Understanding Concurrent Systems. 3: Parallel operators

Running side by side

We need to understand how processes run in parallel.

Processes interact by handshaken communication (in which both parties
have to agree).

The simplest CSP parallel operator P || () makes two processes agree on
everything.
Recall that
REPFEAT =7z : ¥ — x — REPEAT
The event a plays “ping pong” in
(e - REPEAT) || REPEAT

so it is equivalent to up.a — p.

This illustrates how one process can input from another by offering a
choice of actions.

Understanding Concurrent Systems. 3: Parallel operators

Properties

P || @) is symmetric, associative and distributive, and it has the following

step law

tfc:A—P|7x:B— Q =
t:ANB— (P Q)

Its traces are especially easy to calculate:

traces(P || Q) = traces(P) N traces(Q)

<

Understanding Concurrent Systems. 3: Parallel operators

Parallel into sequential

CSP makes no distinction between “parallel” and “sequential” processes,

so that we can, for example, write (P || @) O R.
Indeed, every parallel process is equivalent to a sequential one.

A combination of two sequential processes under || can be turned into a
single sequential process using distributive laws, (||-step) and UFP.

(a — REPEAT) || REPEAT

— (¢ — REPEAT) || (72 : 2 — z — REPEAT)
— o — (REPEAT || (a — REPEAT))
=a — a — (a > REPEAT || REPEAT)

Understanding Concurrent Systems. 3: Parallel operators

Parallel into sequential

Since we have seen the final underlined term before, and it is guarded,
we can derive a recursion to which it is provably equivalent via UFP:

R=a—a— R

Same can be done to any P ||), often producing a mutual recursion
whose equivalent to a selection of compositions P’ || ()" for states P’ of

P and @' of Q).

Understanding Concurrent Systems. 3: Parallel operators

Deadlock

A pair of processes put in parallel might not agree on any action:
(wP.a—b—a—p)| (pQ.a —b— Q)

deadlocks after the trace (a, b, a).
It is equivalentto a — b — a — STOP.
STOP is playing its role of an idealised deadlocked process.

Deadlock can appear nondeterministically:
P=a—PnNb—P
(a deadlock free process) implies
P || P = Chaosgq b

which can deadlock or not as it wishes.

This example shows that || is not idempotent.

Understanding Concurrent Systems. 3: Parallel operators

Alphabetised parallel

When two processes are in parallel, we would not usually expect them to

share all communications.

Some will be shared, and each will probably have communications with

the rest of the world.

If X and Y are subsets of X, P .||, () is the combination where P and
() are assigned alphabets X and Y':

e P must perform every communication in X (and no others), and
e () must perform every communication in Y.

X MY are communications between P and (), with X\Y and Y\ X
their independent actions.

Understanding Concurrent Systems. 3: Parallel operators

Example

(@ —=b—=0b—=STOP) iy oy (b= ¢c—b— STOP)

has the behaviour

e

a—b—>c—b—= STOP

Initially the only possible event is a (as the left hand side blocks b); then
both sides agree on b; and so on.

Understanding Concurrent Systems. 3: Parallel operators

Alphabets

Since the alphabet of a process is usually the set of actions it can

perform, why do we need them?

e Because processes sometimes can't perform all the actions we think

they can.
It is vital that we know clearly whether P needs ()'s agreement to

some action.

e Because sometimes it is useful to give a process a bigger alphabet

so it can stop another one performing some actions.

Understanding Concurrent Systems. 3: Parallel operators

Intrinsic versus explicit alphabets

In Hoare's book all processes have alphabets (like types) which means
that they do not have to be quoted explicitly in the parallel operator.

aP is then P's alphabet (which may be strictly larger than the set of
events P can perform).

This creates extra work in various other places and saves it in defining ||.

Which version you use is a matter of taste: we choose not to have these

intrinsic alphabets.

Sometimes we still use the notation aP, but only informally and where it

is quite unambiguous.

Understanding Concurrent Systems. 3: Parallel operators

An example process

Front ||z Back

F = {forward, backward, nod, neigh} B = {forward, backward, wag, kick}

Understanding Concurrent Systems. 3: Parallel operators

One pair of actors

With this behaviour:

Front = forward — Front’

O nod — Front

Back = backward — Back'
O wag — Back

then the horse will never move whatever Front’ and Back’ are (since
they are never reached). It will simply nod and wag for ever: equivalent
to RUN{nod,wag}-

Understanding Concurrent Systems. 3: Parallel operators

Step law of alphabetised parallel

Suppose
P=7%¢:A— P
Q="x:B—Q
C=(AN(X\Y)) P by itself
U(BN(Y\X)) Q by itself
U(ANBNXNY)interactions
Then

Pylly @ =7%%:C— (P'4¥re XPP

XHY <XHy‘5teP>

Q' ¥z e Y$Q)

Understanding Concurrent Systems. 3: Parallel operators

More laws of parallel

Pxlly (QMR) = (P xlly QN (P xlly R) {x]y-dist)

Pxly @ =@ ylx P <XHy‘5ym>

(P xlly @) xuyllz B = P xllyuz (Q vz R) (x|l y-assoc)

Note the effects of alphabets on the structure of the symmetry and
associative laws.

