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ABSTRACT
The LogicBlox system aims to reduce the complexity of software
development for modern applications which enhance and automate
decision-making and enable their users to evolve their capabilities
via a “self-service” model. Our perspective in this area is informed
by over twenty years of experience building dozens of mission-
critical enterprise applications that are in use by hundreds of large
enterprises across industries such as retail, telecommunications,
banking, and government. We designed and built LogicBlox to be
the system we wished we had when developing those applications.

In this paper, we discuss the design considerations behind the
LogicBlox system and give an overview of its implementation,
highlighting innovative aspects. These include: LogiQL, a unified
and declarative language based on Datalog; the use of purely func-
tional data structures; novel join processing strategies; advanced
incremental maintenance and live programming facilities; a novel
concurrency control scheme; and built-in support for prescriptive
and predictive analytics.
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1. INTRODUCTION
Recently there has been a trend towards specializing database

system architectures to particular use cases, such as transactions,
analytics, graphs, arrays, documents, or streams [39]. The driv-
ing argument behind this trend is performance: specialized trans-
actional or analytical systems, for example, have demonstrated 10-
100X speedups over the traditional “OldSQL” database architec-
tures first developed over three decades ago.

At the same time, we are witnessing a trend towards sophis-
ticated applications for enhancing and automating decision mak-
ing, where application requirements combine aspects of several of
these use cases. Moreover, these applications typically have to
evolve frequently, making developer productivity a key concern. In
our experience, developing and operating such applications using a
“hairball” of specialized databases and programming languages is
prohibitively expensive, and end-user maintenance of such applica-
tions is impossible.

This observation motivates us to re-examine the argument for
specialization in database systems. Are the performance differ-
ences observed to date between specialized and general-purpose
architectures due to reasons that are fundamentally significant? Or
do traditional database architectures simply not embody the best
approach to building a general-purpose system?

We believe the latter is the case. To validate our hypothesis, we
have built a database system that demonstrates that it is possible to
meet the requirements for such applications without unacceptable
compromises in performance or scalability. In our experience, the
operational and developmental efficiencies gained by using such a
system provide a significant reduction in cost and time and overall
improvement in the utility, usability, and continued relevance of the
application.

1.1 Design Principles
In order to support sophisticated analytical applications, we have

expanded our notion of “database system” to include features and
capabilities commonly found in programming languages, spread-
sheets, statistical systems, and mathematical optimization systems.
We also have taken a fresh look at a number of the basic architec-
tural building blocks of a general-purpose database system, chal-
lenging some deeply-held beliefs and sacred cows.

A useful analogy to what we are aiming to achieve is that of
the smartphone: less than a decade ago, the iPhone redefined what
it means to be a phone and subsumed a variety of specialized con-
sumer devices such as cameras, music players, gaming devices, and
GPS devices. A smartphone is not the highest resolution camera,
the highest fidelity music player, the most accurate GPS device, the
most entertaining gaming device, or even the best phone. How-
ever, by providing so many capabilities in one device with a unified



user experience, the smartphone has made the specialized devices
irrelevant for most use cases. Moreover, smartphones have made
it possible to build new kinds of applications integrating several of
these capabilities in useful and interesting ways.

LogicBlox is a “smart” database system in the same sense that
the iPhone was the prototypical “smart” phone. Our aim is not
to beat the performance of, say, specialized column stores or in-
memory transactional systems; such systems make extreme trade-
offs that render them useless outside of their comfort zones. Rather,
we aim to come close enough (say, within a factor of 5) to the per-
formance of specialized systems, such that we can satisfy applica-
tions needs without sacrificing the flexibility required to cope with
mixed workloads and the desire to support application evolution via
self-service.

In order to achieve this, we follow a philosophy of “brains before
brawn” where we prefer to achieve high performance with better
algorithms and data structures before resorting to the use of brute
force techniques based on throwing money and hardware at the
problem (e.g., by partitioning an application across thousands of
cores or loading all application data in memory). We also follow a
philosophy of aggressive simplification and consolidation: we aim
for a relatively small set of language and system features that com-
pose elegantly in ways that cover a broad range of use cases. This
is in contrast to competing systems,which from our point of view
do not address the complexity hairball, but simply move it inside
the database (e.g., by including separate column-store and row-
store sub-engines or requiring the use of several disparate query
and scripting languages for application development).

The interplay between a number of key themes characterizes our
system architecture:

T1: Simple, declarative, and uniform language. A major goal
of our system is to unify the programming model for applications
that automate and enhance decision making by using a single, ex-
pressive, declarative language that can be used by domain experts
to understand and evolve the application. To achieve this goal, we
have developed LogiQL, an extended form of Datalog [29, 2, 19]
that is expressive enough to allow coding of entire applications (in-
cluding queries and views; stored procedures; reactive rules and
triggers; and statistical and mathematical modeling).

LogiQL is based on Datalog much in the same way that func-
tional languages are based on the lambda calculus. Datalog is
highly declarative, and we believe it strikes the right balance be-
tween usability, expressive power, safety, and performance. The
resurgence of Datalog in academic circles has been well docu-
mented [34, 1, 23]. Other recent industrial systems based on Data-
log include Google’s Yedalog [13], Datomic1, and the nascent EVE
project2, funded by Andreessen Horowitz.

As a relatively simple language with a transparent semantics,
LogiQL also lends itself well to presentation via alternative “sur-
face syntaxes” which can be more appropriate for a given user
community and task at hand. Like SQL and the formula languages
found in spreadsheets, LogiQL is first-order and first normal form,
making it easier to understand by less technical end-users, who we
have previously observed to struggle with higher-order concepts
such as passing functions to functions or building list-based data
structures.

LogiQL is both expressive and “safe,” with natural syntactic
fragments capturing important complexity classes such as PTIME.
The ability to control the expressive power of the language has use-
ful practical benefits. On the one hand, we can effectively con-

1www.datomic.com
2www.incidentalcomplexity.com

trol how much power to put in the hands of end users who would
otherwise be able to write non-terminating or otherwise harmful
programs, which are especially unpleasant in a shared server envi-
ronment. On the other hand, the ability to “dial up” the expressive
power of the language (all the way to Turing-complete, if need be)
makes us confident that we ultimately will not need to have support
for imperative and other programming paradigms to handle unan-
ticipated use cases.

The semantics of a LogiQL program is largely independent of the
order in which elements of the program appear, and is not deeply
tied to a particular physical evaluation strategy. This is a rare prop-
erty among programming languages: even LogiQL’s closest cousin,
Prolog, relies on a fixed, top-to-bottom and left-to-write reading
of the program. This “disorderliness” of the language (to borrow
an apt phrase from the Bloom project [4]) allows great flexibil-
ity in optimization and evaluation, and makes LogiQL amenable
to high-performance implementations based on memory-hierarchy
friendly, set-at-a-time, bottom-up methods, as well as automatic
parallelization of queries and views. Moreover, we are able to
draw on a rich literature for automatic optimizations and incremen-
tal evaluation strategies.

