Understanding Concurrent Systems. 6: Beyond Traces

Beyond traces

We already know that traces give an incomplete description of processes.

Since traces(P) = traces(P 1 STOP), it is clear we need a way of
telling not only what events a process can do, but also what it can refuse

to do.

A refusal set is a set of events that a process can permanently refuse.

refusals(P) is the set of P's refusal sets after the empty trace.

Understanding Concurrent Systems. 6: Beyond Traces

Failures

A failure is a pair (s, X) where s € traces(P) and X € refusals(P/s).

Thus X € refusals(P) if and only if P can deadlock before
communicating anything, and (s,) € failures(P) if and only if P can

deadlock after s.

Failures are the key to understanding nondeterminism.

Understanding Concurrent Systems. 6: Beyond Traces

Calculating failures

failures(P) can be calculated inductively over the syntax of P (a rule for
each operator), and details can be found in Chapter 10 of the book.

They can also be calculated from the transition diagram of P.
e This means you don’'t have to remember a series of semantic rules,
e and is basically how FDR does it.

Failures appear only at stable (7-free) nodes of the graph, since we can't
be sure of permanent refusal when a 7 is available.

Understanding Concurrent Systems. 6: Beyond Traces

Failures from pictures

P {c}
1
a b
{a,cl® ® {b,c}
b a
a T
o o ® ®
{a,b,c} {ab,c} {ab,c} {a,b,c}

{a,b,c} {a,b,c} {a,b,c} {a,b,c}

Understanding Concurrent Systems. 6: Beyond Traces

The results

Assuming > = {a, b, ¢}, each node is labelled with its maximal refusal.

Note that if a node can refuse X, then it can also refuse every subset of
X.

Py is (a — b — STOP) O (b — a — STOP) It has a deterministic
transition system: no 7's, no ambiguous branching visible actions).
Hence a unique path through the tree for any trace, so just one
maximal refusal for each trace s: Y\ initials(P/s). Example

failures: ({),{}), (0. {c}), ({a). {a, c})

P> shows how internal actions can introduce nondeterminism. It could
have arisen as ((¢ — a — STOP) O (b — ¢ — STOP)) \ c. lts
failures are

{0, X) | X ©{b,c}} U
1((a), X), ({6), X) | X S {a,b,cp}

Understanding Concurrent Systems. 6: Beyond Traces

More results

Ps could be (a — STOP) 1 (b — STOP). It has two initial 7's to
choose from. Its initial refusals are {X | {a,b} & X }. It can refuse
either a or b separately but must accept something if {a, b} is
offered.

P, which could be (¢ — a — STOP) O (¢ — b — STOP) shows how
ambiguous branching on a visible action can lead to
nondeterminism. Its refusals after the trace (c) are

X [{a, by £ X}.

Understanding Concurrent Systems. 6: Beyond Traces

Failures refinement

One process failures-refines another: P T () if and only if
traces(P) D traces(Q)) and failures(P) O failures(Q)

() can neither accept an event nor refuse one unless P can.

Ps Jr Ps3 and this is the only failures refinement among P, ..., Py.

Understanding Concurrent Systems. 6: Beyond Traces

Failures and choice

We can now distinguish internal and external choice: consider
Q1 = (a = STOP) O (b — STOP)
Q2 = (a — STOP) 11 (b — STOP)
()> can initially refuse {a} and {b}, but); cannot. In general,

PMNQLCrPOQ

Understanding Concurrent Systems. 6: Beyond Traces

Divergence

Failures refinement works well, but gives some strange answers on
processes like div = (up.a — p) \ o that diverge.

This process is not doing anything useful, but it has no failures since
there are no stable states. In fact, for all P,

This is just as unfortunate as the fact that P =, STOP.

A process which can choose not do behave in the ways we are recording
but do something else instead will seem to refine ones that do the

opposite.

The answer: build divergences into our model and record the set of
traces on which P can diverge: divergences(P).

Understanding Concurrent Systems. 6: Beyond Traces

Divergence as a black hole

The theory has difficulty handling potential distinctions in a process’s
behaviour after it might have diverged.

The failures-divergences model therefore takes the decision that any two

processes that can diverge immediately are
e equivalent, and
e completely useless.

Specifically, we assume that if s € divergences(P) then
s't € divergences(P) (whether or not P can even perform s°t).

Also use extended sets of traces and failures:

traces | (P) = traces(P) U divergences(P)
failures | (P) = failures(P) U {(s, X) | s € divergences(P)}

Understanding Concurrent Systems. 6: Beyond Traces

The failures-divergences model

Since every trace is followed by divergence or a stable state, there is no
need to record them separately, so P is identified with

(failures | (P), divergences(P))
This is the mathematical model for CSP most often used to define what

it means for two processes to be equivalent.