Understanding Concurrent Systems. 3: Parallel operators

Iterated parallel

The law (|| y-assoc) begins to show how clumsy it is to build up a
network using the binary form of ||, since a lot of compound

alphabets have to be formed.

Intrinsic alphabets (a.P) provide one solution (and this is the best
argument for them).
Another solution is to define a multi-way parallel operator:

2
(P, Xi) =P x|, P2

n—+2

1=1

n—+

1
(Pi, Xi) = (1 (Pi, Xi)) X1U...UX, 11 Hxn+2 P2

1=

Understanding Concurrent Systems. 3: Parallel operators

Example

COPY'(c,d)=c?x: T — d.x — COPY'(c,d)

X, =c¢..TU Cr_|_1.T (: {| Cry, Cr41 |})

(with cg, c1, ... ¢, all distinct) then

n—1
O(C’OPY’(CT, Cri1), Xp)

r=

is a chain of n one-place buffer processes.

. . . . 2 ‘ (‘3------’\/\\, /\/\\)________(?1-1 G

It is natural to think of the channels ¢y and c,, as external, because they

are only in the alphabet of one process each, and the rest are internal.

Note how we can draw the communication graph of a network by
looking for intersections between alphabets.

Understanding Concurrent Systems. 3: Parallel operators

Sequentialising again
Again use laws and the UFP rule:
CCO — COPY/(G;, b) {|a,b|}||{|b,c|} COPY/(b, C)

the initial events of the two processes are {| a |} and {| b |}. The full
calculation of the overall initials is thus

el olynifabffnibecli)
Ule [}l a,b (3] b, cl}))
U [F 0 (b, e |3\l as b [}))

=UUllafuii=1Hlal}
Thus CCp equals (by (||y -step))
a?z — ((blz — COPY'(a,b)) (14 spllgp.cpy COPY'(D,¢))

Call the parallel combination here CCi(z).

Understanding Concurrent Systems. 3: Parallel operators

More transformation
Applying (||-step) again shows that C'C}(z) equals
blz — (COPY'(a,b) (1, s llqp.cpy €'z — COPY'(b, ¢))

Call the parallel combination here C'C5(z), and we can prove it equals

aty — (bly = COPY'(a,b) 1, ypyllip.cpy cle = COPY'(b,)
] C!.CC — (COPY/(CL, b) {|a,b|}H{|b,c|} COPY/(b, C))

which, naming the first parallel combination C'C5(y, x), equals

aly — CC3(y, x)
O clz — CCL(y)

Understanding Concurrent Systems. 3: Parallel operators

Closing it off

Similarly, CC5(y, x) equals

clz — ((bly = COPY'(a, b)) (10 llp,epy COPY'(D,¢))

= clz — CCy1(y)

Since all the parallel combinations discovered have already been
explored, there is nothing more to do. We have derived a guarded
mutual recursion that CCy, CCi(z), CCs(x) and CCs(y, z) satisfy.

CCl=a?’r — CC{(x)

CC{(z) =blz — CCi(x)
CCy(z) = (clz — CC}) O (a?y — CCLi(y, z))

CC3(y,z) = clz — CC{(y)

UFP proves equality.

Understanding Concurrent Systems. 3: Parallel operators

Picture of C(,
o

a?x

@

b.x

C.X

a?x

Note that this picture doesn't give quite enough details about how data
iIs managed. This is solved by having separate nodes in the graph for
each parameter value.

FDR is good at building enormous expansions like this (current limit is in
region 10? to 10" terms).

Understanding Concurrent Systems. 3: Parallel operators

Traces

The traces of P ||, @ are just those which combine a trace of P and
a trace of () so that all communications in X N Y are shared.

traces(P ||y @) =
{se(XUY)|s|X € traces(P)

As Y €traces(Q)}

Understanding Concurrent Systems. 3: Parallel operators

The dining philosophers

Five philosophers share a dining table at which they have allotted seats.

In order to eat, a philosopher must pick up the forks on either side.
These are only put down when he or she has eaten.