T2: Clear and easy to understand semantics. The semantics of
LogiQL is based on ordinary two-valued logic and sets, with fully
serializable transactions. Historically, this kind of commitment to
simplicity and correctness had to come at the expense of application
performance and scalability. We will demonstrate below how we
avoid such compromises.

LogiQL encourages a high level of schema normalization,
namely sixth normal form (6NF) [11]3. By encouraging the use
of relations with at most one non-key variable, we derive a number
of benefits:
1. We avoid the use of nulls, eliminating many hard-to-spot mis-

takes. The treatment of null values in databases, and the three-
valued logic that it carries with it, has long been a source of
conceptual problems and awkwardness [27].

2. We improve semantic stability by making the addition or re-
moval of schema information easier as the application evolves.
The more changes a user is forced to make to a model or query
to cope with an application change, the less stable it is. Adding
and removing new entities and relationships to the LogiQL ap-
plication requires far less surgery and database downtime than is
the case when using tables in lower normal forms (i.e., the wide
tables used in SQL row stores).

3. We improve the performance of queries that involve a smaller
number of attributes than would normally exist in a wide ta-
ble. The low information entropy of normalized tables allows
compression schemes and efficiency approaching that of column
stores.

4. We make it easier to support temporal features like transaction
time and valid time for each piece of information in the database.

5. We make it easier to support alternative syntaxes. For exam-
ple, there is a direct mapping between LogiQL and conceptual
modeling languages like ORM [22]. It is also straightforward
to support function- and array-based language syntax since this
highly normalized schema does not require naming of relation
variables (i.e., table columns).
Conventional wisdom favors wide relations, motivated by a com-

pulsion to avoid joins whenever possible. Naturally, embracing
3For example, to store (supplier-name, status, city) data in 6NF,
one uses separate supplier-name, status, and city tables, which
map identifiers to attribute values.

www.datomic.com
www.incidentalcomplexity.com


6NF introduces the challenge that queries often involve a much
larger number of relations. Selection conditions in queries typi-
cally apply to multiple relations, and simultaneously considering
all the conditions that narrow down the result becomes important.
These concerns require new kinds of join algorithms. Leapfrog
trie-join [40], the workhorse join algorithm in our system, lets us
support a clean semantics without unacceptable compromises in
performance or scalability.

Similarly, traditional SQL-based relational database systems ad-
here to a bag (multiset) semantics, in order to avoid the cost of fre-
quent sorting and deduplication. This design choice drastically re-
duces the opportunity for query optimization, since it often happens
that queries that are logically equivalent under set semantics are not
under the bag-semantics. In our experience, it also makes queries
harder for the end users to write and to reason about. LogiQL, in
constrast, adheres to the set semantics, which enables us to imple-
ment a wider array of query rewriting and optimization techniques.

T3: Incrementality. LogicBlox supports efficient incremental
materialized view maintenance. Our incremental maintenance al-
gorithm is inspired by work done in the programming languages
community. It improves significantly on the classical count and
DRed algorithms [20] by guaranteeing that the work done is pro-
portional to the trace edit distance between the before and after
computations.

We have observed that although commercial database systems
typically offer some degree of support for materialized views, the
quality of this feature is usually rather poor: views are restricted
to some subset of SQL queries and often perform very poorly in
mixed OLTP and OLAP use cases (such that OLAP views must
be refreshed manually at periodic offline intervals due to the in-
efficiency of existing view maintenance algorithms in the con-
text of OLTP workloads). Difficulties in providing high-quality
materialized view implementations have motivated some systems,
such as HANA [16], to dispense with them altogether, and in-
stead require that analytical queries always be computed on the
fly. Besides sometimes being obviously wasteful in terms of com-
putational resources, this approach also strikes us as problematic
for truly computation-intensive applications. No matter how fast
query evaluation can be made via parallelization, specialized stor-
age schemes, and so forth, data sets and queries will be encountered
that simply cannot be processed in this manner at interactive speed.

We will describe below how we used efficient view maintenance
(along with purely functional data structures and efficient joins) as a
key building block for our concurrency control scheme, transaction
repair.

Finally, LogicBlox is designed to support efficient incremental
changes to LogiQL programs. This capability makes it possible for
us to support “live programming” use cases that allow end users to
evolve their applications using a spreadsheet metaphor. This prob-
lem is quite different from traditional view maintenance, and re-
quires a new set of techniques as outlined below.

T4: Immutability. The LogicBlox runtime makes pervasive use
of purely functional data structures [35] (a form of immutable data
structures) at all levels of the architecture. These data structures,
originally motivated by purely functional programming languages,
have a number of significant virtues in the context of database sys-
tems engineering:

1. Sharing of immutable substructures means that multiple ver-
sions of a relation or database can be represented together com-
pactly, and changes between versions can be enumerated effi-
ciently.

2. There is no need to maintain either read or write database locks.
Each transaction starts by branching a version of the database
in O(1) time (a few nanoseconds—we have measured 80,000
branches per core per second). Changes in one branch (one
transaction) have no visibility outside the transaction and are
therefore perfectly isolated. Read-only transactions are per-
fectly scalable and do not need to be concerned about other
changes occurring in other branches (i.e., throughput = # cores
× single core transactions per second). Read-write transactions
keep track of what they have read and written, and can be incre-
mentally repaired with our efficient view maintenance machin-
ery at commit time to achieve full serializability.

3. With purely functional data structures, a pointer or object-
identifier uniquely identifies the state of an object. In the distri-
buted setting, this avoids the need for cache coherence protocols.

4. We get useful temporal features such as time-travel essentially
for free. We can branch any past version of the database, and the
version graph can be an arbitrary directed acyclic graph.

5. There is no need for a transaction log for rollback and recovery
purposes. Aborting a transaction means simply dropping all ref-
erences to it; committing a transaction is, conceptually at least,
just a pointer swap to the new head version of the database.

1.2 Outline
In the rest of the paper, we focus in more detail on several novel

aspects of the LogicBlox system. Further aspects, including paral-
lel and distributed computation, data compression, write-optimized
data structures to support large transactional loads, and sampling-
based query optimization are not discussed in this paper due to lack
of space.

Section 2 presents the LogiQL language, and illustrates, by
means of an example application, the way it is used. In Section 3,
we highlight several innovative aspects of the LogicBlox system
implementation. Section 3.1 discusses the use of persistent data
structures and branching, which pervade the architecture. Sec-
tion 3.2 overviews our workhorse join algorithm, leapfrog triejoin,
and its associated view maintenance algorithm. Section 3.3 de-
scribes the meta-engine, which is the core architectural component
enabling live programming. Section 3.4 presents our approach to
concurrency control via transaction repair. We finally conclude in
Section 4.

