
Understanding Concurrent Systems: errata

Bill Roscoe

February 25, 2013

This document contains all mistakes and typos etc that might lead to confusion
known to the author up to the above date. They are arranged by page number.

Please let me know if you find other issues that should be listed here.

p 69 In the definition of nhd((i,j)), (i-1)/a should be i/a and (j-1)/b
should be j/b.

The definition of Symbol is {1..9}.

The final EmptyM on this page is missing parameter p.

p 70 At the end of the fourth program line EmptyB{p} should be EmptyB(p).

There is a mistaken double use of the identifier v in the defnition of FullB,
which should be

FullB(p,v) = select?q:adj(p)?w:diff(Symbol,{v}) ->FullB(p,v)
[] done -> FullB(p,v)

p 85/6 There are typos in the first line of the definition of Ii,j and on the first line of p86
(in the definition of O′i,j((x,y),p)).

In the first case the resulting process should be I′i,j((x,y),p).

In the second case the communication should be up.(i, j−1).((x,y),p).

p 110 In the statement of BL1, [b⇒ c] should read [b↔ c].

p 111 The definitions of Mu and Md should each use the same identifier for input and

1

output:

Mu = in.end→ downto.end→ upto.end→ O1
2 in?x : T→ upto!x→Md

Md = in.end→ downto.end→ upto.end→ O1
2 in?x : T→ downto!x→Mu

O1 = upfrom?x→ downfrom?y→ O2(x,y)

O2(x,y) = x = end∧ y = end&out!end→Mu
x = end∧ y 6= end&out!y→ downin?y′→ O2(x,y′)
x 6= end∧ y = end&out!x→ upin?x′→ O2(x′,y)
x 6= end∧ y 6= end& (out!x→ upin?x′→ O2(x′,y)

<I x < y>I
out!y→ downin?y′→ O2(x,y′))

p 112 Exercise 5.15. There is a mysterious reference to a process Q at the end of
this exercise. The origin of this is that the Mergesort example on the previous
page was a late substitution for Quicksort that appeared in initial drafts. The Q
referred to here is the process corresponding to M from that Quicksort, and I did
not notice the hanging reference when I changed the example.

This question makes perfect sense as an exercise in creating a recursive enslaved
system without reference to the now absent example, or the reader can adapt the
coding of Quicksort in Chapter 4 of TPC.

p 113 selother is not used correctly in the definition of EM2(x). Should be

card(X) > 0 & (selhere?v:X -> FM2
[] seladj?v -> EM2(diff(X,{v}))
[] selother?v -> EM2(X)

p 131 At the bottom of the page, the 〈P; Q〉 should read

traces(P; Q) = (traces(P)∩Σ∗)∪{sˆt | sˆ〈X〉 ∈ 〈P〉, t ∈ traces(Q)}

(i.e. replace P by traces(P) in one place.

p 140 There is a condition missing in the definition of traces(PΘA Q), which should
read:

traces(PΘA Q) = {s ∈ traces(P) | s ∈ (Σ\A)∗X}
∪{sˆ〈a〉ˆt | s ∈ (Σ\A)∗∧

sˆ〈a〉 ∈ traces(P)∧a ∈ A∧ t ∈ traces(Q)}

p 172 The process name RHSDet(P) should be replaced by RHS(P), and similarly
DetSpec should be replaced by LHS

2

p 239 The definition of failures(P4 Q) does not handle the termination (X) of P cor-
rectly. It should read:

failures(P4 Q) = {(s,X) | (s,X) ∈ failures(P)∧ (〈〉,X) ∈ failures(Q)}
∪{(sˆt,X) | s ∈ traces(P)∩Σ∗∧ (t,X) ∈ failures(Q)∧ t 6= 〈〉}
∪{(s,X),(sˆ〈X〉,X) | sˆ〈X〉 ∈ traces(P)}

p 435 Chapters 18 and 19:

There are a few cases where the quoted code in these chapters is not, despite
what it says on page 435, SVL in the sense that it would be accepted by the SVA
parser. This happened because the book was written before the latest version
of the front end. There are cases where signal has been written out in full
rather than sig, and ones where the boolean and and or operators have been
written like that rather than the correct && and ||. On p 466 the wrong comment
notation is used:-- rather than //.

Naturally the example files supplied with SVA for these chapters are all in the
correct syntax, because they parse and run. The SVA manual is the definitive
guide to syntax.

p 462 Despite what it says in the second bullet point, A does not refine the other three.
This is because it does not change the value number[i] until the computa-
tion is complete, and so the initial value 0 of this slot can be seen in contexts
impossible in the others. Running the tool on the example file will show this.