Because of the closure under divergence, over this model any process
that can diverge immediately (i.e., without any visible communication) is
equivalent to div, no matter what else it may also be able to do.

Understanding Concurrent Systems. 6: Beyond Traces

Failures-divergence refinement

One process failures-divergences-refines another, written P Crp @), if

and only if
failures | (P) D failures (Q))

A divergences(P) O divergences(Q)

The position of div under refinement has been reversed: div Cpp P for
all P.

FDR stands for Failures-Divergences Refinement.

Understanding Concurrent Systems. 6: Beyond Traces

Why this model?

Most correct programs are divergence free so
e we have to model divergence to know this is so, and
e what happens after divergence is usually of little practical interest.

If P has performed trace s and we know it can neither refuse X nor
diverge after s, then if offered X it will certainly accept a member of X.

Thus this model allows us to constrain not only what events a process
can perform, but also allows us to specify what it must accept.

Understanding Concurrent Systems. 6: Beyond Traces

Determinism

P is defined to be deterministic if, and only if, divergences(P) = {} and
s (a) € traces(P) = (s,{a}) & failures(P)

In other words, it cannot diverge, and never has the choice of both
accepting and refusing any action.
Deterministic processes

e are predictable, and

e are precisely the most refined processes under = zp (which can be
read as ‘is more nondeterministic than’).

Understanding Concurrent Systems. 6: Beyond Traces

Failures-divergences specifications

We now have richer languages for specifying processes.

Failures and failures/divergences specifications can be presented as
conditions on the individual behaviours or via characteristic processes
and refinement.

Vs.(s,%) & failures(P)

is the specification of deadlock freedom (over failures or
failures-divergences), and it has characteristic process DFy;, where

DF, = [{a— DF 4| ac€ A}

You can test if a process is deadlock free by failures(-divergence)
refinement of DFy,. (Over failures-divergences you will also catch
divergence.)

Understanding Concurrent Systems. 6: Beyond Traces

Example failures specifications

Refining...
o DF4 ||| Chaoss, 4 means P always offers a member of A

o RUNy ||| Chaoss\ 4 means P always offers all members of A

o If Pla)=a — P(a) O (STOP M?z : AMa} — P(x)), refining
?r : A — P(x) says that initially P will accept the whole alphabet
A and then will never refuse the most recent communication.

Understanding Concurrent Systems. 6: Beyond Traces

Buffer specification: traces

The strongest trace specification of a buffer from channel [eft to channel
right 1s
tr C{| left, right |}* A tr | right < tr | left

This allows some unlikely processes such as
o STOP
o SINK = left?z — SINK
e STOP 1 COPY

There is nothing to force the process to input or output when it should.

Understanding Concurrent Systems. 6: Beyond Traces

Buffer specification: failures

We can add:

o tr] left =tr | right = ref N{| left |} = {}
An empty buffer must accept any input.

o tr] left > tr | right = {| right |} € ref
An non-empty buffer must allow some output.

Note the use of (#r, ref) to denote an arbitrary failure (extending earlier
style for trace specifications). Note also the asymmetry between the
requirements for an arbitrary input and merely some output.

Catches all the examples on the previous slide.....

Understanding Concurrent Systems. 6: Beyond Traces

Buffer specification: failures-divergences

... but the simply divergent process div satisfies it as a failures
specification. So to get a buffer that must perform necessary inputs and
outputs we must add the requirement that it is divergence free.

The most nondeterministic buffer is Buff

Buﬁ<> = left?z : T — Buﬁ<x>

Buﬁg<y> = (STOP N left?z : T — Buﬁ<w>A3A<y>)
O right!y — Buff

P is a buffer if and only if it refines Bujf.

Note this is an infinite state process.

Understanding Concurrent Systems. 6: Beyond Traces

Buffer Laws

In TPC a series of laws relating buffers and >> are given. These can
easily be translated to involve link parallel. The most obvious is

BL1. |If Pisan (a = b)-buffer, and @ is (¢ = d)-buffer, with a # d,
then P [b <> ¢|@Q is a (a = d)-buffer.

The following law can be extremely useful for analytic proofs that

combinations are buffers:

BL5. Suppose P uses events {| a,b |} and @) uses {| ¢, d |}, with
a # d. If x is free in neither P nor (), which are such that

Plb<c|Q dpp a?x — (P[b <+ c]dlz — Q)

then P [b <> ¢| Q) is an (a = d)-buffer.