2. APPLICATION DEVELOPMENT IN
LOGIQL

We illustrate the use of the LogicBlox system by means of a
small example that highlights the need to support a variety of use
cases in one application. After that, we give an overview of the
LogiQL language itself.

2.1 Example Application
A user community made up of several hundred merchants, plan-

ners, supply chain personnel, and store managers at a large retailer
wants to analyze historical sales and promotions data in order to
assess the effectiveness of their product assortments, plan future
promotions, predict future sales, and optimize the fulfillment of the
demand generated by those assortments and promotions. The data
in this scenario are several terabytes in size, and the model of the
business is made up of a few thousand metrics.

There are multiple users concurrently using the application.
Some are analyzing historical sales data via pivot tables, some are
editing the data to specify different future promotional strategies



Figure 1: Screenshots of a retail planning application.

and generating new predictions of the demand created by those
promotions, some are editing and overriding previously generated
sales projections based on new information that is not available to
the system yet, and some are asking the system for a recommended
plan for fulfilling the demand generated by the promotions. All
reads and writes occur at various levels of resolution, e.g., SKU/-
Store/Day or Dept/Region/Month. These levels are not known a
priori by the application developers.

Furthermore, as the competitive landscape and the macroeco-
nomic picture changes, some of the privileged users of the sys-
tem (i.e., power users or approved managers) would like to evolve
the application to refine the financial, statistical, or mathematical
models used within the application in order to enhance the groups’
effectiveness and to increase the profits of the enterprise.

Figure 1 shows the environment in which users can visualize
their data and their model, both of which can be evolved in order to
reflect new knowledge about their business.

Through the notion of workbooks, we enable users to create
branches of (subsets of) the database that can be modified inde-
pendently. These workbooks allow us to support a variety of long-
running transaction use cases. For example, workbooks can be cre-
ated to allow a business person to analyze a variety of scenarios that
model certain decisions that can be made to shape or fulfill client
demand. Workbooks can also be created to support long running
predictive and prescriptive analytics that will take several hours of
machine time to run. Multiple users and processes may be working
concurrently on different workbooks. It is important that the users
of the system not be impacted negatively as hundreds of these long
running transactions are taking place along with millions of smaller
ones.

2.2 The LogiQL Language
In this section, we give an overview of the LogiQL language.

Our overview is high-level and omits many details. See [21] for
more details.4

4Visit https://developer.logicblox.com for a LogiQL tuto-
rial and an online REPL for interactive tryout programming.

2.2.1 Basic Syntactic Elements
In this section we describe the core elements of a LogiQL pro-

gram, namely predicates, derivation rules, integrity constraints,
and reactive rules.

Predicates. LogicBlox supports predicates (relations) of the form
R(x1, ...,xn) or R[x1, ...,xn−1] = xn where each attribute xi has either
a primitive type (e.g., int, float, decimal, string, or date) or a user-
defined entity type. As noted in T2 in Section 1, this type of schema
encourages a strong form of normalization, corresponding to 6NF.

Each predicate may be declared as being either a base predi-
cate (a.k.a. extensional or EDB predicate or relation), or a derived
predicate (a.k.a. intensional or IDB predicate). If left unspecified,
the predicate kind (base or derived), as well as the attribute types,
are inferred from usage within the program. Base predicates con-
tain input data and derived predicates are views over the base data.
Derived predicates default to being materialized. However, if the
derivion rule does not use aggregation or recursion, they can be left
unmaterialized.

Derivation Rules. Derivation rules are used to specify view defi-
nitions. LogiQL admits two types of derivation rules.

A basic derivation rule is an expression of one of the two forms

R(t1, . . . , tn)← F

R[t1, . . . , tn−1] = tn← F

where R is a derived predicate, t1, . . . , tn are variables and/or con-
stants, and F is a formula containing all variables occurring in
t1, . . . , tn. The formula, here, may be a conjunction of atoms and/or
negated atoms. The atoms involve base predicates, derived pred-
icates, and/or built-in predicates such as equality, arithmetic addi-
tion, etc. An example of a basic derivation rule is

profit[sku] = z← sellingPrice[sku] = x,

buyingPrice[sku] = y, z = x− y.

which, using abbreviated syntax, may also be written as the expres-
sion

profit[sku] = sellingPrice[sku]−buyingPrice[sku].

Besides basic derivation rules, LogiQL also supports derivation
rules that perform, for instance, aggregation. This is supported
in an extensible way via the general construct of a higher order
Predicate-to-Predicate Rule (P2P rule). For example, the P2P rule

totalShelf[ ] = u← agg�u = sum(z)� Stock[p] = x,

spacePerProd[p] = y, z = x∗ y.

performs a simple weighted sum-aggregation to compute the total
amount of required shelf space, which, using abbreviated syntax,
can also be written as:

totalShelf[]+= Stock[p]∗ spacePerProd[p].

It is worth noting that every view definition definable in the re-
lational algebra can be encoded by means of derivation rules (by
introducing auxiliary predicates for intermediate results if neces-
sary).5 A collection of derivation predicates may be defined by
rules with a cyclic dependency graph, in which case the rules in
question can be viewed as recursive view definitions.

Integrity Constraints. An integrity constraint is an expression
of the form F → G (note the use of a rightward arrow instead of a

5Indeed, it follows from the Immerman-Vardi theorem [25] that
every PTIME-computable view definition is expressible.

https://developer.logicblox.com


// Base predicates:
spacePerProd[p] = v→ Product(p),float(v).
profitPerProd[p] = v→ Product(p),float(v).

minStock[p] = v→ Product(p),float(v).
maxStock[p] = v→ Product(p),float(v).

maxShelf[ ] = v→ float[64](v).
// Derived predicates and rules:

Stock[p] = v→ Product(p),float(v).
totalShelf[ ] = v→ float(v).
totalProfit[ ] = v→ float(v).
totalShelf[ ] = u← agg�u = sum(z)� Stock[p] = x,

spacePerProd[p] = y, z = x∗ y.

totalProfit[ ] = u← agg�u = sum(z)� Stock[p] = x,

profitPerProd[p] = y, z = x∗ y.

// Integrity constraints:
Product(p)→ Stock[p]≥minStock[p].
Product(p)→ Stock[p]≤maxStock[p].

totalShelf[ ] = u,

maxShelf[ ] = v → u≤ v.

Figure 2: Example constraints and rules.

leftward arrow), where F and G are formulas. Both inclusion de-
pendencies and functional dependencies can be naturally expressed
by such expressions. Examples of integrity constraints are:

Stock[p] = v→ Product(p),float(v).
Product(p)→ Stock[p] = _.

totalShelf[ ] = u,maxShelf[ ] = v→ u≤ v.

The first constraint can in fact be viewed as a type declaration: it
expresses that the key-attribute of the Stock predicate consists of
products (Product is a user defined type here), and that the value-
attribute is a float. The second constraint is an inclusion depen-
dency that expresses that every product has a stock value. The third
constraint expresses that the value of totalShelf[ ] is bounded by
the value of maxShelf[ ].

