
CSPM : A Reference Manual

Bryan Scattergood, Philip Armstrong

January 24, 2011

1 Introduction

The machine-readable dialect of CSP (CSPM) is one result of a research
effort 1 with the primary aim of encouraging the creation of tools for CSP.
FDR was the first tool to utilise the dialect, and to some extent FDR and
CSPM continue to evolve in parallel, but the basic research results are pub-
licly available (see later for more details). The language described here is
that implemented by the 2.91 release of FDR.

CSPM combines the CSP process algebra with an expression language
which, while inspired by languages like Miranda/Orwell and Haskell/Gofer,
has been modified to support the idioms of CSP. The fundamental features of
those languages are, however, retained: the lack of any notion of assignment,
the ability to treat functions as first-class objects, and a lazy reduction
strategy.

Scripts

Programming languages are used to describe algorithms in a form which
can be executed. CSPM includes a functional programming language, but
its primary purpose is different: it is there to support the description of
parallel systems in a form which can be automatically manipulated. CSPM

scripts should, therefore, be regarded as defining a number of processes
rather than a program in the usual sense.

1This Appendix was written by Bryan Scattergood, of Formal Systems (Europe) Ltd.
He is the main developer and implementor of this version of CSP. It has been updated for
the latest CSPM release by Philip Armstrong. Comments and queries about the notation,
and potential tool developers who wish to use these results, should contact him by email:
philip.armstrong@comlab.ox.ac.uk .

1

2 Expressions

At a basic level, a CSPM script defines processes, along with supporting
functions and expressions. CSP draws freely on mathematics for these sup-
porting terms, so the CSPM expression-language is rich and includes direct
support for sequences, sets, booleans, tuples, user-defined types, local defi-
nitions, pattern matching and lambda terms.

We will use the following variables to stand for expressions of various
types.

m, n numbers
s, t sequences
a, A sets (the latter a set of sets)
b boolean
p, q processes
e events
c channel
x general expression

When writing out equivalences, z and z’ are assumed to be fresh vari-
ables which do not introduce conflicts with the surrounding expressions.

Identifiers

Identifiers in CSPM begin with an alphabetic character and are followed by
any number of alphanumeric characters or underscores optionally followed
by any number of prime characters (’). There is no limit on the length
of identifiers and case is significant. Identifiers with a trailing underscore
(such as fnargle_) are reserved for machine-generated code such as that
produced by Casper [?].

CSPM enforces no restrictions on the use of upper/lower-case letters in
identifiers (unlike some functional languages where only data type construc-
tors can have initial capital letters.) It is, however, common for users to
adopt some convention on the use of identifiers. For example

• Processes all in capitals (BUTTON, ELEVATOR_TWO)

• Types and type constructors with initial capitals (User, Dial, DropLine)

• Functions and channels all in lower-case (sum, reverse, in, out, open_door)

Note that while it is reasonable to use single character identifiers (P, c,
T) for small illustrative examples, real scripts should use longer and more
descriptive names.

2

Numbers

Syntax

12 integer literal
m+n, m-n sum and difference
-m unary minus
m*n product
m/n, m%n quotient and remainder

Remarks

Integer arithmetic is defined to support values between -2147483647 and
2147483647 inclusive, that is those numbers representable by an underly-
ing 32-bit representation (either signed or twos-complement.) The effect of
overflow is not defined: it may produce an error, or it may silently wrap in
unpredictable ways and so should not be relied upon.

The division and remainder operations are defined so that, for n 6= 0,

m = n ∗ (m/n) + m%n
| m%n | < | n |

m%n > 0 (provided n > 0)

so that, for positive divisors, division rounds down and the remainder oper-
ation yields a positive result.

Floating point numbers (introduced experimentally for Pravda [?]) are
not currently supported by FDR. Although the syntax for them is still en-
abled, it is not documented here.

