Understanding Concurrent Systems. 5: Hiding and Renaming

Why we need hiding

When we put processes in parallel it is often natural to regard the
communications on internal channels as implementation detail. There is
no good reason to distinguish between n COPY'(c¢,, ¢,11) processes
arranged

. ‘ : ‘ k ‘ I [/\\, ------------------- {\/\\) ________ Gr1 G

and a parameterised n-place buffer definition

BN (()) = co?x — BN ({(z))

BN (s (a)) = cpla — BN(s)
O (cg?x — BN ({(z) s (a))
&#s < n— 13 STOP)

We need to be able to hide the internal events {| c1,...,¢c,1 |}

Understanding Concurrent Systems. 5: Hiding and Renaming

The hiding operator

Whenever P is a process and X C X
P\ X
behaves like P except that events from X become 7 (internal) actions.

The natural combination of parallel and hiding is then

(P xly Q\(XNY) or (P]Q)\2

CSP models of realistic parallel systems usually combine parallel and
hiding in this way.

Some other languages contain the combination of parallel and hiding,
but neither operator individually.

It's natural to hide the internal details of the ABP and some of the
routing algorithms in Chapter 4.

Understanding Concurrent Systems. 5: Hiding and Renaming
Simple specification
We can even hide in Sudoku:

assert CHAOS({|select|}) [T= Puzzle

assert STOP [T= Puzzlel{|select|}

are equivalent:

the debugger can show you the moves.

Understanding Concurrent Systems. 5: Hiding and Renaming
Hiding in pictures

Hiding leaves the shape of the transition graph of any process alone, but
turns appropriate labels into 7's:

\{a} =

If a 7 action is enabled, then some action must happen quickly.
Thus no process ever gets stuck in a state with a 7.

States with and without 7's are respectively called unstable and stable.

Understanding Concurrent Systems. 5: Hiding and Renaming

Laws of hiding

This a one-place (unary) operator, so the laws look different:

(P1Q)\X = (P\X)N(Q\ X) (hide-dist)
(P\Y)\X = (P\X)\Y (hide-sym)
(P\Y)\X = P\ (XUY) (hide-combine)

P\{} =P (null hiding)

Understanding Concurrent Systems. 5: Hiding and Renaming

A prototype step law

wop\x = TV TaeX fidestep 1)
o (P\X)ifadX

Note that the case a € X requires our principle that 7's are not

delayable.

This is not a full step law because they apply to processes with arbitrary

ranges of initial actions.

The difficult case is then
(7z:A— P)\ X

when A has members both inside and outside X .

Understanding Concurrent Systems. 5: Hiding and Renaming

Hidden versus visible

How does
(a—POb— Q) \{a}

behave?

Our intuition about hiding in transition pictures, and the law (hide-sym):

(@ = POb—=Q)\{a}) \{b} =
((a=POb—=Q)\{b})\{a}

both imply that hiding a cannot completely exclude the b option.

Understanding Concurrent Systems. 5: Hiding and Renaming

Hidden and visible options

The 7 action in
(a—=POb— Q) \{b}

will occur soon after the start if the a is not communicated quickly: the
answer Is

(a = P\ b} > Q\ {b}

“Sliding choice” or “Untimed timout”.

Understanding Concurrent Systems. 5: Hiding and Renaming

The step law of hiding

(7z: A—-P)\ X = (hide-step)

(72 A (P\ X) fANX = {}

/\\

(?z: (AVX) — (P \ X))
\Dl_l{(P[a/x])\X\aEAﬂX} if ANX #{}

The nature of hiding means that the ‘step’ of behaviour this law
generates may be internal (7) rather than a visible action.

