

Sixth International Workshop on
Designing Correct Circuits

Vienna, 25–26 March 2006

A Satellite Event of the ETAPS 2006 group of conferences

Participants’ Proceedings

Edited by Mary Sheeran and Tom Melham

Preface

This volume contains material provided by the speakers to accompany their presentations at
the Sixth International Workshop on Designing Correct Circuits, held on the 25th and 26th of
March 2006 in Vienna. The workshop is a satellite event of the ETAPS group of conferences.
Previous workshops in the informal DCC series were held in Oxford (1990), Lyngby (1992),
Båstad (1996), Grenoble (2002), and Barcelona (2004). Each of these meetings provided a
stimulating occasion for academic and industrial researchers to get together for discussions
and technical presentations, and the series as a whole has made a significant contribution to
supporting our research community.

The 2006 DCC workshop again brings together researchers in formal methods for hardware
design and verification. It will allow participants to learn about the current state of the art in
formally based hardware verification and design and it is intended to further the debate about
how more effective design and verification methods can be developed.

For some time now, research in hardware verification is being done industrial laboratories, as
well as in universities. Industry is commonly focussed on relatively immediate verification
goals, but also keeps our work grounded in practical engineering problems. To make progress
on the longer-term problems in our field, academic and industrial researchers must continue to
work together on the problems facing microprocessor and ASIC designers now but also into
the future. A major aim of the DCC series of workshops has been to provide a congenial and
relaxed venue for communication among researchers in our community. DCC 2006 attracted
a very strong field of submissions, and we hope the selection the Programme Committee has
made will keep the debate stimulating and productive. We look forward to two great days of
presentations and discussion.

We wish to express our gratitude to the members of the Programme Committee for their work
in selecting the presentations, and to all the speakers and participants for their contributions to
Designing Correct Circuits.

Mary Sheeran and Tom Melham
March 2006

Programme Committee

Dominique Borrione (TIMA, Grenoble University, France)
Elena Dubrova (KTH, Sweden)
Niklas Eén (Cadence Design Systems, USA)
Warren Hunt (UT Austin, USA)
Robert Jones (Intel Corporation, USA)
Wolfgang Kunz (TU Kaiserslautern, Germany)
Per Larsson-Edefors (Chalmers, Sweden)
Andrew Martin (IBM Research, USA)
Tom Melham (Oxford University, UK)
Johan Mårtensson (Jasper Design Automation, Sweden)
John O’Leary (Intel Corporation, USA)
Carl Pixley (Synopsys, USA)
Mary Sheeran (Chalmers, Sweden)
Satnam Singh (Microsoft Corporation, USA)
Joe Stoy (Bluespec, USA)
Jean Vuillemin (École Normale Supérieure, France)

DCC 2006

1

Counterexample Guided Abstraction Refinement (CEGAR for short) has been shown to be an
effective paradigm in a variety of hardware and software verification scenarios. Originally pio-
neered by Kurshan [7], it has since been adopted by several researchers as a powerful means for
coping with verification complexity. The wide-spread use of such a paradigm hinges, however, on
the automation of its abstraction and refinement phases. Without automation, CEGAR requires
laborious user intervention to choose the right abstractions and refinements based on a detailed
understanding of the intricate interactions among the components of the design being verified.
Clarke et al. [3], Jain et al. [5], and Dill et al. [2] have successfully demonstrated the automation
of abstraction and refinement in the context of model checking for safety properties of hardware
and software systems. In particular, these approaches create a smaller abstract transition system
from the underlying concrete transition system and iteratively refine it with the spurious coun-
terexamples produced by the model checker. The approaches in [3] and [5] are additionally based
on the extraction of unsatisfiability explanations derived from the infeasible counterexamples to
provide stronger refinement of the abstract model and to significantly reduce the number of
refinement iterations.

All of these approaches are examples of predicate abstraction which essentially projects the
concrete model onto a given set of relevant predicates to produce an abstraction suitable for
model checking a given property. In contrast, we describe in [1] a methodology for datapath
abstraction that is particularly suited for equivalence checking. In this approach, datapath com-
ponents in behavioral Verilog models are automatically abstracted to uninterpreted functions
and predicates while refinement is performed manually using the ACL2 theorem prover [6].

The use of (near)-minimal explanations of unsatisfiability forms the basis of another class of
abstraction methods. These include the work of Gupta et al. [4] and McMillan et al. [8] who
employ “proof analysis” techniques to create an abstraction from an unsatisfiable concrete
bounded model checking (BMC) instance of a given depth.

In this talk we explore the application of CEGAR in the context of microprocessor correspon-
dence checking. The approach is based on automatic datapath abstraction as in [1] augmented
with automatic refinement using minimal unsatisfiable subset (MUS) extraction. One of our
main conclusions is the necessity of basing refinement on the extraction of MUSes from both the
abstract and concrete models. Additionally, refinement tends to converge faster when multiple
MUSes are extracted in each iteration. Finally, localization and generalization of spurious coun-
terexamples are also shown to be crucial for refinement to converge quickly. We will describe our
implementation of these ideas in the Reveal system and discuss the effectiveness of the various
refinement options in the verification of a few benchmarks.

Microprocessor Verification Based on
Datapath Abstraction and Refinement
Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122
{zandrawi,liffiton,karem}@eecs.umich.edu

DCC 2006

2

REFERENCES
[1] Z. S. Andraus and K. A. Sakallah, “Automatic Abstraction of Verilog Models”, In Proceed-

ings of 41st Design Automation Conference 2004, pp. 218-223.
[2] S. Das and D. Dill, “Successive Approximation of Abstract Transition Relations” in 16th

Annual IEEE Symposium on Logic in Computer Science (LICS) 2001.
[3] E. Clarke, O. Grumberg. S. Jha, Y. Lu and H. Veith, “Counterexample-Guided Abstraction

Refinement,” In CAV 2000, pp. 154-169.
[4] A. Gupta, M. Ganai, Z. Yang, and P. Ashar, “Iterative Abstraction Using SAT-based BMC

with Proof Analysis.” In Proc. of the International Conference on CAD, pp. 416-423, Nov.
2003.

[5] H. Jain, D. Kroening and E. Clarke, “Predicate Abstraction and Verification of Verilog,”
Technical Report CMU-CS-04-139.

[6] M. Kaufmann and J. Moore, “An Industrial Strength Theorem Prover for a Logic Based on
Common Lisp.” IEEE Transactions on Software Engineering 23(4), April 1997, pp. 203-213.

[7] R. Kurshan, “Computer-Aided Verification of Coordinating Processes: The Automata-Theo-
ritic Approach,” Princeton University Press, 1999.

[8] K. L. McMillan and N. Amla, “Automatic Abstraction without Counterexamples.” In Inter-
national Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’03), pp. 2-17, Warsaw, Poland, April, 2003, LNCS 2619.

An Implementation of Clock-Gating and
Multi-Clocking in Esterel

Laurent Arditi, Gérard Berry, Marc Perreaut
Esterel Technologies

{Laurent.Arditi,Gerard.Berry,Marc.Perreaut}@esterel-technologies.com

Michael Kishinevsky
Intel Strategic CAD Labs

Michael.Kishinevsky@intel.com

Clock gating and multi-clocking are now common design techniques that are used
for power reduction and for handling systems with different operational frequencies.
They cannot be handled by Classic Esterel language and tools because the Classic
Esterel is a single clock synchronous paradigm and Esterel compilers can generate
single clock circuits only. To cover broader class of design needs, we propose to extend
Esterel to other clocking schemes, including clock-gating and multi-clocking.

This extension must satisfy three major needs:

• enhance the scope of designs that can be modeled in Esterel,

• allows to generate different implementations depending on the final target: a
single clock circuit (e.g. for compiling a specification into a basic FPGA), a circuit
with clock-gating or an equivalent circuit without clock-gating, and a multi-
clock circuit (e.g. for compiling to an ASIC). The choice of the implementation
should be possible at compilation time, without requiring any change in the
source model.

• provide support by all tools comprising the Esterel development framework: the
graphical Esterel entry, software simulation and debug, embedded code genera-
tion, formal verification, optimization.

The core of the implementation for the clock-gating is based on a new Esterel in-
struction called weak suspend. This instruction freezes the control and data registers,
while letting the combinational part computing the values as functions of inputs and
the state. The effect of this instruction is similar to an effect of clock-gating on a hard-
ware block. We developed an Esterel compiler which can generate RTL code (VHDL
and Verilog) with the embedded clock-gating logic or with the regular equivalent logic
to emulate functional behavior of clock-gating without the corresponding power saving.

1

The multi-clock design in the new Esterel compiler is based on the paradigm of
Globally Asynchronous Locally Synchronous principle and is implemented using a few
language extensions: multi-clock units, clock signals, clock gaters and clock multi-
plexers, and clock definition in module instantiations. The compiler can generate a
truly modular and multi-clock RTL code, or mono-clock RTL code based on the weak

suspend instruction. The latter compilation mode is also used for software simula-
tion and formal verification. The trace equivalence of different forms of the design is
guaranteed correct-by-construction.

We show a few classical multi-clock examples, including a dual-clock FIFO and a
synchronizer based on a four-phase handshake protocol. A formal verification of this
protocol is also discussed in detail.

2

1

Using Lava and Wired for design
exploration

Emil Axelsson, Koen Claessen, Mary Sheeran

Chalmers University of Technology

DCC 2006

Design exploration

• Design exploration:
– Comparing a set of designs in terms of non-functional

properties (power, speed, area, manufacturability …)

• Function is the same, parameters to vary:
– Word lengths
– Netlist topology
– Layout topology
– Wiring topology

2

Example – carry tree

• Serial (ripple carry)
– O(n) speed/size

• Parallel (Sklansky)
– O(log n) speed

O(n·log n) size

Non-functional properties

• Routing wires account for
≈75% of path delays
≈50% of the total power consumption

in a typical high-performance design

• Design exploration requires wire-aware design
methods

3

Design exploration in Lava

• Functional style:

• Layout combinator style:

and2 (a,b) = inv (nand2 (a,b))

Main> simulate and2 (high,low)
low

and2 = nand2 ->- inv
nand2 inv

Design exploration in Lava (2)

• Functional style
– Higher abstraction level, flexibility
– Weak connection to the real hardware
– Non-functional estimation with respect to gates only

• Layout combinator style
– Lower abstraction level, less flexibility
– Stronger connection to hardware
– Limited reasoning about wires

4

Design exploration in Lava (3)

Simulation with non-standard signal interpretation
(NSI) gives unit-delay estimation

rippAdder op = row op

input = (low, [(high,low),(high,high),(low,low)])

Main> simulate (rippAdder fullAdd) input
([high,low,high],low)

faNSI (a,(b,c)) = (d,d)
where d = maximum [a,b,c] + 1

Main> (rippAdder faNSI) (0, [(0,0),(0,0),(0,0)])
([1,2,3],4)

Design exploration in Lava (4)

Clever circuit generators can adapt to non-
functional properties

M. Sheeran. Generating fast multipliers using clever circuits. FMCAD 2004.

5

Limitations in Lava

• Better modeling of wires needed
– No built-in support for geometry
– NSI in functional setting can only handle “forwards”

properties (unit delay)

• Proper modeling of wire delay also needs to
know about load (“bidirectional” properties)

drive strength
load

delay

Wired

• Models circuits as relational blocks with detailed
geometry

• Wires are first-class circuits

• NSI in relational setting supports bidirectional
properties

• Allows wire-aware design exploration

6

Wired – example

bitMult1 = and2 *=* (crT0 *||* cro)

bitMult = row bitMult1

evalAndView (bitMult :: Description ())
(XP, pl [XP,XP,XP,XP], XP,XP)

Design flow

Wired

Lava: layout combinators

Lava: functional

7

Case study Prefix

Given inputs
x1, x2, ... xn

Compute
x1, x1*x2, x1*x2*x3, . . . , x1*x2*...*xn

For * an associative (but not necessarily
commutative) operator

Serial prefix

operator
1 2 . . . 8

1 1:2 . . . 1:7 1:8

8 inputs
depth 7
size 7

8

Composing prefix circuits

p1

p2. . .

. . .

1 2 3 m m+1 n

1 1:2 1:3 1:m 1:m+1 1:n

1:m

Composition combinator

compose2 p1 p2 as = (init l1s) ++ r1s
where
(ls,rs) = splitAt t as
l1s = p1 ls
r1s = p2 ((last l1s): rs)
t = div (length as + 1) 2

9

Serial prefix again

ripple op [a] = [a]
ripple op [a,b] = [a,op(a,b)]
ripple op as

= compose2 (ripple op) (ripple op) as

Sklansky

withEach op p (a:bs) = a:[op(a,b) | b <- p bs]

sklansky op [a] = [a]
sklansky op as

= compose2 (sklansky op) (withEach op (sklansky op)) as

10

Checking

Main> simulate (sklansky plus) [1..9]
[1,3,6,10,15,21,28,36,45]

Main> sklansky append [[i] | i <- [1..6]]
[[1],[1,2],[1,2,3],[1,2,3,4],[1,2,3,4,5],[1,2,3,4,5,6]]

Pictures are also drawn by non-standard
interpretation. Run the circuit and gather info.
in a data type.

Sklansky in Wired

sklansky 0 = rowN 1 (wyl 0)
sklansky dep = join *=~ (sub ~||~ sub)

where
sub = sklansky (dep-1)
join = (row wy1 ~||* wf) -||- (row d2 ~||* d)

11

Limit fanout, number of operators, depth

Produce only depth-size optimal circuits

depth+size = 2n-2 for n inputs

(serial prefix is DSO, but Sklansky is not)

How? Design appropriate building blocks

Slice (also parallel prefix)

first fork last op.
Difference = waist

waist + size = 2n-2 waist size optimal

12

Slice

2:n

each output is of form 1: i

Top tree spreads every input to last output
Bottom tree spreads first input to each output

Slices

Compose d such blocks

waist + size = 2n-2 (waist size optimal) =>
depth + size = 2n - 2 (depth size optimal)

depth = d
= waist

13

Slices (example)

Functional Lava

zslices d pop
= composeKN [(zsliceW (d-i) i, zslice(d-i) i)|

i <- [0..d-1]]
where
zslice b t [a] = [a]
zslice b t (a:as) = ls ++ [a2]
where
ms = zTop b t as
a2 = pop (a,last ms)
ls = zBot b t (a:init ms)

...

fTop b 0 [a] = [a]
...

zBot

asa

ls

zTop

a2

14

Bottom tree
zBot b 0 [a] = [a]
zBot 0 t [a] = [a]
zBot b t as = ls ++ rs
where
(l1s,r1s) = splitAt (ztW b (t-1)) as
e2 = pop (head l1s,head r1s)
ls = zBot b (t-1) l1s
rs = zBot (b-1) (t-1) (e2:tail r1s)

b-1 t-1
b t-1

Top tree defined similarly

zslices 7

fanout = depth + 1

15

Limit fanout

fslices f d ps = composeKN [..]

where

(wy,pop) = ps

fslice b t (a:as) = ls ++ [a2]

where

ms = fTop (f-1) b t as

a2 = pop (a,last ms)

ls = fBot (f-1) b t (a:init ms)

parameters

max fanout

fanout at top of bottom tree (leaving one for waist)

Bottom tree

fBot n b 0 [a] = [a]

fBot n 0 t [a] = [a]

fBot 1 b t as = (fsT wy ->- fBot f (b-1) t) as

fBot n b t as = ls ++ rs

where

(l1s,r1s) = splitAt (ftW (n-1) b (t-1)) as

e2 = pop (head l1s,head r1s)

ls = fBot (n-1) b (t-1) l1s

rs = fBot f (b-1) (t-1)(e2:tail r1s)

parameter to track fanout used up

fanout only one => step down one level

16

fslices 4 7

Next step: combinators

fTopC

zBotC

forkfirst

opfirst

Slice

17

Slice (combinators)

splitJ n p = splitAt n ->- p ->- append

fsliceC b t = splitJ 1 (tosnD (fTopC (f-1) b t)) ->-
splitJ sz (sbl `beside16` opfirst)

where
sz = ftW (f-1) b t
sbl = fBotC (f-1) b t `below125` forkfirst

Bottom tree

zBotC

forkfirst

opfirst
zBotC

opfirst

18

Bottom tree combinator code

fBotC n 0 t = wys1
fBotC n b 0 = wys1
fBotC 1 b t = fBotC f (b-1) t `below1256` map wy
fBotC n b t = splitJ sizl (subbtl `beside16` subbtr)

where
sizl = ftW (n-1) b (t-1)
subbtl = fBotC (n-1) b (t-1) `below125` forkfirst
subbtr = fBotC f (b-1) (t-1) `below156` opfirst

no circuit inputs, combinator style

id. on singleton list

dIfferent forms of below and beside combinators, all wire crossings also tiles,
no named wires, communication by abuttment

Now think more about layout size

In above code, have both

bottom tree
bottom tree

firstfork

To squeeze layout, should have same height (for same
parameters).
Implement as two separate (mutually recursive) functions

No waist waist

see red code

19

Slice

fsliceC1 b t = splitJ 1 (tosnD (fTopC (f-1) b t)) ->-
splitJ sz (sbl `beside16` opfirst)

where
sz = ftW (f-1) b t
sbl = fBotCW (f-1) b t

waisted version

No waist, fbtcN

fBotCN n 0 t = wys1
fBotCN n b 0 = wys1
fBotCN 1 b t = fBotCN f (b-1) t `below1256` map wy
fBotCN n b t = splitJ szl (subbtl `beside16` subbtr)

where
szl = ftW (n-1) b (t-1)
subbtl = fBotCW (n-1) b (t-1)
subbtr = fTopCN f (b-1) (t-1) `below156` opfirst

calls waisted version (and vice versa)

20

Sanity check

sanity f d m
= and (zipWith (==)

((aslicesC f d m (id,copy,append))
[[a]| a <- l])

(tail (inits l)))
where l = [1..m]

Main> sanity 4 8 57
True

Main> sanity 4 9 109
True

Easy step to Wired

fBotCN n 0 t = single (wys 0)
fBotCN n b 0 = single (wys b)
fBotCN 1 b t = fBotCN f (b-1) t ~~=** forkFirst
fBotCN n b t = subbtl ~~||~~ subbtr
where
subbtl = fBotCW (n-1) b (t-1)
subbtr = fBotCN f (b-1) (t-1) ~~=** opFirst

21

Non-rectangular blocks

• Descriptions in Wired must be rectangular

• Slices are not!

• Trick: represent each slice by three blocks
(triple)

Non-rectangular blocks

Construct triples from pairs

”Left” pair ”Right” pair

22

New combinators

• Beside for pairs (~~||~~):

• Composing slices:

Now add flexibility of size

• Return to Lava

• Add parameter for number of inputs and
systematically crop individual slices by replacing
some matching top and bottom trees by single
wires

• Have experimented with cropping from right or in
the middle

• Hoped cropping in middle would be better as it
reduces length of longest wire on waist

23

Examples

57 inputs, cropped from slices 4 8, which has 72 inputs

And then back to Wired

• Programming cleverness translates directly

• This is the point!

57 inputs, cropped (middle) from slices 4 8

24

Design exploration by delay analysis
(Elmore for fictitious 100nm process, Huang&Ercegovac’97)

200

300

400

500

600

700

800

32 64 128
Word length

Delay
[ps]

Sklansky
Slices End
Slices Mid

fanout 4

fanout 4

fanout 5

Design flow

Wired

Lava: layout combinators

Lava: functional

25

Conclusion

• It works!

• Going back and forth between Lava and Wired really
helps. Gives understanding and hence simpler solutions

• In the case study, we tried to go to Wird too early, and
got over-complicated code (too many cases)

• We think we know what the steps are, but need to do
more case studies

• Seem to need a new programming idiom in Lava,
involving explicit calculations of numbers of inputs. Need
to simplify this.

Next

• Produce real layout from Wired

• Really merge Lava and Wired

• More analyses

• More case studies

• Adaptive circuits

• Study power consumption

Reachability Analysis with QBF

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Workshop Designing Correct Circuits

DCC’06

Vienna, Austria, March, 2006

Model Checking
DCC’06, Vienna – A. Biere, FMV, JKU Linz

1

• explicit model checking [ClarkeEmerson’82], [Holzmann’91]

– program presented symbolically (no transition matrix)

– traversed state space represented explicitly

– e.g. reached states are explicitly saved bit for bit in hash table

⇒ State Explosion Problem (state space exponential in program size)

• symbolic model checking [McMillan Thesis’93], [CoudertMadre’89]

– use symbolic representations for sets of states

– originally with Binary Decision Diagrams [Bryant’86]

– Bounded Model Checking using SAT [BiereCimattiClarkeZhu’99]

Forward Fixpoint Algorithm: Bad State Reached
DCC’06, Vienna – A. Biere, FMV, JKU Linz

2

I B

Forward Fixpoint Algorithm: Termination, No Bad State Reachable
DCC’06, Vienna – A. Biere, FMV, JKU Linz

3

I B

Forward Least Fixpoint Algorithm for Model Checking Safety
DCC’06, Vienna – A. Biere, FMV, JKU Linz

4

initial states I , transition relation T, bad states B

model-checkµ
forward (I , T, B)

SC = /0; SN = I ;

while SC 6= SN do
if B∩SN 6= /0 then

return “found error trace to bad states”;

SC = SN;

SN = SC∪ Img(SC) ;

done ;

return “no bad state reachable”;

symbolic model checking represents set of states in this BFS symbolically

Unrolling of Forward Least Fixpoint Algorithm
DCC’06, Vienna – A. Biere, FMV, JKU Linz

5

0: continue? S0
C 6= S0

N ∃s0[I(s0)]

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: continue? S1
C 6= S1

N ∃s0,s1[I(s0)∧T(s0,s1)∧¬I(s1)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T(s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T(s0,s1)∧B(s1)]

2: continue? S2
C 6= S2

N ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧
¬(I(s2)∨∃t0[I(t0)∧T(t0,s2)])]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)→
I(s2)∨∃t0[I(t0)∧T(t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧B(s2)]

Termination Check
DCC’06, Vienna – A. Biere, FMV, JKU Linz

6

∀s0, . . . ,sr+1[I(s0)∧
r̂

i=0

T(si,si+1)→

∃t0, . . . , tr [I(t0) ∧ sr+1 = tr ∧
r−1̂

i=0

(ti = ti+1 ∨ T(ti, ti+1))]]

0t

s1

t1

sr s +1rs −1r

t −1r

tr s +1r

s0

initial states

(=)

∀

∃

(we allow ti+1 to be identical to ti in the lower path)

radius is smallest r for which formula is true

Quantified Boolean Formulae (QBF)
DCC’06, Vienna – A. Biere, FMV, JKU Linz

7

• propositional logic (SAT ⊆ QBF)

– constants 0,1

– operators ∧,¬,→,↔, . . .

– variables x,y, . . . over boolean domain IB = {0,1}

• quantifiers over boolean variables

– valid ∀x[∃y[x↔ y]] (read ↔ as =)

– invalid ∃x[∀y[x↔ y]]

QBF Semantics
DCC’06, Vienna – A. Biere, FMV, JKU Linz

8

• semantics given as expansion of quantifiers

∃x[f] ≡ f [0/x]∨ f [1/x] ∀x[f] ≡ f [0/x]∧ f [1/x]

• expansion as translation from SAT to QBF is exponential

– SAT problems have only existential quantifiers

– expansion of universal quantifiers doubles formula size

• most likely no polynomial translation from SAT to QBF

– otherwise PSPACE = NP

Diameter
DCC’06, Vienna – A. Biere, FMV, JKU Linz

9

initial states
unreachable states

states with distance 1 from initial states

single state with distance 2 from initial states

0 1

2 3

4

5 6 7 8

9

Termination Check in Symbolic Reachability is in QBF
DCC’06, Vienna – A. Biere, FMV, JKU Linz

10

• checking SC = SN in 2nd iteration results in QBF decision problem

∀s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)→ I(s2)∨∃t0[I(t0)∧T(t0,s2)]]

• not eliminating quantifiers results in QBF with one alternation

– checking whether bad state is reached only needs SAT

– number iterations bounded by radius r = O(2n)

• so why not forget about termination and concentrate on bug finding?

⇒ Bounded Model Checking (BMC)

BMC Part of Fixpoint Algorithm
DCC’06, Vienna – A. Biere, FMV, JKU Linz

11

0: continue? S0
C 6= S0

N ∃s0[I(s0)]

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: continue? S1
C 6= S1

N ∃s0,s1[I(s0)∧T(s0,s1)∧¬I(s1)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T(s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T(s0,s1)∧B(s1)]

2: continue? S2
C 6= S2

N ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧
¬(I(s2)∨∃t0[I(t0)∧T(t0,s2)])]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)→
I(s2)∨∃t0[I(t0)∧T(t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧B(s2)]

Bounded Model Checking (BMC)
DCC’06, Vienna – A. Biere, FMV, JKU Linz

12

[BiereCimattiClarkeZhu TACAS’99]

• look only for counter example made of k states (the bound)

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

or
p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

• simple for safety properties Gp (e.g. p = ¬B)

I(s0) ∧ (
k−1̂

i=0

T(si,si+1)) ∧
k_

i=0

¬p(si)

• harder for liveness properties Fp

I(s0) ∧ (
k−1̂

i=0

T(si,si+1)) ∧ (
k_

l=0

T(sk,sl)) ∧
k̂

i=0

¬p(si)

Bounded Model Checking State-of-the-Art
DCC’06, Vienna – A. Biere, FMV, JKU Linz

13

• increase in efficiency of SAT solvers [ZChaff,MiniSAT,SATelite]

• SAT more robust than BDDs in bug finding

(shallow bugs are easily reached by explicit model checking or testing)

• better unbounded but still SAT based model checking algorithms

– k-induction [SinghSheeranStålmarck’00]

– interpolation [McMillan’03]

• 4th Intl. Workshop on Bounded Model Checking (BMC’06)

• other logics beside LTL and better encodings

e.g. [LatvalaBiereHeljankoJuntilla’04]

Induction
DCC’06, Vienna – A. Biere, FMV, JKU Linz

14

[SinghSheeranStålmarck’00]

• more specifically k-induction

– does there exist k such that the following formula is unsatisfiable

T(s0,s1)∧·· ·∧T(sk−1,sk)∧B(sk)∧
^

0≤i< j≤k

si 6= sj

– if UNSAT and ¬BMC(k) then bad state unreachable

– it is further possible to assume ¬B(si) for all i < k

• backward version of initialized reoccurrence diameter

• k = 0 check whether ¬B tautological (propositionally)

• k = 1 check whether ¬B inductive for T

Occurrence Diameter Explosion
DCC’06, Vienna – A. Biere, FMV, JKU Linz

15

• diameter longest shortest path between two states

• occurrence diameter longest simple path

– simple = without reoccurring state

• occurrence diameter can be exponentially larger than diameter

– n bit register with load signal, initialized with zero

– reoccurrence diameter 2n−1

– diameter 1

• applies to backward reoccurrence diameter and k induction as well

Symbolic Transitive Closure
DCC’06, Vienna – A. Biere, FMV, JKU Linz

16

Transitive Closure

T∗ ≡ T2n

(assuming = ⊆ T)

Standard Linear Unfolding Iterative Squaring via Copying

T i+1 (s, t)≡ ∃m[T i (s,m)∧T(m, t)] T2·i (s, t)≡ ∃m[T i (s,m)∧ T i (m, t)]

Non-Copying Iterative Squaring

T2·i (s, t) ≡ ∃m[∀c[∃l , r[(c→ (l , r) = (s,m))∧ (c→ (l , r) = (m, t))∧ T i (l , r)]]]

Hierarchy
DCC’06, Vienna – A. Biere, FMV, JKU Linz

17

• flat circuit model exponential in size of hierarchical model

– M0 has one signal resp. register

– Mi+1 instantiates Mi twice

– Mn has 2n signals resp. registers

• model hierarchy/repetitions in QBF as in non-copying iterative squaring

– T interpreted as combinatorical circuit with inputs s, outputs t

• conjecture: [Savitch70] even applies to hierarchial descriptions

Experiments
DCC’06, Vienna – A. Biere, FMV, JKU Linz

18

still work in progress

• bounded model checker for flat circuits with k induction

• can also produce forward/backward diameter checking problems in QBF

• sofar instances have been quite challenging for current QBF solvers

• found some toy examples which can be checked much faster with QBF

– for instance the n bit register with load signal discussed before

• non-copying iterative squaring does not give any benefits (yet)

DPLL for SAT and QBF
DCC’06, Vienna – A. Biere, FMV, JKU Linz

19

dpll-sat(Assignment S) [DavisLogemannLoveland62]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
v := next-unassigned-variable()
return dpll-sat(S∪{v 7→ false}) ∨ dpll-sat(S∪{v 7→ true})

dpll-qbf(Assignment S) [CadoliGiovanardiSchaerf98]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
v := next- outermost -unassigned-variable()

@ := is-existential(v) ? ∨ : ∧

return dpll-sat(S∪{v 7→ false}) @ dpll-sat(S∪{v 7→ true})

The Crux of QBF
DCC’06, Vienna – A. Biere, FMV, JKU Linz

20

Why is QBF harder than SAT?

|= ∀x . ∃y . (x↔ y)

6|= ∃y . ∀x . (x↔ y)

Decision order matters!

State-of-the-Art in QBF Solvers
DCC’06, Vienna – A. Biere, FMV, JKU Linz

21

• most implementations DPLL alike: [Cadoli. . .98][Rintanen01]

– learning was added [Giunchiglia. . .01] [Letz01] [ZhangMalik02]

– top-down: split on variables from the outside to the inside

• multiple quantifier elimination procedures:

– enumeration [PlaistedBiereZhu03] [McMillan02]

– expansion [Aziz-Abdulla. . .00] [WilliamsBiere. . .00] [AyariBasin02]

– bottom-up: eliminate variables from the inside to the outside

• q-resolution [KleineBüning. . .95], with expansion [Biere04]

• symbolic representations [PanVardi04] [Benedetti05] BDDs

Summary
DCC’06, Vienna – A. Biere, FMV, JKU Linz

22

• applications fuel interest in SAT

– incredible capacity increase (last year: MiniSAT, SATelite)

– SAT solver competition affiliated to SAT conference

– SAT is becoming a core verification technology

• QBF is catching up

– solvers are getting better (first competetive QBF evaluation)

– new applications

– richer structure

“Easy” Parameterized Verification of Cross Clock
Domain Protocols

Geoffrey M. Brown Lee Pike∗

Indiana University, Galois Connections,
Bloomington leepike@galois.com

geobrown@cs.indiana.edu

February 8, 2006

Abstract

This paper demonstrates how an off-the-shelf model checker that utilizes a Sat-
isfiability Modulo Theories decision procedure and k-induction can be used for ver-
ification applications that have traditionally required special purpose hybrid model
checkers and/or theorem provers. We present fully parameterized proofs of two
types of protocols designed to cross synchronous boundaries: a simple data syn-
chronization circuit and a serial communication protocol used in UARTs (8N1).
The proofs were developed using the SAL model checker and its ICS decision pro-
cedures.

1 Introduction

This paper uses the bounded model checker and ICS decision procedures of SAL to
develop fully parameterized proofs of two types of protocols designed to cross synchronous
boundaries: a simple data synchronization circuit and a serial communication protocol,
8N1, used in UARTs.1 Protocols such as these present challenging formal verification
problems because their correctness requires reasoning about interacting time events. The
proofs discussed in this paper are parameterized by expressing temporal constraints as a
system of linear equations. The proofs are “easy” in that they require few proof steps.
For example, we have previously presented a proof of the biphase mark protocol [1],
which is structurally similar to, though simpler than, 8N1. Our biphase mark proof
required 5 invariants, whereas a published proof using PVS required 37; our proof required
5 proof directives (the proof of each invariant is automated), whereas the PVS proof
initially required more than 4000 proof directives [2]. Our proofs are quick to check
– a few minutes computing time, while one published proof of biphase mark required

∗The majority of this work was completed while this author was a member of the Formal Methods
Group at the NASA Langley Research Center in Hampton, Virginia.

1The SAL specifications and proofs are available at http://www.cs.indiana.edu/∼lepike/pub
pages/dcc.html.

1

five hours. Furthermore, our proofs identified a potential bug: in verifying the 8N1
decoder, we found a significant error in a published application note that incorrectly
defines the relationship between various real time parameters which, if followed, would
lead to unreliable operation [3].

Transm
itter

Receiver

dout

ain

rout

a1

din

r1 rin

aout

tclk

rclk

Figure 1: Synchronizer Circuit

The synchronizer circuit considered in this paper, illustrated in Figure 1, is constructed
entirely of D-type flip-flops. The circuit, which is commonly used, allows a transmitter
in one clock domain to reliably transmit data to a receiver in another clock domain
irrespective of the relative frequencies of the clocks controlling the digital circuitry. This
circuit allows the transmitter to send a bit (or in general a word) of data to the receiver
through an exchange of “request” (rout, rin) and “acknowledgment” signals (aout, ain).
A temporal illustration of the exchange between transmitter and receiver is presented in
Figure 2. Each event initiated by the transmitter must propagate to the receiver and
a response must be returned before the transmitter can initiate a new transfer. The
protocol followed by the transmitter and receiver is a simple token passing protocol
where the transmitter has the token and hence is allowed to modify its outputs only
when ain = rout, and the receiver has the token and is allowed to read its input data
din when rin != aout. For example, the transmitter sends data when rout = ain

by setting dout to the value that it wishes to send and by changing the state of rout.
Informally, the circuit satisfies a simple invariant:

rin 6= aout ⇒ din = dout (1)

Although the protocol is trivial, there is a fundamental issue that greatly complicates
the behavior of the circuit – metastability. The fact that the two clocks rclk and tclk

are not synchronized and may run at arbitrary relative rates means that we cannot treat
the flip-flops in the circuit as simple delay elements. In particular, the correct behavior
of a flip-flop depends upon assumptions about when its input may change relative to its
clock. Changes occurring too soon before a clock event are said to violate the “setup
time” requirement of the flip-flop while changes occurring too soon after a clock event
are said to violate the “hold time” requirement. Either violation may cause the flip-flop

2

rout,dout

rin,din

aout

ain

~rout,dout
~rin,din
~aout

~ain

rx timetx time

Figure 2: Synchronizer Circuit Timeline

to enter a metastable state in which its output is neither “one” nor “zero” and which
may persist indefinitely. In practice, probabilistic bounds may be calculated which define
how long a metastable state is likely to persist. The illustrated circuit assumes that the
time between two events on a single clock is long enough to ensure that the metastability
resolution time (plus setup time) is shorter that the clock period with sufficiently high
probability. While there have been other proofs of this circuit, they did not model the
effects of metastability [4, 5]. An alternative approach has been proposed and is evidently
used in a commercial tool to reproduce synchronization bugs by introducing random one-
clock jitter in cross domain signals [6, 7]. A fundamental difference between our work
and those cited is that we explicitly model timing effects and rely upon clearly stated
timing assumptions to verify the circuit.

1 0 0 1 1 1 0 1

start bit stop bit
d0 d7

Frame

Figure 3: 8N1 Data Transmission

Metastability also is an issue in the behavior of the 8N1 implementation in which
a receiver must sample a changing signal in order to determine the boundaries between
valid data. To motivate the design of the 8N1 protocol, consider Figure 3 which illustrates
the encoding scheme utilized by this protocol. In a synchronous circuit, the data and
clock are typically transmitted as separate signals; however, this is not feasible in most
communication systems (e.g., serial lines, Ethernet, SONET, Infrared) in which a single
signal is transmitted. A general solution to this problem is to merge the clock and data
information using a coding scheme. The clock is then recreated by synchronizing a local
reference clock to the transitions in the received data. In 8N1 a transition is guaranteed
to occur only at the beginning of each frame, a sequence of bits that includes a start bit,
eight data bits, and a stop bit. Data bits are encoded by the identity function – a 1 is

3

a 1 and a 0 is a 0. Consequently, the clock can only be recovered once in each frame in
which the eight data bits are transmitted.

Thus, the central design issue for a data decoder is reliably extracting a clock signal
from the combined signal. Once the location of the clock events is known, extracting
the data is relatively simple. Although the clock events have a known relationship to
signal transitions, detecting these transitions precisely is usually impossible because of
distortion in the signal around the transitions due to the transmission medium, clock
jitter, and other effects. A fundamental assumption is that the transmitter and receiver
of the data do not share a common time base and hence the estimation of clock events is
affected by differences in the reference clocks used. Constant delay is largely irrelevant;
however, transition time and variable delay (e.g., jitter) are not. Furthermore, differences
in receiver and transmitter clock phase and frequency are significant. Any correctness
proof of an 8N1 decoder must be valid over a range of parameters defining limits on jitter,
transition time, frequency, and clock phase. Finally, any errors in detection can lead to
metastable behavior as with the synchronization circuit.

The temporal proofs presented in this paper may be reproducible using specialized
real-time verification tools such as Hytech, TReX and Parameterized Uppaal (we leave
it as an open challenge to these respective communities to reproduce these models and
proofs in the those tools) [8, 9, 10]. However, a key difference is that SAL is a general
purpose model checking tool and the real time verification we performed utilized the
standard decision procedures. Furthermore, the proofs are not restricted to finite data
representations – in the case of the data synchronization circuit our proofs are valid for
arbitrary integer data.

The remainder of the paper is organized as follows. In Section 2, we overview the
language and proof technology of SAL. The modeling and verification of the synchronizer
circuit is presented in Section 3. The model of the 8N1 protocol is presented in Section 4,
and its verification is described in Section 5. In Section 6, we first describe how to
derive error bounds on an operational model from a fully-parameterized one, and then
we describe how this the operational model reveals errors in a published application note.
We also mention future work.

2 Introduction to SAL

The protocols are specified and verified in the Symbolic Analysis Laboratory (SAL), devel-
oped by SRI, International [11]. SAL is a verification environment that includes symbolic
and bounded model checkers, an interactive simulator, integrated decision procedures,
and other tools.

SAL has a high-level modeling language for specifying transition systems. A transi-
tion system is specified by a module. A module consists of a set of state variables and
guarded transitions. Of the enabled transitions, one is nondeterministically executed at a
time. Modules can be composed both synchronously (||) and asynchronously ([]), and
composed modules communicate via shared variables. In a synchronous composition,
a transition from each module is simultaneously applied; a synchronous composition is
deadlocked if either module has no enabled transition. In an asynchronous composi-
tion, an enabled transition from one of the modules is nondeterministically chosen to be

4

applied.
The language is typed, and predicate sub-typing is possible. Types can be both

interpreted and uninterpreted, and base types include the reals, naturals, and booleans;
array types, inductive data-types, and tuple types can be defined. Both interpreted
and uninterpreted constants and functions can be specified. This is significant to the
power of these models: the parameterized values are uninterpreted constants from some
parameterized type.

Bounded model checkers are usually used to find counterexamples, but they can also be
used to prove invariants by induction over the state space [12]. SAL supports k-induction,
a generalization of the induction principle, that can prove some invariants that may not
be strictly inductive. By incorporating a satisfiability modulo theories decision procedure,
SAL can do k-induction proofs over infinite-state transition systems.2

Let (S, I, →) be a transition system where S is a set of states, I ⊆ S is a set of initial
states, and → is a binary transition relation. If k is a natural number, then a k-trajectory
is a sequence of states s0 → s1 → . . . → sk (a 0-trajectory is a single state). Let k be
a natural number, and let P be property. The k-induction principle is then defined as
follows:

• Base Case: Show that for each k-trajectory s0 → s1 → . . . → sk such that s0 ∈ I,
P (sj) holds, for 0 ≤ j < k.

• Induction Step: Show that for all k-trajectories s0 → s1 → . . . → sk, if P (sj) holds
for 0 ≤ j < k, then P (sk) holds.

The principle is equivalent to the usual transition-system induction principle when k = 1.
In SAL, the user specifies the depth at which to attempt an induction proof, but the
attempt itself is automated. The main mode of user-guidance in the proof process is
in iteratively building up inductive invariants. While arbitrary LTL safety formulas can
be verified in SAL using k-induction, only state predicates may be used as lemmas in a
k-induction proof. Lemmas strengthen the invariant. We have more to say about the
proof methodology for k-induction in Section 5.

3 Modeling and Verification of the Synchronizer Cir-

cuit

In this section we use a simple synchronizer circuit to illustrate the various modeling
techniques used in this paper through the creation of successively more accurate models
of the synchronizer circuit utilizing the transition language of SAL. In order to make the
problem slightly more interesting, we generalize the data transfered by the circuit (din,
dout) to arbitrary integers. Our initial model for the system of Figure 1 consists of two
asynchronous processes – a transmitter (tx) and a receiver (rx).

system : MODULE = rx [] tx;

2We use SRI’s ICS decision procedure [13], the default SAT-solver and decision procedure in SAL,
but others can be plugged in.

5

FF : MODULE = BEGIN
INPUT d : BOOLEAN
OUTPUT q : BOOLEAN

INITIALIZATION
q = FALSE

TRANSITION
q’ = d

END;

Figure 4: Flip Flop

Thus, the transmitter and receiver execute in an interleaved fashion and at arbitrary rates;
however, each is made up from several processes that are composed synchronously (i.e.,
operate in lock step). For example, the transmitter is composed of an “environment”,
which follows the basic protocol described above, and two instantiated flip-flops modules
(described below) with their inputs and outputs suitably renamed.

tx : MODULE = ((RENAME d TO aout, q TO a1 IN FF)
|| (RENAME d TO a1, q TO ain IN FF)
|| tenv);

Our initial flip-flop model in Figure 4 has no provision for capturing timing constraints.
Indeed, its behavior is simply an assignment that copies input d to output q without any
reference to an underlying clock. Our models depend upon synchronous composition to
force the flip-flops comprising the transmitter (and receiver) to execute in lock step.

As mentioned, the transmitter’s environment, shown in Figure 5, is constrained to
obey the underlying protocol. There are two subtle points in this definition – we allow
the data transmitted to take any randomly selected integer value, and we allow the trans-
mitter to “stutter” indefinitely when it is allowed to transmit a new value (stuttering is
expressed by guard --> where guard is a boolean expression). The syntax var IN range

defines a non-deterministic choice chosen from the set range. The infinite state model
checker of SAL that enables our verification of timing constraints also enables verification
with unbounded variables.

The receiver is similarly composed of an environment, flip-flops, and a data latch
(the flipflop module in which the input and output variables are generalized to arbitrary
integers).

rx : MODULE =
((RENAME d TO rout, q TO r1 IN FF)

|| (RENAME d TO r1, q TO rin IN FF)
|| (RENAME d TO dout, q TO din IN LATCH)
|| renv);

The receiver environment module non-deterministically stutters or echos rin.

6

tenv : MODULE = BEGIN
INPUT ain : BOOLEAN
OUTPUT rout : BOOLEAN
OUTPUT dout : INTEGER

INITIALIZATION
dout IN { x : INTEGER | TRUE };
rout = FALSE

TRANSITION
[TRUE -->
[] rout = ain --> rout’ = NOT rout;

dout’ IN {x : INTEGER | TRUE };
] END;

Figure 5: Transmitter’s Environment

renv : MODULE =
BEGIN
INPUT rin : BOOLEAN
OUTPUT aout : BOOLEAN

INITIALIZATION
aout = FALSE

TRANSITION
aout’ IN {aout, rin}

END;

The defined circuit can be verified by induction over the (infinite) state space using the
bounded model checking capabilities of SAL. In its current form, this circuit requires only
straight induction (k = 1) for verification. Because the circuit implements a token passing
protocol, a token counting lemma like the one in Figure 6 is key to its verification. Here,
a “token” exists where the input and output to a flip-flop differ or where the receiver or
transmitter environments are enabled to receive or send a value respectively; the syntax
is the LTL temporal logic where the G operator denotes that its argument holds in all
states in a trajectory through the transition system. This lemma is used to prove the key
theorem using simple induction:

Sync_Thm : THEOREM system |- G((rout /= ain) => (dout = din));

Not surprisingly, both l1 and Sync Thm can be verified quickly by SAL; however,
the model as given does not capture any of the flip-flop timing requirements nor does it
model any of the negative effects due to violating these requirements. In the following,
we present a model that captures some of these requirements and allows us to verify the
circuit even in the face of failures to meet these requirements.

We begin by modeling clocks. The transmitter and receiver are each composed with
a local clock that regulates when that component may execute. The system we are
developing has the following form:

7

changing(i : BOOLEAN, o : BOOLEAN) : [0..1] =
IF (i /= o) THEN 1 ELSE 0 ENDIF;

l1 : LEMMA system |- G(changing(rin, r1) +
changing(r1, rout) +
changing(rout,ain) +
changing(ain, a1) +
changing(a1, aout) +
changing(aout,NOT rin)
<= 1);

Figure 6: Counting Lemma

RPERIOD : { x : TIME | 0 < x};

rclock : MODULE = BEGIN
INPUT tclk : TIME
OUTPUT rclk : TIME
INITIALIZATION

rclk IN { x : TIME | time(rclk,tclk) <= x }
TRANSITION

time(rclk,tclk) = rclk -->
rclk ’ IN { x : TIME | time(tclk,rclk) + RPERIOD <= x }

END;

Figure 7: Receiver Clock

(rx || rclock) [] (tx || tclock)

The basic idea, described as timeout automata by Dutertre and Sorea, is that the
progress of time is enforced cooperatively (but nondeterministically) [14, 15]. The receiver
and transmitter have timeouts, rclk and tclk, that mark the real-time at which they
will respectively make transitions (timeouts are always in the future and may be updated
nondeterministically). Each respective module representing the receiver and transmitter
is allowed to execute only if its timeout equals the value of time(rclk, tclk), which is
defined to be the minimum of all timeouts.

time(t1 : TIME, t2: TIME): TIME =
IF t1 <= t2 THEN t1 ELSE t2 ENDIF;

The receiver clock is defined in Figure 7. The transmitter clock is identical except
for signal and constant names. As might be expected, the proof for the untimed model
continues to work without change for this timed model since the addition of the timeout
modules can only restrict the possible behaviors of the system and hence does not effect
the safety property we are interested in verifying.

8

FFnd : MODULE =
BEGIN
INPUT d : BOOLEAN
OUTPUT q : BOOLEAN

INITIALIZATION
q = FALSE

TRANSITION
q’ IN {TRUE, FALSE}

END;

Figure 8: Nondeterministic Flip Flop

tx2 : MODULE = ((RENAME d TO aout, q TO a1 IN FFnd)
|| (RENAME d TO a1, q TO ain IN FF)
|| tclock || tenv);

rx2 : MODULE = ((RENAME d TO rout, q TO r1 IN FFnd)
|| (RENAME d TO r1, q TO rin IN FF)
|| (RENAME d TO dout, q TO din IN LATCHnd)
|| rclock || renv);

Figure 9: Transmitter and Receiver Modules

Our final refinement is to add a mechanism for defining timing constraints and for
introducing behaviors that model the effect of violating these constraints. The approach
we take is inspired by by a recent paper by Seshia et. al. describing the use of ”Gener-
alized Relative Timing ”[16]. Briefly, we modify the described circuit elements to allow
the aberrant behaviors that may arise due to violation of timing constraints and add
“constraint” processes to regulate the conditions under which these aberrant behaviors
may occur.

As mentioned previously, the behavior we wish to capture is due to metastability
occurring when the inputs to a flip-flop do not satisfy timing requirements. The circuit
design implicitly assumes that the period of the receiver and transmitter clocks are suffi-
ciently long that metastability occurring at the beginning of a clock period will have been
resolved prior to the next clock period. Thus, in the circuit described, the only signals
which may exhibit metastability are din, r1, and a1. It is easy to demonstrate that the
circuit will fail if this assumption is not met. Furthermore, the value of a signal after
resolution of a metastable state is non-deterministic. We model this by replacing the key
circuit elements with non-deterministic versions of the existing elements. For example,
we define a non-deterministic flip-flop module in Figure 8. Similarly, we can define a
non-deterministic latch which randomly selects its next output. The transmitter and
receiver respectively are defined by appropriately renaming input and output variables,
as shown in Figure 9.

9

Constraint [stime : REAL] : MODULE =
BEGIN
INPUT dclk : TIME
INPUT qclk : TIME
INPUT d : BOOLEAN
INPUT q : BOOLEAN
OUTPUT ts : TIME

INITIALIZATION
ts = 0;

TRANSITION
[

dclk /= dclk’ AND (ts > time(dclk,qclk) OR q’ = d) -->
[] dclk = dclk’ AND d /= d’ --> ts’ = time(dclk,qclk) + stime
[] dclk = dclk’ AND d = d’ -->
]

END;

Figure 10: Constraint Module

Clearly, the circuit no longer satisfies its basic invariant. Our final step is to add
processes that execute in parallel with the this system to constrain the outputs of the
non-deterministic circuit elements. In particular, we assume that whenever rout, aout,
or dout change state there is a settling period during which attempts to latch the new
value will lead to metastability and hence a non-deterministic next state. As we shall
show, the constraint processes that we add force the non-deterministic circuit elements
to behave in a conventional manner outside these settling periods. The length of the
settling period is implementation dependent and may be the result of a combination of
factors such as signal propagation and circuit element setup time. In order to simplify the
presentation, we have chosen to ignore hold time requirements. In practice, it is feasible
to design flip-flops with zero-hold time requirements by inserting delays at the flip-flop
input (at the cost of additional setup time). Furthermore, in an acyclic system such as
8N1 described in Section 4, one can simply shift the perspective of where the clock edge
occurs to justify combining the setup and hold time requirements.

The system model, with the addition of the necessary constraints, has the form:

system : MODULE = (rx2 [] tx2) || constraints

Synchronous composition means that rx2 and tx2 can only execute when the necessary
constraints are satisfied. Consider a flip-flop with input d and output q. We need a
constraint module that monitors the d input for changes and constrains the q output to
meet the requirements for “normal” behavior outside the settling period that follows a
change, as shown in Figure 10 (note the module is a parameterized module; its parameter,
stime, acts as a constant in the module).
Consider the following constraint module, with appropriately renamed input and output
variables.

10

l0 : LEMMA system |- G((r1ts <= time(rclk,tclk) OR
(r1ts + TPERIOD - TSETTLE <= tclk)) AND

(d1ts <= time(rclk,tclk) OR
(d1ts + TPERIOD - TSETTLE <= tclk)) AND

(a1ts <= time(rclk,tclk) OR
(a1ts + RPERIOD - RSETTLE <= rclk)) AND
(a1ts <= time(rclk,tclk) + RSETTLE) AND
(d1ts <= time(rclk,tclk) + TSETTLE) AND
(r1ts <= time(rclk,tclk) + TSETTLE) AND
(time(rclk,tclk) <= rclk) AND
(time(rclk,tclk) <= tclk));

Figure 11: Lemma l0

(RENAME d TO rout, q to r1, dclk TO rclk, qclk TO tclk, ts TO r1ts IN
Constraint[TSETTLE])

Whenever rout changes value and rclk preserves its value (i.e., tx2 executes), the local
timer r1ts is set to a value equal to the current time plus the settling constant TSETTLE.
Whenever rclk changes value (i.e., rx2 takes a step) either r1 is assigned rout or the local
timer must be active. Finally, if neither condition occurs, the constraint module allows
tx2 to execute. To constrain the three possible sources of non-deterministic behavior,
there are three constraint modules with the local timers r1ts, a1ts, and d1ts monitoring
changes on rout, aout, and dout, respectively.

The three constraint modules utilize two settling constants TSETTLE (for rout and
dout) and RSETTLE (for aout). In verifying the circuit, we found that correct behav-
ior depends on establishing a relationship between settling times and clock periods. In
particular, the settling time of the transmitter must be less than the clock period of
the receiver (and vice versa). Violating these assumptions has the effect of “injecting”
additional tokens into the circuit whenever metastability occurs. Thus, we performed
verification under the following assumptions.

TSETTLE : { x : TIME | 0 <= x AND x < RPERIOD AND x < TPERIOD };
RSETTLE : { x : TIME | 0 <= x AND x < RPERIOD AND x < TPERIOD };

With the changes described above, verification of the circuit behavior is more chal-
lenging, requiring k-induction over a modified token counting lemma and an additional
helper lemma. To make the k-induction proof technique feasible, it is helpful to constrain
the state space whenever possible. Hence, we developed the lemma shown in Figure 11
to assert certain obvious facts about system timing.

It was necessary to augment the counting lemma with additional addends to account
for the possible spontaneous creation of tokens due to metastability, as shown in Figure 12.

Lemmas l0 and l1 can be proved at depth 1 (straight induction) with l1 using l0 as
an assumption. The main theorem, Sync Thm, can be verified at depth 3 using l0 and
l1 as assumptions.