3

Sequences

Syntax

<>, <1,2,3> sequence literals
<m..n> closed range (from integer m to n inclusive)
<m..> open range (from integer m upwards)
s^t sequence catenation
#s, length(s) length of a sequence
null(s) test if a sequence is empty
head(s) the first element of a non-empty sequence
tail(s) all but the first element of a non-empty sequence
concat(s) join together a sequence of sequences
elem(x,s) test if an element occurs in a sequence
<x1,..., xn| x<-s, b> comprehension

Equivalences

null(s) ≡ s==<>
<m..n> ≡ if m<=n then <m>^<m+1..n> else <>

elem(x,s) ≡ not null(< z | z<-s, z==x >)

< x | > ≡ < x >

< x | b, ...> ≡ if b then < x | ...> else <>

< x | x ′<-s, ...> ≡ concat(< < x | ...> | x ′<-s >)

Remarks

All the elements of a sequence must have the same type. concat and elem
behave as if defined by

concat(s) = if null(s) then <> else head(s)^concat(tail(s))
elem(_, <>) = false
elem(e, <x>^s) = e==x or elem(e,s)

The following function tests if a sequence reads the same forwards and back-
wards

palindrome(<x>^s^<y>) = x==y and palindrome(s)
palindrome(_) = true

4

Sets

Syntax

{1,2,3} set literal
{m..n} closed range (between integers m and n inclusive)
{m..} open range (from integer m upwards)
union(a1,a2) set union
inter(a1,a2) set intersection
diff(a1,a2) set difference
Union(A) distributed union
Inter(A) distributed intersection (A must be non-empty)
member(x,a) membership test
card(a) cardinality (count elements)
empty(a) check for empty set
set(s) convert a sequence to a set
Set(a) all subsets of a (powerset construction)
seq(s) convert a set to a sequence (in an arbitrary order)
Seq(a) set of sequences over a (infinite if a is not empty)
{x1,..., xn| x<-a, b} comprehension

Equivalences

union(a1,a2) ≡ { z,z’ | z<-a1, z’<-a2 }

inter(a1,a2) ≡ { z | z<-a1, member(z,a2) }

diff(a1,a2) ≡ { z | z<-a1, not member(z,a2) }

Union(A) ≡ { z | z’<-A, z<-z’ }

member(x,a) ≡ not empty({ z | z<-a, z==x })

Seq(a) ≡ union({<>}, {<z>^z’ | z<-a, z’<-Seq(a)})
{ x | } ≡ { x }

{ x | b, ...} ≡ if b then { x | ...} else {}

{ x | x ′<-a, ...} ≡ Union({ { x | ...} | x ′<-a })

Remarks

In order to remove duplicates, sets need to compare their elements for equal-
ity, so only those types where equality is defined may be placed in sets. In
particular, sets of processes are not permitted. See the section on pattern
matching for an example of how to convert a set into a sequence by sorting.

5

Alternatively, the seq() function will create a sequence from a set in some
arbitrary order.

Sets of negative numbers ({ -2}) require a space between the opening
bracket and minus sign to prevent it being confused with block comment.

Booleans

Syntax

true, false boolean literals
b1 and b2 boolean and (shortcut)
b1 or b2 boolean or (shortcut)
not b boolean not
x1==x2, x1!=x2 equality operations
x1<x2, x1>x2, x1<=x2, x1>=x2 ordering operations
if b then x1 else x2 conditional expression

Equivalences

b1 and b2 ≡ if b1 then b2 else false

b1 or b2 ≡ if b1 then true else b2

not b ≡ if b then false else true

Remarks

Equality operations are defined on all types except those containing pro-
cesses and functions (lambda terms).

Ordering operations are defined on sets, sequences and tuples as follows

x1 >= x2 ≡ x2 <= x1

x1 < x2 ≡ x1 <= x2 and x1 != x2

a1 <= a2 ≡ a1 is a subset of a2

s1 <= s2 ≡ s1 is a prefix of s2
(x1,y1) <= (x2,y2) ≡ x1 < x2 or (x1 == x2 and y1 <= y2)

Ordering operations are not defined on booleans or user-defined types.

if b then {1} else <2>

6

is an error.
A standalone type checker for CSPM is available which will catch this

kind of error prior to compilation. It is not currently bundled with FDR2
as some CSPM scripts have infinite types that the type checker is unable to
check in finite time. The type checker can still be very useful for debugging
the majority of CSPM scripts and its use is strongly advised.