Understanding Concurrent Systems. 3: Parallel operators

Dining philosopher processes

There is one process for each fork...
FORK ; = (picksup.i.i — putsdown.i.i - FORK ;)

O (picksup.1©1.1 — putsdown.icl.c - FORK ;)

. and one for each philosopher
PHIL; = thinks.1 — sits.1
— picksup.i.1 — picksup.i.1P1
— eats.1 — putsdown.i.1P1
— putsdown.i.1 — getsup.1 — PHIL,

The alphabet of each process is the set of events it can use: AF'; or
AP;.

Understanding Concurrent Systems. 3: Parallel operators

Forming the college

Setting (Pl, Al) = (FORK(), AF()),
(P2, Ag) = (PHILgy, APy),
(Pg,Ag) = (FORKl,AFl), etc.,

the system is

and has communication graph

PHIL,

FORK,

PHIL, PHIL,

FORK,

FORK,

Understanding Concurrent Systems. 3: Parallel operators

Deadlock

If all philosophers get hungry at once and pick up fork each, they
deadlock and starve to death.

Understanding Concurrent Systems. 3: Parallel operators

Interleaving

| and ||, make all partners allowed to communicate a given event a

synchronise on it.

The opposite is true of parallel composition by interleaving,

Pl @

P and () run completely independently of each other, and any event of
P ||| @ occurs in exactly one of P and ().

If they can both do event a, then we get nondeterminism similar to that
created by P O (): ||| allows either to perform a.

f P =72:A— P and Q =72 : B — Q' then

Understanding Concurrent Systems. 3: Parallel operators

Step law of interleaving

Plll@ =
tr: AUB = (P || Q)N (P]| Q)
r e AN B}
(Pl Q) €z € AP ||| Q)

(

Understanding Concurrent Systems. 3: Parallel operators

More laws

|| is symmetric, associative and distributive.

PllQ = QP

(PR = P (QIl R)

PlI[(QME) = (Pl @) M (P][R)

([]]-sym)
(|||-assoc)
(|||-dist)

Understanding Concurrent Systems. 3: Parallel operators

Example
An array of printers:
Printer(n) = input?x — print.nlx — Printer(n)
: 4 :
Printroom = ’ ‘ ’n_l Printer(n)
This is nondeterministic because

e a user has no control over which printer his files appear on, and

e the output events of the printers are named.

Understanding Concurrent Systems. 3: Parallel operators

Interleaving and recursion

Recursing through ||| allows us to spawn off capabilities which remain
around while further calls are made.

Processes with the same behaviour as COUNT| can be built as single

rather than mutual recursions:
Ctr = up — (Ctr ||| down — STOP)

or, more subtly

Ctr' = up — (Ctr' ||| p P.down — up — P)

Ctr' = up — (Ctr" ||| down — Ctr")

Understanding Concurrent Systems. 3: Parallel operators

Using interleaving

The uses of interleaving on the previous two slides are rather cunning: it
Is nice when you can achieve effects like these, but you have to be sure

of yourself.

The most common everyday use is as a substitute for ||, in cases
where X and Y are disjoint.

It saves the work of defining alphabets, for example:

FORKS = FORK, ||| FORK ||| ... ||| FORK 4
PHILS = PHILy ||| PHIL. ||| ... ||| PHIL,
AFS = {| picksup, putsdown |}

SYSTEM = FORKS , pslls. PHILS

Understanding Concurrent Systems. 3: Parallel operators

Traces of P |||

If s and ¢ are two traces, s ||| ¢ is the set of all their interleavings:

O lll's =15}
s |1 () = {57
(a)°s [I] (0)°t = (@) u | wesl||| (b))
Ub)u [we(a)s | £}

Given this
traces(P ||| Q) =J{s ||| t | s € traces(P)

At € traces(Q)}

Understanding Concurrent Systems. 3: Parallel operators

Generalised parallel

. ||y and ||| are all special cases of a single operator:
Pl @Q
X

runs P and (), making them synchronise on events in X and allowing

all others freely. Thus (provided P and () don't communicate outside X
and V')

Pyly@=P | @Q
XNY

and in general

PllQ="P|Q
DY

Pll@="P | @
{3

This is generalised or interface parallel.

Understanding Concurrent Systems. 3: Parallel operators

The use of interface parallel

Mostly, P || @ is used where it is equivalent to P ||, @ where
X
X=YNZ.

As a binary operator it seems more natural to use and is more
economical (you have to define one small set rather than two big ones).

However the indexed form is less useful: it insists that all nodes
synchronise on the same set.

In general, N processes have N(N — 1)/2 binary interfaces and only N
alphabets, so the indexed alphabetised form has the advantage here as
well.