Understanding Concurrent Systems. 5: Hiding and Renaming

Moving hiding around

As a network is built up, we can either hide the internal events at each
stage, or wait until all processes are in parallel and do it then. It makes

no difference, as shown by the following laws:

(P xlly @\Z =
(P\NZNX) xlly (@\ZNY) (hide- || y-
provided XNY NZ ={}

(P)H(Q)\Z =
(P\ Z))H((Q\ Z) <hide-)||(-

provided X N Z = {}

These laws are important, because sometimes it is useful to leave all
events visible till the end, and sometimes to hide as soon as possible.

Understanding Concurrent Systems. 5: Hiding and Renaming

Traces of hiding

The traces of P \ X are very easy to compute: if we define s \ X, for
any trace s, to be s [(3X\ X), then

traces(P \ X) = {s \ X | s € traces(P)}

For example,

traces(COUNTy \ {up}) = {{down)™ | n € N}

traces(COUNTy \ {down}) = {{up)" | n € N}

Do you think these two results of hiding are really as similar as the above
suggests?

Understanding Concurrent Systems. 5: Hiding and Renaming

Hiding and nondeterminism

Nondeterminism often appears where we conceal the internal details of
parallel processes in contention for some resource.

P=aa—c—STOPObL—d— STOP

offers the environment the choice between a and b, with subsequent
behaviour depending on which option is chosen. If we give it the
alphabet X = {a, b, c, d} of all events it can perform,

does not change its behaviour.

But hiding the internal interactions of this network: N \ {a,b} -
produces the same behaviour as

(¢ - STOP) M (d — STOP)

Understanding Concurrent Systems. 5: Hiding and Renaming

Divergence

When internal events continue for ever we say that our process is

diverging.

This can happen when a parallel /hiding combination can perform an
infinite sequence of hidden internal actions without a visible one: this is

livelock.

div is the process that does nothing but diverge. Externally it looks
rather like STOP, but internally and theoretically it is different.

COUNTy \ {up} can diverge, but COUNT, \ {down} cannot.

Understanding Concurrent Systems. 5: Hiding and Renaming

Example

Imagine the dithering philosophers, in which a philosopher can put down
the first fork without eating:

DITH ; = picksup.i.1 —
((picksup.i.i®1 — eats.t —
putsdown.i.i®1 — putsdown.i.i — DITH ;)

O putsdown.i.i — DITH ;)

Replacing PHIL; by DITH ; solves the deadlock problem of the dining
philosophers, at the expense of introducing livelock if the
{| picksup, putsdown |} events are hidden.

Understanding Concurrent Systems. 5: Hiding and Renaming

Unbounded nondeterminism

Hiding an infinite set of events X, or the use of [| S for infinite .S, can
create unbounded nondeterminism. Our process might have an infinite
number of possible options to pick via 7's from a single state.

Unbounded nondeterminism is sometimes regarded as unrealistic, and it
creates some theoretical difficulties. While none of these is insuperable,

you should at least be aware
(i) that this is an issue, and

(ii) which operators can create unbounded nondeterminism.

Understanding Concurrent Systems. 5: Hiding and Renaming

Hiding versus guardedness

For obvious reasons, when we recurse through hiding the notion of
guardedness (essential for UFP) becomes a lot more difficult:

P=a— (P\{a})

is not guarded, and has many fixed points over 7.

No recursion in which \ X is applied (directly or indirectly) to a recursive
call should ever be deemed guarded without very careful justification.

This also applies to operators we will see later which use hiding.

Therefore the recursions X = F(X) we apply UFP to should not usually
involve hiding, but there is nothing to stop the definition of the process
Y using hiding, where Y is the one proved to be a fixed point of F'.

This is quite common.

Understanding Concurrent Systems. 5: Hiding and Renaming

Injective renaming

A function is 1-1, or injective, if f(x) = f(y) implies z = y.

If f: > — X is injective, then the process

fIP]
which performs f(a) whenever P performs a, is just a copy of P using

different events.

f may be a partial function, so long as every event P uses is in its

domain.

The transition system of f|P] is just that of P with f applied to all

visible events.

Injective f[P] has many laws: see book.