Tuples

Syntax

(1,2), (4,<>,{7}) pair and triple

Remarks

Function application also uses parentheses, so functions which take a tuple
as their argument need two sets of parentheses. For example the function
which adds together the elements of a pair can be written either as

plus((x,y)) = x+y

or as

plus(p) = let (x,y) = p within x + y

The same notation is used in type definitions to denote the corresponding
product type. For example, if we have

nametype T = ({0..2},{1,3})

then T is

{ (0,1), (0,3), (1,1), (1,3), (2,1), (2,3) }

Local definitions

Definitions can be made local to an expression by enclosing them in a
‘let within’ clause.

primes =
let
factors(n) = < m | m <- <2..n-1>, n%m == 0 >
is_prime(n) = null(factors(n))

within < n | n <- <2..>, is_prime(n) >

7

Local definitions are mutually recursive, just like top-level definitions.
Not all definitions can be scoped in this way: channel and datatype defi-
nitions are only permitted at the top-level. Transparent definitions can be
localized, and this can be used to import FDR’s compression operations on
a selective basis. For example,

my_compress(p) =
let
transparent normal, diamond

within normal(diamond(p))

Lambda terms

Syntax

\ x1, ...xn @ x lambda term (nameless function)

Equivalences

The definition

f(x,y,z) = x+y+z

is equivalent to the definition

f = \ x, y, z @ x+y+z

Remarks

There is no direct way of defining an anonymous function with multiple
branches. The same effect can be achieved by using a local definition and
the above equivalence. Functions can both take functions as arguments and
return them as results.

map(f)(s) = < f(x) | x <- s >
twice(n) = n*2
assert map(\ n @ n+1)(<3,7,2>) == <4,8,3>
assert map(map(twice))(< <9,2>, <1> >) == < <18,4>, <2> >

3 Pattern matching

Many of the above examples made use of pattern matching to decompose
values. For example, we can write

8

reverse(<>) = <>
reverse(<x>^s) = reverse(s)^<x>

as well as

reverse(s) = if null(s) then <> else reverse(tail(s)) ^ <head(s)>

The branches of a function definition must be adjacent in the script,
otherwise the function name will be reported as multiply defined.

Patterns can occur in many places within CSPM scripts

• Function definitions (reverse above)

• Direct definitions (x,y) = (7,2)

• Comprehensions { x+y | (x,y) <- {(1,2),(2,3)} }

• Replicated operators ||| (x,y):{(1,2),(2,3)} @ c!x+y->STOP

• Communications d?(x,y)->c!x+y->STOP

The patterns which are handled in these cases are the same, but the
behaviour in the first two cases is different. During comprehensions, repli-
cated operators and communications we can simply discard values which
fail to match the pattern: we have a number of such values to consider so
this is natural. When a function fails to match its argument (or a definition
its value) silently ignoring it is not an option so an error is raised. On the
other hand, functions can have multiple branches (as in the case of reverse)
which are tried in top to bottom order while the other constructs only allow
a single pattern. For example,

f(0,x) = x
f(1,x) = x+1
print f(1,2) -- gives 3
print f(2,1) -- gives an error
print { x+1 | (1,x) <- { (1,2), (2,7) } } -- gives {3}

The space of patterns is defined by

1. Integer literals match only the corresponding numeric value.

2. Underscore (_) always matches.

3. An identifier always matches, binding the identifier to the value.

9

4. A tuple of patterns is a pattern matching tuples of the same size.
Attempting to match tuples of a different size is an error rather than
a match failure.

5. A simple sequence of patterns is a pattern (<x,y,z>) matching se-
quences of that length.

6. The catenation of two patterns is a pattern matching a sequence which
is long enough, provided at least one of the sub-patterns has a fixed
length.