Whereas derivation rules define views, integrity constraints spec-
ify the set of legal database states. Traditionally, integrity con-
straints are used to determine if a transaction succeeds. As we will
see below, we also use integrity constraints to encode mathematical
optimization problems.

Figure 2 shows an example that involves predicates, derivation
rules, and integrity constraints. The program is intended to model
a simple retail assortment-planning scenario where the products
picked for an assortment cannot take up more space than is avail-
able on the shelf.

Reactive Rules. Reactive rules are used to make and detect
changes to the database state. They are a special form of derivation
rules that refer to versioned predicates and delta predicates [28]. A
simple example of a reactive rule is:

+sales[“Popsicle”,2015-01] = 122.

which inserts a new fact into the sales predicate. A more interesting
example is the following.

ˆprice[“Popsicle”] = 0.8∗ x←
price@start[“Popsicle”] = x,

sales@start[“Popsicle”, 2015-01]< 50,

+ promo(“Popsicle′′,2015−01).

This code discounts the price of popsicles if the sales in January
2015 are lower than 50 units, and there is a promotion being created
for popsicles.

As we can see from the above examples, reactive rules are deriva-
tion rules that may refer to system-provided versioned predicates
and delta-predicates such as R@start (the content of R at the start
of the transaction), +R (the set of tuples being inserted into R in the
current transaction), −R (the set of tuples being deleted from R in
the current transaction). ˆR is a shorthand notation for a combina-
tion of +R and −R. If R is a base predicate, the content of R after
the transaction is determined by means of the following system-
provided frame rules:

R(x1, . . . ,xn)← R@start(x1, . . . ,xn), !(−R(x1, . . . ,xn)).
R(x1, . . . ,xn)←+R(x1, . . . ,xn).

The above presentation is much simplified. For more details
see [21].

2.2.2 Workspaces and Transactions
A workspace consists of (i) a collection of declared predicates,

derivation rules, and constraints (collectively called logic) and (ii)
contents of the base predicates. One can think of a workspace as an
instance of the database, at a particular moment in time, including
both data and logic. In order to facilitate workspace management,
the logic in a workspace is organized in modules that are called
blocks. Each block is a separate collection of predicate declara-
tions, derivation rules and constraints. The derivation rules and
integrity constraints of one block may refer to predicates declared
in another block. In order to support programming in the large,
LogiQL also supports a more refined module system, involving ab-
stractions and hiding, which we will not explain for lack of space.
We will only describe some types of transactions supported by the
system.

Query transactions. These transactions are used for querying the
workspace state. A query is specified by means of a program that
has a designated answer predicate, for example,

query{
_(icecream,week,sales,revenue,profit)←

week_sales[icecream,week] = sales,

week_revenue[icecream,week] = revenue,

week_profit[icecream,week] = profit.}

where _ is the designated answer predicate.

Exec transactions. These are used to modify the workspace state
by changing the content of base predicates (which may subse-
quently trigger changes in the content of derived predicates). Exec
transactions are specified using reactive logic as described above.

Addblock and Removeblock. These transactions are used to add
or remove named collections of rules to the workspace program.



For example,

addblock –name salesAgg1{
Sales_yr[sku,store,yr] = z←

agg�z = sum(s)� Sales[sku,store,wk] = s,year[wk] = yr.}

installs a new view into the workspace, and

removeblock salesAgg1

removes it again, thereby restoring the workspace to its prior state.
Addblock transactions do not effectuate any changes to existing
base predicates. Instead, they may create new base predicates
and/or derived predicates, add derivation rules for new or existing
derived predicates, and/or add new integrity constraints.

Addblock and removeblock transactions can be viewed as sup-
porting a form of live programming (see Section 3.3). In addition,
they are central to the workflow of many applications developed
using LogiQL, cf. Section 2.1.

Branch and Delete-branch. These transactions create and delete
branches of the workspace, that is, copies of the workspace that can
be manipulated independently. Branching can be used for creating
checkpoints, as well as for supporting speculative what-if analyses.
These are crucial in the context of modeling and prediction. As
discussed in Section 3.1, the use of purely functional data structures
in our implementation makes it possible to support the creation of
a new branch as an instantaneous operation, as no actual (deep)
copying of data takes place when a new branch is created.

2.3 Prescriptive and Predictive Analytics
The subset of LogiQL presented so far (namely derivation rules,

integrity constraints, and reactive rules) allows us to define appli-
cation logic that traditionally would have to be defined using SQL,
SQL triggers, an imperative stored-procedure language such as
PL/SQL, and an imperative object-oriented language such as Java
or C#.

We now illustrate how LogiQL supports prescriptive and predic-
tive analytics, providing functionality that is not traditionally of-
fered by SQL databases and traditional application servers and is
usually supported by the addition of specialized analytic systems
to the application architecture.

2.3.1 Prescriptive analytics
By adding one more language feature, LogiQL can be extended

to gracefully supports mathematical optimization and prescriptive
analytics [8]. The idea is that a predicate R[x1, . . . ,xn] = y can be
declared to be a free second-order variable, which means that the
system is responsible for populating it with tuples, in such a way
that the integrity constraints are satisfied. Furthermore, a derived
predicate of the form R[ ] = y can be declared to be an objective
function that should be minimized or maximized.

Continuing the example program in Figure 2, suppose that we
would like to automatically compute stock amounts so as to max-
imize profit. Then, it suffices to add to the program the following
lines of code:

lang:solve:variable(‘Stock).
lang:solve:max(‘totalProfit).

The first line is shorthand for an second order existential quantifier
and it states that the predicate Stock should be treated as a free
second-order variable that we are solving for, while the second line
states that the predicate totalProfit is an objective function that
needs to be maximized (subject to the integrity constraints).

Under the hood, the program is translated into a Linear Pro-
gramming (LP) problem and passed on to the appropriate solver,
e.g., [36, 3]. LogicBlox grounds (i.e., eliminates the quantifiers
in) the problem instance in a manner similar to [33] via automatic
synthesis of another LogiQL program that translates the constraints
over variable predicates into a representation that can be consumed
by the solver. This improves the scalability of the grounding by
taking advantage of all the query evaluation machinery in the Log-
icBlox system (e.g. query optimization, query parallelization, etc).
The system then invokes the appropriate solver and populates the
value of existentially quantified predicates with the results (turn-
ing unknown values into known ones). Furthermore, the grounding
logic incrementally maintains the input to the solver, making it pos-
sible for the system to incrementally (re)solve only those parts of
the problem that are impacted by changes to the input.

If the sample application is changed such that the stock pred-
icate is now defined to be a mapping from products to integers,
LogicBlox will detect the change and reformulate the problem so
that a different solver is invoked, one that supports Mixed Integer
Programming (MIP).

Examples of research in this area include [12, 18, 38, 30]. As
far as we know, LogicBlox is the first commercial database system
that provides native support for prescriptive analytics.

