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Abstract Testing of reactive systems is challenging because
long input sequences are often needed to drive them into a
state to test a desired feature. This is particularly problematic
in on-target testing, where a system is tested in its real-life
application environment and the amount of time required for
resetting is high. This article presents an approach to dis-
covering a test case chain—a single software execution that
covers a group of test goals and minimizes overall test exe-
cution time. Our technique targets the scenario in which test
goals for the requirements are given as safety properties. We
give conditions for the existence and minimality of a single
test case chain and minimize the number of test case chains
if a single test case chain is infeasible. We report experimen-
tal results with our ChainCover tool for C code generated
from Simulink models and compare it to state-of-the-art test
suite generators.

Keywords Test case generation · Reactive systems · Test
optimization · Bounded model checking

1 Introduction

Safety-critical embedded software—for example in the auto-
motive or avionics domains—is often implemented as a reac-
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tive system that periodically computes its new state and out-
puts as functions of the old state and some given inputs. These
systems typically have to satisfy high safety standards, so tool
support for systematic testing is highly desirable. The com-
pleteness of the testing process is often measured by defining
a set of test goals, which are typically formulated as reach-
ability properties. A good-quality test suite is a set of input
sequences that drive the system into states that cover a large
fraction of those goals.

Test suites generated by random test generators often con-
tain a huge number of redundant test cases. Directed test-case
generation often requires long input sequences to drive the
system into a state where the desired feature can be tested.
Furthermore, to execute the test suite, test cases must be man-
ually chained into a sequence—or else the system must be
reset after executing each test case. This is a serious problem
in on-target testing, where a system is tested in its real-life
application environment and resetting might be very time
consuming [1].

This article presents an approach to discovering a test case
chain—a single test case that covers a set of multiple test
goals and minimizes overall test execution time. The essence
of the problem is to find a shortest path through the system
that covers all the test goals.

Example To illustrate the problem and our approach, we
reuse the classical cruise controller example in [2]. There are
five Boolean inputs: two for actuation of the gas and brake
pedals, a toggle button to enable the cruise control, and two
sensors indicating whether the car is acc- or decelerating.
There are three state variables: speed, enable (true when
cruise control is enabled), and mode. The mode state records
whether the cruise control is turned OFF, actually active
(ON), or only temporarily inactive (DISengaged) while the
user pushes the gas or brake pedal.
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Fig. 1 Code generated for
cruise controller example

Fig. 2 State machine of the
example. Edges are labelled by
inputs and nodes by state
〈mode, speed, enable〉.
Properties are indicated by the
annotations [p1], [p2], [p3],
[p4] and boldface input
conditions. The bold edges show
a minimal test case chain
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A C implementation, with the sort of structure typical of
code generated from Simulink models, is given in Fig. 1.
Its state machine is depicted in Fig. 2. The idea is that the
function compute will be executed periodically, for example
on a timer interrupt. Thus, in this reactive program, there is
a clear notion of a transition that relates to execution time.

We formulate some LTL properties for which we generate
test cases:

p1 : G
(
mode=ON ∧ speed=1 ∧ dec⇒X(speed = 1)

)

p2 : G
(
mode=DIS ∧ speed=2∧dec⇒X(mode=O N )

)

p3 : G
(
mode = ON ∧ brake⇒ X(mode = DIS)

)

p4 : G
(
mode = OFF ∧ speed = 2 ∧ ¬enable ∧ button

⇒ X enable
)

In each of these properties, the operand of the G operator
describes a specific transition in the state machine. These
transitions are indicated in Fig. 2 by property-number anno-
tations written next to the boldface labels on the four corre-
sponding edges.

A test case is a sequence of inputs that determines a
bounded execution path through the system. The length of a
test case is the length of this sequence. A test case covers a
property if it triggers the transition the property relates to. A
test suite is a set of test cases that covers all the properties.

Ideally, we can obtain a single test case that covers all the
required properties in a single execution of the program. We
call a test case that covers a sequence of properties a test case
chain. Our goal is to synthesize minimal test case chains—
that is, to find test case chains with the fewest transitions. It
is, however, not always possible to generate a single test case
chain that covers all properties; multiple test case chains may
be required. We will propose techniques for both situations.

We compute such a minimal test case chain from a set of
start states Init via a set of given properties P = {p1, p2, . . .}
to a set of final states Final. For our example, with Init =
Final = {mode = OFF ∧ speed = 0 ∧ ¬enable} and
P = {p1, p2, p3, p4}, we can obtain a test case chain that
traverses the bold transition edges shown in Fig. 2. Beginning
with Init, the state shown at the top of the diagram, this test
chain first advances to cover p4. It then covers p1, p2, and p3
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in sequence. Finally, it terminates in Final. One can assert that
this path has the minimal length of nine transitions. Another
minimal test case chain covers p2 before p1.

Testing problems similar to ours have been addressed by
research on minimal checking sequences in conformance test-
ing [1,3–6]. This work analyses automata-based specifica-
tions that encode system control and have transitions labelled
with operations on data variables. The challenge here is to
find short transition paths based on a given coverage crite-
rion that are feasible, i.e. consistent with the data operations.
Random test case generation can then be used to discover
such a path. In contrast, our approach analyses the code gen-
erated from models or the implementation code itself, and it
can handle partial specifications expressed as a collection of
safety properties. A common example is acceptance testing
in the automotive domain. Our solution uses bounded model
checking to generate test cases guaranteed to exercise the
desired functionality.
Contributions The contributions of this article can be sum-
marized as follows:

– We present a new algorithm to compute minimal test
chains that first constructs a weighted digraph abstraction
using a reachability analysis, on which the minimization
is performed as a second step. The final step is to com-
pute the test input sequence. We give conditions for the
existence and minimality of a single test case chain and
propose algorithms to handle the general case.

– We have implemented a tool called ChainCover1 for
C code generated from Simulink models, on top of the
Cbmc bounded model checker and the Lkh travelling
salesman Problem solver (or alternatively, the Clingo
Answer Set Programming solver).

– We present experimental results to demonstrate that our
approach is viable on a set of benchmarks, mainly drawn
from the automotive industry, and is more efficient than
state-of-the-art test suite generators.

This article is an extended version of the ICTSS 2013 con-
ference paper [7]. In addition to the core ideas published in
[7], this extended article proposes an alternative to abstrac-
tion refinement using path constraints and an ASP solver
(Sect. 4.2) and gives details of the generation of multiple
chains (Sect. 4.3). We also report additional experimen-
tal results using the ASP solver and benchmarks requiring
multiple chains (Sect. 6). Finally, we have provided several
detailed proofs and the pseudo-code of the algorithms, which
were omitted in the conference paper.

1 http://www.cprover.org/chaincover/.

2 Preliminaries

Program model. A program is given by (Σ,Υ, T, Init) with
finite sets of states Σ and inputs Υ , a transition relation
T ⊆ ((Σ × Υ )→ Σ), and a set of initial states Init ⊆ Σ .
Without loss of generality, we can assume that Init is the
singleton set {S0}; a system that chooses its initial state non-
deterministically can be modelled with the help of additional
inputs and an initialization transition.

We characterize (sets of) states and inputs symbolically by
predicates. The transition relation is represented as a pred-
icate T (s, i, s′) over vectors of state variables s, s′ and a
vector of input variables i . A valuation S (respectively S′)
of s (s′) is called the prestate (poststate) of the transition.
Valuations of i are denoted I . Similarly, the initial states are
represented as a predicate Init(s).