7. The empty set is a pattern matching only empty sets.

8. A singleton set of a pattern is a pattern matching sets with one ele-
ment.

9. A data type tag (or channel name) is a pattern matching only that
tag.

10. The dot of two patterns is a pattern. (A.x)

11. The combination of two patterns using @@ is a pattern which matches
a value only when both patterns do.

12. A pattern may not contain any identifier more than once.

For example, {}, ({x},{y}) and <x,y>^_^<u,v> are valid patterns.
However, {x,y} and <x>^s^t are not valid patterns since the decompo-
sition of the value matched is not uniquely defined. Also (x,x) is not a
valid pattern by rule 12: the effect that this achieves in some functional
languages requires an explicit equality check in CSPM .

When a pattern matches a value, all of the (non-tag) identifiers in the
pattern are bound to the corresponding part of the value.

The fact that tags are treated as patterns rather than identifiers can
cause confusion if common identifiers are used as tags. For example, given

channel n : {0..9}
f(n) = n+1

attempting to evaluate the expression f(3) will report that the function
\ n @ n+1 does not accept the value 3. (It accepts only the tag n.)

Only names defined as tags are special when used for pattern matching.
For example, given

10

datatype T = A | B
x = A
f(x) = 0
f(_) = 1
g(A) = 0
g(_) = 1

then f is not the same as g since f(B) is 0 while g(B) is 1.
The singleton-set pattern allows us to define the function which picks

the unique element from a set as

pick({x}) = x

This function is surprisingly powerful. For example, it allows us to define a
sort function from sets to sequences.

sort(f,a) =
let
below(x) = card({ y | y<-a, f(y,x) })
pairs = { (x, below(x)) | x <- a }
select(i) = pick({ x | (x,n)<-pairs, i==n })

within < select(i) | i <-<1..card(a)> >

where the first argument represents a <= relation on the elements of the
second. Because pick works only when presented with the singleton set, the
sort function is defined only when the function f provides a total ordering
on the set a.

4 Types

Simple types

Types are associated at a fundamental level with the set of elements that the
type contains. Type expressions can occur only as part of the definition of
channels or other types, but the name of a type can be used anywhere that a
set is required. The fundamental types supported by the CSPM interpreter
are Int, the type of integer values; Bool, the type of boolean values and
Proc, the type of processes. So

{0..3} <= Int
{true, false} == Bool

11

Processes can be constituents of datatypes (see below) and sequences,
but not sets since they are incomparable.

In type expressions the tuple syntax denotes a product type and the dot
operation denotes a composite type so that

({0,1},{2,3}) denotes {(0,2),(0,3),(1,2),(1,3)}

{0,1}.{2,3} denotes {0.2, 0.3, 1.2, 1.3}

The Set and Seq functions which return the powerset and sequence space
of their arguments are also useful in type expressions.

Named types

Nametype definitions associate a name with a type expression, meaning
that ‘.’ and ‘(, ,)’ operate on it as type constructors rather than value
expressions. For example,

nametype Values = {0..199}
nametype Ranges = Values . Values

has the same effect as

Values = {0..199}
Ranges = { x.y | x<-Values, y<-Values }

If, on the other hand, we had left Values as an ordinary set, Values . Values
would have had the entirely different meaning of two copies of the set Values
joined by the infix dot. Similarly the expression (Values,Values) means
either the Cartesian product of Values with itself or a pair of two sets
depending on the same distinction.

Data types

Syntax

datatype T = A.{0..3} | B.Set({0,1}) | C definition of type
A.0, B.{0}, B.{0,1}, C four uses of type

Remarks

Data types may not be parameterized (T may not have arguments).
The datatype corresponds to the variant-record construct of languages

like Pascal. At the simplest level it can be used to define a number of atomic
constants

12

datatype SimpleColour = Red | Green | Blue

but values can also be associated with the tags

Gun = {0..15}
datatype ComplexColour = RGB.Gun.Gun.Gun | Grey.Gun | Black | White

Values are combined with ‘.’ and labelled using the appropriate tag, so
that we could write

make_colour((r.g.b)@@x) =
if r!=g or g!=b then RGB.x else
if r==0 then Black else
if r==15 then White else Grey.r

to encode a colour as briefly as possible.
Note that while it is possible to write

datatype SlowComplexCol = RGB.{r.g.b | r<-Gun, g<-Gun, b<-Gun} | ...

this is less efficient and the resulting type must still be rectangular, that is
expressible as a simple product type. Hence it is not legal to write

datatype BrokenComplexColour = -- NOT RECTANGULAR
RGB.{r.g.b | r<-Gun, g<-Gun, b<-Gun, r+g+b < 128 } | ...

