Understanding Concurrent Systems. 2: Understanding CSP

The mathematics of CSP

There are three main ways of formalising what CSP means:
e The operational semantics discussed earlier.
e The algebraic properties of operators like O and I
o |dentifying a process with the set of its behaviours.

While each of these can tell you something by itself, they give a more
complete picture together and help to explain each other.
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Algebra

Here are some laws we are all familiar with:

rT+y=y—+ux commutative, or symmetry
TXY=yYXc ditto
rUy=yUx ditto
(x+y)+z=z+ (y+2) associativity
(z4+y) xz=(x xz)+ (y x z) (right) distributive law
O+z==2x unit law
{}yNnz=1{} zero law
rUzx =1 Idempotence

What similar laws do CSP operators satisfy?
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Laws of choice
The choice between P and P is no choice at all:
POP =P (O-idem™)
PP =P (M-idem)
The choice between P and () is the same as that between () and P:
POQ=QOP (O-sym)
Prn@Q =@QnNP~P (T-sym)
And the choice between P, () and R is the same however bracketed:
PO(QOR) = (POQ)OR (O-assoc)

PO(QMR)=(PNQ)MNR (M-assoc)
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Distributivity
If £'(-) is a CSP construct, what is the difference between
F(Pr1@Q) and F(P)MNF(Q)?

If /' doesn’t run more than one copy of its argument, none.

There is then no way of telling whether the choice was made before or

after applying F'.

Just about all individual CSP operators satisfy this principle, and
therefore have distributive laws over 'l (and also [ ]):

PO(QMR)=(POQ)N(POR) (O-dist)

POlIS =THPOQ|QeS} (O-Dist)
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a— (PM1Q) = (a—P)MN(a— Q) (prefix-dist)

A= (PNQ) = (x:A— P)r1(?z: A— Q) (input-dist)

While there are distributive laws over other operators, “distributivity”
unqualified always means over 'l and [ ].
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When distributivity fails

Operators that run their arguments more than once are usually not

distributive, for example recursion:

pp.((a—p)T1(b—p)) #
(wp.a—p) M (up.b—p)

This is because in F/(P 'l ()), the two copies may behave differently,
while in F/(P) ' F(() they must behave alike.
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Distribution the other way

Note that in set theory U and M each distribute over the other.

In CSP there is a similar phenomenon with O and . For we have not
only (O-dist), but also

PMN(QUOR) = (PNQE)O(PMNR) (M-0O-dist™)

Both processes have the same options after the first visible action
(obviously), and both can refuse exactly the same sets of actions on the

first step.

This is a theoretically important law, but not one that gets used much in

practice!
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A step law
Step laws allow us to calculate the first step actions of a process, and
are therefore central to our understanding of CSP:

The step law of O is

(7c: A= P)O0(7z:B— Q) =
7t: AUB — (P11 Q)
{z € AN B»
(P4z € A} Q))

Note how this simply formalises what we said about O before.

All operators other than prefix-choice, 'l and recursion will have a step

law.
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More laws
The laws of STOP:

STOP =7z :{}—> P (STOP-step)
STOPOP =P (O-unit)
The law of recursion:

pp.P = Plup.P/p] (u-unwind)

See the book for laws of 4.
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What are laws for?

e Provide intuition and understanding to us.
o Give sanity tests for any proposed mathematical theory/semantice.
e Can be used to prove processes equal to each other.

e With more effort, provide a complete algebraic semantics for the
language (see Chapter 13 for details).
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Traces

A trace is a sequence of visible communications that a process might

communicate: a process's history.

In general it might be finite or infinite (the latter being the history over
an infinite time) but we will consider only the finite case in this course.

In any case every prefix (initial subsequence) of an infinite trace is a

finite one.

traces(P) is the set of all P's (finite) traces, and is necessarily a
nonempty, prefix-closed subset of >* (the finite sequences formed from
). If P and () are two processes such that traces(P) = traces(Q),
then we write P =1 () and say they are trace equivalent.

The set of all such subsets of >* is called the traces model and written

T.
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Trace notation
e (ay,as,...,a,) is the sequence containing a;, as to a, in that
order. Note that (a, a,b), (a,b) and (b, a) are all different.
e () is the empty sequence.
e st is the concatenation of s and t: (a,b) (b, a) = (a,b, b, a).

o If t = s w, then s is a prefix of ¢, written s < ¢ (a partial order).
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Working out traces(P)

There is a rule for each CSP operator that shows the effect it has on

traces:

o traces(STOP) = {()}

o traces(a — P)={()} U{(a)'s |s € traces(P)} — this process has
either done nothing, or its first event was a followed by a trace of P.

o traces(Tr : A — P)={()}U{(a)’s|a € AAs € traces(Pla/z])} -
this is similar: P[a /x| means the substitution of the value a for all

free occurrences of the identifier z.
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More clauses of traces(P)
o traces(c?r : A — P)={()}U{{(c.a)’s|ac ANs €
traces(Pla/z])} — the same except for the use of the channel name.

o traces(P O @) = traces(P) U traces(()) — this process offers the
traces of P and those of ().

o traces(P 1 Q) = traces(P) U traces(()) — since this process can
behave like either P or ().

o traces([ 1S5) = J{traces(P)| P € S}

o traces(P 40} ()) = traces(P) if b evaluates to true; and traces( Q)
if b evaluates to false.