An execution of a program is a (possibly) infinite sequence

of transitions S0
I0−→ S1

I1−→ S2 → · · · with Init(S0) and for
all k ≥ 0, T (Sk, Ik, Sk+1). Note that the execution semantics
is deterministic in the sense that a sequence of inputs deter-
mines exactly one execution, which is an important require-
ment to ensure the repeatability of tests.
Properties. We consider partial specifications given as a set
of safety properties P = {p1, . . . , p|P|} that are written in a
fragment of linear temporal logic (LTL) of the form G(Φ),
where Φ characterizes a set of finite paths. Such properties
can be formulated, for instance, as assertions in the code.

The motivation for this form of specification is that the
properties are usable through test case generation for bug
hunting and also by formal verification tools. In test case
generation, they can be used to guide the construction of test
vectors and as an oracle to determine whether a test passes
or fails. As mentioned, the target application for our work
is acceptance and regression testing. So, we want to find
test cases that check whether the requirement expressed by
a property has been implemented at all—in essence finding
constructive proof that the property is not vacuously satis-
fied simply because a feature has been left out or has been
removed. We therefore consider a property G(Φ) to be ‘cov-
ered’ if we can satisfyΦ non-vacuously at some point in the
execution of the test.

The formula Φ of a property is a logical implication of
the general form:

ϕ(sk, ik, . . . , sk+Jϕ−1, ik+Jϕ−1)⇒ ψ(sk+Jϕ ).

The antecedent ϕ describes the test goal in the form of an
assumption about the values of the state variables and input
variables. The consequent ψ is a formula over the state vari-
ables. It defines the test outcome to be checked. Formally,
sk, . . . , sk+Jϕ are all vectors of state variables of equal, but
indeterminate length. Likewise, ik, . . . , ik+Jϕ−1 are all vec-
tors of input variables. The indices k, . . . k + Jϕ name the
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Fig. 3 Structure of properties ϕ̂
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successive steps in an execution. Note thatΦ characterizes a
set of finite sub-executions of length Jϕ .

Only the antecedent ϕ stating the test goal of a property
such as Φ above is needed for test vector generation. Given
a collection of properties, we write Π for the set of all such
antecedents.

For example, for property p1 in our running example, we
have

ϕ = (
(mode = ON) ∧ (speed = 1) ∧ dec

)

and ψ = (speed = 1) where mode and speed are state
variables and dec is an input variable.

An execution (S0
I0−→ S1

I1−→ S2 → · · · ) covers a property

iff it contains a sub-execution (Sk
Ik−→ · · · Sk+Jϕ−1

Ik+Jϕ−1−−−−→
Sk+Jϕ ) that satisfies ϕ, i.e.,

∃k ≥ 0 : ∃Sk+Jϕ : ϕ(Sk, Ik, . . . , Sk+Jϕ−1, Ik+Jϕ−1)

∧
∧

k+1≤m≤k+Jϕ

T (Sm−1, Im−1, Sm).

We call the formula describing the union of all first states Sk in
any sub-execution satisfying ϕ the trigger ϕ̂ of the property.
Figure 3 illustrates this diagrammatically; a property extends
over a finite segment of a set of executions, and the trigger
for the property is the set of start states of this segment. For
example, property p1 in our running example has the trigger(
(mode = ON) ∧ (speed = 1)

)
.

We assume that property antecedents are non-overlapping,
i.e. the sub-executions satisfying the antecedents do not share
any edges. Our minimality results only apply to such speci-
fications. Detecting overlappings is a hard problem [8] that
goes beyond the scope of this article.
Test cases. A test case (of length n) is an input sequence

〈I0, . . . , In−1〉 and generates an execution (S0
I0−→ · · · In−1−−→

Sn) with n transitions—i.e. an execution of length n. (An
execution of length 0 is just an initial state.) A test case covers
a property p exactly when its execution covers the property.

3 Chaining test cases

The problem. We are given a program (Σ,Υ, T, Init), prop-
erties P , and a set of final states Final ⊆ Σ . A test case chain
χ is a test case 〈I0, . . . , In−1〉 that covers all properties in P ,

i.e., its execution (S0
I0−→ · · · In−1−−→ Sn) starts in Init(S0), ends

in Final(Sn), and covers all properties in P . A minimal test
case chain is a test case chain of minimal length. The final
states Final are used to ensure the test execution ends in a
desired state, e.g. ‘engines off’ or ‘gear locked in park mode’.
Our approach. We now describe our basic algorithm, which
has three steps:

1. Abstraction. We construct a property K-reachability
graph of the system. This is a weighted, directed graph
with nodes representing the properties and edges labelled
with the number of states through which execution must
pass, up to length K , between the properties.

2. Optimization. We determine the shortest path that covers
all properties in the abstraction.

3. Concretization. Finally, we compute the corresponding
concrete test case chain along the abstract path.

This algorithm is given as Algorithm 1.

Algorithm 1: Compute test case chain
Input: program (Σ, Υ, T, Init), properties P , formulas Init,

Final, reachability bound K
Output: test case chain χ = 〈I0, . . . , IN 〉

1 G = BuildPropKReachGraph(Π, Init,Final, T, K )
2 π = GetShortestPath(G, Init,Final)
3 χ = GetChain(G, π, T )
4 return χ

In Sect. 3.4 we discuss the conditions under which we
obtain the minimal test case chain.

3.1 Abstraction: property K-reachability graph

The property K -reachability graph is an abstraction of the
program by a weighted, directed graph (V, E,W ), with

– vertices V = Π ∪ {Init,Final}, all defining property
antecedents, including formulas describing the sets Init
and Final,

– edges E ⊆ Etarget ⊂ V × V , as explained below, and
– an edge labelling W : E → N assigning to each
(ϕ, ϕ′) ∈ E the minimal number of transitions bounded
by K needed to reach some state satisfying the property
trigger ϕ̂′ by extending any subexecution satisfying ϕ
according to the program’s transition relation T .
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Fig. 4 Test case chaining: property K -reachability graph (for K =
2) and minimal test case chain of length n = 9 (bold edges) for our
example (Fig. 2)

Figure 4 shows the property 2-reachability graph for our
example.
Graph construction. The graph is constructed by the
function BuildPropKReachGraph(Π, Init,Final, T, K ) (see
Algorithm 2). The main work is done by the function
GetKreachEdges((V, E,W ), T, Etarget , k) (see Algorithm
10 in Sect. 5 for details), which computes the subset of edges
Ek that have weight k in the set of interesting edges Etarget

which initially contains all pairwise links between the nodes
ϕ j , links from Init to all nodes ϕ j , and from every ϕ j to
Final. The constructed graph contains an edge (ϕ, ϕ′) with
weight k iff, for the two properties with antecedents ϕ and
ϕ′, k ≤ K is the minimal number of transitions needed to
extend a sub-execution satisfying ϕ to reach a state in ϕ̂′. We
stop the construction of the graph if a path has been found
(line 5). ExistsPath is explained below. If we fail to find a
path before reaching a given reachability bound K , or there
is no path although the graph contains all edges in Etarget ,
then we abort (line 6).