11

l1 : LEMMA system |- G(changing(rout, r1) +
changing(r1, rin) +
changing(rin,aout) +
changing(aout, a1) +
changing(a1,ain) +
changing(ain,NOT rout) +
if (rout=r1 AND rclk < r1ts) THEN

1 ELSE 0 ENDIF +
if (aout=a1 AND tclk < a1ts) THEN

1 ELSE 0 ENDIF
<= 1);

Figure 12: Lemma l1

4 Modeling the 8N1 Protocol

In this section we discuss the model of the 8N1 protocol – its proof is deferred to Section 5.
We model the protocol using two processes asynchronously composed – a transmitter (tx)
and a receiver (rx). The general arrangement of the two major modules is illustrated in
Figure 13. 3

system : MODULE = rx [] tx;

tclock

tenv tenc
tbit

tready
tdata

tx rx
rclock

rdec rbit

Figure 13: System Block Diagram

As with the synchronizer circuit of Section 3, the transmitter and receiver each have
a local clock module to manage their timeout. Recall that time is advanced whenever the
module with the minimum timeout value executes and that the current time is always
equal to the minimum timeout.

In addition to its local clock (tclock), the transmitter consists of an encoder (tenc)
that implements the basic protocol, and an environment (tenv) that generates the data
to be transmitted. These modules are synchronously composed.

tx : MODULE = tclock || tenc || tenv;

3Not shown are the shared variables used by the clock modules to compute the global “time”.

12

Similarly, the receiver consists of its local clock (rclock) and and a decoder (rdec)
that implements the protocol.

rx : MODULE = rdec || rclock;

The system is defined by the asynchronous composition of the transmitter and re-
ceiver which are then composed synchronously with a “constraint” module that models
uncertainty in signal propagation as well as timing constraints. For the moment, we
postpone discussion of the constraint module.

system : MODULE = (rx [] tx) || constraint;

The clock and environment modules for the transmitter are illustrated in Figure 14.
The environment determines when new input data should be generated and is regulated
by tenc. Whenever tready is true, a random boolean datum is selected; otherwise the
old datum is preserved.

The timing model for the transmitter is similar to that for the synchronizer circuit.
We assume an arbitrary clock period consisting of a settling phase (TSETTLE) and a
stable phase (TSTABLE). The settling phase captures both setup requirements for the
receiver as well as propagation delay. We will assume that reading the output of the
transmitter tdata during the settling phase yields a non-deterministic result. As with
the synchronizer, we assume that the receiver is implemented in such a manner that any
metastability is resolved within the minimum clock period of the receiver. TSETTLE and
TSTABLE are uninterpreted constants; however they are parameterized, which allows us to
verify the model for any combination of settling time and receiver clock error (described
subsequently). The transmitter settling time can be used to capture the effects of jitter
and dispersion in data transmission as well as jitter in the transmitter’s clock. In the
case of the settling period, the model can be viewed as less deterministic than an actual
implementation which might reach stable transmission values sooner. This means we
verify the model under more pessimistic conditions than an actual implementation would
face. As with the synchronization circuit, we do not actually model non-boolean values,
rather we model a receiver that detects random values for signals that are not stable (as
determined by the separate “constraint” module).

The transmitter encoder is defined as a simple state machine – state 0 corresponds to
the start bit, states 1-8 correspond to the 8 data bit transmission states, and state 9 is the
stop state. The encoder model is illustrated in Figure 15. Notice that the model allows
the transmitter to stutter at state 9 indefinitely. The output tdata is either current value
of tbit (states 1-8), FALSE (state 0), or TRUE (state 9).

The receiver clock is more complicated than the transmitter because of the manner
in which a UART is implemented. Consider Figure 3. There may be an arbitrary “idle”
period between frames during which the signal is high (TRUE). The behavior of a UART
receiver is to “scan” for the high-to-low transition that marks the beginning of a frame.
Once this transition is detected, the receiver predicts, based upon its local time reference,
the middle of the 8 data and 1 stop bit times. There are two different intervals used for
this prediction – the time between the detected “start” transition and the middle of the
first data bit and the “period” between successive data samples. In an implementation,
the bit period is generally an integer multiple of the scan time and the start interval is 1.5

13

TPERIOD : { x : TIME | 0 < x};
TSETTLE : { x : TIME | 0 <= x AND x < TPERIOD};

% function to compute current time

time(t1 : TIME, t2 : TIME) : TIME = IF t1 <= t2 THEN t1 ELSE t2 ENDIF;

tclock : MODULE =
BEGIN

INPUT rclk : TIME
OUTPUT tclk : TIME

INITIALIZATION

tclk IN {x : TIME | 0 <= x AND x <= TSTABLE};

TRANSITION
[tclk = time(tclk, rclk) --> tclk’ = tclk + TPERIOD;]

END;

tenv : MODULE =
BEGIN
INPUT tready : BOOLEAN
OUTPUT tbit : BOOLEAN

TRANSITION
[

tready --> tbit’ IN {TRUE, FALSE}
[] ELSE -->
]
END;

Figure 14: Transmitter Environment and Clock

times the bit period. Generally the bit time of the receiver is approximately that of the
transmitter; however, in practice jitter and frequency errors mean that each measurement
interval is subject to error. In our model we associate all errors with the receiver and
assume that the transmitter runs at a constant rate.

The various receiver clock periods are expressed in terms of linear equations that
define lower and upper bounds for “SCAN”, “START”, and “PERIOD”. The details of
these equations can be viewed as part of the proof – we verify the protocol subject to
these bounds – and are postponed to Section 5. The receiver clock along with the various
is illustrated in Figure 16. The specific timeout interval depends upon the state of the
decoder; i.e., whether the decoder is scanning, sampling the first data bit, or sampling
subsequent data bits.

14

tenc : MODULE =
BEGIN
OUTPUT tdata : BOOLEAN
OUTPUT tstate : [0..9]
OUTPUT tready : BOOLEAN
INPUT tbit : BOOLEAN

INITIALIZATION
tdata = TRUE;
tstate = 9;

DEFINITION
tready = tstate < 8

TRANSITION
[

tstate = 9 -->
[] tstate = 9 --> tdata’ = FALSE;

tstate’ = 0;
[] tstate < 9 --> tdata’ = (tbit’ OR tstate = 8);

tstate’ = tstate + 1;
]
END;

Figure 15: Transmitter Encoder

The decoder is illustrated in Figure 17. There are three transitions – the first two
model the non-deterministic choice that occurs when scanning for the start bit and a
third models sampling the data bits. The receiver has 10 states (numbered [0..9]) where
the 8 data bits are received in states 0-7, the stop bit is received in state 8, and scanning
for a new start bit occurs in state 9.

As with the synchronizer, the value of the bit read is always chosen non-deterministically,
though the next state may depend upon the specific choice. Furthermore, the choice is
constrained by a separate module that determines when the sampled value should reflect
the input (tdata) and when the sampled value may be random. The constraint module
is also presented in Figure 17. The only significant difference between this and the con-
straint modules used with the synchronizer is the extra output stable which is used in
developing the proof.

15

timeout (min : TIME, max : TIME) : [TIME -> BOOLEAN] =
{ x : TIME | min <= x AND x <= max};

rclock : MODULE =
BEGIN
INPUT tclk : TIME
INPUT rstate : [0..9]
OUTPUT rclk : TIME

INITIALIZATION
rclk IN { x : TIME | 0 <= x AND x < RSCANMAX };

TRANSITION
[
rclk = time(rclk, tclk) -->

rclk’ IN IF (rstate’ = 9) THEN
timeout(rclk + RSCANMIN, rclk + RSCANMAX)

ELSIF (rstate’ = 0) THEN
timeout(rclk + RSTARTMIN, rclk + RSTARTMAX)

ELSE
timeout(rclk + RPERIODMIN, rclk + RPERIODMAX)

ENDIF;
]
END;

Figure 16: Receiver Clock

5 Verification of the 8N1 Protocol

Our main goal is to prove that the 8N1 decoder reliably extracts the data from the signal
it receives.

Uart_Thm : THEOREM system |- G(rstate < 9 AND
rstate > 0 AND
rclk >= tclk => ((tstate = rstate) AND

(rbit = tbit)));

Briefly, the theorem states that immediately after the receiver executes each of its
8 bit receive states (0..7), the received bit is equal to the currently transmitted bit.
This interpretation of the theorem depends upon the knowledge that the states of the
transmitter and receiver obey the following sequence. This sequence is verified with
theorem t0 to be discussed subsequently.

(tstate, rstate) = (9, 9), (0, 9), (0, 0), (1, 0), (1, 1), ...(9, 8), (9, 9) (2)

As mentioned previously, an important component of the proof is the set of bounds
on the various time constants utilized in the decoder model. We derived the bounds
by assuming worst case (minimum or maximum) and then determining how temporal

16

rdec : MODULE =
BEGIN
INPUT tdata : BOOLEAN
OUTPUT rstate : [0..9]
OUTPUT rbit : BOOLEAN

INITIALIZATION
rbit = TRUE;
rstate = 9;

TRANSITION
[

rstate = 9 --> rbit’ = TRUE
[] rstate = 9 --> rbit’ = FALSE;

rstate’ = 0
[] rstate /= 9 --> rbit’ IN {FALSE, TRUE};

rstate’ = rstate + 1
]
END;

constraint : MODULE =
BEGIN
INPUT tclk : TIME
INPUT rclk : TIME
INPUT rbit : BOOLEAN
INPUT tdata : BOOLEAN
OUTPUT stable : BOOLEAN
LOCAL changing : BOOLEAN

DEFINITION
stable = (NOT changing OR (tclk - rclk < TSTABLE));

INITIALIZATION
changing = FALSE

TRANSITION
[

rclk’ /= rclk AND (stable => rbit’ = tdata) -->
[] tclk’ /= tclk --> changing’ = (tdata’ /= tdata)
]
END;

Figure 17: Receiver Decoder and Constraint Module

errors accumulate by the 10th bit time (the stop bit). Informally, the correct behavior of
the protocol requires that all samples other than the initial scan fall during the “stable”
portion of the transmitter clock. We derived these bounds by considering the execution
sequence described and with the knowledge that the correct behavior of the receiver
requires that in receiver states 0..8, we require the clock events fall during the “stable”
period of the transmitter. Consider the case of the “scan” operation. In order to detect
the start bit, we must guarantee that the receiver sample tdata with a period that is no
longer that the stable period – if the interval were longer, then the start bit might might

17

be missed because two successive samples by the receiver fall outside the stable interval.

RSCANMIN : { x : TIME | 0 < x };
RSCANMAX : { x : TIME | RSCANMIN <= x AND x < TSTABLE };

Once the start bit is detected, the receiver waits for a “start” time before reading the
first data bit. Reading this data bit must fall in the stable region for transmitter state 1.

RSTARTMIN : { x : TIME | TPERIOD + TSETTLE < x };
RSTARTMAX : { x : TIME | RSTARTMIN <= x AND

TSETTLE + RSCANMAX + x < 2 * TPERIOD };

In subsequent states the receiver clock error accumulates. Thus, the constraint on the
receiver “period” depends upon the accumulated error at the point of sampling the stop
bit.

RPERIODMIN : { x : TIME | 9 * TPERIOD + TSETTLE < RSTARTMIN + 8 * x };
RPERIODMAX : { x : TIME | RPERIODMIN <= x AND

TSETTLE + RSCANMAX + RSTARTMAX + 8 * x < 10 * TPERIOD };

The proofs of t0 and Uart Thm require supporting lemmas. In general, when a k-
induction proof attempt fails, two options are available to the user: the proof can be
attempted at a greater depth, or supporting lemmas can be added to restrict the state-
space. A k-induction proof attempt is automated, but if the attempt is not successful for
a sufficiently small k (i.e., the attempt takes too long or too much memory), additional
invariants are necessary to reduce the necessary proof depth. The user must formulate
the supporting invariants manually, but their construction is facilitated by the counterex-
amples returned by SAL for failed proof attempts. If the property is indeed invariant,
the counterexample is a trajectory that fails the induction step but lies outside the set
of reachable states, and the state-space can be appropriately constrained by an auxiliary
lemma based on the counterexample. The following lemmas are built by examining the
counterexamples returned from proof attempts for the main theorem and the successive
intermediary lemmas.

Once it is determined what property the states fail to have that makes them unreach-
able, this property can be stated (and proved) as an additional predicate. This predicate
is used as a lemma to support the proof original of the original property. The following
lemmas capture some simple facts about the relationships between the two clocks. Of
these, l1, is the least obvious and was derived along with theorem t0 in order to reduce
the required induction depth. Each of these lemmas is inductive and hence can be proved
at depth 1.

l1 : LEMMA system |- G(tclk <= (rclk + TPERIOD) OR stable);

l2 : LEMMA system |- G(rclk <= tclk + RSTARTMAX OR
rclk <= tclk + RSCANMAX OR
rclk <= tclk + RPERIODMAX);

18

t0 : THEOREM system |- G(
% idle
((rstate = 9) AND
(tstate = 9) AND
(tdata AND rbit) AND
stable AND
(rclk - tclk <= RSCANMAX))

OR % start bit sent, not detected
((rstate = 9) AND
(tstate = 0) AND
(NOT tdata AND rbit) AND
(rclk - tclk <= RSCANMAX - TSTABLE))

OR % --- unwind all the other cases
rec_states(8, tstate, rstate, tdata, rbit, rclk, tclk, stable));

The key part of our proof of 8N1 is an invariant that describes the relationship between
the transmitter and receiver. We must relate them both temporally and with respect to
their discrete state (e.g., tstate with rstate and tdata with rbit). The number of and
the complexity of the supporting lemmas necessary to prove the main results is signifi-
cantly reduced by proving a disjunctive invariant [17]. A disjunctive invariant has the
form

∨
i∈I Pi where each Pi is a state predicate (predicates Pi and Pj need not be disjoint

for i 6= j). Disjunctive invariants are easier to generate iteratively than conjunctive in-
variants. If a disjunctive invariant fails to cover the reachable states, additional disjuncts
can be incrementally added to it (in a conjunctive invariant, additional conjunctions must
hold in all the reachable states). Although this is a general proof technique, it is particu-
larly easy to build a disjunctive invariant in SAL. The counterexamples SAL returns can
be used to iteratively weaken the disjunction until it is invariant.

Theorem t0 has 20 disjuncts corresponding to the 20 unique states in equation 2. Of
the disjuncts, 18 follow a simple pattern and are defined in SAL with a recursive function.
The following defines theorem t0.

The recursively defined disjuncts use the following pattern for n = 0..8.
In general, each disjunct defines the control state (tstate and rstate), the constraints

on the data signals if any, and describes the relative difference between tclk and rclk.
A bug in ICS which involved multiplication of uninterpreted constants required a work-
around in which we defined multiplication recursively. This theorem can be proved at
depth 3, while the main theorem (Uart Thm) can then be proved at depth 2 with t0 as
a lemma.

6 Discussion

Our proof of the 8N1 protocol is verified with respect to bounds on the various timing
constants. In a practical implementation, the receiver scan period is defined relative to the
nominal transmitter bit period and the receiver start and bit periods are integer multiples
of this. What an implementor ultimately cares about is the the trade off between settling
time (in general due to signal dispersion over a given transmission medium) and frequency

19

((tstate = n + 1) AND
(rstate = n) AND
(rclk - tclk <=

mult(n, RPERIODMAX) - mult(n+1, TPERIOD) + RMAX - TSTABLE) AND
(rclk - tclk >=

mult(n, RPERIODMIN) - mult(n+1, TPERIOD) + RSAMPMIN - TPERIOD))
OR
((tstate = n) AND
(rstate = n) AND
stable AND
(tdata = rbit) AND
(rclk - tclk <=

mult(n, RPERIODMAX) - mult(n, TPERIOD) + RMAX - TSTABLE) AND
(rclk - tclk >=

mult(n, RPERIODMIN) - mult(n+1, TPERIOD) + RSAMPMIN));

RSTARTMAX : TIME = TSTART * (1 + ERROR);
RSTARTMIN : TIME = TSTART * (1 - ERROR);
RSCANMAX : TIME = 1 + ERROR;
RSCANMIN : TIME = 1 - ERROR;
RPERIODMAX : TIME = TPERIOD * (1 + ERROR);
RPERIODMIN : TIME = TPERIOD * (1 - ERROR);

Figure 18: Receiver Parameters Defined with respect to Error

error.
In the following, we show how the bounds that we have verified can be used to de-

rive error and settling time bounds in a form that is more convenient for a protocol
implementer. These derived bounds are somewhat more restrictive than what we have
verified since we require the maximum allowable frequency error to be symmetric about
the nominal frequency. As before, let TPERIOD be the nominal period duration. We intro-
duce another uninterpreted constant in the operational model representing the nominal
duration the receiver waits for the start bit (“START”).

TSTART : TIME;

Now, let ERROR be an uninterpreted constant from TIME, and then the constants in Fig-
ure 10 are defined in terms of ERROR. By replacing these defined terms in the parameteri-
zation of the types in Sec 5, we compute the bound on the error. For example, RSTARTMAX
is an uninterpreted constant from the following parameterized type:

RSTARTMAX : { x : TIME | RSTARTMIN <= x AND
TSETTLE + RSCANMAX + x < 2 * TPERIOD };

Replacing RSTARTMIN and RSCANMAX by their definitions from Figure 18, we get

20

RSTARTMAX : { x : TIME | TSTART * (1 - ERROR) <= x AND
TSETTLE + 1 + ERROR + x < 2 * TPERIOD };

By replacing each term with its definition, the type parameters are defined completely
in terms of TPERIOD, TSETTLE, and ERROR. Isolating ERROR in the system of inequalities
gives bounds on ERROR. For the 8N1 protocol, ERROR is thus parameterized as follows:

ERROR : { x : TIME | 0 <= x AND
(9 * TPERIOD + TSETTLE <

8 * TPERIOD * (1-x) + TSTART * (1-x)) AND
((8 * TPERIOD * (1+x) + TSTART * (1+x) + (1+x) + TSETTLE) <

10 * TPERIOD) };

This derived model can be verified using the same invariants proved at the same depth
as in the verification described in Section 5.

As mentioned in Section 1, we discovered significant errors in the analysis in an
application note for UARTs [3]. For TPERIOD = 16 and TSTART = 23, the authors suggest
that if TSTABLE is TPERIOD/2 (they call this the “nasty” scenario), then a frequency error
of ±2% is permissible. In fact, even with zero frequency mismatch, the stable period
is too short – if we assume “infinitely” fast sampling, it is possible to show that the
settling time must be less than 50% of TPERIOD. In other words, the type parameterizing
ERROR is empty when TSTABLE is TPERIOD/2 (this can be shown using SAL or by a simple
calculation). With our choice of time constants, the longest settling time must be less
than 7 (43.75%). In reading the article, it becomes clear that the authors neglected the
temporal error introduced by sampling the start bit. They describe a “normal” scenario
with TSETTLE = TPERIOD/4 and assert that a frequency error of ±3.3% is permissible.
As our derivation above illustrates, the frequency error in this case is limited to ±3/151 ≈
±1.9%.

This paper describes the use of SAL to model and verify a data synchronization
circuit and the 8N1 protocol. We show, by example, how models of these can be refined
in the language of SAL to capture timing constraints and environmental effects such as
metastability and settling. Future work includes extending this framework to other cross
domain protocols as well as developing the theory for refinement.

Acknowledgments

We thank Leonardo de Moura, John Rushby, and anonymous reviewers for a recent
paper [1] for their suggestions and corrections.

References

[1] Geoffrey M. Brown and Lee Pike. Easy parameterized verification of biphase mark
and 8N1 protocols. In The Proceedings of the 12th International Conference on
Tools and the Construction of Algorithms (TACAS’06), 2006. To appear. Available
at http://www.cs.indiana.edu/∼lepike/pub pages/bmp.html.

21

[2] F. W. Vaandrager and A. L. de Groot. Analysis of a Biphase Mark Protocol with
Uppaal and PVS. Technical Report NIII-R0455, Nijmegen Institute for Computing
and Information Science, 2004.

[3] Maxim Integrated Products, Inc. Determining Clock Accuracy Requirements for
UART Communications, June 2003. Available at http://www.maxim-ic.com/

appnotes.cfm/appnote number/2141.

[4] Tsachy Kapschitz and Ran Ginosar. Formal verification of synchronizers. In
CHARME 2005 – to appear, 2005.

[5] Tsacky Kapschitz, Ran Ginosar, and Richard Newton. Verifying synchronization in
multi-clock domain SoC. In DVCon 2004, 2004.

[6] Tai Ly, Neil Hand, and Chris Ka-Kei Kwok. Formally verifiying clock domain cross-
ing jitter using assertion-based verification. In DVCon 2004, 2004.

[7] Karen Yorav, Sagi Katz, and Ron Kiper. Reproducing synchronization bugs with
model checking. In CHARME, pages 98–103, 2001.

[8] T. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the Hytech experi-
ence. In Proceedings of the 40th Annual Conference on Decision and Control, pages
2887–2892, 2001.

[9] Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. TReX: A tool for
reachability analysis of complex systems. In Computer-Aided Verification, CAV’01,
pages 368–372, London, UK, 2001. Springer-Verlag.

[10] F. W. Vaandrager and A. L. de Groot. Analysis of a biphase mark protocol with
Uppaal and PVS. Technical Report NIII-R0445, Radboud University Nijmegen,
2004.

[11] Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar, Maria
Sorea, and Ashish Tiwari. SAL 2. In Computer-Aided Verification, CAV’04, volume
3114 of LNCS, pages 496–500, Boston, MA, July 2004. Springer-Verlag.

[12] Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking and
induction: From refutation to verification. In Computer-Aided Verification, CAV’03,
volume 2725 of LNCS, 2003.

[13] Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, and N. Shankar. The
ICS decision procedures for embedded deduction. In 2nd International Joint Con-
ference on Automated Reasoning (IJCAR), volume 3097 of LNCS, pages 218–222,
Cork, Ireland, July 2004. Springer-Verlag.

[14] Bruno Dutertre and Maria Sorea. Timed systems in SAL. Technical Report SRI-
SDL-04-03, SRI International, 2004.

[15] Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant real-
time startup protocol using calendar automata. In FORMATS/FTRTFT, pages
199–214, 2004.

22

[16] Sanjit A. Seshia, Randal E. Bryant, and Kenneth S. Stevens. Modeling and verifying
circuits using generalized relative timing. In ASYNC, pages 98–108, 2005.

[17] John Rushby. Verification diagrams revisited: Disjunctive invariants for easy ver-
ification. In Computer-Aided Verification, CAV’00, volume 1855 of LNCS, pages
508–520, Chicago, IL, July 2000. Springer-Verlag.

23

A Coverage Analysis for Safety Property Lists
Talk Abstract

Koen Lindström Claessen
Chalmers University of Technology

koen@chalmers.se

1 Background

In property-based verification, a natural question that often arises is ’Have
we specified enough properties?’ Simulation-based coverage notions do not
help us to answer this question. Therefore, there exist notions of coverage
in formal verification, where it is checked how much of the design under
verification is actually needed in the formal proof [1]. A disadvantage of these
methods is that they include the actual design in the coverage analysis, which
makes the complexity of the analysis dependent on the size of the design, and
which also implies that the coverage analysis has to be re-done every time
the design changes.
We present a complement to existing notions of property coverage that is
design-independent. The idea is simple: Given a list of safety properties,
and a set of output signals from the design, our analysis checks if there
exists a ”forgotten case”: a trace where there exists a point in time where a
particular output signal is not constrained by the properties. In other words,
given a trace where the values of all other signals and the values of all other
points in time are known, and given that the list of properties holds, it is
still not known what the value of that particular output at that particular
point in time should be.
The analysis works for all typical specification logics in which safety proper-
ties can be expressed. Here, we use a simple variant of LTL.

FIFO

-in ����

-put

-get

- err

-
���� first

-
���� num

Figure 1: A simple FIFO interface

2 An Example

Consider the following specification of a simple FIFO. As depicted in figure
1, the input signals are get, put and a vector in, and the output signals are
err and vectors fst and num. For simplicity, we specify that putting takes
priority over getting. When we try to put something in a full FIFO, or get
something from an empty FIFO, the signal err becomes 1 for one clock cycle.
The output fst always indicates the first element of the FIFO, and the output
num indicates the number of elements currently in the FIFO (maximum n).
An initial attempt to create a list of safety properties formalizing the above
description might look as follows.

�(put = 1 ∧ num = n ⇒ next err = 1)
�(put = 1 ∧ num < n ⇒ next num = num + 1

∧ next err = 0)
�(put = 1 ∧ num = 0 ⇒ next fst = in)
�(put = 1 ∧ 0 < num < n ⇒ next fst = fst)
�(get = 1 ∧ put = 0 ∧ num = 0 ⇒ next err = 1)
�(get = 1 ∧ put = 0 ∧ 0 < num ⇒ next num = num− 1

∧ next err = 0)

We can now analyze this list of properties using the proposed analysis, in
order to discover forgotten cases in our specification. Note that we are only
analyzing the list of properties, not the design. At this stage, having the
design ready for formal verification is not neccessary.
When we ask the analysis about the property coverage of output err, it
immediately replies that err is not constrained by the properties at time
point 1, as the following trace shows:

get 0
put 0
in 0

num 0
fst 0
err ?

No matter what the value of the ? in the trace, the property list is still
fulfilled. Indeed we should have added a property err = 0 at time 0. After
this, the analysis complains about err being unconstrained when we do not
put or get something from the FIFO:

get 0 0
put 0 0
in 0 0

num 0 0
fst 0 0
err 0 ?

And indeed, we should have added a property that says that errors do not
occur when we do not change the contents of the FIFO:

�(get = 0 ∧ put = 0⇒ next err = 0).

Now, the analysis is happy about err.
Next, we analyze the output num. We find out that num is not constrained
in the first point in time either:

get 0
put 0
in 0

num ?
fst 0
err 0

This counter example leads to us adding the property num = 0. Next, the
analysis complains about num being unconstrained when we do not put or
get:

get 0 0
put 0 0
in 0 0

num 0 ?
fst 0 0
err 0 0

This is easily fixed by adding the property:

�((get = 0 ∧ put = 0) ⇒ next num = num).

However, the analysis is still not happy. It reports:

get 1 0
put 1 0
in 0 0

num 0 ?
fst 0 0
err 0 1

In other words, when an error occurs, it is not specified what should happen
with num. We fix this by adapting the last property we added thus:

�((get = 0 ∧ put = 0) ∨ err = 1⇒ next num = num).

Finally, the analysis is happy about the output num.

3 Free signals

Dealing with the signal fst, there appear to be two problems. Firstly, it is
not always the case that we want to specify what the value of a signal is in
all cases. For example, when the FIFO is empty, we would like to leave fst
unspecified, since there is no first value in the FIFO. At the moment, the
analysis would simply complain about this case, making it rather useless in
this case.
Secondly, sometimes it is hard or impossible to completely formally specify
the exact behavior of a particular signal in a temporal logic, and as a specifier
one wants to be able to take the pragmatic decision of not specifying the
behaviour completely. Again, the analysis would immediately find holes in

the specification, holes which have deliberatly been put there. In the case of
the signal fst, formally specifying the exact FIFO behavior for general n is
impossible in a limited logic like LTL.
One solution to this problem is simply not to use the analysis on the output
free. This has an obvious drawback, namely that we will not be able to
find real forgotten cases, as opposed to the intended forgotten cases that we
already know about. So, we would like to argue for another solution, namely
one where the specifier explicitly indicates what in what cases an output
is allowed to be underconstrained. We therefore introduce a new construct
freex to the specification logic, that can be used to express that the output x
is allowed to be unconstrained. As a logical construct, freex is simply true,
but to the analysis, it is a way to suppress complaints about the signal x.
For example, our analysis complains about the output fst being unconstrained
in the beginning, when the FIFO is empty. This can be remedied by adding
the following property:

�(num = 0 ⇒ free fst).

The above property explicitly expresses the unconstrainedness of fst in the
case when num = 0.
Our analysis also complains about the output fst being unconstrained when
we put two elements in the FIFO, and get an element out once1:

get 0 0 1 0
put 1 1 0 0
in 17 5 0 0

num 0 1 2 1
fst 0 17 17 ?
err 0 0 0 0

And indeed, we have not said anything about this particular case. If the
specifier decides not to specify the exact FIFO behavior, this can be fixed by
adding next free fst to the right-hand side of the last property:

�(get = 1 ∧ put = 0 ∧ 0 < num ⇒ next num = num− 1
∧ next err = 0
∧ next free fst)

1The actual counter example that was generated was slightly edited for presentational
reasons.

In other words, when we remove an element from the FIFO, we are not quite
sure what the new first element is going to be.
Even now, our analysis still reports a forgotten case, namely when we do not
put or get at all, fst is unconstrained:

get 0 0
put 0 0
in 0 0

num 0 0
fst 0 ?
err 0 0

We solve this by adding next fst = fst to the right-hand side of the second
property we added when we analyzed num:

�((get = 0 ∧ put = 0) ∨ err = 1⇒ next num = num ∧ next fst = fst).

After adding this property, the analysis is happy.

4 Implementation

The implementation of our analysis is quite straightforward. We first build
the safety property observer belonging to the property list [4]. A safety prop-
erty observer is sometimes also called ”checker circuit”; a circuit that has as
inputs all signals appearing in the properties, and that has only one output
”OK”, that is always high if and only if the properties hold. Observers can
be constructed automatically for formulas in many logics [5, 6, 2].
Then, we build a circuit using two copies of the observer, a main copy and
a shadow. The signals that the two observers are observing are the same,
except for the output signal we are analyzing, which we call out for the main
copy and out’ for the shadow copy.
Now, we can ask a standard LTL model checker (such as SMV [3]) to look
for traces where both observers say OK, but where the values of out and
out’ differ at exactly one point. This indicates a forgotten case, because the
property lists hold for both variants of the discovered trace.
The size of the analyzed circuit is linear in the size of the property observer.

5 Discussion

There are basically three reasons for not fully specifying the behaviour of
all output signals: (1) The output is supposed to be underconstrained in
the specification; (2) By choice, the specifier has decided to leave the output
underconstrained; (3) The specifier has forgotten a case. We argue for an
analysis that can discover the 3rd case, by forcing the specifier to explicity
document in the properties if cases (1) or (2) are meant. We believe this leads
to specifications of higher quality, which in turns leads to more dependable
verification results. The analysis can be used in both simulation-based and
formal property verification.

References

[1] Hana Chockler, Orna Kupferman, Robert P. Kurshan, and Moshe Y.
Vardi. A practical approach to coverage in model checking. In Computer
Aided Verification (CAV), 2001.

[2] IBM. FoCs – Formal Checkers, 2002. http://www.haifa.il.ibm.com/-
projects/verification/focs/.

[3] K. McMillan. The SMV model checker, 2002. http://www-
cad.eecs.berkeley.edu/˜kenmcmil/smv/.

[4] F. Lagnier N. Halbwachs and P. Raymond. Synchronous observers and
the verification of reactive systems. In Third Int. Conf. on Algebraic
Methodology and Software Technology (AMAST’93), 1993.

[5] J.-C. Fernandez N. Halbwachs and A. Bouajjanni. An executable tempo-
ral logic to express safety properties and its connection with the language
lustre. In Sixth International Symp. on Lucid and Intensional Program-
ming (ISLIP’93), 1993.

[6] P. Raymond. Recognizing regular expressions by means of dataflows net-
works. In 23rd International Colloquium on Automata, Languages, and
Programming (ICALP’96), LNCS 1099. Springer Verlag, 1996.

Is Feature-Oriented Verification Useful for Hardware?∗

Kathi Fisler
WPI Dept. of Computer Science
kfisler@cs.wpi.edu

Shriram Krishnamurthi
Computer Science Dept., Brown University

sk@cs.brown.edu

Abstract

Many in the software and programming languages communitieshave been exploring de-
sign modularizations based on features rather than physical components. Features engender
a modular verification methodology that avoids many of the challenges that underlie conven-
tional theories of modular verification, such as design and property decomposition. We present
an overview of features and discuss our prior work in exploiting features for software verifica-
tion. We hope this paper will spark discussion about whetherfeatures have a meaningful role
in designing hardware for verifiability.

1 Introduction

Verifying large systems automatically often requires techniques for identifying design fragments
that can be analyzed tractably. Because isolating such fragments is challenging, verifiers frequently
rely on the modular structure of the design for guidance. Unfortunately, the portions of designs
that impact properties can span several modules. As a result, the verification engineer either has to
decompose the properties around the design modules or applymore sophisticated decomposition
methods that do not directly exploit the modular structure.This seems a lost opportunity, and
raises a question: are there modularizations that enable designers to naturally express more of their
knowledge that matters for verification?

Modules in hardware description languages generally correspond to physical subcomponents
of a system (such as theCPU or RAM). Aligning design modules with physical components seems
natural, particularly in the hardware domain in which the end result is actual chips. Over the
last decade, however, many researchers in software engineering and programming languages have

∗This work is partially supported by the U.S. National Science Foundation grants CCR-0132659, CCR-0305834
and CCR-0305950.

1

explored modules that encapsulate user-definedfeaturesrather than fragments of implementa-
tions [2, 9, 17, 24, 25]. Intuitively, a feature is a piece of system functionality that is meaningful to
an end user (an identifiable piece of functionality that an end user would pay for). A single system
is a composition of the features that the end user wants. The large number of systems definable
from a common set of features form aproduct-line. In a hardware context, an appropriate analog
for an end user might be the overall system architect, who wants a chip to implement a particular
set of algorithms or optimizations.

Feature-oriented modules are attractive for verification because properties often describe user-
identifiable traits of a system. Many properties align with small sets of features. This alignment
reduces, and often eliminates, the need for property decomposition. Features also support incre-
mental reasoning about designs as they evolve. They suggesta two-stage verification methodology
in which properties are first checked against individual features to determine constraints that the
feature places on the rest of the system. As features are composed into products, the constraints
are checked using lightweight analysis techniques. The constraints enable incremental verification
and amortize verification costs over many products built from the same core features.

The first author began exploring feature-based verificationafter hearing a talk by Ken McMil-
lan in 1998 describing his verification of a hardware implementation of Tomosulo’s algorithm [23].
McMillan effectively decomposed the implementation around some of the key dataflows through
the architecture. This decomposition isolated the parts ofthe design that affected key proper-
ties of the algorithm, enabling them to be verified efficiently using a combination of abstraction
and other model-reduction techniques. The fragments had the spirit of features as were being
described in the software community, but were not identifiedas such at the design level. Feature-
based constructs are uncommon, but not new, in hardware specification languages. Theextend
construct in Verisity’se language was also motivated by the work on features from the software
community [13]. To the best of our knowledge, however, the Verisity team has not exploited this
modularization for verification. The question then is whether feature-based decompositions could
help capture complicated manual decompositions such as McMillan’s.

Over the last five years, we have been developing theories of incremental and modular model
checking for feature-oriented systems expressed as state machines [5, 18, 21]. Our work has shown
that features induce a form of module composition that lies between purely sequential and purely
parallel composition [10]. Furthermore, modular verification in this framework is best viewed as a
combination of constraint generation and constraint solving, rather than as compositions of results
from straightforward model checking [5]. Our work to date islargely theoretical but has been
prototyped (with implementation) against some actual software designs.

The position paper has two goals: first, to give an overview ofthe benefits, assumptions, and
challenges of feature-oriented modeling and verification;second, to spark discussion as to whether
this style has a meaningful role for hardware. Key questionsinclude (1) the extent to which features
are useful for large-scale organization of hardware designs, (2) how hardware design flows might
exploit the opportunities for incremental verification that features enable, and (3) how well feature-
based decompositions align with challenging hardware verification tasks. As this paper is more of
an overview than a presentation of new results, the presentation is informal, with references to
other published papers containing the formal details.

2

disp
clock alarm

disp
alarm
toggle

disp
date

reset resume
timer

stop
timer

resume
split

stop
split

B2dn

B2dn

B1dn

B2dn

B2dn

B1dnB1dn

B1dn

B2dn

B1dn B2dn

B2upB1up

B1up

B1dnB2dn

ms−b

ms−bms−b

B2up

B1dn

B1dn

B2dn
B2up

B2up
B2dn

ms−b

ms−b

ms−b

ms−f

ms−f

Base System

set
hour minute

set

minute
incinc

hour

Timer Feature

Alarm Time Feature

Figure 1: A feature-oriented design for a sportswatch.

2 Modularizing Systems by Features

We motivate the structure of feature-oriented systems through two small yet illustrative examples.
Every design has abase systemcontaining its core functionality. Features extend the base system
with additional functionality. Both the base system and thefeatures consist of state machines
that get composed into larger state machines in a particularway. As the base and features are
indistinguishable at the level of formal models, the rest ofthe paper views the base as just another
feature (but one that happens to be included in every system).

The simplest feature-oriented systems use a single state machine for each feature (including the
base). Figure 1 shows the design of a stopwatch expressed in terms of features.1 The base contains
four display nodes: clock display, alarm time display, datedisplay, and an alarm status display that
supports toggling the alarm status. One feature adds a timerwhich the user can reset, resume, and
stop; this feature also supports a split timer for capturingtime instantaneously. Another feature
enables setting the alarm time. The watch is controlled through two buttons (B1 and B2) and a
mode switch that can be in the forward (ms-f) or back (ms-b) positions.

In this example, each state in the overall design belongs to some feature. Most of the transitions
fall within features, but some connect features. The lattertransitions are added when features are
composed into larger systems. Each feature has aconstruction interfaceindicating which states

1This example is due to Jia Liu, graduate student at UT Austin.

3

train
no

train

train
one two

trains

train-in

"tunnel-clear"
outtrain/

two-in

outtrain

outtrain/

"tunnel-clear" two-in &
outtrain

else
train
no

train Original protocol

Two-train extension

else
else

else else

mult
trains

intrain/"train-in"

!intrain

"two-in"

else

else

tunnel-clear
intrain & !tunnel-clear/

tunnel-clear &

Figure 2: A feature-oriented design for a track-operator communication protocol.

can have transitions to and from other features (the figure implicitly identifies these states). When
a designer composes two features (or adds a feature to an existing system), he indicates which of
the interface states should be used as the source and sink from each piece. Composition entails
inserting edges between the chosen states. In the stopwatchexample, the interface for the base
system usesdispclockas both the source and the sink of transitions that connect new features,
while the timer feature usesresetas itsentrystate and the other four states as itsexit states back
to the overall system. All of the transitions that span the base and the timer feature connect to the
interface states. Once the timer feature is added, the designer can change the construction interface
for the composed system to transfer control out at theresetstate and in at thedispclockstate. The
alarm time feature attaches at this revised interface.

This example suggests that features compose sequentially,albeit potentially creating cycles as
they direct control flow back to other features. They do indeed, though the composition model
becomes more complicated for features that span multiple state machines, as the next example
illustrates.

Figure 2 shows an example of a communications protocol expressed as features over multiple
state machines. This protocol, taken from Holzmann’s book [14], governs communication between
operators at either end of a long train tunnel covering a one-way track. The two state machines
model the human operators on either end of the tunnel. Unableto see one another, the operators
communicate messages about the status of the tunnel. In the original protocol (the base system),
the operators communicate when trains are entering and exiting the tunnel. The inbound operator
sends atrain-in message to the outbound operator when a train enters the tunnel. The outbound
operator sends atrain-clear message to the inbound operator when a train exits the tunnel. The
base system consists of the protocol for exchanging these two messages.

Although the protocol was designed to prevent two trains from ever being in the tunnel simul-
taneously, an accident occurred when a second train enteredthe tunnel (in the same direction as
the first train) before the first one left; although the inbound operator suspected the problem, the
communication protocol was too weak to convey the situationto the outbound operator. One so-
lution is to add messages to the protocol that convey this information accurately. The extension
(feature) adds atwo-in message from the inbound to the outbound operator; it also adds states to
both operator machines so that the outbound operator does not send thetrain-clear message until
both trains have left the tunnel.

As the figure shows, features that span multiple state machines contain a fragment for each

4

state machine in the overall system (features may omit fragments for state machines that they do
not affect; they may also introduce new state machines in thegeneral model). Each fragment con-
nects to its corresponding fragment in another feature through interface states as in the single state
machine case. Thus, connection interfaces remain at the level of the individual state machines. The
global state machine for this design is the cross-product ofthe compositions of the individual state
machine fragments from the feature. This definition appearsto lose the sequential composition
model used for single features. Furthermore, it does not suggest how we get a cross-product state
machine for an individual feature. We address both issues shortly.

3 Verifying Systems by Features

Features enable two related styles of verification. First, global system properties can be established
incrementally as new features are added to the system. Second, properties can be proven of an
individual feature and then shown to hold after the feature is composed into an existing system. In
both cases, property preservation checks should traverse only the new portions of the state space:
the new feature for incremental verification, and (portionsof) the larger system for feature-specific
properties.

Our work supports these styles of verification through the following tasks:

1. Proving aCTL property of an individual feature or composition of features. This requires
building a single state machine representing the state space of an individual feature.

2. Deriving a set of interface constraints for a feature thatare sufficient to preserve a particular
property after composition (thepreservation constraints).

3. Proving that a feature satisfies the preservation constraints of another feature (or existing
system).

These activities correspond to a kind of modular verification, where the features are modules. As
in standard approaches to modular verification, we are interested in proving properties of mod-
ules and in preserving those properties upon composition with other modules. Our work differs
from standard modular verification because features use a different composition semantics than
the purely sequential or purely parallel models that underlies other theories of modular verifica-
tion. The motivation for modular reasoning is also different in our context. Since features largely
compose sequentially, modular reasoning has less impact ontractability than under parallel com-
position. The main benefit of modularity in our context comesfrom amortizing verification effort
across different systems that are built from the same features. Modularity in this view is more
about design methodology than verification methodology, though we propose exploiting the fruits
of the former to simplify the latter.

Intuitively, items 2 and 3 perform modular model checking assuming sequential composition.
Item 2 essentially caches the subformula labels ascribed tointerface states duringCTL model
checking (we useCTL instead ofLTL because the algorithm for the former associates subformulas

5

X X

XX

X X

Figure 3: Two approaches to constructing composed systems.

with states). Item 3 uses model checking to prove that a new feature preserves the cached subfor-
mula labels at the interface states to which it connects. Ourexisting papers describe these steps in
more detail [10, 19]; Section 4 explains some limitations ofthis intuitive model.

Item 1 is the interesting step for this paper, because it requires a single state machine for
each feature which is not readily available in the multiple-machine model. Consider the feature
extension in the tunnel protocol, which consists of the two state machines in the lower dashed box
in Figure 2. We cannot simply form the cross-product of thesemachines using their interface states
as the initial states because the two machines might not reach these interface states simultaneously.
For example, the inbound operator may notice the second train before the outbound operator has
registered that there is a train in the tunnel. The initial states of the feature’s cross-product therefore
depends on the synchronization of the interface states in the other system to which the new feature
connects. We can compute this information in the form of the subgraph of the existing system that
contains its interface states; this subgraph in turn provides the initial states for constructing the
cross-product of the new feature. The details of this construction appear in an earlier paper [10].

Interface subgraphs allow us to compose features in a mostly-sequential manner (sans the lim-
ited interleaving of behavior across features in the interface subgraph). Figure 3 shows two views
of a feature-oriented system, one in which cross-products are taken at the level of the composed
machines (left) and one in which cross-products are taken atthe level of features, which are then
composed sequentially (right). The model on the right, which our verification methodology ex-
ploits, shows that the composition model underlying feature-based systems isquasi-sequential,
a sequential composition (between features) over well-scoped parallel compositions (within fea-
tures).

The quasi-sequential model is reasonable when features operate largely independently of one
another, an assumption that holds in some feature-orientedsystems [2] but not all [15]. If the fea-
tures themselves, rather than their components, operate inparallel, the interface subgraphs could
possibly induce state explosion. More experience with feature-oriented designs is needed to deter-
mine the extent of this problem in practice.

4 Challenges and Status

We have outlined a model of feature-oriented designs and a methodology for verifying systems
incrementally and for verifying features in isolation. As one would expect, this approach faces
several challenges and open problems:

6

q

p
p

p

p
p

p

Base system

Feature

Figure 4: How composition can induce cyclic reasoning.

Cyclic Reasoning

Modular reasoning theories must handle dependencies between modules that lead to cyclic reason-
ing. In the context of features, cyclic reasoning arises when adding a feature creates a new cycle
in the global state space that visits states from both the existing system and the new feature. Fig-
ure 4 shows a simple case in which a naı̈ve sequential model checker might incorrectly determine
thatA[pUq] holds after adding a new feature to the system. This formula labels all states in the
(fragment of the) base system shown. When the feature is added, a naı̈ve sequential composition
algorithm might assume the formula is true at the point of reentry to the base and use that to (in-
correctly) infer that the formula is true at all states in thebase. Such situations can be handled
correctly by verifying additional properties about discharging eventualities on paths between in-
terface states and altering the modular verification algorithm slightly based on the results of those
checks [18].

Handling Environment Models

Verifying the train communication protocol requires anenvironment modelof the trains that can
enter and exit the tunnel. The model, which generates the signalsintrain andouttrain used in the
protocol machine, must encode constraints such as “no traincan exit the tunnel before it enters
the tunnel”. Environment models always compose in parallelwith the systems that consume their
outputs; this is true for feature-oriented systems as well.Imagine that we want to verify a property
about a new featureF in isolation, and thatF references signals defined in the environment model.
We therefore must take the cross product of the environment model with the feature prior to verifi-
cation, but what is the initial state of the environment model in this cross product? The initial state
of the environment model synchronizes with the initial state of the global composed system. The
feature in the train protocol is only reached once a train is already in the tunnel, however, which is
not true at the initial state of the environment model.

This scenario demonstrates that verifying features in isolation requires ways to determine the
state of the environment at the point when features might be invoked. We proposed a preliminary
approach to this problem in the context of the train protocol[10], but much more work needs to
be done on a wider range of case studies. This problem is similar to that of generating a testing
harness for a feature-oriented design [27].

7

Lifting Feature Properties to the Entire System

When global system properties are verified incrementally asnew features are added to the system,
our methodology guarantees that those properties are true at the initial state of the final composed
system (assuming that initial state is part of the base). Ourmodular methodology guarantees
that properties proven of individual features remain true once the feature is composed with other
features, but this merely proves that the feature property is true at the initial state of the feature,
not of the global system. In practice, we often want to lift properties proven of individual features
to the initial state of the global system. A naı̈ve way to handle this is to incrementally verify a
system relative to all desired properties of individual features, but this doesn’t exploit the benefit
of features, namely that each feature contains the majorityof the system detail needed to verify its
properties. When lifting properties of a featureF to the system level, other features often contribute
nothing more than paths from the initial state toF . Dominguez exploits this observation to lift
feature properties without verifying those properties against all features [7]. Shmuel Katz at the
Technion is also working on modular approaches to proving properties introduced by individual
features.2

Interactions Between Features

A property that holds of one feature in isolation may not holdin a global system due to interac-
tions between the features. Some interactions are desirable (such as when the operation of one
feature takes priority over another, thus changing the conditions under which the first feature is
invoked); others are not. Feature interaction is an established problem with an extensive research
literature [16]. Verification methodologies based on features must be able to detect when features
have interacted and provide ways to reason about the conditions under which features may interact
safely. Our core methodology using sequential model checking handles the former. Handling the
latter amounts to reasoning about the (sequentially-composed) environments in which a feature
can operate without violating its properties.

Asking designers to attach environment models to each feature individually is onerous. We
have therefore developed initial techniques to automatically generate the environment constraints
that will preserve specific properties of individual features [5]. This approach relies on a two
phases–constraint generation on individual features and constraint discharge when features are
composed–to verify global system properties. Our experience suggests that model checking, with
its binary output decision, may not be sufficiently fine-grained to analyze features in the face of
potential feature interactions.

Using Features to Repair Failed System Properties

We have discussed how to preserve properties of systems and features as features are composed
into larger systems. Sometimes, features are introduced tomake a system satisfy a property that
does not hold without the feature. The tunnel protocol provides an example: the base system

2Personal communication; results not yet published.

8

alone is not safe if two trains get into the tunnel, but the feature repairs the protocol to satisfy this
property. Modular approaches for determining that features repair failed properties is an open area
of research.

Sharing Code Across Features

The features model presented in Section 2 assumes that each feature module is self-contained.
Real systems, however, may need to share support code acrossfeatures, either in the form of code
libraries (software) or shared devices (hardware). We are not aware of models of features that
enable sharing of common infrastructure. Example systems that utilize such sharing would help
drive research into this issue.

5 Related Work

Many researchers have proposed system decompositions thatresemble features in spirit; these in-
clude layers [3], collaborations [24], aspects [17] and units [9]. A brief sampling of successful de-
signs in this vein includes a military command-and-controlscenario simulator [2], a programming
environment [8], network protocols and database systems [3, 4, 22], and verification tools [11, 26].

Laster and Grumberg proposed the first algorithm for modularmodel checking under sequential
composition [20]. This work aims at decomposing systems specified as a single, monolithic, state
machine; in particular, it lacks a design framework, such asfeatures, that drives the decomposition
of the system. Other work uses hierarchical state machines [1] and StateCharts [6] to guide the
decomposition, but the resulting systems are still monolithic. In contrast, our work is designed to
support systems that are conceived and built incrementallyas combinations of features. Features
can be developed in isolation of one another, without knowledge of which other features will be
included in the final system. This basis and our handling of multiple state machines per feature
distinguish our approach from these others.

The Horus/Ensemble project [22] builds network protocols through compositions of features.
They have discussed feature-oriented verification, but ourwork differs from theirs in several ways:
first, they do not appear to verify features in isolation fromone another; second, their work con-
centrated on a particular set of features, while we are proposing a general framework for this style
of verification; third, their work uses theorem proving rather than model checking. We have done
a preliminary extension of our work to theorem proving [12].

6 Summary

This paper has given an overview of feature-oriented designand verification. Features are promis-
ing for verification because they naturally decompose designs into fragments that align with prop-
erties. This simplifies modular verification without requiring designers to decompose properties
around the modular structure. Exploiting this promise, however, requires methodologies and mod-
els for capturing realistic hardware designs as sets of features. We hope this paper will spark dis-

9

cussion about the possible role of features in capturing designs and the extent to which problems
such as feature interaction arise in a hardware context.

References

[1] Alur, R. and M. Yannakakis. Model checking of hierarchical state machines. InSymposium
on the Foundations of Software Engineering, pages 175–188, 1998.

[2] Batory, D., C. Johnson, B. MacDonald and D. von Heeder. Achieving extensibility through
product-lines and domain-specific languages: A case study.ACM Transactions on Software
Engineering and Methodology, 11(2):191–214, April 2002.

[3] Batory, D. and S. O’Malley. The design and implementation of hierarchical software systems
with reusable components.ACM Transactions on Software Engineering and Methodology,
1(4):355–398, October 1992.

[4] Biagioni, E., R. Harper, P. Lee and B. G. Milnes. Signatures for a network protocol stack: A
systems application of Standard ML. InACM Symposium on Lisp and Functional Program-
ming, 1994.

[5] Blundell, C., K. Fisler, S. Krishnamurthi and P. Van Hentenryck. Parameterized interfaces for
open system verification of product lines. InIEEE International Symposium on Automated
Software Engineering, pages 258–267, September 2004.

[6] Clarke, E. M. and W. Heinle. Modular translation of Statecharts to SMV. Technical Report
CMU-CS-00-XXX, Carnegie Mellon University School of Computer Science, August 2000.

[7] Dominguez, A. L. J. Verification of DFC call protocol correctness criteria. Master’s thesis,
University of Waterloo Department of Computer Science, 2005.

[8] Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler and
M. Felleisen. DrScheme: A programming environment for Scheme. Journal of Functional
Programming, 12(2):159–182, 2002.

[9] Findler, R. B. and M. Flatt. Modular object-oriented programming with units and mixins. In
ACM SIGPLAN International Conference on Functional Programming, pages 94–104, 1998.

[10] Fisler, K. and S. Krishnamurthi. Modular verification of collaboration-based software de-
signs. InSymposium on the Foundations of Software Engineering, pages 152–163. ACM
Press, September 2001.

[11] Fisler, K., S. Krishnamurthi and K. E. Gray. Implementing extensible theorem provers. In
International Conference on Theorem Proving in Higher-Order Logic: Emerging Trends,
Research Report, INRIA Sophia Antipolis, September 1999.

10

[12] Fisler, K. and B. G. Roberts. A case study in using ACL2 for feature-oriented verification. In
Proceedings of the ACL2 Workshop, November 2004.

[13] Hollander, Y., M. Morley and A. Noy. Thee language: A fresh separation of concerns. In
Proceedings of TOOLS Europe, March 2001.

[14] Holzmann, G.Design and Validation of Computer Protocols. Prentice-Hall, 1991.

[15] Jackson, M. and P. Zave. Distributed feature composition: A virtual architecture for telecom-
munications services.IEEE Transactions on Software Engineering, 24(10):831–847, October
1998.

[16] Keck, D. O. and P. J. Kuehn. The feature and service interaction problem in telecommuni-
cations systems: A survey.IEEE Transactions on Software Engineering, 24(10):779–796,
October 1998.

[17] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier and J. Irwin.
Aspect-oriented programming. InEuropean Conference on Object-Oriented Programming,
pages 220–242, 1997.

[18] Krishnamurthi, S. and K. Fisler. Foundations of incremental aspect model-checking.ACM
Transactions on Software Engineering and Methodology, Accepted pending minor edits,
2005. Preliminary versions appeared in other cited works [10, 19].

[19] Krishnamurthi, S., K. Fisler and M. Greenberg. Verifying aspect advice modularly. InACM
SIGSOFT International Symposium on the Foundations of Software Engineering, pages 137–
146, November 2004.