Note that the traces of P Il () and P O () are the same: this strongly
suggests that traces do not give a complete description of processes.
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Recursion

The recursion p = () (or equivalently o p.()) must (thanks to
(u-unwind)) satisfy

traces(pu p.Q) = traces(Q[up.Q/p])

In other words, traces(pp.(Q)) is a value Y satisfying Y = F(Y), where
F(X) is the traces of () when a process with traces X is substituted for

pin ().
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For example, if () is a — p,

F(X)=10tU{a)s | s € X}

Of course, not all functions from 7 to 7 have a fixed point, just as

z — = + 1 has none over the natural numbers, BUT

all CSP definable functions have a fixed point, and a /east one (that is a
subset of all others), and that is the correct value for recursions.

For example, the fixed point of F'(p) =a — p is

10, (), (a,a),(a,a,0a),.. .}

which is obviously the right answer.
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Mutual recursion

The mathematics of mutual recursion is the same, except that instead of
having functions from 7 to 7 we now have ones from 7% to itself where
A is an indexing set with one member for each mutually defined process.
T2 is the set of vectors of members of 7 indexed by A.

A may be finite: in

/N

a— P)O((b— Q)

P
Q=(c—Q)O((b—P)

A has size 2.

Or it may be infinite: in COUNT we have A = N and the function
operates on infinite vectors of trace-sets.

The value of a mutual recursion is the vector X € T which is the least
fixed point of the function from 7 to itself the recursion generates.
(The one with fewest traces in each component.)
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Fixed point theories

Two different ways of looking at this: partial orders and metric spaces.

Partial orders give more generality (work for all recursions), while metric
spaces only work for guarded ones, but the metric theory gives the most

useful proof rules.

For the underlying mathematics see book and Appendix A of TPC.
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Monotonicity and continuity

A function of T is monotonic if P C () implies F'(P) C F(Q), and
continuous if P; C P; 1 for all 7 implies

F(UPi):UF(Pi)

Any distributive operator has both these properties. P C () implies
P11 @ = @ (in traces) and so

F(Q)=F(FPnNQ)=FP)NFQ)
Hence monotone, and the definition of continuity is just restricted
distributivity (identifying U and I1).

Thus all the individual CSP operators have these properties, and since it
can be shown that compositions of monotone (continuous) operators are
monotone (continuous), all CSP terms have these properties over 7.
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Tarski’s theorem

Many versions of this (see Appendix A of TPC), but the one we need is
that if (X, <) is a partial order in which (a) there is a least element |
and (b) each chain Py < P; < P, < ... has a least upper bound

| |y P;, then every continuous function has a least fixed point given by

| [{F" (L) [ n e N}
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Recursion over T

Since (7, C) has both these properties (least element being STOP), it
follows that every CSP definable single recursion up.F(p) has traces

G F™(STOP)

1=0

and that the value of a mutual recursion is given by

G F"(STOP)

1=0

where STOP is an appropriate vector of STOP’s and | ] is
componentwise union on the vectors.
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Intuition

Since up.F(P)=F"(up.F(p)), every trace of F""(STOP) is one of
pp-F(p).

And since every finite trace s of up.F'(p) takes a finite time to observe,
the recursion can only have been unwound some finite number n times

in this period. Necessarily s belongs to F'"(STOP).
This justifies

G F™(STOP)

1=0
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Guarded recursions

A recursion is guarded if every recursive call is preceded by a
communication, either directly

P=(a— P)O(b— P)

or indirectly
Q=a—(Q0b— Q)

(We will have to refine this definition a bit when more operators are
introduced later.)

In practice, very nearly all sensible recursions are guarded.
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Intuition behind the metric fixed point

Intuitively, if we want to know the first n steps of the behaviour of a
guarded recursion u p.F(p), all we have to do is unwind the recursion n

times:
F"(up.F(p))

This is what lies behind the metric theory of recursion, and the principle
of Unique Fixed Points (UFP):

If P = F(P) is a guarded recursion (perhaps mutual), and () is a
process (or vector) such that () =1 F(()) (in traces) then P =1 ().
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A simple metric

If P €T, its n-place restriction P | n is just {s € P | #s < n}: the
traces of length n or less.

