b = v |=c f ∨ ∃j ∈ [0.. |v | ). v j b ∧ v0..j−1	ω |=c f )
∧
(v |=c f @c1 = v |=c1 f )
∧
(v |=c r → f = ∀j ∈ [0.. |v | ).v0..j |≡cr ⇒ v j .. |=c f )

The raw HOL is:
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(F_SEM v c (F_NOT f) = ~(F_SEM (COMPLEMENT v) c f))
/\
(F_SEM v c (F_AND(f1,f2)) = F_SEM v c f1 /\ F_SEM v c f2)
/\
(F_SEM v c (F_STRONG_BOOL b) =

?j :: LESS(LENGTH v). CLOCK_TICK (SEL v (0,j)) c /\ B_SEM (ELEM v j) b)
/\
(F_SEM v c (F_WEAK_BOOL b) =

!j :: LESS(LENGTH v). CLOCK_TICK (SEL (COMPLEMENT v) (0,j)) c ==> B_SEM (ELEM v j) b)
/\
(F_SEM v c (F_STRONG_SERE r) = ?j :: LESS(LENGTH v). S_SEM (SEL v (0,j)) c r)
/\
(F_SEM v c (F_WEAK_SERE r) =

!j :: LESS(LENGTH v). F_SEM (CAT(SEL v (0,j),TOP_OMEGA)) c (F_STRONG_SERE r))
/\
(F_SEM v c (F_NEXT f) =

?j k :: LESS(LENGTH v).
j < k /\
CLOCK_TICK (SEL v (0,j)) c /\
CLOCK_TICK (SEL v (j+1,k)) c /\
F_SEM (RESTN v k) c f)

/\
(F_SEM v c (F_UNTIL(f1,f2)) =

?k :: LESS(LENGTH v).
B_SEM (ELEM v k) c /\
F_SEM (RESTN v k) c f2 /\
!j :: LESS k. B_SEM (ELEM (COMPLEMENT v) j) c ==> F_SEM (RESTN v j) c f1)

/\
(F_SEM v c (F_ABORT (f,b)) =

F_SEM v c f
\/
?j :: LESS(LENGTH v). B_SEM (ELEM v j) b /\ F_SEM (CAT(SEL v (0,j-1),TOP_OMEGA)) c f)

/\
(F_SEM v c (F_CLOCK(f,c1)) = F_SEM v c1 f)
/\
(F_SEM v c (F_SUFFIX_IMP(r,f)) =

!j :: LESS(LENGTH v). S_SEM (SEL (COMPLEMENT v) (0,j)) c r ==> F_SEM (RESTN v j) c f)

5. Definitions and proofs

The HOL versions of the semantics given in the preceding sections were not the actual definitions of the
semantic functions US SEM, S SEM, UF SEM and F SEM, but were theorems derived from reformulations of
the LRM definitions to make them fall within the scope of the HOL definitional tools provided by the
TFL package [Sli96]. Definitions in HOL simply declare of a name for an existing closed term. Recursive
‘definitions’ are made by compiling equations into primitive definitions (using recursion theorems), making
the definition using HOL’s definition mechanism, and then deriving the equation one wants. For simple
recursive equations this is handled completely automatically by TFL. For recursions that are not simple
there are two options: (i) supply a proof script when making the definition (which typically involves giving
some well-founded relation that ensures the recursion terminates on all arguments), or (ii) first defining a
simple recursion and then deducing the desired ‘definitional’ equation as a theorem. We used approach (ii)
for the PSL 1.1 semantics (approach (i) was used with the 1.01 semantics).
As an example, consider the definition of the unclocked semantics of the repetition SERE r[*] (the same
issue arises with the clocked semantics). The definition of v |≡ r is mostly by a structural recursion on the
syntax of SEREs r. However, the clause defining v |≡ r[∗] does not recurse on r, but instead on v:

v |≡ r [∗] = v |≡ [∗0] ∨ ∃v1v2. ¬(v = ε) ∧ (v = v1v2) ∧ v1 |≡ r ∧ v2 |≡ r [∗]
Observe that v2 |≡ r[∗] occurs in the right hand side of the equation. TFL cannot automatically prove that
this LRM semantics is well-founded.
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The actual definition used in HOL for the r[*] case does recurse on r and is:

v |≡ r [∗] = ∃vlist . (v = Concat vlist) ∧ All(λv ′.v ′ |≡ r)vlist

where Concat vlist concatenates (flattens) a list of lists and All P vlist applies a predicate P to each member
of vlist and conjoins the results (i.e. combines the results with ∧). The LRM equation is then deduced from
the definition with Concat and All