[20] Laster, K. and O. Grumberg. Modular model checking of software. InConference on Tools
and Algorithms for the Construction and Analysis of Systems, 1998.

[21] Li, H., S. Krishnamurthi and K. Fisler. Modular verification of open features through three-
valued model checking.Journal of Automated Software Engineering, 12(3):349–382, July
2005.

[22] Liu, X., C. Kreitz, R. van Renesse, J. Hickey, M. Hayden,K. Birman and R. Constable. Build-
ing reliable, high-performance communication systems from components. InSymposium on
Operation System Principles, pages 80–92. ACM Press, 1999.

[23] McMillan, K. L. Verification of an implementation of Tomasulo’s algorithm by compositional
model checking. InInternational Conference on Computer-Aided Verification, 1998.

[24] Mezini, M. and K. Lieberherr. Adaptive plug-and-play components for evolutionary software
development. InACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages & Applications, pages 97–116, October 1998.

11

[25] Ossher, H. and P. Tarr. Multi-dimensional separation of concerns in hyperspace. Technical
Report RC 21452(96717), IBM, April 1999.

[26] Stirewalt, K. and L. Dillon. A component-based approach to building formal-analysis tools.
In International Conference on Software Engineering, 2001.

[27] Xie, T. and J. Zhao. A framework and tool supports for generating test inputs of AspectJ
programs. InProc. 5th International Conference on Aspect-Oriented Software Development
(AOSD 2006), March 2006.

12

Another Dimension to High Level
Synthesis: Verification

Malay K. Ganai
Aarti Gupta

NEC Labs America
Princeton, NJ, USA

Akira Mukaiyama
Kazutoshi Wakabayshi

Central Research Lab
NEC, Tokyo, Japan

1/31/2006 Ganai et al ©NEC Laboratories America 2

Outline

Introduction
High level synthesis
Verification techniques (strengths and weaknesses)

Parameters controlling HLS
Area, performance and power trade-off
Impact on verification

Case Study
Experimentation with Cyber and DiVer Industrial Tools

Paradigm Shift: Synthesis for Verification
Generate verification “aware” model
Maximize the benefit of current verification techniques
Open discussion

1/31/2006 Ganai et al ©NEC Laboratories America 3

Design Flow & Levels of Abstraction

Logic Synthesizer

Place & Route

Behavior Synthesizer

datapathcontroller

Behavior-level

RT level
(VHDL, Verilog)

gate-level
(netlist)

C, C++, SystemC

E

X
A
B
C
D

Mask Pattern (Chip)

System level C, English, Japanese

SW/HW Co-design

Level of
Abstraction

C-based Behavior Synthesis

C-based Logic Synthesis *1

*1: A Behavioral Synthesis tool
generates Functional Dscrptn.
So, technically, it should be
called as “Functional Synthesizer”.

1/31/2006 Ganai et al ©NEC Laboratories America 4

Why Upper Level leads to High Productivity?
- Less Design Size

～
x = idata_a_t + idata_b_t;
ictl_c_t = ictl_c ;
if (ictl_c_t) {

idata_d_t = idata_d ;
odata_y_t = x + idata_d_t;

} else {
odata_y_t = 2 * x;

}
～

～
x = idata_a_t + idata_b_t;
ictl_c_t = ictl_c ;
if (ictl_c_t) {

idata_d_t = idata_d ;
odata_y_t = x + idata_d_t;

} else {
odata_y_t = 2 * x;

}
～

～
always @(input_ab or idata_a or x_val) begin

if (input_ab == 1) adder_input1 <= idata_a;
else adder_input1 <= x_val;

end // of always
always @(input_ab or idata_b or idata_d) begin

if (input_ab == 1) adder_input2 <= idata_b;
else adder_input2 <= idata_d;

end // of always
assign adder_output = adder_input1 + adder_input2;

always @(odata_en or x_val) begin
if (odata_en == 1) odata_y <= x_val;
else odata_y <= 0;

end // of always
always @(posedge CLOCK or negedge RESET) begin

if (~RESET) x_val <= 0;
else

case (x_val_sel)
1: x_val <= adder_output;
0: x_val <= {x_val[2:0], 1‘b0};
default: x_val <= x_val;

endcase
end // of always

endmodule // main_datapath

-continue

～
always @(input_ab or idata_a or x_val) begin

if (input_ab == 1) adder_input1 <= idata_a;
else adder_input1 <= x_val;

end // of always
always @(input_ab or idata_b or idata_d) begin

if (input_ab == 1) adder_input2 <= idata_b;
else adder_input2 <= idata_d;

end // of always
assign adder_output = adder_input1 + adder_input2;

always @(odata_en or x_val) begin
if (odata_en == 1) odata_y <= x_val;
else odata_y <= 0;

end // of always
always @(posedge CLOCK or negedge RESET) begin

if (~RESET) x_val <= 0;
else

case (x_val_sel)
1: x_val <= adder_output;
0: x_val <= {x_val[2:0], 1‘b0};
default: x_val <= x_val;

endcase
end // of always

endmodule // main_datapath

-continue

Behavior
（C/C++）

1

Behavior
（C/C++）

1

RTL
（Verilog）

7

RTL
（Verilog）

7

E

X
A
B
C
D E

X
A
B
C
D E

X
A
B
C
D E

X
A
B
C
D E

X
A
B
C
D E

X
A
B
C
D E

X
A
B
C
D E

X
A
B
C
D E

X
A
B
C
D

Gate
（netlist）

28

Gate
（netlist）

28
Behavior
Synthesis
BehaviorBehavior
SynthesisSynthesis

Logic
Synthesis

LogicLogic
SynthesisSynthesis

40KL 300KL 1MGate

1/31/2006 Ganai et al ©NEC Laboratories America 5

What is “Behavior Synthesis”

S0

S1

S2

S0

S1

S2

AB

C

D

＋ ＊

Ｆ

E

3 cycl

char A,B,C,D;
char E,F;
main(){
char X;
X = A + B;
E = X * D;
F = (B + C) * X;
}

＋

A B CD

X
Y

FE

＋
＋

＊
＊

Behavior in C

+ : 1
* : 1

+ : 2
* : 2

1cycle
Delay:2T

Delay:1T

8 Lines

Logic
synthesis

100 lines

RTL
constraints

1/31/2006 Ganai et al ©NEC Laboratories America 6

1. Create behavior description into DFG
2. Source code level optimization
3. Allocate
4. Scheduling
5. Binding
6. Generation of Controller
7. Module Generation

Steps of Behavioral Synthesis

1/31/2006 Ganai et al ©NEC Laboratories America 7

1: Create DFG

f = (a+b)*d;
g = (b-c)*e; +

*

a b

-

c

*

d e

f g

1/31/2006 Ganai et al ©NEC Laboratories America 8

• Extract common sub-expression
• a=(x+y)*z; b=x+y-z; t=x+y; a=t*z;b=t-z;

• Multi-dimensional array to one-dimensional array
• a2[4][5]=>a1[20],x=a2[i][j]=>x=a1[i*5+j]=>a1[i<<2+i+j]

• Constant propagation
• a*2=> a::0; a=1+b, b=2 => a=3

• Automatic Bit adjustment (automatic cast）
a(4bit) = b(2bit) => a = 00::b or a=b(0)::b(0)::b;

• Loop unrolling, Loop folding, Pipelining
• Function inline expansion
• Dead Code Elimination
• Tree balancing (for extracting parallelism)

2: Source Code Optimization

1/31/2006 Ganai et al ©NEC Laboratories America 9

3: Allocate set of usable FUs

+

*

a b

-

c

*

d e

f g

Addcla

Addrpl

Sub

AddSub

Mul

ALU

1

2

1

1
1

(#of FUs, bit width, multi-function, etc)

1/31/2006 Ganai et al ©NEC Laboratories America 10

4: Schedule an operation to a cycle

a b

+

*

a b

-

c

*

d e

f g

+

* -
c

*

d

e
f

g
Schedule A Schedule B

cycle 1

cycle 3

cycle 2

Area constraint: Extract parallelism, speculation,
operation chaining, pipeline FUs

Time Constraint: Extract conditional mutual exclusion

1/31/2006 Ganai et al ©NEC Laboratories America 11

5: Bind operations, variables, data transfer

+

*

a b

-

c

*

d e

f g

+

*

a b

-

c

*

d

e
f

g

Sub_1Add_1

Mul_2Mul_1

AddSub_1

AddSub_1
Mul_1

Mul_1

Operations: Adders, ALUs, Shifters
Variables: Registers, Memories
Data Transfers: Wire, MUX, Bus

1/31/2006 Ganai et al ©NEC Laboratories America 12

St.２

ST.1

ALU

R1

MUX

Enable

Select

Kind

Results

Controller Ctl.Signals Datapath

St.3
R2

Enables

Each Behavior Synthesis tool has their own target architecture.
FSMD is a natural architecture for Behavior Synthesis.
Some tools generate Micro-code based architecture or more processor oriented
architecture. Synthesis algorithms are somehow different for
such cases from the method in this tutorial.

6: Generation of Controller: FSMD

1/31/2006 Ganai et al ©NEC Laboratories America 13

Behavioral Synthesis

Design
constraint

To physical
implementation

Designer in char A,B,C,D;
out char O1,O2;
process ALU (）
{
char TMP;
TMP = A + B;
O1 = TMP * D;
O2 = (B + C) * X;
}

Data pathData path

AB

C

D

+ x

O2

S0

S1

S2
Controlling circuit

S0

S1

S2

State

FSMFSM

O1

performance slowfast

Small

Large

Area

Detailed trade-off
analysis results in the
optimum implementation

C/C++

RTL

Equiv. Check

Model Checker

Golden
Model

Current Synthesis + Verification flow

1/31/2006 Ganai et al ©NEC Laboratories America 14

DiVer: Overview

Verification
Report

DiVer
Verification

Platform
For

Digital
Systems

System Features
- highly automated
- advanced algorithms
- handles large designs
- smart debugger
- more effective than
simulation

necobus.v

Design

Environment
Fairness

Constraints

New Technology:
Formal Verification

BMC: Find bugs efficiently
D-BMC: Find bugs using

distributed resources
PBIA: Find irrelevant logic and

reduce model size
BMC+EMM: Find bugs on

embedded memory system
BMC+EMM+PBIA: Find irrelevant

logic and memory modules
Induction, BDD, UMC: Proofs

NEC Designs
Verified

- NECOBUS bus core
- CGX memory arbiter
- DMA Controller
- 3M hardware platform
- Snowman USB Core
- MIF memory interface

Property

AG (req -> AF (ack + error)
“request always followed
by an ack or error”

Design features
-multiple clocks, gated
-level sensitive latches
-embedded memories

SOURCE
ANNOTATIONDEBUG TRACE

WAVEFORM

Verification
Report

DiVer
Verification

Platform
For

Digital
Systems

System Features
- highly automated
- advanced algorithms
- handles large designs
- smart debugger
- more effective than
simulation

System FeaturesSystem Features
- highly automated
- advanced algorithms
- handles large designs
- smart debugger
- more effective than
simulation

necobus.v

Design

Environment
Fairness

Constraints

Environment
Fairness

Constraints

New Technology:
Formal Verification

BMC: Find bugs efficiently
D-BMC: Find bugs using

distributed resources
PBIA: Find irrelevant logic and

reduce model size
BMC+EMM: Find bugs on

embedded memory system
BMC+EMM+PBIA: Find irrelevant

logic and memory modules
Induction, BDD, UMC: Proofs

NEC Designs
Verified

- NECOBUS bus core
- CGX memory arbiter
- DMA Controller
- 3M hardware platform
- Snowman USB Core
- MIF memory interface

NEC Designs
Verified

- NECOBUS bus core
- CGX memory arbiter
- DMA Controller
- 3M hardware platform
- Snowman USB Core
- MIF memory interface

Property

AG (req -> AF (ack + error)
“request always followed
by an ack or error”

Property

AG (req -> AF (ack + error)
“request always followed
by an ack or error”

Design features
-multiple clocks, gated
-level sensitive latches
-embedded memories

SOURCE
ANNOTATIONDEBUG TRACE

WAVEFORM

1/31/2006 Ganai et al ©NEC Laboratories America 15

Wheel of Verification Engines

Distributed BMC
Find bugs on network

of workstations

BMC + PBIA
Reduce model size by
identifying & removing

irrelevant logic

BMC + EMM
Find bugs in embedded
memory systems using
Efficient Memory Model

BMC + EMM + PBIA
Reduce model size by

identifying & removing
irrelevant memories

and logic

Prover
Proves correctness of

properties using
Unbounded Model

Checking and Induction Efficient
Representation

(circuit simplifier)

Boolean Solver
(SAT, BDD)

BMC
Find bugs
efficiently

Engines for finding Bugs

Engines for finding Proofs

Legend
BMC = Bounded Model Checking
UMC = Unbounded Model Checking
EMM = Efficient Memory Modeling
PBIA = Proof-Based Iterative Abstraction
SAT = Boolean Satisfiability Solver
BDD = Binary Decision Diagrams

Paper on DiVer Platform
presented
at TACAS in April ’05

1/31/2006 Ganai et al ©NEC Laboratories America 16

Verification Flows

Find Bugs
(BMC or D-BMC)

Identify & remove
irrelevant logic

(BMC + PBIA)

Prove property
correct by

Induction or UMC
with invariants

Find Bugs in
Memory system

(BMC+EMM)

Identify & remove
irrelevant memory
and irrelevant logic
(BMC+EMM+PBIA)

Prove property
correct by
Induction

with invariants

System w/o Embedded
Memory

Embedded Memory SystemBUG

PROOF

No bug found,
safety or liveness

No bug found,
safety property

PROOF

Perform UMC for
completeness
bounds (m,n)

Prove property
correct by
Induction

with invariants

No bug found,
liveness property

Abstract
model

Completeness
bounds (m, n)

Abstract
model

1/31/2006 Ganai et al ©NEC Laboratories America 17

Hybrid SAT

Deduction Engine – Hybrid BCP
Circuit-based BCP on gate clauses using fast table lookup
CNF-based BCP on learnt clauses using lazy update

Decision Engine
Use of circuit-based information, CNF Heuristics

Diagnostic Engine
Record both clauses and gate nodes as reasons for conflict

Problem Representation
Gate Clauses: typically short, maintained as 2-input gate
Learned clauses: typically large, maintained as CNF

– Ganai et al, DAC’02

1/31/2006 Ganai et al ©NEC Laboratories America 18

Strengths/Weaknesses: SAT Solver

Strengths
Good at finding a satisfying solution
Search scales well with problem size
Incremental learning: Low overhead and improves subsequent
solves drastically
Performs well on disjoint-partitioned sub-structures
Matured and well-known heuristics exist
Hybrid SAT: advantageous over CNF/Circuit SAT solvers

Weakness
Muxes are detrimental
Not good for problems arising from optimized circuits with heavy
sharing of registers and function units
Not good at enumerating solutions

1/31/2006 Ganai et al ©NEC Laboratories America 19

Bounded Model Checking

X1
S0

0
1
1
0

! P0

S1
X2

! P1

Sn
Xn

Pn

Dynamic Circuit Transformation
Propagation of initial state constants
Subgraph isomorphism detection and removal

Reuse of Learned Property Constraints
Time-based Partitioning

Smaller sub problems, incremental formulation
Incremental Hybrid SAT Solver

– Ganai et al, DAC’02,
VLSI’02, DAC’05

Unroll Circuit for bounded length
Translate problem into a Boolean formula
Use SAT solver to check for a witness

– Biere et al DAC’00

state-of-the-art
features

1/31/2006 Ganai et al ©NEC Laboratories America 20

SAT-based Distributed BMC

Ubiquitous Ethernet LAN
Standard, Cheap

Network of Workstations (NOW)
Easily available, Idle mostly (esp. Manager’s)

BMC problem provides natural disjoint partitioning
Parallelizing partition specific tasks like BCP

Init State=PS1

PI1 Depth
1

P?

NS1=P
S2

Depth
2

P?
Depth

k-1

Depth
k

P? P
?

Partition unrolled circuit and Distribute SAT check

As unroll depth k increases, memory requirement
can exceed the limit of a single server !

– Ganai et al
CHARME’03

1/31/2006 Ganai et al ©NEC Laboratories America 21

BMC/UMC Proof for G(p) with Invariants

K-depth Inductive Step:
If Unsat(!p_k), then property is true

Additional constraint F* on the arbitrary starting state
F* is overapproximated forward reachable states
Provides an induction invariant
Frequently allows induction proof to succeed

F* =1

Depth
k+1

Depth
1

Depth
2 …

SAT(! p)?
p p

Arbitrary
State

– Gupta et al CAV’03
– Sheeran et al FMCAD’00

1/31/2006 Ganai et al ©NEC Laboratories America 22

Strengths/Weaknesses: SAT-based BMC
Strengths

Finds shortest length counter-example efficiently
Successive problems overlap, allowing incremental formulation
and incremental learning for SAT
Provides natural disjoint partitioning of problems; allowing
distributed BMC to overcome memory requirements
Reached states are not explicitly stored
Insensitive to number of registers, search scales well
State-of-the-art improvisations exist, well matured technology

Weaknesses
Problem size grows linearly with unroll depth, computation can
only worse
Sensitive to the size of the model
Incomplete, stopping criteria is difficult to determine
Not good when model is heavily sequentialized (few events per
cycle); longer search depths

1/31/2006 Ganai et al ©NEC Laboratories America 23

BMC with SAT Proof Analysis

BMC: Is p satisfiable at depth k?
X1

S1S0

X2

S2

X3

S3

X4

S4

0
1
1
0

0 0 0
p?

Suppose no counterexample at depth k
– Derive an unsatisfiable core R(k) using SAT solver

Intuition for Abstraction
Abstract model with R(k) implies no counterexample at depth k
The abstract model may be correct for k’ > k, maybe all k’
Typically R(k) is much smaller than entire design

– McMillan et al TACAS’03
– Gupta et al ICCAD’03, VLSI’05

1/31/2006 Ganai et al ©NEC Laboratories America 24

Strengths/Weaknesses: Proof-based
Abstraction

Strengths
Identifying and removing irrelevant logic
Identifies irrelevant memory and ports
Can be applied iteratively
Often leads to proof or deeper bounded proof
Reduces the refinements requirements by eliminating all counter-
example for a bounded depth

Weaknesses
Sharing of functional unit is detrimental, increases unsatisfiable
core size
Other weakness similar to SAT-based BMC with or without EMM

1/31/2006 Ganai et al ©NEC Laboratories America 25

Efficient Memory Model Approach
Observation: (1 Mem, 1 Port)

At most one address valid per cycle
At most one mem write per cycle

EMM: Remove memories, but add constraints lazily
Forwarding semantics is maintained
Exclusivity of a read-write pair is captured explicitly
Constraints are represented efficiently

A
ddr0

W
D

0
R

D
0

R
E

0
W

E
0

Depth
0

Single
Port
MEM

PI0
NS0=PS1INIT=PS0 Depth

1

PI1
Depth
k

PIk

A
ddr1

W
D

1
R

D
1

R
E

1
W

E
1

A
ddrk

W
D

k
R

D
k

R
E

k
W

E
k

A0 A1

Ak

– Ganai et al CAV’04, DATE’05

Addr
WD
RD
RE
WE

Design MEM

1/31/2006 Ganai et al ©NEC Laboratories America 26

Strengths/Weaknesses: SAT-based BMC+EMM
Strengths

EMM is sound and complete, memory semantics is preserved
No examination or translation of design module is required
Memory is not modeled explicitly; reduces design size significantly
Exclusivity of read-write pair is captured; reduces muxes
Constraints grow lazily (quadratically) with unrolling
Supports multiple memories and ports; can be exploited to reduce
the sequential depth of the design
Good for properties dependent on fewer memory accesses
Works well with arbitrary or uniform memory initialization

Weaknesses
Large memory accesses is detrimental
Non-uniform memory initialization increases memory cycles
Other weaknesses similar to SAT-based BMC

1/31/2006 Ganai et al ©NEC Laboratories America 27

SAT-based Unbounded Model Checking

W1 W2 Wi

Bad=¬p(Xi)
X1 X2 XiXi-1

Circuit cofactors are enumerated by using
SAT

CF1
CF2
CF3

[Ganai et al. 04]

Symbolic backward traversal using unrolled TR

Issues in practice
State sets (represented as circuit cofactors) may blow up
Performance is not as good as SAT-based BMC (search for
bugs), which avoids computation of state sets

Complementary to BDD-based UMC for deriving proofs

1/31/2006 Ganai et al ©NEC Laboratories America 28

Strengths/Weaknesses: UMC

Strengths
Efficient SAT solution enumerations
Uses efficient representation for states
Several low-overhead heuristics to enlarge solution states
Efficient pre-image computation, uses unrolled transition relation
Effective when primary inputs are large
Effective when the backward diameter is small

Weaknesses
Not good for forward image computation
Not effective in quantifying out relational variables

1/31/2006 Ganai et al ©NEC Laboratories America 29

Parameters Controlling HLS (1/4)

Increase use of Functional Units, Registers
Area: Increases
Performance: Can increase by reduction in control steps
Power: Increases due to increase in output capacitance,
leakage current

Reuse of Functional Units, registers
Area: Decreases, assuming mux area is small
Performance: Decreases due to increase in control steps
Power: Increases due to increased switching activities

1/31/2006 Ganai et al ©NEC Laboratories America 30

Parameters Controlling HLS (2/4)

Reduction in Control Steps
Area: Increases due to increase use of FUs
Performance: Increases if frequency of control clock is
unchanged
Power: Decreases due to decrease in switching activity. For
a fixed throughput, frequency of control clock and hence,
supply voltage can be reduced to allow power reduction

Speculative Execution
Area: Increase if more FUs are required for speculative
branch
Performance: Increases as control steps reduces
Power: Increases due to increase switching, speculative
execution and reuse of FUs

1/31/2006 Ganai et al ©NEC Laboratories America 31

Parameters Controlling HLS (3/4)

Pipelines
Area: Increase due to increase use of FUs
Performance: Increases through puts
Power: Increase due reuse of Regs, switching.

Parallelization (conditional mutual exclusion)
Area: Decrease by reuse of FUs
Performance: Increases as c-steps reduces
Power: Increase due to increase switching, reuse of FUs

1/31/2006 Ganai et al ©NEC Laboratories America 32

Parameters Controlling HLS (4/4)

Operations reuse
Area: Decreases due to fewer FUs
Performance: Decreases if critical length increases
Power: Decreases due to less switching

Increase of Clock freq (f) and supply voltage (V)
Area: Increases due to use of faster but larger FUs
Performance: Increases if control steps does not change;
otherwise, can affect throughput
Power: Increases α (f . V2)

1/31/2006 Ganai et al ©NEC Laboratories America 33

Impact of HLS parameters on Verification

Re-use of FUs, Regs
Adversely affects due to use of muxes

Increase use of FUs, Regs
Not good in general. But better than re-use.

Reduction in control steps
Definitely good. Reduces the sequential depth

Speculative execution/ Parallelization
Good if FUs are not re-used. Reduces the sequential depth.

Pipelines
Increases verification complexity without adding any functional
behavior. FUs re-used and is not good.

Operation re-use
Good in general. Reduces number of operations.

Clock/Voltage change
Selection of FUs affects verification complexity

1/31/2006 Ganai et al ©NEC Laboratories America 34

Cyber Work Bench: C-based Design Flow

Cyber Work Bench (CWB)
Developed by CRL (Wakabayashi-san) for C-based design
Generates property monitors automatically for VeriSol
Provides source-level debugging based on bugs found by VeriSol
Provides a seamless integration, with look-and-feel of a single tool

VeriSol is a key feature of NEC’s C-based design flow
Provides verification of RTL designs

Behavior level
C

Cyber

RTL
Verilog

Behavior level
Property

Behavior level
Property

Transform
using HLS
information

RTL Property
(LTL)

RTL Property
(LTL)

DiVer Witness/
Counterexample

Translation
into Behavior level

Behavior level (source) debug
out reg _ck_start=0;
out reg _ck_done=0;
if(CT_01){

RG_01 = 1;
_ck_start = 1;

}
RG_02 = RG_03;
_ck_done = RG_03;

Waveform for Behavior level variables

Highlight buggy codeif(CT_01){

x
y
z

Behavior level
C

Cyber

RTL
Verilog

Behavior level
Property

Behavior level
Property

Transform
using HLS
information

RTL Property
(LTL)

RTL Property
(LTL)

VeriSol Witness/
Counterexample

Translation
into Behavior level

Behavior level (source) debug
out reg _ck_start=0;
out reg _ck_done=0;
if(CT_01){

RG_01 = 1;
_ck_start = 1;

}
RG_02 = RG_03;
_ck_done = RG_03;

Waveform for Behavior level variables

Highlight buggy codeif(CT_01){

x
y
z

x
y
z

1/31/2006 Ganai et al ©NEC Laboratories America 35

Case Study
FiFo: Address Width=7 Data Width=7
Design: Data-in <= wptr
Property 1: F(full_flag);// FIFO_LENGTH=24
Property 2: F(RAM[rptr]+50 == wptr);// FIFO_LENGTH=128

MEM:R2,W1

MEM: R1,W1
MEM:R1,W1

REG
REG
REG

SLICE
REG

MEM/REG/
SLICE

2

2
2
2
2
2
1
1

PRP
id

135s, D=25109932+21+1R
243s, D=2511658912+21+1R

10s, D=51 EMM109933+21+1R

30s, D=150 EMM11612653+1R
33s, D=150 EMM11617723+1R

64s, D=52574143143+21+1R
52s, D=1505748434153+1R

143s, D=1505748439823+1R

Verification#REG#MUX#FUC-step
(1 RST)

1/31/2006 Ganai et al ©NEC Laboratories America 36

RTL

Behavioral Synthesis

Design
constraint

To physical
implementation

Designer in char A,B,C,D;
out char O1,O2;
process ALU (）
{
char TMP;
TMP = A + B;
O1 = TMP * D;
O2 = (B + C) * X;
}

Data pathData path

AB

C

D

+ x

O2

S0

S1

S2
Controlling circuit

S0

S1

S2

State

FSMFSM

O1

performance slowfast

Small

Large

Area

Detailed trade-off
analysis results in the
optimum implementation

C/C++

RTL

Verification
“Aware” Model

Equiv. Check

Model Checker

Golden
Model

RTL

Paradigm Shift: Synthesis for Verification

1/31/2006 Ganai et al ©NEC Laboratories America 37

Various RTLs can be checked against
Golden Reference Model (GRM)

Various circuits for IDCT: #. of REGs, FUs, States

clock: 50 MHz
Thru.put: CIF, 30fps

clock: 60 MHz
thru.put: CIF, 30fps

clock: 60 MHz

thru.put: CIF, 15fps30

35

40

45

50

55

60

65

400 600 800 1000 1200 1400 1600
cycle

A
re

a
(K

ga
te

)

FU=16,State=63

FU=32,State=61

FU=8,State=71

FU=4,State=90

FU=3,State=103

FU=2,State=129

FU=1,State=214

Various Requests

1/31/2006 Ganai et al ©NEC Laboratories America 38

Synthesis for Verification “aware” Model

No Re-use of FUs, Regs
Minimize the use of muxes, sharing
Reduce control steps
Speculative execution/ Parallelization: No re-use of FUs
Pipelines: avoid
Select “verification friendly” FUs
Operation reuse
Slice statements using data flow analysis as source code
optimization
Support “assume” and “assert” in the language
Use external memories instead of register arrays to take
advantage of EMM modeling
…..(open discussion forum)

1/31/2006 Ganai et al ©NEC Laboratories America 39

Thank you!

Applications of the DE2 Language

Warren A. Hunt, Jr. and Erik Reeber

February 16, 2006

Abstract

We have developed a formal verification approach that permits the
mechanical verification of circuit generators and hardware optimiza-
tion procedures, as well as existing hardware designs. Our approach
is based on deeply embedding the DE2 HDL into the ACL2 logic [3];
we use the ACL2 theorem-proving system to verify the circuit gen-
erators. During circuit generation, a circuit generator may generate
circuits based on variety of non-functional criteria. For example, a
circuit generator may produce different structural circuit descriptions
depending on wire lengths, circuit primitives, target technology, and
circuit topology.

In this paper, we show how we have applied the DE2 system to a
simple circuit generator—the n-bit ripple-carry adder. We then show
how we have applied the DE2 system to the verification of components
of the TRIPS microprocessor design.

1 Introduction

We have developed a hardware description language, DE2, which has a num-
ber of features that make it suitable for the verification of modern hardware
designs. DE2 has a simple semantics and includes capabilities for specify-
ing and verifying non-functional properties, circuit generators, and hardware
optimization programs.

Our verification system is based on the deep embedding of DE2 within
the ACL2 logic and theorem prover. Furthermore, we have built a fully
automatic SAT-based proof engine that can verify invariants of machines

1

designed in DE2. This SAT-based proof engine involves an extension to the
ACL2 theorem-proving system so that it can use external SAT solvers.

In this paper, we discuss related work in Section 2. We provide some
background on the ACL2 theorem prover, the DE2 language, and our veri-
fication system, in Section 3. Next, in Section 4, we show how to apply our
system to the verification of a ripple-carry adder. In Section 5, we show how
we apply our system to the verification of a communication protocol used in
the TRIPS processor.

2 Related Work

This work builds on our previous work with the DE2 language [3], as well
as our previous work with the verification of the FM9001 microprocessor
[8]. In our earlier work, we only employed theorem-proving techniques, but
our current effort also permits the use of SAT and BDD based techniques.
In addition, our current approach to verifying circuit generators permits a
circuit generator to make choices based on non-functional criteria. For exam-
ple, a circuit generator may produce different structural circuit descriptions
depending on wire lengths, circuit primitives, target technology, and circuit
topology.

This work is similar in spirit to work by the functional language commu-
nity to generate regular circuits using functional programs. For instance, the
WIRED language has been used to improve performance of multipliers by
incorporating layout information into the design of circuit generators [1].

Many model-checkers, and other automated verification tools, verify FSM
properties automatically. UCLID, for example, uses SAT solvers to verify
high-level FSMs with uninterpreted function symbols [5]. Another example
is the FORTE tool, which has been used at Intel to verify components of
processor designs [2].

3 Background

3.1 The ACL2 Theorem Prover

ACL2 stands for A Computation Logic for Applicative Common Lisp. The
ACL2 language is a functional subset of Common Lisp. For a thorough
description of ACL2 see Kaufmann, Manolios, and Moore’s book [4].

(defun concatn (n a b)

(if (zp n)

b

(cons (car a)

(concatn (- n 1) (cdr a) b))))

(defun uandn (n a)

(if (zp n)

t

(if (car a)

(uandn (- n 1) (cdr a))

nil)))

(defun bequiv (a b)

(if a b (not b)))

(defthm example-thm

(implies (and (not (zp x))

(not (zp y)))

(bequiv (uandn (+ x y) (concatn x a b))

(and (uandn x a) (uandn y b)))))

Figure 1: ACL2 Definitions and a Bit-Vector Concatenation Theorem

Figure 1 illustrates several ACL2 definitions. Here, function concatn

concatenates two bit vectors, uandn returns the conjunction of the bits in a
bit vector. The ACL2 function bequiv determines whether two ACL2 values
represent the same Boolean value. We also make use of the built-in ACL2
function (zp n), which returns nil if n is a positive integer and t otherwise.

The functions uandn and concatn are defined recursively. In order for
such definitional axioms to be added to the ACL2 theory, one must first prove
that the definition terminates for all inputs. In this case, the proof follows
from the fact that the function argument n decreases on every recursive call.

Figure 1 also illustrates an ACL2 theorem. This theorem states that
the unary-and of the concatenation of two bit vectors is equivalent to the
conjunction of the unary-and of each individual bit vector.

3.2 The DE2 Evaluator

The semantic evaluation of a DE2 design proceeds by binding actual (eval-
uated) parameters (both the inputs and the current state) to the formal
parameters of the module to be evaluated; this in turn causes the evaluation
of each submodule. This evaluation process is recursively repeated until a
primitive module is encountered. This recursive-descent/ascent part of the
evaluation can be thought of as performing all of the “wiring”; values are
“routed” to appropriate modules and results are collected and passed along
to other modules or become primary outputs. Finally, to evaluate a primi-
tive, a specific primitive evaluator is then called after binding the necessary
arguments. This set of definitions is composed of four (two groups of) func-
tions (given below), and these functions contain an argument that permits
different primitive evaluators to be used.

The following four functions completely define the evaluation of a netlist
of modules, no matter which type of primitive evaluation is specified. The
functions presented in this section constitute the entire definition of the sim-
ulator for the DE2 language. This definition is small enough to allow us to
reason with it mechanically, yet it is rich enough to permit the definition of
a variety of evaluators. The se function evaluates a module and returns its
outputs as a function of its inputs and its internal state. The de function
evaluates a module and returns its next state; this state will be structurally
identical to the module’s current state, but with updated values. Both se

and de have sibling functions, se-occ and de-occ respectively, that iterate
through each sub-module referenced in the body of a module definition. We

present the se and de evaluator functions to make clear the importance we
place on making the definition compact.

The se and de functions both have a flg argument that permits the
selection of a specific primitive evaluator. The fn argument identifies the
name of a module to evaluate; its definition should be found in the netlist.
The ins and st arguments provide the primary inputs and the current state
of the fn module. The params argument allows for parametrized modules;
that is, it is possible to define modules with wire and state sizes that are
determined by this parameter. The env argument permits configuration or
test information to be passed deep into the evaluation process.

The se-occ function evaluates each occurrence and returns an environ-
ment that includes values for all internal signals. The se function returns
a list of outputs by filtering the desired outputs from this environment. To
compute the outputs as functions of the inputs, only a single pass is required.

(defun se (flg fn params ins st env netlist)

(if (consp fn)

;; Primitive Evaluation.

(cdr (flg-eval-lambda-expr flg fn params ins env))

;; Evaluate submodules.

(let ((module (assoc-eq fn netlist)))

(if (atom module)

nil

(let-names

(m-params m-ins m-outs m-sts m-occs)

(m-body module)

(let*

((new-env (add-pairlist m-params params nil))

(new-env (add-pairlist (strip-cars m-ins)

(flg-eval-list flg ins env)

new-env))

(new-env (add-pairlist m-sts

(flg-eval-expr flg st env)

new-env))

(new-netlist (delete-assoc-eq-netlist fn netlist)))

(assoc-eq-list-vals

(strip-cars m-outs)

(se-occ flg m-occs new-env new-netlist))))))))

(defun se-occ (flg occs env netlist)

(if (atom occs) ;; Any more occurrences?

env

;; Evaluate specific occurrence.

(let-names

(o-name o-outs o-call o-ins)

(car occs)

(se-occ flg (cdr occs)

(add-pairlist

(o-outs-names o-outs)

(flg-eval-list

flg (parse-output-list

o-outs

(se flg (o-call-fn o-call)

(flg-eval-list flg

(o-call-params o-call)

env)

o-ins o-name env netlist))

env)

env)

netlist))))

Similarly, the functions de and de-occ perform the next-state compu-
tation for a module’s evaluation; given values for the primary inputs and a
structured state argument, these two functions compute the next state of
a specified module. This result state is structured isomorphically to its in-
put (internal) state. Note that the definition of de contains a reference to
the function se-occ; this reference computes the value of all internal signals
for the module whose next state is being computed. This call to se-occ
represents the first of two passes through a module description when DE is
computing the next state.

(defun de (flg fn params ins st env netlist)

(if (consp fn)

(car (flg-eval-lambda-expr flg fn params ins env))

(let ((module (assoc-eq fn netlist)))

(if (atom module)

nil

(let-names

(m-params m-ins m-sts m-occs) (m-body module)

(let*

((new-env (add-pairlist m-params params nil))

(new-env (add-pairlist (strip-cars m-ins)

(flg-eval-list flg ins env)

new-env))

(new-env (add-pairlist m-sts

(flg-eval-expr flg st env)

new-env))

(new-netlist (delete-assoc-eq-netlist fn netlist))

(new-env (se-occ flg m-occs new-env new-netlist)))

(assoc-eq-list-vals

m-sts

(de-occ flg m-occs new-env new-netlist))))))))

(defun de-occ (flg occs env netlist)

(if (atom occs)

env

(let-names

(o-name o-call o-ins) (car occs)

(de-occ flg (cdr occs)

(cons

(cons

o-name

(de flg (o-call-fn o-call)

(flg-eval-list flg (o-call-params o-call) env)

o-ins o-name env netlist))

env)

netlist))))

This completes the entire definition of the DE2 evaluation semantics.
This clique of functions is used for all different evaluators; the specific kind
of evaluation is determined by the flg input. We have proved a number of
lemmas that help to automate the analysis of DE2 modules. These lemmas
allow us to hierarchically verify FSMs represented as DE2 modules. We have
also defined simple functions that use de and se to simulate a DE2 design
through any number of cycles.

An important aspect of this semantics is its brevity. Furthermore, since
we specify our semantics in the formal language of the ACL2 theorem prover,
we can mechanically and hierarchically verify properties about any system
defined using the DE2 language.

ACL2 Model Simplified

Invariants

Verified

Translation

Optimizations

& Reductions

(verified)

Verilog

Design

Design

DE

Testing &

Inspection

ACL2 Spec

Guided

ProofSAT−Based

Decision

Procedure

and Test Suite

Manual

Translation

English Spec, C Model

Automatic

Translation

Figure 2: An overview of the DE2 verification system

3.3 The Verification System

Having an evaluator for DE2 written in ACL2 enables many forms of ver-
ification. In Figure 2, we illustrate our verification system, which is built
around the DE2 language.

We typically use the DE2 verification system to verify Verilog designs.
These designs are denoted in the upper left of Figure 2. Currently, our subset
of Verilog includes arrays of wires (bit vectors), instantiations of modules,
assignment statements, and some basic primitives (e.g. &, ?: and |). We
also allow the instantiation of memory (array) modules and vendor-defined
primitives.

We have built a translator that translates a Verilog description into an
equivalent DE2 description. Our translator parses the Verilog source text
into a Lisp expression, and then an ACL2 program converts this Lisp expres-
sion into a DE2 description.

We have also built a translator that converts a DE2 netlist into a cycle-
accurate ACL2 model. This translator also provides an ACL2 proof that
the DE2 description is equivalent to the mechanical produced ACL2 model.
The process of translating a DE2 description into its corresponding ACL2
model includes a partial cone-of-influence reduction; an ACL2 function is
created for each module’s output and parts of the initial design which are
irrelevant to that output are removed. The DE2 to ACL2 translator allows

us to enjoy both the advantages of a shallow embedding (e.g. straightforward
verification) and the advantages of a deep embedding (e.g. syntax resembling
Verilog).

We start with an informal specification of the design in the form of English
documents, charts, graphs, C-models, and test code which is represented in
the upper right of Figure 2. This information is converted manually into a
formal ACL2 specification. Using the ACL2 theorem prover, these specifica-
tions are simplified into a number of invariants and equivalence properties.
If these properties are simple enough to be proven by our SAT-based deci-
sion procedure, we prove them automatically; otherwise, we simplify such
conjectures using the ACL2 theorem prover until we can successfully appeal
to some automated decision procedure.

We also use our system to verify sets of DE2 descriptions. This is ac-
complished by writing ACL2 functions that generate DE2 descriptions, and
then proving that these functions always produce circuits that satisfy their
ACL2 specifications.

Since DE2 descriptions are represented as ACL2 constants, functions that
transform DE2 descriptions can be verified using the ACL2 theorem prover.
By converting from Verilog to DE2 and from DE2 to back into Verilog, we
can use DE2 as an intermediate language to perform verified optimizations.
Another use of this feature involves performing reductions or optimizations
on DE2 specifications prior to verification. For example, one can use a
decision procedure to determine that two DE2 circuits are equivalent and
then use this fact to avoid verifying properties of a less cleanly structured
description.

We can also build static analysis tools, such as extended type checkers, in
DE2 by using annotations. In DE2, annotations are first-class objects (i.e.
annotations are not embedded in comments). Such type checkers, since they
are written in ACL2, can be analyzed and can also assist in the verification of
DE2 descriptions. Furthermore, annotations can be used to embed informa-
tion into a DE2 description to assist with synthesis or other post-processing
tools.

4 Ripple-Carry Adder Generator Verification

In this section we present a definition of a simple parametrized ripple-carry
adder to show how the DE2 verification system is applied to verify circuit

generators. The following two ACL2 functions generate the DE2 definition
of the top-level module of the ripple-carry adder:

(defun generate-ripple-occs (n)

(if (zp n)

nil

(append (generate-ripple-occs (1- n))

‘((,(de-make-n-name ’carry n)

((q ,(1- n) ,(1- n)) (carry ,n ,n))

(full-adder)

((g x ,(1- n) ,(1- n)) (g y ,(1- n) ,(1- n))

(g carry ,(1- n) ,(1- n))))))))

;; Make an n-bit ripple-carry adder

(defun generate-ripple-carry (n)

‘(,(de-make-n-name ’ripple-carry n)

(type module)

(params)

(outs (q ,n) (c_out 1))

(ins (x ,n) (y ,n) (c_in 1))

(sts)

(wires (carry ,(1+ n)))

(occs

(carry_0 ((carry 0 0)) (bufn 1) ((g c_in 0 0)))

. ,(append (generate-ripple-occs n)

‘((carry_out ((c_out 0 0))

(bufn 1)

((g carry ,n ,n))))))))

The function generate-ripple-occs creates the occurrence list by recur-
sively laying down one full-adder for each output bit. The function
generate-ripple-carry then uses this occurrence list to create the top-
level ripple-carry adder definition. For example, the following is the four bit
ripple-carry adder produced by (generate-ripple-carry 4):

(RIPPLE-CARRY_4

(TYPE MODULE)

(PARAMS)

(OUTS (Q 4) (C_OUT 1))

(INS (X 4) (Y 4) (C_IN 1))

(STS)

(WIRES (CARRY 5))

(OCCS (CARRY_0 ((CARRY 0 0))

(BUFN 1)

((G C_IN 0 0)))

(CARRY_1 ((Q 0 0) (CARRY 1 1))

(FULL-ADDER)

((G X 0 0) (G Y 0 0) (G CARRY 0 0)))

(CARRY_2 ((Q 1 1) (CARRY 2 2))

(FULL-ADDER)

((G X 1 1) (G Y 1 1) (G CARRY 1 1)))

(CARRY_3 ((Q 2 2) (CARRY 3 3))

(FULL-ADDER)

((G X 2 2) (G Y 2 2) (G CARRY 2 2)))

(CARRY_4 ((Q 3 3) (CARRY 4 4))

(FULL-ADDER)

((G X 3 3) (G Y 3 3) (G CARRY 3 3)))

(CARRY_OUT ((C_OUT 0 0))

(BUFN 1)

((G CARRY 4 4)))))

We next define a ripple-carry adder in ACL2 which follows the same
structure as the one defined in DE2. The following is the top-level definition
of the ACL2 ripple-carry adder and the main theorem we prove about it:

(defun acl2-ripple-adder (n x y c_in)

(if (zp n)

(list nil (get-sublist c_in 0 0))

(let* ((adder_1b

(acl2-full-adder (get-sublist x 0 0)

(get-sublist y 0 0)

(get-sublist c_in 0 0)))

(sub_adder (acl2-ripple-adder (1- n)

(nth-cdr 1 x)

(nth-cdr 1 y)

(cadr adder_1b))))

(list (append-n 1 (car adder_1b) (car sub_adder))

(append-n 1 c_in (cadr sub_adder))))))

(defthm acl2-ripple-adder-adds

(implies

(and (equal n (len a))

(equal (len b) (len a)))

(equal (v-to-nat

(car (acl2-ripple-adder n a b

(list (bool-fix c_in)))))

(mod-2-n (+ (if c_in 1 0)

(v-to-nat a)

(v-to-nat b))

n))))

The above theorem states that the ACL2 functional definition of the ripple-
carry adder implements modular addition, as defined by ACL2’s addition
axioms. We prove this theorem by making use of ACL2’s induction and
simplification proof engines, as well as the library of lemmas that has been
created to assist ACL2 users in the verification of arithmetic properties.

Next we verify the theorem below:

(defthm generate-ripple-se-rewrite

(implies

(and (not (zp n))

(generate-ripple-carry-& n netlist))

(equal

(se ’bvev

(de-make-n-name ’ripple-carry n)

params ins st env netlist)

(let ((x (get-value ’bvev ins env))

(y (get-value ’bvev (cdr ins) env))

(c_in (get-sublist (get-value ’bvev

(cddr ins)

env)

0

0)))

(list (car (acl2-ripple-adder n x y c_in))

(get-sublist (cadr (acl2-ripple-adder n

x

y

c_in))

n

n))))))

This theorem states that, given certain conditions, the DE2 ripple-carry
adder produces the same result as the ACL2 ripple-carry adder. The hy-
potheses of the theorem are that the number of bits is a positive inte-
ger and that the ripple-carry adder modules occurs in the given netlist,
along with its submodules. This theorem is proven using ACL2’s induc-
tion proof engine, which we use to show that each occurrence produced by a
recursive step of generate-ripple-occs corresponds to a recursive step in
acl2-ripple-adder.

Once we have verified generate-ripple-se-rewrite, we can prove the
final theorem below:

(defthm generate-ripple-se-adds

(implies

(and (not (zp n))

(generate-ripple-carry-& n netlist)

(equal (len (get-value ’bvev ins env)) n)

(equal (len (get-value ’bvev (cdr ins) env)) n))

(equal

(v-to-nat (car (se ’bvev

(de-make-n-name ’ripple-carry n)

params ins st env netlist)))

(let ((x (get-value ’bvev ins env))

(y (get-value ’bvev (cdr ins) env))

(c_in (get-sublist (get-value ’bvev (cddr ins) env)

0

0)))

(mod-2-n (+ (if (car c_in) 1 0)

(v-to-nat x)

(v-to-nat y))

n)))))

This theorem states that if the n-bit, ripple-carry adder module is in the
netlist, along with its submodules, and the first two inputs are n bit, bit
vectors, then the natural number representation of the output of the ripple-
carry adder is equal to the modular addition of its inputs.

Note we proved this theorem entirely using the standard ACL2 theorem
proving techniques, without the use of SAT solvers or BDDs. That is because
we completed this proof before our SAT-based proof engine was fully in
place. In the next section we will show how we are verifying next-generation
hardware using a mixture of SAT-solving and theorem proving.

5 Verifying TRIPS Processor Components

We are using our verification system to verify components of the TRIPS
processor. The TRIPS processor is a prototype of a next-generation processor
that has been designed at the University of Texas [7] and being built by IBM.
One novel aspect of the TRIPS processor is that its memory is divided into
four pieces; each piece has its own memory control tile, with its own cache
and Load Store Queue (LSQ). We plan to verify the LSQ design, based on
the design described in Sethumadhavan et. al., [6], using our verification
system. In this section, we present our verification of a part of the LSQ that
manages communication with other LSQs.

We first use our verification system, mentioned in Section 3.3, to “com-
pile” the Verilog design that implements the LSQ communication protocol
into a DE2 module. We then used our automatic translation engine to com-
pile the DE2 description into an ACL2 model and prove their equivalence
relative to the DE2 semantics.

5.1 Verification of the Exception Protocol

One reason that the LSQ units must communicate is to conglomerate ex-
ceptions generated in various tiles into a single mask. Figure 3 presents an
overview of the protocol that conglomerates exceptions. Each tile receives a
four-bit input denoting the exception generated this cycle—a three-bit ad-
dress plus a one-bit enable signal. The exceptions are decoded into an eight-
bit mask, that each tile passes to the tile above it. Exceptions are removed
when the instruction that generated the exception is flushed. The schematic
of the design that implements this protocol is shown in Figure 4.

To verify the multi-tile design in Figure 3, we prove that it is equivalent
to the single-tile design in Figure 5. This equivalence is broken into the
following two properties:

(defthm exception-safety

(implies

(and (integerp tao)

(<= 0 tao)

(Tth-inputs-goodp tao input-list))

(submaskp

8

(out-udt_miss_ordering_exceptions

Flush_mask

Multi−Tile Design

T1_Except

T2_Except

T3_Except

Flush_mask

Local_Except

UDT_EX_Mask

DDT_EX_Mask

Tile 0

T0_Except

Flush_mask

Local_Except

DDT_EX_Mask

Tile 1 UDT_EX_Mask

Tile 3

Flush_mask

Local_Except

UDT_EX_Mask

DDT_EX_Mask

Tile 2

Flush_mask

Local_Except

UDT_EX_Mask

DDT_EX_Mask

REG

REG

REG

Exception_mask

Figure 3: An overview of the four tile exception protocol design.

R

E

G

EN−DECODE

4

Flush_mask

Local_Except

R

E

G

A

N

D

N

O

R

8

R

O

DDT_EX_mask

8

8

UDT_EX_mask

8

Single Tile Design

Figure 4: A look into the internals of a tile within the exception protocol.

EN−DECODE

EN−DECODE

EN−DECODE

4

4

4

4

EN−DECODE

D

A

N

T3_Except *

NOT

R

O

8

8

8

8

8

This input has been modified: an exception is disabled if it occurs in an*

insturction that has already been flushed.

Spec_EX_mask

R

E

G

8

T0_Except

T1_Except

T2_Except

*

*

Flush_mask

Specification Machine

Figure 5: A simplified machine that produces the exception mask.

t0

(Tth-internal-state tao input-list)

(nth tao input-list))

(spec-miss_ordering

(Tth-spec-state tao input-list)

(nth tao input-list)))))

(defthm exception-liveness

(implies

(and (integerp tao)

(<= 3 tao)

(Tth-inputs-goodp tao input-list))

(submaskp

8

(bv-or

8

(recent-flushes 3 tao *t0* input-list)

(spec-miss_ordering

(Tth-spec-state (- tao 3) input-list)

(nth (- tao 3) input-list)))

(out-udt_miss_ordering_exceptions

t0

(Tth-internal-state tao input-list)

(nth tao input-list)))))

The first property proves that, for any cycle number tao, assuming good
inputs, the exception mask generated by tile zero is a subset of the exception
mask generated by the single-tile machine. The second property proves that
the exception mask generated by the single tile machine is a subset of the
combination of the exception mask generated by tile zero and the last three
flush masks. In effect, these properties prove that our multi-tile exception
design only produces exceptions produced by the specification and eventually
produces all exceptions produced by the specification.

We prove these properties by reducing them to the proof of an invariant;
we prove these invariants through a mixture of theorem proving and SAT
solving. The following example illustrates the type of lemma that we prove
with SAT. This lemma is proven by telling ACL2 to automatically call the
SAT-based proof engine once its simplification rules reach a fix point.

(defthm sub-of-spec-mask-t0

(implies

(and

(equiv-bvp

8

(in-ddt_miss_ordering_exceptions *t0* ins)

(internal-st-udt_miss_ordering *t1* internal-state))

(equiv-bvp

8

(in-flush_mask *t0* ins)

(internal-st-flush_mask *t1* internal-state))

(sub-of-spec-mask-tile *t0* spec-st internal-state)

(sub-of-spec-mask-tile *t1* spec-st internal-state))

(sub-of-spec-mask-tile

t0

(update-spec-st spec-st internal-state ins)

(update-internal-state internal-state ins))))

5.2 Verification of an Arrived-Store Protocol

The LSQ units also communicate to create a mask of arrived stores; these
are used to generate exceptions, wake deferred loads, and detect comple-
tion. Figure6 presents an overview of the arrived-store-mask protocol. This
protocol is more complex than the exception protocol, because tiles send in-
formation to both the tile above and the tile below them. Also, since the
arrived store mask is 256 bits, the whole mask is never sent. Instead up to
three, nine-bit store signals are sent to each neighboring tile, informing each
neighbor of all the new stores it has received in the last cycle.

We used the same methodology to verify the arrived-store-mask protocol
as we used to verify the exception-mask protocol. We first define a single-tile
design that produces the store mask. This design is shown in Figure 7. Next,
we prove the equivalence of the single-tile and multi-tile designs using the
following two theorems. Note that these theorems prove an equivalence over
all tiles, whereas the exception mask equivalence only dealt with tile zero.

(defthm arrived-safety

(implies

(and (integerp tao)

(<= 0 tao)

(Tth-inputs-goodp tao input-list))

REG

REG

REG

Flush_mask
Commit_mask

Local_store

U
D

T
2_in

U
D

T
1_in

U
D

T
0_in

U
D

T
0_out

U
D

T
2_out

U
D

T
1_out

D
D

T
2_in

D
D

T
1_in

D
D

T
0_in

D
D

T
0_out

D
D

T
2_out

D
D

T
1_out

Store_mask

T0_Store_mask

Flush_mask
Commit_mask

Local_store

U
D

T
2_in

U
D

T
1_in

U
D

T
0_in

U
D

T
0_out

U
D

T
2_out

U
D

T
1_out

D
D

T
2_in

D
D

T
1_in

D
D

T
0_in

D
D

T
0_out

D
D

T
2_out

D
D

T
1_out

Flush_mask
Commit_mask

Local_store

U
D

T
2_in

U
D

T
1_in

U
D

T
0_in

U
D

T
0_out

U
D

T
2_out

U
D

T
1_out

D
D

T
2_in

D
D

T
1_in

D
D

T
0_in

D
D

T
0_out

D
D

T
2_out

D
D

T
1_out

Store_mask

Flush_mask
Commit_mask

Local_store

U
D

T
2_in

U
D

T
1_in

U
D

T
0_in

U
D

T
0_out

U
D

T
2_out

U
D

T
1_out

D
D

T
2_in

D
D

T
1_in

D
D

T
0_in

D
D

T
0_out

D
D

T
2_out

D
D

T
1_out

Store_mask

Tile 2

T0_Store

T1_Store

T2_Store

T3_Store

T1_Store_mask

T2_Store_mask

T3_Store_mask

Tile 0

Store_mask

Tile 1

Tile 2

Store Mask Design

Figure 6: An overview of the protocol for generating the mask of arrived
stores. Note that the tile inputs that are unconnected are either grounded
or known to always be low.