Channels

Syntax

channel flip, flop simple channels
channel c, d : {0..3}.LEVEL channels with more complex protocol
Events the type of all defined events

Remarks

Channels are tags which form the basis for events. A channel becomes an
event when enough values have been supplied to complete it (for example
flop above is an event). In the same way, given

datatype T = A.{0..3} | ...

we know that A.1 is a value of type T, given

channel c : {0..3}

13

we know that c.1 is a value of type Event. Indeed, the channel definitions
in a script can be regarded as a distributed definition for the built-in Events
data type.

Channels must also be rectangular in the same sense as used for data
types. It is common in FDR2 to make channels finite although it is possible
to declare infinite channels and use only a finite proportion of them.

Channels interact naturally with data types to give the functionality
provided by variant channels in occam2 (and channels of variants in occam3.)
For example, given ComplexColour as above, we can write a process which
strips out the redundant colour encodings (undoing the work performed by
make_colour)

channel colour : ComplexColour
channel standard : Gun.Gun.Gun

Standardize =
colour.RGB?x -> standard!x -> Standardize

[]
colour.Grey?x -> standard!x.x.x -> Standardize

[]
colour.Black -> standard!0.0.0 -> Standardize

[]
colour.White -> standard!15.15.15 -> Standardize

It is not possible to communicate a value containing a Process over a
channel.

Closure operations

Syntax

extensions(x) The set of values which will ‘complete’ x
productions(x) The set of values which begin with x
{|x1,x2|} The productions of x1 and x2

Equivalences

productions(x) ≡ { x.z | z<-extensions(x) }

{|x | ...|} ≡ Union({ productions(x) | ...})

14

Remarks

The main use for the {| |} syntax is in writing communication sets as part
of the various parallel operators. For example, given

channel c : {0..9}
P = c!7->SKIP [| {| c |} |] c?x->Q(x)

we cannot use {c} as the synchronization set; it denotes the singleton set
containing the channel c, not the set of events associated with that channel.

All of the closure operations can be used on data type values as well as
channels. They are defined even when the supplied values are complete. (In
that case extensions will supply the singleton set consisting of the identity
value for the ‘.’ operation.)

15

5 Processes

Syntax

STOP no actions
SKIP successful termination
c->p simple prefix
c?x?x ′:a!y->p complex prefix
p;q sequential composition
p/\q interrupt
p\a hiding
p[]q external choice
p|~|q internal choice
p[>q untimed time-out
p[|a|>q exception
b & p boolean guard
p[[a<- b]] renaming
p|||q interleaving
p[|a|]q sharing
p[a||a ′]q alphabetized parallel
p[c<->c′]q linked parallel
;x:s@p replicated sequential composition
[]x:a@p replicated external choice
|~|x:a@p replicated internal choice (a must be non-empty)
|||x:a@p replicated interleave
[|a ′|]x:a@p replicated sharing
||x:a@[a ′]p replicated alphabetized parallel
[c<->c′]x:s@p replicated linked parallel (s must be non-null)

Equivalences

As a consequence of the laws of CSP,

p|||q ≡ p[| {} |]q
;x:<>@p ≡ SKIP

[]x:{}@p ≡ STOP

|||x:{}@p ≡ SKIP

[|a|]x:{}@p ≡ SKIP

||x:{}[a]p ≡ SKIP

16

Remarks

The general form of the prefix operator is cf ->p where c is a communication
channel, f a number of communication fields and p is the process which is
the scope of the prefix. A communication field can be

!x Output
?x:A Constrained input
?x Unconstrained input

Fields are processed left to right with the binding produced by any input
fields available to any subsequent fields. For example, we can write

channel ints : Int.Int
P = ints?x?y:{x-1..x+1} -> SKIP

Output fields behave as suggested by the equivalence

c !x f -> p ≡ c.x f -> p

The proportion of the channel matched by an input fields is based only
on the input pattern. There is no lookahead, so if

channel c : {0..9}.{0..9}.Bool
P = c?x!true -> SKIP -- this will not work
Q = c?x.y!true -> SKIP -- but this will

then P is not correctly defined. The input pattern x will match the next
complete value from the channel ({0..9}) and true will then fail to match
the next copy of {0..9}. In the case of @@ patterns, the decomposition is
based on the left-hand side of the pattern.