2.3.2 Predictive analytics
Predictive analytics in LogicBlox was initially supported by

means of a collection of built-in machine learning algorithms. This
is done via special “predict” P2P rules that come in two modes: the
learning mode (where a model is being learned) and the evaluation
mode (where a model is being applied to make predictions). We
do not give here the formal syntax and semantics for these rules;
rather, we give an illustrative example.

Suppose that we wish to predict the monthly sales of products
in branches. We have the predicate Sales[sku,store,wk] = amount
as well as a predicate Feature[sku,store,name] = value that asso-
ciates with every sku, store and feature name a corresponding fea-
ture value. The following learning rule learns a logistic-regression
model for each sku and branch, and stores the resulting model ob-
ject (which is a handle to a representation of the model) in the pred-
icate SM[sku,store] = model.

SM[sku,store] = m← predict� m = logist(v| f )�
Sales[sku,store,wk] = v , Feature[sku,store,n] = f .

The following rule evaluates the model to get specific predictions.

Sales_pred[sku,store] = v← predict� v = eval(m| f )�
SM[sku,store] = m , Feature[sku,store,n] = f .

The above rules are evaluated using a built-in machine learning
library, which implements a variety of state-of-the-art, scalable ma-
chine learning algorithms to support regression, clustering, density
estimation, classification, and dimensionality reduction.

2.3.3 Towards Declarative Probabilistic Modeling
The above approach to statistical model building and predictive

analytics is not fully satisfying as it is imperative and requires the
user to be well-versed in statistical modeling. We briefly discuss
some extensions to LogiQL that we are currently developing to
make statistical and probabilistic model building more natural by
using the native modeling constructs of the language.

Statistical Relational Models. Markov Logic Networks
(MLN) [15] and Probabilistic Soft Logic (PSL) [9] are two ex-
amples of languages that combine logical and statistical model-



ing. This is accomplished through the use of soft constraints, i.e.,
weighted constraints that are not required to always hold, but whose
violations carry a specified penalty.

As an example, suppose that we wish to predict whether cus-
tomer c will purchase product p. Further assume that we have base
predicates that specify similarity among products, Similar(p1, p2);
friendship among customers, Friends(c1,c2); and products under
promotion, Promoted(p). Consider the following soft constraints.

w1 : Customer(c),Promoted(p)→ Purchase(c, p)

w2 : Customer(c),Promoted(q),Similar(p,q)→ !Purchase(c, p)

w3 : Purchase(d, p),Friends(c,d)→ Purchase(c, p)

w4 : !Purchase(d, p),Friends(c,d)→ !Purchase(c, p)

Here, w1, w2, w3 and w4 are numerical weights. While ordi-
nary (hard) constraints in a LogiQL program specify the set of legal
database states, soft constraints assign to each state a score indicat-
ing whether it is more or less “likely” compared to other database
states. For example, in the case of MLNs, the likelihood of a pos-
sible world is proportional to the product of the factors, where a
factor is defined for each satisfying grounding a rule (in the possi-
ble extension) and constitutes (a function of) the weight of that rule.
As an example, if the weight of the first rule, w1, is 2.0, then the
likelihood of a possible world is multiplied by e2.0 for every prod-
uct p and customer c that satisfy Promoted(p)→ Purchase(c, p).

In these formalisms, Maximum-A-Priori (MAP) inference finds
the most likely possible world, such as the most likely purchases
given partial knowledge about real purchases. This can be formu-
lated as a mathematical optimization problem, which can be solved
using the machinery described in Section 2.3.1.

Probabilistic-Programming Datalog. Formalisms for specifying
general statistical models, such as probabilistic-programming lan-
guages [17], typically consist of two components: a specification
of a stochastic process (the prior), and a specification of observa-
tions that restrict the probability space to a conditional subspace
(the posterior). We plan to enhance LogiQL with capabilities for
probabilistic programming, in order to facilitate the design and en-
gineering of machine-learning solutions. Towards that, we have
initiated a theoretical exploration of such an extension. In a re-
cent paper [5], we considered the LogiQL fragment of conjunctive
derivation rules (i.e., traditional Datalog) and arbitrary integrity
constraints. We proposed an extension that provides convenient
mechanisms to include common numerical probability functions;
in particular, conclusions of rules may contain values drawn from
such functions.

As an example, we will consider a case where we wish to detect
that a product is being promoted, which leads to a significant in-
crease in sales. We have a relation Promotion[p] = b, determining
whether product p is likewise promoted (where b = 1 or b = 0),
where we do not know the value of b. We also have the relation
BuyRate[p,b] = r that determines the probability r that a product
p is sold without a promotion (b = 0) and with a promotion (b = 1).
Finally, we have a relation Customer(c) of customers and a relation
Buys[c, p] = b that determines whether client c purchased product
p. The following program models a random behavior of customers
(Flip[r] defines a Bernoulli distribution with parameter r).

Promotion[p] = Flip[0.01]← .

Buys[c, p] = Flip[r]← BuyRate[p,b] = r,

Promotion[p] = b.

To determine whether or not a promotion is in place, we use the
(say, daily) purchase data to condition the probability space.

Visited(c),Bought[c, p] = b→ Buys[c, p] = b.

Here, Visited and Bought are base predicates with known values.
The resulting probability space is the one defined by the two deriva-
tion rules, conditioned on the following integrity constraint (obser-
vations). Inference on the program is supported: for example, one
can ask for the most likely value b such that Promotion[p] = b.

Defining the precise semantics of such a program is not at all
straightforward, and we refer the interested reader to [5] for the
formal framework underlying our proposal.

3. FACETS OF THE IMPLEMENTATION
In this section, we highlight several innovative aspects of the

LogicBlox system implementation.

3.1 Branching and persistent data structures
One of the core design choices in the implementation of the Log-

icBlox engine is the use of persistent data structures. Our structures
have “mutable until shared” objects that sit at a useful tradeoff
point between imperative and purely functional. The objects are
mutable when created and while local to a thread, and become im-
mutable at synchronization and branching points (e.g., when the
data structure is communicated to another thread, committed, or
branched). This allows the efficiency benefits of the imperative
RAM model while doing thread-local manipulations, but preserves
the “pointer value uniquely determines extensional state” property
of purely functional data structures when objects are shared, which
simplifies the programming model for incremental maintenance,
concurrent transactions, and live programming. In addition, our
internal framework transparently persists, restores, and garbage-
collects these objects as needed, which greatly simplifies the en-
gineering of many aspects of the runtime internals.

Persistent data structures are used for both paged relational data
and meta-data, which are C++ objects representing for instance
LogiQL programs and workspaces. For paged data, we use a family
of persistent B-tree-like data structures. Collections of meta-data
objects such as sets, vectors, and maps are implemented as treaps.
These are randomized binary search trees that offer efficient search,
insertion, and deletion [37]. Treaps have the unique representation
property: the structure of the tree depends only on its contents,
not on the operation history. With memoization, this permits ex-
tensional equality testing in O(1) time, using pointer comparison.
The treaps are purely functional [35], i.e., the treap nodes cannot
be modified once constructed and all mutating (insert/erase) oper-
ations are performed by duplicating a path from the root to where
the change occurs. Set intersection, union, and difference are also
efficient [7].