EN−DECODE

EN−DECODE

EN−DECODE

9

9

9

9

EN−DECODE

D

A

N

R

O

Store_mask

R

E

G

256

256

256

256

This input has been modified: a store is removed if it occurs in an*

insturction that has already been flushed.

NOR Expand Mask

8

256

*

*

Flush_mask

Store Mask Specification Machine

Commit_mask

T1_Store

T2_Store

*
T3_Store

T0_Store

256

Figure 7: A simplified machine that produces the mask of arrived stores.

(submaskp

8

(out-arrived_mask

tile

(Tth-internal-state tao input-list)

(nth (- tao 3) input-list))

(spec-arrived_mask

(Tth-spec-state tao input-list)

(nth tao input-list)))))

(defthm arrived-liveness

(implies

(and (integerp tao)

(<= 3 tao)

(Tth-inputs-goodp tao input-list))

(submaskp

8

(bv-or

8

(expand-mask 8 256 (recent-flushes 3 tao tile input-list))

(bv-or

8

(expand-mask 8 256 (recent-commits 3 tao tile input-list))

(spec-arrived_mask

(Tth-spec-state (- tao 3) input-list)

(nth (- tao 3) input-list))))

(out-arrived_mask

tile

(Tth-internal-state tao input-list)

(nth tao input-list)))))

6 Conclusion

The verification of an automatically generated circuit description usually
involves verifying the netlist post-synthesis. Through our ripple-carry adder
example, we have shown how we can verify the correctness of the circuit
generators directly, thus obviating the need to verify the resultant circuit
descriptions.

To aid our verification effort, we have combined the complementary tech-
niques of theorem proving and SAT solving. We show the usefulness of this
combination through the verification of a Verilog implementation of a com-
munication protocol used in the TRIPS processor.

An extension of our approach is to show how circuit generators can be
used within the verification of the TRIPS processor. Rather than partition
memory into four pieces, one could design a TRIPS processor with memory
partitioned into a parametrized number of pieces. This type of verification fits
well into the modular nature of the TRIPS processor design and showcases
the advantages of the DE2 language. Furthermore, this verification effort
will allow us to explore the applications and limitations of fully automated
verification techniques, like SAT, when used to verify large circuit generation
designs.

Moving beyond circuit generators, there are many other potential appli-
cations for the DE2 verification system. For example, we can use the DE2

language to verify hardware optimization programs and non-functional prop-
erties. The flexibility of the DE2 language and the ACL2 theorem proving
system provides the opportunity to verify many types of applications, many

of which are rarely, if ever, been formally verified.

References

[1] Emil Axelsson, Koen Claessen, and Mary Sheeran. Wired: Wire-Aware
Circuit Design. In Correct Hardware Design and Verification Methods
(CHARME 2005), volume 3725 of Lecture Notes in Computer Science,
pages 5–19. Springer, 2005.

[2] Robert B. Jones, John W. O’Leary, Carl-Johan H. Seger, Mark Aagaard,
and Thomas F. Melham. Practical Formal Verification in Microprocessor
Design. IEEE Design & Test of Computers, 18(4):16–25, 2001.

[3] Warren A. Hunt Jr. and Erik Reeber. Formalization of the DE2 Lan-
guage. In Correct Hardware Design and Verification Methods (CHARME
2005), volume 3725 of Lecture Notes in Computer Science, pages 20–34.
Springer, 2005.

[4] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer
Aided Reasoning: An Approach. Kluwer Academic, 2000.

[5] Shuvendu K. Lahiri and Randal E. Bryant. Deductive verification of
advanced out-of-order microprocessors. In Computer Aided Verification,
15th International Conference (CAV 2003), volume 2725 of Lecture Notes
in Computer Science, pages 341–353. Springer, 2003.

[6] Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger, Charles R.
Moore, and Stephen W. Keckler. Scalable hardware memory disambigua-
tion for high ilp processors. In Proceedings of the 36th Annual Inter-
national Symposium on Microarchitecture (MICRO 36), pages 399–410.
ACM/IEEE, 2003.

[7] Tera-op Reliable Intelligently adaptive Processing System,
www.cs.utexas.edu/users/cart/trips.

[8] Warren A. Hunt, Jr. and Bishop C. Brock. A Formal HDL and its Use in
the FM9001 Verification. In Mechanized Reasoning and Hardware Design,
pages 35–47, Upper Saddle River, NJ, USA, 1992. Prentice-Hall, Inc.

Evolution and Impact of a Large Industrial Proof

Robert B. Jones Noppanunt Utamaphethai
Strategic CAD Labs Low Power Technologies Group

Intel Corporation Intel Corporation
Hillsboro, OR, USA Austin, Texas, USA

robert.b.jones@intel.com noppanunt.utamaphethai@intel.com

The IntelR© IA-32 instruction-set architecture includes several hundred opcodes of varying length [3].
Certain instructions have optional bytes that specify register modes, memory modes, and address
offsets. Instructions vary in length from one to twelve bytes. An additional complication arises
from prefix bytesthat can change the semantics and even length of the subsequent instruction.

Decoding the IA-32 instruction-set in a high-frequency pipeline is challenging. Recent proces-
sor implementations divide the decoding process into separate activities; the first is aninstruction-
length decoder(ILD) that marks instruction boundaries.

This talk at DCC 2006 will overview the evolution and impact of a formal proof about the
ILD. The proof has evolved as it has been applied to multiple microprocessor designs over almost
a decade. The proof has detected bugs in almost every design it has been applied to, and has
largely replaced simulation-based validation of ILD functionality on some projects. This talk will
consider the evolution of the proof in the face of hardware changes and additions to the instruction
set. Technical details of an early version of the proof have been published previously [1, 2, 4].

We have learned several important lessons about specification and verification during the evo-
lution of the ILD proof.

• Formal specifications should avoid implementation details when possible. Current ILD im-
plementations are significantly different from the first ILD pipeline that was verified. Writ-
ing the formal specification to reason about the ILD as a “black box” has been an important
aspect of applying it on multiple hardware designs.

• Proofs need to be amenable to variations in proof complexity induced by design changes. We
found that certain hardware changes made the BDDs underlying the proof simpler. On the
other hand, changes usually made the proof BDDs more complex. Managing this complexity
was one of the main challenges as the proof evolved. With the benefit of hindsight, we can
see techniques that would have made complexity management easier.

• Certain classes of specifications must be written in an extensible way. It was fortunate that
the original ILD specification was extensible. In the years since the original specification
was created, multiple features have been added to Intel microprocessors that required new
instructions. More recently, the introduction of a 64-bit mode to the Intel architecture re-
sulted in extensive additions to the instruction set–and to its formal specification.

The ILD proof has been very successful and a wide range of bugs have been found over the
proof’s lifetime. Some might have escaped simulation-based validation, and, as far as we know,
the formal proof has not missed any bugs in its targeted area. We will highlight examples of bugs
and their underlying causes. As the proof has matured, the ability to apply it early in the design
process has proven particularly useful.

1

References

[1] M. D. Aagaard, R. B. Jones, and C.-J. H. Seger. Combining theorem proving and trajectory
evaluation in an industrial environment. InDesign Automation Conference (DAC), pages 538–
541. ACM Press, June 1998.

[2] M. D. Aagaard, R. B. Jones, and C.-J. H. Seger. Formal verification using parametric repre-
sentations of Boolean constraints. InDesign Automation Conference (DAC), pages 402–407.
ACM Press, June 1999.

[3] IA-32 IntelR© Architecture Software Developer’s Manual, Volumes 2A and 2B: Instruction
Set Reference. Intel Corporation, September 2005. Document numbers 253666 and 254667.
Available athttp://www.intel.com.

[4] R. B. Jones.Symbolic Simulation Methods for Industrial Formal Verification. Kluwer Aca-
demic Publishers, 2002.

2

Synchronous Elastic Networks

Sava Krstić1, Jordi Cortadella2, Mike Kishinevsky1, and John O’Leary1

1 Strategic CAD Labs, Intel Corporation, Hillsboro, Oregon, USA
2 Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. We formally define a class of networks obeying a protocol
that tolerates any variability in the latency of the components. We study
behavioral properties of these networks and prove fundamental composi-
tionality results. The paper contributes to bridging the gap between the
theory of latency-insensitive systems and the correct implementation of
efficient control structures for such systems.

1 Introduction

The conventional abstract model for a synchronous circuit is a machine that Note: This paper has
been submitted to a
conference. The extended
version [7] contains an
appendix with complete
proofs and auxiliary
material, including a brief
overview of SELF.

reads inputs and writes outputs at every cycle. The outputs at cycle i are pro-
duced according to a calculation that depends on the inputs at cycles 0, . . . , i.
Computations and data transfers are assumed to take zero delay.

Latency-insensitive design [2] aims to relax this model by elasticizing the
time dimension and so decoupling the cycles from the calculations of the circuit.
It enables the design of circuits tolerant to any discrete variation (in the number
of cycles) of the computation and communication delays. With this modular
approach, the functionality of the system only depends on the functionality of
its components and not on their timing characteristics.

The motivation for latency-insensitive design comes from the difficulties with
timing and communication in nanoscale technologies. The number of cycles re-
quired to transmit data from a sender to a receiver is governed by the distance
between them, and often cannot be accurately known until the chip layout is
generated late in the design process. Traditional design approaches require fix-
ing the communication latencies up front, and these are difficult to amend when
layout information finally becomes available. Elastic circuits offer a solution to
this problem. In addition, their modularity promises novel methods for microar-
chitectural design that can use variable-latency components and tolerate static
and dynamic changes in communication latencies, while—unlike asynchronous
circuits—still employing standard synchronous design tools and methods.

The recent paper [4] presents a simple elastic protocol, called SELF (Synchro-
nous Elastic Flow) and describes methods for efficient implementation of elastic
systems and for conversion of regular synchronous designs into elastic form.
Inspired by the original work on the latency-insensitive design [2], SELF also
differs from it in ways that render the theory developed in [2] hardly applicable.

In this paper we give theoretical foundations of SELF. The paper is self-
contained, but for lack of space all proofs are omitted. The interested reader can
find them in the accompanying technical report [7].

1.1 Overview

Figure 1(a) depicts the timing behavior of a conventional synchronous adder that
reads input and produces output data at every cycle (boxes represent cycles).
In this adder, the i-th output value is produced at the i-th cycle. Figure 1(b)
depicts a related behavior of an elastic adder—a synchronous circuit too—in
which data transfer occurs in some cycles and not in others. We refer to the
transferred data items as tokens and we say that idle cycles contain bubbles.

3267
123 5

2014

...

...
...

...

...
...1253

2014
3267

(a) (b)

+ +e

Fig. 1. (a) Conventional synchronous adder, (b) Synchronous elastic adder.

Put succinctly, elasticization decouples cycle count from token count. In a
conventional synchronous circuit, the i-th token of a wire is transmitted at the
i-th cycle, whereas in a synchronous elastic circuit the i-th token is transmitted
at some cycle k ≥ i.

Turning a conventional synchronous adder into a synchronous elastic adder
requires a communication discipline that differentiates idle from non-idle cycles
(bubbles from tokens). In SELF, this is implemented by a pair of single-bit control
wires: Valid and Stop. Every input or output wire X in a synchronous component
is associated to a channel in the elastic version of the same component. The
channel is a triple of wires 〈X, validX , stopX〉, with X carrying the data and
the other two wires implementing the control bits, as shown in Figure 2(b). A
token is transferred on this channel when validX = 1 and stopX = 0: the sender
sends valid data and the receiver is ready to accept it. Additional constraints
that guarantee correct elastic behavior are given in Section 3. There we define
precisely what it means for a circuit Ae to be an elastization of a given circuit
A. In particular, our definition implies liveness: Ae produces infinite streams
of tokens if its environment produces infinite streams of tokens at the input
channels and is ready to accept infinite streams at the output channels.

data

valid

stop

channel
=

C

B

D

(a)

C

e

e

A A bu
ff

er

(b)

B
e

D
e

Fig. 2. A synchronous network (a) and its elastic counterpart (b).

2

Suppose N is a network of standard (non-elastic) components, as in Fig-
ure 2(a). Suppose we then take elasticizations of these standard components and
join their channels accordingly, as in Figure 2(b), ignoring the buffer. Will the
resulting network N e be an elasticization of N ? Will it be elastic at all? These
fundamental questions are answered by Theorem 4 of Section 4, which is the main
result of the paper. The answers are “yes”, provided a certain graph ∆e(N e)
associated with N e is acyclic. This graph captures the information about paths
inside elastic systems that contain no tokens—analogous to combinational paths
in ordinary systems. Importantly, ∆e(N e) can be constructed using only local
information (the “sequentiality interfaces”) of the individual elastic components.

Since elastic networks tolerate any variability in the latency of the compo-
nents, empty FIFO buffers can be inserted in any channel, as shown in Fig-
ure 2(b), without changing the functional behavior of the network. This practi-
cally important fact is proved as a consequence of Theorem 4.

Synchronous circuits are modeled in this paper as stream transformers, called
machines. This well-known technique (see [8] and references therein) appears to
be quite underdeveloped. Our rather lengthy preliminary Section 2 elaborates
the necessary theory of networks of machines, culminating with a surprisingly
novel combinational loop therorem (Theorem 1).

Figure 3 illustrates Theorem 1 and, by analogy, Theorem 4 as well. It relies on
the formalization of the notion of combinational dependence at the level of input-
output wire pairs. Each input-output pair of a machine is either sequential or
not, and the set of sequential pairs provides a machine’s “sequentiality interface”.
When several machines are put together into a network N , their sequentiality
interfaces define the graph ∆(N), the acyclicity of which is a test for the network
to be a legitimate machine itself.

Elasticizations of ordinary circuits are not uniquely defined. On the other
hand, for every elastic machine A there is a unique standard machine, denoted
Aᵀ, that corresponds to it. We do not discuss any specific elasticization proce-
dures in this paper, but state our results in the form that only involves elastic
machines and their unique standard counterparts. This makes the results poten-
tially applicable to multiple elasticization procedures.

1

3 4

2
A

5 6
8

B

7

10
C

9

11 12
D

1

3 4

2
A

5 6
8

B

7

10
C

9

11 12
D

A

AA

B

B

D

DC

10−11

3 6

8−94−7

2−5

12−1
A

Fig. 3. A network N (middle) and its acyclic dependency graph ∆(N) (right). The
nodes of ∆(N) are wires; internal wires get two labels. The arcs of ∆(N) are non-
sequential input-output wire pairs of component circuits. Dotted arcs indicate that
(1,2) and (7,10) are sequential pairs for A and C resp.; they are not part of ∆(N).

3

1.2 Related Work

Carloni et al. [2] pioneered a theory of latency-insensitive systems based on their
notion of patient systems. We could not rely on this theory for proving prop-
erties of SELF since it does not cover systems with combinational propagation
of signals, an important class for most practical applications. In addition, the
papers [2] and its companion [3] do not specify a particular implementation pro-
tocol, nor the properties required for its correctness. Our recovery of the protocol
specification based on [3] and the private communication with the author proved
that SELF cannot be covered by the theory of patient systems and requires a
separate theory.

Suhaib et al. [11] revisited and generalized Carloni’s elasticization procedure,
validating its correctness by a simulation method based on model checking.

Lee et al. [9] study causality interfaces (pairwise input-output dependencies)
and are “interested in existence and uniqueness of the behavior of feedback
composition”, but do not go as far as deriving a combinational loop theorem.

In their work on design of interlock pipelines [6], Jacobson et al. use a protocol
equivalent to SELF, without explicitly specifying it.

2 Circuits as Stream Functions

In this section we introduce machines as a mathematical abstraction of circuits
without combinational cycles. For simplicity, this abstraction implicitly assumes
that all sequential elements inside the circuit are initialized. Extending to par-
tially initialized systems appears to be trivial. While there is a large body of
work studying circuits or equivalent objects with good (e.g. constructive [1])
combinational cycles and their composition (e.g. [5]), we deliberately restrict
consideration to the fully acyclic objects, since neither logic synthesis nor timing
analysis can properly treat circuits with combinational cycles.

Most of the effort in this section goes into establishing modularity conditions
guaranteeing that a system obtained as a network of machines (the feedback
construction in particular) is a machine itself.

2.1 Streams

A stream over A is an infinite sequence whose elements belong to the set A. The
first element of a stream a is referred to by a[0], the second by a[1], etc. For
example, the equation a[i] = 3i + 1 describes the stream (1, 4, 7, . . .).

The set of all streams will be denoted A∞. Occassionally we will need to
consider finite sequences too; the set of all, finite or infinite, sequences over A is
denoted Aω.

We will write a ∼k b to indicate that the streams a and b have a common
prefix of length k. The equivalence relations ∼0,∼1,∼2, . . . are progressively finer
and have trivial intersection. Thus, to prove two sequences a and b are equal, it
suffices to show a ∼k b holds for every k. Note also that a ∼0 b holds for every
a and b.

4

We will use the equivalence relations ∼k to express properties of systems and
machines viewed as multivariate stream functions. All these properties will be
derived from the following two basic properties of single-variable stream func-
tions f : A∞ → B∞.

causality: ∀a, b ∈ A∞. ∀k ≥ 0. a ∼k b ⇒ f(a) ∼k f(b)
contraction: ∀a, b ∈ A∞. ∀k ≥ 0. a ∼k b ⇒ f(a) ∼k+1 f(b)

Informally, f is causal if (for every a) the first k elements of f(a) are determined
by the first k elements of a, and f is contractive if the first k elements of f(a)
are determined by the first k − 1 elements of a.

Lemma 1. If f : A∞ → A∞ is contractive, then it has a unique fixpoint.

Remark 1. One can define the distance d(a, b) between sequences a and b to be
1/2k, where k is the length of the largest common prefix of a and b. This gives
the sets A∞ and Aω the structure of complete metric spaces and Lemma 1 is an
instance of Banach Fixed Point Theorem. See [8] for more details and references
about the metric semantics of systems. We choose not to use the metric space
terminology in this paper since all “metric reasoning” we need can be as easily
done with equivalence relations ∼k instead. See [10] for principles of reasoning
with such “converging equivalence relations” in more general contexts.

2.2 Systems

Suppose W is a set of typed wires; all we know about an individual wire w is
a set type(w) associated to it. A W -behavior is a function σ that associates a
stream σ.w ∈ type(w)∞ to each wire w ∈ W . The set of all W -behaviors will
be denoted JW K. Slightly abusing the notation, we will also write JwK for the
set type(w)∞. Notice that the equivalence relations ∼k extend naturally from
streams to behaviors:

σ ∼k σ′ iff ∀w ∈ W. σ.w ∼k σ′.w

Notice also that a W -behavior σ can be seen as a single stream (σ[0], σ[1], . . .)
of W -states, where a state is an assignment of a value in type(w) to each wire w.

Definition 1. A W -system is a subset of JW K.

Example 1. A circuit that at each clock cycle receives an integer as input and
returns the sum of all previously received inputs is described by the W -system
S, where W consist of two wires u, v of type Z, and S consists of all stream pairs
(a, b) ∈ Z∞ × Z∞ such that b[0] = 0 and b[n] = a[0] + · · · + a[n − 1] for n > 0.
Each stream pair (a, b) represents a behavior σ such that σ.u = a and σ.v = b.

We will use wires as typed variables in formulas meant to describe system
properties. The formulas are built using ordinary mathematical and logical no-
tation, enhanced with temporal operators next, always, and eventually, denoted
respectively by ()+,G,F. For example, the system S in Example 1 is character-
ized by the property v = 0 ∧ G (v+ = v + u). Also, one has S |= F G (u > 0) ⇒
F G (v > 1000), where |= is used to denote that a formula is true of a system.

5

2.3 Operations on Systems

If W ′ ⊆ W , there is an obvious projection map σ 7→ σ ↓W ′ : JW K → JW ′K.
These projections are all one needs for the definition of the following two basic
operations on systems.

Definition 2. (a) If S is a W -system and W ′ ⊆ W , then hiding W ′ in S
produces a (W −W ′)-system hideW ′(S) defined by

τ ∈ hideW ′(S) iff ∃σ ∈ S. τ = σ ↓ (W −W ′).

(b) The composition of a W1-system S1 and a W2-system S2 is a (W1 ∪ W2)-
system S1 t S2 defined by

σ ∈ S1 t S2 iff σ ↓W1 ∈ S1 ∧ σ ↓W2 ∈ S2.

If W and W ′ are disjoint wire sets, σ ∈ JW K, and τ ∈ JW ′K, then there is
a unique behavior ϑ ∈ JW ∪ W ′K such that σ = ϑ ↓W and τ = ϑ ↓W ′. This
“product” of behaviors will be written as ϑ = σ ∗ τ . (If W is the empty set, then
JW K has one element—a “trivial behavior” that is also a multiplicative unit for
the product operation ∗.) We will also use the notation [u 7→ a, v 7→ b, . . .] for
the {u, v, . . .}-behavior σ such that σ.u = a, σ.v = b, etc.

Hiding and composition suffice to define complex networks of systems. To
model identification of wires, we use simple connection systems: by definition,
Conn(u, v) is the {u, v}-system consisting of all behaviors σ such that σ.u = σ.v.

Now if S1, . . . ,Sm are given systems and u1, . . . , un, v1, . . . , vn are some of
their wires, the network obtained from these systems by identifying each wire ui

with the corresponding wire vi (of equal type) is the system

〈S1, . . . ,Sm |u1 = v2, . . . , un = vn〉
= hide{u1,...,un,v1,...,vn}(S1 t · · · t Sm t Conn(u1, v1) t · · · t Conn(un, vn))

The simplest case (m = n = 1) of networks is the construction

〈S |u = v〉 = hide{u,v}(S t Conn(u, v)),

used for a feedback definition in Section 2.5. A behavior σ belongs to 〈S |u = v〉
if and only if σ ∗ [u 7→ a, v 7→ a] ∈ S for some a ∈ JuK.

2.4 Machines

Suppose I and O are disjoint sets of wires, called inputs and outputs, corre-
spondingly. By definition, an (I,O)-system is just an (I ∪ O)-system. Consider
the following properties of an (I,O)-system S.

deterministic: ∀ω, ω′ ∈ S. ω ↓ I = ω′ ↓ I ⇒ ω ↓O = ω′ ↓O

functional: ∀σ ∈ JIK.∃!τ ∈ JOK. σ ∗ τ ∈ S
causal: ∀ω, ω′ ∈ S.∀k ≥ 0. ω ↓ I ∼k ω′ ↓ I ⇒ ω ↓O ∼k ω′ ↓O

6

Clearly, functionality implies determinism. Conversely, a deterministic system is
functional if and only if it accepts all inputs. Note also that causality implies
determinism: if ω ↓ I = ω′ ↓ I, then ω ↓ I ∼k ω′ ↓ I holds for every k, so ω ↓O ∼k

ω′ ↓O holds for every k too, so ω ↓O = ω′ ↓O.

Definition 3. An (I, O)-machine is an (I,O)-system that is both functional and
causal.

A functional system S uniquely determines and is determined by the function
F : JIK → JOK such that F (σ) = τ holds if and only if σ ∗ τ ∈ S. The causality
condition for such S can be also written as follows:

∀σ, σ′ ∈ JIK.∀k ≥ 0. σ ∼k σ′ ⇒ F (σ) ∼k F (σ′).

The system in Example 1 is a machine if we regard u as an input wire and
v as an output wire. The same is true of the system Conn(u, v): its associated
function F is the identity function.

2.5 Feedback on Machines

We will use the term feedback for the system 〈S |u = v〉 as mentioned in Sec-
tion 2.3 when S is a machine and the wires u and v of the same type are an
input and output of S respectively. Our concern now is to understand under
what conditions the feedback produces a machine.

To fix the notation, assume S is an (I,O)-machine given by F : JIK → JOK,
with wires u ∈ I, v ∈ O of the same type A. By the note at the end of Section 2.3,
we have that for every σ ∈ JI − {u}K and τ ∈ JO − {v}K,

σ ∗ τ ∈ 〈S |u = v〉 iff ∃a ∈ A∞. F (σ ∗ [u 7→ a]) = τ ∗ [v 7→ a]),

so 〈S |u = v〉 is functional when the function Fσ
uv : A∞ → A∞ defined by

Fσ
uv(a) = F (σ ∗ [u 7→ a]).v has a unique fixpoint. By Lemma 1, this is guaran-

teed if Fσ
uv is contractive. The following definition introduces the key concept of

sequentiality that formalizes the intutive notion that there is no combinational
dependence of a given output wire on a given input wire. Sequentiality of the
pair (u, v) easily implies contractivity of Fσ

uv for all σ.

Definition 4. The pair (u, v) is sequential for S if for every k ≥ 0, every
σ, σ′ ∈ JI − {u}K, and every a, a′ ∈ JuK one has

σ ∼k+1 σ′ ∧ a ∼k a′ ⇒ F (σ ∗ [u 7→ a]).v ∼k+1 F (σ′ ∗ [u 7→ a′]).v

Lemma 2 (Feedback). If (u, v) is a sequential input-output pair for a machine
S, then the feedback system 〈S |u = v〉 is a machine too.

Example 2. Consider the system S with I = {u, v}, O = {w, z}, specified by
equations

w = u⊕ ((0)#v) z = v ⊕ v,

7

where all wires have type Z, the symbol ⊕ denotes the componentwise sum of
streams, and # denotes concatenation. Since z does not depend on u, the pair
(u, z) is sequential. The pair (v, w) is also sequential since to compute a prefix of
w it suffices to know (a prefix of the same size of u and) a prefix of smaller size
of v. The remaining two input-output pairs (u, w) and (v, z) are not sequential.

To find the machine 〈S | v = w〉, we need to solve the equation v = u⊕((0)#v)
for v. For each u = (a0, a1, a2, . . .), the equation has a unique solution v = û =
(a0, a0+a1, a0+a1+a2, . . .). Substituting the solution into z = v⊕v, we obtain a
description of 〈S | v = w〉 by a single equation that relates its input and output:
z = û ⊕ û. The other feedback 〈S |u = z〉 is easier to calculate; it is given by
equation w = v ⊕ v ⊕ ((0)#v).

2.6 Networks of Machines and the Combinational Loop Theorem

Consider a network N = 〈S1, . . . ,Sm |u1 = v1, . . . , un = vn〉, where S1, . . . ,Sm

are machines with disjoint wire sets and the pairs (u1, v1),. . . ,(un, vn) involve n
distinct input wires ui and n distinct output wires vi. (There is no assumption
that ui, vi belong to the same machine Sj .) Our goal is to understand under
what conditions the system N is a machine.

Note that N = 〈S |u1 = v2, . . . , un = vn〉, where S = S1 t · · · t Sm. It is
easy to check that an input-output pair (u, v) of S is sequential if either (1)
(u, v) is sequential for some Si, or (2) u and v belong to different machines.
Thus, the information about sequentiality of input-output pairs of the “parallel
composition” machine S is readily available from the sequentiality information
about the component machines Si, and our problem boils down to determining
when a multiple feedback operation performed on a single machine results in a
system that is itself a machine.

Simultaneous feedback specified by a set of two or more input-output pairs of
a machine does not necessarlily produce a machine even if all pairs involved are
sequential. Indeed, in Example 2 we had a system S with two sequential pairs
(u, z) and (v, w), but (u, z) ceases to be sequential for 〈S | v = w〉. Indeed, if z
and u are related by z = û⊕ û, then knowing a prefix of length k of z requires
knowing the prefix of the same length of u; a shorter one would not suffice.

To ensure that a multiple feedback construction produces a machine, it is
necessary that, in addition to the wire pairs to be identified, sufficiently many
other input-output pairs are also sequential. A precise formulation for a double
feedback is given by a version of the Bekić Lemma: for the system 〈S |u =
w, v = z〉 to be a machine, it suffices that three pairs of wires be sequential—
(u, w), (v, z), and one of (u, z), (v, w). This non-trivial auxiliary result is needed
for the proof of Theorem 1 below, and is a special case of it.

Given an (I, O)-machine S, let its dependency graph ∆(S) have the vertex
set I ∪O and directed edges that go from u to v for each pair (u, v) ∈ I×O that
is not sequential. For a network system N = 〈S1, . . . ,Sm |u1 = v1, . . . , un = vn〉,
its graph ∆(N) is then defined as the direct sum of graphs ∆(S1), . . . ,∆(Sm)
with each vertex ui (1 ≤ i ≤ n) identified with the corresponding vertex vi

(Figure 3).

8

Theorem 1 (Combinational Loop Theorem). The network system N is a
machine if the graph ∆(N) is acyclic.

3 Elastic Machines

In this section we give the definition of elastic machines. Its four parts—input-
output structure, persistence conditions, liveness conditions, and the transfer
determinism condition—are covered by Definitions 5-8 below.

3.1 Input-output Structure, Channels, and Transfer

We assume that the set of wires is partitioned into ordinary, valid, and stop
wires, so that for each ordinary wire X there exist associated wires validX and
stopX of boolean type. (In actual circuit implementations, validX and stopX need
not be physical wires; it suffices that they be appropriately encoded.)

Definition 5. Let I,O be disjoint sets of ordinary wires. An [I,O]-system is
an (I ′, O′)-machine, where I ′ = I ∪ {validX |X ∈ I} ∪ {stopY |Y ∈ O} and
O′ = O ∪ {validY |Y ∈ O} ∪ {stopX |X ∈ I}.

The triples 〈X, validX , stopX〉 (X ∈ I) and 〈Y, validY , stopY 〉 (Y ∈ O) are to
be thought of as elastic input and output channels of the system.

Let transferZ be a shorthand for validZ ∧¬stopZ and say that transfer along
Z occurs in a state s if s |= transferZ . Given a behavior σ = (σ[0], σ[1], σ[2], . . .)
of an [I,O]-system and Z ∈ I ∪ O, let σZ be the sequence (perhaps finite!)
obtained from σ.Z = (σ[0].Z, σ[1].Z, σ[2].Z, . . .) by deleting all entries σ[i].Z
such that transfer along Z does not occur in σ[i]. The transfer behavior σᵀ

associated with σ is then defined by σᵀ.Z = σZ . If all sequences σZ are infinite,
then σᵀ is an (I∪O)-behavior; in general, however, we only have σZ ∈ type(Z)ω.

For each wire Z of an [I,O]-system S we introduce an auxiliary transfer
counter variable tctZ of type Z. The counters serve for expressing system prop-
erties related to transfer. By definition, tctZ is equal to the number of states that
precede the current state and in which transfer along Z has occurred. That is,
for every behavior σ of S, we have σ.tctZ = (t0, t1, . . .), where tk is the number
of indices i such that i < k and transfer along Z occurs in σ[i]. Note that the
sequence σ.tctZ is non-decreasing and begins with t0 = 0.

The notation min tctS , for any subset S of I ∪O will be used to denote the
smallest of the numbers tctZ , where Z ∈ S.

3.2 Definition of Elasticity

An elastic component, when ready to communicate over an output channel must
remain ready until the transfer takes place.

Definition 6. The persistence conditions for an [I,O]-system S are given by

S |= G (validY ∧ stopY ⇒ (validY)+), for every Y ∈ O. (1)

9

The most useful consequence of persistence is the “handshake lemma”:

S |= GF validY ∧ GF¬stopY ⇒ GF transferY

Liveness of an elastic component is expressed in terms of token count: if
all input channels have seen k transfers and there is an output channel that has
seen less, then the communication on output channels with the minimum amount
of transfer must be eventually offered. The following definition formalizes this,
together with a similar commitment to eventual readiness on input channels.

Definition 7. The liveness conditions for an [I, O]-system are given by

S |= G (min tctO ≥ tctY ∧min tctI > tctY ⇒ F validY), for every Y ∈ O (2)
S |= G (min tctI∪O ≥ tctX ⇒ F¬stopX), for every X ∈ I (3)

In practice, elastic components will satisfy simpler (but stronger) liveness
properties; e.g. remove min tctO ≥ tctY from (2) and replace min tctI∪O ≥ tctX
with min tctO ≥ tctX in (3). However, a composition of such components, while
satisfying (2) and (3), may not satify the stronger versions of these conditions.

Consider single-channel [I,O]-systems satisfying the persistence and live-
ness conditions: an elastic consumer is a [{Z}, ∅]-system C satisfying (4) be-
low; similarly, an elastic producer is a [∅, {Z}]-system P satisfying (5) and (6).

C |= GF¬stopZ (4)
P |= G (validZ ∧ stopZ ⇒ (validZ)+) (5)
P |= GF validZ (6)

Let CZ be the {Z, validZ , stopZ}-system characterized by condition (4)—the
largest (in the sense of behavior inclusion) of the systems satisfying this condi-
tion. Similarly, let PZ be the {Z, validZ , stopZ}-system characterized by proper-
ties (5) and (6). Finally, define the [I,O]-elastic environment to be the system

EnvI,O =
⊔

X∈I PX t
⊔

Y ∈O CY .

Note that EnvI,O is only a system; it is not functional and so is not a machine.
When a system satisfying the persistence and liveness conditions (1-3) is

coupled with a matching elastic environment, the transfer on all data wires
never comes to a stall:

Lemma 3 (Liveness). If S satisfies (1-3), then for every behavior ω of S t
EnvI,O, all the component sequences of the transfer behavior ωᵀ are infinite.

As an immediate consequence of Liveness Lemma, if S satisfies (1-3), then

Sᵀ = {ωᵀ |ω ∈ S t EnvI,O}

is a well-defined (I,O)-system.

Definition 8. An [I, O]-system S is an [I,O]-elastic machine if it satisfies the
properties (1-3) and the associated system Sᵀ is deterministic.

10

The liveness conditions (2,3) are visibly related to causality at the transfer
level: k transfers on the input channels imply k transfers on the output channels
in the cooperating environment. Thus, it is not surprising that the determinism
postulated in Definition 8 suffices to derive the causality of Sᵀ:

Theorem 2. If S is an [I,O]-elastic machine, then Sᵀ is an (I, O)-machine.

In the situation of Definition 8, we say that S is an elasticization of Sᵀ and
that Sᵀ is the transfer machine of S.

4 Elastic Networks

An elastic network N is given by a set of elastic machines S1, . . . ,Sm with no
shared wires, together with a set of channel pairs (X1, Y1), . . . , (Xn, Yn), where
the Xi are n distinct input channels and the Yi are n distinct output channels.
As a network of standard machines, the elastic network N is defined by

N = 〈S1, . . . ,Sm |Xi = Yi, validXi
= validYi

, stopXi
= stopYi

(1 ≤ i ≤ n)〉,

for which we will use the shorter notation

N = 〈〈S1, . . . ,Sm [] X1 = Y1, . . . , Xn = Yn〉〉.

We will define a graph that encodes the sequentiality information about the
network N and prove in Theorem 4 that acyclicity of that graph implies that N
is an elastic machine and that N ᵀ = 〈Sᵀ

1 , . . . ,Sᵀ
m |X1 = Y1, . . . , Xn = Yn〉.

4.1 Elastic Feedback

Elastic feedback is a simple case of elastic network:

〈〈S [] P = Q〉〉 = 〈S |P = Q, validP = validQ, stopP = stopQ〉.

Definition 9. Suppose S is an elastic machine. An input-output channel pair
(P,Q) will be called sequential for S if

S |= G (min tctI∪O ≥ tctQ ∧min tctI−{P} > tctQ ⇒ F validQ). (7)

Condition (7) is a strengthening of the liveness condition (2) for channel Q.
It expresses a degree of independence of the output channel Q from the input
channel P ; e.g., the first token at Q need not wait for the arrival of the first
token at P . This independence can be achieved in the system by storing some
tokens inside, between these two channels. Note that (7) does not guarantee
that connecting channels P and Q would not introduce ordinary combinational
cycles. Therefore the acyclicity condition in the following theorem is required to
ensure (by Theorem 1) that the elastic feedback, viewed as an ordinary network,
is a machine.

Theorem 3. Let S be an elastic machine and F the elastic feedback system
〈〈S [] P = Q〉〉. If the channel pair (P,Q) is sequential for S, then: (a) the wire
pair (P,Q) is sequential for Sᵀ. If, in addition, ∆(F) is acyclic, then: (b) F is
an elastic machine, and (c) Fᵀ = 〈Sᵀ |P = Q〉.

11

4.2 Main Theorems

Sequentiality of two channel pairs (P,Q), (P ′, Q) of an elastic machine does not
imply their “simultaneous sequentiality”

S |= G (min tctI∪O ≥ tctQ ∧min tctI−{P,P ′} ≥ tctQ ⇒ F validQ).

This deviates from the situation with ordinary machines, where the analogous
property holds and is instrumental in the proof of Combinational Loop Theorem.

To justify multiple feedback on elastic machines, we have thus to postulate
that simultaneous sequentiality is true where required. Specifically, we demand
that elastic machines come with simultaneous sequentiality information: If S is
an [I,O]-elastic machine, then for every Y ∈ O a set δ(Y) ⊆ I is given so that

S |= G (min tctI∪O ≥ tctQ ∧min tctI−δ(Q) > tctQ ⇒ F validQ). (8)

Note that if P ∈ δ(Q), then the pair (P,Q) is sequential, but the converse is not
implied. A function δ : O → 2I with the property (8) will be called a sequentiality
interface for S.

For an [I,O]-elastic machine S with a sequentiality interface δ, we define
∆e(S, δ) to be the graph with the vertex set I ∪ O and directed edges (X, Y)
where X /∈ δ(Y). By Theorem 3(a), ∆e(S, δ) contains ∆(Sᵀ) as a subgraph.

Given an elastic network N = 〈〈S1, . . . ,Sm [] X1 = Y1, . . . , Xn = Yn〉〉, where
each Si comes equipped with a sequentiality interface δi, its graph ∆e(N) is by
definition the direct sum of graphs ∆e(S1, δ1), . . . ,∆e(Sm, δm) with each vertex
Xi (1 ≤ i ≤ n) identified with the corresponding vertex Yi.

Theorem 4. If the graphs ∆(N) and ∆e(N) are acyclic, then the network
system N is an elastic machine, the corresponding non-elastic system N̄ =
〈Sᵀ

1 , . . . ,Sᵀ
m |X1 = Y1, . . . , Xn = Yn〉 is a machine, and N ᵀ = N̄ .

As in Theorem 3, acyclicity of ∆(N) is needed to ensure (by Theorem 1) that
N defines a machine. Elasticization procedures (e.g. [4]) will typically produce
elastic components with enough sequential input-output wire pairs, so that ∆(N)
will be acyclic as soon as ∆e(N) is acyclic.

Note, however, that cycles in ∆e(N) need not correspond to combinational
cycles in N seen as an ordinary network, since empty buffers with sequential
elements cutting the combinational feedbacks may be inserted into N . Even
though non-combinational in the ordinary sense, these cycles contain no tokens
and therefore no progress along them can be made.

Theorem 4 impies that insertion of empty elastic buffers does not affect the
basic functionality of an elastic network, as illustrated in Figure 2(b).

Definition 10. An empty elastic buffer is an elastic machine S such that Sᵀ =
Conn(X, Y) for some X, Y .

Theorem 5 (Buffer Insertion Theorem). Let B be an empty elastic buffer
with channels X, Y . Let N = 〈〈S1, . . . ,Sm []X1 = Y1, . . . , Xn = Yn〉〉 and M =
〈〈B,S1, . . . ,Sm [] X = Y1, X1 = Y, X2 = Y2, . . . , Xn = Yn〉〉. If ∆(N), ∆(M), and
∆e(N) are acyclic, then M is an elastic machine, and Mᵀ = N ᵀ.

12

The precise relationship between graphs ∆(M) and ∆(N) can be easily de-
scribed. In practice they are at the same time acyclic or not, as a consequence
of sequentiality of sufficiently many input-output wire pairs of B.

5 Conclusion

We have presented a theory of elastic machines that gives an easy-to-check con-
dition for the compositional theorem of the form “an elasticization of a network
of ordinary components is equivalent to the network of components’ elasticiza-
tions”. Verification of a particular SELF implementation, such as in [4], is reduced
to proving that conditions of Definition 8 are satisfied for all elastic components
used, and that the graph ∆e(N e) is acyclic for every network N to which the
elasticization is applied. While the definition of the graphs ∆e may appear com-
plex because of the sequentiality interfaces involved, it should be noted that the
elasticization procedures, e.g. [4], are reasonably expected to completely preserve
sequentiality: a channel P belongs to δ(Q) if the wire-pair (P,Q) is sequential in
the original non-elastic machine. This ensures ∆e(N e) = ∆(N) and so testing
for sequentiality is done at the level of ordinary networks.

Future work will be focused on proving correctness of particular elasticization
methods, on techniques for mechanical verification of elasticity, and on extending
the theory to more advanced SELF protocols.

References

1. G. Berry. The Constructive Semantics of Pure Esterel. Draft book, available at
www.esterel.org, version 3, 1999.

2. L. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of latency-
insensitive design. IEEE Tr. on CAD, 20(9):1059–1076, 2001.

3. L. P. Carloni and A. L. Sangiovanni-Vincentelli. Coping with latency in SoC design.
IEEE Micro, Special Issue on Systems on Chip, 22(5):12, 2002.

4. J. Cortadella, M. Kishinevsky, and B. Grundmann. SELF: Specification and design
of a synchronous elastic architecture for DSM systems. TAU 2006 (to appear).
Available at www.lsi.upc.edu/~jordicf/gavina/BIB/reports/self tr.pdf.

5. S. A. Edwards and E. A. Lee. The semantics and execution of a synchronous
block-diagram language. Sci. Comput. Program., 48(1):21–42, 2003.

6. H. M. Jacobson et al. Synchronous interlocked pipelines. In Proc. Int. Symp. on
Advanced Research in Asynchronous Circuits and Systems, pp. 3–12, 2002.

7. S. Krstić, J. Cortadella, M. Kishinevsky, and J. O’Leary. Synchronous elastic
networks. 2006. Available at www.lsi.upc.edu/~jordicf/gavina/BIB/reports/

elastic nets.pdf.
8. E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of

computation. IEEE Tr. on CAD, 17(12):1217–1229, 1998.
9. E. A. Lee, H. Zheng, and Y. Zhou. Causality interfaces and compositional causality

analysis. Invited paper in Foundations of Interface Technologies (FIT 2005).
10. J. Matthews. Recursive function definition over coinductive types. In Proc. 12th

Int. Conf. on Theorem Proving in Higher Order Logics, pp. 73–90, 1999.
11. S. Suhaib et al. Presentation and formal verification of a family of protocols for

latency insensitive design. TR 2005-02, FERMAT, Virginia Tech, 2005.

13

Au
to

m
at

in
g

th
e

Ve
rifi

ca
tio

n
of

RT
L-

Le
ve

l P
ip

el
in

ed
 M

ac
hi

ne
s

P
an

ag
io

tis
 (P

et
e)

 M
an

ol
io

s
C

ol
le

ge
 o

f C
om

pu
tin

g
G

eo
rg

ia
 In

st
itu

te
 o

f T
ec

hn
ol

og
y

S
up

po
rte

d
by

: N
S

F
gr

an
ts

 0
42

99
24

, 0
41

74
13

, 0
43

88
71

D
C

C
 W

or
ks

ho
p

 V

ie
nn

a,
 A

us
tri

a

 M
ar

ch
 2

5-
26

, 2
00

6

H
ar

dw
ar

e
V

er
ifi

ca
tio

n
w

ith
 A

C
L2

V
er

ifi
ca

tio
n

sy
st

em
 u

se
d

to
 p

ro
ve

 s
om

e
of

 th
e

la
rg

es
t a

nd
 m

os
t

co
m

pl
ic

at
ed

 th
eo

re
m

s
ev

er
 p

ro
ve

d
ab

ou
t c

om
m

er
ci

al
ly

 d
es

ig
ne

d
sy

st
em

s.

H
ar

dw
ar

e
V

er
ifi

ca
tio

n
w

ith
 A

C
L2

∎
M

ot
or

ol
a

C
A

P
 D

S
P

.
▮

B
it/

cy
cl

e-
ac

cu
ra

te
 m

od
el

.
▮

R
un

 fa
st

er
s

th
an

 S
P

W
 m

od
el

.
▮

P
ro

ve
d

co
rr

ec
tn

es
s

of
 p

ip
el

in
e

ha
za

rd
 d

et
ec

tio
n

in
 m

ic
ro

co
de

.
▮

V
er

ifi
ed

 m
ic

ro
co

de
 p

ro
gr

am
s.

∎
R

oc
kw

el
l C

ol
lin

s
A

A
M

P
7.

▮
M

IL
S

 E
A

L-
7

ce
rti

fic
at

io
n

fro
m

 N
S

A
fo

r t
he

ir
cr

yp
to

 p
ro

ce
ss

or
.

▮
V

er
ifi

ed
 s

ep
ar

at
io

n
ke

rn
el

.
∎

R
oc

kw
el

l C
ol

lin
s

JE
M

1.
∎

A
M

D
 F

lo
at

in
g

P
oi

nt
, …

 .

R
F

U

D
E

B
U

G

C
T

R
L

A
L

U

D
X

U

L
F

U

M
IC

R
O

S
E

Q
U

E
N

C
E

R

IN
T

E
R

R
U

P
T

C
O

N
T

R
O

L
L

E
R

P
A

R
T

IT
IO

N

T
IM

E
R

S

A

W
D R

D

A F
D

F
D

DEBUG

MONITOR

MEMORY

PROTECTION

STATIC

RAM

A
D

D
R

E
S

S
 /

 W
R

IT
E

 D
A

T
A

R
E

A
D

 D
A

T
A

IN
T

A

E
B

M

B
IU

M
D

U

D C
S

1615655311

U
C

LI
DU

C
LI

D
 [s
ec

]

18
7

16
0

26
3

23
3

30
0

2922

S
ie

ge

20
3

17
5

26
9

23
8

30
5

3233

To
ta

l

16
15

,4
57

5,
28

5
1

16
15

,4
57

5,
28

5
2

1,
04
9

21
1,

72
3

71
,1

84
8

90
4

15
9,

01
0

53
,4

41
7

1,
39
0

72
,3

22
24

,4
78

6
1,
23
0

71
,3

50
24

,1
49

5
1,
57
5

70
,6

93
23

,9
13

4
16
5

36
,9

25
12

,4
95

3

A
C

L2
[d
ay
s]

C
N

F
C

la
us

es
C

N
F

V
ar

s
M

od
el

P
ip

el
in

ed
 M

ac
hi

ne
 V

er
ifi

ca
tio

n
w

ith
 U

C
LI

D

∎
C

or
re

ct
ne

ss
 s

ta
te

m
en

t n
ot

 e
xp

re
ss

ib
le

 in
 C

LU
.

▮
“C

or
e

th
eo

re
m

” i
s

ex
pr

es
si

bl
e.

∎
Te

rm
-le

ve
l M

od
el

in
g.

▮
D

at
ap

at
h,

 d
ec

od
er

, e
tc

. a
bs

tra
ct

ed
 a

w
ay

.
▮

O
nl

y
sm

al
l s

ub
se

t o
f i

ns
tru

ct
io

n
se

t i
m

pl
em

en
te

d.
▮

R
es

tri
ct

ed
 m

od
el

in
g

la
ng

ua
ge

: n
o

m
od

ul
es

.
▮

R
es

tri
ct

ed
 lo

gi
c:

 fo
rc

es
 u

s
to

 a
dd

 e
xt

ra
 s

ta
te

 &
 c

on
tro

l l
og

ic
.

▮
Fa

r f
ro

m
 b

it-
le

ve
l o

r e
xe

cu
ta

bl
e.

▮
N

o
w

ay
 to

 re
as

on
 a

bo
ut

 p
ro

gr
am

s:
 h

av
e

no
 s

em
an

tic
s.

▮
N

ot
 c

le
ar

 h
ow

 to
 re

la
te

 to
 R

TL
, b

it-
le

ve
l d

es
ig

ns
.

∎
S

ca
lin

g
is

su
es

 a
ris

e
as

 m
ac

hi
ne

 c
om

pl
ex

ity
 in

cr
ea

se
s.

Li
m

ita
tio

ns
 o

f U
C

LI
D

/D
ec

is
io

n
P

ro
ce

du
re

s

P
ip

el
in

ed
 M

ac
hi

ne
 M

6

P
ip

el
in

ed
 M

ac
hi

ne
 M

7

P
ip

el
in

ed
 M

ac
hi

ne
 M

10

P
ip

el
in

ed
 M

ac
hi

ne
 M

10
I

P
ip

el
in

ed
 M

ac
hi

ne
 M

10
ID

P
ip

el
in

ed
 M

ac
hi

ne
 M

10
ID

W

M
on

ol
ith

ic
 V

er
ifi

ca
tio

n
∎

W
e

m
od

el
ed

 th
e

m
ac

hi
ne

s
us

in
g

U
C

LI
D

.
∎

U
C

LI
D

 c
om

pi
le

s
to

 S
A

T;
 w

e
us

ed
 S

ie
ge

.
∎

R
es

ul
ts

: e
xp

on
en

tia
l i

nc
re

as
e

in
 v

er
ifi

ca
tio

n
tim

e.

O
ve

rv
ie

w

∎
R

ef
in

em
en

t.
∎

R
ef

in
em

en
t M

ap
s.

∎
C

om
po

si
tio

na
l R

ea
so

ni
ng

.
∎

C
ou

nt
er

ex
am

pl
es

.
∎

C
om

bi
ni

ng
 A

C
L2

 &
 U

C
LI

D
.

∎
Fu

tu
re

 W
or

k.

R
ef

in
em

en
t,

th
e

P
ic

tu
re

PC
R
F

IM

D
M

PC

R
F

IM

D
M

IS
A
-A
bs
tr
ac
t

M
A
-A
bs
tr
ac
t

M
A
-A
bs
tr
ac
t2

M
A
-L
ow
-L
ev
el

R
F

IM
D
M

R
F

IM
32

32

32

32

32
32

32
D
M

32

D
M

D
M

∎
Fo

rm
al

 c
on

ne
ct

io
n

be
tw

ee
n

di
ffe

re
nt

ab
st

ra
ct

io
n

le
ve

ls
.

∎
A

cc
ou

nt
s

fo
r s

tu
tte

rin
g.

∎
R

ef
in

em
en

t m
ap

s.
∎

D
ev

el
op

ed
 g

en
er

al
 th

eo
ry

.
∎

S
im

pl
ifi

ed
 c

la
ss

ic
 re

su
lts

.
∎

P
re

se
rv

at
io

n
of

 s
af

et
y

an
d

liv
en

es
s

(C
TL

*
\ X

).
∎

C
om

po
si

tio
na

l.
∎

A
vo

id
 “l

ea
ky

 a
bs

tra
ct

io
ns

.”
≈ ≈ ≈

〈∀
w

 ∈
 M

A
 ::

s=

r.w
 ∧

 u
 =

 IS
A

-s
te

p(
s)

 ∧

v
=

M
A

-s
te

p(
w

)
∧

 u
 ≠

r.v
 ⇒

s=
r.v

 ∧
 r

an
k.

v
 <

 ra
nk

.w
〉

∎
Th

eo
re

m
 is

 e
xp

re
ss

ib
le

 in
 C

LU
, a

 d
ec

id
ab

le
 lo

gi
c.

∎
N

ot
e

th
at

 M
A

-s
te

p,
 IS

A
-s

te
p,

 r,
 a

nd
 ra

nk
 a

re
 c

om
pl

ex
.

∎
S

TB
 re

fin
em

en
t f

ol
lo

w
s

fro
m

 th
e

“C
or

e
Th

eo
re

m
”: v

s

w

u

ra
nk

.v
 <

 ra
nk

.w
rr

A
ut

om
at

in
g

R
ef

in
em

en
t

r

R
ef

in
em

en
t M

ap
s

&
 R

an
ks

∎
Fl

us
hi

ng
 re

fin
em

en
t m

ap
:

▮
Fi

ni
sh

 a
ll

pa
rti

al
ly

 e
xe

cu
te

d
in

st
ru

ct
io

ns
.

▮
M

A
-s

te
p

is
 u

se
d

to
 d

ef
in

e
flu

sh
in

g.
▮

Fo
r M

10
ID

W
, 1

4
sy

m
bo

lic
 s

im
ul

at
io

ns
 re

qu
ire

d.
▮

C
on

si
st

en
cy

 in
va

ria
nt

s
re

qu
ire

d
fo

r w
rit

e-
th

ro
ug

h
ca

ch
es

.
∎

R
an

k
fu

nc
tio

n:
▮

N
um

be
r o

f s
te

ps
 to

 fe
tc

h
an

 in
st

ru
ct

io
n

th
at

ev
en

tu
al

ly
 c

om
pl

et
es

.
∎

Bo
th

 c
an

 b
e

de
fin

ed
 a

ut
om

at
ic

al
ly

.