The result given was obtained on another version of this check, but not the cor-
rect one explained in the book. The result quoted on p464 is correct (though
inconsistent with p462).

p 488/9 Despite what is claimed here it is not possible to give an accurate definition of
Pri≤ in RT for general ≤.

The refusal testing value of a process P can tell us what traces are possible for
Pri≤(P): P can only perform an action a that is not maximal in ≤ when all
greater actions (including τ) are impossible. In other words the trace 〈a1, . . . ,an〉
is possible for Pri≤(P) if and only if

〈X0,a1,x1, . . . ,Xn−1,an,•〉

is a refusal testing behaviour, where Xi is • if ai−1 is maximal, and {a ∈ Σ | a >
ai−1} if not (even if that set is empty so an−1 is less than only τ and X).

We have now discovered that sometimes the refusal components of refusal test-
ing behaviours of Pri≤(P) can not be computed accurately from the correspond-
ing behaviour of P. This is because Pri≤(P) can refuse larger sets than P: notice
that if P offers all visible events, then the prioritised process refuses all that are
not maximal in ≤.

Consider the processes

DF1(X) = u{a→ DF1(X) | a ∈ X}

DF2(X) = u{?x : A→ DF1(X) | A⊆ X,A 6= /0}

3

These are equivalent in the refusal testing models: each has all possible be-
haviours with traces in Σ∗ that never refuse the whole alphabet Σ.

Now consider P1 = DF1({a,b}) |||CS and P2 = DF2({a,b}) |||CS where CS =
c→ CS. Clearly these are also refusal testing equivalent. Now suppose ≤ is the
order in which b > c and a is incomparable to each of b and c. We ask the
question: is 〈{c},a,•〉 a refusal testing behaviour of Pri≤(Pi)?

When i = 1 the answer is “no”, since whenever P1 performs the event a the set
of events it offers is precisely {a,c} (it can also offer {b,c}). On the other hand,
P2 can choose to offer {a,b,c}: in this state the priority operator prevents c from
being offered to the outside, meaning that Pri≤(P2) can be in a stable state where
a is possible but c is not: so in this case the answer is “yes”. This demonstrates
that we need more information than refusal testing of Pi to calculate the refusal
testing behaviours of Pri≤(Pi).

On close inspection this example tells us that Pri≤(·) is only compositional for
refusal testing when the structure of ≤ is such that whenever a and b are incom-
parable events in Σ and c < b then also c < a. This means that the order has to
take one of two forms:

– A linearly ordered list of collections of equally prioritised events, the first
of which contains {τ,X}.

– A linearly ordered list of collections of equally prioritised events, the first
of which is exactly {τ,X}, together with a further collection of events that
are incomparable to the members of the first two of these collections and
greater than the rest.

The second of these includes the order used for the timed priority model (see
Chapter 14), in which the only prioritisation is that {τ,X} have greater priority
than the time event(s), typically {tock}. One can1 give a compositional definition
over refusal testing models in these circumstances.

These issues disappear for the acceptance traces model FL and its variants,
which are therefore the only CSP models with respect to which our priority op-
erator can be defined in general.

With respect to this model, the semantics of Pri≤(P) are the behaviours

{〈A0,a1,A1, . . . ,An−1,an,An〉 | 〈Z0,a1,Z1, . . . ,Zn−1,an,Zn〉 ∈ P}∪
{〈A0,a1,A1, . . . ,An−1,an,•,X〉 | 〈Z0,a1,Z1, . . . ,Zn−1,an,•,X〉 ∈ P}

where in every case one of the following holds:
1The principles that apply here are, that when calculating the refusal testing behaviours of Pri≤(P) for

such a ≤, the behaviours of P considered cannot have • refusals unless the following event is incomparable
with {τ,X}, and if the following event is not maximal amongst Σ under ≤, a refusal set must contain all
greater members of Σ. If an event a follows which is not minimal, then non-• refusals X in P can give rise
to one where any subset of {b ∈ Σ | b < a} is added to X. The conditions on ≤ have the effect that any other
events that might be simultaneously avaliable to a in Pri≤(P) do not cause any further additional refusals that
a does not. Adding additional members of refusals based on the subsequent action means that, to calculate
the final refusals in behaviours of length in Pri≤(P), you need to examine those with an additional event on
the end in P.

4

– ai is maximal under≤ and Ai = • (so there is no condition on Zi except that
it exists).

– ai is not maximal under ≤ and Ai = • and Zi is not • and neither does Zi
contain any b > ai.

– Neither Ai nor Zi is •, and Ai = {a ∈ Zi | ¬∃b ∈ Zi.b > a},
– and in each case where Ai−1 6= •, ai ∈ Ai−1.

Notice how we are able, when P offers the set Z, to calculate the set that Pri≤(P)
offers: the set {a ∈ Z | ¬∃b ∈ Z.b > a}.

5