For these reasons, system definitions in machine-readable CSP most

often use the binary operator ||, and the indexed form of .|| .
X

Understanding Concurrent Systems. 3: Parallel operators

More interesting uses

P || @ can achieve effects beyond those obtainable using earlier
X
operators.

It can synchronise some, but not all of the events of P and ().

COUNT, || COUNT,
{up}

allows twice as many down's as up's.

COPY || COPY
{|left|}

outputs each item is receives twice.

Such uses are, however, rare.

Understanding Concurrent Systems. 3: Parallel operators

Parallel composition as conjunction

It is obvious that parallel operators are needed to model parallel system

implementations.

But they also have other capabilities, one of which is to build trace

specifications.

If Ry(tr) and Ry(tr) are two trace specifications with characteristic
processes P; and P, then the characteristic process of Ry (tr) A Ro(tr)
is P, || P2, because

traces(Py || Py) = traces(Py1) N traces(Ps)
5

Specifications that are conjunctions of simpler parts may therefore be
built up using ||.

Understanding Concurrent Systems. 3: Parallel operators

Specifications with restricted alphabets

The specifications on the previous slide had to be of complete traces,

even though they might be properties of behaviour in a proper subset of
3.

If R(tr) is a trace specification on >*, R'({r) is one on A*, and P, P’
are their characteristic processes (traces(P’) C A*), then that of

R(tr)AR'(tr | A) is P | P’
A

Thus if we start off with the most liberal trace specification
Py = RUN s, we can build up a compound specification out of parts
(say (),,) that can each have its own natural alphabet (say X,,), by
adding on pieces
P,=P,1 | Qn
Xn

Understanding Concurrent Systems. 3: Parallel operators

Example

Imagine an airlock, with two doors, to regions 1 and 2, that can be

opened and closed:
{door_open.d, door_close.d | d € {1,2}}

valves for equalising the pressure with region 1 or 2. Each valve can be

closed or open.
{valve_open.d, valve_close.d | d € {1,2}}

and we might have an event tock representing the regular passage of

time.

The correct behaviour of systems like this is usually best understood in
terms of a series of simple specifications on subsets of events.

Understanding Concurrent Systems. 3: Parallel operators

Properties of the airlock

e Each door, and each valve alternates between opening and closing
(4 specifications in all) and is initially closed, e.g.

i P.door_open.1 — door_close.1 — P

e Only one valve is open at once.

1 P.valve_open?x — valve_closelx — P

e If a valve is open then the opposite door is closed.
e Only one door is open at once.
e No door opens until its valve has been open for 2 time units.

The entire specification can be built up from these parts.

Understanding Concurrent Systems. 3: Parallel operators

Machine-readable parallel operators

o P |y @ iswritten P [X|1Y] Q
o Pl|| QiswrittenP ||| Q
o P QiswrittenP [IXI] Q
X
(P || @ can easily be modelled using the others, for example
P[|Events|] Q.)

Indexed versions are written as follows:

U (PaAYs I a:{1.N) @ [AD] P(L)

1=

N :
| 1PZ- is ||| i:{1..N} @ P(i)

1=

o | Piis [1X1] i:{1..N} @ P(i)
Xi=1

Understanding Concurrent Systems. 3: Parallel operators

FDR and parallel systems

e Often get state explosion in parallel systems: NV two-state processes
can have 2% states!

e FDR compiles all the parallel component processes, and uses much
faster algorithms to run the combination, but state explosion often
puts a ceiling on how large a system you can consider.

e Can run at 200M states/hour on ordinary workstation (2010).

e Noticable slow down when out of real memory: presently
experimenting with ways of improving this, and with parallel
implementations.

o Good prospects for parallelisation (e.g. multi-core).
e State explosion problem is a major topic of research.

e We can now model and check some interesting non-trivial
examples.

	Running side by side
	Properties
	Parallel into sequential
	Parallel into sequential
	Deadlock
	Alphabetised parallel
	Example
	Alphabets
	Intrinsic versus explicit alphabets
	An example process
	One pair of actors
	Step law of alphabetised parallel
	More laws of parallel
	Iterated parallel
	Example
	Sequentialising again
	More transformation
	Closing it off
	Picture of MathsColorCC0
	Traces
	The dining philosophers
	Dining philosopher processes
	Forming the college
	Deadlock
	Interleaving
	Step law of interleaving
	More laws
	Example
	Interleaving and recursion
	Using interleaving
	Traces of MathsColorPQ
	Generalised parallel
	The use of interface parallel
	More interesting uses
	Parallel composition as conjunction
	Specifications with restricted alphabets
	Example
	Properties of the airlock
	Machine-readable parallel operators
	FDR and parallel systems