We can define a metric (rather odd compared to the ones you may have

seen in mathematics courses) over 7 by
d(P,P) =0, and otherwise
d(P,Q)=2"", mn maximalsuchthat Pl n=Q | n

Thus the longer it takes to tell P and () apart, the closer they are.
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Metric space theory

This makes 7 into a complete metric space (i.e., if P; is a sequence
such that for any ¢ > 0 we can find m with all P;, 7 > m within € of
each other, then P; converges to a limit P’).

Any guarded recursion corresponds to a contraction mapping over T :
d(F(P),F(Q)) <d(P,)/2, and so has a unique fixed point by the
Banach contraction mapping theorem (see Appendix A of TPC).

All the above is easily modified to take account of mutual recursions.
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Using UFP

Here are some trivial examples of the unique fixed point principle. Recall
the recursions:

Py = up — down — P;

Py = up — down — up — down — Ps

~
I
I

up — Py
Py = down — Py

Using (u-unwind) twice, it is easy to see that P; satisfies the definition
of P5. UFP (applied to the guarded P, recursion) then proves them
equivalent.

Unwinding P, twice shows that it satisfies the definition of P, proving
them equivalent. So P;, P, and P, are all equivalent.
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Mutual UFP

Most interesting uses of UFP seem to be on mutual recursions (usually
one-step tail recursions where we are defining one process for each state
a system can get into). The following process is an integer counter

process
ZCOUNT, = up — ZCOUNT, 11

O down — ZCOUNT,,_4

A bit of thought tells you that the index is actually irrelevant here: we
might suspect that all ZCOUNT',, behave like

AROUND = up — AROUND O down — AROUND
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This can be proved by UFP considering the vector of processes A (one
component for each integer) with each component AROUND.

If Iz is the function of the ZCOUNT recursion, Fzo(A) = A:
(Fzc(A))p = up — Apyq O down — Ay
—up - AROUND O down — AROUND

= AROUND = A,
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Traces and laws

Note that every law we state implies that the trace sets of the two sides
are always equal. For example, thanks to (prefix-dist), we need

a— (PM1Q)=r(a— P)MN(a— Q)

Since we can work out both sides in terms of traces(P) and traces((Q))
using the trace semantics, this provides a test of our semantics that
could, in principle, go wrong.

However in each case it is fairly easy to show that the implied result
really is true, for example both sides above reduce to

{OU{(a)s| s € traces(P) U traces(Q)}

Such results are boring to prove, but worth the effort if you can avoid
stating a false law.
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Traces and pictures

Evidently traces(P) can also be computed from the LTS (transition
graph) of P: possible sequences of actions, ignoring 7’s.

down down down
s o 0 0 0 o0
COUNT.O\/ .7
up up up

COUNT, COUNT, COUNT,

This creates both an opportunity:
perhaps an easier way to work out traces (it is how tools tend to do it);
and another obligation:

to show that the traces got this way are the same as those calculated
the other way (not a problem we address in this course).
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Trace specifications

Traces allow us to formulate many useful specifications of processes.

A behavioural trace specification asserts some property of each trace of
the process P: if i is a condition on traces,

Psat R(tr) means Vir € traces(P).R(tr)

(¢r is the identifier conventionally used to represent an arbitrary trace.)

R(tr) is usually expressed in some combination of predicate logic and
trace notation.

In practice, just about all useful specifications on traces(P) are lifted
from individual trace specifications in this way.

Trace specifications are very good at limiting behaviour, but do nothing
to force it: note that P and P 'l STOP have exactly the same traces.
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More trace notation

e If s is a finite sequence, #s denotes the length of s.

o If s € X" and A C > then s | A means the sequence s restricted to
A: the sequence whose members are those of s which are in A.

OTA={(and (s(a)) A= (s | A)(a)if a € A, s | A otherwise.
o If s € X" then s | ¢ can mean two things depending on what c is.
— If ¢ is an event in X then it means the number of times ¢
appears in s (i.e., #(s [ {c})).

— If ¢ is a channel name (associated with a non-trivial data type)
it means the sequence of values (without the label ¢) that have
been communicated along ¢ in s. For example

(c.1,d.1,¢.2,¢c.3,e.4) | c=(1,2,3)
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Example trace specifications

e Py, P> and P, all satisfy

tr | down < tr | up < tr ] down +1

e The specification of COUNT',, is similar but less restrictive:

tr L down <tr |l up+n

® B<°>O and COPY both satisfy the basic buffer specification:

tr L right < tr | left
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Proof rules for sat

In Hoare's book the main way of handling specifications like these is
through a series of proof rules such as:

STOP sat(tr = ())
Vaec A.P(a)sat R,(tr)

7a:A— Psat(tr=)Vdaec A . Jtr'. tr = (a)tr' N R,(tr"))