If an input occurs as the final communication field it will match any
remaining values, as in

channel c : Bool.{0..9}.{0..9}
P = c!true?x -> SKIP -- this will work
Q = c!true?x.y -> SKIP -- this will also work

This special case allows for the construction of generic buffers.

BUFF(in,out) = in?x -> out!x -> BUFF(in, out)

17

is a one place buffer for any pair of channels.
Dots do not directly form part of a prefix: any which do occur are either

part of the channel c, or the communication fields. (FDR1 took the approach
that dots simply repeated the direction of the preceding communication field.
This is a simplification which holds only in the absence of data type tags.)

The guard construct ‘b & P’ is a convenient shorthand for

if b then P else STOP

and is commonly used with the external choice operator ([]), as

COUNT(lo,n,hi) =
lo < n & down -> COUNT(lo,n-1,hi)

[]
n < hi & up -> COUNT(lo,n+1, hi)

This exploits the CSP law that p[]STOP = p.
The linked parallel and renaming operations both use the comprehension

syntax for expressing complex linkages and renamings. For example,

p [right.i<->left.((i+1)%n), send<->recv | i<-{0..n-1}] q
p [[left.i <- left.((i+1)%n), left.0<-send | i<-{0..n-1}]]

Both the links (c<->c’) and the renaming pairs (c<-c’, read ‘becomes’)
take channels of the same type on each side and extend these pointwise as
required. For example

p [[c <- d]]

is defined when extensions(c) is the same as extensions(d) and is then
the same as

p [[c.x <- d.x | x<-extensions(c)]]

The replicated operators allow multiple generators between the operator
and the @ sign in the same way as comprehensions. The terms are evaluated
left to right, with the rightmost term varying most quickly. So

; x:<1..3>, y:<1..3>, x!=y @ c!x.y->SKIP

is the same as

c.1.2->c.1.3->c.2.1->c.2.3->c.3.1->c.3.2->SKIP

The linked parallel operator generalizes the chaining operator �. For
example, if COPY implements a single place buffer,

18

COPY(in,out) =
in?x -> out!x -> COPY(in,out)

then we can implement an n-place buffer by

BUFF(n,in,out) =
[out<->in] i : <1..n> @ COPY(in, out)

The precedence rules for operators (both process and expression level)
are set out in Table 1. The replicated versions of the process operators have
the lowest precedence of all. The @@ pattern operator has a precedence just
below that of function application.

6 Special definitions

External

External definitions are used to enable additional ‘magic’ functions sup-
ported by a specific tool. Requiring a definition, rather than silently insert-
ing names into the initial environment, has two advantages: any dependen-
cies on such functions are made explicit and there is no possibility that users
will introduce conflicting definitions without being aware of it. For example,
to make use of an (imaginary) frobnicate external function, we might say

external frobnicate
P(s) = c!frobnicate(s^<0>, 7) -> STOP

Without the external definition, frobnicate would be reported as an
undeclared identifier. Tools should report as an error any attempt to define
an external name which they do not recognize.