Th
e

R
ef

in
em

en
t M

ap
 F

ac
to

r
∎

Th
e

re
fin

em
en

t m
ap

s
us

ed
 c

an
 h

av
e

a
dr

as
tic

 im
pa

ct
 o

n
ve

rif
ic

at
io

n
tim

es
.

▮
It

is
 p

os
si

bl
e

to
 a

tta
in

 o
rd

er
s

of
 m

ag
ni

tu
de

im
pr

ov
em

en
ts

 in
 v

er
ifi

ca
tio

n
tim

es
.

▮
C

an
 e

na
bl

e
th

e
ve

rif
ic

at
io

n
of

 m
ac

hi
ne

s
th

at
 a

re
to

o
co

m
pl

ex
 to

 o
th

er
w

is
e

au
to

m
at

ic
al

ly
 v

er
ify

.
∎

Be
yo

nd
 fl

us
hi

ng
.

▮
C

om
m

itm
en

t (
FM

C
A

D
 0

0,
 D

A
TE

 0
4)

.
▮

G
FP

 (M
em

oc
od

e
05

).
▮

In
te

rm
ed

ia
te

 m
ap

s
(D

A
TE

 0
5)

.
▮

C
ol

la
ps

ed
 fl

us
hi

ng
 (D

A
TE

 0
6)

.

In
te

rm
ed

ia
te

 R
ef

in
em

en
t M

ap
s

IR
9:

 C
om

m
it

9
la

tc
he

s,

 (

C
om

m
itm

en
t)

IR
0:

 F
lu

sh
 9

 la
tc

he
s,

 (
Fl

us
hi

ng
)

PC

C
om

m
it

PC

Fl
us

h

PC

C
om

m
it

Fl
us

h

IR
4:

 C
om

m
it

fir
st

 4
 la

tc
he

s,

 F

lu
sh

 la
st

 5
 la

tc
he

s

•
V

er
ifi

ca
tio

n
tim

e
is

 e
xp

on
en

tia
l i

n
th

e
pi

pe
lin

e
“c

om
pl

ex
ity

”:
O

(2
c)

.
•

Fo
r i

nt
er

m
ed

ia
te

 re
fin

em
en

t m
ap

s:
•

C
om

pl
ex

ity
 o

f f
lu

sh
in

g
an

d
co

m
m

itm
en

t p
ar

ts
 is

 c
/2

.
•

R
es

ul
tin

g
ve

rif
ic

at
io

n
tim

e
is

 O
(2

c/
2)

.

IR
 R

es
ul

ts

C
om

po
si

tio
na

l V
er

ifi
ca

tio
n

∎
Id

ea
: v

er
ify

 th
e

m
ac

hi
ne

s
th

e
w

ay
 w

e
de

fin
ed

th
em

, o
ne

 s
te

p
at

 a
 ti

m
e.

∎
D

ev
el

op
ed

 a
 c

om
pl

et
e,

 c
om

po
si

tio
na

l
fra

m
ew

or
k

fo
r p

ip
el

in
ed

 m
ac

hi
ne

 v
er

ifi
ca

tio
n.

∎
Pr

es
er

ve
 s

af
et

y
&

liv
en

es
s.

∎
M

10
ID

W
 n

ow
 ta

ke
s

~2
0

se
co

nd
s

to
 v

er
ify

!
∎

C
ou

nt
er

ex
am

pl
es

 te
nd

 to
 b

e
m

uc
h

si
m

pl
er

:
th

ey
 c

an
 b

e
is

ol
at

ed
 to

 a
 re

fin
em

en
t s

te
p.

∎
Ap

pe
ar

ed
 in

 IC
C

AD
 0

5.

C
om

po
si

tio
na

l P
ro

of
Lo

ca
l R

ul
e

G
lo

ba
l R

ul
e

R
ef

in
em

en
t m

ap
s

an
d

ra
nk

s
ar

e
ea

si
er

 to
 d

ef
in

e
pi

ec
ew

is
e.

C
om

po
si

tio
na

l v
s.

 D
ire

ct

W
hy

 s
uc

h
go

od
re

su
lts

?

C
om

pl
ex

ity
 o

f p
ro

of
de

pe
nd

s
on

 s
em

an
tic

ga
p

be
tw

ee
n

m
ac

hi
ne

s.

O
ur

 c
om

po
si

tio
na

l
fra

m
ew

or
k

m
ak

es
th

is
 g

ap
 m

an
ag

ea
bl

e.

C
ou

nt
er

ex
am

pl
es

∎
U

C
LI

D
 g

en
er

at
es

 c
ou

nt
er

ex
am

pl
es

 w
he

n
it

fa
ils

.
▮

U
nd

er
st

an
di

ng
 c

ou
nt

er
ex

am
pl

es
 is

 h
ar

d!
▮

S
tu

de
nt

s
sp

en
d

a
lo

t o
f t

im
e

on
 th

is
; p

re
fe

r c
od

e
in

sp
ec

tio
n.

∎
O

ur
 fr

am
ew

or
k

le
ad

s
to

 s
im

pl
er

 c
ou

nt
er

ex
am

pl
es

.
▮

O
cc

ur
 a

t t
he

 re
fin

em
en

t s
ta

ge
 w

he
re

 th
e

er
ro

r a
pp

ea
rs

.
▮

Te
nd

 to
 b

e
m

uc
h

sm
al

le
r i

n
si

ze
.

▮
Te

nd
 to

 in
vo

lv
e

le
ss

 s
im

ul
at

io
n

st
ep

s.
▮

C
an

 b
e

ge
ne

ra
te

d
m

or
e

qu
ic

kl
y.

∎
A

id
s

de
bu

gg
in

g
an

d
de

si
gn

 u
nd

er
st

an
di

ng
.

∎
E

xa
m

pl
e

of
 a

 c
ac

he
 e

rr
or

.
▮

In
va

ria
nt

: 1
/2

 s
ec

on
d

fo
r b

ot
h

ap
pr

oa
ch

es
.

▮
D

ire
ct

: 6
9

si
m

ul
at

io
n

st
ep

s,
 6

07
6

lin
es

, 1
02

6
se

c.
▮

C
om

po
si

tio
na

l:
2

si
m

ul
at

io
n

st
ep

s,
 4

45
 li

ne
s,

 <
20

 s
ec

.

C
om

bi
ni

ng
 A

C
L2

 &
 U

C
LI

D
∎

Id
ea

: U
se

 A
C

L2
 to

 re
du

ce
 c

or
re

ct
ne

ss
 o

f b
it-

le
ve

l,
ex

ec
ut

ab
le

m
ac

hi
ne

s
to

 te
rm

-le
ve

l p
ro

bl
em

s
w

hi
ch

 U
C

LI
D

 c
an

 h
an

dl
e.

∎
A

C
L2

 is
 u

se
d

to
 m

an
ag

e
th

e
pr

oo
f p

ro
ce

ss
.

∎
W

e
ca

n
st

at
e

th
e

fu
ll

re
fin

em
en

t t
he

or
em

.
∎

W
e

ca
n

se
pa

ra
te

 c
on

ce
rn

s.
▮

M
od

el
s

an
d

re
fin

em
en

t m
ap

s
ar

e
de

al
t w

ith
 s

ep
ar

at
el

y.
∎

A
C

L2
 is

 u
se

d
to

 re
as

on
 a

t t
he

 b
it

le
ve

l.
∎

U
C

LI
D

 is
 u

se
d

to
 re

as
on

 a
bo

ut
 th

e
pi

pe
lin

e.
∎

R
es

ul
t:

W
e

ca
n

ve
rif

y
ex

ec
ut

ab
le

 m
ac

hi
ne

s
w

ith
 b

it-
le

ve
l

in
te

rfa
ce

s
w

ith
ou

t h
er

oi
c

ef
fo

rt.
∎

E
na

bl
es

 u
s

to
 re

as
on

 a
bo

ut
 m

ac
hi

ne
 c

od
e

ru
nn

in
g

on
 th

e
pi

pe
lin

ed
 m

ac
hi

ne
.

∎
S

ee
 IC

C
A

D
 2

00
5.

P
ro

of
 O

ut
lin

e

P
ro

of
 O

ut
lin

e

P
ro

of
 O

ut
lin

e

V
er

ifi
ca

tio
n

S
ta

tis
tic

s

3
18

2
M

M
 →

 M
E

1
4

IE
P

 →
 IM

1
62

5
M

B
 →

 M
M

2
21

M
E

 →
 M

E
P

1
60

1
IM

 →
 IE

2
36

M
E

P
 →

 IE
P

2
91

M
A

 →
 IA

3
15

7
M

U
 →

 IU

U
se

r E
ffo

rt
(m

an
-w

ee
ks

)
P

ro
of

 T
im

e
(s

ec
)

P
ro

of
 S

te
p

Ti
m

es
 e

st
im

at
e

th
e

ef
fo

rt
th

at
 w

ou
ld

 b
e

re
qu

ire
d

fo
r a

n
A

C
L2

 &
 U

C
LI

D
ex

pe
rt

an
d

do
 n

ot
 in

cl
ud

e
th

e
in

te
gr

at
io

n
ef

fo
rt.

∎
R

ef
in

em
en

t f
ra

m
ew

or
k.

▮
Fo

rm
al

 c
on

ne
ct

io
n

fro
m

 R
TL

 to
 a

bs
tra

ct
 m

od
el

s.
▮

P
ar

am
et

er
iz

ed
 w

rt
re

fin
em

en
t m

ap
s

.
∎

C
om

po
si

tio
n

pl
ay

s
a

m
aj

or
 ro

le
.

▮
D

ec
om

po
se

 p
ro

bl
em

 in
to

 s
ep

ar
at

e
ta

sk
s.

▮
C

an
 b

e
in

te
gr

at
ed

 in
to

 th
e

de
si

gn
 c

yc
le

.
∎

A
ut

om
at

io
n

is
 a

 m
aj

or
 c

ha
lle

ng
e.

▮
E

ve
n

“a
ut

om
at

ic
” m

et
ho

ds
 re

qu
ire

 h
um

an
 e

ffo
rt.

▮
Th

e
la

ng
ua

ge
s

an
d

to
ol

s
us

ed
 a

re
 im

po
rta

nt
.

▮
U

nd
er

st
an

di
ng

 c
ou

nt
er

ex
am

pl
es

 is
 im

po
rta

nt
.

∎
B

y
co

m
bi

ni
ng

 A
C

L2
 &

 U
C

LI
D

 w
e

av
oi

de
d

he
ro

ic
 e

ffo
rt.

▮
W

e
ve

rif
ie

d
th

e
nu

m
er

ou
s

ab
st

ra
ct

io
ns

 u
se

d
in

 te
rm

-le
ve

l m
od

el
in

g.
▮

W
e

w
er

e
ab

le
 to

 re
la

te
 te

rm
-le

ve
l m

od
el

s
w

ith
 R

TL
-le

ve
l d

es
ig

ns
.

▮
C

ha
lle

ng
e

is
 to

 re
du

ce
 ~

4x
 in

cr
ea

se
 in

 e
ffo

rt
to

 1
+ε

.

R
TL

 V
er

ifi
ca

tio
n

Fu
tu

re
 W

or
k

∎
A

ut
om

at
e

re
fin

em
en

t s
te

ps
.

▮
U

se
 in

te
lli

ge
nt

 s
ea

rc
h.

▮
M

an
y

st
ep

s
se

em
 g

en
er

ic
, e

.g
.,

ca
ch

es
, d

ee
p

pi
pe

lin
es

.
▮

D
ev

el
op

 a
 li

br
ar

y
of

 p
at

te
rn

s.
∎

C
ou

nt
er

ex
am

pl
e

gu
id

ed
 a

bs
tra

ct
io

n-
re

fin
em

en
t.

▮
C

ur
re

nt
ly

 s
ee

m
s

to
 w

or
k

on
 s

im
pl

e
sy

st
em

s/
 s

ha
llo

w
 p

ro
pe

rti
es

.
▮

H
ow

 to
 s

ca
le

 to
 c

om
pl

ex
 s

ys
te

m
s

&
 p

ro
pe

rti
es

?
∎

To
ol

s
th

at
 o

pe
ra

te
 d

ire
ct

ly
 o

n
H

D
Ls

.
▮

C
ur

re
nt

 to
ol

s
su

pp
or

t v
er

y
si

m
pl

e
su

bs
et

s.
▮

W
ha

t a
bo

ut
 d

ec
is

io
n

pr
oc

ed
ur

es
 th

at
 o

pe
ra

te
 d

ire
ct

ly
 o

n
H

D
Ls

?
∎

W
e

ar
e

cu
rr

en
tly

 e
xp

lo
rin

g
so

m
e

of
 th

es
e

di
re

ct
io

ns
.

A Functional HDL in ReFLect

TOM MELHAM JOHN O’L EARY

Computing Laboratory Strategic CAD Labs
Oxford University Intel Corporation
Wolfson Building Mail Stop JF4-211

Parks Road 2111 NE 25th Avenue
Oxford, OX2 3QD, England Hillsboro, OR 97124-5961, USA

ReFLect [4] is a functional programming language designed and implemented at Intel’s Strategic
CAD Labs under the direction of Jim Grundy. The language is strongly typed and similar to ML,
but provides certainreflectionfeatures intended for applications in industrial hardware design and
verification. Like LISP,reFLect has quotation and antiquotation constructs that may be used to
construct and decompose expressions in the language itself. Unlike LISP, these mechanisms are
typed. The language also provides a primitive mechanism for pattern-matching, and in particular
for defining functions over code by pattern-matching on the structure ofreFLectexpressions. The
design ofreFLectdraws on the experience of applying an earlier reflective language calledFL [1]
to large-scale formal verification problems within Intel’s Forte framework [8].

One of the intended roles ofreFLect is to be the host language for a functional HDL. As with
other work based on Haskell [2, 7] or LISP [5, 6], a key requirement is the ability to simulate
hardware models by program execution. Circuit descriptions are just functional programs, which
we can simply run to simulate the circuits on test case inputs. But in addition to this simulation
capability, we also wish to execute various operations on the abstractsyntaxof circuit descriptions
written in the language. We want to be able to write programs that ‘see’ the code of a circuit de-
scription. This allows us, for example, to program circuit design transformations [10] as functions
that traverse code—or simply to generate netlists for other design tools.

This talk at DCC 2006 will illustrate how the reflection features ofreFLect can provide both
simulation and a handle on circuit structure (intensional analysis) within a single, unified language
framework. We will present a small HDL embedded withinreFLect. In the spirit of the approach
pioneered by Sheeran inµFP [9], circuit descriptions are built up in this HDL from primitives
using higher-order functions that implement various ways of composing sub-circuits together. The
reflection features ofreFLectwill then be employed to allow a single-source circuit description in
this language both to be executed for simulation and to be executed to generate circuit netlists.

Lava [2] is an HDL based on Haskell that also supports simulation by execution and circuit
netlist generation with a single functional source. Lava achieves this using non-standard interpre-
tation, laziness, and functional data structures with ‘observable sharing’ [3]. Our presentation at
DCC will show how the reflection features ofreFLect can be employed to achieve single-source
simulation and netlist generation in another, perhaps more direct, way. We will also offer some
speculations on capabilities available with our approach that seem beyond what can be achieved in
Lava—for example the syntactic analysis of circuit descriptions before flattening into netlists.

1

References

[1] Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger.Lifted-FL: A pragmatic imple-
mentation of combined model checking and theorem proving. In Yves Bertot, Gilles Dowek,
André Hirschowitz, Christine Paulin, and Laurent Théry, editors,Theorem Proving in Higher
Order Logics: 12th International Conference, TPHOLs 1999, volume 1690 ofLNCS, pages
323–340. Springer, 1999.

[2] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design in
Haskell. InFunctional Programming: International Conference, ICFP 1998, pages 174–
184. ACM, 1998.

[3] Koen Claessen and David Sands. Observable sharing for functional circuit description. In
Advances in Computing Science: 5th Asian Computing Science Conference, ASIAN 1999,
pages 62–73. Springer, 1999.

[4] Jim Grundy, Tom Melham, and John O’Leary. A reflective functional language for hardware
design and theorem proving.Journal of Functional Programming, 16(2):157–196, March
2006.

[5] Steven D. Johnson.Synthesis of Digital Designs from Recursion Equations. MIT, 1984.

[6] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors.Computer-Aided Rea-
soning: ACL2 Case Studies. Kluwer, 2000.

[7] John Matthews, Byron Cook, and John Launchbury. Microprocessor specification in Hawk.
In Computer Languages: International Conference, pages 90–101. IEEE Computer Society,
1998.

[8] Carl-Johan H. Seger, Robert B. Jones, John W. O’Leary, Tom Melham, Mark D. Aagaard,
Clark Barrett, and Don Syme. An industrially effective environment for formal hardware ver-
ification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24(9):1381–1405, September 2005.

[9] Mary Sheeran.µFP: An Algebraic VLSI Design Language. PhD thesis, University of Oxford,
1983.

[10] Greg Spirakis. Leading-edge and future design challenges: Is the classical EDA ready? In
Design Automation: 40th ACM/IEEE Conference, DAC 2003, page 416. ACM, 2003.

2

Towards Automatically Compiling Efficient FPGA Hardware

Jean Baptiste Note, Jean Vuillemin
Ecole Normale Supérieure- Paris

We detail some aspects of our current research on compiling efficient FPGA designs from the
source code of data flow applications. The output from our compiler is a FPGA hardware
design for the Pamette [1] re-configurable co-processor. Three requirements are met by
construction:

1. the source code software specifies the transform applied to the host memory content
at each system cycle;

2. the compiled FPGA design bit-wise computes the very same cycle transform- yet at
much higher speed thanks to [1];

3. the hardware design area is automatically minimized to meet a throughput
requirement, which is specified a-priori within the source code.

Accordingly, the compiler carries its analysis/synthesis in three stages:

1. Unfold to SSA list, perform range analysis, bit-size and translate to RTL design:
• The input source code is presented here in a C like syntax. In our

experimental implementation, the Jazz language [2] is used- such source
could be expressed just as well in other synchronous language: Lustre [3],
Esterel [4], ...

• Transform the source code to an equivalent SSA list operating on integers.
• Analyse the range of each integer variable, and code each by a finite vector

of bits; accordingly represent integer operations by Boolean functions.
• The result is a RTL design equivalent to the bit-sized SSA description.

2. Map RTL to SPF form, re-time and FPGA compile:
• Map RTL design to Serial/Parallel/Feedback SPF form.
• Minimize re-timing registers to achieve optimal latency- based on reliable

delay models for FPGA integer operators, and less reliable routing models.
• Produce FPGA design from vendors tools (PamDC [5] and Xilinx [6]) and

system software support [5].

3. FPGA design size/power meets set bandwidth requirement:
• For RTL throughput below requirement, trade area for bandwidth

according to [7].
• For RTL throughput way above requirement, we first generate the Bit-

Serial Design Realization: BSDR minimizes logic and throughput among
designs.

i. For BSDR throughput below requirement, unfold space as above.
ii. For BSDR throughput much above requirement, we fold space at

the expense of bandwidth through hyper-serial designs [7].
iii. For low required throughput, a pure software implementation on the

host processor is chosen, without using the co-processor.
iv. Between these extremes, valuable hardware/software co-design

tradeoffs are automatically met.

An experimental validation of the proposed techniques has been obtained.

• Including over half a dozen real-life designs in current multi-media.
• This specific presentation highlights dithering in present digital printers.
• Excluding so far automatic bandwidth adaptation.

We automatically compile efficient FPGA designs for applications in the above list:

• Efficient means that, the compiled design compared to any hand-crafted for
the specific case is no worse, by a factor of two in size/bandwidth/power.

• To permit efficiency, we let each stage automatically performed by the
compiler be guided by annotations/pragmas- manually put in the source
code.

• A fair measure of our system is thus the number of annotations added to the
source code in order to compile an efficient hardware design, as defined
above. Our experimental evidence, from all test cases, is: very few!

This talk presents and explains part of the theoretical and experimental evidence, in the
context of two half-toning algorithms: random and Floyd Steinberg digital dithering.

The conclusion from this study is quite optimistic: once a small number of specific compiler
directives are added by the learned designer, the source code for many current multi-medias
applications can be automatically compiled into efficient FPGA based hardware co-
processors. We expect the compiler methodology to extend to other hardware/software
technology targets as well- including SIMD machines and multi-core processors.

Interconnect and Geometric Layout in Hydra
(Abstract)

John T. O’Donnell∗

Hydra is a functional computer hardware description language that allows
circuit designs to be specified either with or without information about the
geometric layout. Portions of a design may be specified at different levels of
abstraction, and some may have geometric layouts while others do not. This
presentation describes how geometric information is incorporated in Hydra
circuit specifications, and discusses its interaction with equational reasoning
about the behaviour and structure of circuits.

Hydra models every circuit as a function from inputs to outputs. A
circuit may be defined directly as a function from signals to signals, or in-
directly through the use of functions that generate parameterized circuits
or combinators that define families of related circuits. There are also sev-
eral domain-specific sublanguages, such as a language for designing control
algorithms, from which control circuits can be synthesized.

A number of alternative circuit semantics are provided. Some of them
are concerned only with behaviour, so that the application of a circuit to
suitable inputs will perform a simulation. Others are concerned with struc-
ture, so that execution of the same circuit function will generate a netlist.
The netlist semantics is based on an algebraic data type for representing
the abstract structure of the circuit. The data type contains explicit de-
scriptions of all the components in the circuit, the wires that connect them,
and the hierarchical organisation of the circuit specification. It may also
contain additional information about the geometric locations of components
and wires in a layout, although the geometric information is optional and
may be omitted.

A non-geometric circuit specification can use an arbitrary organisation
of the input and output ports; they are simply function parameters. A
geometric specification, however, treats a circuit as a rectilinear box with a
sequence of ports on each of the four edges. Each port is identified as either
input or output (there is also an experimental bidirectional port type). The

∗Computing Science Department, University of Glasgow. jtod@dcs.gla.ac.uk

1

circuit function uses only input ports as parameters, and produces results
only for the output ports.

Hydra is a functional CHDL, not a relational one, so adjacent circuits
must in general be connected, not simply composed. This is performed by a
combinator that takes two circuits with geometric layout, and defines a new
circuit with the connections completed on their common edge.

Two mechanisms are provided to help the designer specify geometric lay-
outs. Regular layouts can be generated using a set of geometric combinators.
Alternatively, the positions of components and wires may be provided explic-
itly, either by giving their coordinates or by drawing them with a graphical
user interface.

The algebraic data type that records the structure of the circuit is im-
plemented via a program transformation. In earlier versions of Hydra the
program transformation was performed manually. A new experimental pro-
totype implementation uses Template Haskell to perform the program trans-
formations automatically, making both the geometric combinators and the
generation of netlists far more usable.

Hydra is similar in many ways to Lava + Wired. There are also some
significant differences. Wired is relational, while Hydra is functional, and
the mechanisms used for making connections along the edges are somewhat
different. However, the motivations behind Hydra and Lava+Wired appear
to be identical.

2

The design of a floating point unit
using the Integrated Design and
Verification (IDV) system.

Dr. Carl Seger, Strategic CAD Labs, Intel Corp.
For many VLSI designs, validation has started to dominates the
total design effort. In addition, historical trends are indicating
that this problem will continue to grow. For example, data from
Intel’s lead microprocessor design efforts shows that the number
of pre-silicon bugs has increased by a factor of four for every
lead project for the last 25 years. If this trend is not broken,
Intel’s next lead design is likely to have to go through the “find
the bug, evaluate it, root cause it, fix it, and validate the fix”
process tens of thousands of times; potentially overwhelming
the validation and design team. Thus one of the most critical
goals for improving the design process is to break this bug trend.

In this presentation, we will introduce the Integrated Design and
Verification (IDV) system that has been developed at Intel for
the last 5 years. IDV combines the design and validation efforts
so that the task of design validation (i.e., “Did we capture what
we actually wanted?”) is significantly simplified by means of a
much smaller and much more stable high-level model.
Furthermore, when the design is completed, so also is the
implementation validation (i.e., “Did we implement what we
intended?”). The latter is accomplished by linking the design
process very tightly with the validation process. Although this
idea is not new, the combination of correct-by-construction and
correct-by-verification and the tight integration of a database of
verified results is new and has led to a design environment that
allows rapid design in which the validation problem has been
significantly reduced.

To make the presentation more realistic, we will use the design,
from a high-level model to layout, of a floating point execution
unit as a driving example. We will discuss the early design

phase in which the high-level model is refined using algorithmic
transformations to a viable micro architecture; continue with the
middle level design in which the actual logic implementation is
derived and conclude with the final placement and layout stage.
Although the design process conceptually is performed
sequentially, we will illustrate the tight loop that IDV enables
between physical design and logical/micro-architectural design.
The latter is a critical component in enabling design
convergence. In fact, in today’s process technology, integration
of physical and logical design is not optional but rather
mandatory.

Time and facilities permitting, some of the design steps in IDV
will be demoed live.

SSCCLLC. Seger - Intel Confidential 19

Early Design: RTL to Early Design: RTL to netlistnetlist

SSCCLLC. Seger - Intel Confidential 24

Logic And Physical ViewLogic And Physical View
SSCCLLC. Seger - Intel Confidential 17

TopTop--level RTL Entrylevel RTL Entry

12,000 lines
of RTL

SSCCLLC. Seger - Intel Confidential 29

Final Design Sent to RouterFinal Design Sent to Router

Clock spineClock spine

KeepoutKeepout regionregion

RF RF EBBsEBBs

CAM EBBCAM EBB

Converged to 270ps

SSCCLLC. Seger - Intel Confidential 19

Early Design: RTL to Early Design: RTL to netlistnetlist

SSCCLLC. Seger - Intel Confidential 24

Logic And Physical ViewLogic And Physical View
SSCCLLC. Seger - Intel Confidential 17

TopTop--level RTL Entrylevel RTL Entry

12,000 lines
of RTL

SSCCLLC. Seger - Intel Confidential 17

TopTop--level RTL Entrylevel RTL Entry

12,000 lines
of RTL

SSCCLLC. Seger - Intel Confidential 29

Final Design Sent to RouterFinal Design Sent to Router

Clock spineClock spine

KeepoutKeepout regionregion

RF RF EBBsEBBs

CAM EBBCAM EBB

Converged to 270ps

SSCCLLC. Seger - Intel Confidential 29

Final Design Sent to RouterFinal Design Sent to Router

Clock spineClock spine

KeepoutKeepout regionregion

RF RF EBBsEBBs

CAM EBBCAM EBB

Converged to 270ps

FAQ for Proof Producing Synthesis in HOL
Konrad Slind, Scott Owens, Juliano Iyoda, Mike Gordon

[Project web page: http://www.cl.cam.ac.uk/∼mjcg/dev/]

1 What is proof producing synthesis?

Proof producing synthesis compiles a source specification (see 2) to an implementation
and generates a theorem certifying that the implementation is correct. The specification
is expressed in higher order logic.

2 What is the synthesisable subset of HOL?

The compiler automatically translates functions f : σ1×· · ·×σm → τ1×· · ·×τn, where
the argument (σi) and result (τj) types are words. It can translate any tail recursive
definition of such a function as long as the sub-functions used in the definition are in the
library of primitive or previously defined functions. Formal refinement into this subset is
by proof in the HOL4 system (13, 14, 31, 30, 34 have more discussion and examples).

3 Why not verify synthesis functions?

Synthesis functions would need to be coded inside higher order logic if they were to
be proved correct. This would be impractical as the compiler uses many HOL4 system
tools to automatically infer circuits – it would not be feasible to represent these tools
(a substantial chunk of the HOL4 theorem proving infrastructure) in higher order logic.

4 Is proof producing synthesis really theorem-proving?

The compiler that synthesises circuits is a derived proof rule in the HOL4 system which
is implemented by rewriting and a variety of custom proof strategies. It is a special
purpose automatic theorem prover for proving correctness certifying theorems (see 12).

5 Is proof producing synthesis the same as formal synthesis?

Proof producing synthesis is a kind of formal synthesis [14] in which the synthesised
circuit is not only formally inferred from the specification, but, in addition, a certifying
theorem is produced (see 38 also).

6 Are there benefits of formal synthesis besides assurance?

Formal synthesis by theorem proving ensures that circuits are correct by construction.
Users can safely tinker with the proof scripts used by the compiler, confident that they
cannot produce incorrect implementations. Users familiar with the underlying HOL4
theorem proving infrastructure can easily experiment with application-specific extensions
or optimisations. An example of an optimisation is combinational inlining (see 26). An
example of an extension is let-expressions (see 30). Safe extensibility is thus a benefit.

1

7 Why use proof producing synthesis for crypto hardware?

Implementations of cryptographic algorithms are evaluated to a high standard of assur-
ance such as Common Criteria Evaluation Assurance Level 7 (EAL7) [4, 5.9]. Formal
methods are an established technique in this area. Proof producing synthesis provides a
new way of certifying that cryptographic hardware implements high level specifications.

8 Formal synthesis is an old idea, so why is it still interesting?

In the past it has been hard to justify the high cost of formal synthesis – the additional
confidence of correctness it produces has not been considered worth the expense. How-
ever, we think there are niche applications (see 7) where the approach could be cost
effective, because it may make it easier to achieve required levels of assurance. Also,
we think that safe extensibility (see 6) is a feature that is worth exploring more.

9 Is proof producing synthesis automatic?

The synthesis of clocked synchronous circuits from tail recursive definitions of functions
mapping words to words is fully automatic. Currently users must manually refine spec-
ifications that use general recursion schemes to tail recursive form (there is a tool in
development to automatically compile linear recursion to tail recursion). Data refine-
ment from functions operating on types other than words must also be done manually.

10 What is the hardware realisation of a HOL function?

A function f defined in higher order logic is realised by a device DEV f that computes
f via a four-phase handshake circuit on signals load, inp, done and out.

v

load

out

done

f(v)

load

inp
DEV f

done

out

inp

t+1 t′t

At the start of a transaction (say at time t) the device must be outputting T on done

(to indicate it is ready) and the environment must be asserting F on load, i.e. in a
state such that a positive edge on load can be generated. A transaction is initiated by
asserting (at time t+1) the value T on load, i.e. load has a positive edge at time t+1.
This causes the device to read the value, v say, input on inp (at time t+1) and to set
done to F. The device then becomes insensitive to inputs until T is next asserted on
done, when the computed value f(v) will be output on out. See 33 for an example.

11 What is the formal specification of a handshake device?

The specification of the four-phase handshake protocol is represented by the definition
of the predicate DEV, which uses auxiliary predicates Posedge and HoldF. A positive

2

edge of a signal is defined as the transition of its value from low to high, i.e. from F
to T. The formula HoldF (t1 , t2) s says that a signal s holds a low value F during a
half-open interval starting at t1 to just before t2. The formal definitions are:

` Posedge s t = if t=0 then F else (¬ s(t−1) ∧ s t)
` HoldF (t1, t2) s = ∀t. t1 ≤ t < t2 ⇒ ¬(s t)

The behaviour of the handshaking device computing a function f is described by the
term DEV f (load , inp, done, out) where:

` DEV f (load , inp, done, out) =
(∀t. done t ∧ Posedge load (t+1)

⇒

∃t′. t′ > t+1 ∧ HoldF (t+1, t′) done ∧

done t′ ∧ (out t′ = f(inp (t+1)))) ∧

(∀t. done t ∧ ¬(Posedge load (t+1)) ⇒ done (t+1)) ∧

(∀t. ¬(done t) ⇒ ∃t′. t′ > t ∧ done t′)

The first conjunct in the right-hand side specifies that if the device is available and
a positive edge occurs on load , there exists a time t ′ in future when done signals its
termination and the output is produced. The value of the output at time t ′ is the result
of applying f to the value of the input at time t+1. The signal done holds the value
F during the computation. The second conjunct specifies the situation where no call is
made on load and the device simply remains idle. Finally, the last conjunct states that
if the device is busy, it will eventually finish its computation and become idle.

12 What is the form of a correctness certifying theorem?

Synthesising a circuit implementing f : σ1 × · · · × σm → τ1 × · · · × τn (see 2) proves:

|- InfRise clk

==> CIRf

==> DEV f (load at clk, inputs at clk, done at clk, outputs at clk)

CIRf is a formula representing a circuit containing variables clk, load, inp1, . . ., inpm
representing inputs and variables done, out1, . . ., outn representing outputs. The
type of inpi matches σi and the type of outj matches τj . InfRise clk asserts that
clock clk has infinitely many rising edges. See 31 and 34 for examples. The term inputs
stands for inp1<>· · ·<>inpm which is the concatenation of the variables inp1, . . . , inpm
using the word concatenation operator <> and outputs is out1<>· · ·<>outn representing
the concatenation of the output variables. A term s at clk is the temporal projection
of signal s at rising edges of clk (see 15, 21).

13 Are specifications using high level datatypes synthesisable?

During synthesis the compiler generates circuits that use polymorphic registers and com-
binational components (i.e. components having inputs and outputs of arbitrary types).
However, the lower level phases instantiate all types to words (currently represented
as lists of bits). Thus we can generate circuits with wires carrying abstract values
(e.g. numbers), but these cannot be refined to a form that can be input to FPGA tools.
Our intention is that users will derive Boolean level specifications inside higher order
logic using data-refinement methods. Automating this is a possible future direction.

3

14 Are there tools to translate into the synthesisable subset?

There is an experimental proof producing tool called linRec that translates linear re-
cursions to tail recursions. For example it translates:

FACT n = if n = 0 then 1 else Mult(n, FACT(n-1))
to:

FactIter(n,acc) = if n = 0 then (n,acc) else FactIter(n-1,Mult(n,acc)))

Fact n = SND(FactIter (n,1))

15 What hardware components are used in circuits?

The compiler generates circuits built from a user-specifiable library of combinational
components, e.g. AND, OR, NOT, MUX, ADD (the default library is chosen for use with the
Quartus II FPGA software). Synthesised circuits may also contain constants (CONSTANT),
edge-triggered D-type registers with unspecified initial state (Dtype) and Dtypes that
power up into an initial state storing the value T (DtypeT). Constants and the registers
are specified in higher order logic by:

CONSTANT v out = ∀t. out(t) = v

Dtype (clk, d, q) = ∀t. q(t+1) = if Rise clk t then d t else q t

DtypeT(clk, d, q) = (q 0 = T) ∧ Dtype(clk, d, q)
where Rise s t means signal s has a rising edge starting at time t:

Rise s t = ¬s(t) ∧ s(t+1)
Both Dtype and DtypeT are implemented in Verilog by instantiating a single generic
register module dtype that is parametised on its size and initial stored value (see 32).

16 How much do you rely on untrustworthy FPGA tools?

The ‘sign-off’ from logic to EDA tools occurs at the clocked synchronous RTL level
(see 15). A circuit CIRf (see 12) is translated to Verilog using a pretty-printer written in
ML, and this Verilog is then fed to FPGA tools (e.g. Quartus II). FPGA implementations
thus rely on the Verilog pretty-printer and the subsequent industrial tools. Higher
assurance could be gained by taking the proof producing synthesis to a lower level
(e.g. to an FPGA netlist language).

17 Can users control how specifications are synthesised?

The architecture of synthesised circuits reflects the input specification, so can be tuned
by adjusting the higher order logic source. For example, using let-expressions (see 30)
prevents logic blocks from being duplicated. There are also user-settable parameters:
for example, modules can be inserted directly as combinational logic (i.e. without an
enclosing handshake interface) if they are declared “combinational” (see 26, 28).

18 How efficient is proof producing synthesis?

Because synthesisers invokes a theorem prover it is relatively slow. Simple one-line
examples take a few seconds on a standard workstation, bigger examples take several
minutes.

4

19 How fast are synthesised circuits?

Some simple experiments comparing synthesised and hand coded circuits suggest that
performance is not too bad, but we do not have solid evidence. However, the user has
some control over the amount of computation per clock cycle via a facility to declare
functions to be inlined as combinational logic, rather that via a handshake (see 28). We
think the approach will support the creation of optimised implementations (necessary
for crypto applications), but so far the emphasis has been on proof of concept.

20 How large are synthesised circuits?

Some of the bigger examples we have synthesised did not at first fit onto the FPGAs
we are using. Whole program compaction (see 28) and use of let (see 30) solved the
problem for these examples, but we still worry that the circuits are too big.

21 How does the hardware compiler work?

The operation of the compiler can be decomposed into four phases.

1. Translate ∀x1 . . . xn. f(x1, . . . , xn) = e to an equivalent equation f = E , where
the expression, E is built from combinators Seq (compute in sequence), Par (com-
pute in parallel), Ite (if-then-else) and Rec (recursion).

2. Replace the combinators Seq, Par, Ite and Rec with corresponding circuit con-
structors SEQ, PAR, ITE and REC to create a circuit term and a theorem that
this implements DEV f .

3. Replace circuit constructors with cycle-level implementations and prove a theorem
that the resulting design implements DEV f .

4. Introduce a clock and perform temporal projection [10] from cycle level to a clocked
RTL circuit and prove a theorem that the resulting RTL circuit implements DEV f .

22 What are the combinators Seq, Par, Ite and Rec?

Seq, Par, Ite and Rec are used to build the combinatory expression E that is generated
when translating ∀x1 . . . xn. f(x1, . . . , xn) = e to f = E . They are defined by:

Seq f1 f2 = λx. f2(f1 x)
Par f1 f2 = λx. (f1 x, f2 x)
Ite f1 f2 f3 = λx. if f1 x then f2 x else f3 x

Rec f1 f2 f3 = λx. if f1 x then f2 x else Rec f1 f2 f3 (f3 x)
For example:
` FactIter(n, acc) =

if n = 0 then (n, acc) else FactIter(n − 1, n×acc)
is translated to:

` FactIter =
Rec (Seq (Par (λ(n, acc). n) (λ(n, acc). 0)) (=))

(Par (λ(n, acc). n) (λ(n, acc). acc))
(Par (Seq (Par (λ(n, acc). n) (λ(n, acc). 1)) (−))

(Seq (Par (λ(n, acc). n) (λ(n, acc). acc)) (×)))

5

23 What components do circuit constructors use?

The circuit constructors are built using the following components, which are represented
at an unclocked cycle level of abstraction.

` AND (in1, in2, out) = ∀t. out t = (in1 t ∧ in2 t)
` OR (in1, in2, out) = ∀t. out t = (in1 t ∨ in2 t)
` NOT (inp, out) = ∀t. out t = ¬(inp t)
` MUX(sw , in1 , in2 , out) = ∀t. out t = if sw t then in1 t else in2 t

` COMB f (inp, out) = ∀t. out t = f(inp t)
` DEL (inp, out) = ∀t. out(t+1) = inp t

` DELT (inp, out) = (out 0 = T) ∧ ∀t. out(t+1) = inp t

` DFF(d , sel , q) = ∀t. q(t+1) = if Posedge sel (t+1) then d(t+1) else q t

` POSEDGE(inp, out) = ∃c0 c1. DELT(inp, c0) ∧ NOT(c0, c1) ∧ AND(c1, inp, out)

24 What are the circuit constructors SEQ, PAR, ITE and REC?

SEQ, PAR, ITE and REC are circuit constructors that implement Seq, Par, Ite and
Rec, respectively (see 22). They construct circuits that combine delay elements with
combinational logic. The delay elements are refined to clocked synchronous registers.

The circuit constructors are defined in higher order logic below. The components they
use are defined in 15 and schematic diagrams of the implementations are in 29.

Sequential composition of handshaking devices.

` SEQ f g (load , inp, done, out) =
∃c0 c1 c2 c3 data .

NOT(c2, c3) ∧ OR(c3, load , c0) ∧ f(c0, inp, c1, data) ∧

g(c1, data , c2, out) ∧ AND(c1, c2, done)

Parallel composition of handshaking devices.

` PAR f g (load , inp, done, out) =
∃c0 c1 start done1 done2 data1 data2 out1 out2.

POSEDGE(load , c0) ∧ DEL(done , c1) ∧ AND(c0, c1, start) ∧

f(start , inp, done1, data1) ∧ g(start , inp, done2, data2) ∧

DFF(data1, done1, out1) ∧ DFF(data2, done2, out2) ∧

AND(done1, done2, done) ∧ (out = λ t. (out1 t, out2 t))

Conditional composition of handshaking devices.

` ITE e f g (load , inp, done, out) =
∃c0 c1 c2 start start ′ done e data e q not e data f data g sel

done f done g start f start g .

POSEDGE(load , c0) ∧ DEL(done , c1) ∧ AND(c0, c1, start) ∧

e(start , inp, done e , data e) ∧ POSEDGE(done e, start ′) ∧

DFF(data e , done e, sel) ∧ DFF(inp, start , q) ∧

AND(start ′, data e, start f) ∧ NOT(data e,not e) ∧

AND(start ′,not e, start g) ∧ f(start f , q, done f , data f) ∧

g(start g , q, done g , data g) ∧ MUX(sel , data f , data g , out) ∧

AND(done e, done f , c2) ∧ AND(c2, done g , done)

6

Tail recursion constructor.

` REC e f g (load , inp, done, out) =
∃done g data g start e q done e data e start f start g inp e done f

c0 c1 c2 c3 c4 start sel start ′ not e.

POSEDGE(load , c0) ∧ DEL(done , c1) ∧ AND(c0, c1, start) ∧

OR(start , sel , start e) ∧ POSEDGE(done g , sel) ∧

MUX(sel , data g , inp, inp e) ∧ DFF(inp e , start e, q) ∧

e(start e, inp e, done e, data e) ∧ POSEDGE(done e, start ′) ∧

AND(start ′, data e, start f) ∧ NOT(data e,not e) ∧

AND(not e, start ′, start g) ∧ f(start f , q, done f , out) ∧

g(start g , q, done g , data g) ∧ DEL(done g , c3) ∧

AND(done g , c3, c4) ∧ AND(done f , done e, c2) ∧ AND(c2, c4, done)

25 How are combinational circuits represented?

A function f can be packaged as a handshaking device with constructor ATM:

` ATM f (load , inp, done, out) =
∃c0 c1. POSEDGE(load , c0) ∧ NOT(c0, done)∧

COMB f (inp , c1) ∧ DEL(c1, out)
This creates a simple handshake interface that computes f and satisfies the refinement
theorem: ` ∀f. ATM f =⇒ DEV f .

Formulas of the form COMB g (inp, out) are compiled into circuits built only using
components in user-supplied library of predefined circuits. The default library currently
includes Boolean functions (e.g. ∧, ∨ and ¬), multiplexers and simple operations on
n-bit words (e.g. versions of +, − and <, various shifts etc.). A special purpose proof
rule uses a recursive algorithm to synthesise combinational circuits. For example:

` COMB (λ(m, n). (m < n, m + 1)) (inp1<>inp2, out1<>out2) =
∃v0. COMB (<) (inp1<>inp2, out1) ∧ CONSTANT 1 v0 ∧

COMB (+) (inp1<>v0, out2)
where <> is bus concatenation, CONSTANT 1 v0 drives v0 high continuously, and
COMB < and COMB + are assumed given components (if they were not given, then
they could be implemented explicitly, but one has to stop somewhere).

26 How is an explosion of internal handshakes avoided?

When processing Seq f1 f2 (see 27), the compiler checks to see whether f1 or f2 are
compositions of combinational functions and if so introduces PRECEDE or FOLLOW
instead of SEQ, using the theorems:

` (P =⇒ DEV f2) ⇒ (PRECEDE f1 P =⇒ DEV (Seq f1 f2))
` (P =⇒ DEV f1) ⇒ (FOLLOW P f2 =⇒ DEV (Seq f1 f2))

where PRECEDE f d processes inputs with f before sending them to d and FOLLOW d f

processes outputs of d with f . The definitions are:

PRECEDE f d (load, inp, done, out) = ∃v. COMB f (inp, v) ∧ d(load, v, done, out)
FOLLOW d f (load, inp, done, out) = ∃v. d(load, inp, done, v) ∧ COMB f (v, out)

SEQ d1 d2 introduces a handshake between the executions of d1 and d2, but PRECEDE f d

and FOLLOW d f just ‘wire’ f before or after d without introducing a handshake.

7

27 How are the circuit constructors introduced?

The following theorems enable the compiler to compositionally deduce theorems of
the form ` Imp =⇒ DEV f , where Imp is a formula constructed using the circuit
constructors. The long arrow symbol =⇒ denotes implication lifted to functions:
f =⇒ g = ∀load inp done out. f(load, inp, done, out) ⇒ g(load, inp, done, out).

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2)
⇒ (SEQ P1 P2 =⇒ DEV (Seq f1 f2))

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2)
⇒ (PAR P1 P2 =⇒ DEV (Par f1 f2))

` (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2) ∧ (P3 =⇒ DEV f3)
⇒ (ITE P1 P2 P3 =⇒ DEV (Ite f1 f2 f3))

` Total(f1, f2, f3)
⇒ (P1 =⇒ DEV f1) ∧ (P2 =⇒ DEV f2) ∧ (P3 =⇒ DEV f3)
⇒ (REC P1 P2 P3 =⇒ DEV (Rec f1 f2 f3))

The predicate Total is defined so that Total(f1, f2, f3) ensures termination.

If E is an expression built using Seq, Par, Ite and Rec, then by instantiating the predicate
variables P1, P2 and P3, these theorems enable a logic formula F to be built from circuit
constructors SEQ, PAR, ITE and REC such that ` F =⇒ DEV E . We have ` f = E

(see 21, phase 1), hence ` F =⇒ DEV f . This is the basic idea, but see also 26, 28.

28 What optimisation does the compiler perform?

There are currently two main optimisations used in synthesis: reducing handshakes
between implementations of functions (see 26) and whole program compaction.

The normal synthesis of Seq f1 f2 (see 22) is to SEQ d1 d2 (see 24), where the circuit
combinator SEQ puts a handshake between the device d1 implementing f1 and the
device d2 implementing f2. Users may declare f1 to be ‘combinational’ and then a
combinational logic block c1 implementing f1 is synthesised and put in series before d2.
Similarly f2 can be declared combinational and then combinational logic c2 will be put in
series after d1. Only components that can be realised using known combinational logic
blocks can be declared combinational. Using this mechanism, all the computation from
the arguments of a function to its recursive call can be synthesised as combinational
logic, so there is just a single handshake to manage the iteration.

This optimisation is restricted to the scope of a single function. However, before applying
this method, we can inline the function calls to produce a system defined by a single
function (the function ’main’). The whole program compaction eliminates unnecessary
handshake circuits that could have been generated to implement the function calls.

In practise these techniques can generate long logic paths (i.e. slow clocks), so some
pipelining via internal handshakes can be appropriate.

8

29 What do the circuit constructor implementations look like?

inp

out

c1

c0

DELT

(a) POSEDGE

DEL

load

done

c0

inp

c1

out

POSEDGE Comb f

(b) ATM f

load

f

g

outdone

c2

c3

inp

c0

c1 data

(c) SEQ f g

f g

c1

start

done out2
out1

load

c0

inp inp

data1

POSEDGE DEL

d
q
d

q sel sel

done2 data2done1

(d) PAR f g

DELPOSEDGE

POSEDGE

gf

MUX

c1

load

c0

not e

start gstart f

done

c2

out

done g

data g

done e

done f

data f

sel

data e

start′

q q

e

start inp

q
d

sel

q
d

sel

(e) IF e f g

POSEDGE

MUX

inp

DELPOSEDGE

POSEDGE

DEL

done

c1

load

c0

inp e

e

q

sel

not e

start′

q

g

start gstart f

out

f

done f

done g

done

c2

c3

c4

done g
data g

data g

data e

start

d
qsel

done e

start e

(f) REC e f g

30 How do let-expressions work?

A let-expression has the form let v = e1 in e2 where v is a “varstruct” (variable
structure) which is either a single variable or, recursively, a non-empty tuple of varstructs
(e.g. (x,(m,n),y)).

If e1 is combinational, then a let-expression is synthesised into a circuit consisting of
e1 driving wires corresponding to v that are inputs to the circuit corresponding to e2.

If e1 is not combinational, the let-expression is compiled using:

` ∀f1 f2. (λx. let v = f1 x in f2 (x, v)) = Seq (Par (λx. x) f1) f2

9

For example, suppose H and J are defined by:

H x = x+1w

J x = let y = H x in y + y + y

where 1w is the 32-bit word denoting 1 and + is 32-bit addition.

If H is not declared combinational, then J compiles to:

|- InfRise clk ==>

(∃v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21
v22 v23 v24 v25 v26 v27.

DtypeT (clk,load,v10) ∧ NOT (v10,v9) ∧ AND (v9,load,v8) ∧ Dtype (clk,done,v7) ∧

AND (v8,v7,v6) ∧ DtypeT (clk,v6,v13) ∧ NOT (v13,v12) ∧ AND (v12,v6,v11) ∧

NOT (v11,v5) ∧ Dtype (clk,inp,v3) ∧ DtypeT (clk,v6,v17) ∧ NOT (v17,v16) ∧

AND (v16,v6,v15) ∧ NOT (v15,v4) ∧ CONSTANT 1w v18 ∧ ADD32 (inp,v18,v14) ∧

Dtype (clk,v14,v2) ∧ DtypeT (clk,v5,v21) ∧ NOT (v21,v20) ∧ AND (v20,v5,v19) ∧

MUX (v19,v3,v22,v1) ∧ Dtype (clk,v1,v22) ∧ DtypeT (clk,v4,v25) ∧ NOT (v25,v24) ∧

AND (v24,v4,v23) ∧ MUX (v23,v2,v26,v0) ∧ Dtype (clk,v0,v26) ∧ AND (v5,v4,done) ∧

ADD32 (v0,v0,v27) ∧ ADD32 (v27,v0,out)) ==>
DEV J (load at clk,inp at clk,done at clk,out at clk)

but if H is declared to be combinational, then J compiles to:

|- InfRise clk ==>
(∃v0 v1 v2 v3 v4 v5 v6.

DtypeT (clk,load,v3) ∧ NOT (v3,v2) ∧ AND (v2,load,v1) ∧ NOT (v1,done) ∧

CONSTANT 1w v5 ∧ ADD32 (inp,v5,v4) ∧ ADD32 (v4,v4,v6) ∧ ADD32 (v6,v4,v0) ∧

Dtype (clk,v0,out)) ==>

DEV J (load at clk,inp at clk,done at clk,out at clk)

31 What is a simple example?

A simple example is iterative accumulator-style multiplication on 32-bit words:

Mult32Iter(m,n,acc) =

if m = 0w then (0w, n, acc) else Mult32Iter(m-1w, n, n+acc)

where 0w, 1w are 32-bit numbers and +, - are 32-bit operations.

This specification compiles to:

|- InfRise clk ==>
(∃ v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23

v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39 v40 v41 v42 v43 v44
v45 v46 v47 v48 v49 v50 v51 v52 v53 v54 v55 v56 v57.

DtypeT (clk,load,v21) ∧ NOT (v21,v20) ∧ AND (v20,load,v19) ∧ Dtype (clk,done,v18) ∧

AND (v19,v18,v17) ∧ OR (v17,v16,v11) ∧ DtypeT (clk,v15,v23) ∧ NOT (v23,v22) ∧

AND (v22,v15,v16) ∧ MUX (v16,v14,inp1,v3) ∧ MUX (v16,v13,inp2,v2) ∧

MUX (v16,v12,inp3,v1) ∧ DtypeT (clk,v11,v26) ∧ NOT (v26,v25) ∧ AND (v25,v11,v24) ∧

MUX (v24,v3,v27,v10) ∧ Dtype (clk,v10,v27) ∧ DtypeT (clk,v11,v30) ∧ NOT (v30,v29) ∧

AND (v29,v11,v28) ∧ MUX (v28,v2,v31,v9) ∧ Dtype (clk,v9,v31) ∧ DtypeT (clk,v11,v34) ∧

NOT (v34,v33) ∧ AND (v33,v11,v32) ∧ MUX (v32,v1,v35,v8) ∧ Dtype (clk,v8,v35) ∧

DtypeT (clk,v11,v39) ∧ NOT (v39,v38) ∧ AND (v38,v11,v37) ∧ NOT (v37,v7) ∧

CONSTANT 0w v40 ∧ EQ32 (v3,v40,v36) ∧ Dtype (clk,v36,v6) ∧ DtypeT (clk,v7,v44) ∧

NOT (v44,v43) ∧ AND (v43,v7,v42) ∧ AND (v42,v6,v5) ∧ NOT (v6,v41) ∧ AND (v41,v42,v4) ∧

DtypeT (clk,v5,v48) ∧ NOT (v48,v47) ∧ AND (v47,v5,v46) ∧ NOT (v46,v0) ∧

CONSTANT 0w v45 ∧ Dtype (clk,v45,out1) ∧ Dtype (clk,v9,out2) ∧ Dtype (clk,v8,out3) ∧

DtypeT (clk,v4,v53) ∧ NOT (v53,v52) ∧ AND (v52,v4,v51) ∧ NOT (v51,v15) ∧

CONSTANT 1w v54 ∧ SUB32 (v10,v54,v50) ∧ ADD32 (v9,v8,v49) ∧ Dtype (clk,v50,v14) ∧

Dtype (clk,v9,v13) ∧ Dtype (clk,v49,v12) ∧ Dtype (clk,v15,v56) ∧ AND (v15,v56,v55) ∧

AND (v0,v7,v57) ∧ AND (v57,v55,done)) ==>
DEV Mult32Iter (load at clk, (inp1<>inp2<>inp3) at clk, done at clk, (out1<>out2<>out3) at clk)

See 12 and 15 for explanations and 32 for the Verilog that is extracted from this circuit.