In both the FAC and CHARME papers we described theorems about the semantics that had been mechan-
ically proved using the HOL system. These were either ‘sanity checking’ properties that helped validate the
semantics (FAC paper), or reformulations of the semantics needed to support tools that worked by deduction
(CHARME paper).
So far we have only proved a few properties of the 1.1 semantics. These are of the ‘sanity checking’ kind
and are taken from the first page of an unpublished paper entitled Some characteristics of Accellera PSL by
Cindy Eisner, Dana Fisman and John Havlicek. The lemmas proved in HOL so far are all about SEREs:

� ClockTick(v , T) = ∃kl . ¬(l = ⊥) ∧ (v = 	k [l ])

� ∀rvc. |v | > 0 ∧ ClockFree(r) ∧ v |≡cr ⇒ v |v |−1 c

� ∀r . ClockFree(r) ⇒ ∀v . v |≡ r [+] = ∃vlist . (v = Concat vlist) ∧ |vlist | > 0 ∧ All(λv .v |≡ r)vlist

� ∀rcv . v |≡cr [+] = ∃vlist . (v = Concat vlist) ∧ |vlist | > 0 ∧ All(λv .v |≡cr)vlist

� ∀r . ClockFree(r) ⇒ ∀v .v |≡ r ⇒ BottomFree(v)

� ∀rcv . v |≡cr ⇒ BottomFree(v)

� ∀rv . ClockFree(r) ∧ v |≡ r ⇒ ∀k ∈ [0.. |v | ). v 0..k	(|v |−k−1) |≡ r

In these lemmas, ClockFree(r) is defined to mean that r has no sub-term containing @ (i.e. is in the unclocked
subset), BottomFree(v) is defined to mean that no letter of v is ⊥ and r [+] is syntactic sugar for r ; r [∗] (which
in raw HOL is S CAT(r,S REPEAT r)). All these lemmas were routine to prove (though the r[*] case of the
last lemma was surprisingly tedious).
The representation of these lemmas in raw HOL is:

|- CLOCK_TICK v B_TRUE = ?k l. ~(l = BOTTOM) /\ (v = TOP_ITER k <> [l])

|- !r v c.
LENGTH v > 0 /\ S_CLOCK_FREE r /\ S_SEM v c r ==>
B_SEM (ELEM v (LENGTH v - 1)) c

|- !r.
S_CLOCK_FREE r ==>
!v.
US_SEM v (S_NON_ZERO_REPEAT r) =
?vlist.

(v = CONCAT vlist) /\ LENGTH vlist > 0 /\
ALL_EL (\v. US_SEM v r) vlist

|- !r c v.
S_SEM v c (S_NON_ZERO_REPEAT r) =
?vlist.
(v = CONCAT vlist) /\ LENGTH vlist > 0 /\
ALL_EL (\v. S_SEM v c r) vlist
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|- !r. S_CLOCK_FREE r ==> !v. US_SEM v r ==> BOTTOM_FREE v

|- !r c v. S_SEM v c r ==> BOTTOM_FREE v

|- !r v.
S_CLOCK_FREE r /\ US_SEM v r ==>
!k::LESS (LENGTH v).
US_SEM (SEL v (0,k) <> TOP_ITER (LENGTH v - k - 1)) r

We hope to prove more properties about SEREs and also some properties about formulas. In particular,
validating rewrites that translate clocked to unclocked SEREs and formulas is necessary to support our tools
based on the semantics.
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