Recall that the branch transaction command of LogiQL creates a
new branch of a workspace. Since both data and the meta-data are
stored using persistent data structures, this is an O(1) operation.
Moreover, the branching functionality, coupled with functional-
style techniques, enables versioned data structures that provide ef-
ficient search and set operations such as the difference between ver-
sions of objects. Efficient diffing is crucial for incremental mainte-
nance, while efficient branching is used by our lock-free concurrent
transactions to execute in parallel on different branches of the cur-
rent version of the database.

3.2 Queries and incremental maintenance
Leapfrog Triejoin (LFTJ) [42] is a join algorithm developed at

LogicBlox and can be seen as an improved version of the classical



sort-merge join algorithm. It is used to compute the derived pred-
icates (more specifically, it enumerates the satisfying assignments
for bodies of derivation rules). We next give an overview of the
algorithm and its properties. To simplify the presentation, we fo-
cus on equi-joins. As the details of this algorithm are needed for
describing various important aspects of our system (e.g., indices,
concurrency and incremental maintenance), the description here is
more elaborate than that of the other components we consider in
this paper.

LFTJ for unary predicates. We first describe how LFTJ works
for the special case of joining unary predicates A1(x), . . . ,Ak(x).
This case is of no particular novelty (see, e.g., [24, 14]), but it serves
as the basic building block towards the general case.

The input predicates Ai are assumed to be given in sorted order,
and accessible though a linear iterator interface that supports the
following methods:
• next() proceeds to the next value (i.e., tuple of the unary Ai).

• seek(v) proceeds to the least upper bound for v; that is, it posi-
tions the iterator at the smallest value u satisfying u ≥ v, or the
end if no such u exists. The given v must be greater or equal to
the value at the current position.

These methods are required to take O(logN) time, where N is
the cardinality of the predicate. Moreover, if m values are vis-
ited in ascending order, the amortized complexity is required to
be O(1+ log(N/m)), which can be accomplished using standard
data structures such as B-trees. Initially, the linear iterator method
is located at the first value in the predicate.

The unary LFTJ algorithm itself implements the same linear it-
erator interface: it provides an iterator for the join of A1 to Ak, i.e.,
for the intersection A1∩·· ·∩Ak, that efficiently supports next() and
seek(). The algorithm maintains a priority queue of pointers to in-
put iterators, one for each predicate being joined, where the priority
reflects the value at which the iterator is currently positioned. The
algorithm repeatedly takes an iterator with the smallest value and
performs a seek for the largest value, “leapfrogging” the iterators
until they are all positioned at the same value.

Figure 3 illustrates a join of three unary predicates, A, B, and C,
with A = {0,1,3,4,5,6,7,8,9,11}, B = {0,2,6,7,8,9}, and C =
{2,4,5,8,10}. Initially, the iterators for A, B, and C are positioned
at the first elements 0, 0, and respectively 2. Since 2 is the largest
from these three values, the iterator for A performs a seek(2) which
positions the iterator for A at 3. The iterator for B then performs a
seek(3), which lands at 6. The iterator for C does seek(6), which
lands at 8, and so on. LFTJ ends when the iterator for B, while
performing seek(11), reaches the end.

Sensitivity intervals. As LFTJ calls the next() and seek() meth-
ods of the participating iterators, there is a natural notion of a sen-
sitivity interval: an interval where changes may actually affect the
result of the LFTJ computation. For instance, in the example in
Figure 3, inserting the fact C(3) or deleting the fact C(4) would
not affect the computation, given that the seek(6) instruction skips
over these values anyway. The sensitivity intervals, i.e., intervals
where changes do affect the LFTJ computation, for the example in
Figure 3 are as follows:

A :[−∞,0], [2,3], [8,8], [10,11]
B :[−∞,0], [3,6], [8,8], [11,+∞]

C :[−∞,2], [6,8], [8,10]

The sensitivity indices can, in this example, also be viewed as
representing an execution trace of the LFTJ algorithm. In the Log-

Predicate A(x,y,z) Trie presentation
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Figure 4: Example: Trie presentation of a ternary predicate.

icBlox runtime, sensitivity intervals play an important role for both
incremental maintenance and concurrent transactions.

Arbitrary arity. Non-unary input predicates, such as A(x,y,z), are
(logically) presented as tries, that is, trees in which each level corre-
sponds to a different argument position, and each tuple (a,b,c) ∈ A
corresponds to a unique root-to-leaf path. The linear iterator inter-
face is augmented with two methods for vertical trie navigation:
• open() for proceeding to the first value at the next depth (i.e.,

the first child of the current node in the trie).

• up() for returning to the parent of the current node in the trie.
These methods can also be supported in O(logN) time for the in-
put predicates. The next() and seek() methods perform horizontal
navigation between siblings in the trie, as before.

We now describe the LFTJ algorithm for equi-joins of pred-
icates of arbitrary arity. We assume that each variable appears
at most once in each atom. For example, R(x,x) can be rewrit-
ten to R(x,y),x = y to satisfy this requirement. Likewise, we
may assume that constants may not appear in the query: a sub-
formula such as A(x,2) is rewritten to A(x,y), Const2(y), where
Const2 = {2}. Here, the equality (=) and Const2 are virtual (i.e.,
non-materialized) predicates that allow for efficient access through
the same trie-iterator interface.

The algorithm requires a variable ordering that is consistent with
the order in which variables occur in the atoms in the query. For
instance, in the join R(a,b),S(b,c),T (a,c) we might choose the
variable ordering [a,b,c]. In cases where no consistent variable or-
der exists, such as for the join R(a,b,c),S(c,b), a secondary index
is required on one of the two predicates. For example, if the chosen
variable ordering is [a,b,c], a secondary index on S is needed that
efficiently supports access to S′(c,b) = S(b,c) via the trie-iterator
interface.

Once a variable order is chosen, the algorithm proceeds by per-
forming a unary LFTJ for each variable. Consider the example
R(a,b), S(b,c), T (a,c) with the variable ordering [a,b,c]. We first
apply the unary LFTJ algorithm to enumerate the values for a that
are in both the projections R(a,_) and T (a,_). For each successful
binding for a, we proceed to the next variable in the chosen order.
Again, a unary LFTJ is performed to enumerate bindings for b that
satisfy both R(a,b) and S(b,_) (for the current value of a). Finally,
for each successful binding of b, we proceed to the variable c, and
perform a unary LFTJ to enumerate values for c satisfying both
S(b,c) and T (a,c) (for the current values of a and b). Each time a
unary LFTJ run finishes, having exhausted its list of possible bind-
ings, we retreat to the previous level and seek another binding for
the corresponding variable. Thus, conceptually, we can regard the
entire LFTJ run as a backtracking search through a trie of potential
variable bindings.
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Figure 3: Example of a LFTJ run with unary predicates.
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Figure 5: Running time of the 3-clique query on (increas-
ingly larger subsets of) the LiveJournal graph dataset [26] us-
ing LogicBlox 4.1.4, Virtuoso 7, PostgreSQL 9.3.4, Neo4j 2.1.5,
MonetDB 1.7 (Jan2014-SP3), a commercial in-memory column
store (System HC), and RedShift. See [32] for full details and
more experiments.