10

32 What is the generated Verilog like?

The iterative accumulator-style multiplication device (see 31) generates the following Verilog.

module dtype (clk,d,q);
parameter size = 31; parameter value = 1;
input clk; input [size:0] d; output [size:0] q; reg [size:0] q = value;

always @(posedge clk) q <= d;

endmodule

module Mult32Iter (clk,load,inp1,inp2,inp3,done,out1,out2,out3);
input clk,load; input [31:0] inp1; input [31:0] inp2; input [31:0] inp3;
output done; output [31:0] out1; output [31:0] out2; output [31:0] out3;
wire clk,done; wire [0:0] v0; wire [31:0] v1; wire [31:0] v2; wire [31:0] v3; wire [0:0] v4;
wire [0:0] v5; wire [0:0] v6; wire [0:0] v7; wire [31:0] v8; wire [31:0] v9; wire [31:0] v10;
wire [0:0] v11; wire [31:0] v12; wire [31:0] v13; wire [31:0] v14; wire [0:0] v15;
wire [0:0] v16; wire [0:0] v17; wire [0:0] v18; wire [0:0] v19; wire [0:0] v20; wire [0:0] v21;
wire [0:0] v22; wire [0:0] v23; wire [0:0] v24; wire [0:0] v25; wire [0:0] v26; wire [31:0] v27;
wire [0:0] v28; wire [0:0] v29; wire [0:0] v30; wire [31:0] v31; wire [0:0] v32; wire [0:0] v33;
wire [0:0] v34; wire [31:0] v35; wire [0:0] v36; wire [0:0] v37; wire [0:0] v38; wire [0:0] v39;
wire [31:0] v40; wire [0:0] v41; wire [0:0] v42; wire [0:0] v43; wire [0:0] v44; wire [31:0] v45;
wire [0:0] v46; wire [0:0] v47; wire [0:0] v48; wire [31:0] v49; wire [31:0] v50; wire [0:0] v51;
wire [0:0] v52; wire [0:0] v53; wire [31:0] v54; wire [0:0] v55; wire [0:0] v56; wire [0:0] v57;

dtype dtype_0 (clk,load,v21); defparam dtype_0.size = 0;
assign v20 = ~ v21;
assign v19 = v20 && load;
dtype dtype_1 (clk,done,v18); defparam dtype_1.size = 0;
assign v17 = v19 && v18;
assign v11 = v17 || v16;
dtype dtype_2 (clk,v15,v23); defparam dtype_2.size = 0;
assign v22 = ~ v23;
assign v16 = v22 && v15;
assign v3 = v16 ? v14 : inp1;
assign v2 = v16 ? v13 : inp2;
assign v1 = v16 ? v12 : inp3;
dtype dtype_3 (clk,v11,v26); defparam dtype_3.size = 0;
assign v25 = ~ v26;
assign v24 = v25 && v11;
assign v10 = v24 ? v3 : v27;
dtype dtype_4 (clk,v10,v27); defparam dtype_4.size = 31;
dtype dtype_5 (clk,v11,v30); defparam dtype_5.size = 0;
assign v29 = ~ v30;
assign v28 = v29 && v11;
assign v9 = v28 ? v2 : v31;
dtype dtype_6 (clk,v9,v31); defparam dtype_6.size = 31;
dtype dtype_7 (clk,v11,v34); defparam dtype_7.size = 0;
assign v33 = ~ v34;
assign v32 = v33 && v11;
assign v8 = v32 ? v1 : v35;
dtype dtype_8 (clk,v8,v35); defparam dtype_8.size = 31;
dtype dtype_9 (clk,v11,v39); defparam dtype_9.size = 0;
assign v38 = ~ v39;
assign v37 = v38 && v11;
assign v7 = ~ v37;
assign v40 = 0;
assign v36 = v3 == v40;
dtype dtype_10 (clk,v36,v6); defparam dtype_10.size = 0;
dtype dtype_11 (clk,v7,v44); defparam dtype_11.size = 0;
assign v43 = ~ v44;
assign v42 = v43 && v7;
assign v5 = v42 && v6;
assign v41 = ~ v6;
assign v4 = v41 && v42;
dtype dtype_12 (clk,v5,v48); defparam dtype_12.size = 0;
assign v47 = ~ v48;
assign v46 = v47 && v5;
assign v0 = ~ v46;
assign v45 = 0;
dtype dtype_13 (clk,v45,out1); defparam dtype_13.size = 31;
dtype dtype_14 (clk,v9,out2); defparam dtype_14.size = 31;
dtype dtype_15 (clk,v8,out3); defparam dtype_15.size = 31;
dtype dtype_16 (clk,v4,v53); defparam dtype_16.size = 0;
assign v52 = ~ v53;
assign v51 = v52 && v4;
assign v15 = ~ v51;
assign v54 = 1;
assign v50 = v10 - v54;
assign v49 = v9 + v8;
dtype dtype_17 (clk,v50,v14); defparam dtype_17.size = 31;
dtype dtype_18 (clk,v9,v13); defparam dtype_18.size = 31;
dtype dtype_19 (clk,v49,v12); defparam dtype_19.size = 31;
dtype dtype_20 (clk,v15,v56); defparam dtype_20.size = 0;
assign v55 = v15 && v56;
assign v57 = v0 && v7;
assign done = v57 && v55;

endmodule

11

To conserve space, all comments and many line breaks have been removed from the
preceding Verilog. Each Verilog statement is printed with a comment showing the
HOL source to aid visual checking (e.g. for Common Criteria EAL7 certification eval-
uators [4, 5.9]). We are still tinkering with the Verilog: for example, experiments
show that Quartus II configures Altera FPGAs to initialise faster with registers as in-
stances of a separate module (dtype above) than with inlined behavioral statements
always @(posedge clk) q <= d, where q is initialised with declaration reg q = 1.

33 What simulation tools have you used?

We currently use Icarus Verilog (http://www.icarus.com) for simulation and then
view waveforms with GTKWave (http://home.nc.rr.com/gtkwave). These tools
are both public domain. If we simulate the Mult32Iter example (see 31) with inputs
(5, 7, 0), then the resulting waveform is:

Main.clk

Main.done

Main.inp1[31:0]

Main.inp2[31:0]

Main.inp3[31:0]

Main.load

Main.out1[31:0]

Main.out2[31:0]

Main.out3[31:0]

0 s 100 s 145 s

0 5

0 7

0 0

0

0 7

0 7 14 21 28 35

load is asserted at time 15 and done is T then, but done immediately drops to F in
response to load being asserted. At the same time as load is asserted the values 5, 7
and 0 are put on lines inp1, inp2 and inp3, respectively. At time 135 done rises to
T again, and by then the values on out1, out2 and out3 are 0, 7 and 35, respectively,
thus Mult32Iter(5,7,0) = (0,7,35), which is correct.

34 What is a bigger example?

An example drawn from cryptography is the TEA block cipher [17]. The encryption
algorithm is described by the following HOL definitions (all variables are 32-bit words):

TEAEncrypt (keys,txt) = FST(Rounds (32,(txt,keys,0)))

Rounds (n,s) = if n=0 then s else Rounds(n-1, Round s)

Round ((y,z),(k0,k1,k2,k3),s) =
let s’ = s + DELTA in
let t = y + ShiftXor(z,s’,k0,k1)
in

((t, z + ShiftXor(t,s’,k2,k3)), (k0,k1,k2,k3), s’)

ShiftXor (x,s,k0,k1) = ((x << 4) + k0) # (x + s) # ((x >> 5) + k1)

DELTA = 0x9e3779b9w

There is a corresponding TEADecrypt function (omitted). In HOL-4 we can prove
functional correctness:

|- ∀plaintext keys. TEADecrypt(keys,TEAEncrypt(keys,plaintext)) = plaintext

12

The compiler generates the following netlist for TEAEncrypt and also one for TEADecrypt:

|- InfRise clk ==>
(∃v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18
v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35
v36 v37 v38 v39 v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 v51 v52
v53 v54 v55 v56 v57 v58 v59 v60 v61 v62 v63 v64 v65 v66 v67 v68 v69
v70 v71 v72 v73 v74 v75 v76 v77 v78 v79 v80 v81 v82 v83 v84 v85 v86
v87 v88 v89 v90 v91 v92 v93 v94 v95 v96 v97 v98 v99 v100 v101 v102
v103 v104 v105 v106 v107 v108 v109 v110 v111 v112 v113 v114 v115 v116
v117 v118 v119 v120 v121 v122 v123 v124 v125 v126 v127 v128 v129 v130
v131 v132 v133 v134 v135 v136 v137 v138 v139 v140 v141 v142 v143 v144
v145 v146 v147 v148 v149 v150 v151 v152 v153 v154 v155 v156 v157 v158
v159 v160 v161 v162 v163 v164 v165 v166 v167 v168 v169 v170 v171 v172
v173 v174 v175 v176 v177 v178 v179 v180 v181 v182 v183 v184 v185 v186
v187 v188 v189 v190 v191 v192 v193 v194 v195 v196 v197 v198 v199 v200
v201 v202 v203 v204 v205 v206 v207 v208 v209 v210 v211 v212 v213 v214
v215 v216 v217 v218 v219 v220 v221 v222 v223 v224 v225 v226 v227 v228
v229 v230 v231 v232 v233 v234 v235 v236 v237 v238 v239 v240 v241 v242
v243 v244 v245 v246 v247 v248 v249 v250 v251 v252 v253 v254 v255 v256
v257 v258 v259 v260 v261 v262 v263 v264 v265 v266 v267 v268 v269 v270
v271 v272 v273 v274 v275 v276 v277 v278 v279 v280 v281 v282 v283 v284
v285 v286 v287 v288 v289 v290 v291 v292 v293 v294 v295 v296 v297 v298
v299 v300 v301 v302 v303 v304 v305 v306 v307 v308 v309 v310 v311 v312
v313 v314 v315 v316 v317 v318 v319 v320 v321 v322 v323 v324 v325 v326
v327 v328 v329 v330 v331 v332 v333 v334 v335 v336 v337 v338 v339 v340
v341 v342 v343 v344 v345 v346 v347 v348 v349 v350 v351 v352 v353 v354.

CONSTANT 32w v6 ∧ CONSTANT 0w v5 ∧ DtypeT (clk,load,v43) ∧

NOT (v43,v42) ∧ AND (v42,load,v41) ∧ Dtype (clk,done,v40) ∧

AND (v41,v40,v39) ∧ OR (v39,v38,v28) ∧ DtypeT (clk,v37,v45) ∧

NOT (v45,v44) ∧ AND (v44,v37,v38) ∧ MUX (v38,v36,v6,v15) ∧

MUX (v38,v35,inp2,v14) ∧ MUX (v38,v34,inp3,v13) ∧ MUX (v38,v33,inp11,v12) ∧

MUX (v38,v32,inp12,v11) ∧ MUX (v38,v31,inp13,v10) ∧ MUX (v38,v30,inp14,v9) ∧

MUX (v38,v29,v5,v8) ∧ DtypeT (clk,v28,v48) ∧ NOT (v48,v47) ∧

AND (v47,v28,v46) ∧ MUX (v46,v15,v49,v27) ∧ Dtype (clk,v27,v49) ∧

DtypeT (clk,v28,v52) ∧ NOT (v52,v51) ∧ AND (v51,v28,v50) ∧

MUX (v50,v14,v53,v26) ∧ Dtype (clk,v26,v53) ∧ DtypeT (clk,v28,v56) ∧

NOT (v56,v55) ∧ AND (v55,v28,v54) ∧ MUX (v54,v13,v57,v25) ∧

Dtype (clk,v25,v57) ∧ DtypeT (clk,v28,v60) ∧ NOT (v60,v59) ∧

AND (v59,v28,v58) ∧ MUX (v58,v12,v61,v24) ∧ Dtype (clk,v24,v61) ∧

DtypeT (clk,v28,v64) ∧ NOT (v64,v63) ∧ AND (v63,v28,v62) ∧

MUX (v62,v11,v65,v23) ∧ Dtype (clk,v23,v65) ∧ DtypeT (clk,v28,v68) ∧

NOT (v68,v67) ∧ AND (v67,v28,v66) ∧ MUX (v66,v10,v69,v22) ∧

Dtype (clk,v22,v69) ∧ DtypeT (clk,v28,v72) ∧ NOT (v72,v71) ∧

AND (v71,v28,v70) ∧ MUX (v70,v9,v73,v21) ∧ Dtype (clk,v21,v73) ∧

DtypeT (clk,v28,v76) ∧ NOT (v76,v75) ∧ AND (v75,v28,v74) ∧

MUX (v74,v8,v77,v20) ∧ Dtype (clk,v20,v77) ∧ DtypeT (clk,v28,v81) ∧

NOT (v81,v80) ∧ AND (v80,v28,v79) ∧ NOT (v79,v19) ∧ CONSTANT 0w v82 ∧

EQ32 (v15,v82,v78) ∧ Dtype (clk,v78,v18) ∧ DtypeT (clk,v19,v86) ∧

NOT (v86,v85) ∧ AND (v85,v19,v84) ∧ AND (v84,v18,v17) ∧ NOT (v18,v83) ∧

AND (v83,v84,v16) ∧ DtypeT (clk,v17,v89) ∧ NOT (v89,v88) ∧ AND (v88,v17,v87) ∧

NOT (v87,v7) ∧ Dtype (clk,v26,out1) ∧ Dtype (clk,v25,out2) ∧ Dtype (clk,v24,v4) ∧

Dtype (clk,v23,v3) ∧ Dtype (clk,v22,v2) ∧ Dtype (clk,v21,v1) ∧

Dtype (clk,v20,v0) ∧ DtypeT (clk,v16,v104) ∧ NOT (v104,v103) ∧

AND (v103,v16,v102) ∧ Dtype (clk,v37,v101) ∧ AND (v102,v101,v100) ∧

DtypeT (clk,v100,v108) ∧ NOT (v108,v107) ∧ AND (v107,v100,v106) ∧

NOT (v106,v99) ∧ CONSTANT 1w v109 ∧ SUB32 (v27,v109,v105) ∧

Dtype (clk,v105,v97) ∧ DtypeT (clk,v100,v123) ∧ NOT (v123,v122) ∧

AND (v122,v100,v121) ∧ Dtype (clk,v98,v120) ∧ AND (v121,v120,v119) ∧

DtypeT (clk,v119,v132) ∧ NOT (v132,v131) ∧ AND (v131,v119,v130) ∧

Dtype (clk,v118,v129) ∧ AND (v130,v129,v128) ∧ DtypeT (clk,v128,v143) ∧

NOT (v143,v142) ∧ AND (v142,v128,v141) ∧ Dtype (clk,v127,v140) ∧

AND (v141,v140,v139) ∧ DtypeT (clk,v139,v146) ∧ NOT (v146,v145) ∧

AND (v145,v139,v144) ∧ NOT (v144,v138) ∧ Dtype (clk,v26,v136) ∧

CONSTANT 2654435769w v148 ∧ ADD32 (v20,v148,v147) ∧ DtypeT (clk,v139,v152) ∧

NOT (v152,v151) ∧ AND (v151,v139,v150) ∧ NOT (v150,v137) ∧

CONSTANT 4 v158 ∧ LSL32 (v25,v158,v157) ∧ ADD32 (v157,v24,v156) ∧

ADD32 (v25,v147,v155) ∧ XOR32 (v156,v155,v154) ∧ CONSTANT 5 v160 ∧

ASR32 (v25,v160,v159) ∧ ADD32 (v159,v23,v153) ∧ XOR32 (v154,v153,v149) ∧

Dtype (clk,v149,v135) ∧ DtypeT (clk,v138,v163) ∧ NOT (v163,v162) ∧

AND (v162,v138,v161) ∧ MUX (v161,v136,v164,v134) ∧ Dtype (clk,v134,v164) ∧

DtypeT (clk,v137,v167) ∧ NOT (v167,v166) ∧ AND (v166,v137,v165) ∧

MUX (v165,v135,v168,v133) ∧ Dtype (clk,v133,v168) ∧ AND (v138,v137,v127) ∧

ADD32 (v134,v133,v125) ∧ DtypeT (clk,v128,v179) ∧ NOT (v179,v178) ∧

AND (v178,v128,v177) ∧ Dtype (clk,v126,v176) ∧ AND (v177,v176,v175) ∧

DtypeT (clk,v175,v182) ∧ NOT (v182,v181) ∧ AND (v181,v175,v180) ∧

NOT (v180,v174) ∧ Dtype (clk,v25,v172) ∧ NOT (v187,v190) ∧

OR (v190,v175,v189) ∧ DtypeT (clk,v189,v201) ∧ NOT (v201,v200) ∧

13

AND (v200,v189,v199) ∧ Dtype (clk,v188,v198) ∧ AND (v199,v198,v197) ∧

DtypeT (clk,v197,v212) ∧ NOT (v212,v211) ∧ AND (v211,v197,v210) ∧

Dtype (clk,v196,v209) ∧ AND (v210,v209,v208) ∧ DtypeT (clk,v208,v215) ∧

NOT (v215,v214) ∧ AND (v214,v208,v213) ∧ NOT (v213,v207) ∧

Dtype (clk,v26,v205) ∧ CONSTANT 2654435769w v217 ∧ ADD32 (v20,v217,v216) ∧

DtypeT (clk,v208,v221) ∧ NOT (v221,v220) ∧ AND (v220,v208,v219) ∧

NOT (v219,v206) ∧ CONSTANT 4 v227 ∧ LSL32 (v25,v227,v226) ∧

ADD32 (v226,v24,v225) ∧ ADD32 (v25,v216,v224) ∧ XOR32 (v225,v224,v223) ∧

CONSTANT 5 v229 ∧ ASR32 (v25,v229,v228) ∧ ADD32 (v228,v23,v222) ∧

XOR32 (v223,v222,v218) ∧ Dtype (clk,v218,v204) ∧ DtypeT (clk,v207,v232) ∧

NOT (v232,v231) ∧ AND (v231,v207,v230) ∧ MUX (v230,v205,v233,v203) ∧

Dtype (clk,v203,v233) ∧ DtypeT (clk,v206,v236) ∧ NOT (v236,v235) ∧

AND (v235,v206,v234) ∧ MUX (v234,v204,v237,v202) ∧ Dtype (clk,v202,v237) ∧

AND (v207,v206,v196) ∧ ADD32 (v203,v202,v194) ∧ DtypeT (clk,v197,v241) ∧

NOT (v241,v240) ∧ AND (v240,v197,v239) ∧ NOT (v239,v195) ∧

CONSTANT 2654435769w v242 ∧ ADD32 (v20,v242,v238) ∧ Dtype (clk,v238,v193) ∧

Dtype (clk,v22,v192) ∧ Dtype (clk,v21,v191) ∧ DtypeT (clk,v196,v245) ∧

NOT (v245,v244) ∧ AND (v244,v196,v243) ∧ MUX (v243,v194,v246,v186) ∧

Dtype (clk,v186,v246) ∧ DtypeT (clk,v195,v249) ∧ NOT (v249,v248) ∧

AND (v248,v195,v247) ∧ MUX (v247,v193,v250,v185) ∧ Dtype (clk,v185,v250) ∧

DtypeT (clk,v195,v253) ∧ NOT (v253,v252) ∧ AND (v252,v195,v251) ∧

MUX (v251,v192,v254,v184) ∧ Dtype (clk,v184,v254) ∧ DtypeT (clk,v195,v257) ∧

NOT (v257,v256) ∧ AND (v256,v195,v255) ∧ MUX (v255,v191,v258,v183) ∧

Dtype (clk,v183,v258) ∧ AND (v196,v195,v188) ∧ DtypeT (clk,v188,v262) ∧

NOT (v262,v261) ∧ AND (v261,v188,v260) ∧ NOT (v260,v187) ∧

CONSTANT 4 v268 ∧ LSL32 (v186,v268,v267) ∧ ADD32 (v267,v184,v266) ∧

ADD32 (v186,v185,v265) ∧ XOR32 (v266,v265,v264) ∧ CONSTANT 5 v270 ∧

ASR32 (v186,v270,v269) ∧ ADD32 (v269,v183,v263) ∧ XOR32 (v264,v263,v259) ∧

Dtype (clk,v259,v171) ∧ AND (v188,v187,v173) ∧ DtypeT (clk,v174,v273) ∧

NOT (v273,v272) ∧ AND (v272,v174,v271) ∧ MUX (v271,v172,v274,v170) ∧

Dtype (clk,v170,v274) ∧ DtypeT (clk,v173,v277) ∧ NOT (v277,v276) ∧

AND (v276,v173,v275) ∧ MUX (v275,v171,v278,v169) ∧ Dtype (clk,v169,v278) ∧

AND (v174,v173,v126) ∧ ADD32 (v170,v169,v124) ∧ DtypeT (clk,v127,v281) ∧

NOT (v281,v280) ∧ AND (v280,v127,v279) ∧ MUX (v279,v125,v282,v116) ∧

Dtype (clk,v116,v282) ∧ DtypeT (clk,v126,v285) ∧ NOT (v285,v284) ∧

AND (v284,v126,v283) ∧ MUX (v283,v124,v286,v115) ∧ Dtype (clk,v115,v286) ∧

AND (v127,v126,v118) ∧ DtypeT (clk,v119,v290) ∧ NOT (v290,v289) ∧

AND (v289,v119,v288) ∧ NOT (v288,v117) ∧ CONSTANT 2654435769w v291 ∧

ADD32 (v20,v291,v287) ∧ Dtype (clk,v24,v114) ∧ Dtype (clk,v23,v113) ∧

Dtype (clk,v22,v112) ∧ Dtype (clk,v21,v111) ∧ Dtype (clk,v287,v110) ∧

DtypeT (clk,v118,v294) ∧ NOT (v294,v293) ∧ AND (v293,v118,v292) ∧

MUX (v292,v116,v295,v96) ∧ Dtype (clk,v96,v295) ∧ DtypeT (clk,v118,v298) ∧

NOT (v298,v297) ∧ AND (v297,v118,v296) ∧ MUX (v296,v115,v299,v95) ∧

Dtype (clk,v95,v299) ∧ DtypeT (clk,v117,v302) ∧ NOT (v302,v301) ∧

AND (v301,v117,v300) ∧ MUX (v300,v114,v303,v94) ∧ Dtype (clk,v94,v303) ∧

DtypeT (clk,v117,v306) ∧ NOT (v306,v305) ∧ AND (v305,v117,v304) ∧

MUX (v304,v113,v307,v93) ∧ Dtype (clk,v93,v307) ∧ DtypeT (clk,v117,v310) ∧

NOT (v310,v309) ∧ AND (v309,v117,v308) ∧ MUX (v308,v112,v311,v92) ∧

Dtype (clk,v92,v311) ∧ DtypeT (clk,v117,v314) ∧ NOT (v314,v313) ∧

AND (v313,v117,v312) ∧ MUX (v312,v111,v315,v91) ∧ Dtype (clk,v91,v315) ∧

DtypeT (clk,v117,v318) ∧ NOT (v318,v317) ∧ AND (v317,v117,v316) ∧

MUX (v316,v110,v319,v90) ∧ Dtype (clk,v90,v319) ∧ AND (v118,v117,v98) ∧

DtypeT (clk,v99,v322) ∧ NOT (v322,v321) ∧ AND (v321,v99,v320) ∧

MUX (v320,v97,v323,v36) ∧ Dtype (clk,v36,v323) ∧ DtypeT (clk,v98,v326) ∧

NOT (v326,v325) ∧ AND (v325,v98,v324) ∧ MUX (v324,v96,v327,v35) ∧

Dtype (clk,v35,v327) ∧ DtypeT (clk,v98,v330) ∧ NOT (v330,v329) ∧

AND (v329,v98,v328) ∧ MUX (v328,v95,v331,v34) ∧ Dtype (clk,v34,v331) ∧

DtypeT (clk,v98,v334) ∧ NOT (v334,v333) ∧ AND (v333,v98,v332) ∧

MUX (v332,v94,v335,v33) ∧ Dtype (clk,v33,v335) ∧ DtypeT (clk,v98,v338) ∧

NOT (v338,v337) ∧ AND (v337,v98,v336) ∧ MUX (v336,v93,v339,v32) ∧

Dtype (clk,v32,v339) ∧ DtypeT (clk,v98,v342) ∧ NOT (v342,v341) ∧

AND (v341,v98,v340) ∧ MUX (v340,v92,v343,v31) ∧ Dtype (clk,v31,v343) ∧

DtypeT (clk,v98,v346) ∧ NOT (v346,v345) ∧ AND (v345,v98,v344) ∧

MUX (v344,v91,v347,v30) ∧ Dtype (clk,v30,v347) ∧ DtypeT (clk,v98,v350) ∧

NOT (v350,v349) ∧ AND (v349,v98,v348) ∧ MUX (v348,v90,v351,v29) ∧

Dtype (clk,v29,v351) ∧ AND (v99,v98,v37) ∧ Dtype (clk,v37,v353) ∧

AND (v37,v353,v352) ∧ AND (v7,v19,v354) ∧ AND (v354,v352,done))
==>
DEV TEAEncrypt

(load at clk,
((inp11 <> inp12 <> inp13 <> inp14) <> inp2 <> inp3) at clk,
done at clk,(out1 <> out2) at clk) : thm

14

35 How are HOL designs downloaded to an FPGA?

There are four steps to download our circuits to an FPGA.

HOL

` InfRise clk ⇒ (Cir =⇒ Dev f)

PC

(g) Proof producing synthesis.

UART.v

Cir.v

HOLQuartus II

PC

(h) Verilog compilation.

Parallel
Cable

FPGA PC

Quartus II

device.sof

(i) Download the object file.

PC

HOLUART

FPGA

UARTCir

Serial
Cable

(j) Run the circuit.

Proof Producing Synthesis. The initial step is concerned with the production of the
theorem: ` InfRise clk ⇒ (Cir =⇒ Dev f).

Verilog compilation. A pretty-printer translates the circuit Cir into the Verilog file
Cir.v. No formal verification is applied to this translation as Verilog has no formal
semantics. The primitive components — operators like AND, OR, MUX — are
mapped to Verilog modules. The file UART.v contains a Verilog implementation
of an interface that connects a serial cable to the circuit (this interface has not
being formally verified). Both files are sent to Quartus II for compilation.

Download the object file. Quartus II translates the Verilog files into the object file
device.sof, which is downloaded to the FPGA via the parallel cable.

Run the circuit. HOL is connected to the serial cable by a UART program previously
coded in C. The circuit is triggered interactively via an automatically generated
function defined in HOL which communicates with the UART program.

All the four steps can be carried out from the HOL system provided that the pretty-
printer is able to map every primitive combinational operator to Verilog.

36 What are the plans for the future?

We hope to use the compiler to generate various kinds of cryptographic hardware. We
expect more aggressive compaction may be needed to fit bigger examples (e.g. AES)
onto the FPGAs we are using.

Eventually, it is hoped to provide wrapper circuitry to enable synthesised HOL functions
to be invoked from ARM code as hardware co-processors. The FPGA board we are
using (Altera Excalibur) has an ARM processor on it.

37 Is the compiler freely available?

The compiler is distributed with the HOL-4 system (http://hol.sourceforge.net/)
in the directory examples/dev.

15

38 What related work is there?

There is considerable previous work on using functional programming to specify and
design hardware. Examples include µFP (Sheeran [15]), Ruby (Jones & Sheeran [9, 8]),
Hydra (O’Donnell [12]), Lava (Bjesse et al [1]), DDD (Johnson & Bose [7]), LAMBDA
(Finn et al [5]), Gropius (Blumenröhr [2]), DUAL-EVAL (Brock & Hunt [3]) and SAFL
(Mycroft & Sharp [11]).

Our work was initially inspired by SAFL, a hardware compiler for a language based on
a first-order subset of ML, though we use a subset of higher order logic rather than
a separate special-purpose design specification language. The general way we employ
serial/parallel combinators for compositional translation has similarities to compilers
for Handel (Page [13]) and SAFL. However, many details differ in our approach: in
particular, our compiler is proof-producing.

The paper “Formal Synthesis in Circuit Design – A Classification and Survey” [14]
provides an excellent overview. In terms of the classification in that paper, our approach
is formal synthesis by transformational derivation in a general purpose calculus.

The way we realise HOL functions by handshaking devices is reminiscent of some self-
timed design methods [6, 16], though we produce clocked synchronous circuits.

Acknowledgements

David Greaves gave us advice on the hardware implementation of handshake protocols and also
helped us understand the results of simulating circuits produced by our compiler. Simon Moore and
Robert Mullins lent us an Excalibur FPGA board on which we are running compiled hardware at
Cambridge, and they helped us with the Quartus II design software that we are using to drive the
board. Ken Larsen used his dynlib library to write an ML version of our original C interface to the
serial port (this is used to communicate with the Excalibur board, see 35).

References

[1] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design in
Haskell. ACM SIGPLAN Notices, 34(1):174–184, January 1999.

[2] Christian Blumenröhr. A formal approach to specify and synthesize at the system level. In GI
Workshop Modellierung und Verifikation von Systemen, pages 11–20, Braunschweig, Germany,
1999. Shaker-Verlag.

[3] Bishop Brock and Warren A. Hunt Jr. The DUAL-EVAL hardware description language and its
use in the formal specification and verification of the fm9001 microprocessor. Formal Methods
in System Design, 11(1):71–104, 1997.

[4] Common Criteria for Information Security Evaluation, 2004. Part 3: Security Assurance Re-
quirements, http://niap.nist.gov/cc-scheme/cc docs/cc v22 part3.pdf.

[5] Simon Finn, Michael P. Fourman, Michael Francis, and Robert Harris. Formal system design—
interactive synthesis based on computer-assisted formal reasoning. In Luc Claesen, editor,
IMEC-IFIP International Workshop on Applied Formal Methods for Correct VLSI Design, Vol-
ume 1, pages 97–110, Houthalen, Belgium, November 1989. Elsevier Science Publishers, B.V.
North-Holland, Amsterdam.

16

[6] Scott Hauck. Asynchronous design methodologies: An overview. Proceedings of the IEEE,
83(1):69–93, 1995.

[7] Steven D. Johnson and Bhaskar Bose. DDD – A System for Mechanized Digital Design Deriva-
tion. Technical Report TR323, Indiana University, IU Computer Science Department, 1990.

[8] G. Jones and M. Sheeran. Circuit design in Ruby. In J. Staunstrup, editor, Formal Methods
for VLSI Design, pages 13–70. Elsevier Science Publications, North-Holland, 1990.

[9] G. Jones and M. Sheeran. Relations and refinement in circuit design. In C. Morgan, editor,
BCS FACS Workshop on Refinement. Springer-Verlag, 1991.

[10] Thomas F. Melham. Higher Order Logic and Hardware Verification. Cambridge University
Press, Cambridge, England, 1993. Cambridge Tracts in Theoretical Computer Science 31.

[11] Alan Mycroft and Richard Sharp. Hardware synthesis using SAFL and application to processor
design. In Proceedings of the 11th Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods (CHARME’01), Livingston, Scotland, September 2001.
Springer Verlag. Invited Talk. LNCS Vol. 2144.

[12] John O’Donnell. Overview of Hydra: A concurrent language for synchronous digital circuit
design. In Proceedings of the 16th International Parallel and Distributed Processing Symposium.
IEEE Computer Society Press, 2002.

[13] I. Page. Constructing hardware-software systems from a single description. Journal of VLSI Sig-
nal Processing, 12(1):87–107, 1996. citeseer.ist.psu.edu/page96constructing.html.

[14] R. Kumar, C. Blumenroehr, D. Eisenbiegler, and D. Schmid. Formal synthesis in circuit design-A
classification and survey. In M. Srivas and A. Camilleri, editors, First international conference
on formal methods in computer-aided design, volume 1166, pages 294–299, Palo Alto, CA,
USA, 1996. Springer Verlag.

[15] Mary Sheeran. µFP, A Language for VLSI Design. In Proceedings of the ACM Symposium on
LISP and Functional Programming, pages 104–112. ACM Press, Austin, Texas, 1984.

[16] Kees van Berkel. Handshake circuits: an asynchronous architecture for VLSI programming.
Cambridge University Press, New York, NY, USA, 1993.

[17] David Wheeler and Roger Needham. TEA, a tiny encryption algorithm. In Fast Software
Encryption: Second International Workshop, volume 1008 of LNCS, pages 363–366. Springer
Verlag, 1999.

17

Towards the Correct Design of Multiple Clock Domain Circuits

Ed Czeck, Ravi Nanavati and Joe Stoy
Bluespec Inc.

Waltham MA 02451, USA

Abstract

We present a set of guiding principles for the management of
multiple clocks domains in the design of a high-level hard-
ware description language. Our motivation of the require-
ments is based on typical design problems; the solutions are
based on common engineering practices and appropriate
language abstractions. We include examples, and conclude
with some comments based on a design experience.

1. Introduction
Hardware designs these days typically make use of sev-
eral clocks. This is partly to save power (by gating the
clock to a part of the circuit temporarily not in use, and
by ensuring that parts of the design are not run unneces-
sarily fast, both of which reduce the design’s “dynamic”
power consumption), and also to allow the design to com-
municate with parts of the external environment running
asynchronously. Moreover, designs are increasingly “sys-
tems on a chip” (“SoC”s): these bring together blocks (IPs)
which come from various sources, and of which each is
likely to have its own clocking requirements. These differ-
ent requirements may arise simply because each block was
designed independently; but it might be because different
blocks are constrained by different standards (for example
for external buses, or audio or video I/O), each with its own
clocking regime.

Where signals cross clock domain boundaries, the nor-
mal design conventions of digital logic break down. Spe-
cial precautions must be taken to ensure that the signals
get across correctly; and care must be taken that there are
no accidental crossings which neglect such precautions. A
good hardware description language, particularly one which
claims to operate at a high level of abstraction, should have
features which make it natural for the designer to construct
circuits which correctly observe these constraints.

2 Principles

A hardware description language, notation or system
which supports multiple-clock-domain designs should ide-
ally have the following characteristics.

1. The aim should be to make the simplest situations triv-
ial, other simple situations easy, and all situations ex-
pressible in a sensible way.

2. Thus in a design, or part of a design, with just one
clock domain, clock handling should be completely
implicit. Each instantiated module needs to be con-
nected to “the” clock, and having to say so explicitly
adds unnecessary clutter.

3. Clockshould be a datatype of the language (values of
which will include the oscillator, as well as an optional
gating signal); the type system should ensure that clock
oscillators are never confused with level-sampled sig-
nals.

4. The system should keep track of which signals are
clocked by which clocks, and ensure that no signal
crosses a clock-domain boundary without the use of
appropriate synchronizing logic.

5. For efficiency’s sake, the system should be able to rec-
ognize when two clocks are driven by the same oscil-
lator (that is, they differ only in gating); this should be
exploited to simplify domain-crossing logic between
them.

6. Many groups of designers have their own preferred de-
signs for domain-crossing logic; the system should al-
low the automatic deployment of such designs when
appropriate (though also providing default designs for
use when these are not available).

In the remainder of this paper we address, by way of
example, how these principles are addressed in Bluespec
SystemVerilog.

3. A Brief Introduction to BSV
Bluespec SystemVerilog is a strongly typed, high-level be-
havioral hardware description language. As with Verilog,
designs are structured into modules. The internal behavior
of a module is specified byrules(instead of always-blocks),
which have a guard and an action part. Modules communi-
cate with their environment by themethodsof their inter-
faces, which may be invoked by rules in other modules. All

1

methods have “ready” conditions, which become “implicit”
conditions” of rules which invoke them—only if all the con-
ditions, explicit and implicit, of a rule are satisfied may the
rule be executed. Taken together, the rules of a design have
the semantics of a state-transition system (or term-rewriting
system), and execute atomically. The Bluespec compiler
generates logic which schedules as many rules as possible
in each clock cycle; but the overall effect of each cycle is
exactly the same as if the rules executed one at a time in
some order—this greatly simplifies the analysis of the de-
sign’s correctness. (It avoids many race conditions, replac-
ing them with compile time warnings that two rules could
not be scheduled simultaneously because of a resource con-
flict; it also means that proofs of correctness can analyse
each rule separately, without worrying about their interac-
tion.)

A slightly fuller description is provided in the Appendix;
the reader is also referred to the Language Reference Guide
[BLU06] for a complete account.

4. Clocks—The Simplest Case

The simplest case is one where a design uses just one clock.
In line with the principles outlined above, in this case the
clock is not mentioned in the BSV text at all. Each module
in the RTL generated by the Bluespec compiler will have
a clock port, calledCLK; this is connected to any module
instantiated within that module. At the lowest level of the
generated module hierarchy, this clock is connected to the
flip-flops, registers and other primitive state elements.

The advantage of an implicit clock is that designer is
spared the tedium of mentioning the clock and its explicit
use in the generation of the flops, registers, and other prim-
itives. The use of standard primitives based on common
engineering practice (in this case positive-edge-triggered
flops) further reinforces that abstraction for the common
case, while the complete Bluespec SystemVerilog language
allows for a full range of flexibility.

5. The Type “Clock”

In designs with more complicated clocking arrangements,
clocks are mentioned explicitly. A clock is a value of type
Clock. It enjoys most of the general “first-class citizenship”
properties of other BSV values: it may be passed as an ar-
gument, or returned as the result, of a function; it may be
a field of an interface. A clock is not allowed, however, to
pass through combinational logic generated by the Bluespec
tool, because there are likely to be special requirements for
the handling of clocks (affecting such things as phase and
skew). All dynamic manipulation of clocks must be done
using primitives written in Verilog: the Bluespec library
provides a repertoire of general-purpose primitives, and de-

signers are encouraged to write or request others, to deal
with special situations and requirements.

Thus, for example, ifc1andc2are clocks, the definition

Clock c = (b ? c1 : c2);

is valid, but only ifb is a value known at “compile-time”.
The dynamic selection between two clocks must be done by
a special multiplexing primitive such asmkClockMux.

A BSV clock value contains two signals: an oscillator
and a gating signal. If the gating signal is high, the clock
is assumed to be ungated, and clearly the oscillator should
be running. The tool remains agnostic about whether the re-
verse is true. Stopping the oscillator when the clock is gated
saves the power being dissipated by charging and discharg-
ing the capacitance in the clock-tree itself, but it may re-
quire complicated interaction with the clock-handling tools
downstream in the synthesis flow. The tool will, however,
ensure that when the gating signal is low, all state transitions
in that clock’s domain are inhibited.

New clock values arise in several ways. They are often
passed in as arguments to the design, having been gener-
ated by external electronics. They may also be generated in
IP cores (for which the BSV designer will provide a wrap-
per) to handle external interfaces (such as a SPI-4) which
provide their own clocks. Bluespec provides facilities, de-
scribed in more detail below, for adding a gating condition
to an existing clock. Facilities are also available for generat-
ing clocks with periods specified numerically; but these are
not suitable for synthesis, and are provided for simulation
purposes only.

6. Gated Clocks
A simple way to save power is to switch off the clock for
parts of the design when they are temporarily not in use.
Differently gated versions of the same clock allow a simpli-
fied treatment, since when both are running they are exactly
in phase. BSV provides special facilities to handle this case
efficiently.

If a clock B is a gated version of clockA, we say that
A is anancestorof B. We therefore know that if a clock is
running, then so are all of its ancestors. Clocks which are
driven by the same oscillator, and differ merely in gating,
are said to be in thesame family. Both these relationships
may be tested by functions available to the design: thus a
library package can automatically arrange to exploit the ex-
tra simplicity of this situation without the user’s having to
be aware of it.

Each method of a primitive module is explicitly associ-
ated with a particular clock, often (but not necessarily) the
default clock of the primitive module’s instantiation. These
methods are invoked by other methods (of other modules,
written in BSV) or by rules: the tool rigorously insists that
all methods invoked by any one method or rule are in the

2

same family, thereby avoiding the risk of paths accidentally
crossing between different clock domains. The invoking
method or rule will be clocked by a clock in that same fam-
ily, which is running if and only if all the invoked methods’
clocks are running—if necessary, a new clock in the same
family will be produced which satisfies this condition. The
guard of any method which effects a state transition (that is,
in general, any method which has anENABLEsignal) will
include the gating condition of the method’s clock—so such
a method will not beREADYunless its clock is running,
and neither will any rule which invokes that method. (A
method which merely returns a value, without executing a
state transition, remainsREADYwhen its clock is switched
off, returning the value set by the latest transition, provided
that it was alreadyREADYwhen the switch-off occurred.)

All this mechanism obviates the need for any spe-
cial clock-domain-crossing logic between same-family do-
mains: everything is handled by the normal implicit-
condition mechanism of BSV methods.

7. Clock-domain Crossing Between
Families

When the clocks concerned are from different families
(which in general implies that they have different oscilla-
tors), domain crossing is more complicated and requires
special logic. It is always handled by primitives written in
Verilog. The tool will ensure that no domain crossing oc-
curs without the use of such a primitive and that the logic
used connects the domains appropriately. As with any de-
sign language, the tools can only ensure that a given module
is used properly, and cannot verify that the module was cor-
rectly written or correctly selected in the first place.

Bluespec provides general-purpose primitives in its li-
brary, but users are encouraged to provide (or to request)
others to cover special cases. For example, each clocking
edge of the slower clock might coincide with a clocking
edge of the faster one; or the clocks might have the same
frequency but a different phase; or very nearly the same
frequencies; or very different frequencies. The general-
purpose primitives will handle all these cases, but perhaps
not as efficiently as special-purpose ones.

The facilities provided by Bluespec fall into two groups,
following two different approaches. The “hardware ap-
proach” provides modules with source and destination
ports, which the designer instantiates and connects up ex-
plicitly; the low-level primitives are provided only in this
form. The “linguistic approach” provides modules which
transform an interface into one of the same type, but dif-
ferently clocked: this allows a smoother treatment in the
BSV notation. These two approaches are described and il-
lustrated below.

7.1. The Hardware Approach
Synchronizers are provided to handle the following cases
of moving data from a source clock domain to a destination
clock domain. Like the single clock primitives, the provided
synchronizers are based on common engineering practice,
while the full language allows other designs which users
may desire.

(1) bits: a bit change to the source will cause a bit change
in the destination;

(2) pulses: a pulse on the source will cause a pulse in the
destination.

If the crossing is from a fast clock domain to a slower one,
there is a danger in these two cases that information may be
lost: a bit change might not be noticed if it persists only for
a short time, and a sequence of fast pulses might result in
fewer pulses on the destination side. The next case guards
against this:

(3) the same as (2), but a second source pulse is not ac-
cepted until a pulse has been delivered at the destina-
tion.

(4) words: a word delivered to the source eventually ap-
pears at the destination; a subsequent send cannot oc-
cur until the first has been delivered.

Note that this word synchronizer is not simply a parallel
composition of a number of bit synchronizers: precautions
must be taken to ensure that all the bits of a word appear at
the destination at the same time.

In these last two cases, even though an event is guaran-
teed to have happened on the destination side, there is no
guarantee that it has been noticed. The final case avoids this
problem.

(5) A FIFO: data items enqueued on the source side will
arrive at the destination side, and remain there until
they are dequeued.

Examples of these synchronizers will be shown in the ex-
amples which follow.

7.2. The Linguistic Approach
Many BSV designs make extensive use ofGetandPut inter-
faces, provided in the library. An interface of typePut#(a)
is the simplest interface into which one can put values of
typea; similarly, an interface of typeGet#(a) is the simplest
interface from which values of typea can be retrieved just
once (that is, they are not merely read but also removed).
A Get interface and a correspondingPut interface may be
connected by the modulemkConnection(the name is over-
loaded, and may be used to connect other compatible inter-
faces too).

3

These are just two of the kinds of interface which may be
converted in this second approach. Ififc is such an interface,
clocked by any clock, the instantiation

mkConverter#(n) the_conv(ifc, new_ifc);

will produce an interface of the same type, but clocked by
the clock of the current environment. There is no need to
specify the clock of the originalifc, as themkConverter
module can determine that for itself. The parametern spec-
ifies the depth of the conversion FIFO to be used between
the two domains.

Since the types of the original and the new interfaces are
the same, and many of the details are implicit, this approach
lends itself to generalisation: themkConvertername is also
overloaded, and can be used to implement clock-domain
conversion on a whole class of interfaces.

8. Examples
Figure 1 shows the use ofmkSlowClockand also the use
of gated clocks, using the “hardware approach”. The mod-
ule mkGenPairproduces a pair ofGet interfaces (perhaps
sources of pseudo-random numbers, produced by splitting
the output from a random-number generator). The other
two sub-modules are user modules, and they also each have
a pair of interfaces. One of these is aPut interface, and is
connected to one of theGet interfaces; the other is exported
as part of the main module’s interface.

The required domain crossing is achieved by the prim-
itive mkSyncFIFO, which is supplied with the two clocks
concerned (and the source-side reset signal). The designer
provides two rules,enqueueff anddequeueff, which sup-
ply and retrieve data items: note that these two rules are in
different clock domains, which of course the tool automati-
cally verifies.

Figure 2 shows the last few lines of the same mod-
ule, but using the “linguistic approach” instead. The in-
terfaceuser1ifcis of the same type as the original interface
user1.fst, but it is clocked by the default clock of the sur-
rounding module which, since it is in the same family asc1,
is suitable for direct connection togens.snd.

Our final example is in Figure 3, which showsmkCon-
verter for a Put interface. This demonstrates how the lin-
guistic approach is implemented using the hardware ap-
proach primitives. It is suitable for any typea of data, with
the proviso that it can be represented in bits (this is neces-
sary because values of this type are to be stored in a FIFO).

The internal domain-crossing primitive ismkSyncFI-
FOFromCC, a variant ofmkSyncFIFOwhich assumes that
the source side is to be clocked by the current clock of
the surrounding module.mkConverterimplements theput
method of the interface it is providing, which enqueues
items on the synchronizing FIFO; the internaldequeuerule

(* synthesize *)
module mkRandTop(UInt#(4) ratio,

Bool g1, Bool g2, ExtIfc ifc);
// Declare the gated clocks and their
// associated resets:
// c1 will be a slower clock:
Clock c1 <- mkSlowClock(ratio, g1);
Reset r1 <- mkSyncResetFromCC(3, c1);
// c2 is a gated version of currentClock:
Clock c2 <- mkGatedClock(g2);
Reset r2 <- mkSyncResetFromCC(3, c2);
// c0 is similar, on when either of the
// consumers is on:
Clock c0 <- mkGatedClock gate0(g1 || g2);
Reset r0 <- mkSyncResetFromCC(3, c0);

// Instantiate the sub-modules,
// appropriately clocked:
GenPair gens <-

mkGenPair(clocked_by c0, reset_by r0);
UserIfc user1 <-

mkUser1(clocked_by c1, reset_by r1);
UserIfc user2 <-

mkUser2(clocked_by c2, reset_by r2);

// Since c2 and c0 are in the same
// family, there is no need for explicit
// conversion:
mkConnection(gens.fst, user2.fst);

// c1 is unrelated to c0, however, so
// explicit conversion is necessary.
// This version uses the "hardware approach".

SyncFIFOIfc#(Bit#(6)) ff <-
mkSyncFIFO(4, c0,r0, c1);

// We provide two rules to enqueue values
// from the generator onto ff, and to
// dequeue them to send to user1:
rule enqueue_ff;

let x <- gens.snd.get;
ff.enq(x);

endrule
rule dequeue_ff;

user1.fst.put(ff.first);
ff.deq;

endrule

// The external interfaces:
interface ifcA = user1.snd;
interface ifcB = user2.snd;
// Also export the clock for ifcA:
interface cA = c1;

endmodule

Figure 1: Use of various clocks

// This one uses the "linguistic approach".

// There’s no need to specify an explicit
// clock for the converter, since the current
// clock is in the same family as c1.
let user1ifc <- mkConverter(4, user1.fst);

mkConnection(gens.snd, user1ifc);

interface ifcA = user1.snd;
interface ifcB = user2.snd;
// Export the clock for ifcA:
interface cA = c1;

endmodule

Figure 2: The linguistic approach (last few lines)

4

module mkConverter#(Integer d)
(Put#(a) used_put, Put#(a) provided_put)

provisos (Bits#(a,sa));

SyncFIFOIfc#(a) ff <-
mkSyncFIFOFromCC(d, clockOf(used_put));

rule dequeue;
used_put.put(ff.first);
ff.deq;

endrule

method Action put(x);
ff.enq(x);

endmethod
endmodule

Figure 3: Implementation ofmkConverter

dequeues items and supplies them to theput method of the
“used” interface argument.

9 Conclusion

The handling of multiple clocks domains in a design can
be a rich source of error. The original way of preventing
such errors was visual inspection of the source code, cou-
pled with testing; it was not very reliable, particularly since
many of the runtime errors would only manifest themselves
rarely, as they depended on particular phase-relationships
of the participating clocks. Various companies have pro-
vided “lint-like” tools [ATR05, CAD04, SYN06], which
pro-actively analyse the source code for likely errors and
other infelicities. A better solution is for the source code
language to include a set of features which allows design-
ers “to get it right first time”. As far as we know, apart
from ourselves only the recently-announced version of Es-
terel [EST06] attempts to do this.

The features described here have been used in a substan-
tial design (a UTMI block [UTM01] for USB2.0). This
handled USB transmission both at 480MHz and 12MHz;
most of the logic was clocked at 120MHz (dealing with 4-
bit nibbles in parallel). Thus many clocks were involved,
and some careful design was required, some of it iterative,
to perform the required domain crossing within the latency
constraints of the specification (as tested by the Verisity
Specman test suite [VER04]). It was found that the sup-
port provided by the language avoided all accidental mis-
takes, allowing iterative improvements to be implemented
and tested quickly. It is estimated that the design was com-
pleted (and passed the test suite) in a time at least twice as
fast as if it had been written in standard Verilog.

10 Acknowledgments

The authors thank their colleagues at Bluespec Inc., and
members of the Computation Structures Group at MIT’s
Computer Science and Artificial Intelligence Laboratory,
for advice and assistance with this project.

References

[ATR05] Atrenta, Inc.1team:Verify, 2005.

[BLU06] Bluespec, Inc. Bluespec Language Ref-
erence Guide, 2006. Please consult
http://www.bluespec.com.

[CAD04] Cadence Design Systems, Inc.Incisive HDL
Analysis (HAL), 2004.

[EST06] Esterel Technologies, Inc.Esterel Studio Version
5.3, 2006.

[SYN06] Synopsys, Inc. Leda Programmable RTL
Checker, 2006.

[SYS05] IEEE Standard for SystemVerilog—Unified
Hardware Design, Specification , and Verifica-
tion Language, November 2005. IEEE Std 1800-
2005, http://standards.ieee.org.

[UTM01] Intel Corporation.USB 2.0 Transceiver Macro-
cell Interface (UTMI) Specification, 2001.

[VER04] Verisity Design, Inc.USB eVC, 2004.

A. Bluespec SystemVerilog
Previous attempts at behavioral synthesis have tried to op-
timize along three axes simultaneously: choice of micro-
architecture, allocation of resources, and scheduling of con-
current operations. Doing all this together, however, is com-
putationally “hard”. Besides, designers are good at evalu-
ating micro-architectures, and like to be in control of re-
source allocation; handling concurrency, however, often be-
comes excessively complex. The Bluespec tool takes over
this task, while leaving the designer in control of the other
two. The result is a flexible tool, with which it is easy to do
architectural experiments, while producing RTL of compa-
rable quality to hand-crafted Verilog.

The HDL for the Bluespec tool is BluespecSystemVer-
ilog (BSV). This is a variant of SystemVerilog [SYS05]
in which behavior is specified, not by the usual “always-
blocks”, but by “design assertions” also known as “rules”.
A rule consists of a condition and an action part. Only if the
condition is satisfied may the state transition specified by

5

the action part be executed. Each action executes in a sin-
gle clock cycle. The tool generates scheduling logic which
executes as many rules as possible in each cycle, but with
the restriction that the overall effect must be the same as if
they had each executed one at a time in some order. This re-
striction avoids many race conditions, replacing them with
a compile-time warning that two rules could not be simulta-
neously scheduled because of a resource conflict, which is
much easier to deal with.

As in standard SystemVerilog, a BSV design is parti-
tioned into modules. The designer can control which mod-
ules are synthesized by the Bluespec tool into separate RTL
modules (output in low-level Verilog2001) and which are
inlined. The action part of a rule effects a state transition by
invoking amethodof some other module’s interface. Even
individual registers are actually instantiations of primitive
modules (written in standard Verilog)—references to them
are “desugared” into invocations of theirread and write
methods.