Algorithm 2: BuildPropKReachGraph
Input: property antecedents Π , formulas Init, Final, transition

function T , reachability bound K
Output: weighted, directed graph (V, E,W )

1 V ← Π ∪ {Init,Final}
2 E ← ∅, W ← ∅
3 Etarget ←

(⋃
ϕ j∈Π {(Init, ϕ j ), (ϕ j ,Final)}

)
∪ {(ϕ j , ϕk) |

ϕ j , ϕk ∈ Π, j �= k}
4 k ← 0
5 while ¬ExistsPath((V, E,W ), Init,Final) do
6 if k > K ∨ Etarget = ∅ then abort ‘no chain found for given

bound K ’
7 let Ek = GetKreachEdges((V, E,W ), T, Etarget, k)
8 E ← E ∪ Ek , Etarget ← Etarget \ Ek
9 for all e ∈ Ek do W ← W ∪ {e �→ k}

10 k ← k + 1

11 return (V, E,W )

Existence of a covering path. Algorithm 2 requires to check
for the existence of a covering path (function ExistsPath) in
each iteration. We formulate the existence of a covering path
as a reachability problem in a directed graph:

Lemma 1 Let (V, E,W ) be a property K -reachability
graph. Then, there is a covering path from Init to Final iff

(1) all vertices are reachable from Init,
(2) Final is reachable from all vertices, and
(3) for all pairs of vertices (v1, v2) ∈ (V \{Init,Final})2,

(a) v2 is reachable from v1 or (b) v1 is reachable from
v2.

Proof In the transitive closure (V, E ′,W ′) of (V, E,W ), v2

is reachable from v1 iff there exists an edge (v1, v2) ∈ E ′.
(�⇒): conditions (1) and (2) are obviously necessary. Let

us assume that we have a covering path π and there are ver-
tices (v1, v2)which neither satisfy (3a) nor (3b). Then neither
〈v1, . . . , v2〉 nor 〈v2, . . . , v1〉 can be a subpath of π , which
contradicts the fact that π is a covering path.
(⇐�): Any vertex is reachable from Init (1), so let us

choose v1. From v1 we can reach another vertex v2 (3a), or,
at least, v1 is reachable from another vertex v2 (3b), but in
the latter case, since v2 is reachable from Init, we can go
first to v2 and then to v1. Induction step: let us assume we
have a path 〈Init, v1, . . . , vk〉. If there is a vertex v′ that is
reachable from vk (3a), we add it to our current path π . If v′
is unreachable from vk , then by (3b), vk must be reachable
from v′, and there is a vi , i < k in π = 〈Init, . . . , vk〉 from
which it is reachable and in this case we obtain the path
〈Init, . . . , vi , v

′, vi+1, . . . , vk〉; if there is no such vi then, at
last by (1), v′ is reachable from Init, so we can construct the
path 〈Init, v′, . . . , vk〉. Final is reachable from any vertex (2);
thus, we can complete the covering path as soon as all other
vertices have been covered. ��
Reachability of a vertex from another vertex can be checked
in constant time on the transitive closure of the graph. Hence,
the overall existence check has complexity O(|V |3). The
algorithm is listed in Algorithm 3.

Algorithm 3: ExistsPath
Input: transitive closure of directed graph (V, E)
Output: existence of a covering path π

1 v← chooseFrom(V ); V ← V \ {v}; π ← 〈v〉
2 while V �= ∅ do
3 v← chooseFrom(V ); V ← V \ {v}; v′ ← lastElement(π)
4 if (v′, v) ∈ E then π ← append(π, v)
5 else if (v, v′) ∈ E then
6 while (v′, v) /∈ E do v′ ← previousElement(π, v′)
7 π ← insertAfter(π, v, v′)
8 else return false //no path found

9 return true

3.2 Optimization: shortest path computation

The next step is to compute the shortest path (function Get-
ShortestPath in Algorithm 1) covering all nodes in the prop-
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erty K-reachability graph. Such a path is not necessarily
Hamiltonian; revisiting nodes is allowed. However, we can
compute the transitive closure of the graph using the Floyd–
Warshall algorithm [9] (which preserves minimality), and
then compute a Hamiltonian path from Init to Final. If we do
not have a Hamiltonian path solver, we can add an edge from
Final to Init and pass the problem to an asymmetric travelling
salesman problem (ATSP) solver (referred to as SolveATSP
in the sequel) that gives us the shortest circuit that visits all
vertices exactly once. We cut this circuit between Final and
Init to obtain the shortest path π .

Lemma 2 (Minimum covering path) Let (V, E ′,W ′) be
the transitive closure of a property K -reachability graph
(V, E,W ), and suppose Init,Final ∈ V . Then, SolveATSP
(V, E ′ ∪ {(Final, Init)},W ′ ∪ {(Final, Init) �→ 1}) returns
a Hamiltonian circuit 〈v0, . . . , v|V |−1〉 such that π =
〈vi , . . . , v|V |−1, v0, . . . , vi−1〉 with vi = Init and vi−1 =
Final is a minimum covering path from Init to Final in
(V, E ′,W ′).

Proof Suppose (V, E,W )has a circuit 〈. . . , v, v′, v, v′′, . . .〉
that covers all vertices but is non-Hamiltonian—because
the vertex v, say, is visited twice. Then in the transitive
closure (V, E ′,W ′) we can bypass v because v′′ is now
directly reachable from v′. Hence, we obtain a Hamil-
tonian circuit 〈. . . , v, v′, v′′, . . .〉. We extend the graph to
(V, E ′ ∪ {(Final, Init)},W ′ ∪ {(Final, Init) �→ 1}), i.e. we
add the edge (Final, Init) with weight 1.

Any Hamiltonian circuit 〈v0, . . . , v|V |−1〉 returned by
SolveATSP for the extended graph must contain the edge
(v(i−1) mod |V |, vi ) = (Final, Init), because (Final, Init) is
the only (and hence the cheapest) edge for reaching Init from
Final. Hence, 〈vi , . . . , v|V |−1, v0, . . . , vi−1〉, i.e. the Hamil-
tonian circuit cut between Final and Init, is a Hamiltonian
path of minimum length, because the transitive closure pre-
serves optimality (W (v1, v2)+W (v2, v3) = W (v1, v3)). ��

For our example, the shortest path has length 9, given as bold
edges in Fig. 4.

3.3 Concretization: computing the test case chain

Once we have found a minimum covering path π in the prop-
erty K -reachability graph abstraction, we have to compute
the inputs corresponding to it in the program. This is done
by the function CheckPath(π, T,W )which takes an abstract
path π = 〈ϕ1, . . . , ϕ|V |〉 and returns the input sequence
〈I0, . . . , In〉 corresponding to a concrete execution with the
reachability distances between each (ϕ j , ϕ j+1) ∈ π given
by the edge weights W (ϕ j , ϕ j+1). Typically, CheckPath
involves constraint solving; we will discuss our implementa-
tion in Sect. 5. Hence, GetChain in Algorithm 1 corresponds

to a call to CheckPath(π, T,W ) and returning the obtained
input sequence.

For our example, we obtain, for instance, the sequence
〈gas, acc, button, dec, dec, gas, dec, brake, button〉 corre-
sponding to the bold edges in Fig. 2.

3.4 Optimality

Since the (non-)existence or the optimality of a covering
path in the K -reachability graph does not imply the (non-)
existence or the optimality of a chain in the program, the suc-
cess of this procedure can only be guaranteed under certain
conditions, which we now discuss.

Lemma 3 (Single-state property triggers) The test case
chain computed by Algorithm 1 is minimal provided that

(1) the program and the properties admit a test case chain,
(2) all triggers ϕ̂ of properties in P are singleton sets, and
(3) the test case chainχ computed by Algorithm 1 visits each

property once.