LFTJ is a worst-case optimal join algorithm for any equi-join
query, in the following sense (cf. [31]): the running time of the
algorithm is bounded by the worst-case cardinality of the query
result (modulo logarithmic factors) [42].

Scenarios where LFTJ excels particularly compared to other join
algorithms are multi-way joins such as the join returning all 3-
cliques on the LiveJournal graph dataset, cf. Figure 5.

Optimization and parallelism. When joins are evaluated using
LFTJ, query optimization essentially boils down to choosing a good
variable order. Recall that, depending on the chosen variable order,
secondary indices may need to be created and maintained for some
predicates. The LogicBlox query optimizer uses sampling-based
techniques: small representative samples of predicates are main-
tained. These samples are used to compare candidate variable or-
derings for LFTJ evaluation, and, consequently, also for automatic
index creation. Furthermore, the samples are used to determine
domain decompositions for automatic parallelization.

Incremental maintenance. As we explained in the introduction,
incremental maintenance is of central importance in LogicBlox ap-
plications. We support incremental maintenance of derived predi-
cates efficiently by means of an extension of the LFTJ algorithm.
The basic setup is as follows. We have a derivation rule such as

T (x)← A1(x,y),A2(y,z),A3(x,z)

and, for each input predicate Ai, we are given an old version Aold
i ,

a new version Anew
i , and a delta predicate A∆

i , where A∆
i is a set of

insertions and deletions that, when applied to Aold
i , yields Anew

i . We
are also given T old , and the task is to compute T new as well as T ∆

which is then propagated forward to other rules. Recall that our
versioned data structures allow us to compute differences between
two versions of a predicate efficiently.

The derivation rule maintenance problem is, conceptually, split
into two parts: maintaining the set of satisfying assignments for the
rule body under changes to the input predicates (“rule body mainte-
nance”) and maintaining the rule head predicate under changes to
the set of satisfying assignments for the rule body (“rule head main-
tenance”). For recursive LogiQL programs, additional machinery
is used to maintain the results of fixpoint computations.

Rule head maintenance is implemented using a variety of data
structures for different derivation rules. In the case of the above ex-
ample, a count predicate is maintained, indicating, for each value a,
the number of different ways in which it is derived (i.e,. the number
of satisfying assignments of the rule body that support the deriva-
tion of that value). For P2P rules performing operations such as
aggregation, different data structures are used. Support for efficient
rule body maintenance is provided by the LFTJ algorithm through
the use of sensitivity indices. These sensitivity indices maintain
sensitivity intervals for a LFTJ run at various levels in the trie and
in various contexts (where the context of a sensitivity interval con-
sists of the values for earlier-chosen variables under which the sen-
sitivity occurs). The maintenance algorithm is designed to be op-
timal in the sense that the cost of maintenance under changes to
the input predicates is proportional to the trace-edit distance of the
corresponding runs of the LFTJ algorithm [41].

3.3 Live programming and self service
In order to support end-user driven application evolution, we

have added support for live programming in LogicBlox, where the
traditional edit-compile-run cycle is abandoned in favor of a more
interactive user experience with live feedback on a program’s run-
time behavior [10]. For instance, in our retail planning applica-
tions, we enable users to define and change schemas and formulas
on the fly. These changes trigger updates to the application code in
the database server and the challenge is to quickly update the user
views in response to these changes. Section 2.1 describes such a
scenario.

From a technical perspective, live programming is far from
trivial—especially when working with programs and data of the
scale encountered in the real world (e.g., a typical application has
about 5k LogiQL rules and several TBs of data). To achieve in-
teractive response times in those scenarios, changes to application
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Figure 6: While the engine proper deals with maintenance of
the derived predicates (materialized views) for a given program
(left half), the meta-engine maintains the program under code
updates and informs the engine proper which derived predi-
cates should be revised (right half).

code must be quickly compiled and “hot-swapped in” to the run-
ning program, and the effects of those changes must be efficiently
computed in an incremental fashion.

Live programming is supported in the LogicBlox system via the
meta-engine, which is a higher-level lightweight engine that man-
ages metadata representing LogiQL application code. The meta-
engine maintains the program state declaratively and incrementally.
Figure 6 depicts schematically how the meta-engine differs from
the engine proper and how the two engines work together. The
LogiQL program is compiled into an execution graph, where the
predicates are the nodes and the edges between nodes represent
rules. The engine proper evaluates the execution graph bottom-
up on the input database and materializes the derived predicates.
The meta-engine is activated when the program changes: it incre-
mentally maintains the execution graph (depicted by a revised ex-
ecution graph) and informs the engine proper which derived pred-
icates have to be maintained as result of the program change. To
achieve this, the meta-engine uses meta-rules to declaratively de-
scribe the LogiQL code as collections of meta-facts and their rela-
tionships. These collections are implemented using persistent data
structures, cf. Section 3.1. There are currently about 200 meta-rules
that support the incremental code maintenance mechanism and var-
ious code invariants and optimizations, such as rule inlining and
on-the-fly creation of sampling rules to support LFTJ optimization.
The meta-rules are expressed in non-recursive Datalog with nega-
tion, and additional functionality is available via an extensible set
of primitive built-ins and computed meta-predicates.

Compared with an imperative specification of the complicated
state transitions involved in live programming, the declarative ap-
proach is simpler, uses less code, is more robust, and is easily ex-
tensible.

We next give two examples of actual meta-rules. The first ex-
ample meta-rule is used to determine whether a given predicate is
a base predicate (recall from Section 2 that the user is not required
to specify if a given predicate is a base predicate or a derived pred-
icate, and that, when not specified explicitly, the information in
question is derived from the way the predicate is used):

lang_edb(name)← lang_predname(name), !lang_idb(name).

The meta-predicate lang edb denotes the set of all base predicates,
whereas the meta-predicate lang idb denotes the set of all derived

predicates. The above meta-rule states that every predicate that is
not implied (by other meta-rules) to be an derived predicate is a
base predicate (the ! symbol is used for negation). In a live pro-
gramming application, any of the two body meta-predicates may
change, i.e., new predicates are declared or existing ones are re-
moved, and the meta-engine updates the lang edb meta-predicate
(i.e., the set of base predicates) after each such change.