The interfaces of these other modules might be available
in the module’s environment; or the modules might be in-
stantiated within the module being defined; or they might be
supplied as arguments to that module. These appear in the
list corresponding to the port list of a standard Verilog mod-
ule; the input/output distinction is inappropriate for these
arguments (as each interface, and indeed each of its meth-
ods, contain both input and output signals), so instead we
distinguish between the interfaces “used” by a module, and
the interface (by convention the last one in the list) it “pro-
vides” by defining each of its methods.

For modules which are separately synthesized, the meth-
ods of a module’s interface become collections of ports in
the RTL version. As well as the data ports (input or out-
put), each method in general has an outputREADYsignal,
asserting that the method may validly be invoked; methods
which effect state transitions also have an inputENABLE
signal, asserting that the transition is to be executed. The
tool enforces the protocol that theENABLEsignal may not
be asserted unless the correspondingREADYsignal is also
asserted. At the language level, the method’s validity con-
ditions are implicitly added to the conditions of any rule
(or other method) which invokes it; similarly, its action be-
comes part of the rule’s (or other method’s) one-cycle ac-
tion.

A.1. Example—Factorial
Figure 4 shows a simple complete BSV design, containing
a modulemkFactfor computing the factorial function, and
a testbench modulemkTestFactfor exercising it.

The interface provided bymkFactis of typeNumFn; it
consists of a methodstart to initiate a calculation, and a
methodresult to retrieve the result. The actual computation
is performed by the rulecalc, which can run only whenn 6=

package Factorial;

typedef UInt#(32) Nat;

interface NumFn;
method Action start(Nat x);
method Nat result();

endinterface

(* synthesize *)
module mkFact(NumFn ifc);

Reg#(Nat) n <- mkReg(0);
Reg#(Nat) a <- mkRegU;

rule calc (n!=0);
a <= a * n;
n <= n - 1;

endrule

method Action start(x) if (n==0);
a <= 1;
n <= x;

endmethod

method result if (n==0);
return a;

endmethod
endmodule

(* synthesize *)
module mkTestFact(Empty);

NumFn fact <- mkFact;
Reg#(UInt#(2)) state <- mkReg(0);
rule start_test (state==0);

state <= 1;
fact.start(7);

endrule

rule show_result (state==1);
state <= 2;
$display("%d", fact.result());

endrule

rule end_test (state==2);
$finish(0);

endrule
endmodule

endpackage

Figure 4: A simple BSV package

6

module mkFact(CLK,
RST_N,
start_x,
EN_start,
RDY_start,
result,
RDY_result);

input CLK;
input RST_N;

// action method start
input [31 : 0] start_x;
input EN_start;
output RDY_start;

// value method result
output [31 : 0] result;
output RDY_result;
...

Figure 5: Part of the RTL for the simple example

0. The two methods, on the other hand, are valid only if
n = 0: the result cannot be read while a computation is still
in progress, nor can a new computation be started.

The first few lines of the RTL synthesized frommkFact
are shown in Figure 5. As well as the methods’ signals,
already described, clock and reset ports will be noticed.

In the testbench,mkTestFact, the mkFactmodule is in-
stantiated, giving an interface calledfact. Its start method
is invoked by thestart test rule of mkTestFact. Thus the
complete condition ofstart test is state==0 & n==0 :
the first test comes from the rule’s condition and the second
from the method’s. Similarly, the action part is

state <= 1;
a <= 1;
n <= x;

amalgamating the actions of the rule and the method; all the
assignments are executed simultaneously.

Notice that in this very simple design, all the rules are
mutually exclusive—at most one is enabled at any one time.
There is therefore no possibility of conflict, and the schedul-
ing is trivial: each rule may fire whenever it is enabled. In
general, however, many non-conflicting rules may fire dur-
ing any one cycle.

7

Two-level Languages and Circuit Design and Synthesis

Walid Taha�

Rice University, Houston, TX, USA
taha@cs.rice.edu

The next two decades are anticipated to move digital circuit design from the million
transistor level to the billion and trillion transistor levels. In addition to challenges that
this goal poses at the physical level, fundamental computational complexity barriers
suggest that common design and verification tasks can also become a bottleneck. Ex-
amples include placement and routing, as well as a host of design rule checking (DRC)
techniques. Increase in circuit size will increase both the time needed for DRC (from
days to weeks or months) as well as the overall effort needed to produce a design likely
to pass DRC. At the same time, increasing variability in implementation technologies
and their characteristics will fuel the need for better methods to manage families of
related circuits.

New programming language techniques recently developed to improve software de-
sign can provide a powerful tool for managing and checking families of related circuits.
Program generation techniques in general, and two-level languages in particular, have
been proposed and found to be useful for managing families of related software prod-
ucts. Static type checking in general, and dependent type systems in particular, have
been proposed and found to be useful for early checking of a wide range of properties
that would otherwise be expensive to check in generated programs. Our goal is to show
that adapting these techniques to the specific needs of circuit design can lead to funda-
mental changes in the design process. In particular, it would allow the capture of signifi-
cant design experience in the form of executable and statically checkable specifications
for families of related circuits. Such specifications would be highly parameterized with
respect to the specifics of the manufacturing technology, as well as the specifics of the
problem being solved and the rest of the design. Comprehensive, manifest interfaces
would allow fast, compositional checking of compatibility with the rest of the design.

Over the last two years we have made concrete advances toward this ambitious,
long-term goal. Our first study showed that a standard type system for two-level lan-
guages can be systematically integrated with a type system for a resource-bounded
language [5]. The result of such an integration, called a resource-aware programming
(RAP) language [4], provides an expressive (non-resource bounded) language for writ-
ing generators of resource bounded computations. At the same time, a static type sys-
tem is provided that checks that a generator can only generate well-formed, resource-
bounded computations. Depending on the specific resources considered, such resource-
bounded programs can be embedded software systems or hardware circuits.

A case study focusing on FFT showed that annotated versions of the basic Cooley-
Tuckey recurrence can be executed as generators that produce high-quality circuits [2,

� Joint work with Stephan Ellner, Jennifer Gillenwater, Oleg Kiselyov, and Gregory Malecha.
Funded by the National Science Foundation, the Texas Advanced Technology Program, Na-
tional Instruments, and a grant from Rice University.

3]. In addition to confirming that this family of circuits can be specified by a generator
closely resembling the textbook form of a standard recurrence, the experiment lead
directly to two intriguing insights about FFT: First, unlike what the work on FFTW
suggests, only a small number of domain-specific optimizations is needed to generate
FFT circuits with the same arithmetic operation count as Split-radix or FFTW. Second,
producing circuits that have counts identical to either Split-radix or FFTW requires only
changing the definition of complex multiplication.

The RAP approach uses a purely functional language to describe hardware circuits,
and so should be viewed as a direct descendant of Sheeran’s family of hardware de-
scription languages. Focusing on two-level languages amounts to pursuing the insight
that circuits are a strict subset of the generation language. Focusing on statically typed
two-level languages reflects emphasis on performing the checking at the level of a fam-
ily of circuits rather than on individual circuits. It is useful to note that this approach
is complementary to model checking, which can perform more extensive, albeit more
computationally intensive, checking on individual circuits.

Our emphasis on static checking discourages the transformation of circuits after
they are generated. This contrasts with the transformational approach promoted by
other systems (such as reFLect). Instead of first generating and then transforming, our
approach focuses on incorporating domain-specific optimizations directly in the gen-
erator. This can have a two benefits. First, the designer can follow the methodology
of abstract interpretation, widely used for program analysis, as a method for building
optimizing generators that are correct by construction. The approach preserves the ex-
tensional nature of generated objects, and the soundness of equational reasoning prin-
ciples. Second, avoiding the generation of numerous intermediate circuits can greatly
improve the efficiency of the generation process.

Our recent and ongoing work focuses on the formal treatment of the connection be-
tween circuits and programs to allow the incorporation of various non-textual concepts
into standard formal accounts of two-level languages [1]. Over the last year, we worked
on building a prototype implementation to facilitate further work in this particular re-
search direction. The prototype, called Uccello (previously PreVIEW), implements the
translations between the graphical and textual representations used in our formal stud-
ies, in addition to implementing basic circuit layout algorithms.

References

1. Stephan Ellner. PreVIEW: An untyped graphical calculus for resource-aware programming.
Masters thesis, Rice University, 2004.

2. Oleg Kiselyov, Kedar Swadi, and Walid Taha. A methodology for generating verified combi-
natorial circuits. EMSOFT ’04, Pisa, Italy, 2004.

3. Oleg Kiselyov and Walid Taha. Relating FFTW and split radix. ICESS ’04, Hangzhou, China,
2004.

4. Walid Taha. Resource-aware programming. ICESS ’04, Hangzhou, China, 2004. Invited
Paper.

5. Walid Taha, Stephan Ellner, and Hongwei Xi. Generating Imperative, Heap-Bounded Pro-
grams in a Functional Setting. EMSOFT’03, Philadelphia, PA, October 2003.

The Semantics of Graphical Languages�

Stephan Ellner and Walid Taha

Rice University, Houston, TX, USA
{besan,taha}@cs.rice.edu

Abstract. Graphical notations are pervasive in circuit design, control systems,
and increasingly in mainstream programming environments. Yet many of the
foundational advances in programming language theory are taking place in the
context of textual notations. In order to map such advances to the graphical world,
and to take the concerns of the graphical world into account when working with
textual formalisms, there is a need for rigorous connections between textual and
graphical expressions of computation.
To this end, this paper presents a graphical calculus called Uccello. Our key
insight is that Ariola and Blom’s work on sharing in the cyclic lambda calculi
provides an excellent foundation for formalizing the semantics of graphical lan-
guages. As an example of what can be done with this foundation, we use it to
extend a graphical language with staging constructs.

1 Introduction

Visual programming languages are finding increasing popularity in a variety of do-
mains, and are often the preferred programming medium for experts in these domains.
Examples of such domains include circuit design and control system design, and exam-
ples of mainstream tools include a wide range of hardware CAD design environments,
data-flow languages like LabVIEW [10, 14], Simulink [20],
and Ptolemy [12], spreadsheet-based languages such as Microsoft Excel, or data mod-
eling languages such as UML. Compared to modern text-based languages, many visual
languages are limited in expressivity. For example, while they are often purely func-
tional, they generally do not support first-class functions. More broadly, the wealth of
abstraction mechanisms, reasoning principles, and type systems developed over the last
thirty years is currently available mainly for textual languages. Yet there is real need
for migrating many ideas and results developed in the textual setting to the graphical
setting.

Recognizing this need, we sought existing accounts of the semantics of graph-based
representations of programs, or of formal connections between graph-based represen-
tations and visual-representations. The visual programming research literature focuses
largely on languages that are accessible to novice programmers and domain-experts,
rather than general-purpose calculi. Examples include form-based [4] and

� Supported by NSF ITR-0113569 “Putting Multi-Stage Annotations to Work”, Texas ATP
003604-0032-2003 “Advanced Languages Techniques for Device Drivers”, and NSF SOD-
0439017 “Synthesizing Device Drivers”.

spreadsheet-based [2, 9, 11] languages. Citrin et al. give a purely graphical descrip-
tion of an object-oriented language called VIPR [5] and a functional language called
VEX [6], but the mapping to and from textual representations is only treated infor-
mally. Erwig [8] presents a denotational semantics for VEX using inductive definitions
of graph representations to support pattern matching on graphs, but this style of se-
mantics does not preserve information about the syntax of graphs, as it maps syntax to
“meaning”.

Our key observation is that Ariola and Blom’s work on sharing the cyclic lambda
calculus [3] provide an excellent starting point. They establish a formal connection be-
tween textual and graph-based representation of programs. The two representations are
not one-to-one because of a subtle mismatch between textual and graphical representa-
tions in how they express sharing of values. Ariola and Blom overcome this problem by
defining a notion of equivalence for terms that represent the same graph, and establish
an isomorphism between graphs and equivalence classes of textual terms. In the graph
representation, sharing is modeled by having an edge from the output of one compo-
nent to the inputs of multiple different components. Especially if we are using visual
languages to describe circuits, this model of sharing is natural. For example, without
sharing, the butterfly circuit for computing the FFT would be exponentially larger [7,
Figure 32.5].

We do not know of a notion in textual syntax that corresponds exactly to the notion
of sharing provided by graphs. Local variable declarations almost work, but not quite:
they only correspond to local declarations that are used more than once. For example,
the following two C code fragments

int x = 4;

int y = 5; int y = 5;

print_int(x+y+y); print_int(4+y+y);

both correspond to the following LabVIEW graph:

While the first code fragment assigns a local variable name to the constant 4, the second
snippet uses the constant 4 directly. But there is no corresponding distinction in a graph.
Disallowing variable declarations that are used only once, or requiring all subterms to
be explicitly named are not options, because they would be unnatural restrictions for the
programmer. They are also problematic from the technical point of view. For example,
they are not preserved by standard reasoning principles such as substitution.

We postulate that Ariola and Blom’s treatment of the issue of sharing in both rep-
resentations is a necessary complication in any connection between a textual repre-
sentation of a programming language with the richness of the lambda calculus and a
graphical representation of the same language.

1.1 Contributions

To illustrate how the Ariola/Blom connection can be used to map new concepts in pro-
gramming languages to a graph-based setting, we extend their original calculus with
staging constructs typical in textual multi-stage languages [19]. The resulting calculus
is based on a one-to-one correspondence between visual programs and a variation of
the text-based lambda-calculus. We then use this formal connection to lift the seman-
tics of multi-stage languages to the graphical setting. We show that graph reductions
have corresponding reductions at the term level, and similarly, term reductions have
corresponding reductions at the graph level.

l
l

@

@

+

+

f

11

+
@

@

11f

l

l

+

(a) LabVIEW [14] (b) Uccello (this paper) (c) Ariola and Blom [3]

Fig. 1. The syntax of Uccello as middle-ground between that of LabVIEW and lambda-graphs

1.2 Organization of this Paper

The rest of the paper is organized as follows. Section 2 explains how the syntax for
visual languages such as LabVIEW and Simulink can be modeled using a variation of
Ariola and Blom’s cyclic lambda-graphs. Section 3 introduces the syntax for a graphical
calculus called Uccello. Section 4 defines textual representations for Uccello and shows
that graphs and terms in a specific normal form are one-to-one. Section 5 describes a
reduction semantics for both terms and graphs, and Section 6 concludes. Proofs for the
results presented in this paper are available online [1]

2 LabVIEW and Lambda-Graphs

The practical motivation for the calculus studied in the rest of this paper is to extend
popular languages such as LabVIEW or Simulink with higher-order functional and stag-
ing features. The main abstraction mechanism in LabVIEW is to declare functions;

Figure 1 (a) displays the syntax for defining a function with two formal parameters in
LabVIEW. Uccello abstracts away from many of the details of LabVIEW and similar
languages. We reduce the complexity of the calculus by supporting only functions with
one argument and by making functions first-class values. We can then use nested lambda
abstractions to model functions with multiple parameters, as illustrated in Figure 1 (b).

Graph (c) illustrates Ariola and Blom’s lambda-graph syntax [3] for the same com-
putation. In this representation, lambda abstractions are drawn as boxes describing the
scope of the parameter bound by the abstraction. Edges represent subterm relationships
in the syntax tree, and parameter references are drawn as back-edges to a lambda ab-
straction. While the lambda-graph (c) may appear less closely related to (a) than the
Uccello graph (b), note that the graphs (b) and (c) are in fact dual graphs. That is, by
flipping the direction of edges in the lambda-graph (c) to represent data-flow instead of
subterm relationships, and by making connection points in the graph explicit in the form
of ports, we get the Uccello program (b). Based on this observation, we take Ariola and
Blom’s lambda-graphs as the starting point for our formal development.

3 Syntax of Uccello

The core language features of Uccello are function abstraction and function application
as known from the λ-calculus, and the staging constructs Bracket “〈〉”, Escape “∼”, and
Run “!”. Brackets are a quotation mechanism delaying the evaluation of an expression,
while the Escape construct escapes the delaying effect of a Bracket (and so must occur
inside a Bracket). Run executes such a delayed computation. The semantics and type
theory for these constructs has been studied extensively in recent years [19]. Before
defining the syntax of Uccello formally, we give an informal description of its visual
syntax. Note that this paper focuses on abstract syntax for both terms and graphs, while
issues such as an intuitive concrete syntax and parsing are part of future work (see
Section 6).

3.1 Visual Syntax

A Uccello program is a graph built from the following components:

1. Nodes represent function abstraction, function application, the staging constructs
Brackets, Escape, and Run, and “black holes”. Black holes are a concept borrowed
from Ariola and Blom [3] and represent unresolvable cyclic dependencies that
can arise in textual languages with recursion. 1 As shown in Figure 2, nodes are
drawn as boxes labeled λ,@,〈〉,∼, !, and • respectively. Each lambda node contains
a subgraph inside its box which represents the body of the function, and the node’s
box visually defines the scope of the parameter bound by the lambda abstraction.
Bracket and Escape boxes, drawn using dotted lines, also contain subgraphs. The

1 In functional languages, recursion is typically expressed using a letrec-construct. The textual
program letrec x=x in x introduces a cyclic dependency that cannot be simplified any further.
Ariola and Blom visualize such terms as black holes.

l
@bind

out

return out out

fun

arg

·Ò ~

return

out out

return outin !

Fig. 2. Uccello nodes

subgraph of a Bracket node represents code being generated for a future-stage com-
putation, while the subgraph of an Escape node represents a computation resulting
in a piece of code that will be integrated into a larger program at runtime.

2. Free variables, displayed as variable names, represent name references that are not
bound inside a given Uccello graph.

3. Ports mark the points in the graph which edges can connect. We distinguish be-
tween source ports (drawn as triangles) and target ports (drawn as rectangles). As
shown in Figure 2, a lambda node provides two source ports: out carries the value of
the lambda itself, since functions are first-class values in Uccello. When the func-
tion is applied to an argument, then bind carries the function’s parameter, and the
return port receives the result of evaluating the function body, represented by the
lambda node’s subgraph. Intuitively, the fun and arg ports of an application node
receive the function to be applied and its argument respectively, while out carries
the value resulting from the application. The out port of a Bracket node carries the
delayed computation represented by the node’s subgraph, and return receives the
value of that computation when it is executed in a later stage. Conversely, the out
port of an Escape node carries a computation that escapes the surrounding Brackets
delaying effect, and return receives the value of that computation.

4. Edges connect nodes and are drawn as arrows:

x x

The source of any edge is either the source port of a node or a free variable x. The
target of any edge is the target port of some node. The only exception to this is
the root of the graph. Similar to the root of an abstract syntax tree, it marks the
entry-point for evaluating the graph. It is drawn as a dangling edge without a target
port, instead marked with a dot.

For convenience, the examples in this paper assume that Uccello is extended with
integers, booleans, binary integer operators, and conditionals.

Example 1 (Functional Constructs). Consider the following recursive definition of the
power function in OCaml. The function computes the number xn for two inputs x and
n:

let rec power = fun x -> fun n ->

if iszero? n then 1

else x * (power x (n-1))

in power

In Uccello, this program is expressed as follows:

� �

@
if

iszero?

1

*

@

@

-
1

Closely following the textual definition, we visualize the power function as two nested
lambda nodes. Consequently, two cascaded application nodes are necessary for the
function call power x (n-1). Note that the recursive nature of the definition is rep-
resented visually by an edge from the out-port of the outer lambda node back into the
lambda box.

� �

@
if

iszero?

��
��

*
~

~

@

-
1

1

@

!

�

@

@

3

��
power’

~

��

*

*

*

�

1

Fig. 3. Generating power functions in Uccello

Example 2 (Multi-stage Constructs). The power function can be staged by annotating
it as follows in MetaOCaml [13]:2

let rec power’ = fun x -> fun n ->

if iszero? n then .<1>.

else .<.˜x * .˜(power’ x (n-1))>.

in power’

2 MetaOCaml adds staging constructs to OCaml. Dots are used to disambiguate the concrete
syntax: Brackets around an expression e are written as .<e>., an Escaped expression e is
written as .∼ e, and ! e is written as .!e.

The same program is represented in Uccello as shown to the left of Figure 3. As in the
text-based program, in Uccello we only need to add a few staging “annotations” (in the
form of Bracket and Escape boxes) to the unstaged version of the power function.

Example 3 (Generating Graphs). In MetaOCaml, the staged power function can be
used to generate efficient specialized power functions by applying the staged version
only to its second input (the exponent). For instance, evaluating the term M1:

.! .<fun x -> .˜(power’ .<x>. 3)>.

yields the non-recursive function fun x -> x*x*x*1. Similarly, evaluating the Uc-
cello graph in the middle of Figure 3 yields the specialized graph on the right side;
the graph in the middle triggers the specialization by providing the staged power func-
tion with its second input parameter. Note the simplicity of the generated graph. When
applying this paradigm to circuit generation, controlling the complexity of resulting
circuits can be essential, and staging constructs were specifically designed to give the
programmer more control over the structure of generated programs.

3.2 Formal Syntax

The following syntactic sets are used for defining Uccello graphs:

Nodes u, v,w ∈ V
Free variables x, y ∈ X

Source port types o ∈ O ::= bind | out
Target port types i ∈ I ::= return | fun | arg | in

Source ports r, s ∈ S ::= v.o | x
Target ports t ∈ T ::= v.i

Edges e ∈ E ::= (s, t)

As a convention, we use regular capital letters to denote concrete sets. For example,
E ⊆ E stands for a concrete set of edges e. We write P(V) to denote the power set of V .

A Uccello graph is then defined as a tuple g = (V, L, E, S , r) where V is a finite set
of nodes, L : V → {λ,@, 〈〉,∼, ! , •} is a labeling function that associates each node
with a label, E is a finite set of edges, S : {v ∈ V | L(v) ∈ {λ, 〈〉,∼}} → P(V) is a scoping
function that associates each lambda, Bracket, and Escape node with a subgraph, and r
is the root of the graph. When it is clear from the context, we refer to the components
V , L, E, S , and r of a graph g without making the binding g = (V, L, E, S , r) explicit.

3.3 Auxiliary Definitions

For any Uccello graph g = (V, L, E, S , r) we define the following auxiliary notions. The
set of incoming edges of a node v ∈ V is defined as pred(v) = {(s, v.i) ∈ E} for any edge
targets i. Given a set U ⊆ V , the set of top-level nodes in U that are not in the scope of
any other node in U is defined as toplevel(U) = {u ∈ U | ∀v ∈ U : u ∈ S (v) ⇒ v = u}.
If v ∈ V has a scope, then the contents of v are defined as contents(v) = S (v)\{v}.
For a given node v ∈ V , if there exists a node u ∈ V with v ∈ toplevel(contents(u)),

then u is a surrounding scope of v. Well-formedness conditions described in the next
section will ensure that such a surrounding scope is unique when it exists. A path
v � w in g is an acyclic path from v ∈ V to w ∈ V that only consists of edges in
{(s, t) ∈ E | ∀u : s � u.bind}. The negative condition excludes edges starting at a bind
port.

3.4 Well-Formed Graphs

Whereas context-free grammars are generally sufficient to describe well-formed terms
in textual programming languages, characterizing well-formed graphs (in particular
with respect to scoping) is more subtle. The well-formedness conditions for the func-
tional features of Uccello are taken directly from Ariola and Blom. Since Bracket and
Escape nodes also have scopes, these conditions extend naturally to the multi-stage fea-
tures of Uccello. Note however that the restrictions associated with Bracket and Escape
are simpler since unlike lambdas these are not binding constructs.

The set G of well-formed graphs is the set of graphs that satisfy the following
conditions:

1. Connectivity - Edges may connect ports belonging only to nodes in V with the
correct port types. Valid inports and outports for each node type are defined as
follows:

L(v) inports(v) outports(v)
λ {return} {bind, out}
@ {fun, arg} {out}
〈〉,∼ {return} {out}

! {in} {out}
• ∅ {out}

We require that an edge (v.o,w.i) connecting nodes v and w is in E only if v,w ∈ V
and o ∈ outports(v) and i ∈ inports(w). Similarly, an edge (x,w.i) originating from
a free variable x is in E only if w ∈ V and i ∈ inports(w).
We also restrict the in-degree of nodes: each target port (drawn as a rectangle) in
the graph must be the target of exactly one edge, while a source port (drawn as a
triangle) can be unused, used by one or shared by multiple edges. Thus we require
for any node v in the graph that pred(v) = {(s, v.i) | i ∈ inports(v)}.

2. Scoping - Intuitively, source ports in Uccello correspond to bound names in textual
languages, and scopes are drawn as boxes. Let w,w1,w2 ∈ V and v, v1, v2 ∈ dom(S)
be distinct nodes. By convention, all nodes that have a scope must be in their own
scope (v ∈ S (v)). The following three graph fragments illustrate three kinds of
scoping errors that can arise:

�� �
�

A name used outside the scope where it is bound corresponds to an edge from
a bind or an out port that leaves a scope. We prohibit the first case by requiring
that (v.bind, t) ∈ pred(w) only if w ∈ S (v). For the second case, we require that
if w1 � S (v) and w2 ∈ S (v) and (w2.out, t) ∈ pred(w1) then w2 = v. Partially
overlapping scopes correspond to overlapping lambda, Bracket, or Escape boxes.
We disallow this by requiring that S (v1) ∩ S (v2) = ∅ or S (v1) ⊆ S (v2) \ {v2} or
S (v2) ⊆ S (v1) \ {v1}.

3. Root Condition - The root r cannot be the port of a node nested in the scope of
another node. Therefore, the root must either be a free variable (r ∈ X) or the
out port of a node w that is visible at the “top-level” of the graph (r = w.out and
w ∈ toplevel(V)).

4 Graph-Term Connection

To develop the connection between Uccello graphs and their textual representations,
this section begins by defining a term language and a translation from graphs to terms.
Not all terms can be generated using this translation, but rather only terms in a specific
normal form. A backward-translation from terms to graphs is then defined, and it is
shown that a term in normal form represents all terms that map to the same graph.
Finally, sets of graphs and normal forms are shown to be in one-to-one correspondence.

4.1 From Graphs to Terms

Building on Ariola and Blom’s notion of cyclic lambda terms, we use staged cyclic
lambda terms to represent Uccello programs textually, and define them as follows:

Terms M ∈ M ::= x | λx.M | M M | letrec d∗ in M
| ∼ M | 〈M〉 | ! M

Declarations d ∈ D ::= x = M

Conventions: By assumption, all recursion variables x in letrec declarations are dis-
tinct, and the sets of bound and free variables are disjoint. We write d∗ for a (possibly
empty) sequence of letrec declarations d. Different permutations of the same sequence
of declarations d∗ are identified. Therefore, we often use the set notation D instead of
d∗. Given two sequences of declarations D1 and D2, we write D1,D2 for the concate-
nation of the two sequences. We write M1[x := M2] for the result of substituting M2
for all free occurrences of the variable x in M1, without capturing any free variables in
M2. We use ≡α to denote syntactic equality up to α-renaming of both lambda-bound
variables and recursion variables.

To translate a graph into a term, we define the term construction τ : G → M.
Intuitively, this translation associates all nodes in the graph with a unique variable name
in the term language. These variables are used to explicitly name each subterm of the
resulting term. Lambda nodes are associated with an additional variable name, which is
used to name the formal parameter of the represented lambda abstraction.

Definition 1 (Term construction). Let g = (V, L, E, S , r) be a well-formed graph in G.

1. For every node v ∈ V, we define a unique name xv, and a second distinct name
yv if L(v) = λ. We then associate a name with each edge source s in the graph as
follows:

name(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xv if s = v.out
yv if s = v.bind
x if s = x

2. To avoid the construction of empty letrec terms (letrec in M) in the translation,
we use the following function:

mkrec(D,M) =
{

M if D = ∅
letrec D in M otherwise

3. We construct a term corresponding to each node v ∈ V:

L(v) = • pred(v) = ∅
term(v) = xv

L(v) = λ pred(v) = {(s, v.return)}
term(v) = λyv.mkrec(decl(contents(v)), name(s))

L(v) = @ pred(v) = {(s1, v.fun), (s2, v.arg)}
term(v) = name(s1) name(s2)

L(v) = 〈〉 pred(v) = {(s, v.return)}
term(v) = 〈mkrec(decl(contents(v)), name(s))〉

L(v) = ∼ pred(v) = {(s, v.return)}
term(v) = ∼ mkrec(decl(contents(v)), name(s))

L(v) = ! pred(v) = {(s, v.in)}
term(v) = ! name(s)

4. We construct letrec declarations for any set of nodes W ⊆ V:

decl(W) = {xv = term(v) | v ∈ toplevel(W)}
5. The term construction τ is then defined as:

τ(g) = mkrec(decl(V), name(r))

The translation τ starts by computing the set of top-level nodes in V (see Section
3.3), and creates a letrec declaration for each of these nodes. For a node v with no sub-
graph, the letrec declaration binds the variable xv to a term that combines the variables
associated with the incoming edges to v. If v contains a subgraph, then τ is applied re-
cursively to the subgraph, and xv is bound to the term that represents the subgraph. The
constraint v ∈ toplevel(W) in the definition of decl ensures that exactly one equation is
generated for each node: if v � toplevel(W), then v is in the scope of a different node
w ∈ W, and an equation for w is instead included in term(w).

Example 4 (Term Construction). The function τ translates the graph

�

@

��

~

~

as follows: Let v1 be the lambda node, v2 the Bracket node, v3 and v4 the top and bottom
Escape nodes, and v5 the application node in the graph g. We associate a variable name
x j with each node v j. In addition, the name y1 is associated with the parameter of the
lambda node v1. The result is:

letrec x1 = λy1.(letrec x2 = 〈letrec x3 = ∼ y1, x4 = ∼ y1, x5 = x3x4
in x5〉

in x2)
in x1

All nodes are in the scope of v1 so it is the only “top-level” node in g. We create a
letrec declaration for v1, binding x1 to a term λy1.N where N is the result of recursively
translating the subgraph inside v1. When translating the subgraph of the Bracket node
v2, note that this subgraph contains three top-level nodes (v3, v4, v5). Therefore, the term
for v2 contains three variable declarations (x3, x4, x5).

4.2 Terms in Normal Form

The term construction function τ only constructs terms in a very specific form. For
example, while the graph in the previous example represents the computation λy1.〈∼
y1 ∼ y1〉, the example shows that τ constructs a different term. Compared to λy1.〈∼
y1 ∼ y1〉, every subterm in the constructed term is explicitly named using letrec. This
explicit naming of subterms expresses the notion of value sharing in Uccello graphs,
where the output port of any node can be the source of multiple edges. Such normal
forms are essentially the same as A-normal form [17], and can be defined as follows:

Terms N ∈ Mnorm ::= x | letrec q+ in x
Declarations q ∈ Dnorm ::= x = x | x = y z | x = λy.N

| x = 〈N〉 | x = ∼ N | x = ! y

where q+ is a non-empty sequence of declarations q. In normal forms, nested terms are
only allowed in function bodies and inside Brackets or Escapes, i.e. only for language
constructs that correspond to nodes with subgraphs. All other expressions are explicitly
named using letrec declarations, and pure “indirection” declarations of the form x = y
with x � y are not allowed.

Lemma 1 (Normal forms are terms).Mnorm ⊆ M.

Lemma 2 (τ maps graphs to normal forms). If g ∈ G then τ(g) ∈ Mnorm.

As we will show, τ is an injection, i.e. not every term corresponds to a distinct graph.
However, we will show that every term has a normal form associated with it, and that
these normal forms are one-to-one with graphs. To this end, we define the normaliza-
tion function ν : M → Mnorm in two steps: general terms are first mapped to interme-
diate forms, which are then converted into normal forms in a second pass. We define
the setMpre of intermediate forms as follows:

Terms N′ ∈ Mpre ::= x | letrec q′∗ in x
Declarations q′ ∈ Dpre ::= x = y | x = y z | x = λy.N′

| x = 〈N′〉 | x = ∼ N′ | x = ! y

Note that this set consists of normal forms with fewer restrictions: empty letrec terms
and indirections of the form x = y are allowed.

�x�pre = letrec in x

�M�pre = N′ x1 fresh

�λx.M�pre = (letrec x1 = λx.N′ in x1)

�M1�pre = letrec Q1 in x1 �M2�pre = letrec Q2 in x2 x3 fresh

�M1 M2�pre = (letrec Q1,Q2, x3 = x1 x2 in x3)

�M�pre = letrec Q in y
−−−−−−−−−−−−−−−−−−−−−−−→
�Mj�pre = letrec Qj in y j

�letrec
−−−−−−→
x j = Mj in M�pre = (letrec Q,

−−−−−−−−−→
Qj, x j = y j in y)

�M�pre = N′ x1 fresh

�〈M〉�pre = (letrec x1 = 〈N′〉 in x1)

�M�pre = N′ x1 fresh

�∼ M�pre = (letrec x1 = ∼ N′ in x1)

�M�pre = letrec Q in y x1 fresh

�! M�pre = (letrec Q, x1 = ! y in x1)

�N�norm = N �letrec in x�norm = x

N′ � Mnorm �N′�norm = N1 �letrec y = λz.N1,Q in x�norm = N2

�letrec y = λz.N′,Q in x�norm = N2

N′ � Mnorm �N′�norm = N1 �letrec y = 〈N1〉,Q in x�norm = N2

�letrec y = 〈N′〉,Q in x�norm = N2

N′ � Mnorm �N′�norm = N1 �letrec y = ∼ N1,Q in x�norm = N2

�letrec y = ∼ N′,Q in x�norm = N2

�(letrec Q in x)[y := z]�norm = N y � z

�letrec y = z,Q in x�norm = N

Fig. 4. The translation functions � �pre : M→ Mpre and � �norm : Mpre → Mnorm

Definition 2 (Term Normalization). Given the definitions of the translations � �pre :
M → Mpre and � �norm : Mpre → Mnorm in Figure 4, we define the normalization
function ν : M→ Mnorm by composition: ν = � �norm ◦ � �pre.

The translation � �pre maps any term M to a letrec term, assigning a fresh letrec vari-
able to each subterm of M. We preserve the nesting of lambda abstractions, Bracket
and Escapes by applying � �pre to subterms recursively. 3 Once every subterm has a
letrec variable associated with it, and all lambda, Bracket, and Escape subterms are
normalized recursively, the function � �norm eliminates empty letrec terms and letrec in-
directions of the form x = y (where x � y) using substitution. The clause N′ � Mnorm in
the definition of � �norm ensures that normalization terminates: without this restriction
we could apply � �norm to a fully normalized term without making any progress.

Example 5 (Term Normalization). Given the following terms:

M1 ≡ λx.〈∼ x ∼ x〉
M2 ≡ letrec y = λx.〈∼ x ∼ x〉 in y
M3 ≡ λx.letrec y = 〈∼ x ∼ x〉 in y

Then ν(M1), ν(M2), and ν(M3) all yield a term alpha-equivalent to:

letrec y1 = λx.(letrec y2 = 〈letrec y3 = ∼ x, y4 = ∼ x, y5 = y3 y4
in y5〉

in y2)
in y1

Note that the basic structure of the original terms (lambda term with Bracket body and
application of two escaped parameter references inside) is preserved by normalization,
but every subterm is now named explicitly.

Lemma 3 (ν maps terms to normal forms). If M ∈ M then ν(M) ∈ Mnorm.

4.3 From Terms to Graphs

To simplify the definition of a translation from terms to graphs, we introduce a no-
tion analogous to Ariola and Blom’s scoped pre-graphs. The set Gpre of intermedi-
ate graphs consists of all graphs for which a well-formedness condition is relaxed:
nodes with label • may have 0 or 1 incoming edge. Formally, whenever L(v) = • then
pred(v) = ∅ or pred(v) = {(s, v.in)}. If such a node has 1 predecessor, we call it an
indirection node. Since free variables are not represented as nodes in Uccello, the
idea is to associate an indirection node with each variable occurrence in the translated
lambda-term. This simplifies connecting subgraphs constructed during the translation,
as it provides “hooks” for connecting bound variable occurrences in the graph to their
binders. We will also use indirection nodes to model intermediate states in the graph
reductions presented in Section 5.2.

3 This is similar to the translation τ from graphs to terms presented above, where lambda,
Bracket and Escape nodes are translated to terms recursively.

We translate terms to Uccello graphs in two steps: A function γpre maps terms to
intermediate graphs, and a simplification functionσmaps intermediate graphs to proper
Uccello graphs. Before defining these translations formally, we give visual descriptions
of γpre and σ.

x

@

�pre(M1)

�pre(M2)

�pre(M1 M2) =�pre(x) = �pre(�x.M) =

�pre(M)

�

x

x

A free variable x is mapped by γpre to an indirection node with x connected to its in port.
A lambda term λx.M maps to a lambda node v, where the pre-graph for M becomes the
subgraph of v and all free variables x in the subgraph are replaced by edges originating
at the lambda node’s bind port. An application M1M2 translates to an application node
v where the roots of the pre-graphs for M1 and M2 are connected to the fun and arg
ports of v.

�pre(M)

x1

xn

�pre(M1)

x1

xn

�pre(Mn)

x1

xn

��

�pre(M)

�pre(!M) =

�pre(M) !

�pre(�M�) =�pre(letrec x1=M1..xn=Mn in M) =

Given a letrec term (letrec x1 = M1, .., xn = Mn in M), γpre translate the terms M1
through Mn and M individually. The root of the resulting pre-graph is the root of
γpre(M). Any edge that starts with one of the free variable x j is replaced by an edge
from the root of the corresponding graph γpre(Mj). The cases for 〈M〉 and ∼ M are
treated similarly to the case for λx.M, and the case for !M is treated similarly to the
case for application.

Simplification eliminates indirection nodes from the pre-graph using the following
local graph transformations:

x
x
x
x

Any indirection node with a self-loop (i.e. there is an edge from its out port to its in
port) is replaced by a black hole. If there is an edge from a free variable x or from a
different node’s port s to an indirection node v, then the indirection node is “skipped”
by replacing all edges originating at v to edges originating at x or s. Note that the second
and third cases are different since free variables cannot be shared in Uccello.

To define these translations formally, we use the following notation: E[s1 := s2]
denotes the result of substituting any edge in E that originates from s1 with an edge that
starts at s2:

E[s1 := s2] = {(s, t) ∈ E | s � s1} ∪ {(s2, t) | (s1, t) ∈ E}
S \u stands for the result of removing node u from any scope in the graph: (S \u)(v) =
S (v)\{u}. The substitution r[s1 := s2] results in s2 if r = s1 and in r otherwise.

v fresh
γpre(x) = ({v}, {v �→ •}, {(x, v.in)}, ∅, v.out)

γpre(M) = (V, L, E, S , r) v fresh
γpre(λx.M) = (V � {v}, L � {v �→ λ}, E[x := v.bind] � {(r, v.return)}, S � {v �→ V � {v}}, v.out)

γpre(M1) = (V1, L1, E1, S 1, r1) γpre(M2) = (V2, L2, E2, S 2, r2) v fresh
γpre(M1 M2) = (V1 � V2 � {v}, L1 � L2 � {v �→ @}, E1 � E2 � {(r1, v.fun), (r2, v.arg)}, S 1 � S 2, v.out)

−−−−−−−−−−−−−−−−−−−−−−−−−−→
γpre(Mj) = (Vj, Lj, E j, S j, r j) γpre(M) = (V, L, E, S , r) v fresh

γpre(letrec
−−−−−−→
x j = Mj in M) = (V

−−→�Vj, L
−−→�Lj, (E

−−−→�E j)[
−−−−−−→x j := r j], S

−−→�S j, r)

γpre(M) = (V, L, E, S , r) v fresh
γpre(〈M〉) = (V � {v}, L � {v �→ 〈〉}, E � {(r, v.return)}, S � {v �→ V � {v}}, v.out)

γpre(M) = (V, L, E, S , r) v fresh
γpre(∼ M) = (V � {v}, L � {v �→∼}, E � {(r, v.return)}, S � {v �→ V � {v}}, v.out)

γpre(M) = (V, L, E, S , r) v fresh
γpre(! M) = (V � {v}, L � {v �→!}, E � {(r, v.in)}, S , v.out)

∀v ∈ V : L(v) = • ⇒ pred(v) = ∅
σ(V, L, E, S , r) = (V, L, E, S , r)

σ(V � {v}, L � {v �→ •}, E, S , r) = g

σ(V � {v}, L � {v �→ •}, E � {(v.out, v.in)}, S , r) = g

s � v.out (v.out, t) � E σ(V, L, E � {−−−−→(s, t j)}, S \v, r[v.out := s]) = g

σ(V � {v}, L � {v �→ •}, E � {(s, v.in)} � {−−−−−−−→(v.out, t j)}, S , r) = g

Fig. 5. The translation functions γpre : M→ Gpre and σ : Gpre → G

Definition 3 (Graph construction). Given the definitions of the translations γpre :
M→ Gpre and σ : Gpre → G in Figure 5, we define the graph construction γ : M→ G
by composition: γ = σ ◦ γpre.

Lemma 4 (γ maps terms to well-formed graphs). For any M ∈ M, γ(M) is defined
and is a unique, well-formed graph.

Using the mappings ν, γ, and τ, we can now give a precise definition of the connec-
tions between terms, graphs, and normal forms. Two terms map to the same graph if
and only if they have the same normal form. Thus, normal forms represent equivalence
classes of terms that map to the same graph by γ. The function ν gives an algorithm for
computing such representative terms. Given two well-formed graphs g, h ∈ G, we write
g = h if g and h are isomorphic graphs with identical node labels.

Lemma 5 (Soundness of Normalization). If M ∈ M. then γ(M) = γ(ν(M)).

Lemma 6 (Recovery of normal forms). If N ∈ Mnorm then N ≡α τ(γ(N)).

Lemma 7 (Completeness of Normalization). Let M1,M2 ∈ M. If γ(M1) = γ(M2)
then ν(M1) ≡alpha ν(M2).

Example 6. In Example 5 we showed that the three terms M1, M2, and M3 have the
same normal form. By Lemma 5, they translate to the same graph. This graph is shown
in Example 4. By Lemma 7, the terms M1, M2, and M3 must have the same normal
form since they map to the same graph by γ.

Theorem 1 (Correctness of Graphical Syntax). Well-formed graphs and normal forms
are one-to-one:

1. If M ∈ M then ν(M) ≡alpha τ(γ(M)).
2. If g ∈ G then g = γ(τ(g)).

5 Semantics For Uccello

This section presents a reduction semantics for staged cyclic lambda terms and graphs,
and establishes the connection between the two.

5.1 Staged Terms

Ariola and Blom study a call-by-need reduction semantics for the lambda-calculus ex-
tended with a letrec construct. In order to extend this semantics to support staging con-
structs, we use the notion of expression families proposed for the reduction semantics of
call-by-name λ-U [18]. In the context of λ-U, expression families restrict beta-redeces
to terms that are valid at level 0. Intuitively, given a staged term M, the level of a sub-
term of M is the number of Brackets minus the number of Escapes surrounding the
subterm. A term M is valid at level n if all Escapes inside M occur at a level greater
than n.

Example 7. Consider the lambda term M ≡ 〈λx. ∼ (f 〈x〉)〉. The variable f occurs at
level 0, while the use of x occurs at level 1. Since the Escape occurs at level 1, M is
valid at level 0.

The calculus λ-U does not provide a letrec construct to directly express sharing in
lambda terms. Therefore, we extend the notion of expression families to include the
letrec construct as follows:

M0 ∈ M0 ::= x | λx.M0 | M0M0 | letrec D0 in M0

| 〈M1〉 | ! M0

Mn+ ∈ Mn+ ::= x | λx.Mn+ | Mn+Mn+ | letrec Dn+ in Mn+

| 〈Mn++〉 | ∼ Mn | ! Mn+

Dn ∈ Dn ::=
−−−−−−−→
x j = Mn

j

In order to combine Ariola and Blom’s reduction semantics for cyclic lambda-terms
with the reduction semantics for λ-U, we need to account for the difference in beta-
reduction between the two formalisms: While λ-U is based on a standard notion of
substitution, Ariola and Blom’s beta-rule uses the letrec construct to express a binding
from the applied function’s parameter to the argument of the application, without im-
mediately substituting the argument for the function’s parameter. Instead, substitution
is performed on demand by a separate reduction rule. Furthermore, substitution in λ-U
is restricted (implicitly by the β-rule) to M0-terms. We make this restriction explicit by
defining which contexts are valid at different levels:

C ∈ C ::= � | λx.C | C M | M C | letrec D in C
| letrec x = C,D in M | 〈C〉 | ∼ C | ! C

Cn ∈ Cn = {C ∈ C | C[x] ∈ Mn}

We write C[M] for the result of replacing the hole � in C with M, potentially capturing
free variables in M in the process. Furthermore, we adopt the notation D ⊥ M from [3]
to denote that the set of variables occurring as the left-hand side of a letrec declaration
in D does not intersect with the set of free variables in M.

Using these families of terms and contexts, we extend Ariola and Blom’s reductions
as shown in Figure 6. We write → for the compatible extension of the rules in R, and
we write→∗ for the reflexive and transitive closure of→. The idea behind the rules sub
is to perform substitution on demand after a function application has been performed.
In this sense, the reduction rules sub and the rule β◦ together mimic the behavior of
beta-reduction in λ-U.

5.2 Staged Graphs

To define a reduction semantics for Uccello, we define similar notions as used in the
previous section: the level of a node is the number of surrounding Bracket nodes minus
the surrounding Escape nodes, and a set of nodes U is valid at level n if all Escape
nodes in U occur at a level greater than n.

letrec x = M0,Dn in C0[x] →sub letrec x = M0,Dn in C0[M0]
letrec x = C0[y], y = M0,Dn in Mn →sub letrec x = C0[M0], y = M0,Dn in Mn

(λx.M0
1) M0

2 →β◦ letrec x = M0
2 in M0

1
∼ 〈M0〉 →esc M0

! 〈M0〉 →run M0

letrec Dn
1 in (letrec Dn

2 in Mn) →merge letrec Dn
1,D

n
2 in Mn

letrec x = (letrec Dn
1 in Mn

1),Dn
2 in Mn

2 →merge letrec x = Mn
1 ,D

n
1,D

n
2 in Mn

2

(letrec Dn in Mn
1) Mn

2 →li f t letrec Dn in (Mn
1 Mn

2)
Mn

1 (letrec Dn in Mn
2) →li f t letrec Dn in (Mn

1 Mn
2)

letrec Dn in 〈Mn〉 →li f t 〈letrec Dn in Mn〉
letrec in Mn →gc Mn

letrec Dn
1,D

n
2 in Mn →gc letrec Dn

1 in Mn

if Dn
2 � ∅ ∧ Dn

2 ⊥ letrec Dn
1 in Mn

Fig. 6. Term Reduction Rules

Definition 4 (Node level). Given a graph g = (V, L, E, S , r) ∈ G, a node v ∈ V has
level n if there is a derivation for the judgment level(v) = n defined as follows:

v ∈ toplevel(V)
level(v) = 0

surround(v) = u L(u) = λ level(u) = n

level(v) = n

surround(v) = u L(u) = 〈〉 level(u) = n

level(v) = n + 1

surround(v) = u L(u) = ∼ level(u) = n + 1
level(v) = n

We write level(v1) < level(v2) as a shorthand for level(v1) = n1∧level(v2) = n2∧n1 < n2.
A set U ⊆ V is valid at level n if there is a derivation for the judgment �n U defined as
follows:

�n v ∀v ∈ toplevel(U)
�n U

L(v) ∈ {@, •, !}
�n v

L(v) = λ �n contents(v)
�n v

L(v) = 〈〉 �n+1 contents(v)
�n v

L(v) = ∼ �n contents(v)

�n+1 v
Context families and node levels are closely related. In the term reductions pre-

sented in the previous section, context families restrict the terms in which a variable may
be substituted. In the graph reductions described in this section, determining whether
two nodes constitute a redex will require comparing the levels of the two nodes. Further-
more, we can show that the notion of a set of nodes valid at a given level corresponds
directly to the restriction imposed on terms by expression families.

Lemma 8 (Properties of graph validity).

1. Whenever Mn ∈ Mn and g = γ(Mn), then �n V.
2. Whenever g ∈ G with �n V, then τ(g) ∈ Mn.

When evaluating a graph g = (V, L, E, S , r), we require that g be well-formed (see
Section 3.4) and that �0 V . This ensures that level(v) is defined for all v ∈ V .

Lemma 9 (Node levels in well-formed graphs). For any graph g ∈ G with �0 V and
v ∈ V, we have level(v) = n for some n.

We now define three reduction rules that can be applied to Uccello graphs. Each of these
rules is applied in two steps: 1) If necessary, we copy nodes to expose the redex in the
graph. This step corresponds to using the term reduction rules sub or the rules merge,
li f t, and gc (see Figure 6) on the original term. 2) We contract the redex by removing
nodes and by redirecting edges in the graph. This step corresponds to performing the
actual β◦-, esc-, or run-reduction on a term. In the following, we write j ⊕ V for the set
{ j⊕v | v ∈ V} where j ∈ {1, 2}. Furthermore, we write U⊕V for the set (1⊕U)∪ (2⊕V).

2a

@s2

l

s1

1⊕v

2⊕w

s2

s1

1⊕v

2⊕w

in out

in

g’

2b

s(g’)

l

1⊕w

l

1⊕w

l

1⊕w

s2

s1

@
v

g

l

w

out

fun

out

fun
arg

1

g’ := …

bind return

s0
arg

Fig. 7. Beta-reduction for Uccello graphs

Beta A β◦-redex in a Uccello graph consists of an application node v that has a
lambda node w as its first predecessor. The contraction of the redex is performed in two
steps (see Figure 7):

1. Check that the edge (w.out, v.fun) is the only edge originating at w.out, and that the
application node v is outside the scope of w. If any of these conditions do not hold,
copy the lambda node in a way that ensures that the conditions hold for the copy of
w. The copy of w is called 2 ⊕ w, and the original of v is called 1 ⊕ v. Place 2 ⊕ w
and its scope in the same scope as 1 ⊕ v.

2. Convert 1 ⊕ v and 2 ⊕ w into indirection nodes, which are then removed by the
graph simplification function σ (defined in Section 4.3). Redirect edges so that after

simplification, edges that originated at the applied function’s parameter (2⊕w.bind)
now start at the root s2 of the function’s argument, and edges that originated at the
application node’s output (1 ⊕ v.out) now start at the root s1 of the function’s body.

2a

s1

1⊕v

2⊕w

g’

2b

s(g’)

1⊕w 1⊕w 1⊕w

s1

v

g

w

out

return
out

1

g’ := …

return

return

s1

out

1⊕v

inin

2⊕w

·Ò

~

·Ò ·Ò ·Ò

·Ò

~

out out

Fig. 8. Escape-reduction for Uccello graphs

Definition 5 (Graph Beta). Given a graph g ∈ G with �0 V and v,w ∈ V such that
L(v) = @, L(w) = λ, (w.out, v.fun) ∈ E, �0 contents(w), �0 {u | u ∈ S (surround(v)) ∧
u� v}, and level(w) ≤ level(v) Then the contraction of the β◦-redex v, written g→β◦ h,
is defined as follows:

1. We define a transitional graph g′ = (V ′, L′, E′, S ′, r′) using the functions f1 and f2
that map edge sources in E to edge sources in E′:

f1(x) = x
f1(u.o) = 1 ⊕ u.o

f2(x) = x

f2(u.bind) =
{

2 ⊕ u.bind if u ∈ S (w)
1 ⊕ u.bind otherwise

f2(u.out) =
{

2 ⊕ u.out if u ∈ S (w)\{w}
1 ⊕ u.out otherwise

Let s0 be the origin of the unique edge in E with target v.arg. The components of g′
are constructed as follows:

V ′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(V\S (w)) ⊕ S (w)

if |{(w.out, t) ∈ E}| = 1
and v � S (w)

V ⊕ S (w) otherwise

E′ = {(f1(s), 1 ⊕ u.i) | 1 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E ∧ u � v}
∪ {(2 ⊕ w.out, 1 ⊕ v.fun), (f1(s0), 1 ⊕ v.arg)}
∪ {(f2(s), 2 ⊕ u.i) | 2 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E}

L′(j ⊕ u) = L(u) for j ∈ {1, 2}
S ′(2 ⊕ u) = 2 ⊕ S (u)
S ′(1 ⊕ u) = 1 ⊕ S (u) if v � S (u)
S ′(1 ⊕ u) = S (u) ⊕ S (w) if v ∈ S (u)

r′ = f1(r)

2. Let s1 and s2 be the origins of the unique edges in E′ with targets 2 ⊕w.return and
1 ⊕ v.arg respectively. We modify E′, L′, and S ′ as follows:

(2 ⊕ w.out, 1 ⊕ v.fun) := (s1, 1 ⊕ v.in)
(s1, 2 ⊕ w.return) := (s2, 2 ⊕ w.in)

(s2, 1 ⊕ v.arg) := removed
L′(1 ⊕ v) := •
L′(2 ⊕ w) := •
S ′(2 ⊕ w) := undefined

Furthermore, any occurrence of port 2⊕w.bind in E′ is replaced by 2⊕w.out. The
resulting graph h of the β◦-reduction is then the simplification σ(g′).