Proof If [assumption (3)] each property is visited once, it
is guaranteed that the covering path in the K -reachability
graph contains only edges that correspond to concrete paths
of minimal length in the program. Otherwise, for a sub-
path (ϕ, ϕ′, ϕ, ϕ′′), there might exist an edge (ϕ′, ϕ′′) with
W (ϕ′, ϕ′′) < W (ϕ′, ϕ) + W (ϕ, ϕ′′) that is only discovered
for higher values of K . Due to assumption (2), the concretiza-
tion is guaranteed to succeed. Hence, the test case chain χ
is optimal for the program and the given properties, unless
[assumption (1)] they do not admit a test case chain at all. ��

For finite state systems, there is an upper bound for K , the
reachability diameter [10] beyond which we will not discover
shorter pairwise links.

Definition 1 (Reachability diameter) The reachability diam-
eter N of a program (Σ,Υ, T, Init) is the maximum (finite)
length of an execution in the set of shortest executions
between any pair of states Si , S j ∈ Σ .

Theorem 1 (Minimal test case chain) Let N be the reacha-
bility diameter of the program; then there is a K ≤ N such
that, under the preconditions (1) and (2) of Lemma 3, the
test case chain χ computed by Algorithm 1 is minimal.

Proof For K = N , it is guaranteed that the minimal cov-
ering path in the K -reachability graph contains only edges
of minimal length, and hence the chain is optimal w.r.t. the
program (even if properties are revisited).

Computing N exactly is as difficult as the model check-
ing problem itself. There are methods for estimating bounds
[10,11], but these are often overly conservative. Heuristic
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approaches to algorithmically choosing an appropriate K
might be worthwhile investigating, but go beyond the scope
of this article. In practice, therefore, we propose to manually
stop the procedure if a chain of acceptable length is found—
i.e. in our implementation we do not estimate the reachability
diameter, but use a user-supplied bound.

Since K is not a bound on the length of the chain but a
bound on the distance between two properties, one can hope
that in most cases, we can find a minimal chain using a K
that is smaller than the length of the minimal chain itself.
This is confirmed by our experiments.

4 Generalizations

We will now generalize our algorithm in three ways:

1. Multi-state property triggers. Dropping the assumption
that triggers are single state may make the concretization
phase fail. Under certain restrictions, we will still find a
test case chain if one exists, but we lose minimality.

2. Without these restrictions, we might even lose complete-
ness, i.e., the guarantee to find a chain if one exists.
We propose two methods to ensure completeness under
these circumstances: (1) an abstraction refinement that
can be used with any ATSP solver, and (2) a method
based on restricting the optimization problem using path
constraints that requires a more general solver, e.g. an
Answer Set Programming (ASP) solver.

3. Multiple chains. Dropping the assumption about the exis-
tence of a single chain raises the problem of how to gen-
erate multiple chains.

4.1 Multi-state property triggers

In practice, many properties are multi-state, i.e. precondi-
tions (2) of Lemma 3 is not met. In this case, the abstract
covering path might be infeasible in the concrete program,
and hence the naive concretization of Sect. 3.3 might fail.
We have to extend the concretization step to fix such broken
chains.

Example 1 (Broken chain) Let us consider the following bro-
ken chain in our example with the properties:

p1 : G
(
mode = OFF ∧ ¬enable ∧ button ⇒ X enable

)

p2 : G
(
mode = ON ∧ brake⇒ X(mode = DIS)

)

with Init = Final = {mode = O F F ∧ speed = 0 ∧
¬enable}.

We obtain a shortest covering path 〈Init, ϕ1, ϕ2,Final〉 in
the abstraction with weights W (Init, ϕ1) = 0, W (ϕ1, ϕ2) =
1, and W (ϕ2,Final) = 2. However, Fig. 2 tells us that the

Init ϕ1 ϕ2 Final0 1
1

2
2

2

2

Fig. 5 Broken chain: the path 〈Init, ϕ1, ϕ2〉 is not feasible in a single
transition, but requires two transitions

path 〈Init, ϕ1, ϕ2〉 is not feasible in a single transition, but
requires two transitions, as illustrated in Fig. 5.

A broken chain contains an infeasible subpath failed_path
= 〈ϕ1, . . . , ϕk〉 of the abstract path π that involves at least
three vertices, such as 〈Init, ϕ1, ϕ2〉 in our example above.
We extend the concretization step (GetChain) with a chain
repair capability (see Algorithm 4). The function RepairPath
as shown in Algorithm 11 iteratively repairs broken chains
by incrementing the weights associated with the edges of
failed_path and checking the feasibility of this ‘stretched’
path. We give more details about our implementation in
Sect. 5.

Algorithm 4: GetChain with chain repair
Input: weighted, directed graph (V, E,W ), path π , transition

relation T , reachability bound K
Output: test case chain χ = 〈I0, . . . , IN 〉

1 (feasible, χ, failed_path)← CheckPath(π, T,W )

2 if feasible then return χ
3 else
4 (succeeded,W, _)← RepairPath(failed_path, T,W )

5 if ¬succeeded then abort ‘no chain found for given bound
K ’

6 (_, χ, _)← CheckPath(π, T,W )

7 return χ

Example 2 (Repaired chain) For the broken chain in our pre-
vious example, we will check whether 〈Init, ϕ1, ϕ2〉 is feasi-
ble with W (ϕ1, ϕ2) incremented by one. This makes the path
feasible and we obtain the chain χ = 〈button, gas, brake,
button〉.
Completeness. The chain repair succeeds if the given path
π admits a chain in the concrete program. In particular, this
holds when the states in each property trigger are strongly
connected:

Theorem 2 (Multi-state strongly connected property) If for
each property trigger ϕ̂ the states are strongly connected
and there exists a test case chain, then Algorithm 1 (with
Algorithm 4) will find it.

In practice, many reactive systems are, apart from an ini-
tialization phase, strongly connected—but, as stressed above,
the test case chain might not be minimal.
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Fig. 6 Abstraction refinement
for a failed path 〈ϕ1, ϕ, ϕ4〉
(bold arrows)

ϕ1 ϕ2

×
ϕ3 ϕ ϕ4

=⇒

ϕ1 ϕ2

ϕ3 ϕ4

ϕ

Fig. 7 Collapsing the property
refinement group (box) in the
refined abstraction to a TSP
problem w.r.t. a solution path
(bold arrows)

ϕ1 ϕ2

ϕ3 ϕ4

W1

W3

W2

W4

W2
ϕ =⇒

ϕ1 ϕ2

ϕ
ϕ3 ϕ4

W1 + W2

W3
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W4

Algorithm 5: GetChain with abstraction refinement
Input: weighted, directed graph (V, E,W ), path π , transition

relation T , reachability bound K
Output: test case chain χ = 〈I0, . . . , IN 〉

1 G ← {{v} | v ∈ V } //property refinement groups
2 while true do
3 (feasible, χ, failed_path)← CheckPath(π, T,W )

4 if feasible then return χ
5 (succeeded,W ′, failed_path)←

RepairPath(failed_path, T,W )

6 if succeeded then
7 (_, χ, _)← CheckPath(π, T,W ′)
8 return χ

9 (V, E,W,G)← refine(V, E,W, failed_path,G)
10 π ← GetCovering Path(V, E,G)
11 if π = 〈〉 then abort ‘no chain found for given bound K ’
12 (V, E,W )← collapse(V, E,W, π,G)
13 π ← Get Shortest Path(V, E,W )

4.2 Ensuring completeness

If the shortest pathπ in the abstraction does not admit a chain
in the concrete program, Algorithm 1 using GetChain with
chain repair (Algorithm 4) will fail to find a test case chain
even though one exists, i.e., it is not complete.
Example 3 (Chain repair fails) In Fig. 5, we have found the
shortest abstract path 〈Init, ϕ1, ϕ2,Final〉. Now assume that
the right state in ϕ1 is not reachable from the left state. Then
the chain repair fails. In this case, there might still be a (non-
)minimal path in the abstraction that admits a chain: in our
example in Fig. 5, assuming that the left state in ϕ1 is reach-
able from Init via ϕ2 and Final is reachable from the left state
in ϕ1, we have the feasible path 〈Init, ϕ2, ϕ1,Final〉.
Abstraction refinement. To obtain completeness in this sit-
uation, we propose the following abstraction refinement
method sketched in Algorithm 5. Suppose the chain repair
of a covering path π failed with failed_path = 〈ϕ1, ϕ, ϕ4〉
(succeeded = false in line 5).