As a second example, we give (a simplified version of) the meta-
rule that determines whether frame rules are needed for a specific
base predicate. Recall from Section 2 that frame rules are used to
compute the new extension of an base predicate Foo based on the
previous version Foo@start together with the extension of the cor-
responding delta-predicates +Foo and −Foo. The system needs
to maintain the following logical invariant: if +Foo or –Foo ap-
pears in the head of a rule, then we need a frame rule for Foo. The
following meta-rule maintains this invariant:

need_frame_rule(predName)← user_rule(_,rule),

rule_head[rule] = head,head_predicate(head, predName),

is_delta_predicate(predName).

Here, the meta-predicate needs frame rule denotes the set of
delta predicates for which a frame rule needs to be generated. The
above meta-rule inspects the head of each user rule and checks
whether it contains a delta predicate.

3.4 Transaction Repair
In this section we describe our ongoing effort to support concur-

rent write-transactions. Recall that the LogicBlox engine aims to
provide a unified platform for mixed workload data processing. As
such, efficient and transparent support for concurrent transactions
is of crucial importance.

Traditional approaches to concurrent transactions either settle for
lower levels of isolation, such as Snapshot Isolation, or employ
costly locking mechanisms that reduce the potential for parallel
speedup. Instead, our approach, which we call transaction repair
[43], provides full serializability (the highest level of correctness
and semantic transparency) while avoiding the use of locks. Un-
like other concurrency mechanisms that support full serializability
through the use of versioned data structures, transaction repair is
able to accommodate large-footprint write-transactions efficiently,
which are common in planning scenarios. To do so, we take advan-
tage not only of our purely functional and versioned data structures,
but also of the fact that our system supports efficient incremental
maintenance:
1. Branching an entire workspace is an O(1) operation due to the

use of persistent data structures, cf. Section 3.1. This means that
we can run transactions simultaneously, with no locking, each
in a separate branch of the database. This immediately supports
a “multiple reader, single writer” form of concurrency.

2. As explained in Section 3.2, sensitivity indices can be used to
track which changes in the underlying data may affect the eval-
uation of derivation rules. In the same way, sensitivity indices
can be used to track what changes to a workspace may affect the
execution of a transaction. In particular, we can use sensitivity
indices to detect conflicts between concurrent transactions.

3. In case of conflicts, our incremental maintenance machinery can
be used to maintain the result of the second transaction under
relevant changes resulting from the first transaction, i.e., to re-
pair transactions. This is what allows us to support concurrent
transactions with full serializability without using locks.
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Figure 7: The transaction-repair framework

4. Once all conflicts for the group of transactions in flight (or an
initial segment) have been repaired, they can be committed to-
gether.

Below, we describe the transaction-repair framework in somewhat
more detail.

Transaction Maintenance In the transaction-repair framework, a
transaction takes as input a workspace and any number of correc-
tions (which may be supplied over time) and provides as output
transaction effects and transaction sensitivities. Moreover, these
output effects and sensitivities are kept up-to-date as corrections
are received. This is depicted graphically in Figure 7(a).

The transaction sensitivities are not the intervals where changes
could affect the output workspace, but rather intervals where
changes could affect the transaction effects, i.e.„ the changes that,
when applied to the corrected input workspace, yield the output
workspace.

For example, suppose the workspace contains base predicates
inventory and auto order, and a derived predicate place order de-
fined by the derivation rule

place_order(x)← inventory[x] = 0,auto_order(x).

Consider the transaction

exec{
înventory[“Popsicle”] = x←

inventory@start[“Popsicle”] = y,x = y−1.}

(Assume in the discussion below that l stands for “Popsicle”.) If
the input workspace contains a record inventory[l] = 2, then the
transaction effects will include

−inventory[l] = 2 and + inventory[l] = 1,

while the transaction sensitivities for the predicate inventory will
contain the (singleton) interval [l, l]. Now, suppose the transaction
receives the above two side effects on inventory as incoming cor-
rections. Then, the updated transaction effects will include

−inventory[l] = 1,+inventory[l] = 0, and +place_order(l),

and the sensitivities for auto order will include the singleton in-
terval [l, l]. Note that the precise set of sensitivity indices recorded

depends on the execution of the LFTJ algorithm, and, more specif-
ically, the order in which the iterators are visited.

Transaction Circuits Two transactions performed concurrently
can be composed into a single object that implements the same in-
terface described above, cf. Figure 7(b).

Observe that, in the case where transaction effects of the first
transaction do not intersect with the transaction sensitivities of
the second transaction (and no incoming corrections are received),
each transaction is executed exactly once, and no incremental main-
tenance is needed. In general, however, the second transaction may
need to be incrementally repaired multiple times.

By repeated application we can treat an entire sequence of trans-
actions as a single composite transaction, implemented through a
binary tree-shaped circuit whose nodes correspond to different pro-
cesses that are run in parallel. This is a simplified picture, and fur-
ther details can be found in [43].

Illustration: Transaction Repair vs Row-Level Locking. Con-
sider the following variation of the above example, involving a
large number of transactions. Each transaction adjusts a number
of items in the inventory predicate. Suppose there are n items in
total, and each transaction modifies the inventory value for any
given item with independent probability αn−1/2, for some fixed
parameter α > 0. That is, each transaction has the form

exec{
ˆinventory[S1] = x← inventory@start[S1] = y,x = y−1.

...
ˆinventory[Sk] = x← inventory@start[Sk] = y,x = y−1.}

where S1, . . . ,Sk are items chosen independently and at random
with probability αn−1/2. Most pairs of transactions will conflict
when α � 1: the expected number of items common to two trans-
actions is E[·] = n · (αn−1/2)2 = α2, an instance of the Birthday
Paradox. Row-level locking [6] is a bottleneck when α � 1: since
most transactions have items in common, they quickly encounter
lock conflicts and are put to sleep. Even with an efficient imple-
mentation of row-level locking, on a multi-core machine, only a
limited parallel speedup can be obtained unless the expected num-
ber of conflicts is very small (say, α = 0.1). Even for α = 1, par-
allel speedup is sharply limited; and for α = 10 almost no parallel
speedup is possible. Transaction repair allows us to achieve near-
linear parallel speedup in the number of cores, even for high values
of α such as α = 10 [43].

4. CONCLUSION
We presented the design considerations behind the LogicBlox

system architecture, and gave an overview of the implementation
of the system. We highlighted several innovative aspects, which
include: LogiQL, a unified and declarative language based on Dat-
alog; the use of purely functional data structures; novel join pro-
cessing strategies; advanced incremental maintenance and live pro-
gramming facilities; and built-in support for prescriptive and pre-
dictive analytics.

Our program for the LogicBlox system is admittedly an ambi-
tious one, and replacing the enterprise hairball requires a pragmatic
and incremental approach. But already today, the LogicBlox plat-
form has matured to the point that it is being used daily in dozens
of mission-critical applications in some of the largest enterprises in
the world, whose aggregate revenues exceed $300B.
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