Escape An esc-redex consists of an Escape node v that has a Bracket node w as its
predecessor. We contract the redex in two steps (see Figure 8):

1. Check that the edge (w.out, v.return) is the only edge originating at w.out, and that
the Escape node v is outside the scope of w. If any of these conditions do not hold,
copy the Bracket node in a way that ensures that the conditions hold for the copy
of w. The copy of w is called 2⊕w, and the original of v is called 1⊕ v. Place 2⊕w
(and its scope) in the scope of 1 ⊕ v.

2. Convert 1 ⊕ v and 2 ⊕ w into indirection nodes, which are then removed by the
function σ. Redirect edges so that after simplification, edges that originated at the
Escape node’s output port (1 ⊕ v.out) now start at the root s1 of the Bracket node’s
body.

Definition 6 (Graph Escape). Given a graph g ∈ G with �0 V and v,w ∈ V such that
L(v) = ∼, L(w) = 〈〉, (w.out, v.return) ∈ E, �0 contents(w), and level(w) < level(v).
Then the contraction of the esc-redex v, written g→esc h, is defined as follows:

1. We define a transitional graph g′ = (V ′, L′, E′, S ′, r′) where V ′,L′,S ′, and r′ are
constructed as in Definition 5. 4 The set of edges E′ is constructed as follows:

E′ = {(f1(s), 1 ⊕ u.i) | 1 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E ∧ u � v}
∪ {(2 ⊕ w.out, 1 ⊕ v.return)}
∪ {(f2(s), 2 ⊕ u.i) | 2 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E}

2. Let s1 be the origin of the unique edge in E′ with target 2⊕w.return. We modify E′,
L′, and S ′ as follows:

(2 ⊕ w.out, 1 ⊕ v.return) := (2 ⊕ w.out, 1 ⊕ v.in)
(s1, 2 ⊕ w.return) := (s1, 2 ⊕ w.in)

L′(1 ⊕ v) := •
L′(2 ⊕ w) := •
S ′(1 ⊕ v) := undefined
S ′(2 ⊕ w) := undefined

The resulting graph h of the esc-reduction is σ(g′).

2a

s1

1⊕v

2⊕w

g’

2b

s(g’)

1⊕w 1⊕w 1⊕w

s1

v

g

w

out

out

1

g’ := …

return

s1

1⊕v

in

in

2⊕w

·Ò ·Ò ·Ò ·Ò

·Ò

out

out
in in out

! !

Fig. 9. Run-reduction for Uccello graphs

Run A run-redex consists of a Run node v that has a Bracket node w as its prede-
cessor. The contraction of the redex is performed in two steps (see Figure 9):

1. Check that the edge (w.out, v.in) is the only edge originating at w.out, and that the
Run node v is outside the scope of w. If any of these conditions do not hold, copy
the Bracket node in a way that ensures that the conditions hold for the copy of w.
The copy of w is called 2⊕w, and the original of v is called 1⊕ v. Place 2⊕w (and
its scope) in the same scope as 1 ⊕ v.

4 In Definition 5, v and w refer to the application- and lambda nodes of a β◦-redex. Here, v
stands for the Escape node, and w stands for the Bracket node of the esc-redex.

2. Convert 1 ⊕ v and 2 ⊕ w into indirection nodes, which are then removed by σ.
Redirect edges so that after simplification, edges that originated at the Run node’s
output port (1 ⊕ v.out) now start at the root s1 of the Bracket node’s body.

Definition 7 (Graph Run). Given a graph g ∈ G with �0 V and v,w ∈ V such that
L(v) = !, L(w) = 〈〉, (w.out, v.in) ∈ E, �0 contents(w), and level(w) ≤ level(v). Then the
contraction of the run-redex v, written g→run h, is defined as follows:

1. We define a transitional graph g′ = (V ′, L′, E′, S ′, r′) where V ′,L′,S ′, and r′ are
constructed as in Definition 5. The set of edges E′ is constructed as follows:

E′ = {(f1(s), 1 ⊕ u.i) | 1 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E ∧ u � v}
∪ {(2 ⊕ w.out, 1 ⊕ v.in)}
∪ {(f2(s), 2 ⊕ u.i) | 2 ⊕ u ∈ V ′ ∧ (s, u.i) ∈ E}

2. Let s1 be the origin of the unique edge in E′ with target 2⊕w.return. We modify E′,
L′, and S ′ as follows:

(s1, 2 ⊕ w.return) := (s1, 2 ⊕ w.in)
L′(1 ⊕ v) := •
L′(2 ⊕ w) := •
S ′(2 ⊕ w) := undefined

The resulting graph h of the run-reduction is σ(g′).

5.3 Results

Any reduction step on a graph g = γ(M) corresponds to a sequence of reduction steps
on the term M to expose a redex, followed by a reduction step to contract the exposed
redex. Conversely, the contraction of any redex in a term M corresponds to the contrac-
tion of a redex in the graph γ(M).

Theorem 2 (Correctness of Graphical Reductions). Let g ∈ G, δ ∈ {β◦, esc, run},
M0

1 ∈ M0 and g = γ(M0
1).

1. Graph reductions preserve well-formedness:

g→δ h implies h ∈ G
2. Graph reductions are sound:

g→δ h implies M0
1 →∗ M0

2 →δ M0
3

for some M0
2 ,M

0
3 ∈ M0 such that h = γ(M0

3)

3. Graph reductions are complete:

M0
1 →δ M0

2 implies g→δ h for some h ∈ G
such that h = γ(M0

2)

6 Conclusions and Future Work

With the goal of better understanding how to extend visual languages with program-
ming constructs and techniques available for modern textual languages, this paper stud-
ies and extends a graph-text connection first developed by Ariola and Blom. While
the motivation for Ariola and Blom’s work was the graph-based compilation of func-
tional languages, only minor changes to their representations and visual rendering were
needed to make their results a suitable starting point for our work. We extended this
formalism with staging constructs, thereby developing a formal model for generative
programming in the visual setting.

In this paper we only presented an abstract syntax for Uccello. In the future, it
will be important to develop a more user-friendly concrete syntax with features such as
multi-parameter functions or color shading to better visualize stage distinctions. This
step will raise issues related to parsing visual languages, where we expect to be able to
build on detailed previous work on layered [16] and reserved graph grammars [21].

Another important step in developing the theory will be lifting both type checking
and type inference algorithms defined on textual representations to the graphical set-
ting. Given the interactive manner in which visual programs are developed, it will also
be important to see whether type checking and the presented translations can be incre-
mentalized so that errors can be detected locally and without the need for full-program
analysis.

Acknowledgments: Kedar Swadi, Samah Abu Mahmeed, Roumen Kaiabachev and
Edward Pizzi read and commented on early drafts of this paper, and we would like to
thank them for their insightful suggestions. We also thank Keith Cooper, Moshe Vardi,
Robert “Corky” Cartwright, and Peter Druschel for serving on the first author’s thesis
committee.

References

1. http://www.cs.rice.edu/∼besan/proofs.pdf.
2. Robin Abraham and Martin Erwig. Header and unit inference for spreadsheets through

spatial analyses. In IEEE Symposium on Visual Languages and Human-Centric Computing,
pages 165–172, 2004.

3. Z. M. Ariola and S. Blom. Cyclic lambda calculi. Lecture Notes in Computer Science,
1281:77, 1997.

4. M. Burnett, J. Atwood, R. Walpole Djang, H. Gottfried, J. Reichwein, and S. Yang. Forms/3:
A first-order visual language to explore the boundaries of the spreadsheet paradigm. Journal
of Functional Programming, 11:155–206, March 2001.

5. W. Citrin, M. Doherty, and B. Zorn. Formal semantics of control in a completely visual
programming language. In Allen L. Ambler and Takayuki Dan Kimura, editors, Proceedings
of the Symposium on Visual Languages, pages 208–215, Los Alamitos, CA, USA, October
1994. IEEE Computer Society Press.

6. W. Citrin, R. Hall, and B. Zorn. Programming with visual expressions. In Volker Haarslev,
editor, Proc. 11th IEEE Int. Symp. Visual Languages, pages 294–301. IEEE Computer Soci-
ety Press, 5–9 September 1995.

7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press and
McGraw-Hill Book Company, 14th edition, 1994.

8. M. Erwig. Abstract syntax and semantics of visual languages. Jounral of Visual Languages
and Computing, 9:461–483, October 1998.

9. Martin Erwig and Margaret M. Burnett. Adding apples and oranges. In 4th International
Symposium on Practical Aspects of Declarative Languages, pages 173–191, 2002.

10. National Instruments. LabVIEW Student Edition 6i. Prentice Hall, 2001.
11. S. Peyton Jones, A. Blackwell, and M. Burnett. A user-centred approach to functions in

Excel. ICFP, pages 165–176, 2003.
12. Edward A. Lee. What’s ahead for embedded software? IEEE Computer, pages 18–26,

September 2000.
13. MetaOCaml: A compiled, type-safe multi-stage programming language. Available online

from http://www.metaocaml.org/, 2004.
14. National Instruments. LabVIEW. Online at http://www.ni.com/labview.
15. Oregon Graduate Institute Technical Reports. P.O. Box 91000,

Portland, OR 97291-1000,USA. Available online from
ftp://cse.ogi.edu/pub/tech-reports/README.html.

16. Jan Rekers and Andy Schuerr. Defining and parsing visual languages with layered graph
grammars. Journal of Visual Languages and Computing, 8(1):27–55, 1997.

17. Amr Sabry. The Formal Relationship between Direct and Continuation-Passing Style Op-
timizing Compilers: A Synthesis of Two Paradigms. PhD thesis, Rice University, August
1994.

18. Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon
Graduate Institute of Science and Technology, 1999. Available from [15].

19. Walid Taha and Michael Florentin Nielsen. Environment classifiers. In The Symposium on
Principles of Programming Languages (POPL ’03), New Orleans, 2003.

20. The MathWorks. Simulink. Online at http://www.mathworks.com/products/simulink.
21. Da-Qian Zhang, Kang Zhang, and Jiannong Cao. A context-sensitive graph grammar for-

malism for the specification of visual languages. The Computer Journal, 44(3):186–200,
2001.

Reconfigurable Manifolds

Sarah Thompson Alan Mycroft

{sarah.thompson,alan,mycroft}@cl.cam.ac.uk

Computer Laboratory, University of Cambridge, William Gates Building, 15 JJ Thomson Ave.,

Cambridge CB3 0FD, UK

1 Introduction

Spacecraft design is, without doubt, one of the most challenging areas of modern engi-

neering. In order to be viable, spacecraft must mass relatively little, whilst being capable

of surviving the considerable G-forces and vibration of launch. In space, they must with-

stand extreme temperatures, hard vacuum and high levels of radiation, for several years

without maintenance.

Conventionally, spacecraft wiring harnesses are built with architectures that are fixed

at the time of manufacture. They must therefore be designed to endure the lifetime of

the mission with a very high probability, though the conventionally necessary redundant

duplication of signals has significant implications for mass. Given that launch costs are

typically in excess of $30,000 per kg, reducing the mass of a spacecraft’s wiring harness,

without compromising reliability, is highly desirable. As a motivating example, the net-

work cabling in the International Space Station (ISS) is known to mass more than 10

metric tonnes.

Recent advances in MEMS-based switching [9] have made it possible to consider the

construction of reconfigurable manifolds – essentially, wiring harnesses that behave like

macroscopic FPGA routing networks. Redundant wiring can be shared between many sig-

nals, thereby significantly reducing the total amount of cable required. Reconfigurability

has a significant further benefit, in that it also allows adaptation to mission requirements

that change over time, whilst also significantly reducing design time.

In a recent initiative, the US Air Force has been moving toward a responsive space

paradigm which aims to reduce the time from design concept to launch (currently several

years) to less than one week [7]. Such a target is unlikely to be achievable with existing

bespoke one-off design techniques; a parts bin driven, plug-and-play approach to satellite

construction will become essential. It must be possible to choose a satellite chassis of a

size appropriate to the task in terms of accommodating sufficient manoevering propellant

as well as the necessary instrumentation payload, then bolt everything together and have

the resulting satellite ‘just work.’

We present an algorithm that allows such a reconfigurable manifold to be automat-

ically self-configured, then dynamically tested in-situ, such that signals are automati-

cally rerouted around non-functioning wires and switches as soon as faults are detected.

Break-before-make switching is used in order to achieve transparency from the point

of view of subsystems that are interconnected by the manifold, whilst also making it

possible to achieve near-100% testability.

1.1 PHYSICAL SATELLITE WIRING ARCHITECTURES 2

Star

Tracker

Gyroscopes

Torquer Bars

Rough Sun

Tracker

Antennas

Solar Panel

Figure 1: A typical near-earth small satellite configuration

1.1 Physical satellite wiring architectures

Conventionally, satellites are constructed with fixed wiring architectures. Reliability must

therefore be engineered-in through multiple redundancy – duplication or triplication

(or more) of signal paths is common, which carries with it an attendant mass penalty.

Typically, one of two kinds of wiring architecture are common. Fig. 2 shows a typical

passive backplane with multiple subsystems, each slotting in to a rack on separate cards1.

Wiring harnesses, in the sense that they exist in cars and aircraft as bundles of physical

cables, tend to be avoided where possible.

Another common approach is shown in Fig. 3, where a single motherboard has a

number of daughter boards attached to it on standoffs. Normally (though not visible in

the diagram) these daughter boards plug directly into connectors on the motherboard,

again avoiding the need for cables.

Typically, card frames have passive backplanes, which do not normally contain active

electronics beyond perhaps some simple power regulation or line termination. Mother-

board approaches more commonly include active electronics on the main board itself,

though this is not a prerequisite.

1Note that the image is representational – actual satellite hardware differs in detail

1.2 LOGICAL SATELLITE WIRING ARCHITECTURES 3

Figure 2: Card frame with backplane

1.2 Logical satellite wiring architectures

At a logical, block diagram level, fixed architecture satellite wiring harnesses typically

follow the structure shown in Fig. 4. All of the main subsystems are attached to a moth-

erboard or backplane that provides most of the necessary interconnection infrastructure,

with external devices plugging directly into the relevant subsystems. All required redun-

dancy must be in place from the outset. Typically, satellites are one-off designs, so any

design changes before launch require physical modifications – of course, such changes

after launch are typically impossible. As a further consequence of this approach, sub-

system re-use is relatively uncommon, requiring considerable effort in terms of design,

validation and verification, of the order of several years from concept to launch.

2 Reconfigurable manifolds

The responsive space paradigm [7] implies the requirement to move away from fixed

architectures and their consequential design and validation costs toward an autonomous,

self-organising approach. In essence, a reconfigurable manifold is a self-organising, self-

testing, self-repairing replacement for a fixed architecture wiring harness. Ideally, at a

system level, a spacecraft adopting this approach should have an architecture similar to

that shown in Fig. 5.

Ideally, all wiring should be routed by the manifold rather than connected directly to

subsystems. From a the point of view of rapid construction, this is ideal – a subsystem

2.1 SIGNAL TYPES 4

Edge View

Figure 3: Motherboard with attached daughter boards

such as a gyroscope, star tracker, sun tracker or antenna could be bolted to the spacecraft

chassis anywhere that is physically convenient, with all of the necessary wiring being

‘discovered’ and automatically routed after power-up.

2.1 Signal types

Spacecraft wiring harnesses (reconfigurable or otherwise) must be able to carry a wide

variety of signals, varying in terms of power, voltage and bandwidth, with similarly vari-

able electrical considerations in terms of impedance, end-to-end resistance, etc. Typical

signal types found in satellites, along with example applications are listed as follows2:

Power Normally a single +28V DC unregulated supply rail powers the entire spacecraft,

with local step-down regulators providing lower voltage high quality supply rails to

each subsystem. Where higher voltages are necessary, e.g. to drive cryocoolers for

low background noise imaging sensors, this is normally achieved with local step-up

switching DC-DC converters.

Heavy current analogue High current feeds to torquer bars, motor drives, solenoid

power, explosive bolts, etc.

Low current, low speed analogue Analogue sensor feeds, thermocouples, rough sun

tracker photocells, etc.

2This list is not exhaustive

2.2 CONSTRUCTING PRACTICAL RECONFIGURABLE MANIFOLDS 5

Motherboard/

Backplane Other ...

Solar

Panels

Nuclear

Thermoelectric

Generator

Power

Management

Subsystem

Torquer

Bars
Gyros

Chemical/Ion

Thrusters

Coarse Sun

Tracker
Star Tracker

Navigation

Subsystem
Antenna

Camera
Imaging

Subsystem

Comms

Subsystem

Figure 4: Conventional, fixed-architecture motherboard/backplane

Low current, high speed analogue Higher speed sensor wiring, video feeds from cam-

eras and star trackers, etc.

Low speed digital Simple on/off telemetry sensors, e.g. mechanical limit switches.

High speed digital Digital communications between subsystems.

Low power microwave Radio receiver antenna feeds, low power radio transmitter an-

tenna feeds.

High power microwave High power antenna feeds, ion thruster power cabling, etc.

Optical High speed network connectivity, lower speed sensor applications that require a

significant degree of electrical isolation3.

No single switching architecture, at the time of writing, can accommodate more than

a few of the above signal types.

2.2 Constructing practical reconfigurable manifolds

A practical reconfigurable manifold must encompass most, if not all, signal types in order

to be effective. Since no single switch fabric is suitable, it makes sense to split the

3Optical switching is beyond the scope of this work and will not be discussed further

2.2 CONSTRUCTING PRACTICAL RECONFIGURABLE MANIFOLDS 6

Reconfigurable

Manifold

Other ...Solar

Panels

Nuclear

Thermoelectric

Generator

Power

Management

Subsystem

Torquer

Bars

Gyros
Chemical/Ion

Thrusters
Coarse Sun

Tracker

Star Tracker

Navigation

Subsystem

Antenna

Camera

Imaging

Subsystem

Comms

Subsystem

Figure 5: Reconfigurable manifold architecture

manifold into separate sub-manifolds, each of handling a different signal type, as shown

in Fig. 6.

Some cross-connectivity between the sub-manifolds makes sense, since, for example,

several MEMS relays could potentially be connected in parallel in order to to switch

heavier current, or DC-biased analogue routing with sufficient bandwidth could, in an

emergency, be used to carry digital data.

Fig. 7 shows a reconfigurable manifold implemented as a replacement for a passive

backplane or passive motherboard. In contrast with Fig. 4, external systems connect

to the manifold rather than direct to the subsystems themselves. Configuring such a

satellite might be as simple as installing cards in a backplane or motherboard in any

convenient order, then plugging external devices into the manifold. Spare slots could,

given sufficient mass budget, be used to provide extra redundancy simply by plugging in

extra duplicate cards; appropriate firmware could potentially handle this automatically.

An alternative architecture is shown in Fig. 8. Rather than a single manifold routing

between devices connected to its periphery, the manifold is itself distributed between

the subsystems. Interconnection between subsystems is passive, with the subsystems

cooperating to establish longer distance, multi-hop routes.

The single manifold approach is perhaps best suited to small satellites, whereas the

(more complex, though more flexible and scalable) distributed approach lends itself to

larger spacecraft such as large satellites, manned spacecraft, space stations or indeed

2.3 SWITCHING TECHNOLOGIES 7

Other ...Solar

Panels

Nuclear

Thermoelectric

Generator

Power

Management

Subsystem

Torquer

Bars

Gyros
Chemical/Ion

Thrusters
Coarse Sun

Tracker

Star Tracker

Navigation

Subsystem

Antenna

Camera

Imaging

Subsystem

Comms

Subsystem

Power

Digital

Microwave

Analogue

Figure 6: Separate routing networks for power, analogue, digital and microwave

also to terrestrial aircraft.

2.3 Switching technologies

Many switching technologies exist that differ considerably in capability:

FPGAs Field-programmable gate arrays can be used to route digital data, and are also

comparatively cheap and readily available.

FPTAs Field-programmable transistor arrays [10] have some similarities to FPGAs, though

they are aimed more closely at analogue applications. As with FPGAs, they are not

intended from the outset as routing devices for use within a the switch fabric of

a reconfigurable manifold, though it would seem feasible to apply them to the

switching of low- to medium-speed analogue signals.

Digital Crossbar Switch ASICs A number of commercial, off-the-shelf (COTS) digital

crossbar switch chips are available, though this application appears to be becoming

dominated by FPGAs as a consequence of the larger FPGA manufacturers getting

more directly involved by releasing support for using their devices in this way [2].

2.3 SWITCHING TECHNOLOGIES 8

Motherboard/

Backplane

Solar

Panels

Nuclear

Thermoelectric

Generator

Torquer

Bars
Gyros

Chemical/Ion

Thrusters

Coarse Sun

Tracker
Star Tracker

Antenna

Camera

Power

Management

Subsystem

Navigation

Subsystem

Other ...
Imaging

Subsystem

Comms

Subsystem

Reconfigurable Manifold

Figure 7: Reconfigurable manifold as a motherboard or backplane

Analogue Crossbar Switch ASICs Though not so widely supported as digital crossbar

switch devices, analogue crossbar switches are available, mostly aimed at switching

analogue video signals[1].

MEMS switches Micron-scale electromechanical switches have been demonstrated to

be an effective candidate technology [9]. Though physically far larger than CMOS

transistor-based switches, MEMS switches are nevertheless orders of magnitude

smaller and lighter than full-size mechanical relays, and have excellent electri-

cal characteristics that renders them capable of being applied to almost any low-

current switching application, including microwave.

Electromechanical Relays Somewhat old-fashioned, relays are nevertheless capable of

switching very heavy currents. They are sufficiently massive, however, that it is

difficult to imagine them being used in large numbers in a spacecraft application.

Discrete MOSFET/IGBT Switching Large power transistors, both MOS and bipolar, are

commonly used to switch heavy current and moderately high voltage (up to a few

hundred volts and/or hundreds of amps) signals, particularly in motor drive appli-

cations. They exhibit high reliability and relatively good radiation hardness charac-

teristics due to their very large (in comparison with ASICs) geometries, though their

gate drive circuitry can be tricky to engineer. Though physically bulky, they nev-

ertheless remain a useful possibility for constructing heavy current and/or power

2.4 ROUTING ARCHITECTURES 9

Motherboard/

Backplane

Power

Management

Subsystem

Navigation

Subsystem

Other ...

Imaging

Subsystem

Comms

Subsystem

Solar

Panels

Nuclear

Thermoelectric

Generator Antenna

Camera

Torquer

Bars
Gyros

Chemical/Ion

Thrusters

Coarse Sun

Tracker
Star Tracker

Figure 8: Reconfigurable manifold distributed across subsystems

switching networks.

Table 1 shows compatibility between switch technologies and signal types. The no-

tation ‘?,’ denoting ‘possibly compatible,’ indicates that, under normal circumstances, an

automated routing algorithm would not normally attempt to make a connection of this

type, though under certain circumstances, possibly only when authorised by a human,

such connections might be made in the absence of more appropriate infrastructure. Nor-

mally, signals would be prioritised, so critical signals would almost always be routed, but

less important connections may be degraded or even omitted. For example, a non-critical

redundant temperature sensor might be disconnected in favour of keeping an instrument

package running.

2.4 Routing architectures

The major alternative switching architectures that may be considered when designing a

reconfigurable manifold are as follows:

Crossbar Switch An M ×N grid of switches configured to provide a M -input, N -output

routing network.

Permutation Network A permutation network performs an arbitrary permutation on N

inputs, such that any possible reordering of the inputs is supported.

2.4 ROUTING ARCHITECTURES 10

FPGA FPTA Digital X-bar Analogue X-bar MEMS Relays MOSFET/IGBT

Power × × × × ?
√ √

Heavy current analogue × × × × ?
√ √

Low current, low speed analogue ×

√

×

√ √ √

?

Low current, high speed analogue ×

√

×

√ √

? ?

Low speed digital
√ √ √ √ √ √ √

High speed digital
√

?
√

?
√

? ×

Low power microwave × × × ×

√

× ×

High power microwave × × × × ? × ×

× – Not compatible ? – Possibly compatible
√

– Compatible

Table 1: Compatibility between switch technologies and signal types

Ad-Hoc and Hybrid Approaches Practical considerations make it appropriate to con-

sider the possibility of leveraging existing technologies, possibly in combination, to

create reconfigurable manifolds. Though the result network topology and routing

algorithms may be technically inferior to a purer design, economic considerations

are nevertheless still important for practical designs.

Embedding into Networks of Arbitrary Topology Given a sufficiently large and com-

plex graph, with nodes representing switches and edges representing wires, it is

possible to compute a switch configuration that implements an arbitrary circuit.

Each approach is described in detail below.

2.4.1 Crossbar switches

Crossbar switches have a long history, having originally been introduced as a means of

routing telephone calls through electromechanical telephone exchanges. Conceptually

extremely simple, a crossbar switch is constructed from two sets of orthogonal wires

(bus bars in telecommunications nomenclature), such that each crossing can be bridged

by a switch. Fig. 9 depicts the circuit of a small 8 × 8 crossbar switch.

To route a particular input to a given output, all that is necessary is for the switch

corresponding to that input and output to be closed. Crossbar switches are somewhat

inefficient in terms of hardware requirements, and also in terms of providing more rout-

ing capability than is strictly necessary in many cases – it is possible, for example, to

route a single input to any number of outputs, or to common inputs together. Achieving

reliability is relatively straightforward, however – replacing each non redundant switch

(Fig. 10) with a partially- or fully-redundant alternative (Fig. 11 or Fig. 12 respectively)

allows single point failures to be recovered. A fully redundant switch configuration al-

lows any of its four component switches to fail-open or fail-closed without affecting func-

tionality. The partially redundant version only requires half as many switches, but is only

safe against fail-closed faults – however, given one or more spare bus bars on each axis,

fail-open faults can easily be patched around and are therefore still recoverable. In cost

terms, building a fully-redundant M × N switch requires 4 × M × N switches, whereas

the partially redundant approach requires 2× (M +1)× (N +1) switches, though clearly

the larger circuit is more fault-tolerant.

2.4 ROUTING ARCHITECTURES 11

Figure 9: Crossbar Switch

Figure 10: Non-redundant switch

Figure 11: Partially redundant switch configuration

Figure 12: Fully redundant switch configuration

2.4.2 Permutation networks

Permutation networks are an alternative approach to routing that, in many cases, re-

quires substantially fewer switches for a given number of inputs – rather than O(N 2),
they tend toward O(N log N), which can be a very significant advantage when the num-

2.4 ROUTING ARCHITECTURES 12

Figure 13: 6-way permutation network

ber of inputs is large. Fig. 13 illustrates the concept with a 6-way permutation network.

Its 15 switches can each be in either of two states: pass the inputs left to right unchanged,

or swap them. For 6 inputs, a crossbar switch is likely to be cheaper, in that it is likely

to require only 36 switches, in comparison with 60 for the permutation network shown

in Fig. 13. However, for 1000 inputs, assuming N log
2
N , approximately 40, 000 switches

are required, whereas a 1000 × 1000 crossbar switch would require 1 million switches.

Designing a permutation network can be somewhat baroque, though a useful rela-

tionship with sorting networks can be exploited. A sorting network is a sort algorithm

that can be modified (if necessary) to allow its architecture to be predetermined, regard-

less of the data that it is given. Typically, a network is constructed whereby each swap

node has two inputs and two outputs, where the outputs are swapped (if necessary)

in order to respect a given partial order. Though the popular Quicksort is unsuitable,

many other well-known sort algorithms, e.g. merge sort, bubble sort, transposition sort,

bitonic sort or shell sort, can be adapted. Since a sort may also be seen as just a partic-

ular kind of permutation, sort networks – by definition – must be capable of performing

permutations. Furthermore, since the data to be sorted might initially be in any order,

a sort network must be capable of supporting all possible permutations – therefore, if a

sort algorithm can be adapted to create a sort network of arbitrary dimension, it follows

that an equivalently structured permutation network would also be capable of any pos-

sible permutation. Usefully, the underlying sort algorithm can be leveraged to efficiently

generate switch configurations, as follows:

1. Let 〈W,@〉 be a totally ordered set such that |W | is the number of wires in the

switch network, and each w ∈ W represents exactly one input and one output.

2. Let the total bijective map P : ℘(W × W) represent the desired permutation to be

implemented by the switch network.

3. Sort P with the underlying sort network, such that for each (a, b) ∈ P , a represents

the input, and b represents the output. This can be achieved trivially by feeding

tuples into the network ordered on a, then having the network sort these tuples

ordered on b.

4. Note whether each swap node passed its data through unchanged, or whether it

performed a swap. This gives the switch configuration for an isomorphic permuta-

tion network that performs an equivalent permutation.

Since suitable sort algorithms exist that have O(N log N) time complexity, computing a

switch plan is therefore also an O(N log N) operation.

2.4 ROUTING ARCHITECTURES 13

Permutation networks are nevertheless not guaranteed to be a better solution than

crossbar switches, particularly when constructed as ASICS – their complex wiring reduces

the effective advantage of their reduced switch count, particularly when considering that

regular grids (crossbar switches being a particularly ideal example) are cheap and easy to

lay out in comparison with the more spaghetti-like nature of large permutation networks.

Limitations on chip packaging limit the number of wires that a single chip might be able

to switch, and therefore also the number of switches that need sensibly be integrated in

one die, reducing the impact of the O(N 2) complexity problem with crossbar switches.

However, when switches are large and/or expensive, as is the case with MEMS relays or

any discrete component approach (e.g. full-size relays, MOSFETs, IGBTs), the reduction

in component count could prove important.

2.4.3 Shuffle networks

Shuffle networks are essentially degenerate, incomplete permutation networks that do

not support all possible permutations. They are perhaps best known in the parallel com-

puting world, where they are commonly used as high speed inter-processor interconnect

architectures. Omega networks, a commonly used shuffle network architecture, typically

require some kind of blocking or queueing hardware at each swap node so that collisions

can be arbitrated. Their incompleteness is probably not tolerable for our application, so

they will not be considered further.

2.4.4 Ad-hoc COTS approaches

In some cases, COTS devices may be used to implement routing fabric. FPGAs, in partic-

ular, are ubiquitous, low cost and can be used (with appropriate considerations) in high

radiation environments. There are a number of potential approaches:

1. Implement a general purpose crosspoint switch or permutation network as a HDL

model, then synthesise it.

2. Generate HDL that routes the FPGA’s inputs and outputs according to the desired

switching plan, then synthesise the design.

The first option clearly limits the size of switch that can be implemented in a partic-

ular FPGA, though is inherently general purpose and can be reconfigured very rapidly.

The second option is probably infeasible for embedded use at the time of writing due to

the requirement for a complete tool chain in order to perform reconfiguration.

2.4.5 Embedding into networks of arbitrary topology

In this approach, a reconfigurable manifold is represented by a graph where its nodes

represent switches and its edges represent wires. Embedding a desired circuit into such

a network is essentially equivalent to computing a switch configuration. For the gen-

eral case, this is a difficult computational problem that seems almost certainly to be

in NP , with complexity rising exponentially with the number of switches in the net-

work. Though this approach ultimately encompasses all others, in that both crossbar

2.5 MAKE-BEFORE-BREAK SWITCHING 14

switches and permutation networks may be seen as special cases, the difficulty of com-

puting switching plans makes it unlikely that this approach could be feasible in practice.

2.5 Make-before-break switching

At the device level, make-before-break switching requires the capability to establish a

new connection, in parallel, before an old connection is disconnected. Where a recon-

figurable manifold is routing signals that should not be temporarily interrupted, make-

before-break switching allows a connection to be moved to an alternative route transpar-

ently to the signal’s endpoints.

Power, heavy current analogue, low-speed digital and low-speed analogue signals are

all well suited to make-before-break switching, in that they are not particularly sensitive

to minor changes in end-to-end resistance or discontinuities in impedance. However,

high-speed digital, high-speed analogue, or (particularly) microwave signals need more

careful consideration – in such cases, it may be necessary for the subsystems concerned

to become involved in the routing process, at least from the point of view of being able

to request that the manifold should not re-route particular signals during critical periods.

Crossbar switches support make-before-break switching by default: it is just neces-

sary to turn on the switch for the new connection, waiting long enough (if necessary)

for the switch to close fully and stop bouncing, then turn off the switch for the old con-

nection. Implementing make-before-break switching in a permutation network is much

more difficult, however, and will almost certainly require the network to be carefully

designed (see Section 5.1).

In a reconfigurable manifold that does not alter its wiring plan after it has been

initially configured, support for make-before-break switching is unnecessary – however,

such a capability is essential in order to support continuous automated testing and fault

recovery (see Section 4).

2.6 Grounding

Grounding of electronic systems within satellites is broadly similar to the grounding

of Earth-based electronics; as-such, the same techniques and best practice applies in

both cases. In satellites, grounding is particularly important because of the charging

effect, whereby charged particles impacting the spacecraft impart a (potentially large)

electric charge – careful grounding all conductive parts typically reduces or eliminates

any consequential problems.

It is normal practice for a spacecraft to implement a ground network with a star

topology – a single central grounding point is connected radially to the grounds on all

subsystems. Cycles in the ground network are avoided, because they can form unwanted

single-turn secondaries that may pick up hum or other unwanted noise from any heavy

current subsystems in the vicinity.

Normally, grounds should not need to be switched by a reconfigurable manifold – a

conventional, fixed, star ground topology should be sufficient for nearly all cases. Signals

that are routed along shielded paths may require switchable ground lifts at one or both

ends in order to avoid ground loops, though careful consideration of possible ground

routing requirements may avoid this.

3. SELF-ORGANISATION 15

3 Self-organisation

In some circumstances, it is undesirable or even impossible to precalculate routing for a

reconfigurable manifold. The responsive space paradigm requires that disparate subsys-

tems should be able to be plugged together in any convenient manner, at which point

they should self-organise and work together without human intervention. Achieving

concept-to-launch times of the order of one week does not leave much time for anything

other than physical assembly of the spacecraft, so the electronic subsystems must, of

absolute necessity, not require a lengthy design process.

Self-organisation, at a fundamental level, requires subsystems to be able to discover

each other, negotiate and configure any necessary wiring, and also to cooperate in main-

taining the long-term reliability of the connectivity. These issues are discussed in detail

in the remainder of this section.

3.1 ‘Space Velcro’

Some technologies absolutely require self-organisation in order to function at all. Fig. 14

is an electron micrograph of Joshi et. al.’s Microcilia concept [8, 11, 3]. MEMS technol-

ogy is used to construct micron scale, articulated ‘cilia’ that are capable of manipulating

small objects and of allowing the docking of small microsatellites. Assuming that electri-

cal connections between the mated surfaces can be achieved, a self-organising, reconfig-

urable manifold based satellite could automatically configure any necessary connections

during docking, then automatically recover the routing resources once the microsatellite

has undocked.

Brei et. al. have investigated a passive interconnect architecture known as Active

Velcro [6, 5, 4]. Fig. 15 illustrates the concept4. Mating, Velcro-like surfaces also con-

tain a (possibly large) number of connectors, a proportion of which happen to make

valid connections. Discovering these connections, then routing them via a reconfigurable

manifold, potentially allows extremely straightforward ad-hoc construction. In manned

spaceflight applications, an astronaut could connect or disconnect a piece of equipment

simply by sticking or unsticking it to a Velcro-like pad5. In satellite applications, assum-

ing that launch G force and vibration constraints are met, the same approach could allow

extremely rapid construction and deployment.

3.2 Local routing

In a very small satellite, or within a single subsystem of a more complex satellite, routing

may be exclusively local, i.e. switched only by a single level of switch networks. All

connections in such a case would occur only to the edge of a single manifold, or cluster

of sub-manifolds configured to act logically as a single manifold, with the consequence

that the routing of all signals is equivalent only to routing across the manifold itself.

4Note that this is the author’s rendering, and is intended to be representational of the connectivity
approach rather than an accurate physical description

5The use of Velcro to avoid small object floating around the cabin of manned spacecraft has long been
standard practice.

3.3 SYSTEM LEVEL ROUTING 16

Photo: John Suh, University of Washington

Figure 14: Microcilia Cell

Velcroff hook-and-loop surfaces

Randomly spaced contacts
A significant proportion of

contacts make valid

connections

Figure 15: Active Velcro

Computationally, routing for such an architecture is relatively trivial, with complexity of

the order of O(N 2) for a crossbar architecture or O(N log N) for a permutation network.

3.3 System level routing

Purely local routing requires a strict star architecture, with the manifold at the hub. This

physical geometry does not suit all applications – in many cases, particularly in larger

spacecraft, it is likely to be more appropriate to distribute the switching around the

3.4 DYNAMIC DISCOVERY 17

Candidate

power pins
DC-DC

Converter

Scavenged

supply out

Figure 16: Power Scavenging Circuit

craft. Though it is theoretically possible to construct a large crossbar switch by ganging

together smaller switches, this would be an expensive approach since the amount of

inter-switch cabling would rise in proportion to the square of the number of switches.

A more sensible and practical approach would be to construct a manifold-of-manifolds

with an architecture resembling that of a circuit-switched telephone network – a number

of manifolds handle primarily local connections internally, whilst handing off longer-

distance connections via multicore trunk connections to other manifolds.

Computationally, the system level routing problem tends towards NP in the worst

case (e.g. a manifold-of-manifolds where each manifold consists of exactly one switch

and connectivity between manifolds is arbitrary is essentially the same problem that is

discussed in Section 2.4.5), though the relatively small number of manifolds and rela-

tively large amount of connectivity within each manifold is likely to minimise the conse-

quences of this.

3.4 Dynamic discovery

The dynamic discovery of connections is something that is becoming increasingly common

in general-purpose computing. The USB standard, for example, allows devices to be dis-

covered and configured automatically without significant human intervention. From the

point of view of reconfigurable manifolds, the dynamic discovery problem is somewhat

trickier, in that it is necessary to first power up any neighbouring subsystems, establish

contact with them (potentially with zero prior knowledge of their wiring configuration),

negotiate any required connections, then route the necessary signals. As a second re-

quirement, it is then necessary to continuously re-test the existing connectivity in order

that faults can be corrected and that subsystems coming on line or going off line can be

connected and disconnected correctly.

In this section, the requirements for achieving reliable dynamic discovery, continuous

testing and fault recovery are discussed.

3.4 DYNAMIC DISCOVERY 18

3.4.1 The chicken-and-egg problem

It is a truism that any automatic discovery algorithm can only possibly run on hardware

that is itself powered up. However, if a subsystem’s power connections have not yet been

discovered and configured, it will not (yet) be powered up – hence there is a chicken-and-

egg problem. Though no longer in common use, a well-known solution already exists.

For many years, the most commonly used PC peripheral interface standards, RS232 and

Centronics, both suffered from a design oversight – no power supply pins – that proved

maddening for any hardware engineer attempting to design small peripherals without

separate mains power supply connections. Designers nevertheless succeeded in working

around the limitation by including circuits that scavenged power from the I/O pins them-

selves. The technique is illustrated in Fig. 16 – a diode network, effectively a large-scale

generalisation of a full-wave rectifier circuit, synthesises power rails effectively by imple-

menting a minimum/maximum function on the voltages that are present. The clamping,

smoothing and DC-DC converter circuitry takes the potentially rather unpredictable raw

output from the diode network and turns it into clean power that can be safely used to

power up discovery circuitry prior to permanent routes being put in place.

Given suitable power scavenging circuits, a feasible power-up procedure for a large,

manifold-of-manifolds architecture might be follows:

1. Power is applied to the first manifold through any arbitrary power pin.

2. The power scavenger circuit synthesises a suitable voltage rail for the embedded

processor and discovery hardware responsible for the manifold.

3. All switches within the manifold are initialised to open circuit

4. The power connection is detected, then connected via the manifold, thereby dis-

abling the diode network. This step avoids the inherent voltage drop across the

diode network, whilst also reducing power consumption and heat dissipation slightly.

5. The manifold starts to listen for connection requests from other subsystems (see

Section 3.4.3)

6. Power is temporarily routed to arbitrary pins on neighbouring subsystems that cur-

rently do not appear to be active, giving them the chance to power up and begin

their own discovery process. They may request that power is supplied through a

different pin, if necessary, or request that the existing pin should remain connected

indefinitely6.

Eventually, all subsystems will be powered up, with the discovery process continuing

to bring online all other necessary connections.

3.4.2 Watchdogs

It is standard practice for embedded processors in high reliability, mission critical and

safety critical systems to be equipped with watchdog circuits, see Fig. 17.

6though it may be subject to change as part of the self-test algorithm

3.4 DYNAMIC DISCOVERY 19

Embedded

CPU

Timer
Reset Reset Time OutI/O Port

Figure 17: Typical watchdog circuit

A watchdog circuit is essentially a simple timer that is periodically reset by the host

processor in such a way that, if the host processor happens to fail to reset it within a

predetermined interval, the watchdog timer performs a hard reset on the host processor.

Generally, this is integrated into a critical loop within the embedded software, such that

if the program crashes this will cause the timer to fail to be reset, causing an automatic

restart of the processor.

At a simplistic level, there is no reason why such a restart should cause problems

for a manifold-of-manifolds architecture, though careful attention must be given to the

following issues:

1. In the event of a watchdog reset, all external connections must be torn down, just

in case the crash was itself caused by a faulty connection or, for example, by a SEE

affecting the manifold itself.

2. Any negotiation protocol must be able to cope, e.g. by implementing timeouts,

with connections going down without any corresponding explicit notification.

3.4.3 Discovery probe circuits

Connection discovery depends upon an ability to safely probe connections to find out

what neighbouring subsystem they are connected to. The outline circuit shown in Fig. 18

shows how a suitable ‘discovery probe’ might be implemented. The circuit shows a

UART (bidirectional serial interface) connected to a host processor, whose serial I/O

ports (marked TxD and RxD) assume good quality, logic-level signals. On the transmit

side, the signal is first buffered in order to protect the UART, then high pass filtered to

achieve AC coupling and connected to the probe output via a resistor, whose value should

be carefully selected in order to limit worst case current in the event of an accidental con-

nection to a power or high current analogue signal to a level that can not cause damage.

On the receive side, a similar current limiting resistor and high pass network protects the

active components from direct connection to otherwise potentially damaging signals. A

DC-coupled linear amplifier boosts the signal, then a Schmidt trigger (comparator with

hysteresis) squares up the signal and raises it to logic levels suitable for the RxD input of

3.4 DYNAMIC DISCOVERY 20

Embedded

CPU

UART

TxD

RxD

Gain

Buffer

To routing

network

Figure 18: A possible discovery probe circuit

Packet

Header

Sync

Waveform
Payload Checksum

Figure 19: Typical packet format

the UART. Current limiting resistors should be chosen with values that are not too over-

specified, since lower values are likely to result in better noise performance and higher

achievable data rates.

In essence, the probe circuit is a simplified, extremely robust variation of a shared

bus CSMA/CD network interface, in the style of 10Base2 Ethernet. AC coupling and

a relatively high series resistance minimises the chance of damage due to accidental

connection to higher voltage signals, whilst the ability to send and receive digital data

without needing to switch between transmit and receive modes makes implementing

higher level protocols relatively straightforward.

Sending serial data across AC coupled connections requires careful design of the low-

level line protocol. Sending, for example, a long string of ones will cause the voltage to

decay back to a centre value over a period of time that is determined by the time con-

stant of the high pass filter. Similarly, a data packet that consists predominantly of ones

(or zeros) will tend to shift away from the most common value, causing an unwanted

DC bias and consequential reduction in noise margins. Typically this is addressed by

arranging for the data encoding to implicitly retain an equal number of 0s and 1s – a

trivial, though inefficient, approach is to spread an 8 bit byte across 16 bits, where each

input bit corresponds to an inverted and a non-inverted copy in the output word. More

efficient encodings exist that spread 2 bytes across 24 bits.

3.4.4 Line protocol

The main function of a suitable line protocol is to allow the discovery of of connections,

then to allow routing negotiation for signals. Probe circuits will typically alternate be-

tween sending packets that announce the identity of the relevant wire and listening for

incoming packets that identify the other side of the connection. A suitable packet format

is likely to follow the pattern shown in Fig. 19. Initially, a synchronisation waveform

begins the transmission, whose purpose is to overcome any DC bias, whilst allowing the

4. DYNAMIC TESTING AND FAULT RECOVERY 21

receiving UART time to lock on to the data. A packet header follows, identifying the kind

of packet that is being sent, followed by the packet payload and finally a checksum.

3.4.5 Connection establishment

Connections are established as follows (assuming a single manifold):

1. Both endpoints announce their identity, and announce the identifier of the signal

that they wish to connect to.

2. Manifold detects the announcements

3. Manifold replies to both end points to say that the connection is being established,

then ceases to probe either connection

4. Manifold establishes the connection, within a predetermined maximum time inter-

val

5. Both endpoints are now free to use the connection.

More complex manifold-of-manifolds architectures will require more complex nego-

tiation and routing, though the necessary protocols are likely to remain similar.

3.4.6 Stale connection tear-down

In the event that a subsystem crashes, stale connections should be torn down after a

known time-out interval. The discovery probe protocol should also allow a connection to

be torn down more rapidly by announcing that a neighbouring connection is no longer in

use. Assuming that a dynamic testing and fault recovery process will be continuously ap-

plied, there is no requirement for a ‘keep alive’ protocol to ensure that valid connections

stay up (see also Section4).

4 Dynamic testing and fault recovery

The same probe architecture necessary for discovery is also well suited to end-to-end

testing of connections – if a connection is faulty (e.g. open circuit, shorted to ground or

shorted to power), it will not be used, since the discovery process will fail to recognise

it. As a consequence of this, at least for a short time after the discovery process has

completed, all discovered connections may be regarded as functioning correctly. Over

time, there is an increasing probability that, for example, permanent latch-up damage to

a digital crossbar switch, may cause one or more connections to fail. This limitation can

be avoided by constantly re-testing connections, ideally such that no connection may be

established for a period longer than the minimum necessary to achieve the desired level

of reliability.

4.1 FAULT RECOVERY PROTOCOL 22

4.1 Fault recovery protocol

There is actually no specific requirement to implement a fault recovery protocol as-such;

the ability to set up and tear down connections, with make-before-break capabilities, is

sufficient. Each end-point manifold should implement the following procedure (discov-

ery and initial establishment of connections is assumed to have happened already):

1. Choose a signal on a round-robin basis

2. Establish a second route to the same remote end-point through the discovery proto-

col, which has the side-effect of ensuring that end-to-end connectivity is currently

valid.

3. Connect the signal to the newly established route, at both ends, whilst leaving the

original connection in place

4. Tear down the original connection

5. Repeat.

Note that in larger systems, connections between manifolds must always provide

sufficient spare connections to allow the discovery protocol to remain in operation at all

times.

The stale connection timeout (see Section 3.4.6) should be longer than the worst-case

time necessary to cycle through all connections.

When a connection fails, it will be repaired automatically the next time that the fault

recovery procedure cycles through the relevant signal, because the failed route will no

longer be detected, so it will naturally fall out of the pool of available connections.

4.2 Graceful degradation

In a situation where cumulative failures have exceeded the number of available connec-

tions, it is sensible to define a graceful degradation strategy in order to maximise the

spacecraft’s remaining functionality. A simple approach is to rank all signals in order of

importance, with signals toward the end of the list simply being disconnected if insuffi-

cient connectivity is available, though more sophisticated approaches may allow greater

levels of recovery:

Routing signals on a less-ideal sub-manifold Normally, for example, digital data would

be routed through dedicated digital switch networks. In the event that insufficient

digital switching capacity remains, it is potentially feasible to route signals through

spare capacity in other switch networks, e.g. via MEMS switching that would nor-

mally be used for microwave signals or via high speed analogue routes.

Multiplexing Manifolds could potentially be equipped with multiplexing hardware, in

order that multiple low speed signals could be routed through a single connection.

Though this may degrade any signals carried in this way, it may still be preferable

to disconnecting signals entirely.

5. CONCLUSIONS 23

Emergency backup routing As an extension to the multiplexing approach, in an emer-

gency backup routes could be established by non-standard means, such as via low

power local digital radio links.

5 Conclusions

At the time of writing, this project is at a relatively early stage; nevertheless, it is possible

Se determine the following advantages of reconfigurable manifolds over conventional

fixed-architecture spacecraft wiring harnesses:

Cost Reduction Since a reconfigurable manifold doesn’t need to be designed from-scratch

for each satellite, considerable cost reductions in terms of initial design, validation

and verification are likely.

Reduction in Time To Launch (Responsive Space) Reduced design effort has a direct

effect in terms of calendar time, potentially helping reduce a design process that is

conventionally measured in years to just weeks or even days.

Possibility for Re-purposing After Launch If a spacecraft is no longer required for its

initial purpose, given a modular design, it is quite likely that it could be re-purposed

after launch at very low cost. For example, an imaging satellite with excess com-

munications bandwidth could, assuming it has enough fuel, be shifted to another

orbit to act as a communications relay.

Disaster Recovery Now legendary, the recovery of Apollo 13 after an explosion that

deprived the command module of all three of its fuel cells and its entire oxygen

reserve, with all crew alive and unhurt [12], was a direct consequence of heroic

efforts to jury-rig the lunar lander’s oxygen systems in order to keep the crew alive.

A conventional satellite has no astronauts with a kit of spare parts available to

make repairs – typically, failures tend to be terminal. A reconfigurable manifold

offers great potential for jury-rigging the craft, either from Earth or possibly au-

tonomously, so as to allow it to continue with some or all of its mission.

Mass reduction By sharing redundant wiring capacity across all subsystems, the total

amount of copper necessary is reduced considerably in comparison with modular-

redundant conventional wiring. At approximately $30,000 per Kg to low earth

orbit, even small savings can have considerable consequences in terms of cost.

5.1 Future Work

We conjecture that, in general, make-before-break switching is not feasible for permu-

tation network based switch fabrics; further theoretical work is necessary in order to

confirm this assumption. Ideally, it is hoped that a (probably non-optimal) permutation

network architecture might be possible that can cope with interruption-free reconfigura-

tion, though it is not clear at the time of writing how this might be achieved.

REFERENCES 24

Many, if not all of the prerequisites for the practical construction of satellites based

upon reconfigurable manifold technology are well-established, so the problem is primar-

ily one of systems integration rather than difficult original R&D. The next step we intend

to take is to build a software simulation of a reconfigurable manifold in order to test the

feasibility of the approach. Beyond that, given appropriate funding and the necessary

political will, it just remains to design a practical implementation and, hopefully, to trial

it in space.

Acknowledgements

This work was supported by the US Air Force Office of Scientific Research Space Vehicles

Directorate, through an EOARD grant. The first author wishes to thank AFOSR at Kirt-

land AFB, and Jim Lyke in particular, for their help and advice, without which this work

would not have been possible.

References

[1] AD8116 - 200 MHz, 16 × 16 Buffered Video Crosspoint Switch. Analog Devices,

2006. http://www.analog.com/en/prod/0,2877,768

[2] High Performance Crossbar Switch for Virtex-II and Virtex-II Pro FPGAs. Xilinx, 2006.

www.xilinx.com/esp/xbarswitch.htm.

[3] BOHRINGER, K. F. A docking system for microsatellites based on microelectrome-

chanical system actuator arrays. Tech. Rep. AFRL-VS-TR-2000-1099, US Air Force

Research Laboratory, Space Vehicles Directorate, September 2000.

[4] BREI, D., AND CLEMENT, J. Proof-of-concept investigation of active velcro for smart

attachment mechanisms. Tech. Rep. AFRL-VS-TR-2000-1097, US Air Force Research

Laboratory, Space Vehicles Directorate, September 2000.

[5] BREI, D., AND CLEMENT, J. Velcro for smart attachment mechanisms. Tech. Rep.

AFRL-VS-TR-2001-1104, US Air Force Research Laboratory, Space Vehicles Direc-

torate, August 2001.

[6] CLEMENT, J. W., AND BREI, D. E. Proof-of-concept investigation of Active Velcro

for smart attachment mechanisms. In In Proc. 42nd AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference and Exhibit (2001). AIAA

Paper 2001-1503 (AIAA Accession number 25238).

[7] FOUST, J. Smallsats and standardization. The Space Review (2005).

[8] JOSHI, P. B. On-orbit asssembly of a universally interlocking modular spacecraft

(7225-020). Tech. Rep. NASA SBIR 2003 Solicitation Proposal 03- II F5.03-8890,

NASA, 2003.

REFERENCES 25

[9] LYKE, J., WILSON, W., AND CONTINO, P. MEMS-based reconfigurable manifold. In

Proc. MAPLD (2005).

[10] STOICA, A., ARSLAN, T., KEYMEULEN, D., DUONG, V., GUO, X., ZEBULUM, R., FER-

GUSON, I., AND DAUD, T. Evolutionary recovery of electronic circuits from radiation

induced faults. In Proc. IEEE Conference on Evolutionary Computation (2004), CEC.

[11] SUH, J. W., DARLING, R. B., BOHRINGER, K. F., DONALD, B., BALTES, H., AND

KOVACS, G. T. A. SMOS integrated ciliary actuator array as a general-purpose

micromanipulation tool for small objects. 1999.

[12] TURNILL, R. The Moonlandings: an eyewitness account. Cambridge, 2003.

	seger.pdf
	The design of a floating point unit using the Integrated Design and Verification (IDV) system.
	Dr. Carl Seger, Strategic CAD Labs, Intel Corp.