Understanding Concurrent Systems. 5: Hiding and Renaming

Examples

If f swaps down and up, then f{COUNT| acts like a counter through
the negative numbers.

Recall
COPY = left?x — right!lx — COPY

COPY'(a,b) = a?z — ble — COPY'(a,b)
If, for all =, f(left.z) = a.z and f(right.x) = b.z then

f[COPY] = COPY'(a,b)

Similar maps would relate the behaviours of the different FORK;
processes and the different PHIL; processes, because these two
collections both behave identically except for the names of events.

Of course, no f exists such that f[FORK;| = PHIL,.

Understanding Concurrent Systems. 5: Hiding and Renaming

Non-injective functions

Uses of renaming in building realistic implementation models are usually
injective functions (see “link parallel”), but we can achieve powerful and
useful effects by examining the concept of “alphabet transformations”

more generally.

The first case is f|P], where f is a non-injective function: some events
we could distinguish in P get identified in f|P].

There is no difficulty in seeing how this generalisation works, but

obviously it allows subtler effects.

Understanding Concurrent Systems. 5: Hiding and Renaming

Forgetful renaming

For example, it allows us to forget some details of a process:

SPLIT = in'lz: T —
((outl.x — SPLIT) 4z € S¥(out2.0 — SPLIT))

To forget about the contents of the messages, apply forget which
remembers only the channel name. forget|SPLIT]| is equivalent to

SPLIT" = in — (outl — SPLIT' I out2 — SPLIT")

Nondeterminism appears because we have lost the detail which allows
to decide which way to send each message.

Understanding Concurrent Systems. 5: Hiding and Renaming
Why forget?

The transformation on the previous slide appears odd, but

e it allows us to demonstrate that some aspect of the correctness of
the system does not depend on precisely how decisions are made,

and

e in cases where this is true the details of decision making frequently

clutter proofs.
e It will often save states on FDR.
Like hiding, forgetful renaming is a form of abstraction.
When f~1(z) (= {y € 2| f(y) = z}) is infinite (e.g. because the types

of forgotten data are) you have to be particularly careful because f[P]
might introduce unbounded nondeterminism.

Understanding Concurrent Systems. 5: Hiding and Renaming

Relations

The function in f[P] can only map each event of P to a single target.
It is surprisingly often useful to map events to several alternatives.

This can be done using inverse functions: see Hoare's book, or (more
generally) using relations. We discuss the latter because it is what

CSP,; (in essence) uses.
A relation between X and Y is a set of pairs (z,y) € X x Y.
If R is a relation and (z,y) € R we write z R y.

If R is a relation, its domain and range are respectively

dom(R) ={z | dy.z Ry}
ran(R) ={y | dz.z Ry}

Understanding Concurrent Systems. 5: Hiding and Renaming

Relational renaming

We are interested in relations R between Y. and itself whose domain

includes all the events of P.
P[R] is a process which, when P performs a and a R b, can perform b.

If a has several images under R, then each arc labelled a in P’s
transition diagram gets multiplied in P[R]'s: if
R ={(a,a),(a,c),(b,b),(b,c)} then

Understanding Concurrent Systems. 5: Hiding and Renaming

Laws of renaming

Relational renaming is the most general, so we give laws and traces rules
for it:

(P Q)[R] = P[R] N Q[R] ([R]-dist)

(PO Q)R] = P[R] O Q[R] ([R]-D-dist)

If the initials of P’ are A, then those of P'[R] are
R(A)={y|dz e A (z,y) € R}:

(7z: A— P)[R] = ([R]-step)
7y : R(A) = TIH{(P[z/z)[R] |z € AN zRy}

Notice how this last law makes the introduction of nondeterminism clear.