1. We refine the graph by splitting vertex ϕ in failed_path
as illustrated in Fig. 6 that rules out the infeasible sub-

path, as typically done by abstract refinement algorithms
(represented by function refine in line 9). We call the ver-
tices obtained from such splittings that belong to the same
property a property refinement group (subsets of G).

2. Then we adapt the Algorithm 3 that we use for check-
ing the existence of a covering path to finding a (non-
minimal) covering path from Init to Final, taking into
account that a covering path needs to cover only one ver-
tex for each property refinement group (GetCoveringPath
called in line 10 of Algorithm 5).

3. A solutionπ obtained that way might be far from optimal,
so we exploit the TSP solver to give us a better solutionπ ′.
However, the refined graph does not encode the desired
TSP problem because it is sufficient to cover only one
vertex for each property refinement group. Hence, given
a pathπ , we transform the graph by collapsing each prop-
erty refinement group with respect to π as illustrated by
Fig. 7 (represented by function collapse in line 12 of
Algorithm 5). The obtained graph is handed over to the
TSP solver (line 13). Note that the transformations do
not preserve optimality, because, e.g. in Fig. 7, the edge
(ϕ1, ϕ2) would cover ϕ in a concrete path, but not in the
transformed, refined abstract graph.

4. We try to compute a concrete test case chain for the cover-
ing path (lines 3–8). If this fails, we iterate the refinement
process.

In each iteration (line 2) of the abstraction refinement algo-
rithm, a node in the graph is split such that a concrete spuri-
ous transition is removed from the abstraction, i.e. the tran-
sition system structure of the program inside the property
antecedents is made more explicit in the abstraction. Pro-
vided the existence of a test case chain, since there is only a
finite number of transitions, the abstraction refinement will
eventually terminate and a covering path will be found that
can be concretized to a test case chain.

Example 4 (Abstraction refinement) Assume, as in the previ-
ous example, that the right state inϕ1 in Fig. 5 is not reachable
from the left state. Then the abstraction refinement will split
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ϕ1 into two vertices. Suppose that GetCoveringPath returns
the covering path π = 〈Init, ϕ2, ϕ1, ϕ2,Final〉.2 Then col-
lapsing the two nodes belonging to ϕ1 w.r.t. π will remove
the edge from Init to ϕ1. The TSP solver will optimize π and
find the shorter path 〈Init, ϕ2, ϕ1,Final〉.
Path constraints. The fundamental problem about a failed
path is that it represents information about at least two edges
that we cannot encode as an equivalent TSP. We would need
a TSP solver that can deal with side conditions like the fol-
lowing: the solution must not contain vertices v1, v2, v3 in
this particular order for any infeasible subpath 〈v1, v2, v3〉 in
failed_path. Similar difficulties arise concerning minimal-
ity: here, we would have to add ‘path weights’ that penalize
a solution if it contains a certain path. To address this prob-
lem, we can opt using answer set programming (ASP) solvers
(e.g. [12]), which are far less efficient in solving TSPs, but
allow us to specify arbitrary side conditions.

Example 5 (Path constraints) Consider the graph in Fig. 5.
We can encode the TSP problem in ASP as follows (cf. [12]):

V(I,phi1,phi2,F).

E(I,phi1). weight(I,phi1,0).

E(I,phi2). weight(I,phi2,2).

E(phi1,phi2). weight(phi1,phi2,1).

E(phi1,F). weight(phi1,F,2).

E(phi2,phi1). weight(phi2,phi1,2).

E(phi2,F). weight(phi2,F,2).

{ cycle(X,Y) : E(X,Y) } I :- V(X).

{ cycle(X,Y) : E(X,Y) } I :- V(Y).

reached(Y) :- cycle(I,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- V(Y), not reached(Y).

#minimize [ cycle(X,Y) : weight(X,Y,C) = C ].

Assume, again, that the right state in ϕ1 in Fig. 5 is not reach-
able from the left state, so that we obtain failed_path =
〈Init, ϕ1, ϕ2〉. Then we can exclude failed_path by adding

twopath(X,Y,Z) :- cycle(X,Y), cycle(Y,Z).

-twopath(I,phi1,phi2).

to the ASP problem. The ASP solver will return the
shortest covering path that does not contain failed_path,
i.e. 〈Init, ϕ2, ϕ1,Final〉.

To use path constraints, lines 9–13 in Algorithm 5 are
replaced by a call to the ASP solver with the path constraints
obtained from failed_path (followed by the check in line 11
that a path was actually found).

2 It will actually return the better result for this particular example.

4.3 Multiple chains

We can relax our problem to systems and properties that
do not admit single chains. A system does not admit a
single chain if two of the given properties never become
both true in any execution of the system. This means that
we drop condition (3) of Lemma 1. For example, we have
three distinct states S, S′, S′′ and we want to cover the
two transitions (S′, I ′, S) and (S′′, I ′′, S), where neither
S′ is reachable from S nor S′′ is reachable from S. In
this case, we require two chains to cover both transitions.
Note that such systems still have to satisfy conditions (1)
and (2) of Lemma 1 to guarantee the existence of multiple
chains.

We can detect that a system does not admit a single chain
if

1. the N -reachability property graph has no chain (where
N is the reachability diameter of the system), or

2. the chain repair or abstraction refinement process fails.

We use Lemma 1 to devise an algorithm for computing a
partition {P1, . . . , Pn} of P (function Partition, Algorithm 7)
and apply Algorithm 1 for each Pi . If the chain repairing fails
for a Pi , we compute a partition for the refined property graph.
The overall algorithm is sketched in Algorithm 6.

Finding the smallest partition is equivalent to the prob-
lem of finding a vertex colouring with minimal chromatic
number (NP-hard problem) w.r.t. the conflict relation R, i.e.
inconsistency regarding condition (3) of Lemma 1. Finally,
the remaining (non-conflicting) vertices are added to some
element of the partition, and Init and Final are added to all
partitions (lines 5 and 6 of Algorithm 7).