Transparent

As described in Section ??, FDR uses a number of operators that are used to
reduce the state space or otherwise optimize the underlying representation
of a process within the tool. While these could be defined using external
definitions, they are required to be semantically neutral. It is thus safe
for tools which do not understand the compression operations to ignore
them. By defining them as transparent, tools are able to do so; unrecognized
external operations would be treated as errors. As an example,

transparent diamond, normal
squidge(P) = normal(diamond(P))

19

Class Operators Description Associativity
Application f(0) function application

[[<-]] renaming
Arithmetic - unary minus

*, /, % multiplication left
+, - addition left

Sequence ^ catenation
length

Comparison <, >, <=, >= ordering none
==, != equality none

Boolean not negation
and conjunction
or disjunction

Sequential -> prefix
& guard
; sequence

Choice [> untimed time-out
/\ interrupt
[] external choice
|~| internal choice
[| |> exception

Parallel [| |], [||], [<->], parallel none
||| interleave

Other if then else conditional
let within local definitions
\ @ lambda term

Table 1: Operator precedence: the operators at the top of
the table bind more tightly than those lower down.

20

enables the diamond and normal compression operators in FDR2, while
other tools see definitions of the identity functions, as if we had written

diamond(P) = P
normal(P) = P
squidge(P) = normal(diamond(P))

Assert

Assertions are used to state properties which are believed to hold of the
other definitions in a script. (FDR1 scripts adopted a convention of defin-
ing two processes SPEC and SYSTEM, with the understanding that the check
SPEC[=SYSTEM should be performed. This has weaknesses: the correct model
for the check is not always apparent, and some scripts require multiple
checks.) The most basic form of the definition is

assert b

where b is a boolean expression. For example,

primes = ...
take(0,_) = <>
take(n,<x>^s) = <x> ^ take(n-1,s)
assert <2,3,5,7,11> == take(5, primes)

It is also possible to express refinement checks (typically for use by FDR)

assert p [m= q

where p and q are processes and m denotes the model (T, F, R pr V for
traces, failures, refusal testing or revivals models respectvely. Add D to any
of the models except traces to include divergences in the refinement check.)
Note that refinement checks cannot be used in any other context. The
(refinement) assertions in a script are used to initialize the list of checks in
FDR2.

A refinement check under the tau priority model can be written

assert p [= q :[tau priority]: s

where s is the set of prioritised externally visible events. The tau priority
syntax is only supported under the traces model in the current release of
FDR2.

Similarly, we have

21

assert p :[deterministic [FD]]
assert p :[deadlock free [F]]
assert p :[divergence free]

for the other supported checks within FDR. Only the models F and FD may
be used with the first two, with FD assumed if the model is omitted.

Note that process tests cannot be used in any other context. The process
assertions in a script are used to initialize the list of checks in FDR2.

Print

Print definitions indicate expressions to be evaluated. The standard tools in
the CSPM distribution include ‘check’ which evaluates all (non-refinement)
assertions and print definitions in a script. This can be useful when debug-
ging problems with scripts. FDR2 uses any print definitions to initialize the
list of expressions for the evaluator panel.

7 Mechanics

CSPM scripts are expressible using the 7-bit ASCII character set (which
forms part of all the ISO 8859-x character sets.) While this can make the
representation of some operators ugly, it makes it possible to handle the
scripts using many existing tools including editors, email systems and web-
browsers.

Comments can be embedded within the script using either end-of-line
comments preceded by ‘--’ or by block comments enclosed inside ‘{-’ and
‘-}’. The latter nest, so they can be safely used to comment out sections of
a script.

If it is necessary to exploit an existing library of definitions, the ‘include’
directive performs a simple textual inclusion of another script file. The
directive must start at the beginning of a line and takes a filename enclosed in
double quotes. Block comments may not straddle file boundaries (comments
cannot be opened in one file and closed in another.)

Definitions within in a script are separated by newlines. Lines may be
split before or after any binary token and before any unary token. (There
are exceptions to this rule, but they do not occur in practice.)

The attribute, embed, module, exports, endmodule, instance and
subtype keywords are currently reserved for experimental language features.

22

8 Availability

The research into tools for CSP has been sponsored by the US Office of
Naval Research under N00014-87-J1242 and as such the basic results from
that research are freely available on request. It is hoped that this will help
encourage a common input syntax between CSP-based tools. The results
include the machine-readable form of CSP complete with both denotational
and operational semantics, a congruence proof between the two semantic
models using a bridging semantics, an implementation of a parser for the
language using flex and bison to produce a syntax-tree in C++ and methods
defined over that tree which are sufficient to implement the operational
semantics.

23