Psat R(tr) A @ sat R(tr)
P O @ sat R(tr)
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Proof Rules

Psat R(tr) \ @) sat R(tr)
P 1 @ sat R(tr)

which essentially translate the trace semantic rules into logic, and

general inferences such as:

Psat R(tr) AVitr.R(tr) = R'(tr)
P sat R/(tr)

Psat R(tr) A Psat R'(tr)
Psat R(tr) A R'(tr)




Understanding Concurrent Systems. 2: Understanding CSP

Proof rule for recursion

Just as a recursive program calls upon itself, the proof rule has a
“circular” feel to it. It is a form of fixed point induction. The following
is the single recursion form:

Suppose 1 P.F(P) is a recursive definition, and that X is the (least)
fixed point which it defines in T. Suppose R(tr) is a trace specification
such that:

e STOP sat R(tr), and
e Ysat R(tr) = F(Y)sat R(tr)
then X sat R(tr).
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STOP and trace specifications

The requirement that STOP sat R(tr) seems uncomfortable, since
STOP is a pretty useless process, and so you would not expect it to
satisfy many sensible specifications.

But traces(STOP) C traces(P) for all P, so

Psat R(tr) = STOP sat R(tr)

In other words, any behavioural trace specification satisfied by any
process is satisfied by STOP.

This type of specification can ban a process from doing any incorrect
action, but it cannot ban it from not doing anything.

Nevertheless, perhaps a majority of practical specifications applied to
CSP processes are pure trace specifications.
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Example

To prove up.a — b — psatir | b <tr] a.
e STOPsattr=()andtr=_)=trlb<tr]a.
Hence STOPsatir | b <tr | a.

e Assume Psatitr | b <tr | a. Then

— b — Psattr=)Vir=(b)tr' A
tr' Lo <tr'la

Hence b — Psattr | b <tr | a+ 1.

—a— (b— P)sattr = Vir={(a)tr' A
tr' lo<tr'la+1

Hence a —+ b — Psatitr | b < titr | a.

e Thus up.a - b — psatir | b <tr] a.
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Trace refinement

Recall that P J @ if P11 () = (). We can interpret this in traces as
trace refinement:

P J7 @ = traces(P) C traces(Q)

(Note the reversed containment: the more traces a process has, the less
refined it is.)
Three vital facts about refinement:

1. PCp PPANP' Cqp P”"= P Cqp P” Transitivity

2. PCp P'= C[P]Cp C|[P'] for any process context C[-] (syntax
with a slot to insert a process). Monotonicity

3. P Cp P and Psat R(tr) implies P’ sat R(tr).
Together these justify step-wise and compositional development.

The last one helps to explain the use of reverse containment.
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Characteristic processes

Let R be any specification such that STOP sat R(tr).
If P € S = Psat R(tr), then ([ 15)sat R(tr) because
t € traces([ 1S) = dP € S.t € traces(P).

It follows that Pr = [ |[{P | Psat R(¢r)} is the most nondeterministic
process satisfying R(tr):

P Jr Pr < Psat R(tr)

Thus satisfaction of any behavioural trace specification (other than
false) can be tested by refinement against its characteristic process.

Of course we can use any process that is trace equivalent to
| {P | Psat R(tr)}. (This is just as well.)

FDR makes finding characteristic processes an important skill.
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Examples of characteristic processes over 7T

e RUN 4 The process never communicates outside A.

® B<°>O The traces buffer specification

Buff (tr) = tr € ({| left, right |}* A tr | right < tr | left

e COPY The one-place buffer specification

Buff (tr) N #(tr | left) < #(tr | right) + 1
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Using FDR

Traces checks are inserted into files thus:
assert Spec [T= Impl

In order to run, both specification and implementation must be finite
state. Namely, their transition pictures (operational semantics) must be
finite.

Thus COUNT and B<°>O may not be used.

The easiest way to violate this rule is (as in these two examples) via an
infinite parameter type.

When a check fails, you can get debugging information back (a trace
that the implementation performed which violates the specification).
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Afters and initials

If P is any process, initials(P) (sometimes written P) is the set of all
its initial events

initials(P) = {a | (a) € traces(P)}

For example, initials(STOP) = {} and initials(?x : A — P(z)) = A.

If s € traces(P) then P/s (‘P after s') is P after the trace s is
complete. Over the traces model, P /s can be computed

traces(P/s) = {t | s't € traces(P)}
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Status of “after” operator

P /s is not an ordinary part of the CSP language, because it is not
implementable:

(STOPTa— P)/{(a) =P
but the process on the left hand side cannot be forced to accept the a.

It is used for discussing and describing behaviour, e.g.

(PO Q)/s=P/s ifs & traces(P)\traces(Q)
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