Remark 1 Given a bound K , our algorithm stops at the small-
est k such that the k-reachability graph has a covering path.
Theorems 1 and 2, and the methods proposed in Sect. 4.2
guarantee completeness for this k-reachability graph. How-
ever, Sect. 4.2 does not guarantee completeness w.r.t. K ,

Algorithm 6: Compute multiple test case chains
Input: program (Σ, Υ, T, Init), properties P , formulas Init,

Final, reachability bound K
Output: test case chains χ = 〈I0, . . . , IN 〉

1 G = BuildPropKReachGraph(Π, Init,Final, T, K )
2 S = Partition(G)
3 for all G ∈ S do
4 π = GetShortestPath(G, Init,Final)
5 try
6 χ = GetChain(G, π, T )
7 output χ

8 catch(abort)
9 S← (S ∪ Partition(G)) \ {G}
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Algorithm 7: Partition
Input: directed, weighted graph (V, E,W )

Output: partition S of V
1 if (V, E,W ) does not satisfy conditions (1), (2) of Lem. 1 then
2 abort ‘no chain found for given bound K ’

3 R = set of pairs (vi , v j ) ∈ V that do not satisfy condition (3) of
Lem. 1.

4 S =⋃
1≤i≤n{Pi } partition of VR =⋃

(v,v′)∈R{v, v′} with
minimal n s.t. ∀P ∈ S,∀(v, v′) ∈ R : {v, v′} � Pi .

5 for all P ∈ S do P ← P ∪ {Init,Final}
6 choose P ∈ S: P ← P ∪ (V \ VR)

7 return S

Algorithm 8: CheckPath
Input: path π , transition relation T , weights W
Output: whether π is feasible, inputs associated to π if feasible,

failed_path ⊆ π if infeasible
1 inputs← 〈〉
2 failed_path← 〈〉
3 (feasible, assignment, unsat_core) = S AT (BuildPath(π, T,W ))

4 if feasible then
5 let (S0, I0, S1, I1, . . . , SK , IK ) = assignment
6 inputs← 〈I0, . . . , IN 〉
7 else
8 failed_path← getFailedPath(unsat_core, π)

9 return (feasible, inputs, failed_path)

Algorithm 9: BuildPath
Input: path π , transition relation T , weights W
Output: path formula Φ

1 return BuildPathRec(π, 0, true)
2 function BuildPathRec(π, k, Φ)
3 if lengthOf (π) = 1 then
4 let ϕ = π
5 return Φ ∧ ϕ̂(sk)

6 else
7 let 〈v, πtail〉 = π
8 let 〈v′, _〉 = πtail
9 let kend = k +W (v, v′)

10 let ϕ = v
11 return Φ ∧ ϕ(sk , ik , . . . , sk+Jϕ , ik+Jϕ ) ∧∧

k+1≤ j≤kend
T (s j−1, i j−1, s j ) ∧

BuildPathRec(πtail, kend , Φ)

because for k < K there will be additional covering paths in
the K -reachability graph that are not considered by the meth-
ods in Sect. 4.2. To ensure completeness w.r.t. K , one would
have to extend the k-reachability graph to a K -reachability
graph before applying Sect. 4.2. Otherwise, we might gener-
ate multiple chains where we could have found a single chain
in the K -reachability graph.

Algorithm 10: GetKreachEdges
Input: weighted, directed graph (V, E,W ), transition relation T ,

edges to be considered Etarget , number of transitions k
Output: k-reach edges Ek ⊆ Etarget

1 from_to← Etarget
2 Ek ← ∅
3 (sat, assignment)← checkKreach(from_to, T, k)
4 while sat do
5 let (S0, I0, S1, I1, . . . , SJϕ+k , IJϕ+k) = assignment
6 for all v, v′ ∈ V :

ϕ = v, ϕ′ = v′ : ϕ(S0, I0, . . . , SJϕ−1, IJϕ−1) ∧ ϕ′(SJϕ+k) do
7 Ek ← Ek ∪ {(v, v′)}
8 from_to← from_to \ {(v, v′)}
9 (sat, assignment, _)← checkKreach(from_to, T, k)

10 return Ek

Algorithm 11: RepairPath by concrete chaining
Input: failed_path, transition relation T , weights W , reachability

bound K
Output: updated weights W , failed path if repair fails

1 W ′ ← W
2 σ ← FirstElement(failed_path)
3 for j = 1 to n − 2 do
4 e = (ϕ j , ϕ j+1)

5 feasible← false
6 while ¬feasible do
7 (feasible, assignment, _)← CheckPath(〈σ, ϕ j+1〉, T,W )

8 if ¬feasible then W (e)← W (e)+ 1
9 else

10 let 〈S0, . . .〉 = assignment
11 σ ← S0

12 if W (e) > K then return
RepairPath′(failed_path, T,W ′, K )

13 return (true,W, 〈〉)

Algorithm 12: RepairPath′
Input: failed_path, transition relation T , weights W , reachability

bound K
Output: updated weights W , failed path if repair fails

1 〈ϕ0, . . . , ϕn−1〉 = failed_path
2 for j = 1 to n − 2 do
3 e = (ϕ j , ϕ j+1)

4 feasible← false
5 while ¬feasible do
6 (feasible, _, _)← CheckPath(〈ϕ0, . . . , ϕ j+1〉, T,W )

7 if ¬feasible then W (e)← W (e)+ 1
8 if W (e) > K then return (false,W, 〈ϕ j−1, ϕ j , ϕ j+1〉)
9 return (true,W, 〈〉)

5 Test-case generation with bounded model checking

The previous sections abstract from the actual back-end
implementation of the functions GetKreachEdges, CheckPath,
and RepairPath. In this work, we use bounded model
checking to provide an efficient implementation. Alterna-
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tive instantiations could be based, for example, on symbolic
execution.
BMC-based test case generation. Bounded model checking
(BMC) [13] can be used to check the existence of an exe-
cution of increasing length K from φ to φ′. This check is
performed by deciding the satisfiability of the following for-
mula using a SAT solver:

φ(s0) ∧
∧

1≤k≤K

T (sk−1, ik−1, sk) ∧ φ′(sK ) (1)

If the SAT solver returns the answer satisfiable, it also
provides a satisfying assignment (S0, I0, S1, I1, . . . , SK−1,

IK−1, SK ). The satisfying assignment represents one possi-
ble execution from φ to φ′ and identifies the corresponding
input sequence 〈I0, . . . , IK−1〉.
Instantiation. For implementing Algorithm 1 with chain
repair (Algorithm 4), we have to provide the functions
CheckPath, GetKreachEdges, and RepairPath.

We consider a SAT solver to be a function S AT : φ �→
(sat, assignment, unsat_core) where assignment contains a
satisfying assignment if φ is sat and otherwise unsat_core
is a minimal formula such that φ ⇒ unsat_core and
¬unsat_core⇒ ¬φ.

Then, CheckPath is defined as in Algorithm 8 where
BuildPath constructs the BMC formula for a given path, and
getFailedPath converts an unsat_core into a path, the imple-
mentation of which is SAT/SMT solver specific. For exam-
ple, in Minisat [14] one can assume the property antecedents
ϕ instead of adding them to the formula. If the formula Algo-
rithm 9 is unsatisfiable, Minisat returns the list of those
antecedents that contributed to the final conflict.