Understanding Concurrent Systems. 6: Beyond Traces

Example of BL)

Consider S = left?x — right!x — right's — S and
R = left?z — left?y — (right!s — R M right!y — R).

It is easy to show that

R> S =left?’c — (S > (right'lx — R) ' (right!s — R))
left?r — (S > right's — R)

So R >> S is a buffer by BLb.

Understanding Concurrent Systems. 6: Beyond Traces

Divergence freedom rule

Both deadlock and divergence freedom have specific buttons on FDR,
which uses refinement checks to verify them. But it is useful to
understand ways of creating networks that are free of them by design.
We studied this issue for deadlock in Chapter 4.

Order rule for divergence freedom Suppose we have a partial order
on the nodes of a network where every pair of connected processes are
comparable. Suppose all internal communication (i.e. all events in the
alphabet of at least two processes) is hidden, and no other. Suppose
further that each component process is divergence free when all
communications with processes less than it in the partial order are
hidden. Then the network is divergence free.

For example, any chain of processes where none can output infinitely
without inputting infinitely also, is divergence free.

Understanding Concurrent Systems. 6: Beyond Traces

Abstraction

Suppose a divergence-free process P has two separate parts of its
alphabet: say H and L, that are controlled by different users.

What does it look like to L when actions in H have been abstracted
away.

It is tempting to think P \ H, but this is usually wrong since it assumes
H never refuses a communication.

The right answer for most purposes, if we assume that A uses the CSP
model of handshaken interaction, is the value of

(P || Chaosg) \ H
H

over stable failures (i.e. ignoring divergence).

This is called the lazy abstraction Ly (P). Lazy because H does not
have to do anything.

Understanding Concurrent Systems. 6: Beyond Traces

Example

Consider the processes P1 = a — b — P1 and
P2=aq— P20b— P2:

o ,C{a}(Pl) = Chcws{b}

o Ligy(P2)=pp.b—p

Understanding Concurrent Systems. 6: Beyond Traces

Abstracting errors

Recall the controlled error model, in which errors are generated by some
demon that has special events to trigger them.

We should look at such systems with these error events abstracted,
perhaps after being limited by parallel composition: FAULTY is

Lr(P) or Lg(P || L)
XUFE

where L is a process that never refuses a member of X.

We get a natural specification of fault tolerance:

P || STOP Cr FAULTY
E

In other words, the system behaves no worse with faults permitted than
it does with them banned.

Understanding Concurrent Systems. 6: Beyond Traces

Abstraction and security

Suppose that L and H are low and high security level users of the
system P. Under what circumstances can we be sure that L can gain no
information about H's behaviour from her interaction with P?

When Ly (P) is deterministic!

This is the lazy independence definition of security and is certainly
accurate when P itself is deterministic.

Recall Ly (pp.a — b — p) is nondeterministic: a user who controls as
can determine how many bs are available.

Lioy(pp.(a — pOb— p))is deterministic: nothing can stop an
unbounded sequence of bs being possible.

Understanding Concurrent Systems. 6: Beyond Traces

Covert channels

A covert channel is a way, unintended by the system designer, by which
H can pass information to L. Therefore lazy independence is a
technique for identifying covert channels or proving them absent.

Typically these arise because of contention for resources:
communication, memory, file, CPU etc.

They can be eliminated by (i) giving priority over resources to L (not
always attractive) (ii) strictly partitioning resources (potentially
wasteful) and sometimes compromises between the two.

An example involving a shared communication resource is illustrated in

an example file.

Understanding Concurrent Systems. 6: Beyond Traces

Security

This is just one of many ways in which CSP/FDR can be used to analyse
security: see Chapter 15 of TPC, and Modelling and Analysis of Security
Protocols: the CSP Approach (Addison Wesley).

The absence of information flow (what lazy independence attempts to
capture) is a large and fascinating theoretical topic, with many different
interpretations!

	Beyond traces
	Failures
	Calculating failures
	Failures from pictures
	The results
	More results
	Failures refinement
	Failures and choice
	Divergence
	Divergence as a black hole
	The failures-divergences model
	Failures-divergence refinement
	Why this model?
	Determinism
	Failures-divergences specifications
	Example failures specifications
	Buffer specification: traces
	Buffer specification: failures
	Buffer specification: failures-divergences
	Buffer Laws
	Example of BL5
	Divergence freedom rule
	Abstraction
	Example
	Abstracting errors
	Abstraction and security
	Covert channels
	Security