Understanding Concurrent Systems. 5: Hiding and Renaming

Traces of P|R|

We just apply R in the obvious way to traces:

(a1,...ap)R*(b1,...,bp) &n=mAVi<n.qRDb,

traces(P[R]) = {t| 3s € traces(P).s R*t}

Understanding Concurrent Systems. 5: Hiding and Renaming

Notation

We can use a substitution-like notation:

o P[%/b] means b is replaced by a, and everything else (including a)
is unchanged.

o P[%b/b q

[

means a and b are swapped.

o P[b¢/a, a] means a is mapped to both b and c.

o P[%?/q, a] means a is mapped to both a and b.

The CSP,, notation is essentially the same (though order of events
reversed):

P[[b <- a]] P[[b <- a, a <- b]] P[[a <- b, b <-c]]

Understanding Concurrent Systems. 5: Hiding and Renaming

A magic wand

One-to-many renaming combined with parallel composition can achieve
weird and wonderful effects such as variable renaming: for example

p[[Bmeburn, Cox/a,pple, apple] I Reg
{|Adam,Eve,Braeburn,Coz|}
Reg = Braeburn — Reg
O Adam — Reg
O Fve — Reg’

Reg’ = Cox — Reg’
O Adam — Reg
O Eve — Req’

Study the book for many more...

Understanding Concurrent Systems. 5: Hiding and Renaming

Link parallel

Suppose a and b are two channels with the same type. Then
Pla <> b]Q) connects a in P to b in () and hides the result.

It can be defined in terms of hiding and renaming:

(P[/d] {||| : QL/bD\ Al ¢l

c|

Like connecting two wires.
Notation extends to multiple channel pairs:
Pla <> b,d < d,...|Q

Previous presentations of CSP have concentrated on two special cases of
this:

Understanding Concurrent Systems. 5: Hiding and Renaming
Piping or chaining

Written P >> (), this was equivalent to P|right <> left] ().

Connects the output of P to the input of (), using a standard pair of

named channels.

Problem: doesn’t combine well with typed channels. What happens if
we want to use >> for channels with different types?

Understanding Concurrent Systems. 5: Hiding and Renaming

Enslavement

P/Q means (P || Q)\ aQ

aQ

It was often used in cases where () was given a name:

Pla:@Q
so P's communications with () get an extra label a.

Does not fit particularly well with CSP;;'s channel naming conventions.

Understanding Concurrent Systems. 5: Hiding and Renaming

Recursive enslavement: Mergesort

M = in.end — out.end — M
On?e: T — M1(x)

M1(z) = in.end — out!lx — out.end — M
On?y: T —
((uptolx — downtoly — Mu) [upto <> in, upfrom < out| M)

|[downto < in, downfrom < out] M)

Mu is in “inputting” mode where next input is to be sent to the up
slave; Md the same for the down slave.

Understanding Concurrent Systems. 5: Hiding and Renaming

Mu = in.end — downto.end — upto.end — O1

O in?y : T — uptolz — Md

Md = in.end — downto.end — upto.end — O1

O in?y : T — downtolx — Mu
O1 = upfrom?z — downfrom?y — O2(z, y)

O2(xz,y) =x = end Ny = end&out'end — Mu
r = end Ay # end&out!ly — downin?y" — O2(x,y")
t # end \y = end&outles — upin?z’ — 02(2',y)
T # end ANy # end& (out!s — upin?x’ — O02(z',y)
Lr < yb

out!y — downin?y’ — 02(z,y"))

	Why we need hiding
	The hiding operator
	Simple specification
	Hiding in pictures
	Laws of hiding
	A prototype step law
	Hidden versus visible
	Hidden and visible options
	The step law of hiding
	Moving hiding around
	Traces of hiding
	Hiding and nondeterminism
	Divergence
	Example
	Unbounded nondeterminism
	Hiding versus guardedness
	Injective renaming
	Examples
	Non-injective functions
	Forgetful renaming
	Why forget?
	Relations
	Relational renaming
	Laws of renaming
	Traces of MathsColorP[-[R]-]
	Notation
	A magic wand
	Link parallel
	Piping or chaining
	Enslavement
	Recursive enslavement: Mergesort