GetKreachEdges is given as Algorithm 10, where the
function checkKreach(π, T, k) that is used for enumerating
K -reachability edges is implemented by checking the satis-
fiability of the following formula for each ϕ:

ϕ(s0, i0, . . . , sJϕ−1, i Jϕ−1)

∧
∧

1≤ j≤Jϕ+k
T (s j−1, i j−1, s j )

∧
(∨

(ϕ,ϕ′)∈Etarget
ϕ̂′(sJϕ+k)

)

(2)

We iteratively check this formula using incremental SAT
solving, ‘removing’ the respective terms from the formula
each time a solution satisfies (ϕ, ϕ′), until the formula
becomes unsatisfiable. In addition to assumptions on the
inputs, T must also contain a state invariant, obtained,
e.g. with a static analyser. This is necessary because, oth-
erwise, the state satisfying ϕ in Eq. 2 might be unreachable
from an initial state. An imprecise, over-approximating state
invariant leads to weights that underestimate the distances
between properties. In this case, our algorithms will still com-

pute correct test case chains, but optimization is impaired and
more effort may be spent in chain repair.

For the chain repair RepairPath (see Algorithm 11), the
most efficient method that we tested was to sequentially
find a feasible weight for each of the edges in failed_path,
starting the check for an edge (ϕ j , ϕ j+1) from a concrete
state in ϕ j obtained from the successful check of the pre-
vious edge (ϕ j−1, ϕ j ). However, this method is only com-
plete for strongly connected systems. Hence, in case of
failure, we have to try to repair the path by the less effi-
cient method of iteratively calling CheckPath on prefixes of
failed_path with increasing weights (function RepairPath′,
Algorithm 12, called in line 11 in Algorithm 11).

6 Experimental evaluation

Implementation. For our experiments, we have set up a tool
chain (Fig. 8) that generates C code from Simulink models
using the Gene- Auto3 code generator. Our test case chain
generator ChainCover4 itself is built upon the infrastructure
provided by Cbmc5 [15] with MiniSat6 as a SAT backend,
the Lkh TSP solver7 [16], and the Clingo ASP solver8 [12].

The properties are written in C using the assert and
__CPROVER_assume macros. For instance, property p1

in our example is stated as follows:

void p_1(t_input∗ i, t_state∗ s) {
__CPROVER_assume(s−>mode==ON && s−>speed==1 && i−>dec);
compute(i,s);
assert(s−>speed==1);

}

Assumptions on the inputs and the state invariant obtained
from the static analysis are written as C code in a similar way.
Benchmarks. Our experiments are based on Simulink mod-
els, mainly from automotive industry. For some benchmarks,
we had the Simulink models or at least the generated C
code available; for others we only had screenshots from the
Simulink models, which we had to re-engineer ourselves.
Our benchmarks are a simple cruise control model [2], a
window controller,9 a car alarm system,10 an elevator model
[17], and a model of a robot arm that can be controlled with
a joystick. We generated test case chains for these exam-
ples for specifications of different size and granularity. The

3 http://geneauto.gforge.enseeiht.fr, version 2.4.9.
4 http://www.cprover.org/chaincover/, version 0.3.
5 http://www.cprover.org/cbmc/, version 4.5.
6 http://minisat.se, version 2.2.0.
7 http://www.akira.ruc.dk/~keld/research/LKH/, version 2.0.2.
8 http://potassco.sourceforge.net/, version 3.0.5.
9 http://www.mathworks.co.uk/products/simulink/examples.html.
10 http://www.mogentes.eu/public/deliverables/MOGENTES_3-15_
1.0r_D3.4b_TestTheories-final_main.pdf.
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Fig. 8 Tool chain
reactive system model C code

generator
static

analyser

properties test case
generator test suite

Table 1 Experimental results: the table lists the number of test cases/chains (tcs), the accumulated length of the test case chains (len), and the time
(in seconds) taken for test case generation

Benchmark Size ChainCover FShell Random

With Lkh With Clingo

s i P tcs len Time tcs len Time tcs len Time tcs len Time

Cruise 1 3b 3b 4 1 9 0.53 1 9 0.88 3 18 3.67 2.8 24.6 0.54

Cruise 2 3b 3b 9 1 10 0.41 4 10 1.74 4 20 3.56 2.4 21.2 0.07

Window 1 3b+1i 5b 8 1 24 7.04 1 24 6.77 4 32 19.0 1.8 40.4 58.9

Window 2 3b+1i 5b 16 1 40 9.89 t.o. 7 56 28.3 2.0 86.8 18.7

Window Ext 1 4b+1i 6b 12 2 30 89.6 2 27 88.1 4 32 38.5 33 % cov. t/o

Window Ext 2 4b+1i 6b 20 2 50 192 t.o. 6 48 53.1 30 % cov. t/o

Window Ext 3 4b+1i 6b 4 1 5 8.15 1 5 6.02 2 6 1.73 25 % cov. t/o

Window Ext 4 4b+1i 6b 8 1 18 72.1 1 20 86.4 4 24 10.5 25 % cov. t/o

Window Ext 5 4b+1i 6b 9 1 29 269 1 27 239 5 40 27.3 22 % cov. t/o

Alarm 1 4b+1i 2b 5 1 15 1.95 1 19 5.45 1 27 509 80 % cov. t/o

Alarm 2 4b+1i 2b 16 1 70 22.8 t.o. 3 81 690 94 % cov. t/o

Alarm 3 4b+1i 2b 14 2 60 96.4 2 59 189 3 51 106 2 154 1.41

Elevator 1 6b 3b 4 1 8 24.3 1 9 39.1 2 15 115 2.2 10.4 0.85

Elevator 2 6b 3b 10 1 31 155 1 30 237 5 54 789 2.6 49.0 65.8

Elevator 3 6b 3b 19 1 42 491 t.o. 6 54 838 4.0 149 18.0

Robotarm 1 4b+2f 3b 4 1 25 109 1 25 116 2 22 362 2.4 49.0 0.07

Robotarm 2 4b+2f 3b 10 1 47 108 t.o. 2 33 532 3.8 72.2 0.21

Robotarm 3 4b+2f 3b 18 1 85 392 t.o. 5 55 731 3.2 160 0.62

Size indicates the size of the program in the number of (minimally encoded) Boolean (b), integer (i) and floating point (f) variables and (minimally
encoded) Boolean (b) inputs. ‘P’ is the number of properties in the specification. Timed out (‘t/o’) after 1 h; and the achieved coverage (‘cov’)

benchmark characteristics are listed in Table 1. Apart from
Cruise 1 all specifications have properties with multi-state
antecedents; thus, the obtained test case chains are not min-
imal, in general. All our benchmarks are (almost) strongly
connected (some have an initial transition after which the sys-
tem is strongly connected). Hence, to evaluate the abstraction
refinement and the generation of multiple chains, we added
an extension to the Window benchmark. Benchmarks Win-
dow Ext 1–2 and Alarm 3 require two chains to cover the
properties; benchmarks Window Ext 3–5 force our tool to
use abstraction refinement (or path constraints).
Comparison. We have compared our tool ChainCover with

1. FShell11 [18,19], an efficient test generator with test
suite minimization, and

11 http://forsyte.at/software/fshell/, version 1.4.

2. an in-house, simple random case generator with test suite
minimization.

We have also compared to Klee12 [20], a test case generator
based on symbolic execution, but the results suggested that
its exhaustive exploration is not suitable for our problem.

Like our tool, FShell is based on bounded model check-
ing. FShell takes a coverage specification in form of a
query as input. It computes test cases that start in Init, cover
one or more properties p1, . . . , pn and terminate in Final
when given the query: cover (@CALL(p_1) | ... |
@CALL(p_n)) -> @CALL(final). In the best case,
FShell returns a single test case, i.e. a test chain. We have
run FShell with increasing unwinding bounds K until all
properties were covered.

12 http://klee.llvm.org/.
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Fig. 9 Experimental results:
accumulative graph of test case
lengths
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Fig. 10 Experimental results:
accumulated runtimes
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For random testing, we coded the requirement to finish
a test case in Final with the help of flags in the test har-
ness. Then we stopped the tool as soon as full coverage
was achieved and selected the test cases achieving full cov-
erage while minimizing the length of the input sequence
using an in-house, weighted-minimal-cover-based test suite
minimiser. We averaged the results over five runs. Unlike
ChainCover and FShell, which start test chain compu-
tation without prior knowledge of how many transitions
are needed to produce a test case, we had to provide ran-
dom testing with this information. The reason is that the
decision when a certain number of transitions will not
yield a test case can only be taken after reaching a time-
out for random testing. Consequently, the results for ran-
dom testing are not fully comparable to those of the other
tools.
Results. Experimental results obtained are shown in Table 1
and Figs. 9, 10 and 11.

1. Our tool ChainCover usually succeeds in finding fewer
and shorter test case chains than the other tools. It is also
in general faster. ChainCover spends more than 99 %
of its runtime with BMC. The runtime ratio for gener-
ating the property K -reachability graph (O(K n2) BMC
queries for n properties) versus finding and repairing a
chain (O(K n) BMC queries) varies between 7:92 and
75:24.

2. With Lkh, the time for solving the ATSP problem is neg-
ligible for the number of properties we have in the spec-
ifications, whereas Clingo struggles with specifications
with more than 10 properties and does not finish within an
hour. Abstraction refinement and path constraints seem
to perform similarly.

3. FShell comes closest to ChainCover with respect to
test case chain length, and finds shorter chains on the
robot arm example. However, FShell takes much longer:
the computational cost depends on the number of unwind-
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Fig. 11 Experimental results:
accumulated test suite sizes
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ings and the size of the program and less on the number
of properties.

4. Random testing yields very good results on some (small)
specifications and sometimes even finds chains that are
as short as those generated by ChainCover. However,
the results vary and heavily depend on the program and
the specification: in some cases, e.g. Robotarm, full cov-
erage is achieved in fractions of a second; in other cases,
full coverage could not be obtained before reaching the
timeout of 1 h and generating millions of test cases.

7 Related work

Test case generation with model checkers came up in the mid-
1990s and has attracted continuous research interest since
then, especially due to the enormous progress in SAT solver
performance. There is a vast literature on this topic, surveyed
in [21], for example. The FShell tool [18,19] we have com-
pared with was developed with the motivation of enabling
the flexible specification of the desired coverage.
Reactive system testing. There are many approaches to reac-
tive system testing: While random testing [22] is still com-
monly used, approaches have been developed that combine
random testing with symbolic and concrete execution (Dart
[23], Cute [24], Klee [20]) to guide exhaustive path enu-
meration. Scenario-based testing employ test specifications
to guide test case generation towards a particular functional-
ity (e.g., Lutess [25], Lurette [26], Lutin [27]). These
methods restrict the input space using static analysis and
apply (non-uniform) random test case generation. Model-
based testing (see [28,29] for surveys on this topic) consid-
ers specification models based on labelled transition systems.
For instance, extended finite state machines (EFSM) [30–32]
are commonly used in communication protocol testing to pro-
vide exhaustive test case generation for conformance testing.
Available tools include, e.g., Tgv [33] and TorX [34].
Minimal checking sequences and test optimization. In the
model-based testing domain, the problem of finding minimal

checking sequences has been studied in conformance testing
[1,3–6], which amounts to checking whether each state and
transition in a given EFSM specification is correctly imple-
mented. First, a minimal checking path is computed, which
might be infeasible due to the operations on the data vari-
ables. Subsequently, random test case generation is applied
to discover such a path, which might fail again. Duale and
Uyar [35] propose an algorithm for finding a feasible transi-
tion path, but it requires guards and assignments in the models
to be linear. Another approach is to use genetic algorithms
[3,36] to find a feasible execution of minimized length. Also
in our setting, the use of genetic algorithms to find mini-
mized instead of minimal solutions is an option to consider.
SAT solvers have also been used to compute (non-minimal)
checking sequences in FSM models [37,38]. Our method
does not impose restrictions on guards and assignments and
implicitly handles low-level issues such as overflows and the
semantics of floating-point arithmetic in finding feasible test
cases. The fact that minimal paths on the abstraction might
not be feasible in the concrete program does not arise due to
limited reasoning about data variables, but due to the multi-
state nature of the properties we are trying to cover.

Closest to our work is a recent work [39] on generating test
chains for EFSM models with timers. They use SMT solvers
to find a path to the nearest test goal and symbolic execution
to constrain the search space. If no test goal is reachable they
backtrack to continue the search from an earlier state in the
test chain. Their approach represents a greedy heuristics and
thus makes minimality considerations difficult. Our method
can handle timing information if it is explicitly expressed as
counters in the program.

Petrenko et al. [40] propose a method for test optimiza-
tion for EFSM models with timers. They use an ATSP solver
to find an optimal ordering of a given set of test goals and
an SMT solver to compute a corresponding test case. Addi-
tionally, they take into account overlappings of these test
goals. The main differences to our work are that they operate
on explicit state machines and their test goals are transition
sequences, whereas in our case state machines are implic-
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itly given as programs and test goals are sets of transition
sequences.

Our approach starts from a partial specification given by a
set of properties, usually formalized from high-level require-
ments. The K -reachability graph abstraction can be viewed
as the generation of a model from a partial specification
and automated annotation of model transitions with timing
information in terms of the minimal number of transitions
required.

8 Summary and prospects

We have presented a novel approach to discovering a mini-
mal test case chain, i.e., a single test case that covers a given
set of test goals in a minimal number of execution steps. Our
approach combines reachability analysis to build an abstrac-
tion, TSP-based optimization and heuristics to find a concrete
solution in case we cannot guarantee minimality. The test
goals might also be generated from an EFSM specification
or from code coverage criteria like MC/DC. This flexibil-
ity is a distinguishing feature of our approach that makes it
equally applicable to model-based and structural coverage-
based testing. In our experimental evaluation, we have shown
that our tool ChainCover outperforms state-of-the-art test
suite generators. Moreover, our approach is not restricted
to C code generated from Simulink—it can be applied to
any reactive system language. For instance, we could also
consider consider Verilog, or the application to HW/SW-co-
verification combing Verilog and C code.
Prospects. Deep loops pose a problem for BMC-based meth-
ods. For instance, we had to reduce size of loop bound
constants in the car alarm system benchmark to make it
tractable for comparison. Acceleration methods, e.g. [41],
are expected to remedy many such situations, especially those
involving counters.

Moreover, the property K -reachability graph generation
lends itself to parallelization. This is expected to give a further
boost to the capacity of our tool.

Test case chains are intended to demonstrate conformance
in late stages of the development cycle, especially in accep-
tance tests when the system can be assumed stable. It is an
interesting question in how far they can be used in earlier
phases: The test case chains computed by our method are
able to cover subsequent test goals even if the implementa-
tion has been modified, as long as these modifications have
only local effect. Otherwise, it would be desirable to incre-
mentally adapt the test case chain after bug fixes and code
changes, for example, by patching parts of the chain. But the
practicality and limitations of such an algorithm remain to
be demonstrated, and the problem seems very challenging in
general. Small changes to the implementation may invalidate
large sections of the test case chain, and in the worst case force
us to recompute the whole chain. A compositional approach

seems to be required, but it remains for future research to
investigate the feasibility of this.
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